OGC Testbed-16

Machine Learning Engineering Report (D015)

Publication Date: YYYY-MM-DD

Approval Date: YYYY-MM-DD

Submission Date: YYYY-MM-DD

Reference number of this document: OGC 20-015

Reference URL for this document: http://www.opengis.net/doc/PER/t16-20-015.html
Category: OGC Public Engineering Report

Editor: Panagiotis (Peter) A. Vretanos

Title: OGC Testbed-16: Machine Learning Engineering Report (D015)

OGC Public Engineering Report
COPYRIGHT

Copyright © 2020 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

http://www.opengis.net/doc/PER/t16-20-015.html
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the
terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated
documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without
limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the
Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that
all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to
the above copyright notice, a notice that the Intellectual Property includes modifications that have not been
approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL
PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER
OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR
ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF
OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition
of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a
third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or
liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks
or other special designations to indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement
of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies
available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise
exported or reexported in violation of U.S. export laws and regulations. In addition, you are responsible for
complying with any local laws in your jurisdiction which may impact your right to import, export or use the

Intellectual Property, and you represent that you have complied with any regulations or registration procedures
required by applicable law to make this license enforceable.

Table of Contents

1. Subject
2. Executive Summary
2.1. Business statement
2.2. Goals
2.3. Scenario / Use-cases
2.4. Research questions
2.5. Primary findings
2.6. Future work
3. Standard and/or Domain Working Group review
3.1. Overview
3.2. Artificial Intelligence in Geoinformatics (GeoAl) DWG
3.3. Document contributor contact points
3.4. Foreword
4. References
5. Terms and definitions
6. Abbreviated terms
7. Overview
8. Scenario
8.1. Overview
8.2. Components
9. Infrastructure overview
9.1. Introduction
9.2. Functional description
9.2.1. Dockerization
9.2.2. Deployment
9.2.3. Discovery and execution
9.2.4. Visualization
9.3. OGC Interfaces
9.3.1. Overview
9.3.2. OGC API Common
9.3.3. OGC API Features
9.3.4. OGC API Coverages (Draft)
9.3.5. OGC API Maps/Tiles (Draft)
9.3.6. OGC API Processes / Application Deployment and Execution Service (Draft)
9.3.7. OGC API - Records (Draft)
10. Training, deployment and execution of machine learning models
10.1. Overview
10.2. Machine Learning Environment 1 (D132 - 52°North)

© © © O J

10
11
11
13
13
13
13
14
15
16
17
18
19
19
20
22
22
22
22
23
23
23
23
23
24
25
26
27
28
30
33
33
33

10.2.1. Use Cases

10.2.2. Data and Training Data Considerations
10.2.3. Model Training

10.2.4. Model Inference Results

10.2.5. Execution and ADES Integration

10.3. Machine Learning Environment 2 (D133 - RHEA)

10.3.1. Introduction

10.3.2. Architecture

10.3.3. Dataset specification
10.3.4. Components Details Design

10.3.5. Conclusions

10.4. Deep Learning Environment (D134 - CRIM)

10.4.1. Deep Learning Models Applied to LiDAR Datasets
10.4.2. ONNX Packaging

10.4.3. OGC API - Records for LiDAR Datasets

10.4.4. OGC API - Records Queries for building training set
10.4.5. OGC API - Records queries for ML models

10.4.6. Inference deployment on ADES/EMS

10.5. OGC API - Records server (CubeWerx)

10.5.1. Overview

10.5.2. Summary of OGC API - Records - Part 1 Core
10.5.3. Core conformance class

10.5.4. Sorting conformance class

10.5.5. OpenSearch conformance class

10.5.6. JSON conformance class

10.5.7. ATOM conformance class

10.5.8. HTML conformance class

10.5.9. Extensions for the ML Thread

11. Visualization of ML Results
11.1. Overview
11.2. MapML Client 1 (D130 - ASU)

11.2.1. Introduction of MapML Client
11.2.2. Including Maps with MapML
11.2.3. MapML Metadata Acquisition
11.2.4. Map Publishing and Customization

11.3. MapML Client 2 (D131 - Bocoup)

11.3.1. Standardizing Web Maps to Increase Adoption among Browser Vendors

11.3.2. MapML Explainer
11.3.3. The HTML <map> Element proposal
11.3.4. Map Markup Language

11.3.5. Use Cases and Requirements for Standardizing Web Maps

34
34
36
36
37
39
39
41
43
44
62
63
63
65
66
70
72
76
77
77
77
77
80
80
80
83
83
83
86
86
86
86
87
88
90
92
92
93
94
94
95

11.3.6. Maps for the Web Workshop 96

11.3.7. Future Recommendations 96
12. Research questions 97
12.1. Overview 97
12.2. Does ML require "data interoperability"? 97
12.2.1. Additional related questions 97
12.2.2. Response 97
12.3. Where do trained datasets (i.e. trained model and training datasets) go and how can they
be re-used? 98
12.3.1. Response 98
12.4. How can we ensure the authenticity of trained datasets? 98
12.5. Is it necessary to have analysis ready data (ARD) for ML? 99
12.5.1. Additional related questions 99
12.5.2. Response 99
12.6. What is the value of datacubes for ML? 100
12.7. How do we address interoperability of distributed datacubes maintained by different
organizations? 100
12.8. What is the potential of MapML in the context of ML? 100
12.8.1. Additional related questions. 100
12.8.2. Response 100
12.9. How to discover and run an existing ML model? 100
13. Issues 102
13.1. Overview 102
13.2. Persisting ML model results (issue #19) 102
13.2.1. Overview 102
13.2.2. Solution 1 - stateful container 102
13.2.3. Solution 2 - object store 103
13.2.4. Solution 3 - OGC API 103
13.3. MapML Client Prototype based on Web-Map-Custom-Element 103
13.3.1. Discussion overview 103
13.3.2. Open questions 104
13.4. Processing Sentinel-1 Data using SNAP 105
13.5. Download S1 data from Amazon S3 118
13.6. Records for model description 119
13.7. Metadata Extraction for LiDAR Datasets 120
Appendix A: Revision History 139
Appendix B: Bibliography 140

Chapter 1. Subject

This engineering report describes the work performed in the Machine Learning Thread of OGC’s
Testbed-16.

Previous OGC testbed tasks concerned with Machine Learning (ML) concentrated on the methods
and apparatus of training models to produce high quality results. The work reported in this ER,
however, focuses less on the accuracy of machine models and more on how the entire machine
learning processing chain from discovering training data to visualizing the results of a ML model
run can be integrated into a standards-based data infrastructure specifically based on OGC
interface standards.

The work performed in this thread consisted of:

1.

2
3
4.
5
6

Training ML models;

. Deploying trained ML models;
. Making deployed ML models discoverable;

Executing an ML model;

. Publishing the results from executing a ML model;

. Visualizing the results from running a ML model.

At each step, the following OGC and related standards were integrated into the workflow to provide
an infrastructure upon which the above activities were performed:

1.

2.

3.

4.

OGC API - Features: Approved OGC Standard that provides API building blocks to modify and
query features on the Web.

OGC API - Coverages: Draft OGC Standard that provides API building blocks to create, modify
and query coverages on the Web.

OGC API - Records: Draft OGC Standard that provides API building block to create, modify and
query catalogues on the Web.

Application Deployment and Execution Service: Draft OGC Standard that provides API building
blocks to deploy, execute and retrieve results of processes on the Web.

o MapML is a specification that was published by the Maps For HTML Community Group
[https://www.w3.org/community/maps4html/]. It extends the base HTML map element to handle
the display and editing of interactive geographic maps and map data without the need of
special plugins or javascript libraries. The Design of MapML [https://www.w3.org/community/
maps4html/2019/12/09/the-design-of-mapml/] resolves a Web Platform gap by combining map and
map data semantics into a hypermedia format that is syntactically and architecturally
compatible with and derived from HTML. It provides a standardized way for declarative
HTML content to communicate with custom spatial server software (which currently use
HTTP APIs based on multiple queries and responses). It allows map and map data semantics
to be either included in HTML directly, or referred to at arbitrary URLs that describe stand-
alone layers of map content, including hyper-linked annotations to further content.

Particular emphasis was placed on using services based on the emerging OGC API Framework suite

https://www.w3.org/community/maps4html/
https://www.w3.org/community/maps4html/2019/12/09/the-design-of-mapml/

of API building blocks.

This ER does not cover the specific details concerning the discovery and reusability
of training data sets. A complete description of this topic can be found in the D016
Machine Learning Training Data Engineering Report [https:/portal.ogc.org/files/?
artifact id=95717].

NOTE

https://portal.ogc.org/files/?artifact_id=95717
https://portal.ogc.org/files/?artifact_id=95717

Chapter 2. Executive Summary

2.1. Business statement

The integration of Machine Learning (ML) tools into a framework composed of catalogues, data
access services and data processing services that comply with OGC standards can result in a ML
processing chain that can extract knowledge and insight from the vast amount of geospatial data
being collected and deployed in cloud platforms.

2.2. Goals
The OGC Testbed-16 goals for the Machine Learning Thread are:

1. Discovery and reusability of data used to train predictive ML models.
2. The integration of predictive ML models into a standards-based data infrastructure.

3. Cost-effective visualization and data exploration technologies based on the use of the Map
Markup Language (MapML).

2.3. Scenario /| Use-cases

These goals are explored and addressed using the backdrop of a wildland fires scenario.

Wildland fires are those that occur in forests, shrublands and grasslands. While representing a
natural component of forest ecosystems, wildland fires can present risks to human lives and
infrastructure. Being able to properly plan for and respond to wildland fire events is thus a critical
component of forestry management and emergency response.

Appropriate responses to wildland fire events benefit from planning activities undertaken before
events occur. ML presents a new opportunity to advance wildland fire planning using diverse sets
of geospatial information such as satellite imagery, Light Detection and Ranging (LiDAR) data, land
cover information and building footprints. As much of the required geospatial information is
available using OGC standard interfaces and encodings, a requirement exists to understand how
well these standards can support ML in the context of wildland fire planning. Testbed-16 explored
how to leverage ML, cloud deployment and execution, and geospatial information, provided
through OGC standards, to improve planning approaches for wildland fire events. Findings inform
future improvement and/or development activities for OGC Standards, leading to improved
potential for the use of OGC standards within an infrastructure that includes ML applications.

Client with
MapML support

' [
[/isualize }
discover access
load receive
understand provide
govern

MACHINE
LEARNING
INTEGRATION

deploy
execute
retrieve results
WPS/ADES DATA & PROCESSING
PLATFORM

Training data

Training data

Training data Web Service

Figure 1. ML and EO integration challenges

Advanced planning for wildland fire events can greatly improve the ability of first responders to
address a situation. However, accounting for the many variables (e.g. wind, dryness, fuel loads) and
their combinations that will be present at the exact time of an event is very difficult. As such, there
is an opportunity to evaluate how ML approaches, combined with geospatial information delivered
using OGC Standards, can improve response planning throughout the duration and aftermath of
wildland fire occurrences.

Thus, in addition to planning related work, Testbed-16 explored how to leverage ML technologies
for dynamic wildland fire response. The planned work provided insight into how OGC Standards
can support wildland fire response activities in a dynamic context. Any identified limitations of
existing OGC Standards were documented and will be used to plan improvements to these
frameworks. The Testbed was also an opportunity to explore how OGC Standards may be able to
support the upcoming Canadian WildFireSat mission.

Though this task uses a wildland fire scenario, the emphasis is not on the
quality of the modelled results, but on the integration of externally provided
source and training data, the deployment of the ML model on remote clouds
through a standardized interface, and the visualization of model output.

IMPORTANT

2.4. Research questions

This ER addresses the following research questions:

* Does ML require "data interoperability"? Or can ML enable "data interoperability"?

* How do existing and emerging OGC Standards contribute to a data architecture flow towards
"data interoperability"?

* Is it necessary to have analysis ready data (ARD) for ML? Can ML help ARD development?
» What is the value of datacubes for ML?

* How do we address interoperability of distributed datacubes maintained by different
organizations?

10

* What is the potential of MapML in the context of ML? Where does it need to be enhanced?

* How to discover and run an existing ML model?

2.5. Primary findings

The answers to the research questions can be found in the Research questions section. The
following additional findings of the ML thread in OGC Testbed-16 are noted:

* The use of catalogues, data access services and data processing services that comply with OGC
standards facilitates the modular deployment and expandability of ML processing chains.

* While the older OGC W*S services (e.g. WMS [https://www.ogc.org/standards/wms], WMTS
[https://www.ogc.org/standards/wmts], WES [https://www.ogc.org/standards/wfs], CSW [https://www.ogc.org/
standards/cat], etc.) can be suitably integrated into the processing chain, the newer OGC API
[https://ogcapi.ogc.org/] interfaces are easier to use and easier to integrate into a ML processing
chains.

» The OGC API - Tiles [https://github.com/opengeospatial/ OGC-API-Tiles] interface is a good candidate for
model training as both value datasets and label datasets can be retrieved.

* The older WMS [https://www.ogc.org/standards/wms] interface can also be used for model training
but relies on the existence of optional capabilities (i.e. LegendURL and GetStyles) in the service
instances being used.

e The OGC API - Records [https:/htmlpreview.github.io/?https://github.com/opengeospatial/ogcapi-records/
blob/master/20-004.html] interface offered a high level of flexibility, allowing both the discovery of
training datasets and providing the binding information necessary for data extraction by a ML
algorithm. The catalogue is capable of harvesting repositories of different typologies and to list
the relevant information for ML applications. This is an emerging OGC standard that can
potentially contribute to a data architecture flow towards "data interoperability".

* Using Docker [https://www.docker.com/] to encapsulate both trained ML models as well as the
entire processing chain facilitated testing the processing chain as well a scaling it in production.

* The use of Application Deployment and Execution Service (ADES) and Execution Management
Service (EMS) allows the dynamic deployment of trained models encapsulated in Docker
[https://www.docker.com/] containers and provides a consistent interface for executing ML models
and retrieving the results of processing. Those results can be persistently stored for use by
downstream actors.

* There are plenty of development libraries available that implement support for OGC standards.
Conveniently for the ML domain, numerous Python libraries with OGC standards support exist.

2.6. Future work

The following future-work items where identified:

» Data Authenticity: This aspect needs to be investigated in order to be sure that the model is
trained and inferred with authentic data (the issue of data tampering in satellite imagery was
also noted).

» Analysis Ready Data (ARD): Another important aspects to take into consideration when the

11

https://www.ogc.org/standards/wms
https://www.ogc.org/standards/wmts
https://www.ogc.org/standards/wfs
https://www.ogc.org/standards/cat
https://ogcapi.ogc.org/
https://github.com/opengeospatial/OGC-API-Tiles
https://www.ogc.org/standards/wms
https://htmlpreview.github.io/?https://github.com/opengeospatial/ogcapi-records/blob/master/20-004.html
https://www.docker.com/
https://www.docker.com/

framework deals with different data sources like datacubes where some data could be already
in ARD format and some other not.

* ONNX check points: for the time being the actual model stores its checkpoints in native format,
but it could be useful to take into consideration the Open Neural Network eXchange (ONNX)
[https://github.com/onnx] format.

* Training dismissal: another important aspect to be covered is the expected behavior in case it
is required to interrupt the training. For instance, all the intermediate training has to be
maintained or not?

12

https://github.com/onnx

Chapter 3. Standard and/or Domain Working
Group review

3.1. Overview

The Machine Leaning (ML) thread participants and sponsors believed that the work of the ML task
is relevant to working being done in the OGC Standards and Domain Working Groups (SWGs,
DWGs) listed below. A request for review of this ER by the SWG/DWG members was forwarded to
the working groups by the editor.

3.2. Artificial Intelligence in Geoinformatics (GeoAl)
DWG

The Artificial Intelligence in Geoinformatics (GeoAI) DWG is chartered to identify use cases and
applications related to Artificial Intelligence (AI) in geospatial domains and focused on the Internet-
of-Things (e.g., healthcare, smart energy), robots (e.g., manufacturing, self-driving vehicles), or
‘digital twins’ (e.g., smart buildings and cities). This DWG provides an open forum for broad
discussion and presentation of use cases with the purpose of bringing geoscientists, computer
scientists, engineers, entrepreneurs, and decision makers from academia, industry, and
government together to develop, share, and research the latest trends, successes, challenges, and
opportunities in the field of AI with geospatial data. The working group aims to investigate the
feasibility and interoperability of OGC standards in incorporating geospatial information with Al
and describe gaps and issues which can lead to new geospatial standardization to advance
trustworthiness and accountability for this domain community. Furthermore, existing OGC Web
Services need to be carefully examined for changes that may need to be made in the context of Al-
empowered applications. As some AI methods are already included in OGC standards, it is expected
that AI methods will also impact many OGC standards in the future. For example, routing services
have not yet been built according to human-centered Al, despite some suggestions to extend
OpenlLsS.

The goal the ML task in Testbed-16 is to explore how to leverage ML through OGC standards to
improve planning approaches for wildland fire events and this seems to align with the goals of a
GeoAI DWG especially as it relates to incorporating and integrating geospatial information with Al

3.3. Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization Role
Panagiotis (Peter) A. CubeWerx Inc. Editor
Vretanos

Samuel Foucher CRIM Contributor

13

Name Organization Role

Francis Charette- CRIM Contributor
Migneault

Matthes Rieke 52°North Contributor
Andrea Cavallini RHEA Group Contributor
Nicola Lorusso RHEA Group Contributor
Valerio Fontana RHEA Group Contributor

3.4. Foreword

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

14

Chapter 4. References

The following normative documents are referenced in this document.

e OGC19-072, OGC® API - Common - Part 1: Core [http://docs.opengeospatial.org/DRAFTS/19-072.html]

* OGC 19-072, OGC® API - Common - Part 2: Geospatial Data [http://docs.opengeospatial.org/DRAFTS/20-
042.html]

* OGC 18-058, OGC® API - Features - Part 1: Core [http://docs.opengeospatial.org/is/17-069r3/17-069r3.html]

* OGC 18-058, OGC® API - Features - Part 2: Coordinate Reference Systems by Reference
[http://docs.opengeospatial.org/DRAFTS/18-058.html]

* OGC 19-079, OGC® API - Features - Part 3: Filtering and the Common Query Language
[http://docs.opengeospatial.org/DRAFTS/19-079.html]

e OGC 20-004, OGC® API - Records - Part 1: Core [https:/htmlpreview.github.io/?https://github.com/
opengeospatial/ogcapi-records/blob/master/20-004.htmi]

e OGC 18-062, OGC® API - Processes - Part 1: Core [http://docs.opengeospatial.org/DRAFTS/18-062.html]
e OGC 20-057, OGC® API - Tiles - Part 1: Core [https://github.com/opengeospatial/OGC-API-Tiles]

e OGC 20-044, OGC® API - Processes - Part 2: Transactions [https://github.com/opengeospatial/wps-rest-

binding/tree/master/extensions/transactions/standard]

* OGC Testbed-14: ADES & EMS Results and Best Practices Engineering Report
[https://docs.opengeospatial.org/per/18-050r1.html]

* Map Markup Language [https://maps4html.org/MapML/spec/]

15

http://docs.opengeospatial.org/DRAFTS/19-072.html
http://docs.opengeospatial.org/DRAFTS/20-042.html
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
http://docs.opengeospatial.org/DRAFTS/18-058.html
http://docs.opengeospatial.org/DRAFTS/19-079.html
https://htmlpreview.github.io/?https://github.com/opengeospatial/ogcapi-records/blob/master/20-004.html
http://docs.opengeospatial.org/DRAFTS/18-062.html
https://github.com/opengeospatial/OGC-API-Tiles
https://github.com/opengeospatial/wps-rest-binding/tree/master/extensions/transactions/standard
https://docs.opengeospatial.org/per/18-050r1.html
https://maps4html.org/MapML/spec/

Chapter 5. Terms and definitions

For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

e container

a software package that contains everything needed to run a program or application; this
includes the executable program as well as system tools, libraries, and settings

e convolutional neural network (CNN)

a class of deep neural networks commonly applied to analyzing visual imagery

e deployment

a trained model available for execution behind a standardized API; in OGC this standarized API
is defined by the OGC API - Processes specification [http:/docs.opengeospatial.org/DRAFTS/18-062.html]
with extensions [https://github.com/opengeospatial/wps-rest-binding/tree/master/extensions/transactions/
standard].

e Docker

a software platform for building applications based on containers

e model inference

refers to the process of taking a machine learning model that’s already been trained and using
that trained model to make useful predictions based on new data

e trained model

providing a machine learning algorithm with known data from which it can learn; the model
artifact created by the training process is called a trained model

16

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
http://docs.opengeospatial.org/DRAFTS/18-062.html
https://github.com/opengeospatial/wps-rest-binding/tree/master/extensions/transactions/standard

Chapter 6. Abbreviated terms

ADES - Application Deployment and Execution System
AI - Artificial Intelligence

API - Application Programming Interface
ARD - Analysis Ready Data

CNN - Convolutional Neural Networks
CRIM - Computer Research Institute of Montréal
CRS - Coordinate Reference System

CSW - Catalogue Service for the Web

CWL - Common Workflow Language

DL - Deep Learning

ER - Engineering Report

EMS - Execution Management System
HTTP - Hypertext Transfer Protocol

JSON - JavaScript Object Notation

LiDAR - Light Detection and Ranging
MapML - Map Markup Language

ML - Machine Learning

OGC - Open Geospatial Consortium

ONNX - Open Neural Network Exchange Format
OWS - OGC Web Services

Pub/Sub - Publication/Subscription

REST - Representational State Transfer
RNN - Recurrent Neural Network

SAR - Synthetic Aperture Radar

TIE - Technology Integration Experiments
URL - Uniform Resource Locator

VCS - Version Control Systems

WCS - Web Coverage Service

WES - Web Enterprise Suite

WES - Web Feature Services

WMS - Web Map Service

WPS - Web Processing Service

WPS-T - Transactional Web Processing Service

17

Chapter 7. Overview

The "Scenario"” section provides a detailed description of the scenario and use cases used to drive
the participants’ implementations.

The "Infrastructure overview" section provides background information about ML and Deep
Learning (DL) as well as some of the underlying OGC technologies such as the Application
Deployment and Execution Service (ADES) which is an emerging technology developed in OGC
Testbeds 13, 14 and 15.

The "Training, deployment and execution of machine learning models" section describes how
machine learning models were deployed via existing and emerging OGC APIs in the ML task.
Specifically the clause describes how ML models are packaged into containers and deployed via an
ADES.

The "Visualization of ML Results" section describes how MapML was used to visualize and interact
with geospatial information within a web browser.

The "Research questions" section attempt to answer research-questions [https://portal.ogc.org/files/?
artifact_id=91644# research_questions] originally expressed in the OGC Testbed-16: Call for Participation
(CFP) [https://portal.ogc.org/files/?artifact_id=91644] based on the experiences of the thread participants.

The "[issues]" section provides a summary of the issues discussed during the Testbed.

18

https://portal.ogc.org/files/?artifact_id=91644#_research_questions
https://portal.ogc.org/files/?artifact_id=91644
https://portal.ogc.org/files/?artifact_id=91644

Chapter 8. Scenario

8.1. Overview

The Machine Learning task scenario addresses two phases of wildland fire management,

» Wildland Fire Planning
* Wildland Fire Response.

For both scenarios, various steps of training and analysis data integration, processing and
visualization were performed as outlined below. The scenarios serve the purpose of guiding the
activity through the various steps in the two phases of wildland fire planning and response. The
scenarios help to ground all work in a real-world situation.

The Wildland fire planning scenario includes the following major steps:

1. Investigate the application of different ML frameworks (e.g. Mapbox RoboSat, Azavea’s Raster
Vision, GeoDeepLearning) to multiple types of remotely sensed information such as synthetic
aperture radar, optical satellite imagery, and LiDAR. Access to these data sources was provided
though OGC standards. The focus was to identify fuel availability within targeted forest regions.

2. Explore interoperability challenges related to ML training data. Develop solutions that allow the
wildland fire training data, test data, and validation data be structured, described, generated,
discovered, accessed, and curated within data infrastructures.

3. Explore the interoperability and reusability of trained ML models to determine potential for
applications using different types of geospatial information. Interoperability, reusability and
discoverability are essential elements for cost-efficient ML. The structure and content of the
trained ML models have to provide information about its purpose. Questions such as: “What is
ML model trained to do?” or “What data was the model trained on?” or “Where is the model
applicable?” need to be answered sufficiently in order to provide guidance on the appropriate
use of a model. For example, models trained with data from a specific area that contains a
specific features profile (e.g. forested land) may not be appropriate for use in another area with
a different features profile (e.g. grassland). Interoperability of training data should be addressed
equivalently.

4. Deep Learning (DL) architectures can use LiDAR to classify field objects (e.g. buildings, low
vegetation, etc.). These architectures mainly use the TIFF and ASCII image formats. Other DL
architectures use 3D data stored in a raster or voxel form. However, 3D voxels or raster forms
may have many approximations that make classification and segmentation vulnerable to
errors. Therefore, Testbed-16 participants should apply advanced DL architectures directly to
the raw point cloud to classify points and segments of individual items (e.g. trees, etc.). The
PointNET architecture for this or propose different approaches should be investigated. If
different DL architectures are proposed, an alternative to PointNET could be considered.

5. Leverage outcomes from the previous steps to predict wildland fire behavior within a given
area through ML. Incorporate training of ML using historical fire information and the Canadian
Forest Fire Danger Rating system (fire weather index, fire behavior prediction) leveraging
weather, elevation models, fuels.

19

6.

7.

Using ML to discover and map suitably sized and shaped water bodies for water bombers and
helicopters.

Investigate the use of ML to develop smoke forecasts based on weather conditions, elevation
models, vegetation/fuel and active fires (size) based on distributed data sources and datacubes
using OGC standards.

The Wildland fire response scenario includes the following major steps:

1.

Explore ML methods for identifying active wildland fire locations through analysis of fire
information data feeds (e.g. the Canadian Wildland Fire Information System, the United States
Geological Survey LANDFIRE system) and aggregation methods. Explore the potential of MapML
as an input to the ML process and the usefulness of a structured Web of geospatial data in this
context.

Implement ML to identify potential risks to buildings and other infrastructure given identified
fire locations. Consider the potential for estimating damage costs.

Investigate how existing standards related to water resources (e.g. WaterML, Common
Hydrology Features (CHyF), in conjunction with ML, can be used to locate potential water
sources for wildland fire event response.

Develop evacuation and first responder routes based on ML predictions of active fire behavior
and real-time conditions (e.g. weather, environmental conditions).

Based on smoke forecasts and suitable water bodies, determine if suitable water bodies are
accessible to water bombers and helicopters.

Explore the communication of evacuation and first responder routes, as well as other wildland
fire information, through Publication/Subscription (Pub/Sub) messaging.

Examine how ML can be used to identify watersheds/water sources that will be more
susceptible to degradation (e.g. flooding, erosion, poor water quality) after a fire has occurred.

Identify how OGC standards and ML may be able to support the goals of the upcoming Canadian
WildFireSat mission.

8.2. Components

The following diagram provides an overview of the main work items for this task. The diagram is
structured to show the training data at the bottom, existing platforms and corresponding APIs to
the left, and Machine Learning models and visualization efforts to the right.

20

Existing data Web client
platforms @
MapML Client evelop MupML chenf for
lysis and p g
EODMS - Type and I—

specifics of - m

OGC

interfaces

OGC/MapML
|
FGP/OpenMaps Machine Learning Tools
- Develop various tools, but focus
on interfaces, data access,
0GC MACHINE | fraining data, and result provision
LEARNING | mechanisms
NFIS - Deploy and execute models on
cloud platforms (provided by

- How to best support ML from Sponsor)
existing data portals?
- How does analysis ready data

look like? Training data
- Is ARD already served?

- Valuve of data cubes?

- Need for “interoperable data”?

Training data

- How do discover and use
training data?

- How to ensure authenticity of
training data?

- How to communicate training
data specifics to users?

Figure 2. Major components and research aspects

The following overarching research questions further helped to guide the work in this task:

Does ML require "data interoperability"?
o Or can ML enable "data interoperability"?

- How do existing and emerging OGC standards contribute to a data architecture flow
towards "data interoperability"?

Where do trained datasets go and how can they be re-used?

o See the D016 Machine Learning Training Data ER [https://portal.ogc.org/files/?artifact_id=95717].
How can we ensure the authenticity of trained datasets?

o See the D016 Machine Learning Training Data ER [https://portal.ogc.org/files/?artifact_id=95717].
Is it necessary to have analysis ready data (ARD) for ML? Can ML help ARD development?

o For the purposes of serving the data from OGC API sources such as coverage server the data
needs to be orthorectified

o This is probably true for ML models as well
What is the value of datacubes for ML?

How do we address interoperability of distributed datacubes maintained by different
organizations?

What is the potential of MapML in the context of ML?
o Where does it need to be enhanced?

How to discover and run an existing ML, model?

21

https://portal.ogc.org/files/?artifact_id=95717
https://portal.ogc.org/files/?artifact_id=95717

Chapter 9. Infrastructure overview

9.1. Introduction

A primary task of this thread was to explore the use of existing and emerging OGC APIs to enable a
processing chain that starts with discovering training data for a specific purpose and ends with a
deployed ML model that can be executed and its results visualized using a browser.

The following components diagram shows the interactions of the various ML and OGC components
used in the thread:

Catalog Repository Existing Data Platform

Model Archive Model Record OGC API - Records
Test Data

Model Data
Catalog Catalog

> Data Validator

Test Data Streaming

Dockerisation Link to
We want o check that ™
-1 test data meets the model

Model Validation

apl

OGC API - Tiles
OGC API - Maps
OGC API - Features

ADES/
OGC API - Processes
Result Publishing

Pre-Processing Step as

part of the handling Docker Registry

functions
@ : OGCMaphL
Result Publishing shor l
N transport the relevant
metadata MapML or OGC Service
Post-Processing Step

as part of the handling Post-Processing
functions

I

ML Instance

-

Data & Exploitation Platform <

Client with
MapML support

Figure 3. Detailed components diagram

This diagram covers all the components except those related to training data which are discussed in
detail in the D016 Machine Learning Training Data ER [https://portal.ogc.org/files/?artifact_id=95717].

This section provides a brief overview of each of the OGC components that were integrated to
create an infrastructure upon with the activities of the testbed where performed.

9.2. Functional description

A summary of Application Deployment and Execution Service (ADES) and Execution Management
Service (EMS) can be found in the OGC Testbed-14: ADES & EMS Results and Best Practices
Engineering Report (OGC 18-050r1) [https://docs.opengeospatial.org/per/18-050r1.html].

9.2.1. Dockerization

The left side of the diagram illustrates the bundling of an ML instance into a Docker container. This

22

https://portal.ogc.org/files/?artifact_id=95717
https://docs.opengeospatial.org/per/18-050r1.html
https://docs.opengeospatial.org/per/18-050r1.html

Docker container is the execution unit for the ML instance once it is deployed to the ADES.

In order to make it discoverable, a catalogue record describing the details of the ML instance is
created.

9.2.2. Deployment

The bottom center of the diagram illustrates an exploitation platform to which the Dockerized ML
model is deployed. Once deployed, the model can be executed using Application Deployment and
Execution Service (ADES) and the Execution Management Service (EMS) APIs.

9.2.3. Discovery and execution

The center of the diagram illustrates an Execution Management Service,(EMS).

The EMS interacts with a catalogue, illustrated in the top right of the diagram, to provide discovery
capabilities for ML models and data.

Once a suitable combination of the ML model and input data has been identified, the EMS interacts
with the ADES to coordinate execution of the model.

9.2.4. Visualization

Once a ML model has been executed the EMS mediates handling of the results. This can involve
passing the results (e.g. a GeoTIFF) directly to the client or publishing the results via OGC-based
services (e.g. OGC API - Maps [https:/github.com/opengeospatial/OGC-API-Maps] or OGC API - Tiles
[https://github.com/opengeospatial/OGC-API-Tiles] servers) for later retrieval. In the latter case,
technologies such as MapML can be leveraged to view the results and federate with other
authoritative sources.

9.3. OGC Interfaces

9.3.1. Overview

For the Testbed ML activity, the preferred OGC interfaces are the those being defined for the OGC
API framework. This section provides an overview of the specific APIs referenced in the Figure 3.

Two of the planned OGC APIs, such as OGC API - Features - Part 1:Core [http://docs.opengeospatial.org/is/
17-069r3/17-069r3.html] and OGC API - Features - Part 2:Coordinate Reference Systems by Reference
[http://docs.opengeospatial.org/is/18-058/18-058.html], are official OGC standards. Others, such as OGC API -
Processes [https://github.com/opengeospatial/wps-rest-binding] or OGC API - Coverages [https:/github.com/
opengeospatial/ogc_api_coverages], will become OGC standards sometime in 2021. Finally, several of the
APIs (e.g. OGC API - Common [https:/github.com/opengeospatial/oapi_common], OGC API - Maps
[https://github.com/opengeospatial/ OGC-API-Maps], OGC API - Tiles [https://github.com/opengeospatial/OGC-API-
Tiles]) are still under development within the OGC standards process.

23

https://github.com/opengeospatial/OGC-API-Maps
https://github.com/opengeospatial/OGC-API-Tiles
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
http://docs.opengeospatial.org/is/18-058/18-058.html
https://github.com/opengeospatial/wps-rest-binding
https://github.com/opengeospatial/wps-rest-binding
https://github.com/opengeospatial/ogc_api_coverages
https://github.com/opengeospatial/oapi_common
https://github.com/opengeospatial/OGC-API-Maps
https://github.com/opengeospatial/OGC-API-Tiles

9.3.2. OGC API Common

9.3.2.1. Overview

The OGC API framework is organized by resource type (e.g. features, coverages, maps, tiles). Each
resource has an associated API standard. These resource-specific API standards are built using
shared API modules. The OGC API-Common [https:/github.com/opengeospatial/oapi_common] suite of
standards stages the requirements and conformance that define these shared modules.

OGC API - Common - Part 1: Core [http:/docs.opengeospatial.org/DRAFTS/19-072.html], defines the
resources and operations which are be common to all OGC API standards. This draft Standard
defines the minimal requirements for an API to be discovered and used by any client.

OGC API - Common - Part 2: Collections [http://docs.opengeospatial.org/DRAFTS/20-024.html], provides a
common connection between the API landing page and resource-specific details for collections.
That connection includes metadata which describes the collections of hosted resources, common
parameters for selecting subsets of those collections, and URI templates for identifying the above.

9.3.2.2. API Summary

Table 1. OGC API - Common resources

Resour URI HTTP Description
ce Metho
d
Landin / GET The purpose of the landing page is to

g Page provide clients with a starting point for
using the API. Any resource exposed
through an API can be accessed by
following paths or links starting from the

landing page.
API /api GET Every API should provide an API Definition
definiti resource which describes capabilities
on provided by that API. This resource can be

used by developers to understand the API,
by software clients to connect to the server,
and by development tools to support the
implementation of servers and clients.

Confor /conformance GET Provides a list of conformance classes
mance implemented by an API.

Collecti /collections GET Information which describes the set of
ons supported Collections.

Collecti /collections GET Information about a specific collection.

on

Table 2. OGC API - Common parameters

https://github.com/opengeospatial/oapi_common
http://docs.opengeospatial.org/DRAFTS/19-072.html
http://docs.opengeospatial.org/DRAFTS/20-024.html

Parameter Target Description

Name

Bounding Box Extent Selects resources which have an Extent element that
intersects the bounding box

Date-Time Extent Selects resources which have an Extent element that
intersects the specified time period

Limit Result set Limits the number of resources returned in a single

response

9.3.3. OGC API Features

9.3.3.1. Overview

The OGC API - Features [https://www.ogc.org/standards/ogcapi-features] Standard defines API building
blocks to create, modify and query features on the Web. OGC API - Features [https:/www.ogc.org/
standards/ogcapi-features] is comprised of multiple parts, each of which is a separate standard.

OGC API - Features - Part 1: Core [http://docs.opengeospatial.org/DRAFTS/17-069r4.html], specifies the core
capabilities and is restricted to fetching features where geometries are represented in the
coordinate reference system WGS 84 with axis order longitude/latitude. Features Core further
specifies discovery and query operations that are implemented using the HTTP GET method.

By default, every API implementing Part 1 will provide access to a single dataset. Rather than
sharing the data as a complete dataset, OGC API Features offers direct, fine-grained access to the
data at the feature (object) level.

Discovery operations defined in Part 1 enable clients to interrogate the API to determine its
capabilities and retrieve information about this distribution of the dataset, including the API
definition and metadata about the feature collections provided by the API.

Query operations defined in Part 1 enable clients to retrieve features from the underlying data
store based upon simple selection criteria, defined by the client.

OGC API - Features - Part 2: Coordinate Reference Systems by Reference [http://docs.opengeospatial.org/
DRAFTS/18-058.html], extends Part 1 to support additional coordinate reference systems in addition to
WGS84 CRS specified in the core. This is an approved OGC standard.

OGC API - Features - Part 3: Filtering and the Common Query Language [http://docs.opengeospatial.org/
DRAFTS/19-079.html] (CQL), extends Part 1 to support richer filtering capabilities beyond the simple
selection capabilities defined in Part 1. This is a draft standard.

The API building blocks specified in the OGC API - Features suite of standards are consistent with
the architecture of the Web. In particular, the API design is guided by the Internet Engineering Task
Force (IETF) HTTP [https://tools.ietf.org/html/rfc7231]/https://tools.ietf.org/html/rfc2818[HTTPS] RFCs, the
W3C Data on the Web Best Practices [https://www.w3.org/TR/dwbp/], the W3C/OGC Spatial Data on the
Web Best Practices [https://www.w3.org/TR/sdw-bp/] and the emerging OGC Web API Guidelines
[https://github.com/opengeospatial/ 0GC-Web-API-Guidelines]. A particular example is the use of the concepts
of datasets and dataset distributions as defined in the W3C Data Catalog Vocabulary (DCAT)

25

https://www.ogc.org/standards/ogcapi-features
https://www.ogc.org/standards/ogcapi-features
http://docs.opengeospatial.org/DRAFTS/17-069r4.html
http://docs.opengeospatial.org/DRAFTS/18-058.html
http://docs.opengeospatial.org/DRAFTS/19-079.html
https://tools.ietf.org/html/rfc7231
https://www.w3.org/TR/dwbp/
https://www.w3.org/TR/sdw-bp/
https://www.w3.org/TR/sdw-bp/
https://github.com/opengeospatial/OGC-Web-API-Guidelines
https://www.w3.org/TR/vocab-dcat-2/

[https://www.w3.org/TR/vocab-dcat-2/] and used in schema.org [https://schema.org].

In this thread, a features server was deployed to offer vector data for the training of ML models and
as input data when executing trained models. Specifically, an OGC API Features server supporting
both parts 2 and 3 was deployed to host the Canvec Series of Topographic Data of Canada
[https://open.canada.ca/data/en/dataset/SbaZaa2a-7bb9-4448-b4d7-f164409fe056].

9.3.3.2. API Summary

Table 3. OGC API - Features resources

Resour URI HTTP Description
ce Metho
d
Feature /collections/{collectionIld} GET The collection of features
S /items

Feature /collections/{collectionsId GET A specific feature
}items/{featureld}

9.3.4. OGC API Coverages (Draft)

9.3.4.1. Overview

Coverages - as per OGC, and ISO standardization - constitute a unifying paradigm for the digital
representations of space/time varying phenomena. Specifically, these are data defined as spatio-
temporal regular and irregular grids, point clouds, and general meshes. In particular, multi-
dimensional datacubes fall under this category, such as 1-D sensor time series, 2-D satellite imagery,
3-D x/y/t image time series and X/y/z geoscientific models, 4-D x/y/z/t climate and ocean data sets,
and more.

The draft OGC API - Coverages [https:/github.com/opengeospatial/ogc_api_coverages] standard establishes
how to access coverages. Like OGC API Features [https://www.ogc.org/standards/ogcapi-features], OGC API -
Coverages [https://github.com/opengeospatial/ogc_api_coverages] is comprised of multiple parts, each of
them as a separate standard.

The draft OGC API - Coverages - Part 1: Core [http:/docs.opengeospatial.org/DRAFTS/19-072.html],
established how to access coverages as defined by the Coverage Implementation Schema (CIS) 1.1
[http://docs.opengeospatial.org/is/09-146r6/09-146r6.html].

Part 1 defines coverage extraction and includes subsetting capabilities, including band subsetting,
scaling, CRS conversion and data format encoding. Gridded coverages or 'point-cloud’ multi-point
coverages are the primary data types considered but other kinds of datasets are not excluded.

In this Testbed thread, a coverage server was deployed serving Sentinel S1A and S1B satellite
imagery from Canada. This data was used for training ML models and as input when executing
trained models.

26

https://schema.org
https://open.canada.ca/data/en/dataset/8ba2aa2a-7bb9-4448-b4d7-f164409fe056
https://github.com/opengeospatial/ogc_api_coverages
https://www.ogc.org/standards/ogcapi-features
https://github.com/opengeospatial/ogc_api_coverages
https://github.com/opengeospatial/ogc_api_coverages
http://docs.opengeospatial.org/DRAFTS/19-072.html
http://docs.opengeospatial.org/is/09-146r6/09-146r6.html

9.3.4.2. API Summary

Table 4. OGC API - Features resources

Resour URI HTTP Description
ce Metho
d
Covera /collections/{coverageld}/ GET Returns a coverage and all its components
ge coverage
Range /collections/{coverageld}/ GET Returns the rangeset of the coverage
set coverage/rangeset

Range /collections/{coverageld}/ GET Returns the rangetype of the coverage

type coverage/rangetype
Feature /collections/{coverageld}/ GET Returns the domainset of the coverage
S coverage/domainset

Metada /collections/{coverageld}/ GET Returns associated metadata defined by the
ta coverage/metadata CIS [http://docs.opengeospatial.org/is/09-146r6/09-
146r6.html] model

9.3.5. OGC API Maps/Tiles (Draft)

OGC API - Tiles - Part 1: Core [https:/github.com/opengeospatial/OGC-API-Tiles] specifies the behavior of
Web APIs that provide access to tiles of one geospatial data resource or more than one geospatial
data resource. This standard defines how to discover which resources offered by the API can be
retrieved as tiles, what are the tile matrix sets supported by the geospatial data resources, which
are the limits of the tiled space and how to request one tile at a time.

In this thread, a server was deployed that offered map and tile access OGC API interfaces to Sentinel
S1A and S1B satellite imagery from Canada and to the Canvec Series of Topographic Data of Canada
[https://open.canada.ca/data/en/dataset/8ba2aa2a-7bb9-4448-b4d7-164409fe056]. Both the Sentinel and Canvec
data were used to train ML model and as input data when executing trained models.

9.3.5.1. API Summary

Table 5. OGC API - Tiles resources

Resource name Common path

Tiling Schemas /tileMatrixSets

Tiling Schema /tileMatrixSets/{tileMatrixSetId}
Tiles

Vector Tiles description /collections/{collectionld}/tiles

Vector Tiles description in one /collections/{collectionId}/tiles/{tileMatrixSetId}
tile matrix set

Vector Tile /collections/{collectionId}/tiles/{tileMatrixSetId}/{tileMatri
x}/{tileRow}/{tileCol}

27

http://docs.opengeospatial.org/is/09-146r6/09-146r6.html
https://github.com/opengeospatial/OGC-API-Tiles
https://open.canada.ca/data/en/dataset/8ba2aa2a-7bb9-4448-b4d7-f164409fe056

Resource name Common path

Vector Tiles description /tiles

(geospatial resources’)

Vector Tile /collections/{collectionId}/tiles/{tileMatrixSetId}/{tileMatri
x}/{tileRow}/{tileCol}

Vector tile (geospatial /tiles/{tileMatrixSetId}/{tileMatrix}/{tileRow}/{tileCol}

resources’)

Maps

Maps description® /collections/{collectionId}/map

Maps description (geospatial /map

resources')’

Map tiles

Mabp tiles description /collections/{collectionId}/map/tiles

Map tiles description in one tile /collections/{collectionId}/map/tiles/{tileMatrixSetId}

matrix set

Map tiles description /map/tiles

(geospatial resources’)

Map tiles description /map/tiles/{tileMatrixSetId}
(geospatial resources’) in one
tile matrix set

Mabp tile /collections/{collectionId}/map/{styleld}/tiles/{tileMatrixSet
Id}/{tileMatrix}/{tileRow}/{tileCol}

Map tile (geospatjal resourcesl) /map/tiles/{tileMatrixSetId}/{tﬂeMatrix}/{ti leRow}/{tileCol}

' The expression "geospatial resources” means "from more than one geospatial resource or
collection" : Specified in the OGC API - Maps Part1, core

9.3.6. OGC API Processes / Application Deployment and Execution Service
(Draft)

9.3.6.1. Overview

OGC API - Processes - Part 1: Core [https:/htmlpreview.github.io/?https://github.com/opengeospatial/wps-rest-
binding/blob/master/docs/18-062.html], specifies building blocks that enable the execution of geospatial
computing processes on the Web. The draft standard defines requirements and conformance for
providing process inputs and for retrieving the results of processing. Processes can be executed
synchronously or asynchronously. The API also defines discovery resources for the retrieval of
metadata describing the purpose and functionality of each process. Typically, these processes
combine raster, vector, coverage and/or point cloud data with well-defined algorithms to produce
new raster, vector, coverage and/or point could information.

Part 1 of OGC API - Processes [https://github.com/opengeospatial/wps-rest-binding] only offers a static set of
processes. Previous OGC Testbed work in OGC Testbeds 13 [http://docs.opengeospatial.org/per/17-024.html]
and 14 [https://docs.opengeospatial.org/per/18-050r1.html] extended the processes API to allow for the

28

https://htmlpreview.github.io/?https://github.com/opengeospatial/wps-rest-binding/blob/master/docs/18-062.html
https://github.com/opengeospatial/wps-rest-binding
http://docs.opengeospatial.org/per/17-024.html
https://docs.opengeospatial.org/per/18-050r1.html

dynamic deployment of processes. This extension is currently referred to as the Application
Deployment and Execution Service.

A draft, OGC API - Processes - Part 2: Transactions [https:/github.com/opengeospatial/wps-rest-binding/tree/
master/extensions/transactions], formalizes the work done in testbeds 13, 14 and 15 to extend the core
to add transactional capability; that is the ability to dynamically deploy and "undeploy" processes.

9.3.6.2. Application Deployment and Execution Service (ADES)

A service that implements these two parts of the OGC API - Processes [https://github.com/opengeospatial/
wps-rest-binding] suite of standards is referred to as an "Application Deployment and Execution
Service".

The ADES allows clients to deploy processes bundled in Docker containers and manages the
environment required to execute those containers. Typically, this requires that an ADES
understand:

1. The data that is available for processing and the interfaces required to access that data.

2. Initialize the execution environment for the Docker container.

The first item requires that the ADES understands how to access data and stage it for use by an
application in a Docker container. This may require that the ADES know how to retrieve data from
an OGC API such as OGC API - Features [https://www.ogc.org/standards/ogcapi-features] or it may require
that the ADES know how to read data from other APIs such as Amazon’s S3 [https://aws.amazon.com/
s3/] object store.

The second item requires that the ADES understand how to interact with the specific platform upon
which it is deployed in order to stage data for the Dockerized application and execute the Docker
container. For example, an ADES deployed to an Amazon Cloud needs to understand how to
interact with AWS’s Elastic Container Service (ECS) [https://aws.amazon.com/ecs] or Elastic Kubernetes
Service (EKS) [https://aws.amazon.com/eks] in order to execute Docker containers at scale. Similar
statements are applicable for ADES' deployed on the Google Cloud Platform [https://cloud.google.com/
gep] or on OpenStack [https://www.openstack.org/]-based cloud such as NRCAN’s Boreal Cloud.

9.3.6.3. Execution Management Service (EMS)

The Execution Management Service (EMS) is basically an ADES that does not actually "execute"
processes but rather acts as a coordinating node in a federation of ADESs. Typically an EMS knows
how to:

1. Coordinate the deployment of new processes across the federation.

2. Interact with catalogues to facilitate the discovery of data and processes required to perform a
desired analysis.

3. Dispatch the execution of a process to an appropriate ADES node in the federation that offers
the discovered data and processing capabilities.

4. Coordinate the execution of a workflow composed of a number of processing steps across the
federation.

5. Combine or aggregate the results of each processing step to present the final result of executing

29

https://github.com/opengeospatial/wps-rest-binding/tree/master/extensions/transactions
https://github.com/opengeospatial/wps-rest-binding
https://www.ogc.org/standards/ogcapi-features
https://aws.amazon.com/s3/
https://aws.amazon.com/ecs
https://aws.amazon.com/eks
https://aws.amazon.com/eks
https://cloud.google.com/gcp
https://www.openstack.org/

a workflow to the client.

So, even though the API presented by the EMS is the same as that presented by the ADES the role of
each component is very different. It should be noted, however, that many implementations can be
deployed for fulfill either or both roles (i.e. EMS or ADES).

9.3.6.4. API Summary

The following API summary also includes elements of the OGC API - Processes transactional

extension [https://github.com/opengeospatial/wps-rest-binding/tree/master/extensions/transactions]
allows processes to be dynamically deployed and undeployed thus extending the API.

Table 6. OGC API - Features resources

Resour URI

ce

Process /processes

es

Process /processes/{processld}
List of /processes/{processld}/jo
jobs bs

Job /processes/{processld}/jo

status bs/{jobld}

Job /processes/{processld}/jo
results bs/{jobld}/results

HTTP
Metho

GET

POST
GET
PUT
DELET

GET

GET

GET

Description

List of available processes

Deploy a new process

Get a description of a specific process
Update a deployed job

Undeploy a job

Get a list of jobs for the specified process

Get the status of the specified job

Get the results for the specified job

which

Although this clause focuses primarily on describing the upcoming OGC API

NOTE

interface for the ADES/EMS, the previous version of these servers —based on the

current Web Processing Service [https://www.ogc.org/standards/wps] standard —was
also used in the Testbed-16 ML Thread.

9.3.7. OGC API - Records (Draft)

9.3.7.1. Overview

OGC API - Records - Part 1: Core [https:/htmlpreview.github.io/?https://github.com/opengeospatial/ogcapi-
records/blob/master/20-004.html], defines an API that supports the ability to search collections of
descriptive information, called records, about resources such as data collections, services,
processes, styles, code lists and other related resources. Records represent resource characteristics
that can be queried and presented for evaluation and further processing by both humans and

software.

30

https://github.com/opengeospatial/wps-rest-binding/tree/master/extensions/transactions
https://github.com/opengeospatial/wps-rest-binding/tree/master/extensions/transactions
https://www.ogc.org/standards/wps
https://htmlpreview.github.io/?https://github.com/opengeospatial/ogcapi-records/blob/master/20-004.html

Part 1 defines a set of core queryables that represent a list of mandatory and optional properties
that a catalogue records should contain to provide a minimum, useful amount of information about
the resource the record is describing.

The draft API for Part 1 is very similar to that for OGC API - Features - Part 1: Core
[http://docs.opengeospatial.org/is/17-069r3/17-069r3.html] but also includes additional query parameters
that extend the query capabilities of the API.

Part 1 also makes recommendations about the encoding of a record. GeoJSON [https://tools.ietf.org/
html/rfc7946] is specified as the JSON encoding of a record. There are recommendations for XML and
HTML encoding but these where not used in the ML Testbed activity.

9.3.7.2. API Summary

The following table lists mandatory (indicated by "M") and recommended optional ("0") properties
that every catalogue record should include. This list of properties are referred to as the "core
queryables".

Table 7. OGC API - Records queryables

Queryable o/M Description

recordld M A unique record identifier assigned by the catalogue.

recordcreated M The date the records was created in the catalogue.

recordmodified M The most recent date on which the record was
changed.

title M A human-readable name given to the resource.

description M A free-text description of the resource.

keywords M A list of keywords or tags describing the resource.

type M The nature or genre of the resource.

language 0] This refers to the natural language used for textual
values (i.e. titles, descriptions, etc) of a resource.

externalld 0] An identifier for the resource assigned by an
external entity (i.e. not the catalogue).

modified 0 Most recent date on which the resource was
changed.

publisher 0] The entity for making the resource available.

themes 0] A knowledge organization system used to classify
the record.

formats 0 A list of available distribution formats for the
resource.

contactPoint 0] An entity to contact about the resource.

license 0] A legal document under which the resource is made
available.

31

http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
https://tools.ietf.org/html/rfc7946

Queryable oM Description

rights 0 A statement that concerns all rights not addressed
by the license, such as copyright statements.

extent 0] The spatio-temporal coverage of the resource.

links 0] A list of links for navigating the catalogue APIL

associations 0] A list of links to resources associated with this
resource.

The following table list the set of query parameters that every implementation of the OGC API -
Records draft standard must provide. The bbox, datetime and 1imit parameters are inherited from
OGC API - Features - Part 1: Core [http:/docs.opengeospatial.org/is/17-069r3/17-069r3.html] standard.

Table 8. OGC API - Records query parameters

Parameter name Description

bbox A bounding box. If the spatial extent of the record intersects
the specified bounding box then the record shall be
presented in the response document.

datetime A time instance or time period. If the temporal extent of the
record intersects the specified data/time value then the
record shall be presented in the response document.

limit The number of records to be presented in a response
document.
type A resource type. Only records of the specified type shall be

presented in the response document.

q A space-separated list of search terms. If any server-chosen
text field in the record contains 1 or more of the terms listed
then this records hall appear in the response set.

externallds A comma-separated list of external identifiers. Only records
with the specified names shall appear in the response
document.

32

http://docs.opengeospatial.org/is/17-069r3/17-069r3.html

Chapter 10. Training, deployment and
execution of machine learning models

10.1. Overview

The topic of training ML models is covered in the D016 Machine Learning Training Data ER
[https://portal.ogc.org/files/?artifact_id=95717].

Once the model is trained the next step in the machine learning life-cycle is the deployment of the
trained model. In the context of the Testbed-16 ML activity, deploying a trained model means that:

» The model is deployed behind a standards-based interface.

* A description of the model is published to a catalogue.

The first point hides the specific details of the model (algorithm, ML platform, programming
language, etc.) behind a standards-based API. This allows the model to be consistently invoked with
new input data and the results of the run to be retrieved or published in a manner that allows for
later retrieval, ideally also through a standards-based API. In the Testbed activity the ADES was
used as the API for deploying and invoking ML models.

The second point enables a user to search a catalogue for data and models that meet their needs
and invoke the discovered model with the discovered input data. The goal was to use the draft OGC
API - Records [https:/htmlpreview.github.io/?https://github.com/opengeospatial/ogcapi-records/blob/master/20-
004.html] interface as the discovery API.

This section describes the standards-based machine learning environments implemented by the
Testbed-16 ML participants.

10.2. Machine Learning Environment 1 (D132 -
52°North)

52°North targeted the implementation of an ML environment that focused on the detection of water
bodies using satellite radar data. The overall goal was to create a trained model that was ready for
execution within a Docker container. The following figure illustrates the steps involved to prepare
the model.

33

https://portal.ogc.org/files/?artifact_id=95717
https://htmlpreview.github.io/?https://github.com/opengeospatial/ogcapi-records/blob/master/20-004.html
https://htmlpreview.github.io/?https://github.com/opengeospatial/ogcapi-records/blob/master/20-004.html

,,

Model

Figure 4. 52North Model Preparation

10.2.1. Use Cases

Since forest fires regularly occur in Canada, obtaining knowledge on water bodies that are
candidates for serving water-bomber planes or helicopters is of high value. Many of the natural
water bodies in the Canada backcountry vary in extent and water level. A ML model can provide
insightful information using up-to-date radar measurements such as Synthetic Aperture Radar
(SAR) data. Therefore, the goal was to train a model with historic SAR data and corresponding
labels in order to apply the model to recent SAR data.

10.2.2. Data and Training Data Considerations

10.2.2.1. Radarsat-1

Early in the preparation phase of the model development, different data sources were taken into
consideration. In particular, the Radarsat-1 data provided by NRCan was assessed with regards to
its feasibility within the ML application. For pre-processing the Sentinel Application Platform
[http://step.esa.int/main/toolboxes/snap/] (SNAP) built-in Radarsat importer was used. A set of issues arose
in the course of this workflow:

* File structure conventions: Two different variants of Radarsat-1 data structures were
identified. One variant was not supported by SNAP. The *01f.sard format (used from 2010
onward) could not be imported while the older format (dat_01.001, ...) could be loaded.

* Geographic Inaccuracy: after applying a default set of pre-processing steps (i.e. Speckle
Filtering with "lee filter" and Terrain Correction using Ellipsoid Correction to Geogrid Location
from the SNAP toolkit) the resulting raster data always featured an offset, varying in extremity.
The below Figure illustrates the issue.

34

http://step.esa.int/main/toolboxes/snap/

Figure 5. Radarsat-1 Offset after Pre-processing

After consideration with SAR experts at NRCan participants decided to opt for a Sentinel-1 based
model approach as the data was very well supported in terms of pre-processing functionality and
accuracy.

10.2.2.2. Training Data

Two training datasets where used: pre-processed Sentinel-1 scenes and water body data (the
CanVec dataset "Lakes, Rivers and Glaciers in Canada - CanVec Series - Hydrographic Features"; see
https://open.canada.ca/data/en/dataset/9d96e8c9-22fe-4ad2-b5e8-94a6991b744b). As described in
section OGC API Maps/Tiles (Draft), both the Sentinel-1 and the label data were provided by a
prototype OGC API Tiles implementation. The below Figure illustrates the tile-based approach.

35

https://open.canada.ca/data/en/dataset/9d96e8c9-22fe-4ad2-b5e8-94a6991b744b

Figure 6. Tile-Based Approach

10.2.3. Model Training

A specialized convolutional neural network (CNN) for training the model was used. This was the U-
Net CNN developed for biomedical image segmentation. U-Net provides very good performance
using modern GPUs, applying a segmentation of 512x512 images (the size of a tile) in approximately
one second.

A dedicated data retrieval process was used to download the tiles for a specific area of interest from
the prototype OGC API - Tiles instance. The retrieval process was implemented using a Jupyter
Notebook and 1is available at https://nbviewer.jupyter.org/github/52North/testbed16-jupyter-
notebooks/blob/master/ml/tiles/tile-resolution.ipynb. The prototype OGC API - Tiles integration
made the usage of training data seamless and straightforward. The amount of training data can be
very easily be scaled by applying a larger area of interest. The only mandatory manual step was the
identification of the optimal zoom level. This was due to Sentinel-1 data only providing limited
spatial resolution.

The model was then executed using the set of downloaded tiles. The matching tiles of the Sentinel-1
and the water body label data share the same file name in different folders which allowed the
application of the U-Net segmentation in an efficient manner.

10.2.4. Model Inference Results

The model trained with the tiles can then be applied to other Sentinel-1 scenes. The only
prerequisite is that the scenes are pre-processed in the same way as the retrieved tiles were. Using
GeoTIFF as the input format, an output raster (also GeoTIFF) with Boolean pixel values (1 = water
body) can be created. An example is illustrated in the below Figure (base layer © OpenStreetMap
contributors), where the red areas are the overlaid inference results.

36

https://nbviewer.jupyter.org/github/52North/testbed16-jupyter-notebooks/blob/master/ml/tiles/tile-resolution.ipynb
https://nbviewer.jupyter.org/github/52North/testbed16-jupyter-notebooks/blob/master/ml/tiles/tile-resolution.ipynb

S TIANEE
Figure 7. Example Model Inference Results

10.2.5. Execution and ADES Integration

The integration of the model into ADES follows the approach established during the former OGC
Testbeds. In summary, a Common Workflow Language (CWL) definition is used as the interface
between the model execution within a Docker container and the ADES. As the model has been
manifested with the test data in the previous development steps, it has been integrated into a
Docker image that allows a platform-independent execution.

The deployment of the model into the ADES followed the approach established in previous OGC
Testbeds (see: OGC Testbed-15: Machine Learning Engineering Report [http:/docs.opengeospatial.org/
per/19-027r2.html] and OGC Testbed-14: Machine Learning Engineering Report
[http:/docs.opengeospatial.org/per/18-038r2.html]). Specifically,

1. The trained model was bundled into a Docker image that allows platform-independent
execution.

2. An process description was created to define the interface of the model when it is invoked via
the ADES.

3. A Common Workflow Language [https:/www.commonwl.org/] (CWL) definition was created to
specify, for the ADES, how to execute the model in the Docker container. It should be noted that
the process description for executable, trained model via the ADES can be auto-generated from
the CWL definition.

The CWL workflow definition used in this thread is provided below. An ADES can invoke the
workflow using any number of CWL runner applications such as cwltool or cwl-runner.

37

http://docs.opengeospatial.org/per/19-027r2.html
http://docs.opengeospatial.org/per/18-038r2.html
https://www.commonwl.org/

#!/usr/bin/env cwl-runner
cwlVersion: v1.0
class: Workflow
inputs:
inputScene: File
model: string

outputs:
water_mask_output:
type: File

streamable: false
outputSource: execute/water_mask_output
steps:
execute:
in:
inputScene: inputScene
model: model
out: [water_mask_output]
run:
class: CommandLineTool
baseCommand: python3
hints:
DockerRequirement:
dockerPull: 52north/tb16-s1ml-with-model:latest

inputs:
inputScene:
type: File
model:

type: string

arquments: ["/s1ml/cli/predict.py", "--input-path", $(inputs.inputScene),
"--output-path", "water_mask_output.tif", "--model-path",

"/$(inputs.model).h5"]
outputs:
water_mask_output:
type: File
outputBinding:
glob: water_mask_output.tif

The following listing illustrates a CWL job that can be used to execute the model:

inputScene:

class: File

path: s1_test2.tif
model: "api_tiles_model"

The Docker image used in the ML Testbed activity for the D132 component holds two independently
trained models:

38

* api_tiles_model: A model trained with Sentinel 1 scenes provided via the prototype OGC API -
Tiles (with one "backscatter" band) service.

* unet_dice_vvvh: A model trained with Sentinel 1 scenes pre-processed manually (with VV and
VH bands).

The model parameter allows the selection of one of these two model.

The inputScene parameter references a raster scene to process and should match the pre-processing
and data format of the referenced model (GeoTIFF in this case).

10.3. Machine Learning Environment 2 (D133 - RHEA)

10.3.1. Introduction

Since 1990, wildland fires across Canada have consumed an average of 2.5 million hectares a year.
Even if these events represent a natural component of forest ecosystems maintaining forest health
and diversity, this is a challenge to forest management entities. This is because the events at once
can be potentially harmful (risky for human being, a threat to communities and infrastructures,
can destroy vast amounts of timber resources resulting in costly losses) and beneficial (renewing
and maintaining healthy ecosystems and enhancing ecological conditions and eliminating excessive
fuel build-up). Beside natural fires and prescribed burns set by authorized forest managers, some
uncontrolled wildfires are started by lightning or human carelessness. Being able to properly plan,
control and respond to this very complex phenomenon is thus both a critical and vital component
of forestry and emergency management in Canada. Artificial Intelligence (both Machine Learning
and Deep Learning) presents a valuable opportunity thanks to multiple sources of geospatial
information like satellite imagery and data coming from the Canadian Geospatial Data
Infrastructure (CGDI).

Within the frame of the activities carried on in D133 Machine Learning Environment 2 deliverable,
participants explored how to leverage ML technologies in dynamic context like wildland fire
planning and response, exploiting the use of OGC Standards.

39

Web client

‘

®

MapML Client

1
OGC/MapML
MACHINE
LEARNING

Machine Learning Tools

Training data ‘

Figure 8. OGC Testbed-16 Context, deliverables and interfaces

Training data

The aim of the D133 deliverable was to provide a common framework for supporting Machine
Learning (ML) applications by:

* Defining a standardized way to discover, deploy and run ML models on cloud platforms by
means of ADES interface

* Defining a standardized way (both data and infrastructures) to discover, expose and use/re-use
ML training datasets aimed to interoperability exploiting OGC Standards (such as the OGC API —
Records for instance)

* Providing model results in a standardized way exploiting the power of Map Markup Language
(MapML)

40

While the focus of the activity focused on the design and development of the framework, an ML
model to estimate fuel loads from Sentinel-1 data was developed and deployed in the framework as
a test case to show overall framework functionality and to provide real a sample use case.

10.3.2. Architecture

10.3.2.1. Overview

Figure 9 is shown the high-level architecture of the main components of the deliverable.

Dataset Providers External Sources

OGC Protocols

MapML Client

End User ML Environment

OGC / Ext. Clients
Manager

D130/D131

dcker

Figure 9. D133 High Level Architecture
The ML environment framework is composed by the following main components:
* ADES Service: The entry point of the framework exposing an OGC Standard interface aimed to

browse, deploy and run services.

* Coordinator: The main component in charge of orchestrating the workflow within the
framework calling all the other components and dealing with two distinct scenarios:

o Training of ML model
o Run inference on pre-trained ML model

* Dataset Loader: Responsible to discover and collect data using OGC Standards and other third-
party protocols.

* Input Adapter: In charge of manipulating data retrieved by Dataset Loader converting it for
specific M. Model contained in the environment

e ML Model: The core element of the framework

* Output Adapter: Symmetrically to the Input Adapter, it is in charge of adapting ML Model
component result in order to be correctly processed and published by GeoServer
[http://geoserver.org/]

* GeoServer: In charge of exposing model results to relevant MapML clients using an OGC Web
Map Service [https://www.ogc.org/standards/wms] (WMS) Standard implementation.

The current ML framework is equipped with just one registered model aimed to predict fuel loads

41

http://geoserver.org/
https://www.ogc.org/standards/wms
https://www.ogc.org/standards/wms

from Sentinel-1 data and is encapsulated in a Docker container for quick and easy deployment
mainly, but not only, into Cloud environments.

10.3.2.2. ADES Service

The ML environment framework exposes a dedicated Application Deployment and Execution
Service (ADES) interface aimed at triggering, deploying and running a specific ML, model from the
models available. By means of ADES, it is possible to deliver the framework as an Infrastructure as
a Service (IaaS) [https://en.wikipedia.org/wiki/Infrastructure_as_a_service] platform, managing its execution
via a WPS interface. The ADES can perform the deployment of applications in the form of Docker
containers and control their execution using the application definition provided by a Common
Workflow Language [https://www.commonwl.org/] (CWL) configuration file. For the ML Thread activity

two distinct processes were deployed to the ADES:

* Training of a ML model over a specific dataset

* Inferencing data using a pre-trained ML model

The workflow execution is handled by the Coordinator component.

10.3.2.3. Coordinator

The Coordinator component is in charge of orchestrating all the activities of the software delivered
within the container. The coordinate calls in sequence:

» The Data Loader for the retrieval of both input data and ground truth in case of training or
only data in case of inference

The Input Adapter for model data preparation

The Model either for training or inferences

The Output Adapter for output data manipulation and publication (in case of inferencing) on
the GeoServer [http://geoserver.org/]

10.3.2.4. Dataset Loader

The role of Dataset Loader is to discover and download data, as per requests coming from input
parameters provided by the WPS input parameters. These will be used later for either training or
inferencing the ML model. The scope of this component is to generalize the data access service and,
potentially, cope with several data sources exposing different interfaces such as OGC CSW
[https://www.ogc.org/standards/cat], WCS [https://www.ogc.org/standards/wcs], WMS [https://www.ogc.org/
standards/wms] or Amazon S3 [https://aws.amazon.com/s3/] / Google Cloud Storage [https://cloud.google.com/
storage]. Simply extending this component it is possible to integrate new protocols and data sources
without impacts on the rest of the Framework. As the main interface for data discovery and access,
even if the standards work is still in progress, the draft OGC API - Records
[https://htmlpreview.github.io/?https://github.com/opengeospatial/ogcapi-records/blob/master/20-004.html]

specification was selected by the Testbed-16 participants and used for the testing purposes.

10.3.2.5. Model

The whole ML framework is built to virtually handle and to encapsulate any potential Al model

42

https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://www.commonwl.org/
https://www.commonwl.org/
http://geoserver.org/
https://www.ogc.org/standards/cat
https://www.ogc.org/standards/wcs
https://www.ogc.org/standards/wms
https://aws.amazon.com/s3/
https://cloud.google.com/storage
https://htmlpreview.github.io/?https://github.com/opengeospatial/ogcapi-records/blob/master/20-004.html

independent from its scientific purpose. Of course, every model comes with a specific way to deal
with input data and results. Indeed, even if from one side the model defines the scope of the
network, on the other side it constrains the way input data is expected and the way the results are
going to be provided. In this context, the focus is not on a particular model. This is so even if the
model is the core element of the environment. The question is how to generalize the model
integration within the framework. This modularity is established and guaranteed by specific
implementations of Input Adapter and Output Adapter components (refer to 1.3.5).

10.3.2.6. Input/Output Adapters

As stated before, one of the more critical aspects of the framework design concerns how to cope
with different and extremely specific ways that each ML model handles input and output data. So,
the role of both the Input Adapter and the Output Adapter is to provide the bridge between
framework internal flows and the model itself thus providing system modularity. The Input
Adapter deals with data retrieved by the Dataset Loader that needs to be converted and formatted
as specified by the model. Moreover, the data downloaded by the Dataset Loader might be not
usable as retrieved from the data source and some pre-processing activities would be needed (e.g.
data calibration, orthorectification and so on). The Output Adapter, instead, acts in a symmetrical
way taking the results coming from the model, converting the data, and pushin it to the GeoServer
[http://geoserver.org/] via a dedicated REST interface.

10.3.2.7. GeoServer MapML

To deliver the results of the model to the external clients a standard GeoServer [http://geoserver.org/]
implementation was used along with a dedicated module (developed by the GeoServer
[http://geoserver.org/] community) that exposes a MapML interface based on the OGC WMS Standard
[https://www.ogc.org/standards/wms]. The Output Adapter (as described in paragraph 1.3.5) is in charge
of interacting with the GeoServer [http:/geoserver.org/] instance using the REST API in order to
publish and make available the output of the model results.

10.3.3. Dataset specification
In the specific context of Testbed-16, the input data is discoverable at the following URL:
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collections/tb16cat

The catalogue (compliant with the draft OGC API — Records specifications) contains several Sentinel-
1 acquisitions to be used as input to the ML model for both training and inferencing as well as
calculating total biomass ground-truth.

Figure 10. Total biomass ground-truth

43

http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
https://www.ogc.org/standards/wms
http://geoserver.org/
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collections/tb16cat

Sentinel-1 acquisition can be download via a standard HTTP request using the URL link found in
the metadata returned by the catalogue. The ground-truth, instead, is served by exposing a
standard OGC WMS service [https://www.ogc.org/standards/wms] exposing the total biomass estimations
(layer tot_bio_r).

10.3.4. Components Details Design

10.3.4.1. Scope

This section provides the detailed descriptions of each components composing the ML environment
framework.

10.3.4.2. ADES

10.3.4.2.1. Overview

All the requests for the discovery, deployment and running of a Machine Learning model are made
through a dedicated ADES service exposed. The ADES server was based on a Weaver
implementation starting from original Docker image. Weaver is primarily an EMS that allows the
execution of workflows chaining various applications and Web Processing Services (WPS) inputs
and outputs. Remote execution of each process in a workflow chain is dispatched by the EMS to one
or many registered ADESs by ensuring the transfer of files accordingly between instances when
located across multiple remote locations. In the current implementation, instead, the service has
been configured as a simple ADES server by means of specific parameter in weaver.ini
configuration file changing weaver.configuration = ems to weaver.configuration = ades.

For this deliverable, only two different types of services are registered in the ADES: model training
and model inferencing. Beside these, the ADES service exposes standard calls such as the
GetCapabilities and DescribeProcess to discover and browse available services. Additionally to
ADES service, it is has to be installed MongoDB on host machine. This is needed to register and
discover all the configured WPS services to be retrieved later, for instance, via GetCapabilities.

In order to start the CRIM ADES Docker container:
docker run -it --name ades_weaver -v /var/run/docker.sock:/var/run/docker.sock -v
/usr/local/bin/docker:/usr/bin/docker -v ${HOST_WPS_WORKDIR}:${WEAVER_WPS_WORKDIR} -p
4001:4001 pavics/weaver

where:

* ${HOST_WPS_WORKDIR}: Path on the host machine where temporary result files from Weaver
WPS process are stored

* ${WEAVER_WPS_WORKDIR}: Path on Weaver docker where temporary result files from
Weaver WPS process are stored

The ${HOST_WPS_WORKDIR} and ${WEAVER_WPS_WORKDIR} folders must point to the SAME
valid path on the host machine.

44

https://www.ogc.org/standards/wms

Just note that in case the CRIM Weaver ADES server is running on Windows
machine, if needed to bind host folders with Docker folders, the path shall be
converted in UNIX notation. E.g. the original path
WARNING C:\Users\ades_user\Documents\RHEA\Projects\ADES_Weaver\wpsworkdir
for ${HOST_WPS_WORKDIR} shall be written inside weaver.ini configuration
file as
/c/Users/ades_user/Documents/RHEA/Projects/ADES_Weaver/wpsworkdir.

10.3.4.2.2. GetCapabilities

The GetCapabilities request is aimed to retrieve the list of services registered on ADES, including
service metadata and metadata describing the available processes. The response is an XML
document called the capabilities document, which contains a list of all available services. An
example of a GetCapabilities request is:

${WEAVER_URL}/ows/wps?service=wps&request=getcapabilities

The response is a standard WPS GetCapabilities XML response. The following is a snippet of the
services offered by the D133 ADES component:

<!-- PyWPS 4.2.8 -->

<wps:Capabilities service="WPS" version="1.0.0" xml:lang="en-US" xmlns:x1link=
"http://www.w3.0rg/1999/x1ink" xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:ows
="http://www.opengis.net/ows/1.1" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:schemalocation="http://www.opengis.net/wps/1.0.0
../wpsGetCapabilities_response.xsd" updateSequence="1">

<wps:ProcessOffering>
<wps:Process wps:processVersion="1.0.0">
<ows:Identifier>train_biomass_model</ows:Identifier>
<ows:Title>BIOMASS Train Model</ows:Title>
<ows:Abstract>Trigger a process to train the ML model</ows:Abstract>
</wps:Process>
<wps:Process wps:processVersion="1.0.0">
<ows:Identifier>inference_biomass _model</ows:Identifier>
<ows:Title>BIOMASS Inference Model</ows:Title>
<ows:Abstract>Trigger a process to perform ML model inference on input
data</ows:Abstract>
</wps:Process>
</wps:ProcessOfferings>

</wps:Capabilities>
10.3.4.2.3. DescribeProcess

The DescribeProcess operation requests details of any services offered by the D133 component. An
example of a DescribeProcess request for a train_biomass_model service is:

45

${WEAVER_URL}/ows/wps?service=wps&request=describeprocess&identifier=train_biomass_model
&version=1.0.0

All the available parameters, their nature and possible values if constrained are provided in a
standard response package. In the following sections are described all the available services with
relevant parameters.

10.3.4.2.4. Training

In order to trigger the model training, a specific WPS execute service is exposed with the following
parameters:

Keyword Description Sample Values

input_data_server_e Endpoint of the server hosting input data https://eratosthenes.

ndpoint pvretano.com/
cubewerx/cubeserv/
default/ogcapi/
catalogues

input_data_server_c Catalogue name where input data can be tb16cat

atalogue found
input_data_server_ Type of protocol for accessing data ogc_api_records
protocol supported by the server where input

data are. Supported protocols so far are
OGC API - Records only

input_data_identifie Any form of filters compositions type=urn:cw:def:eb
r available by the protocol supported by ~ RIM-
the server to identify input data ObjectType:CubeW

erx:DataProduct

gt_data_server_end Endpoint of the server hosting ground https://eratosthenes.

point truth data pvretano.com/
cubewerx/cubeserv/
default/ogcapi/
catalogues

gt_data_server_cata Catalogue name where ground truth data tb16cat

logue can be found
gt_data_server_prot Type of protocol for accessing data ogc_api_records
ocol supported by the server where ground

truth data are. Supported protocols so far
are OGC API - Records only

gt_data_identifier = Any form of filters compositions g=tot_bio
available by the protocol supported by
the server to ground truth input data

epochs Number of epochs the training of ML 50
model will run through

46

https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues

Keyword

checkpoint

checkpoint_save_fr

eq

Description Sample Values

Number of epoch identifying the 100
checkpoint file from which the training

is resume. If left empty, ML model will be
trained from scratch. If checkpoint file is

not found, process execution will fail

Period expressed in epoch number 50
between checkpoint saving

An example of service call is given below with the proper JSON payload to be submitted:

POST ${WEAVER_URL}/processes/train_biomass_model/jobs

{

"mode": "async",

"response”: "document",

“inputs": [

{

"id": "input_data_server_endpoint",

"data":

"https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues

}I
{

"id": "input_data_server_catalogue",

"data": "tbl6cat"

"id": "input_data_server_protocol",
"data": "ogc_api_records"

"id": "input_data_identifier",
"data": "type=urn:cw:def:ebRIM-ObjectType:CubeWerx:DataProduct"

"id": "gt_data_server_endpoint",

"data":

"https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues”

}I
{

}I
{

}I
{

"id": "gt_data_server_catalogue",

"data": "tbl6cat"

"id": "gt_data_server_protocol”,
"data": "ogc_api_records"

"id": "gt_data_identifier",

n

47

"data": "gq=tot_bio"

}
{
"id": "epochs",
"data": 50
Iy
{
"id": "checkpoint",
"data": 100
Jis
{
"id": "checkpoint_save_freq",
"data": 50
}
1,
"outputs": []

If the request is accepted and queued correctly, the client is provided with the Job ID (e.g. cb0a65a6-
01b6-4672-becd-2bd1c6b1ce68) uniquely identifying the request. This Job Id is needed to perform a
status query as provided in the location field in the JSON response to the call.

"jobID": "cb@ab5a6-01b6-4672-becd-2bd1cbblce68",

"status": "accepted",

"location": "${WEAVER_URL}/processes/inference_biomass_model/jobs/cb@ab65a6-01b6-
4672-becd-2bd1c6b1ce68"

}

10.3.4.2.5. Inferences

In order to trigger the model inferences, a specific WPS execute service is exposed with the
following parameters:

Keyword Description Sample Values

input_data_server_e Endpoint of the server hosting input data https://eratosthenes.

ndpoint pvretano.com/
cubewerx/cubeserv/
default/ogcapi/
catalogues

input_data_server_c Catalogue name where input data can be th16cat

atalogue found
input_data_server_ Type of protocol for accessing data ogc_api_records
protocol supported by the server where input

data are. Supported protocols so far are
OGC API - Records only

48

https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues

Keyword Description Sample Values

input_data_identifie Any form of filters compositions type=urn:cw:def:eb
r available by the protocol supported by = RIM-
the server to identify input data ObjectType:CubeW
erx:DataProduct
checkpoint Number of epoch identifying the 100
checkpoint file from which ML model is
restored

An example of service call is given below with the proper JSON payload to be submitted:
POST ${WEAVER_URL}/processes/train_biomass_model/jobs
{

"mode": "async",
"response”: "document",

“inputs": [
{
"id": "input_data_server_endpoint",
"data":
"https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues "
Iy
{
"id": "input_data_server_catalogue",
"data": "tbl6cat"
Iy,
{
"id": "input_data_server_protocol",
"data": "ogc_api_records"
I
{
"id": "input_data_identifier",
"data": "type=urn:cw:def:ebRIM-ObjectType:CubeWerx:DataProduct"
Iy
{
"id": "checkpoint",
"data": 100
}
I
"outputs": []

}

If the request is accepted and queued correctly, the client is provided with the Job ID (e.g. cb0a65a6-
01b6-4672-becd-2bd1c6b1ce68) uniquely identifying the request. This Job Id is needed to perform a
status query as provided in the location field in the JSON response to the call.

49

"jobID": "cb0ab5ab-01b6-4672-becd-2bd1cbbice68",

"status": "accepted",

"location": "${WEAVER_URL}/processes/inference_biomass_model/jobs/cb@a65a6-01b6-
4672-becd-2bd1cbb1ce68"

}

When the status query indicates processing has completed for the required Job ID, the results of the
inference of the ML model on input data are published through Output Adapter on the GeoServer
[http://geoserver.org/].

10.3.4.2.6. GetStatus

ADES features built-in processes execution monitoring service. A process status can be requested
using a GetStatus request with the following input parameters:

Keyword Description Sample Values
process_id Identifier of the process train_biomass_mod
el
job_id The Job ID returned in the XML response a9d14bf4-84e0-
when a process is submitted 449a-bac8-
16e598efe807

An example of GetStatus query is given below:
GET {WEAVER_URL}/processes/{process_id}/jobs/{job_id}
The status of a process can be one of the following values:

* accepted: This is the status of a process when submitted. This effectively means that the process
is pending execution, but is not yet executing.

« started: This is the status assumed when a worker retrieves the process it for execution and is
making preparation steps.

» succeeded: This is the status when all its operations are completed successfully.

+ failed: This is the status when errors occurred during processing thus preventing the process
from completing its execution.

10.3.4.3. Coordinator

The Coordinator acts as a process dispatcher and orchestrator between the components of the ML
environment framework in order to execute two typical services of the architecture:

e Train a model

» Trigger model inferences

This component is called by the ADES interface and triggered by a client via a WPS call. The
parameters coming from the WPS call are gathered by the Coordinator using CWL and used to

50

http://geoserver.org/

control the other components execution for the correct exploitation of the service. When triggered,
the Coordinator will run two different workflows according to the service required and sharing
some common steps.

As a first step, the Coordinator invokes the Dataset Loader to retrieve the data using the parameters
in the request (see Dataset Loader) that is either to retrieve pairs of input and ground-truth data or
just test data to run ML model inference on. When data is available on local storage, the
Coordinator invokes the Input Adapter to manipulate, if necessary, data to cope with ML model
input data requirements. At this stage, data is ready to be used by the ML model.

If the training service has been requested, the Coordinator calls the ML model to train on input and
ground truth data, either resuming from an existing checkpoint or starting from scratch (see
Training for the full list of training parameters). Instead, if it is triggered by the inference service,
the Coordinator issues the loading of the ML model checkpoint file and runs inference on input
data (see Inferences).

When inference is completed, the Output Adapter is called by the Coordinator to handle the results
from the ML model in order to be converted and published on the GeoServer to allow MapML
clients to access the generated output.

10.3.4.4. Data Loader External Data Sources

10.3.4.4.1. Overview

The Dataset Loader is the main component in charge of discovering and downloading data from
external data providers. The Dataset Loader was designed to generalize access to data and to enable
handling data coming from providers exposing different protocols and standards, such as OGC
CSW, WCS, WMS, Google / Amazon Buckets and so on. The Data Loader component performs a set of
actions that can be grouped into two different stages:

* A metadata discovery stage to retrieve the metadata associated to the queried resources.

* A resources download stage, where the resource is actually downloaded used different protocol

(e.g. CSW,WMS,WCS,...) based on the information contained in the metadata.

In order to discover and access the data, the following input parameters coming from CWL are
required:

* Endpoint of the server catalogue.
» Catalogue name.

* A resource name or any form of filtering supported by the relevant catalogue that could be used
to identify resources.

The following table summarizes input parameters required by Data Loader component:

31

Keyword Description Sample Values

input_data_server_e Endpoint of the server hosting input data https://eratosthenes.

ndpoint pvretano.com/
cubewerx/cubeserv/
default/ogcapi/
catalogues

input_data_server_c Catalogue name where input data can be th16cat

atalogue found
input_data_server_ Type of protocol for accessing data ogc_api_records
protocol supported by the server where input

data are. Supported protocols so far are
OGC API - Records only

10.3.4.4.2. Metadata discovery

The discovery of a resource in a catalogue is the Data Loader’s first step to access the data. This is
accomplished using one of the possible protocol interfaces (e.g. OGC, CSW, OGC API - Records) made
available by the catalogue hosting the dataset.

The result of the discovery, if any, is a metadata file containing several information elements about
the queried resource together with the endpoint on which the resource can be downloaded (e.g.
simple HTTP URL, endpoint of the WMS server hosting the layer and so on).

An example of a HTTP query, in accordance with the draft OGC API - Records specification, to
search all Sentinel-1 products on the catalogue is shown below:

https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collections/
tb16cat/items?type=urn:cw:def:ebRIM-ObjectType:CubeWerx:DataProduct&f=JSON

The response of the server catalogue is a metadata file in JSON format containing the information
about how many items have been found with relevant metadata information. Following is a snippet
of the catalogue response.

“timeStamp": "2020-09-28710:42:06-04:00",
"numberMatched": 11,
“numberReturned": 10,
"links": [
{

"href":
"https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collect
ions/tb16cat/items?type=urn:cw:def:ebRIM-ObjectType:CubeWerx:DataProduct&f=JSON",

"rel": "self"

Ifs

{
"href":

"https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collect
ions/tb16cat/items?type=urn:cw:def:ebRIM-

32

https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collections/tb16cat/items?type=urn:cw:def:ebRIM-ObjectType:CubeWerx:DataProduct&f=JSON
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collections/tb16cat/items?type=urn:cw:def:ebRIM-ObjectType:CubeWerx:DataProduct&f=JSON

ObjectType:CubeWerx:DataProduct&f=JSON&Limit=10&offset=11",
"rel": "next"
}
1,
“records": [
{
"id": "urn:uuid:b6713356-f4a39-11ea-889c-933¢c4b707059",
"type": "feature",
"otype": "urn:cw:def:ebRIM-ObjectType:CubeWerx:DataProduct"”,
"geometry": {
"type": "Polygon",
"coordinates": [
[
[

-78.98628879,
44.84279684
1,
[
-78.98628879,
46.88806826
1,
[
-75.00402221,
46.88806826
1,
[
-75.00402221,
44.84279684
1,
[
-78.98628879,
44.84279684

1
1
b
"properties": {

"title": "SENTINEL-1 Product
(STA_IW_GRDH_1SDV_20150317T230010_20150317T230035_005078_00661A_BB3C)",

"date": "2015-03-17T23:00:10",

"urn:cw:def:ebRIM-SlotName:crs": "http://www.opengis.net/def/crs/EPSG/0/4326",
urn:cw:def:ebRIM-SlotName:hasRepositoryltem": true,
"urn:cw:def:ebRIM-SlotName:qdate": "2015-03-17723:00:10Z",
"urn:cw:def:ebRIM-SlotName:sentinell:absoluteOrbitNumber": 5078,
urn:cw:def:ebRIM-SlotName:sentinell:enclosure":
"https://www.pvretano.com/Projects/tb16/data/sentinel-
s1/STA_IW_GRDH_1SDV_20150317T7230010_20150317T7230035_005078_00661A_BB3C.SAFE.zip",

"urn:cw:def:ebRIM-SlotName:sentinell:mapOverlay":
"https://www.pvretano.com/Projects/tb16/data/sentinel-
s1/STA_IW_GRDH_1SDV_20150317T7230010_20150317T7230035_005078_00661A_BB3C.SAFE/preview/ma
p-overlay.kml",

"urn:cw:def:ebRIM-SlotName:sentinell:measurement"”: [
"https://www.pvretano.com/Projects/tb16/data/sentinel-
s1/STA_IW_GRDH_1SDV_20150317T7230010_20150317T7230035_005078_00661A_BB3C.SAFE/measuremen
t/s1a-iw-grd-vh-20150317t230010-20150317t230035-005078-006613-002.tiff",
"https://www.pvretano.com/Projects/tb16/data/sentinel-

s1/STA_IW_GRDH_1SDV_20150317T7230010_20150317T7230035_005078_00661A_BB3C.SAFE/measuremen
t/s1a-iw-grd-vv-20150317t230010-20150317t230035-005078-006613-001.tiff"

1

"urn:cw:def:ebRIM-SlotName:sentinell:missionDataTakeId": "@Q0661A",

"urn:cw:def:ebRIM-SlotName:sentinell:missionId": "ST1A",

"urn:cw:def:ebRIM-SlotName:sentinell:mode": "IW",

"urn:cw:def:ebRIM-SlotName:sentinell:path":
"GRD/2015/03/17/IW/DV/STA_IW_GRDH_1SDV_20150317T7230010_20150317T7230035_005078_00661A_B
B3",
urn:cw:def:ebRIM-SlotName:sentinell:polarization": "DV",
urn:cw:def:ebRIM-SlotName:sentinell:processinglevel”: 1,
urn:cw:def:ebRIM-SlotName:sentinell:productClass": "standard",

"urn:cw:def:ebRIM-SlotName:sentinell:productId”:
"STA_IW_GRDH_1SDV_20150317T7230010_20150317T230035_005078_00661A_BB3C",

"urn:cw:def:ebRIM-SlotName:sentinell:productPreview":
"https://www.pvretano.com/Projects/tb16/data/sentinel-
s1/STA_IW_GRDH_1SDV_20150317T7230010_20150317T7230035_005078_00661A_BB3C.SAFE/preview/pr
oduct-preview.html",

"urn:cw:def:ebRIM-SlotName:sentinell:productType": "S1A",

"urn:cw:def:ebRIM-SlotName:sentinell:productUniqueldentifier”: "BB3C",

"urn:cw:def:ebRIM-SlotName:sentinell:quickLook":
"https://www.pvretano.com/Projects/tb16/data/sentinel-
s1/STA_IW_GRDH_1SDV_20150317T230010_20150317T7230035_005078_00661A_BB3C.SAFE/preview/qu
ick-look.png",

"urn:cw:def:ebRIM-SlotName:sentinell:resolutionClass": "high",

"urn:cw:def:ebRIM-SlotName:sentinell:startTime": "2015-03-17T723:00:10Z",

"urn:cw:def:ebRIM-SlotName:sentinell:stopTime": "2015-03-17723:00:357",

"urn:cw:def:ebRIM-SlotName:sentinell:thumbNail":
"https://eratosthenes.pvretano.com/cubewerx/cubeserv.cgi?service=WRS&version=3.0&catal
ogueld=tb16cat&request=GetRepositoryItem&id=urn%3Auuid%3Ab6713356-f4a9-11ea-889c-
933c4b707059&repoIld=21"

}
e

The records tag in the response is an object array containing metadata information about each
Sentinel-1 product available on the catalogue. @ The tag urn:cw:def:ebRIM-
SlotName:sentinell:measurement holds the URL to download Sentinel-1 data as GeoTIFF image files
using simple HTTP protocol.

Similarly, an example of a HTTP query, in accordance with the draft OGC API - Records
specification, to search for tot_bio_r layer in the catalogue is shown below:

54

https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collections/tb16cat
/items?g=tot_bio&bbox=45.7912,-77.4114,46.0176,-77.1903,4326&f=]JSON

The response of the server catalogue is given below:

"timeStamp": "2020-09-29T11:43:55-04:00",
"numberMatched": 1,
"numberReturned": 1,
"links": [
{

"href":
"https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collect
ions/tb16cat/items?q=tot_bio&bbox=45.7912,-77.4114,46.0176,-77.1903,4326&f=ISON",

"rel": "self"

}
Il
"records": [
{

"id": "urn:uuid:c170ea74-c067-11ea-ad05-97071d6a09dd",

"resourcelId": "tot bio",

"type": "feature",

"otype": "urn:cw:def:ebRIM-ObjectType:CubeWerx:WMS:Layer",

"geometry": {

"type": "Polygon",
"coordinates": [
[

[
-176.412,

34,3112

1,

[
-176.412,
83.977

1,

[
-10.8073,
83.977

1,

[
-10.8073,
34,3112

1,

[
-176.412,
34.3112

]

]

]
b

55

https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collections/tb16cat/items?q=tot_bio&bbox=45.7912,-77.4114,46.0176,-77.1903,4326&f=JSON
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collections/tb16cat/items?q=tot_bio&bbox=45.7912,-77.4114,46.0176,-77.1903,4326&f=JSON
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collections/tb16cat/items?q=tot_bio&bbox=45.7912,-77.4114,46.0176,-77.1903,4326&f=JSON

"properties": {

"title": "tot_bio_r",

"description": "Total aboveground biomass. Individual tree total aboveground
biomass is calculated using species-specific equations. In the measured ground plots,
aboveground biomass per hectare is calculated by summing the values of all trees
within a plot and dividing by the area of the plot. Aboveground biomass may be
separated into various biomass components (e.g. stem, bark, branches, foliage) (units
= t/ha). Products relating the structure of Canada's forested ecosystems have been
generated and made openly accessible. The shared products are based upon peer-reviewed
science and relate aspects of forest structure including: (i) metrics calculated
directly from the lidar point cloud with heights normalized to heights above the
ground surface (e.g., canopy cover, height), and (ii1) modelled inventory attributes,
derived using an area-based approach generated by using co-located ground plot and ALS
data (e.g., volume, biomass). Forest structure estimates were generated by combining
information from 'lidar plots' (Wulder et ",

"time": "2015-01-01T00:00:007",

"urn:cw:def:ebRIM-SlotName:accessURLTemplate":
"https://opendata.nfis.org/mapserver/cgi-
bin/wms_change.cgi?version=1.3.0&request=GetMap&layers=tot_bio&styles=%7Bstyles%/D&crs
=%/Bcrs%7D&bbox=%7Bbbox%7D&width=%7Bwidth%7D&height=%7Bheight%7D&format=%7Bformat%7D",

"urn:cw:def:ebRIM-SlotName:crs": [

"EPSG:3979",
"EPSG:42101"

]

rn:cw:def:ebRIM-SlotName:keyword": "forest biomass",
"urn:cw:def:ebRIM-SlotName:outputFormat": [
"image/png; mode=8bit",
"image/tiff"
]

rn:cw:def:ebRIM-SlotName:queryable": 1
b
"links": [
{

"href":
"https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collect
jons/tb16cat/items/urn:uuid:6ab874b2-c063-11ea-a3c7-b3754f7b7808",

"rel": "OperatesOn",

"type": "urn:oasis:names:tc:ebxml-regrep:0bjectType:RegistryObject:Service",

"title": "Operated upon Service \"High Resolution Satellite Forest
Information for Canada \""

}

{
"href":

"https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collect
jons/tb16cat/items/urn:uuid:6ad2b020-c063-11ea-8608-673aff7e781a",

"rel": "ParentOf",

"type": "urn:cw:def:ebRIM-ObjectType:CubeWerx:WMS:Layer",

"title": "Child Of WMS Layer \"High Resolution Satellite Forest Information
for Canada \""

}
]

36

In order to download the data from the layer, a WMS request to the WMS server hosting the layer is
made. The address of the WMS server is retrieved using the field urn:cw:def:ebRIM-
SlotName:accessURLTemplate from the metadata.

10.3.4.4.3. Products Download

After the discovery of the resource has been performed, the resource can be downloaded using a
specific protocol based on resource type information gathered by the metadata file (e.g. OGC WMS,
WCS). Below is an example of a WMS request used to download data from total_bio_r layer

Just note that in some cases the request must be refined due to some limits on
queried service. Following a sample response of an 0GC WMS endpoint with a
WARNING request exceeding the image sizes (set to maximum 4096 x 4096 pixels). In this
case, before calling the Input Adapter and then the model, the data must be
downloaded in slices and merged together once all the slices are available.

<?xml version="1.0" encoding="windows-1252" standalone="no"?7>
<ServiceExceptionReport version="1.3.0" xmlns="http://www.opengis.net/ogc" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
"http://www.opengis.net/ogc http://schemas.opengis.net/wms/1.3.0/exceptions_1_3_0.xsd
">

<ServiceException>msWMSLoadGetMapParams(): WMS server error. Image size out of
range, WIDTH and HEIGHT must be between 1 and 4096 pixels.</ServiceException>
</ServiceExceptionReport>

The downloaded data is stored on a local folder to be later accessed by the Input Adapter.

10.3.4.5. Input Adapter

In the context of total biomass estimation from Sentinel-1 data, a custom Input Adapter was
developed to convert data from the catalogue to the format requirements posed by the ML model.
These adaptations involved both Sentinel-1 data as well as data for the ground truth. At the same
time, Sentinel-1 data coming from the catalogue is not orthorectified and in linear scale. To
orthorectify Sentinel-1 data and convert the values in a logarithm scale, a dedicated SNAP (Sentinel
Application Platform) workflow was implemented and integrated within the Input Adapter.

Read |—> Calibration —>{ Terrain-Correction |——> LinearToFromdB |——>+ Write

Figure 11. SNAP workflow executed by Input Adapter

Moreover, since Sentinel-1 spatial resolution is 10m while ground truth data is 30m, Sentinel-1 data
is resampled by the Input Adapter to match the spatial resolution of 30m.

57

The ground truth is encoded as an 8-bit unsigned integer RGBA image where total biomass is
displayed in green shades where darker green means high amount of biomass while lighter green
means low concentration. Since only the green channel contains valid information for the training
of the ML model (Red and Blue are fixed to 255 and no transparencies in Alpha), the Input Adapter
retain only this one.

10.3.4.6. AI Model

The default AI model delivered within the environment is a deep neural network based on U-Net
architecture. The network takes as input a GeoTIFF image containing the VV polarization channel
of Sentinel-1 and predicts, as single channel GeoTIFF image in the range [0,255], the total biomass
where higher concentration of total biomass is associated to higher pixel value in the image.

64 64

128 64 64 1

' 128 128
256 128

=»conv 3x3, ReLU

' 512 512 1024 512 ' copy and Crop
BB L e e § max pool 2x2
A _132" -’ 4 up-conv 2x2
= =» conv 1x1

Figure 12. Model U-Net architecture

The predicted total biomass image coming from the model is then converted to a green shade image
by taking the single channel in the image as green channel and adding red and blue channels fixed
to the 8-bit value of 255 (see paragraph 1.5.6).

Figure 13. Sentinel-1 VV polarization and total biomass ground truth

ML model checkpoints generated during training are saved in a pre-configured folder. This folder is
associated with the ML model. This is so the information is accessible either to resume training

38

from a specific checkpoint file or to load a checkpoint in order to perform inference with ML
model.

None of the ML frameworks suggested in the CFP (Call For Proposal) was used since
all of those frameworks just deal with object detection, classification ad
segmentation tasks. The problem addressed here, as required in TB-16 meetings, is
regression. Thus designing a custom framework from scratch was preferred.

NOTE

10.3.4.7. Output adapter

The output of the ML model, as with the input, comes in a format specific to the target model. The
result image/data needs to be converted to one of the formats supported by GeoServer
[http://geoserver.org/] for publication. Being able to support images (both gray scale and color) with
one or many bands / layers, GeoTIFF was chosen as the output image format. Additionally, the
GeoTIFF format is able to store any kind of geographical information in its metadata. Once the
result image/data coming from the ML model is converted into a GeoTIFF image, this file is sent to
GeoServer [http://geoserver.org/] by means of a custom library wrapping the GeoServer
[http:/geoserver.org/] REST API in order to create a new SourceDataset containing the image and to
create a new Layer to expose the output to the users. Details of the GeoServer [http:/geoserver.org/]
REST API can be found in section 1.5.7.

10.3.4.8. GeoServer

Using GeoServer [http://geoserver.org/] is the last step of the ML framework chain. GeoServer’s role is
to make publicly available the results of the ML model inference in both the MapML format and via
a WMS interface. In order to activate support for MapML, a dedicated module has been installed
into the bare-bone GeoServer [http:/geoserver.org/] delivery. The GeoServer [http:/geoserver.org/]
MapML support is still in a draft status but already exists as a community extension
(https://docs.geoserver.org/latest/en/user/community/mapml/index.html). The use of MapML has
already been exploited in previous OGC Testbed Initiatives:

* OCG TB-13 https://docs.ogc.org/per/17-019.html
* OGC TB-14 http://docs.opengeospatial.org/per/18-023r1.pdf
* OGC TB-15 https://docs.opengeospatial.org/DRAFTS/19-046.html

The MapML modules includes support for styles, tiling, querying, shading, and dimensions options
for WMS layers, and also provides a MapML outputFormat for WMS GetFeaturelnfo.

An example can be found at following link: https://borealweb.nfis.org/th16d133/geoserver/mapml/
TestWorkSpace:tot_bio_petawawa/osmtile/

The embedded MapML client triggers a WMS request to access the image:
https://borealweb.nfis.org/th16d133/geoserver/TestWorkSpace/wms?version=1.3.0&service=WMS&
request=GetMap&crs=urn:x-ogc:def:crs:EPSG:3857&layers=TestWorkSpace:tot_bio_petawawa&
styles=&bbox=-8659208.490311604,5742535.3559917845,-8580936.973361604,5801238.9937042855&
format=image/png&transparent=true&width=1024&height=768

The publication of the image is done by means of the GeoServer [http://geoserver.org/] REST API. Two

39

http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
https://docs.geoserver.org/latest/en/user/community/mapml/index.html
https://docs.ogc.org/per/17-019.html
http://docs.opengeospatial.org/per/18-023r1.pdf
https://docs.opengeospatial.org/DRAFTS/19-046.html
https://borealweb.nfis.org/tb16d133/geoserver/mapml/TestWorkSpace:tot_bio_petawawa/osmtile/
https://borealweb.nfis.org/tb16d133/geoserver/mapml/TestWorkSpace:tot_bio_petawawa/osmtile/
https://borealweb.nfis.org/tb16d133/geoserver/TestWorkSpace/wms?version=1.3.0&service=WMS&request=GetMap&crs=urn:x-ogc:def:crs:EPSG:3857&layers=TestWorkSpace:tot_bio_petawawa&styles=&bbox=-8659208.490311604,5742535.3559917845,-8580936.973361604,5801238.9937042855&format=image/png&transparent=true&width=1024&height=768
https://borealweb.nfis.org/tb16d133/geoserver/TestWorkSpace/wms?version=1.3.0&service=WMS&request=GetMap&crs=urn:x-ogc:def:crs:EPSG:3857&layers=TestWorkSpace:tot_bio_petawawa&styles=&bbox=-8659208.490311604,5742535.3559917845,-8580936.973361604,5801238.9937042855&format=image/png&transparent=true&width=1024&height=768
https://borealweb.nfis.org/tb16d133/geoserver/TestWorkSpace/wms?version=1.3.0&service=WMS&request=GetMap&crs=urn:x-ogc:def:crs:EPSG:3857&layers=TestWorkSpace:tot_bio_petawawa&styles=&bbox=-8659208.490311604,5742535.3559917845,-8580936.973361604,5801238.9937042855&format=image/png&transparent=true&width=1024&height=768
https://borealweb.nfis.org/tb16d133/geoserver/TestWorkSpace/wms?version=1.3.0&service=WMS&request=GetMap&crs=urn:x-ogc:def:crs:EPSG:3857&layers=TestWorkSpace:tot_bio_petawawa&styles=&bbox=-8659208.490311604,5742535.3559917845,-8580936.973361604,5801238.9937042855&format=image/png&transparent=true&width=1024&height=768
http://geoserver.org/

steps are necessary in order to expose the image:

* Create a DataStore with a URI link to the image to make the image recognized by the GeoServer
[http://geoserver.org/]

* Create a Layer to make the image available to users

Assuming that a default Workspace [https://docs.geoserver.org/stable/en/user/rest/workspaces.html] is made
already available by the initial configuration of the GeoServer [http://geoserver.org/], the first step is to
define a DataStore with the image reference. The DataStore is created with a HTTP POST call to
https://borealweb.nfis.org/tb16d133/geoserver/rest/workspaces/TestWorkSpace/coveragestores/
with parameters sent in the request body and encoded in XML or JSON format. An XML example
HTTP POST body is:

<?xml version="1.0" encoding="UTF-8"7>
<CoverageStoreInfo>
<name>BiomasDataStore</name>
<type>GeoTIFF</type>
<enabled>true</enabled>
<workspace>
<name>TestWorkSpace</name>
</workspace>
<url>file:biomas/tot_bio_petawawa.tif</url>
</CoverageStoreInfo>

The second step is to create the Layer with a HTTP POST call to https://borealweb.nfis.org/th16d133/
geoserver/rest/workspaces/TestWorkSpace/wmslayer still with parameters sent in the request body
and encoded in XML or JSON format. An XML example post body is:

60

http://geoserver.org/
https://docs.geoserver.org/stable/en/user/rest/workspaces.html
http://geoserver.org/
https://borealweb.nfis.org/tb16d133/geoserver/rest/workspaces/TestWorkSpace/coveragestores/
https://borealweb.nfis.org/tb16d133/geoserver/rest/workspaces/TestWorkSpace/wmslayer
https://borealweb.nfis.org/tb16d133/geoserver/rest/workspaces/TestWorkSpace/wmslayer

<?xml version="1.0" encoding="UTF-8"?>
<wmsLayer>
<name>Biomass</name>
<nativeName>Biomass</nativeName>
<namespace>
<name>string</name>
<link>string</link>
</namespace>
<title>Biomass</title>
<abstract>The biomass</abstract>
<nativeCRS>EPSG:4326</nativeCRS>
<srs>string</srs>
<nativeBoundingBox>
<minx>-77.616780646139</minx>
<maxx>45.85534888786863</maxx>
<miny>-77.25408105847575</miny>
<maxy>46.0388387807033</maxy>
</nativeBoundingBox>
<latLonBoundingBox>
<minx>-77.616780646139</minx>
<maxx>45.85534888786863</maxx>
<miny>-77.25408105847575</miny>
<maxy>46.0388387807033</maxy>
</latLonBoundingBox>
<projectionPolicy>FORCE_DECLARED</projectionPolicy>
<enabled>true</enabled>
<metadata>
<@key>regionateStrategy</@key>
<text>string</text>
</metadata>
<store>
<name>BiomasDataStore</name>
</store>
</wmslLayer>

As an example, the following figure shows the rendering on MapML internal client of the
GeoServer [http://geoserver.org/]

61

http://geoserver.org/

\|/ GeoServer MapML preview fc

@& borealweb.nfis.org

Figure 14. MapML client accessing GeoServer WMS service

10.3.5. Conclusions

Several interesting outcomes come with this activity. It has been implemented a framework that
can be used as a skeleton for theoretically any Machine Learning model (thanks to Input / Output
adapters) and virtually coping with tons of different heterogeneous data sources. The modularity of
this framework also permits any extension on any step of the whole chain. For instance, it would be
possible to change to final output just simply swapping the MapML with a different standard and
only updating the relevant Output Adapter maintaining the rest of the structure as is with no
impact and side effects.

As already highlighted in Testbed-15, speaking merely about development, having plenty of Python
libraries available that implement OGC standards is really useful, also the ADES WPS server
already available it has been a valuable benefit. Having the framework encapsulated in a Docker
container helped a lot to test the whole application independently for the environment and to scale
it in production.

The use of the draft OGC API - Records [https://htmlpreview.github.io/?https://github.com/opengeospatial/
ogcapi-records/blob/master/20-004.html] Standard eased the development and the querying mechanism

62

https://htmlpreview.github.io/?https://github.com/opengeospatial/ogcapi-records/blob/master/20-004.html

having to deal with a single standard. Some additional improvements are needed (e.g. some specific
identifiers to find exactly the resource and format needed). At the same time, it is really simple to
integrate within the framework other catalogues served for instance by OGC CSW Standard
[https://www.ogc.org/standards/cat] and data providers exposing OGC WCS services [https://www.ogc.org/
standards/wcs] for the data retrieval. In addition, just upgrading the data loader component it would
be possible to integrate additional repository like Amazon S3 [https://aws.amazon.com/s3/] / Google
Cloud Storage [https://cloud.google.com/storage].

Following are listed some additional notes suggested to be considered for future developments:

» Data Authenticity: This aspect needs to be investigated in order to be sure that the model is
trained and inferred with authentic data (the issue of data tampering in satellite imagery was
also noted).

* Analysis Ready Data (ARD): Another important aspect to take into consideration when the
framework deals with different data sources like datacubes where some data could be already
in ARD format and some other not.

* ONNX check points: for the time being the actual model stores its checkpoints in native format,
but it could be useful to take into consideration ONNX format

* Training dismissal: another important aspect to be covered is the expected behavior in case it
is required to interrupt the training. For instance, all the intermediate training has to be
maintained or not? This shall to be further investigated.

In conclusion, the team demonstrated not only the feasibility of an ML Framework Environment in
a generic and complex context but also the potential added benefit of this approach in terms of
modularity and expandability.

10.4. Deep Learning Environment (D134 - CRIM)

10.4.1. Deep Learning Models Applied to LiDAR Datasets

10.4.1.1. Training Set

The Dayton Annotated Laser Earth Scan (DALES) [https:/udayton.edu/engineering/research/centers/
vision_lab/research/was_data_analysis_and_processing/dale.php] was recently proposed as a new benchmark
for point cloud classification techniques. DALES generates a very high density smapling with over a
half-billion points spanning 10 square kilometers of area. The data was hand labeled by a team of
expert LiDAR technicians into eight categories: ground, vegetation, cars, trucks, poles, power lines,
fences and buildings. The goal of this data set is to help advance the field of deep learning within
aerial LiDAR. The data set is pre-split into 29 training files and 11 testing files, with the following
categories: ground(1l), vegetation(2), cars(3), trucks(4), power lines(5), fences(6), poles(7) and
buildings(8). The original dataset is high density (50ppm), it has been downsampled at 10ppm in
order to match NRCan tiles density using LAStools.

63

https://www.ogc.org/standards/cat
https://www.ogc.org/standards/wcs
https://aws.amazon.com/s3/
https://cloud.google.com/storage
https://cloud.google.com/storage
https://udayton.edu/engineering/research/centers/vision_lab/research/was_data_analysis_and_processing/dale.php

Figure 15. Example of DALES tiles, Semantic classes are labeled by color; ground (blue), vegetation (dark
green), power lines (light green), poles (orange), buildings (red), fences (light blue), trucks (yellow), cars
(pink), unknown (dark blue).

10.4.1.2. Neural Network Architecture

Several state-of-the art methods, mostly based on deep learning, were also compared using the
DALES dataset [https:/arxiv.org/abs/2004.11985]. The participants chose the ConvPoint method
(https://arxiv.org/pdf/1904.02375.pdf) for its ease of use and performance on large scale LIDAR
datasets. The architecture follows a typical UNet approach as shown on the figure Figure 16 below.
A few modifications were added to the PyTorch implementation with respect to the data loader in
order to be able to load LIDAR tiles in .las format.

o
=
o
o
=
=]
a
-
=
a
=
5

.
5 4 > E
i 7]
2 IIIIIlIt g
7

7

Y -

d

S _

Part segmentation network A

Semantic segmentation network

V. ol y Poin
- B:T Ratu - M:fu:r;m:md m':.:::::nan /‘b:mn r.rlansfer
Figure 16. Segmentation networks. The network made of an encoder (progressive reduction of the point
cloud size) followed by a decoder (to get back to the original point cloud size). Skip connections (black

arrows) allow information to flow directly from encoder to decoder (taken from https://arxiv.org/pdf/
1904.02375.pdf).

Once the model is trained on DALES, the inference is performed on a few tiles taken from the
Service New Brunswick website (https://geonb.snb.ca/li/).

64

https://arxiv.org/abs/2004.11985
https://arxiv.org/pdf/1904.02375.pdf
https://arxiv.org/pdf/1904.02375.pdf
https://arxiv.org/pdf/1904.02375.pdf
https://geonb.snb.ca/li/

Figure 17. Test on a New Brunswick tiles (from left to right, all classes, vegetation and building classes).

10.4.2. ONNX Packaging

Machine learning frameworks like Pytorch or Tensorflow provide interfaces that help developers to
build and run computation graphs representing neural networks. Most of those frameworks
provide similar capabilities but have their own format for representing these graphs. The main
goal of ONNX [https://onnx.ai/] is to offer a unified system API for switching between machine
learning frameworks. ONNX provides a definition of a computation graph model, and definitions of
built-in operators and standard data types. Each computation dataflow graph is structured as a list
of nodes that form an acrylic graph and each node is a call to an operator. The ONNX graph also
maintains metadata to help document its purpose, author, etc. The idea is that a user can train a
model with one tool stack and then deploy the model using another for inference and prediction. To
ensure this interoperability the user must export this model in the model.onnx format which is
basically a serialized representation of the model as Protocol Buffers [https://developers.google.com/
protocol-buffers] (protobuf). More precisely, the objectives of ONNX are:

1. Framework interoperability: Each framework is optimized for specific tasks such as fast
training, inferencing on mobile devices or supporting flexible network architectures and so
forth. The requirements most important during research and development are usually different
from those for shipping and production. This may lead to inefficiencies from not using the right
framework or significant delays due to conversion of models between frameworks.
Frameworks that use the ONNX representation simplify this and enable developer’s efficiency.

2. Shared optimization: Usually optimizations need to be integrated separately into each
framework which can be a time-consuming process. Hardware vendors and developers with
optimizations for improving the performance of their neural networks can impact multiple
frameworks at once by targeting the ONNX representation.

10.4.2.1. Limits of ONNX

The use of ONNX is straightforward as long as the project meets these two conditions:

1. Developers are using supported data types and operations of the ONNX specification.

2. Developers do not do any custom development in terms of specific custom layers/operations.

If these conditions are not met, the functionality has to be implemented in an ONNX backend. An
ONNX backend is a library that can run ONNX models. The custom implementation can turn out to
be very time-consuming and laborious despite ONNX providing an API. A very important point is
that the developers must first double-check that the used operations and functions are
implemented in the backend for the export and import. If a project is carried out within this
framework, the use of ONNX is effective. A second point to check is that not all frameworks do the
export to ONNX and import from ONNX. For instance, the Pytorch framework still does not provide

65

https://onnx.ai/
https://developers.google.com/protocol-buffers

any imports from ONNX. The developer needs to understand that ONNX is packaging only the
neural network implementation (the graph) and its parameters. There is no information related to
pre-processing, post-processing, metadata or semantics. The ONNX project is developing at a rapid
pace and is continually releasing new versions that enhance the compatibility between the
frameworks.

10.4.3. OGC API - Records for LiIDAR Datasets

The main goal of this task was to explore possible metadata that could be extracted from LIDAR
tiles that could be useful to build training and testing sets. About twenty tiles were downloaded
from the New Brunswick website [https://geonb.snb.ca/li/].

Figure 18. Footprint of the NRCan tiles taken from https://geonb.snb.ca/li/

One issue in building a training task (or even testing) is to make sure that the training set is
balanced with nearly the same number of samples per relevant classes. Therefore, the relevant
information could be the class names with their frequency or occurrences. For instance, the
following statistics can be extracted using lastools [https://rapidlasso.com/lastools/lasinfo/]:

histogram of classification of points:
490 never classified (0)
4423717 unclassified (1)
17817147 ground (2)
4120 Tlow vegetation (3)
1899 medium vegetation (4)
10282 high vegetation (5)
596 building (6)
703 noise (7)
145406 keypoint (8)

66

https://geonb.snb.ca/li/
https://geonb.snb.ca/li/
https://rapidlasso.com/lastools/lasinfo/

Lastools provides the number of points per class which can be useful to build a training/testing
dataset. Also, the general metadata contains class definitions: Using a Python script and the LASTool
library [https:/rapidlasso.com/lastools/], metadata are extracted from the .laz tiles to form Feature
records:

{

"type": "Feature",
"id": "nb_2018_2465000_7438000",
"properties": {
"name": "nb_2018_2465000_7438000",
"ers": {
"type": "name",
"properties": {
"name": "urn:ogc:def:crs:EPSG::2953"
¥

I

"featureclass": "LIDAR",

"LAZ Metadata":
"https://geonb.snb.ca/downloads2/1idar/2018/snb/aoi1/meta/meta_2018_aoil.xml",

"onlink": "https://geonb.snb.ca/1li/",

"class_histograms": [

{
"name": "unclassified",
"label": 1,
"count": 24
b
{
"name": "ground",
"label": 2,
"count": 1879673
by
{
"name": "low vegetation",
"label": 3,
"count": 1551931
b
{
"name": "medium vegetation",
"label": 4,
"count": 1453260
b
{
"name": "high vegetation",
"label": 5,
"count": 18614547
b
{
"name": "noise",
"label": 7,
"count": 3906

67

https://rapidlasso.com/lastools/
https://rapidlasso.com/lastools/

68

]I

llC

]I

b

{
"name": "keypoint",
"label": 8,
"count": 10709

b

{
"name": "water",
"label": 9,
"count": 68

}

lass_names": [

"unclassified",
"ground",

"low vegetation",
"medium vegetation",
"high vegetation",
"noise",

"keypoint",

"water"

"class_labels": [

]I

1,

I

I

-

O 0 N Ul B~ W N

"class_count": [

1,

24,
1879673,
1551931,
1453260,
18614547,
3906,
10709,

68

"class_frequency": [

0.0001020663415910391,
7.993806104060548,
6.599996648821785,
6.180372149191392,
79.16327969435213,
0.01661129709394161,
0.04554285217076821,
0.0002891879678412773

1,

"bbox": [
2465000,
7438000,
2465999,
7438999

]

}

eometry": {
"type": "Polygon",
"coordinates": [
[
[
2465000,
7438000
Il

[
2465999,

7438000
1,
[
2465999,
7438999
1,
[
2465000,
7438999

A GeoJSON encoding containing the Feature Collection is then pushed into a pygeoapi server
(https://pygeoapi.io/) with the following configuration file:

69

https://pygeoapi.io/

nb_lidar:
type: collection
title: NB Lidar metadata record
description: NB Lidar Data
keywords:
- LIDAR
links:
- type: text/html
rel: canonical
title: information
href: https://geonb.snb.ca/1i/
hreflang: en-US
extents:
spatial:
bbox: [-69.05, 44.56, -63.7, 48.07]
crs: http://www.opengis.net/def/crs/EPSG/9.8.15/2953
temporal:
begin: 2011-11-11
end: null # or empty (either means open ended)
providers:
- type: feature
name: GeoJSON
data: tests/data/nb_lidar.json
id_field: id

Records are showing up on the server (http://localhost:5000/collections/nb_lidar/items?f=html)

J0pygeoapi

Home / Collections / N8 Lidar metadata record / Items JSON JSON-LD
NB Lidar metadata record
tems nthis cllecton.

....................

Figure 19. LIDAR Tile Record shown in the pygeoapi server.
Recommendations for the LIDAR records:
1. Add information about annotations and class frequency.
2. A quickview of the tiles as a PNG showing classes could also be interesting.

10.4.4. OGC API - Records Queries for building training set

The objective here is to simulate queries of records that could be useful for ML. Unfortunately
queries using CQL are too limited for the LIDAR use case as they cannot deal with vectors or arrays
of values.

70

http://localhost:5000/collections/nb_lidar/items?f=html

A change request (see: https://github.com/opengeospatial/ogcapi-features/issues/384)
has been submitted against the draft OGC API - Features - Part 3: Filtering and the
Common Query Language (CQL) [http:/docs.opengeospatial.org/DRAFTS/19-079.html] to
add support for vectors or arrays of values.

NOTE

One possibility is to use ElasticSearch [https://www.elastic.co/elasticsearch/] as a provider as it has a good
query engine. Instead, the participants chose a Python query using QGIS API [https:/qgis.org/api/]. In
the code fragment below, the participants directly query the LIDAR collections to identify tiles that
contain our class of interest (for instance buildings or water).

These tiles can be loaded directly into QGIS as a vector layer (http://localhost:5000/collections/
nb_lidar/items?f=json&limit=20). The QGIS Python API can then be used to query the records
directly:

vlayer = QgsVectorLayer(
'http://localhost:5000/collections/nb_lidar/items?f=json&limit=20", "my wfs layer",
"ogr")
features = vlayer.getFeatures()
import json
from collections import Counter
cnt_all = Counter()
all_classes = ['ground', 'low vegetation', 'medium vegetation', 'high vegetation',
'building', 'water']
selection= list()
Class_of_interest = 'building'
for feature in features:
retrieve every feature with its geometry and attributes
print("Feature ID: ", feature.id())
class_histograms = json.loads(feature["class_histograms"])
cnt = Counter()
for ¢l in class_histograms:
print(cl)
cntl[cl["name"]] += c1["count"]
most_common = cnt.most_common()[0]
least_common = cnt.most_common()[-2]
missing = [k for k in all_classes if k not in cnt.keys()]
print(f'Most common: {most_common} Least common: {least_common}')
print(f'Missing {missing}")
cnt_all += cnt
if Class_of_interest in cnt.keys():
selection.append(feature)
print(cnt_all)
iface.activelayer().selectByIds([s.id() for s in selection])

Below are two examples of queries requesting some tiles with specific classes:

71

https://github.com/opengeospatial/ogcapi-features/issues/384
http://docs.opengeospatial.org/DRAFTS/19-079.html
http://docs.opengeospatial.org/DRAFTS/19-079.html
https://www.elastic.co/elasticsearch/
https://qgis.org/api/
http://localhost:5000/collections/nb_lidar/items?f=json&limit=20
http://localhost:5000/collections/nb_lidar/items?f=json&limit=20

. ,w"---‘*"’-
. W

Mactagquac

“'4 Upper Kingsclea

Figure 20. Looking for tiles containing the Building class (Class_of interest = Building).

Figure 21. Looking for the Water class (Class_of interest = Building)..

10.4.5. OGC API - Records queries for ML models

The goal in this task was to be able to query a catalogue of trained models. ML models are
minimally defined by their architecture and their parameters resulting from the training phase.
However, this information is insufficient to form a viable ML pipeline that can be executed on new
data. In this case additional information must be provided:

1. Optional pre-processing before calling the inference (format conversion, statistical
normalization, etc.)

2. Expected input format (e.g. number of channels, image size, etc.)

72

3. Semantic information about the model output which maps the model output to the semantic
information (e.g. actual class names)

4. Optional post-processing
5. The type of machine learning task such as classification, detection, semantic segmentation,

instance detection, etc.

Several ML libraries or frameworks provide ways to package ML pipelines, we can mention MXNet

[https://rapidlasso.com/lastools/], TorchServe [https://rapidlasso.com/lastools/], TensorFlowX
[https://www.tensorflow.org/tfx], thelper (https://github.com/plstcharles/thelper), MLflow
(https://mlflow.org)/).

* The ONNX format contains only the model (as a graph) and its parameters. There is no
information about pre/post-processing, output description, etc.

* MXNet has a richer model archive:
o Pre-trained MXNet Model (it can be an ONNX file)
o A'signature.json’' describing the inputs and outputs of the models.

o Semantic information as a 'synset.txt' containing the class names and synonyms (a Synset is
a special kind of a simple interface that is used to look up words in WordNet
(https://wordnet.princeton.edu/). Synset instances are the groupings of synonymous words
that express the same concept. Some of the words have only one Synset and some have
several).

> Custom model service files for pre-processing.

MLflow (https://mlflow.org/) provides a fairly complete model development and management
framework from model training to model packaging and deployment:

* Mlflow projects (https://mlflow.org/docs/latest/projects.html) provides a way to package models
in order to ensure reproducibility.

* MLflow registry (https://mlflow.org/docs/latest/model-registry.html) acts as a model store with
search functionalities (https://mlflow.org/docs/latest/model-registry.html#listing-and-searching-
mlflow-models).

The testbed participants harvested metadata from a model repo containing MXNet models:
https://github.com/awslabs/multi-model-server/blob/master/docs/model_zoo.md

An example is shown below for of the Alexnet model:

"type": "Feature",
"id": "alexnet",
"properties": {
"name": "alexnet",
"url": "https://s3.amazonaws.com/model-server/model_archive_1.0/alexnet.mar",
"content": [
"/content/models/alexnet/alexnet-symbol.json",
"/content/models/alexnet/synset.txt",

73

https://rapidlasso.com/lastools/
https://rapidlasso.com/lastools/
https://www.tensorflow.org/tfx
https://github.com/plstcharles/thelper
https://mlflow.org/
https://wordnet.princeton.edu/
https://mlflow.org/
https://mlflow.org/docs/latest/projects.html
https://mlflow.org/docs/latest/model-registry.html
https://mlflow.org/docs/latest/model-registry.html#listing-and-searching-mlflow-models
https://mlflow.org/docs/latest/model-registry.html#listing-and-searching-mlflow-models
https://github.com/awslabs/multi-model-server/blob/master/docs/model_zoo.md

74

"/content/models/alexnet/model_handler.py",
"/content/models/alexnet/signature.json",
"/content/models/alexnet/alexnet-0000.params",
"/content/models/alexnet/mxnet_model_service.py",
"/content/models/alexnet/mxnet_vision_service.py",
"/content/models/alexnet/MAR-INF/MANIFEST.json",
"/content/models/alexnet/mxnet_utils/__init__.py",
"/content/models/alexnet/mxnet_utils/nlp.py",
"/content/models/alexnet/mxnet_utils/ndarray.py",
"/content/models/alexnet/mxnet_utils/image.py"
P
"signature.json": {
"inputs": [
{
"data_shape": [
0,
3,
224,
224
1
"data_name": "data_0"
}
Il
“input_type": "image/jpeg",
"outputs": [
{
"data_shape": [
0,
1000
1;
"data_name": "softmax"
}
Il
"output_type": "application/json"
b
"MANIFEST.json": {
"modelServerVersion": "1.0",
"specificationVersion": "1.0",
"model": {
"handler": "mxnet_vision_service:handle",
"modelName": "alexnet"
frs
"runtime": "python",
"implementationVersion": "1.0"
b
"model_handler": [
"model_handler.py",
"mxnet_model_service.py",
"mxnet_vision_service.py",
"_init__.py",
“nlp.py",

"ndarray.py",
"image.py"

]

ynset.txt": [
{
"class_id": "n@1440764",
"synonims": [
"tench,",
"Tinca tinca"

Below are some possible queries that could be useful:

1
2
3

. Query if the models has the relevant semantic outputs;
. The machine learning task (classification, semantic segmentation, instance recognition, etc.);

. The size of the model (number of parameters);

4. Pre-processing or post-processing that must be applied;

5

. Performance on some known benchmarks (e.g. ImageNet);

Once the model archive is selected, the content of the .mar archive can be used to initialize a model.

Download pre-trained resnet model - json and params by running following code.
path="http://data.mxnet.io/models/imagenet/’
[mx.test_utils.download(path+'resnet/18-1ayers/resnet-18-0000.params"'),
mx.test_utils.download(path+'resnet/18-1ayers/resnet-18-symbol.json"),
mx.test_utils.download(path+'synset.txt')]

ctx = mx.cpu()
with open('synset.txt', 'r') as f:
labels = [1.rstrip() for 1 in f]
sym, args, aux = mx.model.load_checkpoint('resnet-18", 0)

Or if the archive contains an ONNX file it can also be used to initialize a model within MXNet. Note
that PyTorch can export in ONNX format but cannot yet import ONNX [https://www.tensorflow.org/tfx].

Some recommendations for the model metadata:

2.
3.

The model architecture can also be visualized using mx.viz.plot_network (see Figure 22 below)
and could be included in the metadata as a link to a pdf file.

Number of parameters (or memory size).

A short description similar to this one: https:/github.com/dmlc/mxnet-model-gallery/blob/
master/imagenet-1k-caffenet.md.

75

https://www.tensorflow.org/tfx
https://github.com/dmlc/mxnet-model-gallery/blob/master/imagenet-1k-caffenet.md
https://github.com/dmlc/mxnet-model-gallery/blob/master/imagenet-1k-caffenet.md

4. Links to the original paper should be added to the model records also.

softmax

1000

Figure 22. Graph of the top part of a Resnet-18 (partial view)

10.4.6. Inference deployment on ADES/EMS

The LIDAR inference application was packaged using the thelper [https:/github.com/plstcharles/thelper]
library. The resulting image provides thelper [https:/github.com/plstcharles/thelper] (via base image) and
all its sub-dependencies (although it is not explicitly required by itself for this application).

Some of the tools from LAStools [https://rapidlasso.com/lastools/] suite are commercial (cannot be used
without licence), but laszip specifically is publicly available. The model [https:/arxiv.org/abs/2004.11985]
targets specific version tracking using remote Git commit within the Dockerfile to ensure
traceability in case of future updates.

The model [https:/arxiv.org/abs/2004.11985] targets specific version tracking using remote Git commit
within the Dockerfile to ensure traceability in case of future updates.

The inference application defined by the Docker container is wrapped by CWL and deployed as
process at the following URL location:

https://ogc-ades.crim.ca/ADES/processes/ogc-th16-lidar

The definition of deployment and example job execution are available within the source code
repository.

Once the inference is performed, the new .las is converted in a raster format (.tif) showing the
classification values. This application is defined by a docker container wrapped by CWL and

76

https://github.com/plstcharles/thelper
https://github.com/plstcharles/thelper
https://rapidlasso.com/lastools/
https://arxiv.org/abs/2004.11985
https://arxiv.org/abs/2004.11985
https://ogc-ades.crim.ca/ADES/processes/ogc-tb16-lidar

deployed as process at the following URL location:
https://ogc-ades.crim.ca/ADES/processes/las2tif

Example of a successful job execution: https://ogc-ades.crim.ca/ADES/processes/las2tif/jobs/
6a22e5e7-adc4-457d-8468-93e02ea6b471

10.5. OGC API - Records server (CubeWerx)

10.5.1. Overview

CubeWerx provided a catalogue for the Testbed-16 ML thread. The purpose of the catalogue was to
provide the following services:

* A model catalogue to make trained data models discoverable

* A data catalogue to make training and other data discoverable
The CubeWerx catalogue implements the current draft of the DRAFT OGC API -Records - Part 1:
Core [https://htmlpreview.github.io/?https:/github.com/opengeospatial/ogcapi-records/blob/master/20-004.html]
standard but also includes an implementation of the draft OGC API - Features - Part 3 Filtering and

Common Query Language (CQL) [http:/docs.opengeospatial.org/DRAFTS/19-079.html] to provide additional,
advanced query capability.

The catalogues deployed for the ML Thread can be found at this URL:
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues.

10.5.2. Summary of OGC API - Records - Part 1 Core

At its core, the OGC API - Records [https:/htmlpreview.github.io/?https://github.com/opengeospatial/ogcapi-
records/blob/master/20-004.html] specification uses the API defined by the OGC API - Feature - Parts 1:
Core [http://docs.opengeospatial.org/is/17-069r3/17-069r3.html] specification (with enhancements) and a
datamodel composed of a set of core queryables that a catalogue implementation should use to
describe resources.

The OGC API - Records - Part 1: Core [https://htmlpreview.github.io/?https://github.com/opengeospatial/ogcapi-
records/blob/master/20-004.html] specification defines the following conformance classes:

. Core: The minimum set of catalogue functionality.
. Sorting: A parameter to specify sorting.

. OpenSearch: Additional query parameters that are OpenSearch compatible.

1
2
3
4. JSON: A Geo]SON encoding for a catalogue record.
5. ATOM: An XML-encoding for a catalogue record.
6

. HTML: A HTML-encoding for a catalogue record.

10.5.3. Core conformance class

The core conformance class includes a set of core properties also referred to as core queryables and

77

https://ogc-ades.crim.ca/ADES/processes/las2tif
https://ogc-ades.crim.ca/ADES/processes/las2tif/jobs/6a22e5e7-adc4-457d-8468-93e02ea6b471
https://ogc-ades.crim.ca/ADES/processes/las2tif/jobs/6a22e5e7-adc4-457d-8468-93e02ea6b471
https://htmlpreview.github.io/?https://github.com/opengeospatial/ogcapi-records/blob/master/20-004.html
https://htmlpreview.github.io/?https://github.com/opengeospatial/ogcapi-records/blob/master/20-004.html
http://docs.opengeospatial.org/DRAFTS/19-079.html
http://docs.opengeospatial.org/DRAFTS/19-079.html
https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues
https://htmlpreview.github.io/?https://github.com/opengeospatial/ogcapi-records/blob/master/20-004.html
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
https://htmlpreview.github.io/?https://github.com/opengeospatial/ogcapi-records/blob/master/20-004.html

a set of core query parameters.

The list of core queyrables is provided in the following table:

Table 9. Table of Core Queryables

Queryables

recordid

recordcreated

recordmodified

title

description

keywords

type

language

externalid

modified

publisher

themes

formats

contactpoint

license

rights

extent

links

78

Requirement

M

=

Description

A unique record identifier assigned by
the server.

The date this record was created in the
server.

The most recent date on which the
record was changed.

A human-readable name given to the
resource.

A free-text description of the resource.

A list of keywords or tag associated
with the resource.

The nature or genre of the resource.

This refers to the natural language
used for textual values (i.e. titles,
descriptions, etc) of a resource.

An identifier for the resource assigned
by an external entity.

The more recent date on which the
resource was changed.

The entity making the resource
available.

A knowledge organization system
used to classify the resource.

A list of available distributions for the
resource.

An entity to contact about the
resource.

A legal document under which the
resource is made available.

A statement that concerns all rights
not addressed by the license such as a
copyright statement.

The spatio-temporal coverage of the
resource.

A list of links for navigating the APIL

Queryables Requirement Description

associations 0 A list of links for accessing the
resource or links to other resources
associated with this resource.

The list of core query parameters is provided in the following table:

Table 10. Table of Query Parameters

Query Description
Parameter
bbox A bounding box. If the spatial extent of the record intersects the specified bounding

box then the record shall be presented in the response document.

datetime A time instance or time period. If the temporal extent of the record intersects the
specified data/time value then the record shall be presented in the response
document.

limit The number of records to be presented in a response document.

type A resource type. Only records of the specified type shall be presented in the
response document.

q A space-separated list of search terms. If any server-chosen text field in the record
contains 1 or more of the terms listed then this records hall appear in the response
set.

externallds A comma-separated list of external identifiers. Only records with the specified
names shall appear in the response document.

sorthy A comma-separated list of queryables specifying how the records in the response
shall be ordered for presentation.

The bbox parameter is composed of either 4 or 6 number values that define a bounding box. The
default CRS is http://www.opengis.net/def/crs/OGC/1.3/CRS84. Any record whose spatial component
intersects the bounding box shall be included in the result set of a query.

Example: ...&bbox=43.5805,-79.6390,43.8782,-79.1569%...

The datetime parameter is a string. The format of the string is an ISO8601 date string or period. The
string '.." may be used to denote "since the beginning of time" or "to the end of time".

Example: ...&datetime=2019-10-01T13:45:17/2019-10-31T22:10:14&....

The 1limit parameter is used to specify the number of records that shall appear in single response
document. If there are additional records, next and prev links shall be included to allow navigation
to the next or previous set of results.

Example: ...&limit=27&...

The type parameter is a string. Its value is a type identifier and only records of that type shall
appear in the response document.

79

http://www.opengis.net/def/crs/OGC/1.3/CRS84

Example: ...&type=http://www.opengis.net/def/object-type/ogc-csw-ebrim/0/dataset&...

The externallds parameter is a comma-separated list of external identifiers. Only records with the
specified external identifiers shall appear in a response document.

Example: ...&externallds=id1,id2,id3&...

10.5.4. Sorting conformance class

The sorting conformance class defines the sortby parameter. The sortby parameter is a comma-
separated list of core queryable names. The results in a response document shall be sorted by the
specified queryables in the order in which they are specified. Each specified queryable can be
additionally qualified to indicate a sort direction.

Example: ...&sortby=modified:desc&...

10.5.5. OpenSearch conformance class

The core conformance class provides a minimum query capability via the bbox, datetime, type, g and
externallds parameters. The OpenSearch conformance class provide a additional level of query
capability that is also compatible with the OpenSearch [https:/github.com/dewitt/opensearch/blob/master/
opensearch-l—l-draft—6.mdhttps://github.com/dewitt/opensearch/blob/master/opensearch-l-l—draft-G.md]
specification and the OGC® OpenSearch Geo and Time Extensions [https:/portal.opengeospatial.org/files/
?artifact_id=56866].

The OGC® OpenSearch Geo and Time Extensions extend OpenSearch to provide the following
query capabilities:

Arbitrary geometry search;

e Point and radius search;

» Support for spatial operators;

» Support for temporal operators;
» Search by place name;

* Temporal search;

» Support for temporal operators;

The OpenSearch conformance class is presented here for completeness but was not used by ML
Thread participants.

10.5.6. JSON conformance class

The JSON conformance class defines a JSON encoding for a catalogue record by mapping the core
queryables into a Geo]JSON [https://tools.ietf.org/html/rfc7946] object. This was the primary output
format used by the Thread participants. The following is an example of a JSON-encoded catalogue
record:

80

https://github.com/dewitt/opensearch/blob/master/opensearch-1-1-draft-6.mdhttps://github.com/dewitt/opensearch/blob/master/opensearch-1-1-draft-6.md
https://portal.opengeospatial.org/files/?artifact_id=56866
https://tools.ietf.org/html/rfc7946

"id": "urn:uuid:452bb6afc-c062-11ea-aa84-53b2ade463d0",
"resourceld": "NFIS_High_Resolution_Forest_Data",
"type": "feature",
"otype": "urn:cw:def:ebRIM-ObjectType:CubeWerx:WMS:Layer",
"geometry": {

"type": "Polygon",

"coordinates": [[[-170,40],[-170,60],[0,60],[0,40],[-170,40]11]
}

roperties": {

"title": "High Resolution Satellite Forest Information for Canada",
"description": "NFIS Project Office. This Web services are for forest change
products that represents the first wall-to-wall characterization of wildfire and
harvest in Canada at a spatial resolution commensurate with human impacts. The
information outcomes represents 25 years of stand replacing change in Canada's forests
derived from a single consistent spatially-explicit data source and derived in a fully
automated manner.",

"accessURLTemplate": "https://opendata.nfis.org/mapserver/cgi-
bin/wms_change.cgi?version=1.3.0&request=GetMap&layers=NFIS_High_Resolution_Forest_Dat
akstyles=%7Bstyles%7D&crs=%7Bcrs%/D&bbox=%7Bbbox%7D&width=%7Bwidth%7D&height=%7Bheight
%/D&format=%7Bformat%7D",

"urn:cw:def:ebRIM-SlotName:crs": ["EPSG:4617","EPSG:3979","EPSG:3978",
"EPSG:3857","EPSG:42304","EPSG:4326","EPSG:4269", "EPSG:42101"],

"urn:cw:def:ebRIM-SlotName:keyword": "Change",

"urn:cw:def:ebRIM-SlotName:outputFormat": ["image/tiff","image/png; mode=8bit"
,"image/jpeg", "image/png"],

"urn:cw:def:ebRIM-SlotName:queryable": 0

b
"associations": [
{
"href":
"https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collect
ions/tb16cat/items/urn:uuid:45334ccc-c062-11ea-bdc3-ebf@bb16ce92",
"rel": "ParentOf",
"type": "urn:cw:def:ebRIM-ObjectType:CubeWerx:WMS:Layer",
"title": "Parent Of WMS Layer \"ca_prov_r \""

b

{
"href":

"https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collect
jons/tb16cat/items/urn:uuid:4535ce98-c062-11ea-bff2-87ce@8cbef28",

"rel": "ParentOf",

"type": "urn:cw:def:ebRIM-ObjectType:CubeWerx:WMS:Layer",

"title": "Parent Of WMS Layer \"ca_change_nochange_r1984 \""

¥
{

"href":
"https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collect
jons/tb16cat/items/urn:uuid:4538463c-c062-11ea-8f4c-8f86afchH02a1",

"rel": "ParentOf",

"type": "urn:cw:def:ebRIM-ObjectType:CubeWerx:WMS:Layer",

"title": "Parent Of WMS Layer \"ca_change_year_r1984 \""

81

82

b
{

"href":
"https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collect
ions/tb16cat/items/urn:uuid:453a8fc8-c062-11ea-a121-337a0f5ce5ea",

"rel": "ParentOf",

"type": "urn:cw:def:ebRIM-ObjectType:CubeWerx:WMS:Layer",

"title": "Parent Of WMS Layer \"ca_change_type_r \""

Hie

{
"href":

"https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collect
jons/tb16cat/items/urn:uuid:453c9570-c062-11ea-bd9d-c74b345a36322",
"rel": "ParentOf",
"type": "urn:cw:def:ebRIM-ObjectType:CubeWerx:WMS:Layer",
"title": "Parent Of WMS Layer \"ca_change_nochange_r2012 \""
},

{
"href":

"https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collect
jons/tb16cat/items/urn:uuid:453e6788-c062-11ea-9ad0-7b8d695e5ebe”,

"rel": "ParentOf",

"type": "urn:cw:def:ebRIM-ObjectType:CubeWerx:WMS:Layer",

"title": "Parent Of WMS Layer \"ca_change_year_r2012 \""

b
{

"href":
"https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collect
ions/tb16cat/items/urn:uuid:454046fc-c062-11ea-bbb9-3fd8b87abbfe",

"rel": "ParentOf",

"type": "urn:cw:def:ebRIM-ObjectType:CubeWerx:WMS:Layer",

"title": "Parent Of WMS Layer \"ca_change_type_r2012 \""

Hie

{
"href":

"https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collect
jons/tb16cat/items/urn:uuid:45420b54-c062-11ea-aeb63-e741378866ae",
"rel": "ParentOf",
"type": "urn:cw:def:ebRIM-ObjectType:CubeWerx:WMS:Layer",
"title": "Parent Of WMS Layer \"ca_rgb_2015_wkg_r \""
},

{
"href":

"https://eratosthenes.pvretano.com/cubewerx/cubeserv/default/ogcapi/catalogues/collect
jons/tb16cat/items/urn:uuid:44158374-c062-11ea-86c1-cf8ce91dab91”,

"rel": "OperatesOn",

"type": "urn:oasis:names:tc:ebxml-regrep:0bjectType:RegistryObject:Service",

"title": "Operated upon Service \"High Resolution Satellite Forest
Information for Canada \""

}
]

10.5.7. ATOM conformance class

The ATOM conformance class defines requirements for an XML output format of catalogue records
that conform to The Atom Syndication Format [https://tools.ietf.org/html/rfc4287].

The ATOM conformance class is presented here for completeness but was not used by Testbed-16
ML Thread participants.

10.5.8. HTML conformance class

The HTML conformance class defines requirements for an HTML output format of catalogue
records. The requirements basically recommends that catalogues implementing the OGC API -
Records - Part 1: Core [https:/htmlpreview.github.io/?https://github.com/opengeospatial/ogcapi-records/blob/
master/20-004.html] specification provide HTML as a supported output format. The following example
illustrates a catalogue record encoded as HTML:

X Test Bed 16 Catalogue

High Resolution Satellite Forest Information for Canada

Record Id: urn:uuid: 11 4

Resource Name: NFIS_High_Resolution_Forest_Data

Resource Type: WMS Layer ObjectType:C ayer)

Description: NFIS Project Office. This Web services are for forest change products that represents the first wall-to-wall characterization of wildfire and harvest in Canada at a spatial resolution commensurate with human impacts. The
information outcomes represents 25 years of stand replacing change in Canada's forests derived from a single consistent spatially-explicit data source and derived in a fully automated manner

Geometry: BOX[40.000000,-170.000000,60.000000,0.000000]

Properties:
Name Value
nfi b change.cqi?

accessURLTemplate o gjon=1 3 1S_High_Resolution_Forest_D: Dacrs=y %7D&bbOX=97BbboXY7D&WIdth=97Bwidth%7D: %7
crs EPSG:4617
crs EPSG:3979
crs EPSG:3978
crs EPSG:3857
crs EPSG:42304
crs EPSG:4326
crs EPSG:4269 N
crs EPSG:42101
keyword Change
outputFormat imageltiff

p ; mode=8bit

P
outputFormat image/png
queryable o
Links:
arent OTWMS Layer ™ I
Parent Of WMS Layer "ca_change_nochange_r1984 *
Parent Of WMS Layer "ca_change_year_r1984 "
Parent Of WMS Layer "ca_change_type_r"
Parent Of WMS Layer "ca_change_nochange_r2012
Parent Of WMS Layer "ca_change_year_r2012"
Parent Of WMS Layer "ca_change_type_r2012"
Parent Of WMS Layer "ca_rgh_2015_wkg_r"
Operated upon Service "High Resolution Satelite Forest Information for Canada *

Copyright © 1997-2020 CubeWenx Inc. Version 9.3.22.

Figure 23. Sample HTML-encoded catalogue record

10.5.9. Extensions for the ML Thread

10.5.9.1. Overview

The section discusses extensions made by CubeWerx to their catalogue in order to satisfy
participant requirements. In most cases the extension were added to make binding to a discovered
resource (e.g. a WMS layer) more convenient. In some cases the extensions were added to
overcome some complicated access mechanism that was orthogonally related to the goals of the ML
Thread (e.g. fetching data from Amazon’s S3).

10.5.9.2. Retrieving a map (accessURLTemplate)

The map servers provided by NRCAN for the Thread did not provide an OGC API interface. Rather
they implemented the OpenGIS Web Map Service (WMS) Implementation Specification

83

https://tools.ietf.org/html/rfc4287
https://htmlpreview.github.io/?https://github.com/opengeospatial/ogcapi-records/blob/master/20-004.html
https://htmlpreview.github.io/?https://github.com/opengeospatial/ogcapi-records/blob/master/20-004.html
http://portal.opengeospatial.org/files/?artifact_id=14416

[http://portal.opengeospatial.org/files/?artifact_id=14416]. In order to alleviate clients from having to posses
a depth knowledge of this specification, a URL template was added to each WMS layer record in the
catalogues via the accessURLTemplate queryable. The function of this queryable is to provide a URL
template of a GetMap request for the corresponding layer that allows the client to construct a valid
GetMap request to fetch layer data. Here is an examples of such a URL template:

https://opendata.nfis.org/geoserver/06C_TB15_ML_D104/ows?SERVICE=WMS&version=1.3.0&req
uest=GetMap&layers=0GCTestbed15%20D104%20Quebec%20river-
lake%20vectorization%20ML&styles={styles}&crs={crs}&bbox={bbox}&width={width}&height={
height}&format={format}

In order to construct a GetMap request for the layer, the client need only provide values for the
substitution variables. Lists of values are provided in the corresponding catalogue record for the
styles, crs and format substitution variables so the client does not need to guess values for those
variables. The remaining variables, width, height and bbox, are filled in with values suited to the
client’s purpose (i.e. the width and height of map they desire in the area of interest). In this way,
with very little a-priori knowledge, a client can construct a WMS GetMap request and fetch the
desired layer data.

10.5.9.3. Retrieving a map legend (legendURL)

The value of the legendURL queryable is a link that is a GetLegendGraphic request for a discovered
layer. This URL allows a client to retrieve a legend graphic for a layer discovered in a catalogue
search. In the Thread these legend graphics were used to provide classification categories for
training ML models from data discovered using the catalogue; specifically Sentinel-1 data.

10.5.9.4. Retrieving a style (styleURL)

The value of the styleURL query parameter is a link that is a GetStyle request for a discovered layer.
This URL allows a client to retrieve an SLD definition associated with a layer discovered in a
catalogue search. The intent was to use this Styled Layer Descriptor (SLD) [https:/www.ogc.org/
standards/sld] information to derive the classifications or categories associated with various colors in
a raster image for the purpose of training an ML model. In the end however, this approach did not
work very well because the GetStyle operation is not mandatory in the WMS specification and none
of the WMS’s used in the Thread implemented it. Instead, the RGB values of the color scale
illustrated in a legend graphic, obtained via the legendURL, were used for this purpose.

10.5.9.5. Retrieving Sentinel-1 from Amazon’s S3 (enclosure)

Each catalogue record is accompanied by a list of links to resources related to that record. For
example, a download link might be included to allow the resource being described by the catalogue
record to be retrieved from its source. Such a link is identified using the link relation enclosure.

The catalogue of Sentinel-1 products deployed by CubeWerx for the ML thread of Testbed-16,
catalogued product metadata harvested from the Sentinel-1 Registry of Open Data on AWS
[https://registry.opendata.aws/sentinel-1/]. As such all the download links for the data are references to
Amazon’s Simple Storage Service [https://aws.amazon.com/s3/?nc2=h_gl_prod_st_s3] (S3) locations. The
mechanics of resolving an S3 reference are not trivial requiring Amazon credentials and either

84

https://www.ogc.org/standards/sld
https://registry.opendata.aws/sentinel-1/
https://aws.amazon.com/s3/?nc2=h_ql_prod_st_s3

special libraries provided by Amazon, the use of Amazon’s free command line tool (i.e. AWS) or an
in-depth knowledge of Amazon’s download URL scheme and signing protocol
[https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html] in order construct a valid download URL.
To alleviate ML thread participants of the burden of being familiar with at least one of these access
mechanisms to retrieve a discovered Sentinel-1 product, an enclosure link was included with each
record that retrieved the Sentinel product from a local copy stored on a CubeWerx server that was
open to ML Thread participants.

85

https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

Chapter 11. Visualization of ML Results

11.1. Overview

With planning and response activities for wildland fire events, it is critical that stakeholders (e.g.
planners, first responders, residents, policy makers) are able to visualize related geospatial
information quickly and accurately. Typically, such visualization requires users to have access to
specialized software and skills.

This thread task evaluated the utility of MapML for providing a geospatial information
visualization and interaction interface in the context of wildland fire planning and response.

MapML enables viewing and interaction with geospatial information within web browsers which
are ubiquitous across multiple devices.

All geospatial information results from the ML models used in Testbed-16 were published to servers
that implement the OGC Web Service or OGC API interfaces and are additionally augmented to
support MapML.

11.2. MapML Client 1 (D130 - ASU)

11.2.1. Introduction of MapML Client

This client is developed to visualize the geographical data which is published via the MapML
specification, generated by machine learning and deep learning modules. MapML is short for Map
Markup Language. It encodes map information using text format for the World Wide Web [1]. The
author of a HTML document should be able to use the <map> element and the link of a MapML
document to declare a sub-area of HTML page to create a two-dimensional map with general map
operations, such as panning and zooming. The MapML specification should ultimately provide a
convenient and declarative manner for HTML authors to include maps in a web page. However,
finding a browser that supports the MapML application is currently difficult. Therefore, a common
solution is to implement the MapML specification via JavaScript. This client implementation was
developed based on a JavaScript library called Web-Map-Custom-Element [https:/github.com/
Maps4HTML/Web-Map-Custom-Element] (WMCE).

86

https://github.com/Maps4HTML/Web-Map-Custom-Element

eoe MapML Vis PWA »

Figure 24. A screenshot of MapML Client 1

Except for the supported general map operations, this client realized the multi-layer management.
With the client, users can view all the maps/layers they are interested in simultaneously displayed
over any arbitrary basemap. Many layer operations are implemented, such as adding, removing,
toggling visibility, adjusting transparency, zooming to the selected layer, and etc., to meet the
requirements of different application scenarios. Finally, this client is wrapped and published as a
Progressive Web Application [https://en.wikipedia.org/wiki/Progressive_web_application] (PWA), so that the
client acquires following advantages:

1. Working like a native application on users’ OS.

2. Loading much faster than a traditional web application.

3. The capability of working offline.

4. The capability of deploying to mobile environments with less effort.

11.2.2. Including Maps with MapML

With the WMCE library, maps can be included in the HTML document just following MapML
specification. An example using the <map> element is demonstrated in the below code snippet.

87

https://en.wikipedia.org/wiki/Progressive_web_application

<map is="web-map"
projection="0SMTILE"
zoom="4" 1at="42.13082130188811"
lon="-102.39257812500001"
controls=""
controlslist="nofullscreen"
style="display: block;">
<layer- label="OpenStreetMap"
src="https://geogratis.gc.ca/mapml/en/osmtile/osm/" checked>

</layer->
<layer- label="tot_bio_petawawa_clr"
src=

"http://cici.lab.asu.edu/geoserver217/mapml/sf:tot_bio_petawawa_clr/OSMTILE?style="
checked>
</layer->
</map>

The <map> element declares a sub-area in the web page as a map viewer for displaying maps. The
attributes of the element indicate the projection information and how the viewer is initialized, such
as zoom level and center location.

By adding child <layer> elements to the <map> element, a certain map/layer can be included in the
map viewer. This step can be accomplished declaratively while drafting the HTML document. It also
allows developers to inject the <layer> element programmatically and dynamically, and this feature
was used in the ASU client to add functions for adding and removing maps.

When declaring a <layer> element, only the "src" attribute is required, which provides the link
directly to the MapML document. The 1label attribute is optional. This information can be
automatically extracted from MapML metadata. Similar to other HTML elements, such as , the
source link of MapML can be hosted in any servers, from any origin. For instance, the two layers
included in the above code snippet are hosted in different servers, from the US and Canada
respectively.

11.2.3. MapML Metadata Acquisition

The WMCE library extracts most metadata from the MapML documents and is accessible via
<layer> element object. However, while developing the client based on WMCE library, the
participants encountered different fashions of exposing the MapML metadata. Some simple
information such as title and legend information can be acquired by a straightforward format, a
short plain text or a URL. However, the complex information such as layer extent is wrapped in a
MicroXML. Below is an example of a MicroXML of layer extent:

88

<extent units="OSMTILE">

<input name="z" type="zoom" value="18" min="0" max="18"/>

<input name="xmin" type="location" rel="map" position="top-left" axis="easting"
units="pcrs" min="-8240672.435241637" max="-8227290.1626559235"/>

<input name="ymin" type="location" rel="map" position="bottom-left" axis=
"northing" units="pcrs" min="4965875.319295468" max="4994389.518266143"/>

<input name="xmax" type="location" rel="map" position="top-right" axis="easting"
units="pers" min="-8240672.435241637" max="-8227290.1626559235"/>

<input name="ymax" type="location" rel="map" position="top-left" axis="northing"
units="pers" min="4965875.319295468" max="4994389.518266143"/>

<input name="w" type="width" min="1" max="10000"/>

<input name="h" type="height" min="1" max="10000"/>

<link tref="http://cici.lab.asu.edu/geoserver217/tiger/wms?version=1.3.0
Gamp; service=WMS& request=GetMap&crs=urn:x-ogc:def:crs:EPSG:3857
& layers=tiger_roadsé&styles=1line&bbox={xmin},{ymin},{xmax}, {ymax}& forma
t=image/png& transparent=true&width={w}&height={h}" rel="image"/>

<input name="i" type="location" axis="i" units="map"/>

<input name="j" type="location" axis="j" units="map"/>

<link tref="http://cici.lab.asu.edu/geoserver217/tiger/wms?version=1.3.0
& service=WMS& request=GetFeatureInfo& FEATURE_COUNT=50&crs=urn:x-
ogc:def:crs:EPSG:3857& layers=tiger_roads&query_layers=tiger_roads&styles=1
ine&bbox={xmin},{ymin}, {xmax},{ymax}&width={w}&height={h}&info_format=
text/mapml& transparent=true&x={i}&y={j}" rel="query"/>
</extent>

This requires applications to implement their own module to extract the extent coordinates, which
should be a general function included in the library. Moreover, only the projected coordinates are
provided in the MicroXML. Other supported coordinate systems are missing, such as the commonly
used geographic coordinates. Communicating with WMCE side, all mentioned issues were fixed.
The extent information is now wrapped in an object, shown as follows:

extent:

bottomRight:
gers: {horizontal: -77.25408105847575, vertical: 45.85534888786863}
pers: {horizontal: -8599884.9651318, vertical: 5757199.001661819}
ters: Array(25)
tilematrix: Array(25)

topLeft:
gers: {horizontal: -77.616780646139, vertical: 46.0388387807033}
pers: {horizontal: -8640260.498541405, vertical: 5786575.348034253}
ters: Array(25)
tilematrix: Array(25)

projection: "OSMTILE"

zoom: {minZoom: @, maxZoom: 24, minNativeZoom: @, maxNativeZoom: 18}

Now, extent coordinates are easily accessible, and multiple coordinates systems are supported.

89

11.2.4. Map Publishing and Customization

To examine the functions of the ASU client and explore the capability of map customization in the
context of MapML based implementation, ASU obtained some sample output datasets from
machine learning and deep learning modules from the other Testbed-16 ML Thread participants.
The output samples are all raster data and formatted as GeoTIFF. They are published via an OGC
Web Coverage Service [https://www.ogc.org/standards/wes] (WCS) endpoint leveraging GeoServer. A
GeoServer MapML plug-in [2] wraps the published OGC services into MapML, which can be directly
visualized in the client. The code snippet below presents an example of MapML document response
from GeoServer:

90

https://www.ogc.org/standards/wcs
https://www.ogc.org/standards/wcs

<mapml>
<head>
<title>tot_bio_petawawa_clr</title>
<base href="http://cici.lab.asu.edu/geoserver217/mapml"/>
<meta charset="utf-8"/>
<meta content="text/mapml;projection=0SMTILE" http-equiv="Content-Type"/>
<link href=
"http://cici.lab.asu.edu/geoserver217/mapml/sf:tot_bio_petawawa_clr/OSMTILE?style="
rel="self style" title="raster"/>
<link href=
"http://cici.lab.asu.edu/geoserver217/mapml/sf:tot_bio_petawawa_clr/CBMTILE?style="
rel="alternate" projection="CBMTILE"/>
<link href=
"http://cici.lab.asu.edu/geoserver217/mapml/sf:tot_bio_petawawa_clr/APSTILE?style="
rel="alternate" projection="APSTILE"/>
<link href=
"http://cici.lab.asu.edu/geoserver217/mapml/sf:tot_bio_petawawa_clr/WGS847?style=" rel
="alternate" projection="WGS84"/>
</head>
<body>
<extent units="OSMTILE">
<input name="z" type="zoom" value="18" min="0" max="18"/>
<input name="xmin" type="location" rel="map" position="top-left" axis=
"easting" units="pcrs" min="-8640260.498541405" max="-8599884.9651318"/>
<input name="ymin" type="location" rel="map" position="bottom-left" axis=
"northing" units="pcrs" min="5757199.001661819" max="5786575.348034253"/>
<input name="xmax" type="location" rel="map" position="top-right" axis=
"easting" units="pcrs" min="-8640260.498541405" max="-8599884.9651318"/>
<input name="ymax" type="location" rel="map" position="top-left" axis=
"northing" units="pcrs" min="5757199.001661819" max="5786575.348034253"/>
<input name="w" type="width" min="1" max="10000"/>
<input name="h" type="height" min="1" max="10000"/>
<link tref="http://cici.lab.asu.edu/geoserver217/sf/wms?version=1.3.0
& service=WMS& request=GetMap&crs=urn:x-ogc:def:crs:EPSG:3857
& layers=tot_bio_petawawa_clré&styles=&bbox={xmin},{ymin}, {xmax}, {ymax}&
format=image/png& transparent=true&width={w}&height={h}" rel="image"/>

<input name="i" type="location" axis="i" units="map"/>

<input name="j" type="location" axis="j" units="map"/>

<link tref="http://cici.lab.asu.edu/geoserver217/sf/wms?version=1.3.0
& service=WMS& request=GetFeatureInfo& FEATURE_COUNT=50&crs=urn:x-
ogc:def:crs:EPSG:3857& layers=tot_bio_petawawa_clr&query_layers=tot_bio_petawaw
a_clré&styles=&bbox={xmin}, {ymin},{xmax}, {ymax}&width={w}&height={h}&am
p;info_format=text/mapml&transparent=true&x={i}&y={j}" rel="query"/>

</extent>
</body>
</mapml>

This MapML document publishes the total biomass of the Petawawa area dataset. This document is
mainly composed of title information, available projections and corresponding links, and the extent

91

information. The following figure demonstrates how this layer is displayed in the ASU client.

From the MapML document it is evident that the tile data required to render the map on the page
will be retrieved from a WMS [https://www.ogc.org/standards/wms] endoint. The WMS link is shown in
the <link> element which is a child of the <extent> element in the MapML document above. The tile
images retrieved from the WMS [https://www.ogc.org/standards/wms] are rendered from the original
WCS [https://www.ogc.org/standards/wms] endpoint when publishing the data. Therefore customizing
the style of the layer that is published via MapML on the client side is challenging because the client
only has access to the rendered images rather than the underlying source data. The settled upon
solution to this styling problem was to edit the original GeoTIFF file to achieve certain style
customizations and to publish the result as another MapML layer. The following figure presents the
MapML visualization of the original total biomass layer and the one rendered with a red-yellow-
green color ramp which indicates the value range from low to high.

Figure 25. MapML layer customization

Left: original layer; Right: customized layer

11.3. MapML Client 2 (D131 - Bocoup)

11.3.1. Standardizing Web Maps to Increase Adoption among Browser
Vendors

The objectives for this deliverable were to:

» Evaluate the MapML proposal and provide feedback,
* Identify low level primitives to standardize, and

* Discuss with stakeholders and document impact for a geospatial community audience.
Potential stakeholders included:

e Browser vendors,

Web maps library and framework authors,

Web developers,

Geospatial community, and

Accessibility community.

92

https://www.ogc.org/standards/wms
https://www.ogc.org/standards/wms
https://www.ogc.org/standards/wms

One goal of this work was to begin the process of gaining agreement from two or more browser
implementers by focusing on a small primitive subset and getting feedback from framework
authors and/or web developers.

A second goal was to follow the Extensible Web Manifesto [https:/extensiblewebmanifesto.org/], the
WHATWG process [https://whatwg.org/faq] and the W3C’s HTML Design Principles [https://www.w3.org/
TR/html-design-principles/], and browser engines’ processes for shipping new features (e.g., the
Chromium intent process [https://www.chromium.org/blink/launching-features]).

The work involved four streams:

1. Review documentation, proposals, and make recommendations,

2. Identify missing primitives in the web platform that would benefit JavaScript libraries and the
polyfill capability,

3. Interview web maps library/frameworks authors and web developers, and
4. Summarize feedback and impact for the geospatial community audience.

The following documents were reviewed as part of this work (each item is described in more detail
below):

* The MapML (Map Markup Language) proposal [https:/github.com/Maps4HTML/MapML-Proposal]
(explainer),

* The HTML <map> Element proposal [https://maps4html.org/MapML/spec/#the-map-element-0],

* Map Markup Language [https:/maps4html.org/MapML/spec/], and

* Use Cases and Requirements for Standardizing Web Maps [https://maps4html.org/HTML-Map-Element-

UseCases-Requirements/].

This review led to reporting several issues including with feedback and recommendations for a
process for standardizing web maps to increase the likelihood of adoption among browser vendors.
Details are provided below. The review also identified two missing web platform primitives that are
fundamental to web maps’ interaction model: panning and zooming. An issue was also reported to
the W3C Cascading Style Sheets Working Group to initiate a discussion.

11.3.2. MapML Explainer

An "explainer" is a short design document with code examples showing how the solution is
intended to be used. The intended audience is the web developer. The W3C Technical Architecture
Group provides a document on what the purpose of explainers and what they should contain
[https://w3ctag.github.io/explainers].

Based on the evaluation the current MapML (Map Markup Language) proposal [https:/github.com/
Maps4HTML/MapML-Proposal] is not an effective explainer, and should be rewritten for clarity and
brevity. The reasons are:

* Does not clearly explain the problem.

* Makes various claims that are unclear how they follow from one to the other.

» Lacks separation between problem description and the proposal.

93

https://extensiblewebmanifesto.org/
https://whatwg.org/faq
https://www.w3.org/TR/html-design-principles/
https://www.chromium.org/blink/launching-features
https://github.com/Maps4HTML/MapML-Proposal
https://maps4html.org/MapML/spec/#the-map-element-0
https://maps4html.org/MapML/spec/
https://maps4html.org/HTML-Map-Element-UseCases-Requirements/
https://w3ctag.github.io/explainers
https://github.com/Maps4HTML/MapML-Proposal

* The document is too long.

The full review is available at MapML-Proposal issue #17 [https:/github.com/Maps4HTML/MapML-
Proposal/issues/17].

11.3.3. The HTML <map> Element proposal

The HTML <map> Element proposal [https:/maps4html.org/MapML/spec/#the-map-element-0] redefines the
existing HTML <map> and <area> elements, and defines new <layer> element.

The finding was that the model for client-side image maps (the existing semantic of the <map>
element) and web maps (the proposed new semantic) are fundamentally different. For the former,
an element renders the image, and the <map> only provides the association between the
 and the <area> elements, while for web maps the <map> element owns the rendering and
interaction model. For this reason, the recommendation is not to reuse the <map> element for web
maps.

As discussed in the full review at HTML-Map-Element issue #97 [https://github.com/Maps4HTML/MapML/
issues/97] there are additional problems with reusing <map>.

Sixteen specific issues [https:/github.com/Maps4HTML/MapML/issues?q=is:issue+author:zcorpan+created:2020-
06-29] were also raised, with questions and feedback on web compatibility, API design choices, and
technical errors.

11.3.4. Map Markup Language

The Map Markup Language [https:/maps4html.org/MapML/spec/] specification defines a new markup
language, as a MicroXML [https://dvcs.w3.org/hg/microxml/raw-file/tip/spec/microxmlhtml] format but
inspired by HTML. Being MicroXML means that it is XML but without using any XML namespace.

In this blog post [https://www.w3.org/community/maps4html/2019/12/09/the-design-of-mapml/], there is a
statement that MicroXML might not be the right solution, and instead suggests something more
HTML-like: “The new document type should be readily parseable with a (minimally) enhanced
HTML parser”.

In the <map> element proposal, it is defined that the <layer> element can optionally contain inline
MapML markup.

For these ideas to work, all MapML elements need to be HTML elements directly. MicroXML cannot
be used inline in an HTML document. By changing MapML to be a direct extension of HTML, the
HTML parser can be used without changes.

The implications of this recommendation are reconsideration of the MIME type, the doctype, the
root element, and audit all MapML elements for either reuse and extend an existing HTML element,
or rename to avoid clashing with HTML.

The full review is available at MapML issue #70 [https://github.com/Maps4HTML/MapML/issues/70].

Another aspect of the MapML specification is its statement that it should be possible to style MapML
documents CSS. This sounds good but it is unclear how this would work. In particular, CSS may

94

https://github.com/Maps4HTML/MapML-Proposal/issues/17
https://maps4html.org/MapML/spec/#the-map-element-0
https://github.com/Maps4HTML/MapML/issues/97
https://github.com/Maps4HTML/MapML/issues?q=is:issue+author:zcorpan+created:2020-06-29
https://maps4html.org/MapML/spec/
https://dvcs.w3.org/hg/microxml/raw-file/tip/spec/microxml.html
https://www.w3.org/community/maps4html/2019/12/09/the-design-of-mapml/
https://github.com/Maps4HTML/MapML/issues/70

need new primitives and possibly a new rendering model, such as panning and zooming.
Rendering MapML content should then be defined in terms of CSS (see: MapML issue #71
[https://github.com/Maps4HTML/MapML/issues/71]).

11.3.5. Use Cases and Requirements for Standardizing Web Maps

The Use Cases and Requirements for Standardizing Web Maps [https://maps4html.org/HTML-Map-
Element-UseCases-Requirements/] document has excellent structure and clarity. It does not leave the
reader with questions and concerns as reading the explainer did. This document also provides a
process for the work, and a plan for accessibility, privacy, security. There is no feedback for
improvements to this document. A summary of this document would make for an excellent part of
a new explainer.

11.3.5.1. Process Recommendations

With the goal of making web maps a first-class feature on the web platform, to having the relevant
stakeholders at the table throughout the process is imperative. Designing a solution to be
implemented in browser engines without having browser engine representatives involved is
unlikely to be successful.

Following the informal process outlined in the WHATWG FAQ for adding features to the web
platform [https://whatwg.org/fag#adding-new-features] (with one modification) is recommended. This
FAQ states that documenting the use cases and requirements comes first, then research existing
solutions and propose new solutions, then evaluate how well each solution solves the use cases and
meets the requirements.

The suggested modification is to get browser vendors and maps vendors to agree to the use cases
and requirements, and take part in the design of the proposed solution.

Considerations for accessibility, privacy, and security should be foundational in the design. Adding
them as an afterthought usually results in suboptimal results at best. At worst, some vendors may
refuse to implement or even get involved. Work together with subject matter experts early in the
design process is recommended.

Following the Extensible Web Manifesto [https://extensiblewebmanifesto.org/] is also recommended.
Start with standardizing underlying primitives that can be used for implementing the high-level
feature (both in author-level JavaScript and in the browser engine). This approach does not seem to
be currently followed by the proposed specifications, as they only describe high-level features.

11.3.5.2. Identify Missing Primitives

The following primitives were identified as missing in the web platform. Note that this is not an
exhaustive list of missing primitives that web maps would need- there are undoubtedly others.

* Panning. Scrolling is similar, but not identical. Scrolling areas have edges.

* Zooming. While browsers support “page zoom” and “pinch zoom” [https:/www.w3.org/TR/cssom-
view-1/%23zooming#zooming], there is no per-element zooming primitive.

To initiate a discussion about these missing primitives, an issue was reported to the CSS Working

95

https://github.com/Maps4HTML/MapML/issues/71
https://maps4html.org/HTML-Map-Element-UseCases-Requirements/
https://whatwg.org/faq#adding-new-features
https://whatwg.org/faq#adding-new-features
https://extensiblewebmanifesto.org/
https://www.w3.org/TR/cssom-view-1/%23zooming#zooming
https://github.com/w3c/csswg-drafts/issues/5275

Group [https://github.com/w3c/csswg-drafts/issues/5275].

11.3.6. Maps for the Web Workshop

The team participated in the joint W3C/OGC Maps for the Web Workshop [https://www.w3.0rg/2020/
maps/agenda] in September-October 2020, and held a presentation to present the review of the
MapML proposal:

e Presentation in YouTube [https://youtu.be/zJkJcvmUA50?t=2089] (duration six minutes).

e Slide deck in slides.com [https://slides.com/zcorpan/bocoup-review-mapml/].

» Discussion in Discourse [https://discourse.wicg.io/t/the-mapml-proposal-goals-and-details/4848].

* Bocoup’s position statement for the workshop [https:/www.w3.0rg/2020/maps/supporting-material-
uploads/position-statements/Simon_Pieters-Bocoup.pdf] (in w3.0rg).

11.3.7. Future Recommendations

Future work in this area should explore ways to collect additional input from various stakeholders.
Ideas include developing a research design with questions for each group of stakeholders, and to
reach out to them directly. For web developers, questions could be added to the MDN Developer
Needs Survey [https://insights.developer.mozilla.org/] to learn about their pain points with web maps.

96

https://github.com/w3c/csswg-drafts/issues/5275
https://www.w3.org/2020/maps/agenda
https://youtu.be/zJkJcvmUA5o?t=2089
https://slides.com/zcorpan/bocoup-review-mapml/
https://discourse.wicg.io/t/the-mapml-proposal-goals-and-details/4848
https://www.w3.org/2020/maps/supporting-material-uploads/position-statements/Simon_Pieters-Bocoup.pdf
https://insights.developer.mozilla.org/
https://insights.developer.mozilla.org/

Chapter 12. Research questions

12.1. Overview

The OGC Testbed-16 call for proposals posed a number of research questions [https:/portal.ogc.org/
files/?artifact_id=91644# research_questions] that this section of the ER attempts to answer based on the
experiences of the thread participants during the Testbed.

12.2. Does ML require "data interoperability"?

12.2.1. Additional related questions

* Or can ML enable "data interoperability"?

* How do existing and emerging OGC standards contribute to a data architecture flow towards
"data interoperability"?

12.2.2. Response

* ML requires data interoperability to make sure the right data, following the model
requirements, is used for training and testing

- Data interoperability will facilitate reproducibility, the ability of a user to duplicate the
results of a prior study as defined in this document:

= https://www.amstat.org/asa/files/pdfs/POL-ReproducibleResearchRecommendations.pdf)

= McGill checklist for ML reproducibility: https://www.cs.mcgill.ca/~jpineau/
ReproducibilityChecklist.pdf

o The OGC API - Tiles [https://github.com/opengeospatial/OGC-API-Tiles] specification seems to be a
good candidate for model training as both value datasets and label datasets can be retrieved
as tiles which makes model training straight-forward (as most work on batches of patches
[e.g. 512x512]). Bands (e.g. RGB only) are a possible limitation, depending on the model use
case.

o [Skymantics] Open WMS [https://www.ogc.org/standards/wms] has some shortcomings for model
training, although they can be overcome and can potentially contribute to data
interoperability. From the perspective of ML data interoperability, the legend graphic is
particularly useful because it encodes, in image format, scale ranges that can be used in
model training. More importantly, the underlying information used to generate the legend
graphic is useful because it encodes the scale ranges represented in the legend graphic in a
machine readable format (i.e. SLD). The issue with WMS [https://www.ogc.org/standards/wms] is
that both the LegendURL (used to retrieve the legend graphic) and the GetStyles operation
(used to retrieve the underlying SLD) are optional extensions in the WMS [https://www.ogc.org/
standards/wms] specification. So, technically, it is possible to use an OGC WMS
[https://www.ogc.org/standards/wms] for model training but only if these optional components
are implemented. This consideration is particularly important given the large number of
existing WMS [https://www.ogc.org/standards/wms] instances that represent a large pool of
available tarining data if only these optional components were mandatory.

97

https://portal.ogc.org/files/?artifact_id=91644#_research_questions
https://www.amstat.org/asa/files/pdfs/POL-ReproducibleResearchRecommendations.pdf
https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
https://github.com/opengeospatial/OGC-API-Tiles
https://www.ogc.org/standards/wms
https://www.ogc.org/standards/wms
https://www.ogc.org/standards/wms
https://www.ogc.org/standards/wms
https://www.ogc.org/standards/wms

o [Skymantics] The experimental prototype of an OGC API - Records [https://htmlpreview.github.io/
?https://github.com/opengeospatial/ogcapi-records/blob/master/20-004.html] catalogue used during the
testbed offered a high level of flexibility, facilitating both the discovery of training datasets
and providing binding information for data extraction by a ML algorithm. The catalogue is
capable of harvesting repositories of different typologies and to list the relevant information
for ML applications. This is an emerging OGC standard that can potentially contribute to a
data architecture flow towards "data interoperability".

12.3. Where do trained datasets (i.e. trained model and
training datasets) go and how can they be re-used?

12.3.1. Response

See: D016 Machine Learning Training Data ER [https://portal.ogc.org/files/?artifact_id=95717].
Additional comments follow:

* [CRIM] Training set:
o They can be reused and should be made available for research reproducibility

o They can be quite large (millions of samples), for instance Imagenet (http://image-net.org/
download-API) in vision

¢ Trained models:

o Trained model parameters are available in so-called model zoo, they are not easily
queryable right now. They are usually used for benchmarking / comparing results against
old/new training datasets.

o Trained models are required for reproducibility as well as for benchmarking / comparing
results against old/new training datasets.

12.4. How can we ensure the authenticity of trained
datasets?

* [CRIM] It’s an important and complex question, there is evidence that models can be attacked
by either training dataset manipulation (e.g. label poisoning) or by directly manipulating the
model parameters (backdoor attacks):

o Barni, Mauro, Kassem Kallas, and Benedetta Tondi. "A new backdoor attack in CNNs by
training set corruption without label poisoning." 2019 IEEE International Conference on
Image Processing (ICIP). IEEE, 2019. https://arxiv.org/abs/1902.11237.

* There is an ongoing National Institute of Standards and Technology (NIST) TrojAI competition
[https://pages.nist.gov/trojai/].

» See this recent review on attacks and counter-measures:

> Gao, Y, Doan, B. G,, Zhang, Z., Ma, S., Fu, A., Nepal, S., & Kim, H. (2020). Backdoor Attacks and
Countermeasures on Deep Learning: A Comprehensive Review. arXiv preprint
arXiv:2007.10760. https://arxiv.org/pdf/2007.10760.pdf

98

https://htmlpreview.github.io/?https://github.com/opengeospatial/ogcapi-records/blob/master/20-004.html
https://portal.ogc.org/files/?artifact_id=95717
http://image-net.org/download-API
http://image-net.org/download-API
https://arxiv.org/abs/1902.11237
https://pages.nist.gov/trojai/
https://arxiv.org/pdf/2007.10760.pdf

Adversarial
Example

Universal
Adversarial
Patch

* Tensorflow Extended has a data validation module to check for anomalies:
https://colab.research.google.com/github/tensorflow/tfx/blob/master/docs/tutorials/
data_validation/tfdv_basic.ipynb

12.5. Is it necessary to have analysis ready data (ARD)
for ML?

12.5.1. Additional related questions

* Can ML help ARD development?

12.5.2. Response
* [CRIM] Given a large and diverse enough training set, deep learning models could potentially
capture data variability and therefore be more robust to pre-processing

* In the near future, ML could potentially replace some part of the ARD pre-processing in
particular for the radiometric corrections.

* Minimally, preprocessing should be done in order to apply all necessary sensor-specific
corrections.

* Any following preprocessing operations could reduce the variability of data and should most
probably be avoided.

99

https://colab.research.google.com/github/tensorflow/tfx/blob/master/docs/tutorials/data_validation/tfdv_basic.ipynb
https://colab.research.google.com/github/tensorflow/tfx/blob/master/docs/tutorials/data_validation/tfdv_basic.ipynb

12.6. What is the value of datacubes for ML?

* The temporal aspect captured by datacubes could facilitate the development of multi-temporal
models.

e It could also facilitate the development of unsupervised ML approaches (i.e. without
annotations)

12.7. How do we address interoperability of
distributed datacubes maintained by different
organizations?

* [CRIM]:
> OGC API - Coverage services could be deployed on top of datacubes to facilitate data sharing

o It is important to facilitate the replication of datacubes, for example as a workflow
specification from raw datasets.

* In case a computing infrastructure is available remotely in the same environment as the
targeted datacube, we can then deploy OGC API - Processes to produce and distribute derived
products

12.8. What is the potential of MapML in the context of
ML?

12.8.1. Additional related questions.

e Where does it need to be enhanced?

12.8.2. Response

See Standardizing Web Maps to Increase Adoption among Browser Vendors.

12.9. How to discover and run an existing ML model?

* [CRIM] An existing ML model (i.e. its architecture and parameters) must be integrated into a ML
pipeline or workflow in order to be production ready . This pipeline must include at least:

- Handling functions for pre-processing and post-processing
- Semantic information about the output

o A description of the expected input

- A way to verify the model output given a known input

o Relevant metadata about the source of the model (what it was trained with/for, reference
article if any, revision number if re-trained with more recent data. etc.)

* [52north] From an ADES perspective, an ML model can be a process on an ADES. It can be

100

technically discovered by the means of ADES (~ OGC API Processes). Though, it is still the same
as an arbitrary process in ADES - not particularly highlighted or promoted as an ML model.
Running the model must ensure that the input data (e.g. raster GeoTIFF) is pre-processed in the
same way as the training data. There is currently no concept/approach on describing the pre-
processing (e.g. S1 SNAP-based was used in TB16).

* Probably also need to include details about the source of the model (what it was trained
with/for, reference article if any, revision number if re-trained with more recent data. etc.)

101

Chapter 13. Issues

13.1. Overview

The work of the Testbed-16 ML thread was facilitated using a private GitLab repository. One feature
of the repository is an issue tracker where a number of issues that arose during the course of the
Testbed were discussed. The most important of these issues are summarized here.

13.2. Persisting ML model results (issue #19)

13.2.1. Overview

The ML models developed by testbed participants were deployed to an ADES which provides a
standard interface for executing and retrieving results. Execution results, however, do not persist
for any length of time which is an issue for any downstream actors that may want to use those
results for further processing. Currently the only option is that the client retrieve the results and
arrange for their persistent storage.

The discussion in the GitLab repository consistent of several proposal to alleviate the client of the
this burden and have the ADES arrange for the persistent storage of results.

13.2.2. Solution 1 - stateful container

This solution involves having the ADES mount a persistent volume (e.g. Amazon’s EFS
[https://aws.amazon.com/efs/]) onto the Docker container into which the results of ML processing are
copied. When execution of the Docker container terminates, the results of processing would persist
on the mounted volume and would be accessible from the host machine. The work flow would
proceed as follows:

1. The ML Tool is deployed to an ADES. The Application Package that defines the process interface,
refers to the Docker image containing the bundled/trained ML tool.

2. The ML Tool is executed via the ADES interface (i.e. POST of execute request to the /jobs
endpoint).

3. The ADES launches the Docker container. This involves, among other things, arranging to
mount a host volume into the Docker container for the persistent storage of results.

4. The tool executes the ML model within the Docker container and produces some output (e.g. a
GeoTIFF) that is written to this mounted volume.

5. Once the tool completes execution the Docker container is shutdown but the processing result
are still available to the ADES on the host volume that was mounter to the container.

6. The ADES can now provide the results via the /jobs/{jobId}/results endpoint.

7. The host-persisted results can also be fed manually to the GeoServer [http:/geoserver.arg] MapML
Community Model with then feeds the results onward to the MapML client.

102

https://aws.amazon.com/efs/
http://geoserver.arg

13.2.3. Solution 2 - object store

This solution for persisting the results of executing an ML model via the ADES involves pushing the
results to an object store (e.g. Amazon’s S3 [https://aws.amazon.com/s3/] or Google Cloud Storage
[https://cloud.google.com/storage]). The results can be pushed to the object store from within the Docker
container or it can be done by the ADES after ML processes has completed. The results can then be
pulled from the object store and fed into the GeoServer [http://geoserver.arg] or directly to the MapML
client.

The primary issue with the approach concerns the mechanism of interacting with the object store
to retrieve the results. In most cases the job of forming an access URL involves credentials and
signed HTTP requests and can be quite onerous. However, vendor-provided and open-source
libraries are available that may mitigate this problem.

13.2.4. Solution 3 - OGC API

This solution makes use of an extended OGC API - Coverages [https:/github.com/opengeospatial/
ogc_api_coverages] interface that offers a /images endpoint. When processing results (e.g. GeoTIFF) are
available they can be HTTP POST’ed to the /collections/{coverageId}/images endpoint and then
subsequently retrieved wusing the OGC API - Coverages [https:/github.com/opengeospatial/
ogc_api_coverages] coverage access interface. An example of the images endpoint can be found here:
http://test.cubewerx.com/cubewerx/cubeserv/demo/ogcapi/Daraa/collections/Daraa_mosaic_2019/
images.

The primary issue with this approach, at least in the case of the CubeWerx server, is that the
GeoTIFF results need to be orthorectified (see clause: D016 Machine Learning Training Data ER
[https://portal.ogc.org/files/?artifact_id=95717], Sentinel-1). However, assuming the results can be pushed
to a coverage server, a client (MapML or otherwise) can simply make a standard OGC API -
Coverages [https://github.com/opengeospatial/ogc_api_coverages] (or map [https:/github.com/opengeospatial/
OGC-API-Maps] request, or tiles [https://github.com/opengeospatial/OGC-API-Tiles] request for that matter) to
retrieve the results for display.

13.3. MapML Client Prototype based on Web-Map-
Custom-Element

13.3.1. Discussion overview

This issue was concerned with how to parse MapML documents available from the GeoServer
module.

In principle, the HTML parser should be able to be used in JavaScript, but for the time being, the
XML parser built into browsers provides a reasonable API that browser-based clients can rely on to
parse MapML.

Ideally, Progressing Web Apps [https://web.dev/progressive-web-apps/] (PWA) could actually use the Web-
Map-Custom-Element and its somewhat obscure JavaScript API. It remains to be specified what this
API should be in the HTML standard and thread participants experimented with that.

103

https://aws.amazon.com/s3/
https://cloud.google.com/storage
http://geoserver.arg
https://github.com/opengeospatial/ogc_api_coverages
https://github.com/opengeospatial/ogc_api_coverages
http://test.cubewerx.com/cubewerx/cubeserv/demo/ogcapi/Daraa/collections/Daraa_mosaic_2019/images
http://test.cubewerx.com/cubewerx/cubeserv/demo/ogcapi/Daraa/collections/Daraa_mosaic_2019/images
https://portal.ogc.org/files/?artifact_id=95717
https://github.com/opengeospatial/ogc_api_coverages
https://github.com/opengeospatial/ogc_api_coverages
https://github.com/opengeospatial/OGC-API-Maps
https://github.com/opengeospatial/OGC-API-Tiles
https://web.dev/progressive-web-apps/

It was felt by thread participants that the API should be similar to the Leaflet API [
https://leafletjs.com/], but there are obviously elements of the latter API which shouldn’t be specified
by HTML, but by libraries built on top (i.e. like Leaflet itself).

Web-Map-Custom-Element, being HTML DOM based, presents a clean and straightforward APIL

Because Safari doesn’t support customized built-in elements (<map is=web-map...>), another
regular custom element called <mm-mapp> has been provided which works in a similar manner
but but doesn’t support the <area is=map-area> element).

The idea is to eventually load the ML output into GeoServer, perhaps via an OGC API, and then
GeoServer could automatically publish that data as MapML for consumption by the client.

While developing MapML client based on WebMap Custom Element framework an alternative way
was found to expose the layer metadata provided by the framework. Some simple information such
as title and and legend URL can be acquired in a straightforward manner (by short text). However,
the complex information such as layer extent is wrapped in a MicroXML which requires a standard
manner to extract all effective information from it. Below is a example of a MicroXML of layer
entent:

<extent units="OSMTILE">

<input name="z" type="zoom" value="18" min="0" max="18"/>

<input name="xmin" type="location" rel="map" position="top-left" axis="easting"
units="pers" min="-8240672.435241637" max="-8227290.1626559235"/>

<input name="ymin" type="location" rel="map" position="bottom-left" axis="northing"
units="pers" min="4965875.319295468" max="4994389.518266143"/>

<input name="xmax" type="location" rel="map" position="top-right" axis="easting"
units="pers" min="-8240672.435241637" max="-8227290.1626559235"/>

<input name="ymax" type="location" rel="map" position="top-left" axis="northing"
units="pers" min="4965875.319295468" max="4994389.518266143"/>

<input name="w" type="width" min="1" max="10000"/>

<input name="h" type="height" min="1" max="10000"/>

<link tref="http://cici.lab.asu.edu/geoserver217/tiger/wms?version=1.3.0
& service=WMS& request=GetMap&crs=urn:x-ogc:def:crs:EPSG:3857
Gamp; layers=tiger_roads&styles=1ine&bbox={xmin},{ymin}, {xmax}, {ymax}&forma
t=image/png& transparent=true&width={w}&height={h}" rel="image"/>

<input name="i" type="location" axis="i" units="map"/>

<input name="j" type="location" axis="j" units="map"/>

<link tref="http://cici.lab.asu.edu/geoserver217/tiger/wms?version=1.3.0
& service=WMS& request=GetFeatureInfo& FEATURE_COUNT=50&crs=urn:x-
ogc:def:crs:EPSG:3857& layers=tiger_roads&query_layers=tiger_roads&styles=1
ine&bbox={xmin},{ymin}, {xmax}, {ymax}&width={w}&height={h}&info_format=
text/mapml& transparent=true& x={1i}&y={j}" rel="query"/>
</extent>

13.3.2. Open questions

The sought-after feedback about Web-Map-Custom-Elements is:

104

https://leafletjs.com/

What should the API for this element suite look like?

* In what way should Web authors be able to customize the user experience for this element
suite?

What facilities could the element provide that would support its use in a PWA?

What facilities should the element provide that you would expect to be built into a browser?

The answers to these open questions can be found in the MapML Client 1 (D130 - ASU) and
Standardizing Web Maps to Increase Adoption among Browser Vendors clauses.

13.4. Processing Sentinel-1 Data using SNAP

This issue was concerned with the orthorectification of Sentinel images since that is a requirement
for loading them into the CubeWerx OGC API - Coverages [https:/github.com/opengeospatial/
ogc_api_coverages] server.

The Sentinel-1 images accessible from the Registry of Open Data on AWS [https://registry.opendata.aws/
sentinel-1/] are not orthorectified preventing them from being loaded into the CubeWerx server.

The first pass at resolving this problem, NRCan has provided a SNAP [https://step.esa.int/main/toolboxes/
snap/] graph to process GRD files along with terrain correction to create GeoTIFF as output. The
source of that graph is provided here:

<graph id="Graph">
<version>1.0</version>
<node id="Read">
<operator>Read</operator>
<sources/>
<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<file>D:\Sentinel-
1_GRD\GRD\STA_IW_GRDH_1SDV_20200705T014935_20200705T015000_033313_03DC13_49ED.zip</fil
e>
</parameters>
</node>
<node id="Calibration">
<operator>Calibration</operator>

<sources>
<sourceProduct refid="Read"/>

</sources>

<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<sourceBands/>
<auxFile>Product Auxiliary File</auxFile>
<externalAuxFile/>

<outputImageInComplex>false</outputImageInComplex>
<outputImageScaleInDb>false</outputImageScaleInDb>
<createGammaBand>false</createGammaBand>
<createBetaBand>false</createBetaBand>
<selectedPolarisations/>
<outputSigmaBand>true</outputSigmaBand>

105

https://github.com/opengeospatial/ogc_api_coverages
https://registry.opendata.aws/sentinel-1/
https://step.esa.int/main/toolboxes/snap/

106

<outputGammaBand>false</outputGammaBand>
<outputBetaBand>false</outputBetaBand>
</parameters>
</node>
<node id="Speckle-Filter">
<operator>Speckle-Filter</operator>

<sources>
<sourceProduct refid="Calibration"/>

</sources>

<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<sourceBands/>

<filter>Boxcar</filter>
<filterSizeX>7</filterSizeX>
<filterSizeY>7</filterSizeY>
<dampingFactor>2</dampingFactor>
<estimateENL>true</estimateENL>
<enl>1.0</enl>
<numLooksStr>1</numLooksStr>
<windowSize>7x7</windowSize>
<targetWindowSizeStr>3x3</targetWindowSizeStr>
<sigmaStr>0.9</sigmaStr>
<anSize>50</anSize>
</parameters>
</node>
<node id="Terrain-Correction">
<operator>Terrain-Correction</operator>

<sources>
<sourceProduct refid="Speckle-Filter"/>

</sources>

<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<sourceBands/>
<demName>CDEM</demName>
<externalDEMFile/>

<externalDEMNoDataValue>@.0</externalDEMNoDataValue>
<externalDEMApplyEGM>true</externalDEMApplyEGM>
<demResamplingMethod>BILINEAR_INTERPOLATION</demResamplingMethod>
<imgResamplingMethod>BILINEAR_INTERPOLATION</imgResamplingMethod>
<pixelSpacingInMeter>30.0</pixelSpacinglnMeter>
<pixelSpacingInDegree>2.6949458523585647E-4</pixelSpacingInDegree>
<mapProjection>GEQ0GCS["WGS84(DD)", &fixd;

DATUM["WGS84", &iixd;

SPHEROID["WGS84", 6378137.0, 298.257223563]], 

PRIMEM["Greenwich", 0.0], &fixd;

UNIT["degree", 0.017453292519943295], 

AXIS["Geodetic longitude", EAST], &fixd;

AXIS["Geodetic latitude", NORTH]]</mapProjection>
<alignToStandardGrid>false</alignToStandardGrid>
<standardGridOriginX>0.0</standardGridOriginX>
<standardGridOriginY>0.0</standardGridOriginY>
<nodataValueAtSea>true</nodataValueAtSea>
<saveDEM>false</saveDEM>

<savelatlLon>false</savelatlLon>
<savelIncidenceAngleFromEllipsoid>false</savelncidenceAngleFromEllipsoid>
<savelocalIncidenceAngle>false</savelocallncidenceAngle>
<saveProjectedlLocallncidenceAngle>false</saveProjectedlLocallncidenceAngle>
<saveSelectedSourceBand>true</saveSelectedSourceBand>
<outputComplex>false</outputComplex>
<applyRadiometricNormalization>false</applyRadiometricNormalization>
<saveSigmaNought>false</saveSigmaNought>
<saveGammaNought>false</saveGammaNought>
<saveBetaNought>false</saveBetaNought>
<incidenceAngleForSigma@>Use projected local incidence angle from
DEM</incidenceAngleForSigma0>
<incidenceAngleForGamma@>Use projected local incidence angle from
DEM</incidenceAngleForGamma®>
<auxFile>Latest Auxiliary File</auxFile>
<externalAuxFile/>
</parameters>
</node>
<node id="Write">
<operator>Write</operator>
<sources>
<sourceProduct refid="Terrain-Correction"/>
</sources>
<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<file>D:\Sentinel-
1_GRD\GRD\STA_IW_GRDH_1SDV_20200705T014935_20200705T015000_033313_03DC13_49ED.tif</fil
e>
<formatName>GeoTIFF</formatName>
</parameters>
</node>
<applicationData id="Presentation">
<Description/>
<node id="Read">
<displayPosition x="61.0" y="236.0"/>
</node>
<node id="Calibration">
<displayPosition x="55.0" y="146.0"/>
</node>
<node id="Speckle-Filter">
<displayPosition x="44.0" y="58.0"/>
</node>
<node id="Terrain-Correction">
<displayPosition x="246.0" y="62.0"/>
</node>
<node id="Write">
<displayPosition x="278.0" y="233.0"/>
</node>
</applicationData>
</graph>

107

A graph was also provided for SLC files from the Boreal Cloud for terrain correction and generating
GeoTIFF:

<graph id="Graph">
<version>1.0</version>
<node id="Read">
<operator>Read</operator>
<sources/>
<parameters class="com.bc.ceres.binding.dom.XppDomElement">

<file>K:\SENTINELT\S1B_IW_SLC__1SDV_20170620T143323_20170620T143353_006135_00AC6F_505C
.zip</file>
</parameters>
</node>
<node id="Calibration">
<operator>Calibration</operator>

<sources>
<sourceProduct refid="Read"/>

</sources>

<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<sourceBands/>
<auxFile>Latest Auxiliary File</auxFile>
<externalAuxFile/>

<outputImageInComplex>false</outputImageInComplex>
<outputImageScaleInDb>false</outputImageScaleInDb>
<createGammaBand>false</createGammaBand>
<createBetaBand>false</createBetaBand>
<selectedPolarisations/>
<outputSigmaBand>true</outputSigmaBand>
<outputGammaBand>false</outputGammaBand>
<outputBetaBand>false</outputBetaBand>
</parameters>
</node>
<node id="TOPSAR-Deburst">
<operator>TOPSAR-Deburst</operator>
<sources>
<sourceProduct refid="Calibration"/>
</sources>
<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<selectedPolarisations/>
</parameters>
</node>
<node id="Multilook">
<operator>Multilook</operator>

<sources>
<sourceProduct refid="TOPSAR-Deburst"/>

</sources>

<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<sourceBands/>

<nRgLooks>6</nRglLooks>

108

<nAzLooks>2</nAzLooks>
<outputIntensity>true</outputIntensity>
<grSquarePixel>true</grSquarePixel>
</parameters>
</node>
<node id="Speckle-Filter">
<operator>Speckle-Filter</operator>

<sources>
<sourceProduct refid="Multilook"/>

</sources>

<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<sourceBands/>

<filter>Boxcar</filter>
<filterSizeX>5</filterSizeX>
<filterSizeY>5</filterSizeY>
<dampingFactor>2</dampingFactor>
<estimateENL>true</estimateENL>
<enl>1.0</enl>
<numLooksStr>1</numLooksStr>
<windowSize>7x7</windowSize>
<targetWindowSizeStr>3x3</targetWindowSizeStr>
<sigmaStr>0.9</sigmaStr>
<anSize>50</anSize>

</parameters>
</node>
<node id="Terrain-Correction">

<operator>Terrain-Correction</operator>
<sources>
<sourceProduct refid="Speckle-Filter"/>

</sources>

<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<sourceBands>Sigma@_VH, Sigma@_VV</sourceBands>
<demName>CDEM</demName>
<externalDEMFile/>
<externalDEMNoDataValue>0.0</externalDEMNoDataValue>
<externalDEMApplyEGM>true</externalDEMApplyEGM>
<demResamplingMethod>BILINEAR_INTERPOLATION</demResamplingMethod>
<imgResamplingMethod>BILINEAR_INTERPOLATION</imgResamplingMethod>
<pixelSpacingInMeter>30.0</pixelSpacinglnMeter>
<pixelSpacingInDegree>2.6949458523585647E-4</pixelSpacingInDegree>
<mapProjection>GEQGCS["WGaS84(DD)", &fixd;

DATUM["WGS84", &iixd;

SPHEROID["WGS84", 6378137.0, 298.257223563]], &fixd;
PRIMEM["Greenwich", 0.0], &fixd;
UNIT["degree", 0.017453292519943295], &fxd;
AXIS["Geodetic longitude", EAST], &ffxd;
AXIS["Geodetic latitude", NORTH]]</mapProjection>

<alignToStandardGrid>false</alignToStandardGrid>
<standardGridOriginX>0.0</standardGridOriginX>
<standardGridOriginY>0.0</standardGridOriginY>
<nodataValueAtSea>true</nodataValueAtSea>

109

<saveDEM>false</saveDEM>
<savelatlLon>false</savelatLon>
<savelncidenceAngleFromEllipsoid>false</saveIncidenceAngleFromE1lipsoid>
<savelocalIncidenceAngle>false</savelocallncidenceAngle>
<saveProjectedLocalIncidenceAngle>false</saveProjectedLocalIncidenceAngle>
<saveSelectedSourceBand>true</saveSelectedSourceBand>
<outputComplex>false</outputComplex>
<applyRadiometricNormalization>false</applyRadiometricNormalization>
<saveSigmaNought>false</saveSigmaNought>
<saveGammaNought>false</saveGammaNought>
<saveBetaNought>false</saveBetaNought>
<incidenceAngleForSigma@>Use projected local incidence angle from
DEM</incidenceAngleForSigma®>
<incidenceAngleForGamma@>Use projected local incidence angle from
DEM</incidenceAngleForGamma®>

<auxFile>Latest Auxiliary File</auxFile>
<externalAuxFile/>

</parameters>

</node>
<node id="Write">

<operator>Write</operator>

<sources>
<sourceProduct refid="Terrain-Correction"/>

</sources>

<parameters class="com.bc.ceres.binding.dom.XppDomElement">

<file>K:\SENTINELT\S1B_IW_SLC__1SDV_20170620T143323_20170620T143353_006135_00QAC6F.tif<

/file>
<formatName>GeoTIFF</formatName>
</parameters>
</node>
<applicationData id="Presentation">
<Description/>

<node id="Read">
<displayPosition x="63.0" y="258.0"/>
</node>
<node id="Calibration">
<displayPosition x="60.0" y="155.0"/>
</node>
<node id="TOPSAR-Deburst">
<displayPosition x="41.0" y="43.0"/>
</node>
<node id="Multilook">
<displayPosition x="251.0" y="42.0"/>
</node>
<node id="Speckle-Filter">
<displayPosition x="411.0" y="41.0"/>
</node>
<node id="Terrain-Correction">
<displayPosition x="402.0" y="139.0"/>
</node>

110

<node id="Write">
<displayPosition x="428.0" y="251.0"/>
</node>
</applicationData>
</graph>

CRIM provided the following orthorectification SNAP [https://step.esa.int/main/toolboxes/snap/] graph:

Graph Builder : processing_gpt.xml X
File Graphs

[»

ThermalNoiseRemoval
Apply-Orbit-File

TOPSAR-5plit

Calibration

TOPSAR-Deburst

Convert-Datatype

4] Ii I [¥]
e e D D
Remowal r Calibration r Terrain-Correction r Convert-Datatype rTOPSAR—Deburst r/ TOPSAR-Split 4| »

Subswath | | = | -

Polarisations:
Bursts: 2 to 5 (max number of bursts: 9999)
)I <I

A

Source product not selected

Load | |g-ls.a\.re

@ Help | [> Run

%Clear | mNote

Figure 26. CRIM orthorectification graph

It is assuming a S1 image in IW mode and SLC format (S1A_IW_SLC_XXX.zip), the processing is only
for the VV band, the IW1 subswath and the Burst Index between 2 and 5, you can modify the values
in the xml or load the graph in SNAP: *

<operator>TOPSAR-Split</operator>

<sources>
<sourceProduct refid="Read"/>

</sources>

<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<subswath>IW1</subswath>
<selectedPolarisations>VV</selectedPolarisations>
<firstBurstIndex>2</firstBurstIndex>
<lastBurstIndex>5</lastBurstIndex>
<wktAoi/>

</parameters>

111

https://step.esa.int/main/toolboxes/snap/

<graph id="Graph">
<version>1.0</version>
<node id="Read">
<operator>Read</operator>
<sources/>
<parameters class="com.bc.ceres.binding.dom.XppDomElement">

<file>C:/DATA/MUSE/S1/STA_IW_SLC__1SDV_201904087225217_20190408T7225244_026705_02FF7D_A
279.zip</file>
</parameters>
</node>
<node id="Apply-Orbit-File">
<operator>Apply-Orbit-File</operator>
<sources>
<sourceProduct refid="TOPSAR-Split"/>
</sources>
<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<orbitType>Sentinel Precise (Auto Download)</orbitType>
<polyDegree>3</polyDegree>
<continueOnFail>false</continueOnFail>
</parameters>
</node>
<node id="ThermalNoiseRemoval">
<operator>ThermalNoiseRemoval</operator>
<sources>
<sourceProduct refid="Apply-Orbit-File"/>
</sources>
<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<selectedPolarisations>VV</selectedPolarisations>
<removeThermalNoise>false</removeThermalNoise>
<relntroduceThermalNoise>false</relntroduceThermalNoise>
</parameters>
</node>
<node id="Calibration">
<operator>Calibration</operator>
<sources>
<sourceProduct refid="ThermalNoiseRemoval"/>
</sources>
<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<sourceBands/>
<auxFile/>
<externalAuxFile/>
<outputImageInComplex>false</outputImageInComplex>
<outputImageScaleInDb>false</outputImageScaleInDb>
<createGammaBand>false</createGammaBand>
<createBetaBand>false</createBetaBand>
<selectedPolarisations>VV</selectedPolarisations>
<outputSigmaBand>false</outputSigmaBand>
<outputGammaBand>false</outputGammaBand>
<outputBetaBand>false</outputBetaBand>
</parameters>

112

</node>
<node id="Terrain-Correction">
<operator>Terrain-Correction</operator>

<sources>
<sourceProduct refid="TOPSAR-Deburst"/>
</sources>
<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<sourceBands/>
<demName>SRTM 3Sec</demName>
<externalDEMFile/>

<externalDEMNoDataValue>@0.0</externalDEMNoDataValue>
<externalDEMApplyEGM>true</externalDEMApplyEGM>
<demResamplingMethod>BILINEAR_INTERPOLATION</demResamplingMethod>
<imgResamplingMethod>BILINEAR_INTERPOLATION</imgResamplingMethod>
<pixelSpacingInMeter>13.94</pixelSpacingInMeter>
<pixelSpacingInDegree>1.252251506062613E-4</pixelSpacingInDegree>
<mapProjection>GE0GCS["WaS84(DD)é",

DATUM["WGS84",

SPHEROID["WGS84", 6378137.0, 298.257223563]1],

PRIMEM["Greenwich", 0.0],

UNIT["degree", 0.017453292519943295],

AXIS["Geodetic longitude", EAST],

AXIS["Geodetic latitude", NORTH]]</mapProjection>
<alignToStandardGrid>false</alignToStandardGrid>
<standardGridOriginX>0.0</standardGridOriginX>
<standardGridOriginY>0.0</standardGridOriginY>
<nodataValueAtSea>true</nodataValueAtSea>
<saveDEM>false</saveDEM>
<savelatlLon>false</savelatLon>
<savelncidenceAngleFromEllipsoid>false</saveIncidenceAngleFromE1llipsoid>
<savelocalIncidenceAngle>false</savelLocallncidenceAngle>
<saveProjectedLocalIncidenceAngle>false</saveProjectedLocallncidenceAngle>
<saveSelectedSourceBand>true</saveSelectedSourceBand>
<outputComplex>false</outputComplex>
<applyRadiometricNormalization>false</applyRadiometricNormalization>
<saveSigmaNought>false</saveSigmaNought>
<saveGammaNought>false</saveGammaNought>
<saveBetaNought>false</saveBetaNought>
<incidenceAngleForSigma@>Use projected local incidence angle from

DEM</incidenceAngleForSigma®>
<incidenceAngleForGamma@>Use projected local incidence angle from
DEM</incidenceAngleForGamma®>
<auxFile>Latest Auxiliary File</auxFile>
<externalAuxFile/>
</parameters>

</node>

<node id="Convert-Datatype">

<operator>Convert-Datatype</operator>
<sources>

<sourceProduct refid="Terrain-Correction"/>
</sources>

113

<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<sourceBands/>
<targetDataType>uint8</targetDataType>
<targetScalingStr>Linear (slope and intercept)</targetScalingStr>
<targetNoDataValue/>
</parameters>
</node>
<node 1id="TOPSAR-Deburst">
<operator>TOPSAR-Deburst</operator>
<sources>
<sourceProduct refid="Calibration"/>
</sources>
<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<selectedPolarisations/>
</parameters>
</node>
<node id="TOPSAR-Split">
<operator>TOPSAR-Split</operator>
<sources>
<sourceProduct refid="Read"/>
</sources>
<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<subswath>IW1</subswath>
<selectedPolarisations>VV</selectedPolarisations>
<firstBurstIndex>2</firstBurstIndex>
<lastBurstIndex>5</1lastBurstIndex>
<wktAoi/>
</parameters>
</node>
<node id="Write">
<operator>Write</operator>
<sources>
<sourceProduct refid="Terrain-Correction"/>
</sources>
<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<file>C:/DATA/MUSE/S1/stacker _output.tif</file>
<formatName>GeoTIFF</formatName>
</parameters>
</node>
<applicationData id="Presentation">
<Description/>
<node id="Read">
<displayPosition x="29.0" y="176.0"/>
</node>
<node id="Apply-Orbit-File">
<displayPosition x="159.0" y="69.0"/>
</node>
<node id="ThermalNoiseRemoval">
<displayPosition x="240.0" y="26.0"/>
</node>
<node id="Calibration">

114

<displayPosition x="448.0" y="75.0"/>
</node>
<node id="Terrain-Correction">
<displayPosition x="268.0" y="223.0"/>
</node>
<node id="Convert-Datatype">
<displayPosition x="166.0" y="283.0"/>
</node>
<node id="TOPSAR-Deburst">
<displayPosition x="464.0" y="197.0"/>
</node>
<node id="TOPSAR-Split">
<displayPosition x="105.0" y="127.0"/>
</node>
<node id="Write">
<displayPosition x="54.0" y="322.0"/>
</node>
</applicationData>
</graph>

The following graph converts the image to 8-bit output:

<graph id="Graph">
<version>1.0</version>
<node id="Read">
<operator>Read</operator>
<sources/>
<parameters class="com.bc.ceres.binding.dom.XppDomElement">

<file>C:/DATA/MUSE/S1/STA_IW_SLC__1SDV_201904087225217_20190408T225244_026705_02FF7D_A
279.zip</file>
</parameters>
</node>
<node id="Apply-Orbit-File">
<operator>Apply-Orbit-File</operator>
<sources>
<sourceProduct refid="TOPSAR-Split"/>
</sources>
<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<orbitType>Sentinel Precise (Auto Download)</orbitType>
<polyDegree>3</polyDegree>
<continueOnFail>false</continueOnFail>
</parameters>
</node>
<node id="ThermalNoiseRemoval">
<operator>ThermalNoiseRemoval</operator>
<sources>
<sourceProduct refid="Apply-Orbit-File"/>
</sources>
<parameters class="com.bc.ceres.binding.dom.XppDomElement">

115

116

<selectedPolarisations>VV</selectedPolarisations>
<removeThermalNoise>false</removeThermalNoise>
<reIntroduceThermalNoise>false</reIntroduceThermalNoise>
</parameters>
</node>
<node id="Calibration">
<operator>Calibration</operator>
<sources>
<sourceProduct refid="ThermalNoiseRemoval"/>
</sources>
<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<sourceBands/>
<auxFile/>
<externalAuxFile/>
<outputImageInComplex>false</outputImageInComplex>
<outputImageScaleInDb>true</outputImageScaleInDb>
<createGammaBand>false</createGammaBand>
<createBetaBand>false</createBetaBand>
<selectedPolarisations>VV</selectedPolarisations>
<outputSigmaBand>false</outputSigmaBand>
<outputGammaBand>false</outputGammaBand>
<outputBetaBand>false</outputBetaBand>
</parameters>
</node>
<node id="Terrain-Correction">
<operator>Terrain-Correction</operator>

<sources>
<sourceProduct refid="TOPSAR-Deburst"/>

</sources>

<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<sourceBands/>
<demName>SRTM 3Sec</demName>
<externalDEMFile/>

<externalDEMNoDataValue>@.0</externalDEMNoDataValue>
<externalDEMApplyEGM>true</externalDEMApplyEGM>
<demResamplingMethod>BILINEAR_INTERPOLATION</demResamplingMethod>
<imgResamplingMethod>BILINEAR_INTERPOLATION</imgResamplingMethod>
<pixelSpacingInMeter>13.94</pixelSpacingIlnMeter>
<pixelSpacingInDegree>1.252251506062613E-4</pixelSpacingInDegree>
<mapProjection>GE0GCS["WGS84(DD)é",

DATUM["WGS84",

SPHEROID["WGS84", 6378137.0, 298.257223563]1],

PRIMEM["Greenwich", 0.0],

UNIT["degreetquot;, 0.017453292519943295],

AXIS["Geodetic longitude", EAST],

AXIS["Geodetic latitude", NORTH]]</mapProjection>
<alignToStandardGrid>false</alignToStandardGrid>
<standardGridOriginX>0.0</standardGridOriginX>
<standardGridOriginY>0.0</standardGridOriginY>
<nodataValueAtSea>true</nodataValueAtSea>
<saveDEM>false</saveDEM>

<savelatlLon>false</savelatlLon>

<savelIncidenceAngleFromEllipsoid>false</savelncidenceAngleFromEllipsoid>

<savelocalIncidenceAngle>false</savelocallncidenceAngle>

<saveProjectedlLocallncidenceAngle>false</saveProjectedlLocallncidenceAngle>

<saveSelectedSourceBand>true</saveSelectedSourceBand>
<outputComplex>false</outputComplex>

<applyRadiometricNormalization>false</applyRadiometricNormalization>

<saveSigmaNought>false</saveSigmaNought>
<saveGammaNought>false</saveGammaNought>
<saveBetaNought>false</saveBetaNought>
<incidenceAngleForSigma@>Use projected local incidence angle from
DEM</incidenceAngleForSigma0>
<incidenceAngleForGamma@>Use projected local incidence angle from
DEM</incidenceAngleForGamma®>
<auxFile>Latest Auxiliary File</auxFile>
<externalAuxFile/>
</parameters>
</node>
<node id="Convert-Datatype">
<operator>Convert-Datatype</operator>

<sources>
<sourceProduct refid="Terrain-Correction"/>

</sources>

<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<sourceBands/>

<targetDataType>uint8</targetDataType>
<targetScalingStr>Linear (slope and intercept)</targetScalingStr>
<targetNoDataValue/>
</parameters>
</node>
<node id="TOPSAR-Deburst">
<operator>TOPSAR-Deburst</operator>
<sources>
<sourceProduct refid="Calibration"/>
</sources>
<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<selectedPolarisations/>
</parameters>
</node>
<node 1id="TOPSAR-Split">
<operator>TOPSAR-Split</operator>
<sources>
<sourceProduct refid="Read"/>
</sources>
<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<subswath>IW1</subswath>
<selectedPolarisations>VV</selectedPolarisations>
<firstBurstIndex>2</firstBurstIndex>
<lastBurstIndex>5</lastBurstIndex>
<wktAoi/>
</parameters>

117

</node>
<node id="Write">
<operator>Write</operator>
<sources>
<sourceProduct refid="Terrain-Correction"/>
</sources>
<parameters class="com.bc.ceres.binding.dom.XppDomElement">
<file>C:/DATA/MUSE/S1/stacker _output.tif</file>
<formatName>GeoTIFF</formatName>
</parameters>
</node>
<applicationData id="Presentation">
<Description/>
<node id="Read">
<displayPosition x="29.0" y="176.0"/>
</node>
<node id="Apply-Orbit-File">
<displayPosition x="159.0" y="69.0"/>
</node>
<node id="ThermalNoiseRemoval">
<displayPosition x="240.0" y="26.0"/>
</node>
<node id="Calibration">
<displayPosition x="448.0" y="75.0"/>
</node>
<node id="Terrain-Correction">
<displayPosition x="268.0" y="223.0"/>
</node>
<node id="Convert-Datatype">
<displayPosition x="166.0" y="283.0"/>
</node>
<node id="TOPSAR-Deburst">
<displayPosition x="464.0" y="197.0"/>
</node>
<node 1id="TOPSAR-Split">
<displayPosition x="105.0" y="127.0"/>
</node>
<node id="Write">
<displayPosition x="54.0" y="322.0"/>
</node>
</applicationData>
</graph>

13.5. Download S1 data from Amazon S3

This issue was concerned with downloading Sentinel products once discovered in the catalogue.
Each Sentinel catalogue record includes a download reference but that reference is an Amazon S3
[https://aws.amazon.com/s3/] reference. An Amazon S3 [https://aws.amazon.com/s3/] reference is not a URL.

The considered solution was to convert the S3 reference into a URL and store it in the catalogue

118

https://aws.amazon.com/s3/
https://aws.amazon.com/s3/

record. Conversion of the S3 reference into a URL requires that a signature
[https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html] be generated according to an algorithm
defined by Amazon and then appended to the URL or specified in the request header. The signature
is meant to "prove" your identity and makes use of the caller’s Amazon login credentials. The
following fragment illustrates the type of information that is hashed into the signature:

runHeaders = [

{
"Host": "sentinel-s1-11c.s3.amazonaws.com"
Iy
{
"x-amz-date": "2020081971322587"
b
{

"x-amz-content-sha256":
"e3b0c44298fc1c149afbf4c89961b924273e41e4649b934ca495991b7852b855"
+
{
"x-amz-request-payer": "requester"
Jis

{
"Authorization": "AWS4-HMAC-SHA256 Credential=xxxXXXXXXXXXxXxX/20200819/eu-

central-1/s3/aws4_request,SignedHeaders=host; x-amz-content-sha256; x-amz-date; x-amz-
request-
payer,Signature=5bf598d3b99f025765ead5db4711d5fe@bf37a65740€99c5331927184d918f61"

}
]

One of the components, x-amz-date, is a time stamp which means the signature need to be
recomputed each time a download request is made. So, without the catalogue having a built-in
capability to dynamically compute a signature putting a signed download URL into the catalogue
record is a futile exercise.

The ultimate workaround/hack agreed upon by the thread participants was to host the Sentinel
data earmarked for use during the testbed on the same host as the catalogue and include a link
(rel="enclosure") in each catalogue record pointing to the corresponding local copy of the Sentinel
product.

13.6. Records for model description

The purpose of this issue was to try to address how ML models can be described so that they can
then be harvested into a catalogue and made discoverable.

The ONNX format only contains the model (as a graph) and its parameters. There is no additional
information about pre-processing, output description, semantic information, etc.

MXNet has a richer model that includes:

1. Pre-trained MXNet Model (it can be an ONNX file).

119

https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

2. A'signature.json' describing the inputs and outputs of the models.

3. Semantic information as a 'synset.txt' containing the class names and synonims (a Synset is a
special kind of a simple interface that is used to look up words in WordNet. Synset instances are
the groupings of synonymous words that express the same concept. Some of the words have
only one Synset and some have several).

4. Custom model service files for pre-processing.
Metadata was harvested from a model repository containing MXNet models and located at:
https://github.com/awslabs/multi-model-server/blob/master/docs/model_zoo.md
Queries that could be useful:

1. Query if the models has the relevant semantic outputs

2. The machine learning task (classification, semantic segmentation, instance recognition, etc.)
3. The size of the model (number of parameters)

4. Pre-processing or post-processing that must be applied

5. Performance on some known benchmark (e.g. ImageNet)

13.7. Metadata Extraction for LiDAR Datasets

This issues is concerned with how metadata can be extracted from LiDAR tiles (.laz) in order to
identify relevant information in ML.

See: https://gitlab.ogc.org/ogc/t16-d015-machine-learning-er/-/issues/33
Data:
Source: https://geonb.snb.ca/downloads2/lidar/2018/snb/aoil/laz/nb_2018_2489000_7421000.1az
General metadata: https://geonb.snb.ca/downloads2/lidar/2018/snb/aoil/meta/meta_2018_aoil.html
LiDAR tiles (.las), metadata can be extracted using LASTools:

lasinfo -i nb_2018_2489000_7421000_predictions.las

lasinfo (200304) report for 'nb_2018_2489000_7421000_predictions.las'
reporting all LAS header entries:

file signature: "LASF'

file source ID: 0

global_encoding: 1

project ID GUID data 1-4: 00000000-0000-0000-0000-000000000000
version major.minor: 1.2

system identifier: "LAStools (c) by rapidlasso GmbH'
generating software: 'las2las (version 181108)"

file creation day/year: 20/2019

header size: 227

offset to point data: 331

number var. length records: 1

120

https://github.com/awslabs/multi-model-server/blob/master/docs/model_zoo.md
https://gitlab.ogc.org/ogc/t16-d015-machine-learning-er/-/issues/33
https://geonb.snb.ca/downloads2/lidar/2018/snb/aoi1/laz/nb_2018_2489000_7421000.laz
https://geonb.snb.ca/downloads2/lidar/2018/snb/aoi1/meta/meta_2018_aoi1.html

point data format: 1

point data record length: 28

number of point records: 22404360

number of points by return: 11826714 6626147 2971595 830861 135248

scale factor x y z: 0.01 0.01 0.01

offset x y z: 000

min x y z: 2489000.00 7421000.00 8.95

max x y z: 2489999.99 7421999.99 63.33
variable length header record 1 of 1:

reserved 0

user ID "LASF_Projection’

record ID 34735

length after header 48

description 'by LAStools of rapidlasso GmbH'
GeoKeyDirectoryTag version 1.1.0 number of keys 5
key 1024 tiff_tag_location @ count 1 value_offset 1 - GTModelTypeGeoKey:

ModelTypeProjected

key 3072 tiff_tag_location @ count 1 value_offset 2953

NAD83(CSRS) / New Brunswick Stereographic

key 3076 tiff_tag_location @ count 1 value_offset 9001

Linear _Meter

key 4099 tiff_tag_location @ count 1 value_offset 9001

Linear_Meter

key 4096 tiff_tag_location @ count 1 value_offset 1127

VerticalUnitsGeoKey:

VerticalCSTypeGeoKey:

VertCS_Canadian_Geodetic_Vertical Datum_2013
the header is followed by 2 user-defined bytes
reporting minimum and maximum for all LAS point record entries ...

X 248900000 248999999
Y 742100000 742199999
Z 895 6333
intensity 0 0
return_number 0 0
number of returns 0 0
edge_of_flight_line 0 0
scan_direction_flag 0 0
classification 0 8
scan_angle_rank 0 0
user_data 0 0
point_source_ID 0 0
gps_time 0.000000 0.000000
number of first returns: 22404360
number of intermediate returns: 0
number of last returns: 22404360
number of single returns: 22404360

WARNING: for return 1 real number of points by return (@) is different from header

entry (11826714).

WARNING: for return 2 real number of points by return (@) is different from header

entry (6626147).

WARNING: for return 3 real number of points by return (@) is different from header

entry (2971595).

WARNING: for return 4 real number of points by return (@) is different from header

ProjectedCSTypeGeoKey:

ProjLinearUnitsGeoKey:

121

entry (830861).
WARNING: for return 5 real number of points by return (@) is different from header
entry (135248).
WARNING: there are 22404360 points with return number 0
WARNING: there are 22404360 points with a number of returns of given pulse of 0
histogram of classification of points:
490 never classified (@)
4423717 unclassified (1)
17817147 ground (2)
4120 Tlow vegetation (3)
1899 medium vegetation (4)
10282 high vegetation (5)
596 building (6)
703 noise (7)
145406 keypoint (8)

For the purposes of training and testing, the relevant information could be:

histogram of classification of points:
490 never classified (0)
4423717 unclassified (1)
17817147 ground (2)
4120 Tlow vegetation (3)
1899 medium vegetation (4)
10282 high vegetation (5)
596 building (6)
703 noise (7)
145406 keypoint (8)

It gives the number of point per classes which can be useful to build a training/testing dataset. Also,
the general metadata contains class definitions:

122

"eainfo": {
"detailed": [
{
"enttyp": {
"enttypl": "LiDAR Point Cloud",
"enttypd": "ASPRS Codes used for this classification
\nASPRS 1 = Unclassified \nASPRS 2 = Ground \nASPRS 3 = Low Vegetation \nASPRS 4 =
Medium Vegetation \nASPRS 5 = High Vegetation \nASPRS 6 = Buildings \nASPRS 7 = Low
Noise \nASPRS 8 = Model Key-Point \nASPRS 9 = Water \nASPRS 17 = Bridge \nASPRS 18 =
High Noise",
"enttypds": "LAS Specification Version 1.2 Approved by
ASPRS Board 09/02/2008 http://www.asprs.org/wp-
content/uploads/2010/12/asprs_las_format_v12.pdf"
¥
}

Below is an attempt to save this information as a json file:
Python script: https://gist.github.com/sfoucher/94ae0f0438e1d5d335d39ed829¢c82357

and the json output for one tile: o

"lasinfo": {
"file signature": "'LASF'",
"file source ID": "0",
"global_encoding": "1",
"project ID GUID data 1-4": "00000000-0000-0000-0000-000000000000",
"version major.minor": "1.2",
"system identifier": "'LAStools (c) by rapidlasso GmbH'",
"generating software": "'las2las (version 160329)'",
"file creation day/year": "58/2013",
"header size": 227,
"offset to point data": 229,
"number var. length records": 0,
"point data format": 1,
"point data record length": 28,
"number of point records": 17924782,
"number of points by return": [
9596534,
4570242,
2475718,
963955,
261676

]

cale factor x y z": [
0.01,

123

https://gist.github.com/sfoucher/94ae0f0438e1d5d335d39ed829c82357

124

0.01,

1
"offset x y z": [
0,
0,
0
1
"min x y z": [
2480000,
7436000,
17.58
1
"max x y z": [
2480999.99,
7436999.99,
239.46
P
"LASzip compression (version 2.4r2 c2 50000)": "POINT10 2 GPSTIME11 2",
"number of first returns": 9596534,
"number of intermediate returns": 3758885,
"number of last returns": 9594332,
"number of single returns": 5024969,
"WARNING1": "there are 49406 points with return number 6",
"WARNING2": "there are 7251 points with return number 7",
"overview over number of returns of given pulse": [
5024969,
4187662,
4535642,
2810571,
1062064,
257021,
46853
1
"histogram of classification of points": [
{
"name": "ground",
"label": 2,
"count": 1414759

b

{
"name": "low vegetation",
"label": 3,
"count": 3926298

e

{
"name": "medium vegetation",
"label": 4,
"count": 484228

H

{

"name": "high vegetation",
"label": 5,
"count": 12088992

b
{
"name": "noise",
"label": 7,
"count": 128
e
{
"name": "keypoint",
"label": 8,
"count": 10377
}
]
Iy
"meta_2018_aoil": {
"metadata": {
"idinfo": {

"citation": {
"citeinfo": {
"origin": "Government of New Brunswick (comp.)",
"pubdate": "20181206",
"title": "SNB 2018 LiDAR \nAOI 1",
"edition": "001",
"geoform": "remote-sensing LiDAR",
"onlink": "https://geonb.snb.ca/li/index.html"
}
I
"descript": {
"abstract": "Aerial LiDAR Data",
"purpose”: "To provide accurate and dense elevation data for the
terrain and the natural and man-made features on and above the terrain"

)
"timeperd": {
"timeinfo": {
"rngdates": {
"begdate": "20180611",
"enddate": "20180825"
}
1
"current": "publication date"
Ifs
"status": {
"progress": "Complete",
"update": "None planned"
Iy
"spdom": {

"bounding": {
"westbe": "-67.20518808",
"eastbc": "-64.90306242",

125

"northbe": "46.15928300",
"southbe": "44.81861194"

}
Iy
"keywords": {
"theme": {
"themekt": "none",
"themekey": [
"lidar",
"aerial lidar",
"point cloud",
"classified point cloud",
"elevation”
]
1
"place": {
"placekt": "Canadian Geographical Names Data Base (CGNDB)",
"placekey": [
"Saint John",
"Fredericton Junction",
"Saint George",
“New Brunswick"
]
s
"temporal": {
"tempkt": "none",
"tempkey": "Summer"
}
)

"accconst": "As outlined in the GeoNB Open Data Licence -
http://geonb.snb.ca/documents/1license/geonb-od1_en.pdf",
"useconst": "As outlined in the GeoNB Open Data Licence -
http://geonb.snb.ca/documents/1license/geonb-od1_en.pdf",
"ptcontac": {
"entinfo": {
“cntorgp": {
"cntorg": "Service New Brunswick",
“cntper": "GeoNB"
}
"cntpos”: "LiDAR specialist”,
"entaddr": [
{
"addrtype": "mailing address",
"address": [
"Service New Brunswick",
"P.0. Box 1998"
1
"city": "Fredericton",
"state": "NB",
"postal": "E3B 5G4",
"country": "Canada"

126

{
"addrtype": "physical address",
"address": [
"Service New Brunswick",
"985 College Hill Road"
1
"city": "Fredericton",
"state": "NB",
"postal": "E3B 417",
"country": "Canada"
}

Il
"cntvoice": "(506) 457-3581",
"cntfax": "(506) 453-3898",
"cntemail”: "geonb@snb.ca",
"hours": "0815 - 1630 AST (GMT - 0400), Monday to Friday"
}
Irg
"browse": {
"browsen":
"https://geonb.snb.ca/documents/lidar_browse_graphic/2018_LiDAR_AOI1.jpg",
"browsed": "LiDAR project footprint displayed on map of New
Brunswick",
"browset": "JPEG"

H
"secinfo": {
"secsys": "None",
"secclass": "Unclassified",
"sechandl": "None"
}
s
"dataqual”: {

"logic": "Unknown",
"complete"”: "The LiDAR point cloud includes all hits",

"posacc": {
"horizpa": {
"horizpar": "LiDAR Horizontal Accuracy Statement",
"ghorizpa": {

"horizpav": "0.20",

"horizpae": "This data set was produced to meet ASPRS
Positional Accuracy Standards for Digital Geospatial Data (2014) for a 20 cm
RMSEx/RMSEy Horizontal Accuracy Class which equates to Positional Horizontal Accuracy
= +/- 49.0 cm at a 95% confidence level."

}

}I

"vertacc": {
"vertacer": "LiDAR NVA/VVA Vertical Accuracy Statements",
"quertpa": [

{

"vertaccv": "0.105",

127

"vertacce": "This data set was tested to meet ASPRS
Positional Accuracy Standards for Digital Geospatial Data (2014) for a 10 cm RMSEz
Vertical Accuracy Class on RTK measured points. Actual NVA accuracy was found to be
RMSEz = 10.5 cm, equating to +/- 20.6 cm at 95% confidence level"

)
{
"vertaccv": "0.327",
"vertacce": "Actual VVA accuracy was found to be 32.7
cm at the 95th percentile."”
}
]
}
1
"lineage": {
"procstep": {

"procdesc": "The point cloud is initially produced using the
latest boresight values for the sensor. Preliminary quality assurance steps are taken
to ensure data integrity. A series of off the shelf software and proprietary tools are
utilized throughout the LiDAR data processing procedures.\n\nThe calibrated point
cloud strips are then processed into Tkm tiles in the New Brunswick Double
Strereographic projection. Next, a combination of automatic and manual classification
is done separating points into ground (class 2), non ground (class 1), low noise
(class 7) and high noise (class 18). The manual and visual inspection plays a major
role in improving the classification accuracy. \n\nOnce the classification of the
ground class is deemed final, automatic classification is run on all non-ground
points. Project specifications for vegetation classification is: above ground points
to 50cm - low vegetation (class 3), above 50cm to 2m - medium vegetation (class 4),
above 2m - high vegetation (class 5). A manual/visual QC pass is made to fine tune the
classification of points, including the manual classification of buildings (class 6)
and bridges (class 17). Ground above culverts is left in the ground class. Further
classification of water and water bodies is done with the following parameters: water
bodies and water courses meeting specifications of greater than 3600 m2 (water
bodies), greater than 10 m nominal width (water courses) and at least 220 m in length
are delineated. LiDAR points falling within these areas are classified the water class
(class 9). Islands greater than 100m2 are delineated within any water feature and not
classified as water.\n\nThe final 1m Bare Earth DEMs are produced from the TIN of the
\"ground\" and \"model keypoint\" classes (2 & 8). Similarly, Full Feature grids are
produced by using all non-noise points.",

"procdate": "Unknown",

"proccont": {

"entinfo": {
"cntperp": {
"cntper": "Data Processing Manager",
"cntorg”: "Airborne Imaging"
i
"cntaddr": {
"addrtype": "mailing and physical address",
"address": "2700 61 Avenue SE",
"city": "Calgary",
"state": "Alberta",
"postal": "T2C 4V2",

128

"country"”: "Canada"
}
"cntvoice": "403 215 2960",
"entfax": "403 258 3189",
"hours": "0900 - 1500 MST",
"cntinst": "A1l questions should first be directed to
GeoNB (geonb@snb.ca)"

}
s
"spref": {
"horizsys": {
"planar": {
"gridsys": {
"gridsysn": "other grid system",
"othergrd": "PROJCS[\"NAD83(CSRS) / New Brunswick Stereo
\", GEOGCS[\"NAD83(CSRS)\", DATUM[\"D_North_American_1983_CSRS98\", SPHEROID[
\"GRS_1980\", 6378137, 298.257222101]], PRIMEM[\"Greenwich\",@], UNIT[\"Degree
\",0.0174532925199433]], PROJECTION[\"Double_Stereographic\"], PARAMETER[
\"Latitude_Of_Origin\",46.5], PARAMETER[\"central_meridian\",-66.5], PARAMETER[
\"scale_factor\",0.999912], PARAMETER[\"false_easting\",62500000], PARAMETER[
\"false_northing\",7500000], UNIT[\"Meter\",1]]\n\nEPSG 2953"
Jrs
"planci": {
"plance": "coordinate pair",
"coordrep": {
"absres": "0.01",
"ordres": "0.01"
Irg
"plandu”: "metres"
}
Frs
"geodetic": {
"horizdn": "NAD83 (CSRS)",
"ellips": "Geodetic Reference System 80",
"semiaxis": "6378137.0",
"denflat": "298.257222101"
}
I
"vertdef": {
"altsys": {
"altdatum": "Canadian Geodetic Vertical Datum of 2013
(6CVD2013)",
"altres": "0.0001",
"altunits": "metres",
"altenc": "Explicit elevation coordinate included with
horizontal coordinates"”

}

129

}
"eainfo": {
"detailed": [
{
"enttyp": {

"enttypl": "LiDAR Point Cloud",

"enttypd": "ASPRS Codes used for this classification
\nASPRS 1 = Unclassified \nASPRS 2 = Ground \nASPRS 3 = Low Vegetation \nASPRS 4 =
Medium Vegetation \nASPRS 5 = High Vegetation \nASPRS 6 = Buildings \nASPRS 7 = Low
Noise \nASPRS 8 = Model Key-Point \nASPRS 9 = Water \nASPRS 17 = Bridge \nASPRS 18 =
High Noise",

"enttypds": "LAS Specification Version 1.2 Approved by
ASPRS Board 09/02/2008 http://www.asprs.org/wp-
content/uploads/2010/12/asprs_las_format_v12.pdf"

}
¥
{
"enttyp": {

"enttypl": "Im 32bit GeoTIFF Digital Elevation Model
(DEM)",

"enttypd": "Bare Earth Digital Elevation Model created
from ASPRS Classes 2 and 8",

"enttypds": "LAS Specification Version 1.2 Approved by
ASPRS Board 09/02/2008 http://www.asprs.org/wp-
content/uploads/2010/12/asprs_las_format_v12.pdf"

by
I
{
"enttyp": {

"enttypl": "Im 32bit GeoTIFF Digital Elevation Model
(DSM)",

"enttypd": "Full Feature Digital Elevation Model created
from ASPRS (Classes 1,2,3,4,5,6,8,9 and 17 and creating a grid surface of the highest
elevations within each cell",

"enttypds": "LAS Specification Version 1.2 Approved by
ASPRS Board 09/02/2008 http://www.asprs.org/wp-
content/uploads/2010/12/asprs_las_format_v12.pdf"

by
¥
]
¥
"distinfo": {
"distrib": {
"entinfo": {
"cntorgp": {
“cntorg": "Service New Brunswick",
"cntper": "GeoNB"
H
"cntpos": "LiDAR specialist”,
"cntaddr": [

{

130

"addrtype": "mailing address",

"address": [
"Service New Brunswick",
"P.0. Box 1998"

]

ity": "Fredericton",
"state": "NB",
"postal”: "E3B 5G4",
"country": "Canada"

lis
{
"addrtype": "physical address",
"address": [
"Service New Brunswick",
"985 College Hill Road"
P
"city": "Fredericton",
"state": "NB",
"postal": "E3B 417",
"country": "Canada"
}

1,
"cntvoice": "(506) 457-3581",
"cntfax": "(506) 453-3898",
"cntemail”: "geonb@snb.ca",
"hours": "0815 - 1630 AST (GMT - 0400), Monday to
¥
b
"resdesc": "classified LiDAR point cloud",
"distliab": "As outlined in the GeoNB Open Data Licence -
http://geonb.snb.ca/documents/1license/geonb-od1_en.pdf"
3
"metainfo": {
"metd": "20190308",

"mete": {
"entinfo": {

"cntorgp”: {
"cntorg": "Service New Brunswick",
"cntper": "GeoNB"

b

“cntpos": "LiDAR Specialist",

"cntaddr": [

{
"addrtype": "physical address",

"address": [
"Service New Brunswick",
"985 College Hill Road"

1,
"city": "Fredericton",
"state": "NB",

"postal": "E3B 417",

Friday"

131

"country": "Canada"

"addrtype": "mailing address",
"address": [
"Service New Brunswick",
"P.0. Box 1998"
1
"city": "Fredericton",
"state": "NB",
"postal”: "E3B 5G4",
"country": "Canada"
}
Il
"cntvoice": "(506) 457-3581",
"cntfax": "(506) 453-3898",
"cntemail": "geonb@snb.ca",
"hours": "0815 - 1630 AST (GMT - 0400), Monday to Friday"
¥
1
"metstdn": "FGDC Content Standards for Digital Geospatial Metadata",
"metstdv": "FGDC-STD-001-1998",
"mettc": "local time"

+
}
H
"links": [
{
"title": "LAZ Source Data",
"rel": "data",
"href": "nb_2015_2480000_7436000"
b
{
"title": "LAZ Metadata",
"rel": "meta",
"href":
"https://geonb.snb.ca/downloads2/1idar/2018/snb/aoi1/meta/meta_2018_aoil.xml"
}
]

OGC API - Records

First attempt using pygeoapi based on this geojsonfile:

"type": "FeatureCollection",
"features": [

{

"type": "Feature",

132

"properties": {
"id": "nb_2015_2480000_7436000",
"name": "nb_2015_2480000_7436000",
"featureclass": "LIDAR",

"LAZ Metadata":

"https://geonb.snb.ca/downloads2/1idar/2018/snb/aoi1/meta/meta_2018_aoil.xml",
"onlink": "https://geonb.snb.ca/1i/",
"histogram of classification of points": [

{

}
]I

"class_names": [

"name":

"label":
"count":

"name":

"label":
"count":

"name":

"label":
"count":

"name":

"label":
"count":

"name":

"label":
"count":

"name":

"label":
"count":

"ground",
"low vegetation",
"medium vegetation",
"high vegetation",
"noise",
"keypoint"

]I

"ground",
2,
1414759

"low vegetation",
3,
3926298

"medium vegetation",
4,
484228

"high vegetation",
3,
12088992

"noise",
7,
128

"keypoint",
8,
10377

"class_labels": [

133

I

"class_count": [
1414759,
3926298,
484228,
12088992,
128,
10377

I

"class_frequency": [
7.89275428844825,
21.904299868193654,
2.7014442909263834,
67.44289553981744,
0.0007140951560805593,
0.05789191745818722

I,

"bbox": [
248000000,
248099999,
743600000,
743699999

]

}

eometry": {
“type": "Polygon",
"coordinates": [

[
[
248000000,
743600000
1,
[
248099999,
743600000
1,
[
248099999,
743699999
I,
[
248099999,
743600000
]
]

134

Screenshot of the item in pygeoapi:

Item nb_2015_2480000_7436000

. Property Value

Figure 27. pygeoapi item sample

The next question is how can queries be formulated on the properties "histogram of classification
of points", class_count or class_names?

One possibility would be to use CQL queries. Possible queries for a ML engineer:

» "I'want all the tiles with a given set of classes."

» "I'want all of tile with a minimum number of points for a given class."
Experiments using QGIS:

* An APIrecord was created using pygeoapi:

135

nb_lidar:
type: collection
title: NB LiDAR metadata record
description: NB LiDAR Data
keywords:
- LiDAR
links:
- type: text/html
rel: canonical
title: information
href: https://geonb.snb.ca/1i/
hreflang: en-US
extents:
spatial:
bbox: [-69.05, 44.56, -63.7, 48.07]
crs: http://www.opengis.net/def/crs/EPSG/9.8.15/2953
temporal:
begin: 2011-11-11
end: null # or empty (either means open ended)
providers:
- type: feature
name: GeoJSON
data: tests/data/nb_lidar.json
id_field: id

A Vector layer is then directly added in QGIS based on the API record URL (http://localhost:5000/
collections/nb_lidar/items?f=json)

QGIS has a powerful filter engine: https:/docs.qgis.org/testing/en/docs/user_manual/
working_with_vector/expression.html

Here is a classification map produced by lasgrid:

lasgrid -1 nb_2018_2489000_7421000_predictions.las -o test.tif -step 0.5
-classification -false

136

http://localhost:5000/collections/nb_lidar/items?f=json
http://localhost:5000/collections/nb_lidar/items?f=json
https://docs.qgis.org/testing/en/docs/user_manual/working_with_vector/expression.html
https://docs.qgis.org/testing/en/docs/user_manual/working_with_vector/expression.html

Figure 28. lasgrid output image

The issue also included a file, nb_lidar.json, that is meant to be loaded into a catalogue in order to
test CQL queries. CQL could query this data one loaded into a catalogue but not without the server
supporting JSON path expression so that predicates could be formulated.

Here are some sample CQL queries. These queries rely on the server exposing the following paths
as queryables:

* class_histograms[*].name as class_name
* class_histograms[*].count as clause_count

* "I want all the tiles with a given set of classes."

cql=class_name in ('high vegetation','low vegetation')

* "I want all of tile with a minimum number of points for a given class".

cql=class_name="'medium vegetation' and class_count>150000

137

"class_histograms": [{
"name": "unclassified",

"label": 1,

"count": 91

oA

"name": "ground",
"label": 2,

"count": 2185856

boA

"name": "low vegetation",
"label": 3,

"count": 1631259

o

“name": "medium vegetation",
"label": 4,

"count": 1651525

oA

"name": "high vegetation",
"label": 5,

"count": 17728529

HoA

"name": "noise",

"label": 7,

"count": 3497

o

"name": "keypoint",
"label": 8,

"count": 10768

H,

138

Appendix A: Revision History

Table 11. Revision History

Date Editor

May, 2020 P. Vretanos
October, 2020 P. Vretanos

January 4, 2021 S. Serich

Release

Primary
clauses
modified

all
all

all

Descriptions

IER version

draft DER
version

top-to-bottom
feedback from
NRCan sponsor

139

Appendix B: Bibliography

[1] Robert Linder, E.P, Joan Mas6: Map Markup Language. HTML Community Group,
https://maps4html.org/MapML/spec/ (2020).

[2] GeoServer MapML Plug-in. GeoServer, https://docs.geoserver.org/latest/en/user/community/
mapml/index.html (2020).

140

https://maps4html.org/MapML/spec/
https://docs.geoserver.org/latest/en/user/community/mapml/index.html
https://docs.geoserver.org/latest/en/user/community/mapml/index.html

	{title}
	Table of Contents
	Chapter 1. Subject
	Chapter 2. Executive Summary
	2.1. Business statement
	2.2. Goals
	2.3. Scenario / Use-cases
	2.4. Research questions
	2.5. Primary findings
	2.6. Future work

	Chapter 3. Standard and/or Domain Working Group review
	3.1. Overview
	3.2. Artificial Intelligence in Geoinformatics (GeoAI) DWG
	3.3. Document contributor contact points
	3.4. Foreword

	Chapter 4. References
	Chapter 5. Terms and definitions
	Chapter 6. Abbreviated terms
	Chapter 7. Overview
	Chapter 8. Scenario
	8.1. Overview
	8.2. Components

	Chapter 9. Infrastructure overview
	9.1. Introduction
	9.2. Functional description
	9.2.1. Dockerization
	9.2.2. Deployment
	9.2.3. Discovery and execution
	9.2.4. Visualization

	9.3. OGC Interfaces
	9.3.1. Overview
	9.3.2. OGC API Common
	9.3.3. OGC API Features
	9.3.4. OGC API Coverages (Draft)
	9.3.5. OGC API Maps/Tiles (Draft)
	9.3.6. OGC API Processes / Application Deployment and Execution Service (Draft)
	9.3.7. OGC API - Records (Draft)

	Chapter 10. Training, deployment and execution of machine learning models
	10.1. Overview
	10.2. Machine Learning Environment 1 (D132 - 52°North)
	10.2.1. Use Cases
	10.2.2. Data and Training Data Considerations
	10.2.3. Model Training
	10.2.4. Model Inference Results
	10.2.5. Execution and ADES Integration

	10.3. Machine Learning Environment 2 (D133 - RHEA)
	10.3.1. Introduction
	10.3.2. Architecture
	10.3.3. Dataset specification
	10.3.4. Components Details Design
	10.3.5. Conclusions

	10.4. Deep Learning Environment (D134 - CRIM)
	10.4.1. Deep Learning Models Applied to LiDAR Datasets
	10.4.2. ONNX Packaging
	10.4.3. OGC API - Records for LiDAR Datasets
	10.4.4. OGC API - Records Queries for building training set
	10.4.5. OGC API - Records queries for ML models
	10.4.6. Inference deployment on ADES/EMS

	10.5. OGC API - Records server (CubeWerx)
	10.5.1. Overview
	10.5.2. Summary of OGC API - Records - Part 1 Core
	10.5.3. Core conformance class
	10.5.4. Sorting conformance class
	10.5.5. OpenSearch conformance class
	10.5.6. JSON conformance class
	10.5.7. ATOM conformance class
	10.5.8. HTML conformance class
	10.5.9. Extensions for the ML Thread

	Chapter 11. Visualization of ML Results
	11.1. Overview
	11.2. MapML Client 1 (D130 - ASU)
	11.2.1. Introduction of MapML Client
	11.2.2. Including Maps with MapML
	11.2.3. MapML Metadata Acquisition
	11.2.4. Map Publishing and Customization

	11.3. MapML Client 2 (D131 - Bocoup)
	11.3.1. Standardizing Web Maps to Increase Adoption among Browser Vendors
	11.3.2. MapML Explainer
	11.3.3. The HTML <map> Element proposal
	11.3.4. Map Markup Language
	11.3.5. Use Cases and Requirements for Standardizing Web Maps
	11.3.6. Maps for the Web Workshop
	11.3.7. Future Recommendations

	Chapter 12. Research questions
	12.1. Overview
	12.2. Does ML require "data interoperability"?
	12.2.1. Additional related questions
	12.2.2. Response

	12.3. Where do trained datasets (i.e. trained model and training datasets) go and how can they be re-used?
	12.3.1. Response

	12.4. How can we ensure the authenticity of trained datasets?
	12.5. Is it necessary to have analysis ready data (ARD) for ML?
	12.5.1. Additional related questions
	12.5.2. Response

	12.6. What is the value of datacubes for ML?
	12.7. How do we address interoperability of distributed datacubes maintained by different organizations?
	12.8. What is the potential of MapML in the context of ML?
	12.8.1. Additional related questions.
	12.8.2. Response

	12.9. How to discover and run an existing ML model?

	Chapter 13. Issues
	13.1. Overview
	13.2. Persisting ML model results (issue #19)
	13.2.1. Overview
	13.2.2. Solution 1 - stateful container
	13.2.3. Solution 2 - object store
	13.2.4. Solution 3 - OGC API

	13.3. MapML Client Prototype based on Web-Map-Custom-Element
	13.3.1. Discussion overview
	13.3.2. Open questions

	13.4. Processing Sentinel-1 Data using SNAP
	13.5. Download S1 data from Amazon S3
	13.6. Records for model description
	13.7. Metadata Extraction for LiDAR Datasets

	Appendix A: Revision History
	Appendix B: Bibliography

