OGC Testbed-16

Data Centric Security Engineering Report

Publication Date: YYYY-MM-DD

Approval Date: YYYY-MM-DD

Submission Date: YYYY-MM-DD

Reference number of this document: OGC 20-021

Reference URL for this document: http://www.opengis.net/doc/PER/t16-D011
Category: OGC Public Engineering Report

Editor: Aleksandar Balaban

Title: OGC Testbed-16: Data Centric Security Engineering Report

OGC Public Engineering Report
COPYRIGHT

Copyright © 2020 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

http://www.opengis.net/doc/PER/t16-D011
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the
terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated
documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without
limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the
Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that
all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to
the above copyright notice, a notice that the Intellectual Property includes modifications that have not been
approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL
PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER
OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR
ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF
OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition
of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a
third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or
liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks
or other special designations to indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement
of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies
available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise
exported or reexported in violation of U.S. export laws and regulations. In addition, you are responsible for
complying with any local laws in your jurisdiction which may impact your right to import, export or use the

Intellectual Property, and you represent that you have complied with any regulations or registration procedures
required by applicable law to make this license enforceable.

Table of Contents

1. Subject
2. Executive Summary
2.1. Document contributor contact points
2.2. Foreword
3. References
4. Terms and definitions
4.1. Abbreviated terms
5. Overview
6. Data Centric Security (DCS)
6.1. Introduction
6.2. Key Concepts
7. Requirements, Scenarios and Architecture
7.1. Requirements
7.2. Scenarios (Use Cases)
7.2.1. Use Case 1 (Online Streaming)
7.2.2. Use Case 2 (Offline Authorization)
7.3. DCS Architecture Components
7.3.1. Scenario 1, DCS Desktop/Client/Server
7.3.2. Scenario 2, DCS Mobile App/Client & Policy Enforcement Point
7.4. DCS Architecture Interactions
7.4.1. Desktop/Client/Server Interactions
7.4.2. Mobile App/Server Interactions
8. Data Encodings, DCS Containers and Media Types
8.1. Introduction
8.2. DCS Container
8.3. STANAG 4774/8 DCS Container
8.4. STANAG 4774/8 DCS Container in JSON
8.5. JOSE (JWS & JWE) Containers
8.5.1. DCS Container based on JWS
8.5.2. Structure of Information as Metadata
8.5.3. DCS Container based on JWE
8.6. Media Types and profiles for DCS content negotiation
9. Results
9.1. Issue Explanations

9.1.1. Third Party Open Source Library implementations impede the implementation of

decryption
9.1.2. Mobile Application and long-running synchronous operations
9.1.3. Timeout Issues with Large Data Requests

10
10
11
12
13
15
16
16
16
19
19
19
21
21
22
24
25
27
27
30
32
32
32
33
34
34
37
38
39
41
45
45

45
46
46

9.1.4. Mobile Process / Power Management
10. Future Work
10.1. New features in DCS
10.2. KMS for DCS
10.3. Federated security and DCS
10.4. Packaging of data in the scope of DCS
10.5. Binary related Media Types
10.6. DCS Roles and User Clearances vs Data Classification(s)
11. Technology Integration Experiments (TIES)
11.1. TIEs for Scenario One
11.1.1. D120/ D121 TIE
11.2. TIEs for Scenario Two
Appendix A: Container Media Type Examples
A.1. GML Feature Collection as defined by OGC
A.2. GML Feature Class where each feature is a STANAG 4774/8 data object
A.3. Feature Collection in GeoJSON
A.4. Feature Collection in Geo]JSON signed or encrypted
A.5. Feature Collection in Geo]JSON signed or encrypted
A.6. Geo]JSON with STANAG 4774/8 in JSON Encrypted or Signed
A.7. STANAG 4774/8 JSON encoded Feature Collection in GeoJSON
Appendix B: Engineering Aspects for D120 and D145
B.1. Overview
B.2. Deployment
B.3. Protecting the Cipher Keys
B.4. DCS Key Management Server
B.4.1. Protecting Keys at Rest
B.4.2. Managing Public Keys
B.4.3. Managing Cipher Keys
B.4.4. Create a Cipher Key
B.4.5. OpenAPI
B.4.6. Use Example
B.5. DCS Server
B.5.1. Requesting encrypted data
B.5.2. OpenAPI
B.6. Conclusions
Appendix C: Engineering Aspects for D146
C.1. Overview
C.2. Key Management Server (KMS)
C.2.1. Managing Symmetric Keys
C.2.2. Managing RSA Key Pairs
C.2.3. Other Functionality

47
48
48
48
49
49
49
50
51
51
52
53
54
54
35
57
39
61
62
63
65
65
68
68
70
70
71
71
71
72
73
83
87
101
103
104
104
104
104
107
113

C.2.4. Docker-Compose Deployment
C.3. Conclusions
Appendix D: Access Control Policies for DCS Server and Mobile Clients
D.1. Overview
D.2. GeoXACML Policies for DCS Server in Desktop Scenario
D.3. GeoXACML Policies for Mobile Scenarios
D.3.1. Use Case:
D.3.2. GeoXACML Policy in ALFA
D.3.3. Policy and Verification
D.3.4. Verification
D.3.5. ADR Example
Appendix E: Data Centric Security Roles
E.1. Mobile Scenario
E.2. DCS Roles
E.2.1. DCS Roles vs Users
E.2.2. DCS Roles vs DCS Data
E.2.3. DCS Roles vs NATO STANAG 4774
E.3. DCS Mobile Client Role Switching
E.3.1. DCS Mobile Client Role Selection
E.3.2. DCS Mobile Client - National Geospatial Intelligence Agency
E.3.3. DCS Mobile Client - United States Capitol Outbreak
E.3.4. DCS Mobile Client Bethesda Walter Reed
Appendix F: Revision History
Appendix G: Bibliography

119
120
122
122
122
127
127
128
129
130
131
132
132
132
132
132
133
135
135
137
140
142
146
147

Chapter 1. Subject

The OGC Testbed-16 Data Centric Security Engineering Report (ER) continues the evaluation of a
data-centric security (DCS) approach in a geospatial environment. In order to fully explore the
potential of the DCS concept this ER first specifies two advanced use case scenarios - Data
Streaming and Offline Authorization - for querying and consuming protected geospatial content.
The ER then specifies the communication with a new architectural component called the Key
Management Server (KMS) via an Application Programming Interface (API) created for this Testbed.
The API was invoked to register keys used to encrypt data-centric protected content. Then clients
called the same API to obtain those keys to perform the data verification/decryption.

The document evaluates options for structuring and encoding of containers and payloads capable
of carrying the protected (geospatial) data sets. Previously utilized DCS container based on the
tandem of formats NATO STANAG 4778 "Information on standard Metadata Binding" and NATO
STANAG 4774 "Confidentiality Metadata Label Syntax" will be alternatively encoded using JSON
encoding and JavaScript Object Signing and Encryption (JOSE) security standard. Generally, DCS
protected resources could have different representations. This is because there may be multiple
different clients expecting different representations. Different content format options are
described, explained and implemented. To determine what type of representation is desired at
client side, the HTTP header ACCEPT is used. The header one of the values as specified for Content-
Type in this ER (new media types and profiles).

Chapter 2. Executive Summary

OGC members can derive business value from this ER in the following areas:

» Similarities between the DCS approach in the geospatial domain and the well-known
commercial/enterprise Digital Rights Management (DRM) architecture for provision of
protected multimedia contents. Also the commercial geospatial content could be provided using
this approach.

* Interoperability through the support for different encoding standards such as Extensible
Markup Language (XML) and JSON, as well as the utilization of different container structures,
such as STANAG 4774/8 and JOSE to support a variety of encoding standards and container
formats.

* How to use the OGC API - Features Standard to enable client requests the DCS protected content
encoded in a preferred way and how the OGC API - Features can be extended with content
negotiation via additional media types.

* Common security context shared by all components. Bearer access tokens are issued by a
common Authorization Server as defined in RFC 6750. The use of OAuth2 and OpenID Connect
interfaces ensures interoperability.

» Data-centric Security (DCS) architecture which contains a dedicated Key management server or
KMS.

« KMS API based on the OASIS Key Management Interoperability Protocol Specification 2.x
provides interoperable solution and gives the strong protection for keys afforded by KMIP-
compliant Servers.

The motivation for DCS is the possibility of preventing unauthorized access to systems storing
sensitive data. Such systems could be increasingly popular cloud-based data storage solutions.
When looking at drafting OGC standards such as OGC API - Features in a DCS scenario, standards
need to include ways to classify the security requirements around data access. This classification
(security label) can be performed through metadata fields as already evaluated in the OGC Testbed-
15. A fundamental requirement for DCS is that the data is always protected, until an authorized
actor makes use of the data. Additional requirements include the need for representation of the
source of the information, as well as an assurance that the information has not been tampered
with.

DCS protected data could be stored locally at the client location in order to be used within the
validity period of time. As the data could pass through systems that do not belong to the data
consumer nor the producer, the data must remain protected throughout all infrastructure that
handles the geospatial data.

Another important aspect of the DCS is interoperability. In order to create, distribute, and consume
the protected data set in an interoperable fashion, specifying the structures to encode the metadata,
the protected contents, as well as the other related artefacts such as data access policies is very
important.

The Testbed-16 findings show that it is possible to support DCS within the OGC API - Features and
implement this API to request the DCS protected content to be delivered in required encoding and

DCS container format type. Storing the protected content on a mobile device locally and then
decrypting and using the content offline and on demand during a possibly longer period of time is
possible. Requesting the protected content online and having it delivered in a streamed fashion for
a single consumption is also possible.

In support of the Testbed DCS experimentation, two scenarios were defined:

The first scenario anticipates immediate decryption and consumption of protected content. The key
used for encryption is allowed to have lower strength of the encryption: Shorter key = less
computational power required to encrypt/decrypt the content. The cypher (an algorithm for
performing encryption or decryption) could also be simpler and therefore more efficient. The
content owner wants to keep the full control over the protected content. The purpose of the
encryption is to mitigate the risk of a possibly unsecured underlying network infrastructure. The
content provider (DCS service) creates Kkeys to encrypt requested content on a synchronous
request/response basis. The key created by the DCS service gets registered to the KMS and could be
retrieved only within its expiration time. The client is not supposed to permanently store encrypted
data locally (on a desktop client). Even if the client would try to do that, due to the very short
expiration time the referenced key cannot be obtained for such purpose.

The second scenario assumes the clients operate in an offline mode disconnected from the network,
where the DCS service is located. Protected data required for a "mission" are supposed to be
downloaded and stored locally for later (field) use, possibly over a longer period of time. This
scenario requires stronger security. As such, the keys are issued with an expiration time. The
policies associated with issued keys contain additional geospatial assertions, which limit access
rights based on user roles.

For both scenarios an OGC API - Features and DCS compatible service endpoint needs to be aware
of the required encoding and the container format. Because one of the requirements was to provide
support for several encoding and DCS container types, it is important to put the code for the
required format in the request. A container format is a data structure which contains encrypted
portions of sensitive data and associated metadata. To specify the required response formats
several new media types are defined to be used as part of service requests. That includes encodings
and standards such as XML, JSON, STANAG 4774/8 and JOSE.

Another challenge was related to the absence of the support for either STANAG 4774/8 output
format based on JSON encoding or any other structure/format besides the traditional XML encoding
in the previous DCS architecture. The STANAG 4774/8 output format is a container format that
contains encrypted portions of sensitive data and associated metadata. The testbed participants
specified and implemented more options and documented recommendations regarding encodings
and container formats (STANAG, JOSE).

Another big challenge for design and implementation was the Key Management Service. In the
Testbed-16 architecture KMS is responsible for creating, registering, invalidating and issuing
cryptographic keys with selected strength and expiration time. Key instances are then used either
by the DCS server component to create protected (encrypted and/or signed) content or by the clients
to decode and consume received content in both scenarios (as they were described above). It allows
separation of DCS protected content from keys required for the consumption, which was not the
case in Testbed-15. For Testbed-16 the new KMS components implement an OASIS API called KIMP
designed to support the key management functions. In case of large data sets, where each entity is

protected by a dedicated key, large key sets are required. In such situations, with many thousand
keys required, key generation and retrieval takes too long. The slow responses from the KMS is
caused by computational intensive key generation and might be mitigated by extending the API and
optimize the data securing process.

We might need to have a sort of asynchronous KMS API for large key sets To extend the API for KMS
(for generation and retrieval of large number of keys) might be the task for the next DCS Testbed
activity.

Future testbeds should investigate following topics:
» Federated DCS architecture, which enable the collaboration (establishing of a required level of

trust) among distinctive security domains.

* Additional media types for encoding and structuring of DCS protected binary data such as
binary maps, tiles and coverages.

* Creation of new and update of already existing entities for DCS protected data sets.

» Standardized packaging distribution format(s) for all required artefacts such as policies, keys
and protected data payload.

» Data-centric security for JP2 and GML]JP2 payloads.
 Standardize KMS

2.1. Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization Role
Aleksandar Balaban m-click.aero GmbH Editor
Andreas Matheus Secure Dimensions Contributor
Michael Leedahl Maxar Contributor
George Elphick Helyx Contributor
Marcus Alzona keys Contributor

2.2. Foreword

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

10

Chapter 3. References

The following normative documents are referenced in this document.

e OGC API - Features [https://www.ogc.org/standards/ogcapi-features]

* GeoDRM RM [https://www.ogc.org/standards/as/geodrmrm] Geospatial DRM Reference Model
(GeoDRM RM)

* OGC 06-121r9, OGC® Web Services Common Standard [https:/portal.opengeospatial.org/files/?
artifact id=38867&version=2]

* NATO: "ADatP-4774" Confidentiality Metadata Label Syntax, edition A version 1, NSO, 2017.
[https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4774%20EDA%20V1%20E.pdf]

* NATO: "ADatP-4778" Metadata Binding Mechanism, edition A version 1, NSO, 2018.
[https://mso.nato.int/nso/zPublic/ap/PROM/ADatP-4778%20EDA%20V1%20E.pdf]

* RFC 7946 - The Geo JSON Format [https://tools.ietf.org/html/rfc7946]
* RFC 7519 - JSON Web Token (JWT) [https://tools.ietf.org/html/rfc7519]
e IETF: The OAuth 2.0 Authorization Framework [https://tools.ietf.org/html/rfc6749]

o [ETF: The OAuth 2.0 Authorization Framework: Bearer Token Usage [https:/tools.ietf.org/html/
rfc6750]

* OGC: GeoXACML 1.0, OGC Implementation Specification [http:/portal.opengeospatial.org/files/?
artifact_id=42734]

* OGC: GeoXACMLS3 - Core, OGC Discussion Paper [http://www.opengis.net/doc/DP/GEOXACML-CORE]

* OGC: GeoXACML3 - GML 3.2.1 Encoding Extension, OGC Discussion Paper [http://www.opengis.net/
doc/DP/GEOXACML/GML3-Extension]

e OASIS: XACML 3, OASIS Standard [http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html]
* OGC 19-016r1, Testbed-15: Data Centric Security [http://docs.opengeospatial.org/per/19-016r1.html]

* OGC 18-026r1, Testbed-14: Security Engineering Report [https:/docs.opengeospatial.org/per/18-
026r1.html]

* OGC 17-021, Testbed-13: Security Engineering Report [http:/docs.opengeospatial.org/per/17-021.html]

* OGC 16-040r1, Testbed-12: Aviation Security Engineering Report [http://docs.opengeospatial.org/per/
16-040r1.html]

* OGC 12-139, OWS-9: SSI Security Rules Service Engineering Report [https:/portal.opengeospatial.org/
files/?artifact_id=51833]

* OASIS Key Management Interoperability Protocol Specification Version 2.1 [https://docs.oasis-
open.org/kmip/kmip-spec/v2.1/cs01/kmip-spec-v2.1-cs01.htmi]

* PyKMIP: A Python implementation of the Key Management Interoperability Protocol (KMIP)
[https://pykmip.readthedocs.io/en/latest/]

11

https://www.ogc.org/standards/ogcapi-features
https://www.ogc.org/standards/as/geodrmrm
https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4774%20EDA%20V1%20E.pdf
https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4778%20EDA%20V1%20E.pdf
https://tools.ietf.org/html/rfc7946
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
http://portal.opengeospatial.org/files/?artifact_id=42734
http://www.opengis.net/doc/DP/GEOXACML-CORE
http://www.opengis.net/doc/DP/GEOXACML/GML3-Extension
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.opengeospatial.org/per/19-016r1.html
https://docs.opengeospatial.org/per/18-026r1.html
http://docs.opengeospatial.org/per/17-021.html
http://docs.opengeospatial.org/per/16-040r1.html
https://portal.opengeospatial.org/files/?artifact_id=51833
https://docs.oasis-open.org/kmip/kmip-spec/v2.1/cs01/kmip-spec-v2.1-cs01.html
https://pykmip.readthedocs.io/en/latest/

Chapter 4. Terms and definitions

For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

AS OAuth2 Authorization Server —a component that dispatches, validates manages
bearer access tokens.

CRUD In computer programming, create, read (aka retrieve), update, and delete are the
four basic functions of persistent storage.

DCAP Data centric audit and protection, term used by Gartner to describe an approach
to information security that combines data security and audit with discovery,
classification, policy controls, user and role based access, and real-time data and
user activity monitoring to help automate data security and regulatory
compliance.

GeoPDP Geospatial Policy Decision Point—a component of a policy based system that uses
a request, attributes about a request (including geospatial attributes) and a policy
document to make an access decision to allow access to a resource. The GeoPDP
implements the OGC GeoXACML implementation specification.

GeoPEP Geospatial Policy Enforcement Point—a component of a geospatial aware policy
based system that works with a GeoPDP to enforce access decision and perform
obligations requested by the GeoPDP.

OGC API A new OGC API Features Part 1 Core standard for a feature service application
programming interface that provides access to feature collections and the items in
them. This standard was formally known as WFS3 for Web Feature Service
version 3.

LDProxy LDProxy—An Open Source product by Interactive Instruments which provides
most of the REST implementation specified in the OGC API - Features Standard.

PDP Policy Decision Point—a component of a policy based system that uses a request,
attributes about a request (including geospatial attributes) and a policy document
to make an access decision to allow access to a resource. The PDP implements the
OASIS XACML3 standard.

STANAG In NATO, Standardization Agreement, defines processes, procedures, terms, and
conditions for common military or technical procedures or equipment between
the member countries of the alliance.

12

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

4.1. Abbreviated terms

AD

ADR

AS

DCS

DRM

DWG

GeoPDP

GeoPEP

GeoXACML

JOSE

JWT

KMS

OAPIF

0GC

PDP

SAML

SWG

TB15

WES3

XACML

XML

Authorization Decision

Authorization Decision Request

Authorization Server

Data Centric Security

Digital Rights Management

Domain Working Group

Geospatial Policy Decision Point

Geospatial Policy Enforcement Point

Geospatial eXtensible Access Control Markup Language

Javascript Object Signing and Encryption

JSON Web Token

Key Management Server

Short form of OGC API - Features - Part 1 - Core

Open Geospatial Consortium

Policy Decision Point

Security Assertion Markup Language

Standard Working Group

OGC Testbed-15

Web Feature Service version 3 (Also known as OGC API Features)

eXtensible Access Control Markup Language

eXtensible Markup Language

13

XSLT

14

eXtensible Stylesheet Language Template

Chapter 5. Overview

Chapter 6 introduces the problem of geospatial data centric security with respect to advanced use
case scenarios derived from the digital rights management architecture.

Chapter 7 lists informal requirements and presents two advanced use case scenarios. These
scenarios include content negotiation, retrieval, decryption, and the portrayal of data centric
secured geospatial data sets on desktop and mobile devices. This chapter also depicts some aspects
of Testbed-16’s solution/demonstration architecture.

Chapter 8 discusses payload encoding standards, data-centric container structures, and MIME
media types. The chapter presents options for containers and encodings that utilize of XML, JSON,
STANAG and/or JOSE standards. The chapter recommends new media type definitions required for
content negotiation in "DCS aware" APIs.

Chapter 9 provides a summary of the main findings and explains the results in the implementation
for the architecture used in TB-16. This section also lists the challenges which were tackled during
the design and implementation process.

Chapter 10: The interesting topics to be considered for future work are considered.

Appendix A: the code snippets that illustrate the XML and JSON encodings as well as container
structures based on STANAG and JOSE.

Appendix B: The engineering aspects of the DCS components D120 (DCS Server) and D145 (Key
Management Server) are explained.

Appendix C: The engineering aspects of the DCS component D146 (Key Management Server) are
introduced.

Appendix D: Access Control Policies for DCS Server and Mobile Clients.

Appendix E: DCS Roles Concept and Approach for Mobile Clients.

15

Chapter 6. Data Centric Security (DCS)

6.1. Introduction

Data-centric security (DCS) is an approach that underlines the security of the data itself rather than
the security of communication infrastructure such as networks, servers, or applications. DCS further
embeds security and usage policy within the content. The DCS related work previously conducted
in the Testbed-15 [https://docs.ogc.org/per/19-016r1.html] explains the motivation for DCS in geospatial
environment as "the response to the possibility that an unauthorized user, who intercepts network
traffic or hacks systems storing sensitive information gains unauthorized data access".

Testbed-15 explored the DCS essentials and evaluated basis data centric protection (encryption),
security labels (metadata), and access control based on security access policies. The policy
enforcement considered temporal and spatial attributes assigned to requested data sets and service
consumers. Testbed 16 adds the JSON encoding for responses and introduces a dedicated key
management server component. Testbed-16 work further allows content negotiation via new,
proposed media types. Other aspects of the DCS concept, such as management and tracking, might
be subjects of the future work.

6.2. Key Concepts

A data-centric security model includes:

 Discover: The ability to inspect data storage areas to detect sensitive information.

* Manage: The ability to define access policies that will determine if certain data is accessible,
editable, or blocked from specific users, or locations.

* Protect: The ability to defend against data loss or unauthorized use of data and prevent
sensitive data from being sent to unauthorized users or locations.

* Track: The constant monitoring of data usage to identify meaningful deviations from normal
behavior that would point to possible malicious intent.
According to established theoretical models DCS relies on the implementation of the following:
* Information (data) that is self-describing and defending, which means a metadata describes
the information and the security of data does not depend on applications and infrastructure.

* Information that remains protected as it moves in and out of applications and storage
systems, and changing business context.

* Policies and controls that account for business context (relevant use case scenarios)

These concepts should be considered as a key aspect of the whole information life cycle phases such
as creation, processing, collaboration, storage, archive, search, and finally deletion.

In a DCS architecture the data sets are "labeled” with metadata. This is usually in form of a
structured header having attributes which specify their security relevance and allow the
application of security access policies on such data (RFC-7444 [https://tools.ietf.org/html/rfc7444]).
STANAG 4774/8 standards and bindings also define the application of a confidentiality label.

16

https://docs.ogc.org/per/19-016r1.html
https://tools.ietf.org/html/rfc7444

Sometimes referred to as a security label, this is a structured representation of the sensitivity of a
piece of information. Previous DCS work was primarily focused on exploring that aspect of DCS.

A common metadata format (DCS container structure) is the starting point from which more
attributes could be integrated into the metadata. This includes for example, a creation and validity
period, the data taxonomy, or the identity of the person assigning the classification. The data
structure to hold this information should be designed in such a way that new attributes can easily
be added. For example, the inclusion for post-release protection ensures the data can be released
for a number of days, after which the data cannot be accessed. Cryptographic binding of the
classification metadata to the data ensures integrity of the label and the data.

Document ITU-T X.841 (Security information objects for access control - Fig.5) provides general
recommendation for DCS Access Control. Protected information is represented as a message with a
cryptographically bounded (confidentiality) label. On the client-side policy enforcement is decided
based on the label, user credentials (security level), and specific policy assertions about access
granting. Comments in blue color added to the original figure represents the Testbed-16 DCS
specific implementation details.

OpenID Connect /

Initiator's Recipient’s OAuth2 compliant
Clearance Clearance Authorization
Attribute Attribute

@ Label

HTTP content negotiation
via media types
Accept:geo+json

Access
— > Control Decision

GeoXACML
Label -STANAG 4774/8
o= oee Access Control
indi Enforcement
Binding Mossage
Transmission
System
Message
XML, JSON,
GML, Label
GeoJSON [t

Message

Message - Desktop Client
- Mobile Client T0733200/d05

Figure 1. DCS Access Control

An originator confidentiality label example based on NATO STANAG 4774 is given in the listing
below. Encoding is XML. Bound through cryptographic signature with an arbitrary data payload,
for example a GML document, would label the document as "secret".

17

STANAG 4774 Confidetiality Label

<originatorConfidentialitylLabel xmlns=
"urn:nato:stanag:4774:confidentialitymetadatalabel:1:0">
<ConfidentialityInformation>
<PolicyIdentifier>DCS_TB-16</Policyldentifier>
<(Classification>SECRET</Classification>
<GenericValue>0GC</GenericValue>
</ConfidentialityInformation>
</originatorConfidentialitylLabel>

18

Chapter 7. Requirements, Scenarios and
Architecture

This chapter describes the DCS architecture following the general concept of multiple views. This
approach identifies architectural elements while illustrating and validating the architecture design.
The contents of the chapter has views of logical, component, process and deployment. However, the
focus of the chapter is on the logical components and their interactions. Appendices dedicated to
the components provide an overview related to the practical deployment of logical system
components (physical or deployment view).

7.1. Requirements

Although the task dedicated to the DCS did not mandate formal requirements in Testbed-16, this
section lists informal requirements based on the OGC Testbed-16 Call for Participation (CFP) as well
as the section Future Work [https://docs.ogc.org/per/19-016r1.html#FutureWork] from previous Testbed
Engineering Reports.

TB-16 DCS Requirements

RO1 DCS architecture will contain a key management service or KMS component,
which shall be able to create, register, issue and invalidate keys used to protect
the content in the context of DCS.

RO2 KMS shall utilize standard or dedicated API to allow the communication with
other components.

RO3 DCS architecture shall provide the mechanism for content negotiation. Said
differently, a client informs the content provider (DCS server) about the
preferable encoding of the content and container format.

R04 The OGC API - Features shall provide data protection independent of the
transport. Identities, tokens, keys, access rights, policies have to be supported
by the APIL.

RO5 DCS architecture shall keep support for XML/STANAG 4774/8 encoding for DCS
payload containers.

RO6 DCS architecture shall support JSON encoding for DCS payload containers.

RO7 DCS architecture shall use well-established standards (JOSE) when
implementing the JSON encoding for DCS containers.

RO8 DCS architecture shall support encryption for meta-data in DCS containers.

7.2. Scenarios (Use Cases)

For this Testbed, the experiments advanced the DCS concept (with respect to the geospatial domain)
to a high level architecture similar to "Digital Rights Management" or DRM. DRM concepts allow for
the creation, protection, and delivery/consumption of content in accordance with contracts put in
place between the parties. Such contracts specify which content is available against predefined

19

https://docs.ogc.org/per/19-016r1.html#FutureWork

conditions, usually specified in a policy. DRM architectures makes clear the distinctions between
content author, owner, providers and consumers. Using a DRM platform, a client could order
content. This content could be multimedia more relevant to this topic than geospatial data sets in
GML or satellite imagery data. After receiving a payment or obtaining credentials elsewhere the
service/client streams and encodes/consumes the content on the fly or downloads and
encodes/consumes the content later (possibly several times during the key validity period). With
inspiration from a DRM architecture, the Testbed experiments derived use case scenarios and
specified component interactions.

Management

Licence
Server

License

Protected
content

Media
Delivery

| —

Encoded
content

Encoder

Figure 2. Digital Rights Management Architecture

An example of more detailed evaluation of DRM in the geospatial area could be seen in GeoDRM
RM [https://www.ogc.org/standards/as/geodrmrm].

This motivation and the requirements put on DCS lead us to the following two use case scenarios:

* Online Streaming

e Offline Authorization.

Because the DCS protected data sets leave the security perimeter of the data owner and are hosted
in a cloud and/or distributed via third party channels, the important elements to deal with when
applying the concepts of data-centric security are the strength of the encryption key (the length of
the key) and cipher algorithm for performing encryption/decryption. These factors (strength and
algorithm) relate to the differences in how these scenarios use the data. While the Online
Streaming of protected content requires the decryption on the fly, in the case of Offline
Authorization the client caches the encrypted content. The client decrypts the content when
needed in the offline scenario.

20

https://www.ogc.org/standards/as/geodrmrm
https://www.ogc.org/standards/as/geodrmrm

7.2.1. Use Case 1 (Online Streaming)

For the Online Streaming use case, the client ensures the immediate decryption of the data. The
client should not offer the ability to cache the encrypted data for use later as the key are for a single
use. In this case, the encryption key may be short for use with a simple cypher since the purpose of
encryption is to overcome uncertain network security (e.g. multi-segmented network with
unknown segment security or known low level protection). However, one should assume that
intermediaries (bad actors) would be able to store encrypted content for later brute force
decryption and that (bad) end users could re-distribute decrypted content.

Having said that, in this scenario the DCS server creates keys to encrypt the response content on a
request/response basis. The DCS Server uploads the keys to the KMS. Clients retrieve these keys
when they get the protected response data set and parse out the key identifications from the
unprotected meta-data section of a DCS container. Key retrieval at KMS is only possible by meeting
the criteria specified in the KMS policy (including the expiration time of the key). A criterion of the
policy concerns the verification of the servers trust of a client. Achieving continuous protection of
the data is only possible with trusted client applications that do support "viewing" of decrypted
data only; no "save to disk" operation available.

7.2.2. Use Case 2 (Offline Authorization)

In this scenario the client operates disconnected from the network. In addition to the DRM
architecture, the scenario derives motivation from the concept of Geo-information for Disaster
Management. Rescue teams equipped with mobile equipment for navigation/communication and
situational-awareness receive classified, encrypted geospatial data prior to deployment in disaster
areas. The use of the data on the mobile device may span larger period of time. When meeting with
first responders, critical information shall be shared with them without compromising sensitive
information. Offline authorization requires stronger security partly because the KMS issue keys
with longer expiration times. Clients or a service on the mobile device need to maintain policies
against keys which may contain geospatial and temporal constraints on the use of the key.

This scenario contains assumptions that the data classification, and the actors that use the device
vary. However, the data for all actors and classifications exist on the same device. This allows an
incident commander to activate a role on the device and pass it out to an incident responder. Since
the curation of data for the device happens prior to deployment in the field, the device needs to
store the data, keys and key policies. The security problem increases because multiple users handle
the device and not all the users have the same data needs or have clearance to see all the data.

To secure the data, keys and policies, the mobile device has a policy enforcement component PEP).
This component maybe separate from or embedded into the GIS application. The PEP needs the
ability for an authorized user to select a role from the policy to enforce. The security needs strong
encryption and cypher algorithms to protect the data, keys and policies. The need for this strong
security stance comes from the fact that the data may be on the device for a long time frame.
Additionally, multiple users may use the data several times before a user with proper clearance
removes the data from the device.

The KMS that the curation workflow uses to create key, encrypt data, and sign content needs to
support the strong keys and cypher algorithms. The curation tool, which may be on or separate
from the mobile policy enforcement component, needs the ability to support the same STANAG

21

4774/8 derived formats that scenario one uses. In particular, the experiments in this testbed require
that the participants use a JSON based encoding that was derived from the NATO STANAG 4774/8
standard.

7.3. DCS Architecture Components

The next figure depicts a high-level TB-16 DCS architecture with respect to the more general DRM
architecture as depicted on Figure 2 and used as template:

Content
Content Management
(GML, System
GeoJSON)
Decryption key
© H
{i ; —
E ti
JSON Get?)(_ACML k:;ryp '0")
policies Protected
<> \ content
XML

e/

Encoded content

Encoder

Figure 3. DCS in relation to DRM Architecture

The figure represents a logical view, which roughly mimics the general DRM blueprint. The
implementations are different for desktop and mobile scenarios. In the desktop scenario a DCS
server provides protected content on request via an OGC compatible API. An encoder component is
implemented inside the DCS service and it is basically irrelevant for this testbed. Mobile scenario
on the other side puts the focus on the policy enforcement, decoding and visualizing of protected
content on mobile devices with respect to the user rights and policies associated with data sets.
Therefore the function of the encoder was performed by an external tool, which was used to
prepare the content for TIE execution. Protected content resides in a cache on a mobile device. The
mobile scenario demonstrates the interaction with KMS and content visualization on a mobile
device after decryption was performed in accordance with user roles (security levels) and
(GeoXACML) policies in the GeoPEP component.

Following components are part of TB-16 DCS architecture (in both scenarios) given with their
essential features:

22

DCS Server - Desktop (https://ogc.secure-dimensions.com/dcs)

* OGC API for test features, OAuth2 resource server

* Creates and registers DCS keys with KMS

* The following components build the DCS Server:
o Geoserver with example data
o ldproxy: This proxy to the Geoserver produces the OGC API Features on top of Geoserver
> Policy enforcement point geoPEP, security proxy

o Policy decision point geoPDP, GeoXACML 3 compliant

Authorization Component/Server (https:/www.authenix.eu)

* OpenID Connect / OAuth2 compliant Authorization Server with federated login (Google,
Facebook, eduGAIN, + OGC Portal IdP and Testbed IdP)

* The OGC Portal IdP containing logins for all OGC members

Testbed IdP (IdP) Component/Server - Desktop (https://ogc.secure-dimensions.com/
simplesaml)

» The OGC Testbed IdP containing (fictitious) users from TB-15 with different clearance

Key Management Server (KMS) - Desktop (https://ogc.secure-dimensions.com/kms/api)
* REST API implemented in PHP, documented with OpenAPI 3.0

Key Management Server (KMS) - Mobile
* REST API implemented in Flask, documented with OpenAPI Doc 3.0

* Implements endpoints consistent with the OASIS Standard KMIP Client

DCS Client - Desktop (https://github.com/ogc-leedahl/QGIS/tree/OGC_Testhed_16)
* QGIS to interact with DCS Server and KMS

* Obtain key(s) from KMS

 Validate signature + decode encrypted content

DCS App / Client (Android) - Mobile (https://github.com/ogc-leedahl/QField/tree/Testhed16)
* QField Client

* Have a user feature flow for selecting features and using content
* Obtain features and key(s) from a Policy Enforcement Component

 Validate signature + decode encrypted content

Policy Enforcement Point (Android GeoPEP) - Mobile

* Has an administrative curation flow for creating encrypted contents
 Obtains content from some imagery source for curation
* Obtains encrypted and signed content from a KMS

» Serves curated encrypted features and encryption keys to a client

23

https://ogc.secure-dimensions.com/dcs
https://www.authenix.eu
https://ogc.secure-dimensions.com/simplesaml
https://ogc.secure-dimensions.com/simplesaml
https://ogc.secure-dimensions.com/kms/api
https://github.com/ogc-leedahl/QGIS/tree/OGC_Testbed_16
https://github.com/ogc-leedahl/QField/tree/Testbed16

* Implementation of the policy enforcement component could be embedded in the mobile
client or as a stand-alone component

DCS App (iOS) - Mobile
* Apple Mapkit-based

» Encrypted "DCS Features" Data pre-loaded onto mobile device
 Allows selection of "DCS Roles" as provided by the iOS PEP

* Displays feature content as decoded by the iOS PEP

Policy Enforcement Point (i0S PEP) - Mobile
* Module implemented within i0OS DCS App

» User/Device-Specific "DCS Roles" Data pre-loaded onto mobile device
* Retrieves encryption keys for specified roles from KMS (caches for offline use)

» Allows DCS App to validate signature + decode encrypted content based on current DCS Role

7.3.1. Scenario 1, DCS Desktop/Client/Server

() - (i) I Key Management
: I Server

|

: I, Key Registration
I (C) ;! Endpoint
|

I

I

Client

I

» Key Retrieval :
Endpoint I

1

Figure 4. Testbed-16 DCS Desktop/Client/Server Components and their Interactions
Interactions between the desktop and server components of the architecture are:
Authorization

i Client registers for OAuth2 Authorization Code Grant [https://tools.ietf.org/html/rfc67494page-8]

24

https://tools.ietf.org/html/rfc6749#page-8

ii. DCS Server is Resource Server (registered for OAuth Client Credentials Flow [https://tools.ietf.org/
html/rfc6749#page-7])

Service Request
A. Feature request goes to an OGC API compatible DCS Server endpoint. The request contains

access_token, key_challenge, challenge_method [https://tools.ietf.org/html/rfc7636]

B. The DCS client sends an OGC API - Features encoded request to the DCS Server including the
access token and content type encoded in HTTP Access header for content negotiation. The
access token from the request gets validated via the Authorization Server.

C. Based on the response from the backend feature data repository (OGC API), the DCS Server
creates a cipher key per feature type classification (top_secret, secret, confidential, classified).
The cipher keys differ in length and algorithm for each classification level. For each cipher key
created, the DCS Server registers the key with the KMS.

D. Every key_id from the KMS response is included in the DCS container of choice (content
negotiation). DCS server returns the response in the form of a DCS container of chosen encoding
to the client.

Decryption Key Retrieval

1. The DCS client reads the response DCS container and extracts a list of key identifiers.

2. For each key_id the DCS client sends a request to the Key Management Server for obtaining the
cipher key and decodes the payload.

Appendix Engineering Aspects for D120 and D145 provides very detailed sequence and explanation
for desktop client use case (UC 1).

7.3.2. Scenario 2, DCS Mobile App/Client & Policy Enforcement Point

The DCS Mobile Scenario implementations differ slightly in their architectures and feature sets,
allowing for the exploration of different distribution mechanisms.

7.3.2.1. QField / GeoPEP (Android Mobile App/Client)

25

https://tools.ietf.org/html/rfc6749#page-7
https://tools.ietf.org/html/rfc7636

Curation flow happens in the office.
Feature flow happens in the field.

Select Features Perform Curation
Use GIS Select Role
I_ - — I_ —_— —*— —_—— B.Curation .J_ —_———— l
I I A.Features Feature | Curation i I I
Fl FI C.Curation
e | Y rent
Features
| Client I—..l Geo:PEP | b.curation | Management
| | | - - s
C.Features |] ol erver
I field I___’ | office E.Curation I e I
L — _| I ——
f"/ _\Curatﬂn
r — - h)l
: Local : I Imagery Source :
i Cache ' (Files/WFS/etc. |
~ - - ' - — - -

Figure 5. Testbed-16 DCS Mobile App Client/Server Components and their Interactions (Android)
Interactions between the mobile and server components of the architecture are:
1. Curation Flow: An administrative user or a user with proper clearance curates data and selects

an active role to serve to a GIS user.

a. A user using the GeoPEP defines roles, selects the features involved per role and defines
rules for each role.

i. The client fetches the data from files, a Web Feature Service or some other means
depending on the implementation.

b. The GeoPEP asks the KMS to create keys and encrypt data.
c. The KMS creates the keys and encrypts the data and returns them to the GeoPEP.
d. The GeoPEP asks the KMS to create signing keys and sign content.
e. The KMS returns the keys and signed content to the GeoPEP.
ii. Feature Flow: A GIS user selects features to use in the GIS app and uses the data.
a. A user using a client fetch a list of features to work with from the GeoPEP.
b. The client fetches the features from the GeoPEP.

c. The client fetches keys from the GeoPEP, validates the signature and decrypts the content.

26

7.3.2.2. MapKit / DCS Roles (i0S Mobile App)

The i0S Mobile Client architecture implements the DCS Roles concept, separating the scenario data
into two categories - Feature Data ("DCS Data") and "DCS Roles". Please see Appendix E: Roles for
full details.

I Key I

I
_______ S |
-------- Management |

DCSRole | | = |

______ Key Cache i | I Server I
:::::___ ________ | l ______]

Guest Role | DCS Data : |

Field | () | Pre-Deployment
Operations | __ _ _ _ _ _ _ _ B Configuration

Figure 6. Testbed-16 DCS Mobile App Components, Roles, and their Interactions (i0S)

7.3.2.2.1. DCS Roles vs Users

Within this role-based mobile implementation, a user is the assigned user for the mobile device.
That user has their personal security clearance loaded onto the device as a DCS Role. In addition to
that personal DCS Role, per the scenario multiple generic DCS Roles representing generic security
clearances for the categories of people the user may encounter in the field who the user may wish
to share information.

7.3.2.2.2. DCS Roles vs DCS Data

Within this concept, each DCS Data item is to be restricted according to a specific Policy Identifier
and a specific Classification, as specified within a DCS Data container (as described elsewhere in
this document). Whereas each DCS Role could potentially specify access to multiple Classifications
and multiple Contexts.

This allows the "filtering" of data displayed on the mobile device to show only DCS Data items that
meet the restrictions of the current active DCS Role.

Furthermore, this allows for (requires) the DCS Data and (list of) DCS Roles to be distributed and
installed separately on the mobile devices.

7.4. DCS Architecture Interactions

7.4.1. Desktop/Client/Server Interactions

Following diagram explains the workflows related to the communication with Authentication
Server and KMS for both use cases:

27

DCS Server creates key(s) for “immediate” use (Online Streaming UC)
o keys are simple (symmetric and short)

o expires_in as set by the DCS Server

“expires_in” and “algorithm” as set by the client’s characteristics
o grant_type=(implicit, authorization_code)

o If scope=offline_access (possible for authorization_code_grant), key algorithm will be
stronger but still symmetric (Offline Authorization UC)

Key Registration (POST /kms/keys)
o Requires scope=kms
o Client (D120) has no KMS scope
> DCS Server has KMS scope

Client registers and uses OAuth2 Authorization Code Grant

DCS Server is Resource Server (registered for OAuth Client Credentials Flow)

OGC API Features + access_token + key_challenge + challenge_method

The workflow visualization provides the notation of UML sequence diagrams, which depict
interactions among DCS architecture components for both use case scenarios. The diagram below
explains the process of creation of DCS protected content on behalf of a client. The diagram also
depicts the creation of cryptographic key material, registration on KMS server (with the return of
key identifier) and encryption of data payload.

28

Client (D121) Key Management Server (D145)

Client has received the response from D120 (see part 1[)}]

Parse response and fetch all key_id :)

[loop /" [for each key_id]

GET /kms/keys/key_id
{key_verifier=secret,public_kid=007 ,Accept=application/”JWE} _

-

T
1
1
|
1
1
1
1
1
1
1
1
|
I 1
|]
|]
| i
i |
l Sign and encrypt response |
i (create JWE) | '
|]
: i
|]
1]
]]
: |
|
1
1
]
1
1
|
]
1
1
1
1
1
]
1
1
|
1
1
]
]
1
1
1
1
1

p fkey)

Verify KMS response and decrypt :}
|

client application has the key available T
a

and Is capable to decrypt the DCS Server respons.

loop / [for each encrypted feature]
|

Decrypt feature with key L:)

|
Display feature L:)

Client (D121) Key Management Server (D145)

Figure 7. TB-16 DCS component interactions 1

The next figure depicts the consumption of data centric protected information. The client first
obtains and subsequently parses the protected content. The client, for every encrypted data
segment, retrieves the key_id from the container’s meta-data section and then uses that key to
obtain the cryptographic key from KMS. Finally, the client decrypts and presents the protected
content.

Client (D121) Server (D120) | | Key Management Server (D145)

GET /dcs/collections/items/poi
{f=STANAG,key challange=secret&key challenge_method=plain} _

Select features based on Access Policy for user :)

Create encryption Key

U'

POST /kms/keys/{encryption key} _

I
I
I
i

e {key_id}
I
Encrypt features and insert key_id as KeyName |
I
Digitally Sign response :
I
Digitally Signed and Encrypted STANAG response :
I

Client (D121) Server (D120) Key Management Server (D145)

Figure 8. TB-16 DCS component interactions 2

All implementation details could be seen in Engineering Aspects for D120 and D145

29

7.4.2. Mobile App/Server Interactions

The GeoPEP scenario for the mobile and KMS interactions involves the curation of offline data to
present in the field to various users representing a variety of roles. To satisfy this requirement, an
implementor may choose to implement the solution using GIS Software and a stand-alone GeoPEP
for policy enforcement. The implementor may also choose to embed the GeoPEP inside the GIS
Software. Regardless of the approach the interaction between the GIS component and GeoPEP
component are similar.

The first step is to curate the data in the GeoPEP. This may be an offline process done with some
curation tool, or it can be done in the GeoPEP. Regardless of where it is done the curation flow
needs to define:

* Roles

» Which features or feature classes that the roles can use.

* Rules for what, when and where users may view features.
To facilitate the protection of the features the curation component can reach out to a KMS to:

* Create encryption keys

o In this experiment the implementors are using symmetric keys to encrypt the feature inside
the feature collection as was described in the desktop/server interactions above.

* Encrypt sensitive information about individual features.
o The KMS creates keys and encrypts feature data that the KMS receives from a curation tool.
o The curation tool creates a JSON Web Encryption (JWE) formatted response for each feature.
* Create signing keys.

o In this experiment the implementors are using asymmetric keys to sign the feature
collections.

+ Sign the feature collection.
o The curation tool stores signed feature collection in a Java Web Signature (JWS) structure.

The next flow of interactions is between the client and a GeoPEP component. The components may
be separate or embedded in the same application.

* A user of the GIS client selects features to display from what is available to the role the user is
assuming.
* The GIS component retrieves the features and keys from the GeoPEP component.

* The GIS component validates the signature, decrypts the data and displays it to the user.

7.4.2.1. DCS Mobile App and GeoPEP Server Interactions with Role Definitions

For both the i0OS DCS App and the Android GeoPEP implementations, the application or GeoPEP
limits the server interaction to the initial configuration of the application/component after loading
or fetching the data. This is import to the scenarios this experiment defines as the scenarios start
with the assumption that communications may be down for responders in the field. Thus, it is

30

important to load the data before mobilizing in the field. Another import part of these interactions
from the application/component is the use of rules for the specification of roles within software.
Roles define rules for the encryption of the features and thus effect the interactions with the Key
Management Service (KMS).

The mobile applications queries the KMS for the encryption keys for the feature according to the
specification of rules for roles in the application, caching these keys for offline (from the
KMS/internal network) use. The iOS application, basis the rules by roles and fetches keys according
to the role specification (a clearance, which may contain multiple classifications). The iOS
application applies the appropriate key to each feature allowed by the role. The Android GeoPEP
allows the user to specify a classification level, and an encryption strength for each feature class.
The GeoPEP then fetches keys from the KMS for each feature according to the encryption strength
specification of the feature class. The GeoPEP then defines roles and how the features map to them.

There are advantages and disadvantages to both approaches. Basing the encryption off of the role
definition and choosing one key to represent a role/classification pairing requires fewer keys to
encrypt/decrypt the features. Creating a new key for each feature provides more security but at the
cost of needing more keys for encryption/decryption. Network latency and bandwidth
considerations play into these decisions. In a time critical response, creating separate keys may not
be the best trade off since it can take hours to create the keys and encrypt the data on large
datasets. However, if security is more important because of the classification of the data than using
a single key per role/classification may not be the best security posture. Another factor for key
implementations is the federation of features. If multiple authors collaborate to compose features,
each author may sign/encrypt features in the collection differently. There may result in the use of
different Key Management Services. This testbed only looked at a single agency scenario but future
work may include federations.

31

Chapter 8. Data Encodings, DCS Containers
and Media Types

8.1. Introduction

Information security can be applied either on the infrastructure (perimeter-security) or in a data-
centric fashion. While infrastructure/transport oriented security standards are integrated in
communication infrastructure like in TLS 1.3 [https:/tools.ietf.org/html/rfc8446], DCS is fully
independent from the underlying communication infrastructure. This is important because (in
many security critical applications) the stakeholders cannot rely on the security provided by
communication channels (like TLS). With other words, data owners need to remain in charge of
data securing when they are distributed in cloud-based resource services. Thus, it appears
reasonable to incorporate security concepts in the data sets, which urges expanding the existing
data structures for additional elements to carry encrypted data and artefacts such as metadata,
security labels, signatures, etc.

In protocols with application-layer intermediaries, channel-based security protocols protect
messages from attackers between intermediaries, but not from the intermediaries themselves (not
from, for example, malicious applications ruining on the platforms of intermediaries). These cases
require object-based security technologies, which embed application data within a secure object
that can be safely handled by untrusted entities as it was described for JSON encoding format (RFC
7165). Data-centric security advocates generation, storing and provision of security related
metadata and content such as security tokens (digital identities), policies, keys, signatures,
encrypted content and schemas.

In the geospatial domain, data centric security is applied on data encoded using geospatial domain
specific grammars (schemas) such as GML or GeoJSON. GML is an XML encoding while the GeoJSON
format is encoded in JSON. The previous work in TB-15 regarding the DCS was based on GML and
the container structure required for DCS was encoded using STANAG 4774/8 and XML binding.

JSON (JavaScript Object Notation) is a well-known XML alternative and widely used data-
interchange format. GeoJSON was created as a response to the popularity of JSON encoding format
and as an alternative to previously established GML format based on XML and XML Schema.
GeoJSON defines several types of JSON objects and the manner in which they are combined to
represent data about geographic features, their properties, and their spatial extents. RFC 7946
[https://tools.ietf.org/html/rfc7946] is the current GeoJSON standard.

Additionally to new DCS container formats, new HTTP Accept header content types are proposed
for content negotiation. The Accept request HTTP header advertises which content types (container
formats) the client is able to understand, which is important for interoperability.

8.2. DCS Container

If the security is required to be applied in the data-centric fashion, an additional data structure
needs to carry signature and encryption artefacts. This includes the metadata related to a data
origin identity, access rights/policies, and optionally data structure/taxonomy. Two encoding

32

https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc7946

options for data centric securing of (geospatial) content are available. These are XML-GML and
GeoJSON based encoding standards with corresponding containers. Two set of standards, NATO
STANAG 4774 [https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4774%20EDA%20V1%20E.pdf] and STANAG
4778 [https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4778%20EDA%20V1%20E.pdf] (short STANAG 4774/8)
and JWT/JOSE were chosen to implement the required container structure. Additional DCS
containers and encodings require new media types to describe all useful combinations of
data/container encoding and applied security functions.

To enable data exchange and interoperability among NATO Member States, NATO STANG 4774 and
4778 define a syntax (4774) for trusted security labels / markings and how these are
cryptographically bound to data objects (4778) to ensure the integrity of data and the label. Trusted
security labels include, for example, data on the creator, creation and expiration date. There are
different profiles for REST, SMTP, or SOAP, XMPP or Office Open XML. JSON binding is not
supported.

Beside standard security labels like creator or creation and expiration date in the geospatial
domain, additional labels (metadata) about the spatial scope of the data set might be relevant. For
example, large and encrypted set of geographic entities having metadata labels with a bounding
box label could be evaluated against the access policies, which constrain data usage based on the
user location.

For JSON encoded data mostly used in interactions via RESTful APIs there is a family of standards
designed to implement confidentiality and integrity in a data centric fashion. These standards are
based on JSON Web Token (JWT) and also includes the JWE and JWS specifications, which is known
as JOSE [https://tools.ietf.org/html/rfc7165]. JWT is basically seen as the root specification, which the JWE
and JWS were derived from.

8.3. STANAG 4774/8 DCS Container

STANAG 4774/8 was used to implement the Testbed-15 DCS architecture for trusted security labels.
Currently, the standard fully supports XML binding. Other representations, for example in JSON,
would be possible (JSON is currently not supported). The STANAG 4774/8 data structure is depicted
in the following figure:

Data object in STANAG 4778
standard format

Feature Data and sensitive metadata
is encrypted with a symmetric key

Encrypted Data Metadata including confidentiality
metadata in STANAG 4774 standard
format is included outside of the
encrypted data and includes the
symmetric key id or material for the
encrypted data. The metadata
section is encrypted with the public
key of the client.

STANAG 4778

STANAG 4774

Encrypted Metadata

The whole object is cryptographically
Signature bound by a signature based on
encrypted data and metadata.

DATA OBJECT

Figure 9. STANAG DCS Container Structure

The figure displays the container structure from testbed-15, which holds a key (symmetric)

33

https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4774%20EDA%20V1%20E.pdf
https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4778%20EDA%20V1%20E.pdf
https://nso.nato.int/nso/zPublic/ap/PROM/ADatP-4778%20EDA%20V1%20E.pdf
https://tools.ietf.org/html/rfc7165

required for data decryption. The key is protected inside of the encrypted metadata section and can
be extracted only if it were encrypted with the receiver’s public key, which means the encryption
was performed using public cryptography (PKI). This approach has certain security limitations and
inflexibility. In Testbed-16 that will be mitigated through a new component - the key management
server (KMS) responsible to issue decryption keys on request (for a given key_id encoded in a DCS
container). Instead encrypted keys, their identifiers (key_id) originating from KMS will be placed in
DCS containers.

8.4. STANAG 4774/8 DCS Container in JSON

Despite the fact that only XML binding specifications have been provided for STANAG 4774/8 so far,
there is a useful option to create an additional JSON binding for JSON based clients, services and
APIs. In this scenario, JWS (encryption) and JWT (signature) standards will be used together with
STANAG 4778 structure with data payload + meta-data and encoded in JSON.

8.5.JOSE (JWS & JWE) Containers

In the JavaScript/JSON ecosystem the communication is secured on a data level by applying a set of
standards such as JWT and JOSE (combination of encryption and signature via JWS and JWE). The
standards provide a structure intended to capture the metadata and artefacts required for standard
security functions such as confidentiality and integrity. The following table gives an overview of the
security stack based on JWT and JOSE:
* JavaScript Object Singing and Encryption (JOSE)
> JSON Web Signature (JWS)

= A way of representing content secured with a digital signature (or MAC) using JSON data
structures and base64url encoding

> JSON Web Encryption (JWE)
= Like JWS but for encrypted content
> JSON Web Key (JWK)
= JSON data structures representing cryptographic keys
* JSON Web Token
o Defines the use of cryptographic algorithms and identifiers for JWS, JWE and JWK

o A compact URL safe means to represent claims/attributes to be transferred between two
parties

o AJWT is a JWS and/or a JWE with JSON claims as a payload

A JSON security stack built around the standards listed above visualizes relations between
standards. While everything is encoded in JSON, JWE and JWS represent standard cryptographic
operations related to encryption and signing while JWT deals with digital identities.

34

Figure 10. JSON security stack

When Object Signing and/or Encryption (JOSE) is used to protect a payload, the resulting structure
(as depicted on the figure below) establishes a sort of container holding both the payload and the
metadata. While JWS requires a fairly simple format to ensure the integrity, JWE requires
additional attributes to support the confidentiality through the encryption. The payload could be
any geospatial content, for example GeoJSON. The figure represents the container encoding with
comma separated sections. An alternative would be to use a full, slightly more complex JSON
representation.

IPRP R PP RP RP)

encoding FPDDDDD

BASE64URL PPPPRDE
JWS

Header Payload Signature

. | BASE64URL
encoding

JWE

Header Encrypted Key Vector | Payload | Tag

Figure 11. JOSE DCS container structure

For JWS the payload is first signed and enclosed in a data structure defined in RFC 7515. The
structure has:

* Header
» Payload
» Signature
The header containing the signature metadata, the payload holds the base64 encoded protected

content and the signature ensures integrity (or that header and payload are cryptographically
bound to each other). The payload segment might also enclose the additional metadata information.

If the confidentiality of data is required, the plaintext data can be encrypted and wrapped up in a
container structure based on JWE (RFC 7516). The container will have the structure according to the
specification containing the following parts:

e Header

35

Encrypted key
 Initialization vector

* Ciphertext

Authentication tag

Ciphertext is the section where encrypted data payload (created out of original payload plaintext) is
placed. Other segments such as initialization vector or authentication tag are populated according
to the specification and in order to support data integrity.

The information to protect remains encoded following STANAG 4774/8 but in JSON (binding). The
JOSE would provide additional cryptographic protection (ensuring integrity) for such a DCS
container in JSON encoding. Following are the possible container forms or the combination of "JOSE
for security implementation” and "STANAG to encode the meta-data":

* Metadata = Plain JSON
* Metadata = JWS (RFC 7515)
* Metadata = JWE (RFC 7516)
The options are depicted in the following three figures. The green bar represents the overall

information (data-centric container with all protection measures). Metadata as shown here is
STANAG encoded in JSON:

Metadata = JSON
JIK

f |
—

\

"originatorConfidentialityLabel":
"Confidentialitylnformation": [

{
"Policyldentifier": "TB16",
"Classification": "TOP SECRET"
}

8
"CreationDateTime": "2020-04-24T07:33:57Z2"
}
}

Figure 12. Plain STANAG 4774 metadata encoded in [SON

36

Metadata = JWS (RFC 7515)

header signature

"originatorConfidentialityLabel":
"ConfidentialityInformation": [

"Policyldentifier": "TB16",
"Classification": "TOP SECRET"

| }
"breationDateTime": "2020-04-24T07:33:57Z"
}

}

Figure 13. Signed STANAG 4774 metadata encoded in JSON in JWS container

Metadata = JWE (RFC 7516)
\

header encrypted key initialization vector cipher text authentication tag
(J (J (J ()

"originatorConfidentialityLabel":

<slab:originatorConfidentialityLabel>

"Confidentiality|nft ion":
Confidentialitylnformation’: | <slab:Confidentialitylnformation>

{ . 4 . o
A P " <slab:Policyldentifier>TB16</slab:Policyldentifier>
e o SECRET" <slab:Classification>TOP SECRET</slab:Classification>
’ </slab:ConfidentialityInformation>
} y
] <slab:CreationDate Time>2020-04-24T07:33:57Z</slab:CreationDate Time>
"breati onDateTime": "2020-04-24T07:33:572" </slab:originatorConfidentialityLabel>

}
}

Figure 14. Encrypted STANAG 4774 metadata encoded in JSON in JWE container

8.5.1. DCS Container based on JWS

The JWS container implements a signature mechanism to protect the integrity of payload and
related meta-information and bind them together cryptographically. The container consists of three
parts. The following figure depicts the structure. The payload section contains STANAG 4774
metadata and the information. The header section holds metadata about the signature algorithm
and media type (context). For example, the attribute "ctx" (context) is defined as
application/stanag+json. This represents a new media type used to identify the server response
containing the mix of payload and STANAG metadata.

37

STANAG in JSON = JWS (RFC 7515) or JWT (RFC 7519)
|

header [EWIGET] signature

llalgll: "R8256", ”i)bjects": [
ilkid"' "acplon I / "Data": "JSON | JWT | JWE (collection of features)",

'cty": "application/stanag+json" "Metadata": "JSON | JWT | JWE (metadata about the data)"

h
) {

"Data": " JSON | JWT | JWE (collection of features)",
"Metadata": " JSON | JWT | JWE (metadata about the data)"
b

]...

}
Figure 15. STANAG metadata in JWS container with signature

The workflow related to the DCS container based on JWS includes the integrity validation
(signature verification), conversion back from Base64 format, and extracting the key identification
values. These are used to retrieve the keys for decryption from the KMS server component:

'R
Original response (new lines for illustration) JWT header decoded

eyJhbGciOiAiUIMyNTYiLCAia21kIjogIkRyLiBObyIsICJjdHki01A1YXBwbGLjYXRpb24vc3RhbmFnK2pzb24ifQ

{"alg": "RS256", "kid": "Dr. No", "cty": "application/stanag+json"}

ewogICAgIk9iamVjdHMi0iB7CiAgICAgICAgIkNvbnRhaW51ciI6IHSKICAGICAGICAGICAGTIk11dGFKYXRhIjogewo, AgTk11dGFkYXRhIjogewo,

18nRHfJ8X(M4ynpFRERLG71h0d4xTr2PrEuf-h1BOBP-e3KG4WhgyCKdM3McDtIbNB2qaS jWKRyp4D86UBZXEY0_a4ci

Payload header decoded

{"alg": "RS256", "kid": "Dr. No", "cty": "application/stanag+json"}

isnRHfJ 8XCM4ynpFRERLG71h0d4xTr2PrEuf-h1B0OBP-e3KG4WhgyCKdM3McDtJbNB2gaS jWKRyp4D86UBZXEY0_a4ci

JWT header and payload decoded

{"alg": "RS256", "kid": "Dr. No", "cty": "application/stanag+json"}

"Objects": { "Objects":
“Container”: { e mtainer: {
"Metadata": { "Metadata": {
"ConfidentialityInformation": { “ConfidentialityInformation": {
"PolicyIdentifier": "TB16", "PolicyIdentifier": "TB16",
“Classification": "top_secret"

"Classification": "top_secret"

3, ,
"CreationDateTime": "2020-06-23T14:41:10Z" "y i ime": 202

5 1,
"Data": "eyIhbGeiOiAi /yI6ICIBM] i T6ICIMTAXYFAANCESYS "Data": "{alg": "dir", "enc": "A256GCM" J "kid": "c101b084-9b1f-405e-adcO-cadsded37744" "cty": “application/geo+json"}. .
1}, 3
"Container”: {)
“Metadata": {
"ConfidentialityInformation": { (3) Y
“Policyldentifier": "TB16", !
“Classification": "top_secret"
1},
"CreationDateTime": "2020-06-23T14:41:107" Get key from KMS to
“Data": "eyJhbGeiOiAi Ii JBM; T6ICJMTAXYFA4NCOSY

decrypt payload...

Figure 16. Container parsing/decryption workflow

8.5.2. Structure of Information as Metadata

Extending the metadata section of a DCS container for payload structure is useful. For example, the
XML encoding is meant to include XML schema elements, which highlights the payload structure.

38

[mb:MetadataType What is the
structure of

(e — Mixed | rue

([o
@ @ Attributes
- the

| xmimecomentrype 0] metadata?
" encoding

@ ‘w##any

Metadata
Type mb:MetadataType

.E.fttmm @ What is the structure of
the encrypted data?
Data

Type mb:DataType

@ @ Attributes

[7 restricts: xs:string |3

the encrypted
data...

xmlm:comemTych’jl,ﬁ

© encoding

[} DataType
Mixed true

' ##any B

Figure 17. STANAG container encoded in XML

In the figure below the schema information for entity type "poiType" is framed in red in the middle.
This enables the access decisions based on the structure/taxonomy of protected information. Of
course, this approach could be extended to JSON encoding and corresponding JSON schemas.

anb:Metadatainding> Regular . ¢
<mb:Metadata xml:1d="STANAG4774">
<slab:originatorConfidentialitylLabel> STANAG 4774 trUCtu fSeel
<slab:ConfidentialityInformation> Featu re
<slab:PolicyIdentifier>TB16</slab:Policyldentifiers based
<slab:Classification>TOP SECRET</slab:Classification>
</slab:ConfidentialityInformation> metadata
<slab:CreationDateTime>2020-06-22T@7:17:127</slab: CreationDateTime>
</slab:originatorConfidentialitylabel>
</mb :Metadata>

an:MetMa x-nL:m:!Feutur‘eType' xmime:contentlype="application/xmL">

<xsd:schema xmlns:xsd="http://ww.w3.0rg/2001/XMLSchema” xmlns:gml="http://www.opengis.net/gml" xmlns:tfger="http://ww.census.gov"

elementFormDefault="qualified" targetNamespace="http://www.census.gov">
<xsd:import namespace="http://ww.opengis.net/gml" schemalocation="https://ogc.secure-dimensions.com/geoserver/schemas/gml/2.1.2/feature.xsd"/>

“poiType”

<xsd:complexType name="poiType">
<xsd:complexContent>
<xsd:extension base="gml:AbstractFeatureType">
<xsd:sequence>

<xsd:element maxOccurs="1" minOccurs="@" name="the_geom" nillable="true" type="gml:PointPropertyTy Q

<xsd:element maxOccurs="1" minOccurs="@" name="NAME" nillable="true" type="xsd:string"/> EncryptEd datais

<xsd:element maxOccurs="1" minOccur " name="THUMBNAIL" nillable="true" type="xsd:string"/>
GML v3.2 encoded

<xsd:element maxOccurs="1" minOccurs="@" name="MAINPAGE" nillable="true" type="xsd:string"/>

</xsd:sequence> .
</xsd:extension> FeatureCollection
</xsd: complexContent>
</xsd: complexType>
<xsd:element name="poi" substitutionGroup="gml:_Feature” type="tiger:poiType"/>

</xsd:schema>

<mb:Data] xmime: contentTvpe=" 1 1 :
<EncryptedData xmlns="http://ww.n3.0rg/2001/04/xmlenc#" [72 lines]

</mb:Data>

</mb:MetadataBinding>

Figure 18. STANAG XML with content schema type

8.5.3. DCS Container based on JWE

The DCS container structure based on JWE contains sections required to store encrypted content
(ciphertext), metadata (header) and additional elements relevant for applied crypto algorithms.
Encrypted key sections are left empty because the JWE key is not required here. Instead, the

39

header’s attribute "alg" signalizes "Direct Encryption with a Shared Symmetric Key". According to
JWA [https://tools.ietf.org/html/rfc7518] in this case, the shared symmetric key is used directly as the
Content Encryption Key (CEK) value for the "enc" algorithm. An empty octet sequence is used as the
JWE Encrypted Key value. The "alg" (algorithm) Header Parameter value "dir" is used in this case.
Attribute "kid" holds the key identification value for symmetric key retrieval from the KMS.

Data = JWE (RFC 7516)
|

header encrypted key initialization vector cipher text authentication tag
[) [J (J

— |

structure

{ /
"enc": "A256GCM",

}

Figure 19. Encrypted payload enclosed in J[SON container based on JWE

80e437744",

The basic structure for DCS container is defined by STANAG 4778 but can also be encoded in JSON:

* XML.:
o 1.* Metadata elements (encrypted or decrypted, contains key_id if encrypted).
- 1 Data element (encrypted or decrypted, contains key_id if encrypted).
o Signature (to keep the integrity of everything).
* JSON:
o 1..* Metadata elements (encrypted or decrypted, contains key_id if encrypted).
- 1 Data element (encrypted or decrypted, contains key_id if encrypted).
= Signature (to keep the integrity of everything) OR,
= Signature in JWS container OR,
= Encryption in JWE container.

For the collection of entities, they can either be encrypted all together and put in the "Data" section
of STANAG 4774/8 or they can each be encrypted separately in a dedicated STANAG object.

In other words, JWS provides signatures to ensure the integrity of DCS containers. JWS ensures
confidentiality for DCS containers. The container does not contain keys required to decrypt the
payload or the metadata. Instead, key identification attributes are populated, either inside of

STANAG 4778 structure or put in the JOSE headers (attribute kid) and used to retrieve the key from
KMS.

40

https://tools.ietf.org/html/rfc7518

8.6. Media Types and profiles for DCS content
negotiation

There are a variety of approaches to implementing the content negotiation as described in (RFC
7231 [https://tools.ietf.org/html/rfc7231#page-18]) for a RESTful API. Two common options are:

 Specify the content type in the URI (/geojson/streets/42).

* Specify the content type using a query parameter (/streets/42?type=geojson).

However, both of these non-HTTP content negotiation examples violate the rule saying that a REST
API should not "include artificial extensions in URIs to indicate the format of a message’s entity
body". Instead, they should rely on the media type, as communicated through the Content-Type
header, to determine how to process the body’s content.

The proper way for content negotiation is to specify the content type of an HTTP response as a
parameter of the media type in the HTTP request. This is the option that is selected here for DCS.
This method avoids changing URIs and makes use of an existing HTTP header rather than creating
a custom one. A Media Type describes the content of an HTTP request or response such that the
service provider knows how to handle the request. In short, service requests use media types in
order to notify the service (content provider with DCS) which combination of encoding and
container structure is required.

When a client issues an HTTP request, it can indicate what media types the client would prefer to
receive by using the Accept HTTP header. For example, GeoJSON has a (generic) media type
"application/geo+json" for all resources. In order to support different encodings and DCS
containers, media types need to be defined, such as application/gml+stanag.

How many different media types are needed to cover all useful type options for responses? The
following list presents the encodings and container structures that appear to be useful in the
context of this testbed:
* Content Encodings:
1. XML
2. GML
3. GEO+JSON
4. JSON
* Container Types:
1. STANAG 4774/8
2. STANAG 4774/8 in JWS
3. STANAG 4774/8 in JWE
Not all possible combinations for encoding and content types as listed here make sense or are
useful. First of all, the assumption is a STANAG 4774/8 container structure is taxonomy for DCS

container structure. New supported encoding will be provided in JSON. When the content is
encoded in JSON, using JWS and JWE "containers" for singing and/or encrypting appears to be the

41

https://tools.ietf.org/html/rfc7231#page-18
https://tools.ietf.org/html/rfc7231#page-18

choice. JWS is used to ensure the integrity. Otherwise, XML encoded GML content is enclosed in the
container based on the STANAG 4774/8 binding for XML. XML Signature (XML Signature defines an
XML syntax for digital signatures) is used to ensure the integrity. The figure below provides an
example depicting several options for content negotiation:

Request/Response URI Features
GET http://tb-16.0gc.com/dcs/poi JSON
Accept: application/geo+json — : Representation

XML/GML
Representation

GET http://tb-16.0gc.com/dcs/poi
Accept: application/gmi+xml -

JWE + JSON
Representation

GET http://tb-16.0gc.com/dcs/poi
Accept: application/dcs+jose e

GET http://tb-16.0gc.com/dcs/poi
Accept: application/dcs+json ——

STANAG + JSON
Representation

lod/sop/wo9-060°9 L -q)//:dny

STANAG +
XML/GML
Representation

GET http://tb-16.0gc.com/dcs/poi ——
Accept: application/stanag+gml <<———)

Figure 20. Content negotiation example for DCS aware GC API implementation

Another aspect of HTTP content negotiation, which introduces fine grained control over the
response formats is related to the possible use of Media Type parameter "profile" in HTTP header.
As described in a W3C Working Draft Content Negotiation by Profile [https://www.w3.org/TR/dx-prof-
conneg/], clients may negotiate for content provided by servers based on so called "data profiles" to
which the content conforms. This is "distinct from negotiating by Media Type or Language: a profile
may specify the content of information returned, which may be a subset of the information the
responding server has about the requested resource, and may be structured in a specific way to
meet interoperability requirements of a community of practice". An Application Profile bundles
several specifications and possibly adds additional requirements on an implementation. Extra
requirements can be interpreted either as additions or as constraints. For the Testbed-16 case, the
media type could be used to specify required serialization such as XML, JSON, GML, GeoJSON, while
profile parameter could be used to further differentiate between different DCS container options
(STANAG 4774/8, JOSE).

Following profiles are useful to refine the content negotiation in DCS:

Table 1. Profiles
Profile Description

http://www.opengis.net/spec/GML/3.X/req/dcs/ Profile extension to application/gml+xml that

stanag4778 support STANAG 4778 notation for feature types
such as <gmlce:SimplePolygon
dcs="stanag4778”>

42

https://www.w3.org/TR/dx-prof-conneg/
http://www.opengis.net/spec/GML/3.X/req/dcs/stanag4778
http://www.opengis.net/spec/GML/3.X/req/dcs/stanag4778

Profile Description

http://www.opengis.net/spec/Geo]SON/xx/req/ Profile extension to application/geo+json that

dsc/jwt_jwe supports a JWT or JWE notation for feature
types such as “type”: “jwt” or “type”: “jwe” with
a data element.

http://www.opengis.net/def/profile/ogc/2.0/gml- Profile extension to specify GML 3.2 SF-2
sf2 compliance.

Since the Accept header can contain multiple media types, clients can set alternative profiles and
media types in the HTTP header for specific DCS protected geospatial content. Besides new media
types to set this preference, the q parameter (relative quality factor) is used. The value of a q
parameter can be from 0 to 1. 0 represents the least preferred while 1 is the most preferred choice.

HTTP GET with media types and profile parameters

GET /resource/a HTTP/1.1
Accept: application/dcs+geo;q=0.9;profile=ogc:sf:in:geojson, \

application/geo+dcs;q=0.7;profile=urn:nato:stanag:4778:bindinginformation:1:0:in:JSON

HTTP/1.1 200 0K
Content-Type: application/dcs+geo;profile=ogc:sf:in:geojson

Finally, DCS media types and profile parameters for content negotiation as proposed for XML and
JSON encoded content are listed in these tables:

Table 2. XML related media types

Description OGC API HTTP Accept / Content-Type Header
Parame
ter ‘I
GML FC as defined by OGC xmlor application/gml+xml;
gml profile="http://www.opengis.net/def/profile/ogc/2.0/gml-
sf2";version=3.2

GML FC where each feature gml+dcs application/gml+dcs;

is a STANAG 4778 data object profile="http://www.opengis.net/def/profile/ogc/1.0/stanag
#4778";

STANAG 4778 data object dcs+gml application/dcs+gml;

(container) containing an profile="http://www.opengis.net/def/profile/ogc/2.0/gml-

encrypted GML FC sf2";version=3.2

Table 3. JSON related media types

43

http://www.opengis.net/spec/GeoJSON/xx/req/dsc/jwt_jwe
http://www.opengis.net/spec/GeoJSON/xx/req/dsc/jwt_jwe
http://www.opengis.net/def/profile/ogc/2.0/gml-sf2
http://www.opengis.net/def/profile/ogc/2.0/gml-sf2

Description OGC API HTTP Accept / Content-Type Header
Parame
ter ‘I
Feature Collection in Geo]SON json or application/geo+json
geo+jso
n

Feature Collection in GeoJSON signed jwsor application/geo+jose
or encrypted geo+jos
e

STANAG 4778 in JSON encrypted or dcs+geo application/dcs+geo;profile=ogc:sf:in:geojson
signed where data objects are GeoJ]SON
encoded features

Feature Collection in GeoJ]SON where geo+dcs application/geo+dcs;profile=urn:nato:stanag:477
features are STANAG 4778 JSON 8:bindinginformation:1:0:in:JSON
encoded

Testbed-16 demonstrated content negotiation for encrypted data in NATO STANAG 4778 encoded as
XML and NATO STANAG 4778 structure encoded as either JSON, JWT or JWE:

STANAG+GML returns the STANAG 4778 encoded and encrypted data in XML encoding. Each
data object is a feature instance encoded in GML.

STANAG+]JSON returns the STANAG 4778 structure encoded in JSON. Each data element is an
encrypted feature instance encoded in GeoJSON.

STANAG+]JWS returns the STANAG 4778 structure encoded in JSON with digital signature (JWT
format). Each data element is an encrypted feature instance encoded in Geo+JSON.

GeoJSON+JWS returns the digitally signed feature collection encoded in GeoJSON.

Examples for content types (HTTP GET) are given in Appendix Container Media Type Examples.
Examples for DCS response containers are given in Appendix Engineering Aspects for D120 and
D145 under Requesting encrypted data.

44

Chapter 9. Results

The Testbed participants were able to demonstrate that with a proper DCS security architecture put
in place and having a KMS component responsible for key management, an implementation can
satisfy the requirements for an extended data centric security model for both desktop and mobile
clients. The following list summarizes the results achieved in this testbed:

 Effective data-centric security solution with standardized OGC API - Features + KMS + new HTTP
Accept header media type and profile values for content negotiation.

* Protected data sets in different formats encoded using XML or JSON and by applying standards
such as STANAG 4774/8 and/or JOSE to model DCS containers for metadata, cryptographic
artefacts and payloads.

* As the ER evaluates above, a DRM architecture can be the motivation when implementing DCS
for a geospatial domain because of similarities with DCS objectives.

* With the presentation sufficient rights, a server/client encrypts/decrypts the data on the fly as
part of a synchronous API request.

 Client curation tools can encrypt data sets and stored them locally on a mobile device for
decryption at a later time. The thought behind this is that data curation may take place much
earlier then the users intent to use the data. Clients may have a need to store the data over
larger periods of time then an online desktop scenario would offer. This requires some set of
policies to control when and how a user of a client may use the data, and the level of protection
the client provides. The experiments confirm the curation of data can occur with differing
protection level and that clients can select user profiles to enforce in the field.

* Client implementations can model differing concepts of data classification and user/role-based

clearances.

Performing the experiment did uncover some issue while attempting to implement the scenarios.
The following is a list of the issues the experiments came across:

» The GIS client applications for the desktop and the Android mobile client rely heavily on third
party open source libraries which increase the difficulty of implementing decryption of
features.

* Mobile application threading and UI responsiveness requirements make implementing long-
running synchronous tasks difficult.

* Large data sets create a burden on network bandwidth and take a long time to encrypt features.
* Encryption of large data items can timeout across network connections.

* Mobile Process / Power Management

9.1. Issue Explanations

9.1.1. Third Party Open Source Library implementations impede the
implementation of decryption

Both QGIS and QField rely heavily on GDAL which is an open source tool for retrieving and

45

manipulating geographic data formats. In this experiment the implementor had to make a choice
about modifying GDAL or modifying the GIS application to perform the decryption of the data. Both
QGIS and QField are open source projects as well. The burden on modifying multiple open source
applications and libraries is an educational barrier to implementing customizations.

An implementor must learn about each open source project and way the consequences of where to
make modifications. In this experiment the implementor choose to limit the modifications to QGIS
and QField. However, modifying GDAL would have made the modifications to QGIS and QField
easier to accomplish. However, modifying GDAL would take more thought as GDAL is used in a
many open source and proprietary software solutions. The need for specifying asynchronous key
pairs, for signing content, and integrating with various Key Management Services could pose a real
challenge for developers trying to use GDAL to do data centric security. This may also be something
to consider in a future testbed.

9.1.2. Mobile Application and long-running synchronous operations

Mobile devices run an Event loop to process UI and environmental events. For example, the simple
act of rotating a device triggers a series of events that destroy views and recreate new views. A
long-running task may need to update UI elements that no longer exist. To increase the challenge a
developer faces, many APIs for fetching file and making network requests are potentially long-
running tasks in themselves and as such must be run asynchronously. This makes synchronous
tasks hard to implement as they may require the fetching of multiple files or make multiple
network requests.

In this experiment, the Android GeoPEP application needs the ability to communicate with a KMS
to fetch encryption keys, HMAC verification keys, and encrypt data. The application must fetch the
keys, then encrypt the data, and finally produce a JSON Web Encryption (JWE) data set. That is a
synchronous activity as the encryption of content requires the creation of keys. However, the
fetching of keys and the performing of the encryption, in this experiment, are done asynchronously
by an API for HTTP requests. This means that the responses come back using a callback method.

To overcome the asynchronous fetching of data across the network, the application needs to
implement some form of thread suspension to wait for results from one task before doing the next
task. As a reader of this engineering report you may ask why not just handle the next step in the
callback from the network request. The implementor of the Android application had the same
thought, however, the APIs for implementing network requests will not process further network
requests until the previous ones have completed. This prevents you from making another network
request in the thread of the callback, which is needed in the case of creating the encryption key and
then calling the KMS to encrypt the content. Perhaps a different implementation of a Data Centric
Security Key Management Service API vs. a standard Key Management Service API may provide an
optimized solution to overcome some of these asynchronous issues of mobile applications.

9.1.3. Timeout Issues with Large Data Requests

During the development of the Android GeoPEP Application, the implementor ran across a timeout
issue with encrypting the JSON Web Key (JWK) set. A large the feature class containing thousands of
features can create a key set that contains two keys for each feature (Encryption Key and HMAC
key). Encrypting the key set for storage on the mobile devices may require large data structure. The
application passes this data structure as the payload in a post request for a KMS to encrypt. This

46

may result in the client connection timing out either due to settings on the client/server presenting
the client application with an error condition that is unrecoverable from the standpoint of
completing the encryption task. A fallback position for the client maybe to do the encryption task
itself; however, in this experiment that was not done.

9.1.4. Mobile Process /| Power Management

Process and Power Management on mobile devices in general, and on i0S/iPhones/Apple Watches
in particular, can add additional complications to the previously detailed issues. Apple aggressively
controls processes running on devices to save power and memory resources, and will terminate
processes which seem idle (perhaps waiting for a return call) or are utilizing too many resources.
Because of this, an architectural decision was made for the iOS client to implement the PEP as a
module within the i0S DCS App instead of a seperate running service, as running a PEP web service
in the background on the iPhone is problematic at best.

47

Chapter 10. Future Work

As identified by the Testbed-16 participants, an area of future work revolves around the use of
federated security with basic DCS. Another area of future work stems from importance participants
place on the exploration of extending OGC APIs for DCS support. Future activities should also cover
the packaging of protected data and other relevant artifacts such as policies. Consideration should
further be given to the possible creation of standardized KMS API to support DCS relevant
functions. The next testbed may wish to examine additional media types for data centric protected
binary data. The following list describes potential future activities:

» Full CRUD operations on “data centric” secured data sets, including creation of new entities
and/or update of already existing entities (which implies the application of corresponding
security functions).

» Federated security and DCS (data centric secured content transferred between different security
domains and identities, keys etc. transformation/negotiation).

e Standardized KMS API for DCS.

* Packaging of data in DCS: Providing a standardized approach for packaging of additional data
such as policies, keys etc. in the scope of DCS.

* Binary related Media Types: Geospatial payloads such as maps, tiles and coverages may also be
secured on the data level including GeoTIFF, TIFF, JP2, GMLJP2, etc.

e DCS Roles and User Clearances vs Data Classification(s).

10.1. New features in DCS

The addition of a new feature to a feature collection has ramifications in a Data Centric Approach.
Should the client or server perform the encryption? Which Key Management Service will handle
the creation of keys and encryption of the content? Do the individual contributors sign the content?
If the client encrypts/signs the content, how do servers support queries on the content? All these
questions and perhaps more require some investigation and experimentation to determine how the
creation of features fits the Data Centric Security Concept.

10.2. KMS for DCS

This activity could include the investigation of the specification of existing/new APIs for key
management to enable standardization of CRUD for cryptographic keys within and outside of
federated environments. Focusing on access control, an experiment could investigate how to
control key creation and release depending on location of the user, the resource or both.

The protection of large data sets requiring keys for each item create situations producing/retrieving
thousands of keys and encrypting thousands of item takes too long. The mitigation of the
performance problem might involve tweaking an KMS API to support asynchronous key
management and/or by optimizing the data securing process. For example the API may support the
bulk creation of keys. Perhaps a hybrid approach to DCS/KMS API could provide an API that is DCS
aware and will make JWE and JWS data structures as part of the response. Such an API could
provide enhancements over the classical approach to KMS APIs which is just concerned with key

48

creation, encryption and signing as standalone activities that requires the client to put together the
DCS response.

10.3. Federated security and DCS

Federated security enables collaboration across multiple systems, networks, and organizations in
different trust realms. On the other side, DCS enables securing the data sets independent of the
communication and computation infrastructure. Future work in this area might investigate options
for data centric secured information exchange in a federation environment with federated key
management systems, identity servers, and other security infrastructure. Technologies such as
Blockchain might be useful to establish a federated network of identity providers and services.

10.4. Packaging of data in the scope of DCS

In addition to current DCS approaches wrapping metadata keys and payloads into containers,
future investigation may consider adding data such as policies, manifests, etc. to the package. This
is important in mobile scenarios dealing with offline content.

10.5. Binary related Media Types

Future work should consider adding DCS approaches to binary data. The experiments in the
testbeds to date focus on feature data types. However, in geographic realms, feature data is a small
part of the overall amount of data available. Future work should investigate how to incorporate
DCS container or to modify the existing formats to support DCS concepts. For example JPEG 2000
(JP2) is an image compression standard and coding system. Perhaps the format can be expanded to
support encryption and metadata for classification into JP2 payloads. JPEG 2000 images using the
OGC GML in JPEG 2000 (GMLJP2) standard and other gridded coverage data holding geospatial
content for imagery could add DCS concept for integrity and confidentiality.

Applications and professionals use many more binary data formats today in addition to the JPEG
standard. Future work should consider the full spectrum of data types available. This would
include GeoTIF, TIF, Mr. SID, etc. Future work should look at other binary packaging formats and
how to extend them to suport Data Centric Security concepts. GeoPackage is one example of a
binary container format that future work could extend to include encryption, integrity and
confidentiality.

Table 4. Some Binary related Media Types Suggestions

Description OGC API Parameter ‘f’ HTTP Accept / Content-
Type Header

Map jpeg or gif or ... application/jpeg

JPEG200 with STANAG 4774 jp2+dcs application/jp2+dcs;

metadata profile="http://www.opengis.
net/def/profile/ogc/1.0/stanag
#4774";

49

Description OGC API Parameter ‘f’ HTTP Accept / Content-

Type Header
STANAG 4778 in XML (each dcs+jp2 application/dcs+jp2;
STANAG data object profile="http://www.opengis.
represents one JP2 image) net/spec/GMLJP2/2.0/req/cor
ell

10.6. DCS Roles and User Clearances vs Data
Classification(s)

Future work should consider further development of the DCS Roles concept, as detailed in
Appendix E: Roles. The core thurst may proceed in two simultaneous directions.

First, future work should incorporate more specific examples / target sample data files of scenario
classifications, clearances, and feature data.

Second (and in parallel), the Roles concept should be transformed to be more generic / less specific
to the NATO clearance/classification concept (while still supporting it fully and robustly). This
would be done so it could be applied to more generic commercial, industry and consumer domains,
allowing for the expansion of DCS utilization, which in turn helps the original sponsors have
greater long-term capabilities.

50

Chapter 11. Technology Integration
Experiments (TIEs)

The TIEs for the Testbed-16 DCS task were grouped into multiple tests for each scenario. The TIEs
are divided into sub-TIEs as follows:

* Online access of protected content on a desktop client.

 Offline use of protected content on mobile clients.

Testbed-16 primarily focused on the interaction with a newly introduced component KMS via a
draft API. Further the Testbed participants demonstrated the ability to request the response
encoded using different container types.

The first step (which has already been evaluated in the previous testbed) included the data request
sent to the DCS component. The request is accompanied by an access token. The token contains the
security credentials for a login session and identifies the user.

Desktop and mobile clients communicate with the KMS retrieving cryptographic keys required to
decrypt and consume (previously fetched) protected content (geospatial entities, signed or
encrypted). Key retrieval is done via the draft KMS API by passing key identification strings
extracted from the metadata section of protected content.

The resulting Data set was retrieved, the key_id values were extracted from the metadata section of
the response container.

11.1. TIEs for Scenario One

This set of TIEs summarize the result when executing the implementation for scenario one with
desktop client.

To determine the relevant TIEs, let’s take a look at the interactions between the components D121
(client), D120 (DCS Server) and D145 (Key Management Server). The figure below helps to identify
the interactions.

31

i Key Management Server

I
.em | (A) _______ 1 (B) | = o ——— - :
|—N |—|-> |
! | : e Key Registration : |
| , DCS | o Endpoint |l
' | Server n B e s L o
: ' | write
I |
_______ I !
Client [Keys |
|
|

© S
Key

<

Figure 21. Abstract Protocol Flow between the TIE components

(A) Defines the interactions between D121 (the DCS client) and D120 (the DCS Server). (B) Defines
the interactions between the DCS Server (D120) and the Key Management Server (D145) and finally
between D121 and D145.

Detailed direct tests for the interfaces of DCS Server and Key Management Server
NOTE via OpenAPI (and Curl) are outlined in annex Engineering Aspects for D120 and
D145.

11.1.1. D120 /D121 TIE

The DCS client (D12) must send an OGC API - Features encoded request to the DCS Server (D120)
including the access token as an HTTP Header Authorization Bearer:
0476c745887133cc43341375852df01e9b0fe2fe and the key_challenge as well as the key_challenge_method
query parameters. The client must also use one of the supported DCS media types to trigger DCS
processing at the DCS Server.
Table 5. TIE Media Types

DCS specific Media Type

1. application/gml+dcs;profile="http://www.opengis.net/def/profile/ogc/1.0/stanag#477
8"

2. application/dcs+gml; profile="http://www.opengis.net/def/profile/ogc/2.0/gml-
sf2";version=3.2

3. application/geo+jose
4. application/dcs+geo;profile=ogc:sf:in:geojson

5. application/geo+dcs;profile=“http://www.opengis.net/def/profile/ogc/1.0/stanag#4778

»

The access token represents the acting user: Jane, Bob, Alice and Joe are existing users belonging to
the different security levels. A request will only return a TIE relevant response. This is if the user is

32

in accordance with the security policies that fits their security levels.

Table 6. TIE Users

User States Roads Landmarks POIs
Jane Yes Yes Yes Yes
Bob Yes Yes Yes No
Alice Yes Yes No No
Joe Yes No No No

A successful TIE can be determined by the ability of the DCS client to decrypt (and display) the
encrypted DCS response from the DCS server. When that is the case, the interactions (A), (B) and (C)
must work as a whole: (A) Returns the encrypted response with DCS encoding; (B) Implicitly
worked to register the cipher key(s) because the cipher keys referenced in the response for (A),
could be (i) fetched via (C) and (ii) be used to decrypt the response.

The successful TIE was conducted via a QGIS DCS plugin requesting media type
application/dcs+geo. The recording is available here [https:/here]

11.2. TIEs for Scenario Two

This set of TIEs summarize the result when executing the scenarios for mobile client
implementation.

* Data request sent to DCS, required response encoded in JOSE.

» Data request sent to DCS, required response encoded in STANAG/XML.

From the resulting Data set retrieved, the key_id is extracted from the metadata section of the
response container.

33

https://here

Appendix A: Container Media Type
Examples

To determine what type of DCS content representation is required on the client side, the attribute
Content-Type from the HTTP header ACCEPT is used. The DCS aware service requests will be
encoded as follows:

Table 7. Examples of DCS Content-Types

DCS specific Media Type

application/gml+xml; profile="http://www.opengis.net/def/profile/ogc/2.0/gml-sf2";version=3.2
application/gml+dcs;profile="http://www.opengis.net/def/profile/ogc/1.0/stanag#4778"
application/dcs+gml; profile="http://www.opengis.net/def/profile/ogc/2.0/gml-sf2";version=3.2
application/geo+jose

application/dcs+geo;profile=ogc:sf:in:geojson

application/geo+dcs;profile=“http://www.opengis.net/def/profile/ogc/1.0/stanag#4778”

A.1. GML Feature Collection as defined by OGC

Description OGC API Parameter ‘f’ HTTP Accept / Content-Type
Header
GML FC as defined by OGC xml or gml application/gml+xml;

profile="http://www.opengis.net
/def/profile/ogc/2.0/gml-
sf2";version=3.2

54

<?xml version="1.0" encoding="utf-8"7>[
<sf:FeatureCollection xmlns:xsi="http://www.w3.0rg/20@1/XMLSchema-instance"D
xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:gml="http://www.opengis.net/gml/3.2"0
xmlns:fes="http://www.opengis.net/fes/2.0" xmlns:xLlink="http://www.w3.0rg/1999/x1ink"0
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:xml=
“http://www.w3.0rg/XML/1998/namespace”l xmlns:cite="
http://www.opengeospatial.net/cite" xmlns:tiger="http://www.census.gov"l xmlns:nurc=
"http://www.nurc.nato.int" xmlns:sde="http://geoserver.sf.net"D xmlns:it.geosolutions
="http://www.geo-solutions.it" xmlns:topp="http://www.openplans.org/topp"l xmlns:sf=
"http://www.opengis.net/ogcapi-features-1/1.0/sf"0 xmlns:ogcapi=
"http://www.opengis.net/ogcapi-features-1/1.0"0 xmlns:atom=
"http://www.w3.0rg/2005/Atom"0 xsi:schemalocation="http://www.census.gov
https://ogc.secure-dimensions.com/geoserver/wfs?service=WFS&version=2.0.0
& request=DescribeFeatureType&typeName=tiger%3Apoi
http://www.opengis.net/wfs/2.0 https://ogc.secure-
dimensions.com/geoserver/schemas/wfs/2.0/wfs.xsd http://www.opengis.net/gml/3.2
https://ogc.secure-dimensions.com/geoserver/schemas/gml/3.2.1/gml.xsd
http://www.opengis.net/ogcapi-features-1/1.0/sf
https://raw.githubusercontent.com/opengeospatial/ogcapi-features/master/core/xml/core-
sf.xsd http://www.opengis.net/ogcapi-features-1/1.0
https://raw.githubusercontent.com/opengeospatial/ogcapi-
features/master/core/xml/core.xsd http://www.w3.0rg/2005/Atom
http://schemas.opengis.net/kml/2.3/atom-author-1ink.xsd">0
<sf:featureMember>0
<tiger:poi gml:id="poi.1">D
<tiger:the_geom>[
<gml:Point srsName="urn:ogc:def:crs:EPSG::4326" srsDimension="2"
gml:id="poi.1.the_geom">0
<gml:pos>40.70758763 -74.0104611</gml:pos>l
</gml:Point>0

</tiger:the_geom>0

<tiger :NAME>museam</tiger :NAME>D

<tiger:THUMBNAIL>pics/22037827-Ti.jpg</tiger:THUMBNAIL>D

<tiger:MAINPAGE>pics/22037827-L.jpg</tiger :MAINPAGE>D

</tiger:poi>0
</sf:featureMember>0

</sf:FeatureCollection>

A.2. GML Feature Class where each feature is a
STANAG 4774/8 data object

Description OGC API Parameter ‘f’ HTTP Accept / Content-Type
Header

GML FC where each feature is a dcs+gml application/dcs+gml;

STANAG 4778 data object profile="http://www.opengis.net

/def/profile/ogc/2.0/gml-
sf2";version=3.2

55

<?xml version="1.0"?>0<mb:BindingInformation xmlns:xsi=
"https://www.w3.0rg/2001/XMLSchema-instance.xsd" xmlns:ds=
"http://www.w3.0rg/2000/09/xmldsig#" xmlns:xmime="http://www.w3.0rg/2005/05/xmlmime"
xmlns:mb="urn:nato:stanag:4778:bindinginformation:1:0" xmlns:slab=
"urn:nato:stanag:4774:confidentialitymetadatalabel:1:0" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/o0asis-200401-wss-wssecurity-utility-1.0.xsd" xsi:schemalocation=
"urn:nato:stanag:4778:bindinginformation:1:0 4778.xsd">
<mb:MetadataBindingContainer xml:id="WFS">
<mb:MetadataBinding>
<mb:Metadata xml:id="STANAG4774">
<EncryptedData xmlns="http://www.w3.0rg/2001/04/xmlenc#" Type=

"http://www.w3.0rg/2001/04/xmlenc#Element" >0

<EncryptionMethod Algorithm=
"http://www.w3.0rg/2009/xmlenc11#aes256-gcm" />0

<KeyInfo xmlns="http://www.w3.0rg/2000/09/xmldsig#">0

<KeyName>31e174a8-ccfe-49d0-8ee1-d006700bae5c</KeyName>D
</KeyInfo>l
<CipherData>[

<CipherValue>bc4aNxSJhYn4q@LOKzOU6X5P3jzTRCwdZB1/71AXnmwIGU1COt]+@1jLXXxRIHdPb---p5TulRk
=</CipherValue>0
</CipherData>l
</EncryptedData>
</mb:Metadata>
<mb:Metadata xml:id="FeatureType" xmime:contentType="application/xml">
<EncryptedData xmlns="http://www.w3.0rg/2001/04/xmlenc#" Type=
“http://www.w3.0rg/2001/04/xmlenc#Element" >0
<EncryptionMethod Algorithm=
“http://www.w3.0rg/2001/04/xmlenc#aes128-cbc" />0
<KeyInfo xmlns="http://www.w3.0rg/2000/09/xmldsig#">0
<KeyName>a1c380c1-d0f0@-4cbd-9886-3fcf93ed4aad</KeyName>0
</KeyInfo>l
<CipherData>0

<CipherValue>AFzigoARcmKLKeXHXFPTI2a5HWHRYd5Mu7vk/vkdpRQ6IZkUIphOXvxbYVjxDjz3---NtCIRcY
ZasV87cTfzavhmQ==</CipherValue>l
</CipherData>l
</EncryptedData>
</mb:Metadata>
<mb:Data>
<EncryptedData xmlns="http://www.w3.0rqg/2001/04/xmlenc#" Type=
“http://www.w3.0rqg/2001/04/xmlenc#Element">0
<EncryptionMethod Algorithm=
“http://www.w3.0rg/2009/xmlenc114aes256-gcm" />0
<KeyInfo xmlns="http://www.w3.0rg/2000/09/xmldsig#">0
<KeyName>143dd5ec-3c9a-4b3b-bc7a-1c2ddb252bd5</KeyName>0
</KeyInfo>0
<CipherData>l

<CipherValue>+Wq70sdNWaDbwFoAb6WL fxM+fMOvahQeFwIWpu3LhBnF4jHHv+sj JPWQyPQemisG:---tvTI4pP

36

H+w==</CipherValue>l
</CipherData>l
</EncryptedData>
</mb:Data>
</mb:MetadataBinding>
</mb:MetadataBindingContainer>
<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">0
<ds:SignedInfo>0
<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/REC-xml-
c14n-20010315" />0
<ds:SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal
/>0
<ds:Reference Id="id" URI="#WFS">D
<ds:Transforms>0
<ds:Transform Algorithm=
"http://www.w3.0rg/2000/09/xmldsig#fenveloped-signature"/>0
</ds:Transforms>0
<ds:DigestMethod Algorithm="http://www.w3.0rq/2000/09/xmldsig#shal"/>0
<ds:DigestValue>wfPE7rf980Wn8/UPUVoXrGoMRuQ=</ds:DigestValue>l
</ds:Reference>l
</ds:SignedInfo>0

<ds:SignatureValue>Ueq11RV6/qr2GDMkIMgyS8chaD5tfM/SrbdDfVkmXgYD27adHCEc4Vqs1+5]DNrz:-c
/KSLmNz+iHs83/plySvIA==</ds:SignatureValue>[
<ds:KeyInfo>[
<ds:KeyName>Dr. No</ds:KeyName>0
<ds:X509Data>0
<ds:X509SubjectName>CN=Andreas Matheus,0U=Secure Dimensions
GmbH, 0=Secure Dimensions GmbH,L=Munich,ST=Bavaria,(=DE</ds:X509SubjectName>0

<ds:X509Certificate>MIIDuTCCAqGgAWIBAQIEYpLIdjANBgkqhkiGIw@BAQsFADCBjDELMAKGATUEBhMC: -
cNFF8NBHOLz1icsSo+GpeEnSIBKnCYwxStWI+dFWoHQxwyHrkn+0m+EiQ6/2w</ds: X509Certificate>l
</ds:X509Data>l
</ds:KeyInfo>[
</ds:Signature>
</mb:BindingInformation>0

A.3. Feature Collection in GeoJSON

Description OGC API Parameter ‘f’ HTTP Accept / Content-Type
Header
Feature Collection in GeoJSON json or geo+json application/geo+json
{

"type": "FeatureCollection",
"links": [{
"rel": "self",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi

57

\/items?limit=1",
"type": "application\/geo+json",
"title": "Thisdocument"
b
"rel": "alternate",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=jws",
"type": "application\/geo+jws",
"title": "ThisdocumentasdigitallysingedGeoJSON"
Foq
"rel": "alternate",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+json",
"type": "application\/stanag+json",
"title": "ThisdocumentasSTANAG+JSON"
b
"rel": "alternate",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+jws",
"type": "application\/stanag+jws",
"title": "ThisdocumentasdigitallysignedSTANAGinJSON"
Foq
"rel": "alternate",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+gml",
"type": "application\/stanag+gml",
"title": "ThisdocumentasSTANAG+GML"
b
"rel": "alternate",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=gml",
"type": "application\/xml+gml;content=gml;profile=\"http:\/
\/www.opengis.net\/def\/profile\/ogc\/2.0\/gml-sf2\";version=3.2\"",
"title": "ThisdocumentasGML"
b
"rel": "alternate",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=html",
"type": "text\/html",
"title": "ThisdocumentasHTML"
Hi P
"numberReturned": 1,
"numberMatched": 6,
"timeStamp": "2020-07-22T07:04:227",
"features": [{
"type": "Feature",
"id": "poi.1",
"geometry": {
"type": "Point",
"coordinates": [-74.0104611, 40.70758763]
T,

38

"properties": {
"NAME": "museam",
"THUMBNAIL": "pics\/22037827-Ti.jpg",
"MAINPAGE": "pics\/22037827-L.jpg"

}

A.4. Feature Collection in GeoJSON signed or
encrypted

Description OGC API Parameter ‘f’ HTTP Accept / Content-Type
Header
Feature Collection in GeoJSON jws or geo+jose application/geo+jose

signed or encrypted

Header Payload Signature

39

Payload in GeoJSON signed or encrypted

60

JWS Header = {"alg": "RS256", "kid": "Dr. No", "cty": "application/geo+jose"}
eyJhbGci0iAiUIMyNTYiLCAia21kIjogIkRyLiBObyIsICJjdHki01A1YXBwbG1jYXRpb24vZ2VvK2pzb24ifQ

ewogICAgInR5cGUi01AiRmVhdHVyZUNvbGx1Y3Rpb24iLAogICAgImxpbmtzIjogWwogICAgICAgIHSKICAgIC
AgICAgICAgInJ1bCI6ICIzZWxmIiwKICAgICAgICAGICAgImhyZWYi01AiaHROcHM6XC9cL29nYy5zZWNTcmUt
2G1tZW5zaW9ucy5jb21cL2RjcTwvY29sbGVjdalvbnNeL3BvaVwvaXR1bXM_bG1taXQIMSIsCiAgICAgICAgIC
AgICJ0eXB1IjogImFwcGxpY2F@aW9uXCInZW8randzIiwKICAgICAgICAGICAgInRpdGXx1IjogI1RoaXMgZG9j
dW11bnQiCiAgICAgICAgfSWKICAGICAQICB7CiAgICAGQICAGICAGICTyZWwi01A1YWxOZXJuYXR1I1wKICAqIC
AgICAgICAgImhyZWYi0iAiaHROcHM6XC9cL29nYy5zZWNTemUtZG1tZW5zaW9ucy5jb21cL2RjcTwvY29sbGV]
dGlvbnNcL3BvaVwvaXR1bXM_Zj1qc29uIliwKICAgQICAgICAgICAgINR5cGUi101A1YXBwbG1jYXRpb25cL2d1by
tqc29uIiwKICAgICAgICAgICAgINRpdGx1IjogI1RoaXMgZG9jdW11bnQgYXMgR2VvSINPT1IKICAGICAQICBI
LAogICAgICAgIHSKICAgICAgICAgICAgInI1bCI6ICIhbHR1cm5hdGU1LAogICAgICAgICAgICATaHI1ZiI6IC
JodHRwezpeLTwvb2djLnN1Y3VyZS1kaW11bnNpb25zLmNvbVwvZGNzXC9jb2xsZWNOaW9uc Twve@IpXCIpdaVt
cz9mPXNOYW5hZytqc29uIiwKICAgICAgICAgICAgINR5cGUi01A1YXBwbG1jYXRpb25cL3NAYW5hZytqe29uli
wKICAgICAgICAgICAgInRpdGx1IjogI1RoaXMgZG9jdW11bnQgYXMgUTRBTKFHICsgSINPTiIKICAgICAGICBI
LAogICAgICAgIHSKICAgICAgICAgICAgInI1bCI6ICInbHRTcm5hdGU1LAogICAgICAgICAgICATaHI1ZiI6IC
JodHRwezpeLTwvb2djLnN1Y3VyZS1kaW11bnNpb25zLmNvbVwvZGNzXC9jb2xsZWN@aW9uc TwvecGIpXCIpdaVt
cz9mPXNOYW5hZytqd3MiLAogICAgICAgICAQICA1dHIwZSI6ICIhcHBsaWNhdGlvblwve3RhbmFnK2p3cyIsCi
AgICAgICAgICAgICI0aXRsZSI6ICIUaG1zIGRVY3VtZW50IGFzIGRpZ210YWxseSBzaWduZWQgUTRBTkFHIGLu
IEpTT@41CiAgICAgICAgfSWKICAgICAgICB7CiAgICAgICAgICAGICIyZWwiOiA1YWx@ZXJuYXR1I1wKICAgIC
AgICAgICAgImhyZWYi0iAiaHROcHM6XCIcL29nYy5zZWNTemUtZG1tZW5zaW9ucy5jb21cL2RjcTwvY29sbGV]
dGlvbnNcL3BvaVwvaXR1bXM_Zj1zdGFuYWerZ21sIiwKICAgICAgQICAGICAgINR5cGU101A1YXBwbG1jYXRpb2
5cL3N@OYW5hZytnbWwilLAogICAgICAgICAgICA1dG1ObGUi101A1VGhpcyBkb2N1bWVudCBhcyBTVEFOQUcgKyBH
TUwiCiAgICAgICAgfSWKICAGICAQICB7CiAgICAGQICAQICAQICIyZWwi0iA1YWxOZXJuYXR1IiwKICAgICAqIC
AgICAgImhyZWYi0iAiaHROcHM6XCIcL29nYy5zZWNTemUtZG1tZW5zaW9ucy5jb21cL2RjcTwvY29sbGVjdGly
bnNcL3BvaVwvaXR1bXM_Zj1nbWwiLAogICAgICAgICAgICAidH1wZSI6ICIhcHBsaWNhdGlvblwveG1sK2dtbD
tjb250ZW50PWdtbDtwem9ImaWx 1PVwiaHRAcDpeL Twvd3d3Lm9wZW5naXMubmVOXCIkZWZcL3Byb2ZpbaVel29n
YTwvMi4wXCOnbWwtc2YyXCI7dmVyc21vbj0zLjlcIiIsCiAgICAgQICAgICAgICIAaXRsZSI6ICIUaG1zIGRVY3
VtZW50IGFzIEINTCIKICAGICAGICBILA0ogICAgICAGIHSKICAGICAGICAGICAGINI1bCI6ICIhbHR1ecm5hdGU;
LAogICAgICAgICAgICAi1aHI1Zi1I6ICJodHRwczpcL1wvb2djLnNTY3VyZSTkaW11bnNpb25zLmNvbVwvZGNzXC
9jb2xsZWN@aW9uc TwvcGIpXCIpdaVtczImPWhObWwiLAogICAgICAGICAGICATdHIWZSI6ICIAZXhOXCIodG 1S
IiwKICAgICAgICAgICAgInRpdGx1IjogI1RoaXMgZG9jdW11bnQgYXMgSFRNTCIKICAgICAgICBICiAgICBdLA
0gICAgIm51bWI1c1I1dHVybmVkIjogMSwWKICAGICIudW1iZXINYXRjaGVkIjogNiwKICAGICI@aW11U3RhbXA1
01ATMjAyMCOWNY@yMLQwNzowNjoTMVoiLAogICAgImZ1YXR1emVzIjogWwogICAQICAgIHSKICAGQICAGICAQIC
AgInR5cGUi01ATRmVhdHVyZSIsCiAgICAgICAgICAGICIpZCI6ICIwb2kuMSIsCiAgICAgICAgICAGICInZIWIt
ZXRyeSIb6IHSKICAgICAgICAgICAQICAQICIeXB1IjogI1BvaW50IiwkKICAgQICAgICAgICAgICAQICIjb29yZG
LuYXR1cyIbIFSKICAQICAgICAgICAgICAQICAgICAtNZQuMDEWNDYXMSwKICAgICAgICAgICAgICAgICAgQICA®
MC43MDc10Dc2MwogICAgICAgICAgICAgICAgXQogICAgICAgICAgICBILA0gICAgICAgICAGICATcHIvcGVydG
11cyI6IHSKICAQICAQICAgICAgICAQICIO0QU1FIjogIm11c2VhbSIsCiAgICAgQICAgICAgICAQICAIVERVTUIO
QUIMIjogInBpY3NcLzIyMDM30DI3LVRpLmpwZyIsCiAgICAgICAGICAGICAGICAITUFIT1BBRAUI01AicGljcT
wvMjIwMzc4MjctTC5qcGeiCiAgICAgICAgICAgIHOKICAGICAGICBICiAgICBdCnOK

kZQUR1A0666cVpaliyEUSxLOEWL41eTUyig@cOWIg_V5kiNw_IIrpwRK1x1V_KO-0-
T_MTtwnF_ailkEFbjKkYViFCjJacSAikMwnFyjetla7nCXqvI6eKVDtiunIPGfa_Ow@UZBDMnwa5dXuM2khcTF
01CGktIE2ctMk@NIv32mrsMIZckp2WipYC4xHYk7UYFkazlGyNQhdx1ykD1iS9-
nrOLfIemGqKGeCE1Gx44gDttAqcBxwBZu_RF-F7enBjzm-
kOErpKeWkK306Y1yx1yec4GJ9U_ORIf1R2Ge0YoLryMfNPrix9x-AvhfMxo4_26_9rvXcebtLHzHXTmZIw

A.5. Feature Collection in GeoJSON signed or
encrypted

Description OGC API Parameter ‘f’ HTTP Accept / Content-Type
Header
Feature Collection in GeoJSON jws or dcs+jose application/dcs+jose

signed or encrypted

Header Payload Signature
GeoJSON payload JOSE signed or encrypted
JWS Payload = {"alg": "RS256", "kid": "Dr. No", "cty": "application/dcs+jose"}

eyJhbGci0iATUTMYNTYiLCA a21kIjogIkRyLiBObyIsICIjdHki07A1YXBwbGLjYXRpb24vZ2VvK2pzb24iQ
I

ewogICAgInR5cGUi01ATUTRBTkFHNDc30CIsCiAgICA1bGlua3Mi0iBbCiAgICAgICAgewogICAgICAGICAQIC
AicmVsIjogInN1bGYiLAogICAgICAgICAQICAiaHI1Zi1I6ICJodHRwezpceLTwvb2djLnN1Y3VyZS1kaW11bnNp
b25zLmNvbVwvZGNzXC9jb2xsZWN@aW9uc TwvcGIpXCIpdGVtcz9saW1pdDOxIiwkKICAgICAgICAGICAgINR5CG
Ui0iAi1YXBwbG1jYXRpb25cL3NOYW5hZytqd3MiLAogICAgICAGICAGICA1dG1ObGUiI01A1VGhpcyBkb2N1bWVu
dCBhcyBkaWdpdGFsbHkge21nbmVkIFNUQU5BRyBpbiBKU@90IgogICAgICAgIHASCiAgICAgICAgewogICAgIC
AgICAgICAicmVsIjogImFsdGVybmF@ZSIsCiAgICAgICAGICAGICIocmVmIjogImh@dHBzO1wvXCIvZ2Muc2Vj
dXJ1LWRpbWVuc21vbnMuY29tXC9kY3NcL2NvbGx1Y3Rpb25zXC9wb21cL210ZW1zP2xpbW1OPTE1LA0ogICAgIC
AgICAgICA1dH1wZSI6ICIhcHBsaWNhdGlvblwve3RhbmFnK2p3cyIsCiAgICAgICAgICAgICI@aXRsZSIGICIU
aG1zIGRvY3VtZW50IGFzIGRpZ210YWxseSBzaWduZWQqU1RBTkFHIGLuIEpTTA4iCiAgICAgICAgfSWKICAQIC
AgICB7CiAgICAgICAgICAGICIyZWwiOiA1YWx@OZXJuYXR1IiwKICAgICAgICAGICAgImhyZWY101AiaHRAcHM6
XC9cL29nYy5zZWN1emUtZG1tZW5zaW9ucy5jb21cL2RjcTwvY29sbGVjdGlvbnNecL3BvaVwvaXR1bXM_Zj1qc2
9uIiwkKICAgICAGICAgICAgINR5cGUi01A1YXBwbG1jYXRpb25cL2d1bytqc29uliwKICAgICAgICAgICAgINRp
dGx1IjogI1RoaXMgZG9jdW11bnQgYXMgR2VvSINPT1IKICAGQICAGICBILAogICAgICAGIHSKICAGQICAGICAQIC
AgInJ1bCI6ICIhbHR1em5hdGU1LAogICAgICAgICAgICATaHI1Z116ICIodHRwezpeLTwvb2djLnNTY3VyZSTk
aW11bnNpb25zLmNvbVwvZGNzXC9jb2xsZWNOaW9uc TwvcGIpXCIpdGVtczImPWd1bytqd3MiLAogICAgICAgIC
AgICAidH1wZSI6ICIhcHBsaWNhdGlvblwvZ2VvK2p3cyIsCiAgICAgICAgICAGICI0aXRsZSI6ICIUaG1zIGRY
Y3VtZW50IGFzIGRpZ210YWxseSBzaW5nZWQgR2VvSINPTiIKICAGICAgICBILAogICAgICAgIHSKICAGICAGIC
AgICAgInJ1bCI6ICIhbHR1ecm5hdGU1LAogICAgICAGICAGICAIaHI1ZiI6ICIodHRwezpeLl Twvb2djLnN1Y3Vy
ZS1kaW11bnNpb25zLmNvbVwvZGNzXC9jb2xsZWNOaW9uc TwvcGIpXCIpdGVtczImPXNOYWShZytnbWwilAogIC
AgICAgICAGICA1dH1wZSI6ICIhcHBsaWNhdGlvblwve3RhbmFnK2dtbCIsCiAgICAgICAgICAGICI0aXRsZSI6
ICJUaG1zIGRvY3VtZW50IGFzIFNUQU5SBRYArIEANTCIKICAGICAGICBILA0gICAgICAgIHSKICAGICAQICAQIC
AgInJ1bCI6ICIhbHR1cm5hdGU1LAogICAgICAgICAgICATaHI1Z116ICIodHRwezpeLTwvb2djLnNTY3VyZSTk
aW11bnNpb25zLmNvbVwvZGNzXC9jb2xsZWN@aW9ucTwvcGIpXCIpdGVtczImPWdtbCIsCiAgICAgICAgICAgIC
J0eXB1IjogImFwcGxpY2F@aW9uXC94bWwrZ21s02NvbnR1bnQ9Z21s03Byb2ZpbGUIXCIodHRWOIwvXC93d3cu
b3B1bmdpcy5uZXReL2R1Z1wveHIvZmlsZVwvb2djXC8yLjBel2dtbC1zZjIcIjt22XIzaW9uPTMuMLwiIiwKIC
AgICAgICAgICAgInRpdGx1IjogI1RoaXMgZG9jdW11bnQgYXMgRATMIgogICAgICAgIHOsCiAgICAgICAgewog
ICAgICAgICAgICAicmVsIjogImFsdGVybmFOZSIsCiAgICAgICAgICAgICIocmVmIjogImh@dHBzO1wvXC9vZ2
Muc2VjdXJ1LWRpbWVuc21vbnMuY29tXC9kY3NcL2NvbGx1Y3Rpb25zXC9wb21cL210ZW1zP2Y9aHRtbCIsCiAg
ICAgICAgICAgICI@eXB1IjogInRleHRcL2h@bWwilAogICAgICAgICAgICA1dG1ObGU101A1VGhpcyBkb2NTbW
VudCBhcyBIVETMIgogICAgICAgIHOKICAGIF@sCiAgICA1dGLtc3RhbXA10iAiMjAyMCOWNYyAyM1QwNzoxNDow
N1oiLAogICAgIm9iamVjdHMi0iBbCiAgICAgICAgewogICAgICAgICAGICATTWVAYWRhdGEi101B7CiAgICAgIC
AgICAgICAgICA1Q29uZmlkZW50aWFsaXR5SW5mb3JtYXRpb24101B7CiAgICAgICAgICAgICAGICAgICAgI1BY

bG1jeUlkZW50aWZpZXI101A1VEIXNiIsCiAgICAgICAgQICAgICAgICAGICAgIkNSYXNzaWZpY2F@aW9uIljogln
RveF9zZWNyZXQiCiAgICAgICAgICAgICAgICBILA0gICAgICAgICAgICAgICAgIkNyZWF@aWIuRGFAZVRpbWU
0iAiMjAyMCOWNy@yM1QwNzoxNDowN1oiCiAgICAgICAGICAGIHASCiAgICAgICAGICAGICIEYXRhIjogImV5Sm
hiR2NpT21BaVpHbH1JaXdnSW1WdV15STZIQOpCTWpVMLEWSKRMVWhUTTRFeUTlpd2dIbXRwWkNINKTDSmTNMkkx
TUdKaFppMDVNamcwTFRSa1pgRXRPVGN5TnkxaETXSTFOVOkx T@dRMUSUSWImUS4uWmZvVHAILU13QkNtNGdWbW
dSUzRPOUE1QXZJdXN2TUs3WEVpZndvVVVISS5mal8wQlpTSVhhZTZ4UDg2aUZLMnh4d20zNzVaUE9ITEtuZHBs
d31yY21;T004eHZyZWgwVDZZVzR3NHpENWTUREpITkZBckESTORFRDF2YkVzeWkzMmRWeVZ1QzBHTHBIQ21VcO
tSTXVtaVBaeU9BbjNUbDEzWVpVaj1WcHBsdUZMMDgtWGIqYWZWNFNOUVADODk5Z1BrQ2szdGNrvV@J1Q0FnekFo
c3hqSmZVZDVFQ1U2Y11BV1U5aU13YTZkU2ZhRO11TjIkOWpDQVNOZjk0Z0OxCeWNQQkOxSEtmRmLvTk50LXNCTm
TubkRiVFRjdkJZazJhcjZPdm1OTWF5UET1yNDIDYUhIdUROAGNZTDZyazZKb1RMbUk@X@95RXISczQ3dm1vR3FZ
YOtGMT1zLXhDUTRHLWITZWRtam9GV18@MEFvQjhoT2N3MU9FUkTIVyTLaHFxR1VnY1V1X@F5¢c1dTR2VETVIkU2
FGTHZIR@O5BRN1oR1ZLWFZVQz1JIbWhaQ3k3T1RNWDRNNGOtMHZodW1fRHARSH1sWkY4TkRsaVpwT041SjZGdnEt
ckM1eThCQzVwWnVZdDdtVXYzRGdpdmpPL11tNG9zNO1jek11RHBUY1FFalp2WU4xQzRIXThPMETHSVAtY2JERV
R6aVUiCiAgICAgICAgfQogICAgXQp9Cq

am15dLWOPmKMGXzcnyFZgw3YZ6AYu5-63k97jjj3W41v10Q88BpaR7mqE1EyeRdW1Uj0qsKxAh1vTCzqHKCI-
2xYgnDFGgyy2H4RHwtYCYkqv13sCWP23cen8YIWoNqUae7X3gnuaVyGHcTg8mjob9cGnQ8Utb3NFFDrnb6t0GE
UYWvx@GIFBp@8nrVGewTpogTmhveGQQkm3MTPFziIGgn@NYrqF_mijOqBIFho-
iaeSM_hQx8cWDWIQp1SyU990ef4jqWxTe@hofINOTAb238N4VHMDMOckSHQPHLxxq_OkwAURV _rr300QBHxsIa
jHXTK22BAecBiip811nRd1lw

A.6. GeoJSON with STANAG 4774/8 in JSON Encrypted
or Signed

Description OGC API Parameter ‘f’ HTTP Accept / Content-Type
Header

STANAG 4778 in JSON dcs+geo "application/dcs+geo;profile=og

encrypted or signed where data c:sfiin:geojson”

objects are GeoJSON encoded

features

62

"type": "STANAG4778",
"links": [{
"rel": "self", "href": "https:\/\/ogc.secure-dimensions.com\/dcs
\/collections\/poi\/items?limit=1",
“type": "application\/dcs+geo”,
"title": "This document"
Hi P
"timstamp": "2020-07-22T709:08:477",
"objects": [{
"Metadata": {
"ConfidentialityInformation": {
"PolicyIdentifier": "TB16",
"Classification": "top_secret"
}
"CreationDateTime": "2020-07-22T709:08:477"
1
"Data":
"eyJhbGci0i1A1ZGlyIiwgImVuYyI6ICIBMjU2Q@IDLURTNTEYIiwgImtpZCI6ICIyNWMAYZI5N11jYzhmLTQ2M
zMtYmVmOC@50G6J1ZjI1ZGYQ0DU1 fQ. . 1FUjKsmkHMfYOnzAWRS7 rXrU-
GgQ6LHpJbcrjMIAWPs . wCSHCf fyMnoK9STFeUWhGQg-
89czQzcj_o@sfCcpRSUFBIWeWUNWrGmR1t2n6ZBRTDWYN20PPVfupbaDGlegX1Ub-
ba3YJ4AkKbOXBhc4n6qB4UnIMXVjDkTRyGpk5t-
LqXLiE9Lr8RulE@LftZNc1fqdc8dKy11THt6wL jNYZIUur1h8agk_n24bB7zNmoyDHuIpgANx_5-_hyLPP2-
mPHLpKRNzBzEFy40x1pM1j14qY1UJEL1tMZh4C3qosQ85) Xw4IjAtFBAISLt -
cuSaVwul8nS_4BrImz3k1G0SartI2shD2NYyA_PTi1StujWel2gY4qqQEWp8KQr909In_y6AW9I0QemcpbNROB]
DWPHaalH-mhICC4D-
QBfY1yNzAC4sTGDJulxAIhTceFS32GTGFatgiim5FYLvrScIvkwBSFI51t_2dXrHSorjsWejF.ydTHBAKQASMK
QHOd94N5AQupkr5D6pct5TKV8CSd570"
}H
¥

A.7. STANAG 4774/8 JSON encoded Feature Collection
in GeoJSON

Description OGC API Parameter ‘f’ HTTP Accept / Content-Type
Header

Feature Collection in GeoJSON geo+dcs "application/geo+dcs;profile=“ht

where features are STANAG tp://www.opengis.net/def/profil

4778 JSON encoded e/ogc/1.0/stanag#4778”

63

64

"type": "FeatureCollection",
"links": [{
"rel": "self",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?limit=1",
"type": "application\/geo+dcs",
"title": "This document"
il
"numberReturned": 1,
"numberMatched": 6,
"timeStamp": "2020-07-22707:04:227",
"features": [{
"Metadata": {
"ConfidentialityInformation": {
"PolicyIdentifier": "TB16",
"Classification": "top_secret"
}
"CreationDateTime": "2020-07-22T709:08:477"
1
"Data":
"eyJhbGci0iAiZG1yIiwgImVuYyI6ICIBMjU2Q@IDLURTNTEYIiwgImtpZCI6ICIyNWM4YZI5N11jYzhmLTQ2M
zMtYmVm0C@50G6]1Z3jI1ZGYQ0DU1 fQ. . TFUjKsmkHMfYOnzAWRS7rXrU-
GgQ6LHpJber jMIAWPs . wCSHC ffyMnoK9STFeUWhGQg-
89czQzcj_o@sfCcpR5UFBIWeWUNWrGmR1t2n6ZBRFDWYN20PPVfupbaDGlegX1Ub-
ba3YJ4AkKbOXBhc4n6qB4UnIMXVjDkTRyGpk5t-
LqXLiE9Lr8RUlEALTtZNc1fqdc8dKy1l1THtowLjNYZIUur1h8agk _n24bB7zNmoyDHuIpgANx_5-_hyLPP2-
mPHLpKRNzBzEFy40x1pM1j14qYTUJELtMZh4(C3q0sQ85jXw4IjAtFBAISLL-
cuSaVwul8nS_4BrImz3k1G0@SartJ2shD2NYyA_PTi1StujWel2gY4qqQEWp8KQr909In_y6AW90QemcpbNROBj
DWPHaalH-mhICC4D
QBfY1yNzAC4sTGDJu1xAIhTceFS32GTGFatgiim5FYLvrScIvkwBSFI51t_2dXrHSorjsWcjF.ydTHBAKQASmMK
QHOd94N5AQupkr5D6pct5TKV8CSd570"
]
}

Appendix B: Engineering Aspects for D120
and D145

This annex introduces the engineering aspects of the DCS components D120 (DCS Server) and D145
(DCS Key Management Server) implemented for Testbed 16 by Secure Dimensions.

During OGC Testbed-15, the DCS Server was implemented in its first version. In summary, the
implementation supported NATO STANAG 4778 and 4774 response encoding. The XML encoded
response was digitally signed and the data was encrypted. The encryption key was returned inline
with the response. To protect the key, the public key of the user was used to encrypt the cipher key.
This approach did not require any key management; the public key of the user(s) was manually
distributed.

For Testbed 16, the requirements are (i) to support JSON encoded responses that allow to function
like NATO STANAG 4778 and (ii) to return the cipher key with the response by reference, which
requires to implement key management.

This section describes the architecture of the DCS Server, the DCS Key Management Server and
their interactions. The emphasis for the architecture and the design of the Key Management Server
in particular is to ensure protection of the cipher key - when created, registered and fetched for
decryption.

B.1. Overview

The architecture illustrated in Figure 20 reflects the use case requirements for the desktop / server
use case as outlined in the CFP: A desktop application (i.e. QGIS DCS plugin) can request NATO
STANAG 4778 encoded responses where the data and the metadata is encrypted. For Testbed 16, the
response structure is encoded in JSON mimicking NATO STANAG 4778 and 4774. The response
contains an identifier for the cipher used to encrypt the meta- and data. When parsing the response
in the DCS client, the cipher keys are fetched from the Key Management Server.

To ensure that a cipher key that is used by the DCS Server used to encrypt the meta- and data can
only be obtained by a legitimate client / user, access tokens are used. The Authorization Server
provides the capability for creating and verifying access tokens. The use of access tokens that are
obtained by the DCS client and used with the DCS Server and Key Management Server ensure the
sharing of a security context among all components.

Leveraging as many components from Testbed 15 as possible, the Testbed 16 architecture is
comprised of only one new component: The Key Management Server. Albeit, the DCS Server is
extended by processing JSON encoding.

65

D Maxar

- Secure Dimensions C] Secure Dimensions (in kind)
Interactive Instruments

Geosolution et.al.
Figure 22. Component overview of DCS components to support the desktop / server use case
The following sequence of interactions explain the overall co-play of the components:

1. The DCS client requests an access token from the Authorization Server leveraging the OAuth2 /
Openld Connect protocol for authorization. During this interaction, the user must login to his
Identity Provider. As a result, the DCS client receives an access token which is associated to the
client and user, both identified with their UUID.

Access Token validation response example

{
"access_token": "0476c745887133cc43341375852df01e9b0fe2fe",
"client_id": "019b7173-a9ed-7d9a-70d3-9502ad7c0575",
"expires": 1602061225,
"scope": "openid saml profile ogc",
"username": "5a307c82-b440-3438-8aa7-b7437a83a4e0",
"active": true

2. The DCS client sends an OGC API - Features encoded request to the DCS Server including the
access token as an HTTP Header Authorization Bearer:
0476c745887133cc43341375852df01e9b0fe2fe and the key_challenge as well as the
key_challenge_method query parameters. The DCS Server extracts the access token, the
key_challenge and the key_challenge_method from the request.

a. The access token from the request gets validated via the Authorization Server. From the
response, the DCS Server stores the client_id and the username for registering the cipher
key(s) with the Key Management Server. Based on the response from the backend (OGC API
Features), the DCS Server creates a cipher key per feature type classification (top_secret,
secret, confidential, classified). The cipher keys differ in length and algorithm for each

66

classification level.

b. For each cipher key created, the DCS Server registers the key with the Key Management
server. The registration request includes the key_challenge, key_challenge_method and the
client_id (aud) from (2). The request includes the HTTP Header Authorization Bearer:
0476¢745887133cc43341375852df01e9b0fe2fe.

Cipher key registration request example

{
"alg": "http://www.w3.0rg/2009/xmlenc11#aes192-gcm",
Ilktyll: lloctll ,
|I_ivll: IIII,

"k": "LiIeESRpwWngalplPQxtsuT3xP5]tzJE",
"key_challenge": "secret",

"key_challenge_method": "plain",

"audience": "019b7173-a%ed-7d9a-70d3-9502ad7c0575",
"jssuer": "af4f2285-979d-389a-892a-903a9d776476"

The key_id from the response is included in the DCS Server response.

Cipher key registration response example

{
"id": "859f22b4-1ce1-42c0-8668-aac789c79242",

"issuer": "af4f2285-979d-389a-892a-903a9d776476",
"expires": 1602061971,

"issued _at": 1602061941,

"aud": "019b7173-a9%ed-7d9a-70d3-9502ad7c0575",
"sub": "5a3307c82-b440-3438-8aa7-b7437383a4e0"

3. The DCS client has parsed the response and extracted a list of key identifiers. For each key_id
the DCS client sends request to the Key Management Server for obtaining the cipher key. The
request includes the access token and the key_verifier.

a. The Key Management Server verifies the access token with the Authorization Server and
compares that the following conditions are met and returns the key information:

= client_id associated with the access token matches the aud stored with the key_id
= ysername associated with the access token matches the sub stored with the key_id

= key_verifier matches the key_challange stored wit the key_id applying the
key_challange_method stored with the key_id (as defined in RFC 7636)

= current time in seconds is less than the expires stored with the key_id (the valid time
frame for fetching keys is 30 seconds since creation)

67

Cipher key response from Key Management Server example

{
"id": "859f22b4-1ce1-42c0-8668-aac789c79242",
uktyu: "RSA",
unu,

"nhM1yyeJzcopJo79Cy_0jYbdhOL7XNzuYb2zi3HyTeQaNKwAzvt1cTMNMIm3Mt39kcB_mw5ehBZS1UZXGDWGY
2BH5WZhyvTufxONizU1b65M5NHRMIKbmeDEYgyegKkebaaNa014QfSI6sd7IH6Zq_RtFBb85evfm74poRuV_Jn
S7u8j-
kKrXUTgHNhwxHa8xuyz1908506ulWdDrYta53NYiulWdZ_So2Mzi3eK2608r03IX9WkonIWTYKmYetwYps@K0i7Q
8hiHTRknrLvnNFT-z7eK2SZ3jycZCbDmD15KAasm5HQA1P3t0WIvq9_w3HiZakHZ1NDwGbgCT11_1pQ",

"e": "AQAB",

"audience": "019b7173-a%d-7d9a-70d3-9502ad7¢c0@575",

"sub": "5a307c82-b440-3438-8aa7-b7437a83a4e0"

}

With the cipher key received from the Key Management Server, the DCS client is able to decrypt the
meta- and data received from the DCS Server in (2).

B.2. Deployment

The DCS client is implemented as a QGIS DCS plugin available from https://github.com/ogc-leedahl/
QGIS/tree/OGC_Testbed_16

The following components build the DCS Server https://ogc.secure-dimensions.com/dcs
* Geoserver: This is a default Geoserver deployment 2.16.2 with example data loaded (Docker
deplyoed).

* ldproxy: This proxy to the Geoserver produces the OGC API - Features on top of Geoserver
(Docker deployed).
» geoPEP is the security proxy implemented as a Apache Web Server Module (httpd deployed).

* geoPDP is a GeoXACML 3 compliant service (Docker deployed).

The Key Management Server is a PHP application hosted on https://ogc.secure-dimensions.com/kms/
api

B.3. Protecting the Cipher Keys

Applying encryption to achieve confidentiality does only make sense if it can be ensured that the
cipher key can be protected against unauthorized disclosure. In Testbed 15, the protection of the
cipher key was ensured by establishing a PKI for the users. The cipher key was encrypted with the
public key of the user. The implication to this approach was that a cipher key is tied to a single user.
It is not possible for software to process the encrypted data on behalf of the user. Or, for a user to
pass the encrypted content to another user.

The more flexible key management in Testbed 16 demonstrates the concept where the cipher key is
not included in a service response; rather the key identifier is included. This provides the ability to

68

https://github.com/ogc-leedahl/QGIS/tree/OGC_Testbed_16
https://github.com/ogc-leedahl/QGIS/tree/OGC_Testbed_16
https://ogc.secure-dimensions.com/dcs
https://ogc.secure-dimensions.com/kms/api
https://ogc.secure-dimensions.com/kms/api

use and re-use cipher keys and modify the audience: which clients and users can fetch the key. But,
the down side is that a Key Management Server must be designed that its flexible enough to
support particular use cases but also ensure that a cipher key can only be obtained from an
authorized user / application.

Studying the architecture from figure Figure 20 outlines that the DCS client is making an OGC API
Features request where the response contains encrypted (meta)data and the keys must be obtained
from the Key Management Server. This leads to a triangle of trust relationship: A security context
must be exchanged between the components where the DCS Server is a kind of man in the middle
between the client and key management server. So, the critical question is how to ensure that a key
created by the DCS Server can only be fetched (and modified) by the original actor; the DCS Server
is acting on behalf of the user / client when it comes to cipher key registration.

The base for protecting cipher keys, implemented into the Testbed 16 Key Management Server, is
based on the concepts of RFC 7636 Proof Key for Code Exchange by OAuth Public Clients
[https://tools.ietf.org/html/rfc7636]. The basic concept - as illustrates in the following figure - is that the
client includes a code_challenge (either created by itself or provided by the user as a kind of private
secret) with the request which is a hash of a private secret. When relevant in a later request, the
client sends the private secret using the code_verifier parameter. The server can then compare the
values sent first with the hash (assuming method S256 was used) of the plain send with the current
request.

trm e ——————— +

| Authz Server |
Fmm————— + | #=mmmmmm e + |
	=={A)= Authorization Request ---->			
	+ t(code verifier), t m		Authorization	
			Endpoint	
	<=({B)==== Authorization Code =====			
	[— +			
Cclient				
	R —— +			
	=={C)== Access Token Request ——-=>			
	+ code verifier		Token	
			Endpoint	
	<=(D)====mm Access Token ---------			
Fmm————— + | #=mmmmm e + |

term e —————— +

Figure 23. Abstract Protocol Flow [RFC 7636, figure 2]

The adopted protocol for the Testbed 16 architecture is illustrated in the following figure.

69

https://tools.ietf.org/html/rfc7636

I

|

|—N — T 1 1

I ' | . Key Registration ! |

| . DCS ! o Endpoint |

' | Server | I | bm e m e mm e mm—m o
: : write

Client

© S
Key

<

Figure 24. Abstract Protocol Flow from RFC 7636 adopted for Testbed 16

The use of the key_challenge parameter in request (A) allows the Client to request the cipher key
from the Key Management Server adding the key_verifier parameter to the request (C).

The use of this protocol also enables the modification of the key by the original actor, as only the
user / client is capable of adding the matching key_verifier to the request. The DCS Server or any
other intermediary service is not able to provide or guess the private secret, as in the request (A)
only the hash was submitted. It is therefore possible (but not implemented) that the user extends
the audience for an encryption key that was created on his behalf (request). This would allow the
user to share the received encrypted content with another user / client. The Key Management
server would just need to implement the appropriate methods. Proof of authorization to modify an
existing key can be based on the key_verifier.

However, the deletion of a cipher key is implemented, and that requires the caller to provide the
key_verifier with the request to demonstrate ownership.

B.4. DCS Key Management Server

The implementation of the interfaces (API) and the functionalities for the Key Management Server
is based on the requirements derived from the desktop / server use case. Two different interface
categories exist:

* Managing cipher keys that can be used to encrypt/decrypt data and metadata

* Managing public keys that can be used to encrypt the response when fetching a cipher key.

All requests to the Key Management Server require a valid access token submitted via the HTTP
header Authorization as described in RFC 6750.

B.4.1. Protecting Keys at Rest

The Key Management Server stores the keys in a simple database structure:

70

tmmmmmm - tmmm e temm - S tmmm - tmmmm +
| Field | Type | Null | Key | Default | Extra |
R R S e fmmmm e R +
id	varchar(36)	NO	PRI	NULL	
type	varchar(64)	YES		NULL	
sub	varchar(36)	YES		NULL	
aud	varchar(36)	YES		NULL	
active	int(11)	YES		1	
data	text	YES		NULL	
fmmmmm - fmmmmm e fmmmm - R fmmmmmmm e R +

The data column contains the BASE64 encoded value of the encrypted cipher key encoded as JWK.
The encryption for this implementation is configured to use the AES-128-CBC cipher with a secret
key. The following is an example of the value stored in the data column:

Ixw371q0cZZuXvIhXVMLUZIZV1siqpr03+oxT4kPxECRXZ9+6EaJGGQEYkDViSNXzAyghRcRcERai4bq7F40pB
eQXextZGnGi537NB7kBSYLCNUsm/y+6YgKw/GhtfjENEaFRHW7QoVaqy TuMQquB/hGS5mENYyGmK16u@vToqfl4
It1Ss7tPdFDFIHmjcxfWg@EePqa37z8cql+UFk1DGwHYwizFKd5QV7kFrAlYofDz4acdoz2nwnFtzqTPLUR9tz
VzramlZZp2JDuFOL1XiGTEHhAwbHAKWAPeSHr7UDxbzzjrn54w7EwSwo3eIwbqf9ZMmZ1qVyI+R8XU4L3njqpy
Gcq88UwnMzgHikKu10TeCKUyxekejccXDEhSngP/dW45eS0S2MAf7bExGBw1nBHhcgG/wecuzh51DkNtDyXmby7
nEGodPhn6uEHdadyukc9FpBx1+2ul7meapIv/dVCzgXywwE3IF4jRqQ7VSOPUGCYPWM1z3zdg7jvzMjIY6695V
0IYix0Is9G@Tnh5udA==

B.4.2. Managing Public Keys

To ensure the protection of a cipher key while in transit (sent from the Key Management Server to
the client) the response can be encrypted. This requires that the client specifies a public key id
(public_kid parameter) to be used for encrypting the response. In order to register a public key, the
POST interface of the /kms/jwks path must be used. The audience restriction of the key is derived
from the access token sent with the registration request.

Alternatively, the request can contain the public_key parameter including the JWK encoding of a
public key.

B.4.3. Managing Cipher Keys

The current implementation allows to register (create), fetch (read) and delete a cipher key.

B.4.4. Create a Cipher Key

The Key Management Server supports to different ways to register a cipher key with the /kms/keys
endpoint. Depending on the HTTP method, the caller must use HTTP POST or PUT to register a cipher
key:

* A cipher can be registered using HTTP POST in two different ways: A JWK compliant key
description is POSTed to the /kms/keys endpoint, (i) containing the k value, or (ii) not containing
the k value. In the first case, the key is saved to the store and a key_id is created and returned to

71

the caller. In the latter case, a k value and key_id is created and returned to the caller. The
information about the client_id, username is stored with the key.

* A cipher can be created using HTTP PUT to the /kms/keys/{key_id} endpoint. The idempotent call
basically returns a 201 (Created) on success or 409 (Conflict) in case the key_id does already
exist but the content of the JWK description is different.

To GET a stored cipher key requires the following conditions to be true:

e client_id associated with the access token matches the aud stored with the key_id
* username associated with the access token matches the sub stored with the key_id

e current time in seconds is less than the expires stored with the key_id (the valid time frame or
fetching keys is 30 seconds)

To GET the cipher key in a JWE format (encrypted JSON), the caller must specify the parameter
public_kid or public_key with the request send to the /keys/{key_id} endpoint and set the HTTP
Accept header to value application/jwe.

Even though the cipher key is protected with the access conditions above, it is the safest to simply
delete the key once it got fetched by the client. To DELETE a cipher key, the caller must submit a
valid access token and the key_verifier. The key_verifier proves that the caller is the owning entity
that either directly or via the DCS server has registered the key. If the key_verifier matches the
key_challange stored with the key_id applying the key_challange_method stored with the key to the
key_verifier (as defined in RFC 7636), then the cipher key referenced by the key_id is deactivated
from the store. The deactivation deletes the key data and marks the key_id inactive. The Key
Management Server will respond to further requests for a deleted key_id with HTTP status code 410
(Gone).

B.4.5. OpenAPI

The endpoints of the Key Management Server are described in OpenAPI: https://ogc.secure-
dimensions.com/kms/api

Key Management Server for OGC Testbed 16 “*“®

This prototype implementation a Key Management Servera (KMS) supports the OGC Testbed 16 Data Centric Security activities. It provides
two endpoints for managing symmetric (cipher) keys and public keys. The symmetric keys are used to encrypt and decrypt data. The public
keys can be used to encrypt the response for fetching a cipher key (GET /keys/key_id} endpoint).

Most operations require the caller to provide a Bearer access token obtained from AUTHENLX, the Authorization Server used for Testbed
16.

You can obtain an access token via the OGC Testbed Token App

Secure Dimensions GmbH - Website
Send email to Secure Dimensions GmbH

Figure 25. Key Management Server overview

72

https://ogc.secure-dimensions.com/kms/api
https://ogc.secure-dimensions.com/kms/api

DCS Key The DCS key endpoints allow to register and fetch cipher keys for encrypting and decrypting content. Y

[m /keys Listthe key identifiers for all registered keys

[m /keys Register a new symmetric cipher key and let the KMS create the identifier for you.

[m /keys/{key_id} Getkey by identifier

‘ m /keys/{key_id} Register a symmetric cipher key with predefined identifier

[CHI CHEN SR N

[PISESI /keys/{key_id} Delete a symettric key by identifier

Figure 26. Key Management Server endpoints for managing cipher keys

JSDN w b K The JWK endpoints allow to register public keys in the JWK format as defined in REC 7517. Such v
e ey a public key can later be used to request a DCS key with response encoded a JWE RFC 7516.

[m /jwks Register a new JSON Web Key set (JWKS) B

[m /jwks List all identifiers of all public keys }
[m /jwks/{key_id} Get public key by identifier }

‘ m /jwks/{key_id} Register a public key with specified identifier i ‘

Figure 27. Key Management Server endpoints for managing public keys

B.4.6. Use Example

The use case for the Key Management Server is to support the encryption and decryption of data as
outlined in figure Figure 22. In the desktop / server scenario, the DCS Server creates the cipher keys
and encrypts the data. The DCS Server uses the KMS to register the cipher key, as illustrated in
Figure 22, interaction (B). The key identifier received from the Key Management Server is inserted
into the response to the client; the response to (C).

73

DCS Components Interaction - Part 1

Client (D121) Server (D120) | | Key Management Server (D145)

GET /dcs/collections/items/poi
{I=STANAG,access_token=...key challange=...} _

Select features based on Access Policy for user ::
Create encryption Key :)

POST /kms/keys/{encryption key} _

- {key_id}

Encrypt features and insert key_id as KeyName ‘:
|
Digitally Sign response :)

|
_ Digitally Signed and Encrypted STANAG response :
- |

Client (D121) Server (D120) | | Key Management Server (D145)

www.websequencediagrams.com

Figure 28. Interactions between the client, DCS Server and the Key Management Server

The sequence diagram illustrates the round-trip interactions from the client to the DCS Server and
the Key Management Server.

B.4.6.1. Managing a Cipher Key

Use the OGC Testbed Token App [https://ogc.secure-dimensions.com/dcs/token-app/] and login as user jane
with password secret to visualize an access token (valid for 30 minutes).

Secure Dimensions GmbH

Holistic Geosecurity

OGC Testbed Token App

This simple application displays an Access Token that can be used to access the Testbed Data Centric
Security Server.

The Access Token is valid for 30 minutes. This application will not refresh the access token!
Hello Jane (uid: af4£2285-979d-389a-892a-90aa9d776476)

Signin successful. Your access token: 6b19f7516bf5e7ef79b88fc5af@246abd@94ceed

© 2020 Secure Terms Of Privacy Cookie Last updated 23.03.2020

Dimensions GmbH Use Statement Statement

Figure 29. OGC Testbed Token App displaying Jane’s access token

74

https://ogc.secure-dimensions.com/dcs/token-app/

Now use the Key Management Server OpenAPI to register a cipher key

m /keys Register a new symmetric cipher key and let the KMS create the identifier for you. a

Parameters

No parameters

Request body "9

alg

string

kty

string

k

string

key_challenge

string

key challenge_method

string

expires

integer

audience

string

issuer

string

Cancel

[appllcatlon!x—www-form-urlencoded v]

[http:/fwww.w3.0rg/2001/04/xmlenc#aes128-cbc w

[oct ~
9QycQmUYBSJrpY8+FwWDrA==
a591a6d40bf420404a011733cfb7b190d62c65bf0bcda32b57
plain v

1587561028

22568200-4169-4dc9-b293-139¢3b339b6e

6i6b7408-6520-4497-9d27-b2b4dd21c8bb

Figure 30. Key Management Server API to register a cipher key

or send a CURL request like this:

curl -X POST "https://ogc.secure-dimensions.com/kms/keys" -H "accept:

application/json" -H "Authorization: Bearer 1a44f0f0db04876d86475d42597c6d653dd252b8"

-H "Content-Type: application/x-www-form-urlencoded" -d
"alg=http%3A%2F%2Fwww.w3.0rg%2F2001%2F04%2Fxmlenc%23aes128-

cbe&kty=oct&k=9QycQmUYBSIrpY8%2BFwWDrA%3D%3D&key_challenge=foobar&key_challenge_method

=plain&expires=2587561028&audience=019b7173-a%ed-7d9a-70d3-

9502ad7c0575&1ssuer=Andreas"

to get a response like this:

75

"kid": "3236acle-7ecf-4376-bcdc-327f55bdf366",

"alg": "http://www.w3.0rg/2001/04/xmlenc#aes128-cbc",
"kty": "oct",

"k": "DLCZvmi@vcTneZwkbudG_g",

"issuer": "Andreas",

"expires": 2587561028,

"issued_at": 1602228077,

"aud": "019b7173-a9%ed-7d9a-70d3-9502ad7c0575",

"sub": "af4f2285-979d-389a3-892a3-90aa9d776476"

With the access token and the kid you can use the Key Management Server OpenAPI to fetch the
cipher key

/keys/{key_id} Getkey by identifier &

Returns a single key

Parameters Cancel
——

Name Description

key Id * required
“ri_ng ID of key to return

(path)
3236ac0e-7ecf-4376-bede-327f55bdf366

public_kid

e The key identifier of the JWK (public key) previously registered. The associated key will be used

e to create the JWE encoded (Accept: application/jwe) response.
893ef3c8-c249-47a2-91e2-001a0b201647

jwk

e The key identifier of the JWK (public key) to be used to create the JWE encoded (Accept:

T application/jwe) response.

jwk - The key identifier of the JWK (public key

Figure 31. Key Management Server API to fetch a cipher key

or send a CURL request like this:

curl -X GET "https://ogc.secure-dimensions.com/kms/keys/3236ac@e-7ecf-4376-bedc-
327€55bdf3667public_kid=893ef3c8-c249-47a2-91e2-001a0b201647" -H "accept:
application/json" -H "Authorization: Bearer 1344f0f0db04876d86475d42597¢c6d653dd252b8"

to get a response like this:

76

"kid": "3236acle-7ecf-4376-bcdc-327f55bdf366",
"alg": "http://www.w3.0rg/2001/04/xmlenc#aes128-cbc",
"kty": "oct",

"k": "DLCZvmi@vcTneZwkbudG_g",

"issuer": "Andreas",

"key_challenge": "foobar",
"key_challenge_method": "plain",

"expires": 2587561028,

"issued at": 1602228495,

"aud": "019b7173-a9%ed-7d9a-70d3-9502ad7c0575",
"sub": "af4f2285-979d-3893-8923-90aa9d776476"

To receive the response encrypted (in application/jose or application/jwe) format, you must set the
Accept header for the request accordingly and provide either a public_kid ‘ of a previously
registered public key or a JSON encoded JWK as value to the ‘public_key parameter.

Request to receive encrypted response using public_kid

curl -X GET "https://ogc.secure-dimensions.com/kms/keys/3236ac@e-7ecf-4376-bedc-
327f55bdf3667public_kid=820e2b52-c793-8143-8526-387ce@571fb4" -H "accept:
application/jwe" -H "Authorization: Bearer 1a44f0f0db04876d86475d42597c6d653dd252b8"

Request to receive encrypted response using public_key

curl -X GET "https://ogc.secure-dimensions.com/kms/keys/3236ac@e-7ecf-4376-bedc-
327155bdf3667jwk=%7B%20%20%20%22k1d%22%3A%20%22820e2b52-c793-814a-8526-
387ce05711b4%22%2(%20%20%20%22k ty%22%3A%20%22RSA%22%2(%20%20%20%22n%22%3A%20%225MPC fUA
khGG6bw76Cw2b7vzmyM-K4-
80bVn_aPMHHEBa4SQPfERmK_Q4L9fD6FD6krj_RU_DCYENmMo@ceZQymePdSmeSHgbrkyU9vXfvLDHNtGPgHO
xtQme-gBWKMopRs6Svd13CCFaKn8P661F25yVwme13-
5WKGSLJV501Da3v0fiJKSqWnZAkejo2Ba0S019RAqPjLt728B18LqTkNeOnsYigMIeAjis4CrXWVYfbIpryOLF
cGBC4gCHiF7tvP5YR3HtqDSmTNzK3xqSFNn_3PMRaGByV8yxcWDB3-
21Rr5JwznuZ1m37r_RptgsU73AfhL1phFhYLdTQQ5kmQ%22%2(%20%20%20%22e%22%3A%20%22AQAB%22%2C%
20%20%20%22aud%22%3A%20%22019b7173-39%ed-7d9a-70d3-
9502ad7c0575%22%2(%20%20%20%225ub%22%3A%20%22af4£2285-979d-389a-892a-
90339d776476%22%20%7D" -H "accept: application/jwe" -H "Authorization: Bearer
1344f0f0db04876d86475d42597c6d653dd252b8"

This is the encrypted response.

77

eyJhbGci01JSUGExXzUiLCI1bmMi01IBMTI4Q@IDLURTMjU2Iiwia21kIjoi0DIwZTIiNTItYzc5My@4MTRALT
g1MjYtMzg3Y2UwNTcxZmI@In@.Yg0j2cSVFve20Q5FULAfxLyRVcADTFjObHY_P@8VIir8StDSqe7RIMCcii1]
YPBCdht705k6Zay03eF63c6TTfWFEPF1keaMVefQ70Trd0Ls77bReCGSI93UawxbLcepwj9IsoDaT4r7YIbOvP
IyZfmQhcwdcysTQcw-BPURDq8v-Cji-
EmGO2GrH5EiNUdIvH80aeuPbJZfsMofZrh@2q6SN3uGW4AKahcMQop2DyRyQeVA15dL1130htba-aab-
gKHqLk_CkURwHQpLDEVbdo_5tz8PQbUGngH2mBWaWRRPfnLkFys1kDFh02ZC-
hqfYGXIzv1f@xTW3h208nDgw.I7_S8BbOBZ-SqlLjdWtb_Cw.9GzczDxku_pI_-
upVSel4ZgGvwf@em_qT03FZBA55083eLewIWQS6QPmWBQgWFqzb6Pf2pbUNgtz-8Z75bVQmGIzI171FjM85-
pj5mLKWTH6ED20nbF5nbXmPMa789c@Dn0013X1_SBt@Zs@AjINtrXEasyjjCmN-
ghM@9EhaLmF2YMLFYP5KephuDnyVINRMoyv1LeIMwMrY1HFU110a81EIgKCs-
oKU54HulyGacLhajVUWYCKOCy781BMeP1g19zrInRmNKX5y88pS7a90K8f62dMILaA2kaSq-1DKiM1g011CYc-
CEmxLwvf-
81xvQsODEFRRSORN_HyusTFvViptigMOKxXUPdrXR8alqGSUZ7EPicvqTcW7GhnMYOCQ1yAeejscAUBUeH3e7S
uX4P178nVfB309E3va2EprtUYUOtKtoUZ3RFTFFCBPgiVh8GUNEZImW-
gL4eaxv7ISqL1KR2E1GININXBihL4eyKNSAY7Gm_qEiZGAEkJAQt5gP9g0emPDtFrQn@iolVRkgybCYHvXNc2 _
wGj-rsNSaFh09ur6pR7vzKuhoswbMalJgrmWrn_Rbm4UzTqja1MEUI_WO09-GCJizcdp7GVFmIqc00d_2-7fL-
09w5sZvIeHBd4kEUfE1dWc209IQuhb1ZnZvk7r6PCi_tnrCDBY_JNqDkM@gSLrAlifoF5AfRBVZWILgf5dbcRG
5TwwmbbyoQ6YcgEN6WOF55z-00g1s212fC-
n3bNOKXXNUp7dUXjPDIo5vuyfro2FhFv7sr19F0pupFmvKs8I1Z7f43K1741uYw2fZqCVIiWCVFrt7bMPveUFw
XXPR66qQSJICcxBhPFYDpkCAkUzIYo1DF6KAhjd2Axu5n9rgpmeF81cCBbhcw@Z5USZDvNwyz6VEKCkZ8AUSPIs
1cGg8IQSosEU9I8VImu38M3SBFbb5Z1h5CuCh_y2SZBv_4BthBgSJENpGTwIy0TUB59h_NQ2m1U7GijiSnfTBse
zyx1Q7PhtvvSgFrc.as5ak-6CbI8NOqp74E1ziA

Decoding the header of the JWE encoded response unveils the details of the encrypted content:

It
th

{
"alg":"RSA1_5",
"enc":"A128CBC-HS256",
"kid":"820e2b52-c793-814a-8526-387ce@571fb4"
}

is also possible to receive the response as JWT, where the digital signature can be verified with
e JSON Web Key set published by the Key Management Server under https://ogc.secure-

dimensions.com/kms/.well-known/jwks.json:

78

https://ogc.secure-dimensions.com/kms/.well-known/jwks.json
https://ogc.secure-dimensions.com/kms/.well-known/jwks.json

{
"keys": [
{

"kid": "893ef3c8-c249-4732-91e2-00130b201647",

"kty": "RSA",

"n":
"nhM1yyeJzcopJo79Cy_0jYbdhOL7XNzuYb2z1i3HyTeQaNKwAzvt1cTMNMIm3Mt39kcB_mw5ehBZST1UZXGDWGY
2BH5WZhyvTufxONizU1b65M5NHRMIKbmeDEYgyegKkebaaNa014QfSI6sd7IH6Zq_RtFBb85evfm74poRuV_Jn
S7u8j-
kKrXUTgHNhwxHa8xuyz1908506uWdDrYta53NYiuWdZ_So2Mzi3eK2608r03IX9WkonIWTYKmYetwYps@OK0i7Q
8hiH1RknrLvnNFT-z7eK2SZ3jycZCbDmD15KAasm5HQALP3t0WIvq9_w3HiZakHZ1NDwGbgCT11_1pQ",

"e": "AQAB"

}

Key response a JWT

eyJ0eXAi0iJKV1QiLCIhbGci01ISUZITNiIsImtpZCI6Ijg5M2VmM2MALWMyNDktNDAhMi@5MWUyYL TAWMWEwWY j
IwMTY@NyJ9.eyJpc3Mi0iIBbmRyZWFzIiwiYXVkIjoiMDESYjexNzMtYT11ZC03ZDThLTewZDMtOTUwMmFKN2M
wNTc1IiwiaWFOIjoxNjAyMjI50DgALCIuYmYi0jE2MDIyMjk40DQsImV4cCIOM]UANZU2ZMTAYOCwidWikIjoiM
zIzNmFjMGUtN2VjZ100Mzc2LW]jZGMtMZzI3ZjUT1YmRmMzY2IiwiYWxnIjoiaHROcDpcLTwvd3d3LnczLmIyZ 1w
vMj AwMVwvMDRcL3htbGVuYyNhZXMxMjgtY2]jIiwiayI6IkRMQ1p2bWkwdmNUbmVad2tidWRHX2c1ifQ.daYkU9
OVcfal-teRb8VnILALFYqUyOLwnd5ktB7YV8xmax1bGHADWkIbCMaQyWs7p11hKZa29XVK-2_ADy4tqAXLBNm-
MBKydP1JrN@-a3vIKvzDW17hMiC_-2UB65ngbpB-
c6bFwVNBuaJa9ptDgtGdKonz4X3kXZ4wZKfWAkcd1UDh9tHxLQLkOkmvWaCUdV5jIdeqWxG_eJe5F@cWK8PyhUn
DS9d4TCyBQHjRj tk8_XCLTESIbYz1UxbNKFMj@4pIpd1kStUIGOm5ktkDE6U7WZBrsXFihDEJ1f7Y1D7FI_1D
IAOjvnbgkT1FcGkBkf9T-6t54d000zIxLdYobA

Decoding the header unveils details for the digital signature:

{
“typ":"IwWT",
"alg":"RS256",
"kid":"893ef3c8-c249-4732-91e2-001a0b201647"
}

The verification of the response can be verified with kid=893ef3c8-c249-4732-91e2-00130b201647
which is published by the Key Management Server.

B.4.6.2. Demonstrating cipher key protection

The cipher key with kid=3236ac@e-7ecf-4376-bcdc-327f55bdf366 was registered by user Jane
identified as sub=af4f2285-979d-389a-892a-90aa9d776476. The key can be used with a client identified
by client_id=019b7173-a9ed-7d9a-70d3-9502ad7c0575 (attribute aud in the key response).

Trying to fetch the cipher key with a different client_id or sub results in HTTP status code 403. To
illustrate this behavior, use the OGC Testbed Token App [https://ogc.secure-dimensions.com/dcs/token-app/]

79

https://ogc.secure-dimensions.com/dcs/token-app/

and login as user bob with password secret.

CURL request to fetch a cipher key using Bob’s access token
curl -X GET "https://ogc.secure-dimensions.com/kms/keys/3236ac@e-7ecf-4376-bedc-

327f55bdf366" -H "accept: application/json" -H "Authorization: Bearer
f4£225d8d7a44b1067cb55b7c48eabf08948e651"

Response forbidden for user Bob

{
"code": 403,
"error": {
"type": "INSUFFICIENT_PRIVILEGES",
"description”: "stealing a key?"
}
}

To delete a cipher key, the request must also contain proof or ownership for the key. This proof is
presented by the key_verifier value that matches the key_challenge processed by the
key_challenge_method send with the registration request. The key registration above used the
following values:

* key_challenge=foobar
* key_challenge_method=plain

The request can be made via OpenAPI like the figure shown next:

DISB3 /keys/{key_id} Delete a symettric key by identifier a8

Enables the key owner to delete the referenced key

Parameters Cancel
—

Name Description

key_id * required
string ID of key to delete

(path)
3236ac0e-7ecf-4376-bcdc-327155bdf366

key_verifier * eauired
string

(query)

As defined in REC 7636 §3: "A cryptographically random string that is used to correlate the
authorization request to the token request"

foobar

Figure 32. Key Management Server API to fetch a cipher key

Alternatively, the request can be made using the following CURL request:

80

Request to delete a cipher key submitting correct key_verifier

curl -X DELETE "https://ogc.secure-dimensions.com/kms/keys/3236ac@e-7ecf-4376-bedc-
327f55bdf3667key_verifier=foobar" -H "accept: */*" -H "Authorization: Bearer
0a38859836218963fe@b3588d7d5a9620bda2d 100"

The deleting of a key only removes the key data in the database which makes the key unusable. The
key identifier is kept but marked as inactive. This ensures that no further key can impersonate the
same identifier. Therefore, submitting the same request results in HTTP status code 410 - GONE and
not a 404 - NOT FOUND.

Sending a false key_verifier value results in a HTTP 403 status code:

Request to delete a cipher key submitting false key_verifier

curl -X DELETE "https://ogc.secure-dimensions.com/kms/keys/3236ac@e-7ecf-4376-bedc-
327f55bdf3667key_verifier=a591a6d40bf420404a011733cfb7b190d62c65bf@bcda32b57b277d9ad9 f
146e" -H "accept: */*" -H "Authorization: Bearer
0a8859836218963fe@b3588d7d5a9620bda2d 100"

B.4.6.3. Managing a Public Key

The JSON Web Key interface of the Key Management Server allows to register and obtain private
keys. The registration endpoint /jwks accepts a JSON Web Key set via POST which allows the bulk
registration of public keys. The /jwks/{key_id} allows the registration of a single public key via
HTTP PUT. Both endpoints require the caller to provide a valid access_token.

81

m /jwks Register a new JSON Web Key set (JWKS) a

No parameters

Request body 9" application/json v]

Edit Value Model

e

{ "keys": [{ "kty": "RSA", "n":

"nhMlyyeJzcopJo79Cy_ 0jYbdhOL7XNzu¥b2zi3HyTeQaNKwAzvtlclMNMlm3Mt39keB_mw5ehBZS1UZXGDWGV2BHSWZhyvTufxONizUlb65M5NHRM
IKbmeDEYgyegKke6aaNaOl4QfSI16sd7JH6Zqg RtFBb85evim74poRuV_JnSTuBj-

kKrXUTgHNhwxHa8xuyz1908506uWdDrYta53NYiuWdZ_ So2Mzi3leK2608r03IX9WkénIWTYKmYetwYpsOKOi7Q8hiH1RknrLyvnNFT-
z7eK25Z3jycZCbDmD15KAasm5HQALP3tOWIvg9_w3HiZakHZ1INDWGbgCT1l_1pQ", "e": "AQAB", "kid": "893ef3c8-c249-47a2-9le2-
001a0b201647"}, { "kty": "RSA", "n": "SMPCIUAKhGG6wT6Cw2b7vzmyM-K4-

80bVn_aPMHHEBa4SQPfERmK_ Q4L9fD6FD6krj RU_ DCYENmMoOceZQymePdSmeSHgbrkyU9vX{vLDHNftGPgHOxtQmc—
gBWKMopRs65vd13CCFaKn8P66iF25yVwmel3-
SWKGSLJVS50iDal3v0fiJKSqiWnZAkejo2Ba0S019R0gPjLt7z8Bl8LgTkNeOnsYigMIeAjis4CrXWVYfbIpryOLFcGBC4gCHiIF7tvP5SYR3HEgQDSMTNZK
3xgSFNn_3PMRaGByV8yxcWDB3-21Rr5JwznuZlm37r_RptgsU73AfhL1phFhYLATQQ5kmQ", "e": "AQAB", "kid": "020e2b52-c793-Blda-
8526-387ce0571£fb4" }] }

Figure 33. Key Management Server API to register a public key set in JWKS format

A public key can be fetched via HTTP GET via the open endpoint /jwks/{key_id}.

82

/jwks/{key_id} Register a public key with specified identifier ﬂ

This endpoint supports to create one single JSON Web Key.

Parameters Cancel

Name Description

key id * required
stri:g ID of key to register

(path)
859f22b4-1ce1-42c0-8668-aac789c79242

Request body "9"I"*d application/x-www-form-urlencoded v l

kty RSA v

string

n

optieg nhM1yyeJzcopJo79Cy_0jYbdhOL7XNzuYb2zi3HyTeQaNKy

e

string

AQAB

Figure 34. Key Management Server API to register an individual public key in JWK format

For supporting the desktop / server use case, two entities can register public keys: (i) the DCS Server
and (ii) the DCS client. The DCS Server can register a public key set to ensure that the response to a
DCS key registration is encrypted. The registration of a JSON Web Key set for the client has the same
purpose: Ask the Key Management Server to return the response of the GET cipher key request
encrypted. An example of such an encrypted response is illustrated above.

The client has an alternative option to use a public key for encrypted cipher key responses: When
using Dynamic Client Registration with the Authorization Server, the JWKS become available via
the Authorization Server’s Token Introspection endpoint. The public key set registration via the
Authorization Server is implemented for the QGIS DCS plugin.

B.5. DCS Server

The Data Centric Security Server implemented for Testbed 16 is an extension to the Testbed 15
implementation:

* JSON format including JWT and JWE was implemented to return NATO STANAG 4778 alike data
structures. The client can now ask for encrypted data in NATO STANAG 4778 encoded as XML
and NATO STANAG 4778 alike encoded as JSON, JWT or JWE.

* Cipher keys are included by reference (rather than inline as for Testbed 15)

As for Testbed 15, the OGC API Features is leveraged on a Geoserver standard data set. In order to
demonstrate the ability that the cipher keys change with the classification level of the data objects,

83

the following fictitious classification for the Geoserver standard data set is assumed:

* feature type poi is labeled TOP_SECRET

« feature type poly_landmarks is labeled SECRET

« feature type tiger_roads is labeled CONFIDENTIAL

+ feature type states is labeled CLASSIFIED
To access the protected data (feature types) four different users are available with different
clearance:

* user jane has clearance TOP_SECRET

e user bob has clearance SECRET

e user alice has clearance CONFIDENTIAL

* user joe has clearance CLASSIFIED

84

Home / Data Centric Security OGC AP| Features JSON | XML

Data Centric Security OGC API Features

This is the OGC Testbed 16 implementation of Data Centric Security Server.

To see the protected feature types, please login via the OGC Testbed 16 or OGC Portal IdP. After following a link for one of the protected feature
types, you have to login. Please search for 'OGC' and then select the 1dP you like to use.

With login from the OGC Portal IdP, you can only access the protected feature type 'states’.
Login via the OGC Testbed 16 IdP gives the following access:

* poi => jane/secret

+ poly_landmarks == jane/secret, bob/secret

» tiger_roads => jane/secret, bob/secret, alice/secret

+ states => jane/secret, bob/secret, alice/secret, jog/secret

Access the data

APl description Formal definition of the APl in OpenAP| 3.0
Documentation of the API

Provider Secure Dimensions
Email us
License NOME

Spatial Extent =
+

Leaflet | @& OpenSirestMap contribulars

Temporal Extent -

Expert information

Additional Links OGC API conformance classes implemented by this server

pawered by Idproxy powered by geopep powered by geopdp powered by mod_auth_openidc

Figure 35. Data Centric Security Server

When following Access the data [https:/ogc.secure-dimensions.com/dcs/collections], the feature types from
above are marked (protected) and a click on the feature type triggers the login via the
Authorization Server (AUTHENIX [https://www.authenix.eu]).

85

https://ogc.secure-dimensions.com/dcs/collections
https://www.authenix.eu

(5’ AUTHENIX

Find your login provider

f Sign in with Faceb... G Sign in with Google & Loadall login prov...

OR
Type your organization name ...
® 2020 Secure Dimensions Terms Of Use Privacy Cookie Last updated 26.02.2020
GmbH Statement Statement

This project has received funding from the European Union's Horizon 2020 research and innovation programme un-
der grant agreement no 863463.

Figure 36. Authorization Server

After searching for the login organization 0GC the login via the 0GC Testbed IdP is required (login via
another provider will not return encrypted responses).

Enter your usemame and password

Afrikaans | Catala | Ce&tina | Dansk | Deutsch | ehAnvid | English | Espaol | eesti keel | Euskara | Suomeksi | Frangais | -y | Hrvalski | Magyar | Bahasa
Indonesia | taliane | B25E | Létzabusrgesch | Lietuviy kalba | Latvie®u | Mederands | Mynorsk | Bokmdl | Jezyk pelski | Porlugués | Portugués brasileira |
Romanests | pycoewi Rasik | Samegislla | Slovenséina | Srpski | Svenska | Torkes | isiXhosa | BEPY | BB | IsiZuly

Enter your usemame and password

Asarvice has requested you to authenticate yourself. Please enter your usermame and password in the form bealow.

Password
Login

Help! | don't remember my password.

Without your username and password you cannol authenticate yourself for access 1o the service. There may be someone that can help you. Consull tha
help desk at your organization!

Copyright © 2007-2018 UNINETT AS Al
o

Figure 37. Login via OGC Testbed IdP

After a successful login with one of the users above and the password secret, the protected data is
displayed in the preview mode. The links in the top right corner provide access to the NATO
STANAG encrypted responses.

86

Home / Data Centric Security OGC API Features / Data GeoJSON | GeoJSON+JWS | STANAG+JSON |
/ Manhattan (NY) points of interest (protected) / Items STANAG+JWS | GML | STANAG+GML

Manhattan (NY) points of interest (protected)

Points of interest in New York, New York (on Manhattan). One of the attributes contains the name of a file with a picture of the point of interest.

logout
Filter | Fdit
« | e Ill, » RIS NG SN
. [7 fa F &“:\. 7
T .‘ fs, 5 \\\& f ‘q (v
. i ! - o Uisthe italy <0
p0|.‘| | f :I. Franlmn g lf"“lsr:ru: (,' 9.;
id poi.1 S | ,“}“',q;‘? S ' el / af'f.f
{ 7 Y Teors % _; JCanal s > /]
NAME museam - ff S e, _és:r?‘f;{., /
} & A o B GiwaoNn
THUMBNAIL pics/22037827-Ti.jpg) ';&(\3 éf j"j ‘"ji“
MAINPAGE pics/22037827-L.jpg iy n;“:m;‘g‘” L .
T T sireet/ 4 5y ¥ - L -M“‘V-:;e‘ \
poi.2
id poi.2
NAME stock
THUMBNAIL pics/22037829-Tijpg
MAINPAGE pics/22037829-L.jpg
poi.3
id poi.3
NAME art
THUMBNAIL pics/22037856-Ti.jpg
MAINPAGE pics/22037856-L.jpg

Figure 38. Preview of protected data poi

B.5.1. Requesting encrypted data

Requesting encrypted data from the DCS Server can simply be done by following the links in the top
right corner:

* STANAG+GML returns the STANAG 4778 encoded and encrypted data in XML encoding. Each data
object is a feature instance encoded in GML

» STANAG+JSON returns the STANAG 4778 alike structure encoded in JSON. Each data element is an
encrypted feature instance encoded in GeoJSON.

* STANAG+IWS returns the STANAG 4778 alike structure encoded in JSON with digital signature (JWT
format). Each data element is an encrypted feature instance encoded in Geo+JSON.

* GeoJSON+JWS returns the digitally signed feature collection encoded in GeoJSON

STANAG+GML response

<?xml version="1.0"7>

<mb:BindingInformation xmlns:xsi="https://www.w3.0rg/2001/XMLSchema-instance.xsd"
xmlns:ds="http://www.w3.0rqg/2000/09/xmldsig#" xmlns:xmime=

“http://www.w3.0rg/2005/05/xmlmime"
xmlns:mb="urn:nato:stanaqg:4778:bindinginformation:1:0"
xmlns:slab="urn:nato:stanag:4774:confidentialitymetadatalabel:1:0"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-

utility-1.0.xsd"
xsi:schemalocation="urn:nato:stanag:4778:bindinginformation:1:0 4778.xsd">
<mb:MetadataBindingContainer xml:id="WFS">

87

<mb:MetadataBinding>
<mb:Metadata xml:id="STANAG4774">
<EncryptedData xmlns="http://www.w3.0rg/2001/04/xmlenc#"
Type="http://www.w3.0rqg/2001/04/xmlenc#Element">
<EncryptionMethod Algorithm="http://www.w3.0rg/2009/xmlenc11#aes256-gcm"/>
<KeyInfo xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<KeyName>ed2eeb63e-5442-4b6f-ad44c-3961e78f5985</KeyName>
</KeyInfo>
<CipherData>

<CipherValue>AZL9PyzefgF8Scj01gEn2SxcgtpF1Rvbr7Wxipvvz/Bz3kLIHPNpHBoolrqty3QY
X+hYnyYkRkATxLsxIZwYG/wAbkJOXGRXZSJ2GFzNkjb3ct49bgeunRgW81G16znw
u8IFgvQEIEheEkTjVZHT6s9Z0YZdMVE+9]ejRPKNZAFKpeRFL6Z2tifn767yKuHD
/KhxeoZoI9Ei9y5uQHSCzAs51981rIk2sakyyJt1HzW/qUAupb5EapkK+i9MBWKD
4BB1vOLlk1hXx5bXyF/RWbuCbae4volLbWATkbIk4PN6Gyzru5s1+brCzZEvnLgWUf
njp+nAD4Hr /AdXpqmLXj1IUx50kVM1LC1r4pnNARPNNbZ9VIWe4cmT2UA@IBUDB1
abG9jQP2pNaDMj fuURSNubnNQ+yyEKSOWIQfMYHEZz2mzJriokGwlCnbLeRR/vd/d
L1Y6Q6Y=</CipherValue>
</CipherData>
</EncryptedData>
</mb:Metadata>
<mb:Metadata xml:id="FeatureType" xmime:contentType="application/xml">
<EncryptedData xmlns="http://www.w3.0rg/2001/04/xmlenc#"
Type="http://www.w3.0rqg/2001/04/xmlenc#Element">
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#aes128-cbc"/>
<KeyInfo xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<KeyName>3d2e5291-a723-49d0-8881-338bab64a2a4</KeyName>
</KeyInfo>
<CipherData>

<CipherValue>s5RIjtrqF4AbFWbNuhuMUkbF8gy@fhvVxVXVikGbk4LBVjdK9rRLxTbiobwbLfIs
VjNaFruAlI5avx7+zJHRguP8E09JQvEhDF+8mC5Wv2zaokRUtogphF/y0akMTqUK
ePFOhtw4427U6sbGGGmt 1xkXtz@VLeENHYXS@syIr/b/IxhFrGNBp46bZXQuSAP9
AWCfeeOAbVSN7hjkFhtAKRLP91+SfTHTMv72ET+NkhMTVm5A0Wh7wIeTUcu8Z0gW
p+yM6K+6PEGOBT r SKkCnStMAGDOOk+B3zhcaTyP8rY8hd1dVIqmgZSixuvVqbiQl
URE4K911doK4oDk4+wlrGxuE+VzKZ3N+hyYveKDvjqFxE+b141XaxN/bvcf5o7zf
35mpOwLFVrQZKsydIxKRSFs2nRKxd8gWTk5Q00WbmQWG1MS9pBI7WsZbH1B+gr3M
E8T4pD02DFkxf8eB57FKH+4Yte1u@H4d3UWheoPjCPAQAT/TZZRiX312jqgbxdC5
1d1dfoSha5HOkNYdrc3oi6eoqIX7SpawF@rVP+EB5yWaldtp@XJ2veLKhAY39ybw
Y8P+0K6TxuFvUspYFnsFZ180e34W66eSqX3RFzBUkT5KNNe4ieNDGvX4ax1XENjH
+Q+LgrtoCFpqZiQ2XXsNudJducnGypfSi0fY2VrEUIMoj4+r7E42sTNSM/5UTTPy
@DOntYg2NkKJI9ImBqhKVVghj6CHwg2aqbTtv3aftIvkKKI00SqsGdrNG2sEal+Pc9i
DWObTpIaNna43kZ7dWeHzfjoZfDoHmycS/Q11EkaobYb0xsz0h1srgBB3QPvuAG7
QQOT/vQ2qpgYLhCnCVBSLOPES0TtC73VIMMygZIzuGsQevbDe2sgHT9HhiD/41fm
t7GYPjXogeR489EVdIdfAUUq2wzhmE2jugix0GwoRRXq93EQD3tyhn7ECxv5fsOm
65B1bQvwhkHiAcZMXC6IpjFqltu24vpNOXPgkalZWR6jr1tWz5/tL/RUSL2hwi0+
62E1FJzyaz8BTocuV5FupRwbjAwZ4mAqFtahglIgXQDxTuD5KJay@uuzH8KY/kja
eU+uRuc2fdo3nTh+alBUBg5qEHYY4Lg+srki6Q/oWRup4vw3ePa9QMrigBQa3mXP
FIzQcEeyIEBOizi+ZaGugozf3G++5v8kFaamVTXnPSFt390ESSj0+dkGwP9oAbML
iMIWID319yzozHsFGshfOrwix5bJ4V+ET5LAGk4yX11fyCmdT99Y1ZQKVYSkxyMz
MbRGi+WwDpYBP5p8tWjTg4V4wtoILWTkyv10FU/BOgPZRxnN60wOSBUrbn5cGkHr

2jz8]9BRWtItETUSWVTwOg==</CipherValue>
</CipherData>
</EncryptedData>
</mb:Metadata>
<mb:Data>
<EncryptedData xmlns="http://www.w3.0rg/2001/04/xmlenc#"
Type="http://www.w3.0rqg/2001/04/xmlenc#Element">
<EncryptionMethod Algorithm="http://www.w3.0rg/2009/xmlenc11#aes256-gcm"/>
<KeyInfo xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<KeyName>caea4408-5115-4405-badd-ff150ccedfba</KeyName>
</KeyInfo>
<CipherData>

<CipherValue>Hqg0a3yJKbowdMGTzFL8D+03/WEPAxZVwMtKY4i+nf7UHOWTWL1C/6GkmWkQ91j+H
r/Aadbel73yFwr fEWN3EOtZeP11U@BhOK31pfXEsjhrwyUfraRFwqIwGvwp3t2+
d/8aciab9+6j6g6Naw50US/+cSSgIc8sTPP58PQGspZiDA6GMDNT+Lv5EBIeSELY
@rHNRcVDWI170yM2y+COuMM@eolpt/cDLyh5NEbBSI9bvn+jXT1cLh110Z48amevq
0Y8LoA4ce7zMXzBsMfNjVASp0/08iaxhAA2i1KFmLhUVS3JE6HV6Z+wVcj3H/wN1
fFyN9A+yo3vzp@KiFCx90fhOwMWWo20/30Ybwpa2k9XIfSwoktSFLtcz50PmwpQT
g+1i1ky0AHAghnLRR53kTXs0b7GxFm81i1K/gie1fpSeRhPBIKFoQYbKr3atTevIzz
TeCwUXh8Xs4Gkp8joSe//fdJc@9sfoLBArN3rthFg7q/Xrp/0Opvel1KVaCUCrQYsY
kFoRJ/+5RztexfhXs1EY1rfkBaUwpmGl/810Z7/D7+FIQZLOKsvNBcDDgkbwITc1
bVt4sA8TrpC+yTHVOXNEWrC6EP2t1alzxJULKd14vwj12XKVqUIx1TkBp8byXi03
bf@tIy7R8n2fQELOEVAA/HIry7pN3dwlIQw2N5Nx1194FI17jG8/nTj6h3z/KOcRT
iLosnyRqAESNoPuf4qVIwsAu1LcPdyY6bb3rRMZBcdDv2/rMAQK/+1YpBLAkGOW]
PIN6pXAECc7mwfiBfL8IsLbaA9UHt7rwLottUWSUH2q@1XAodXWiukJObd7zHQUW
WWHMu3zCXBtBK3TvNKVOwYJ1dEEVZPg208sQ/0pjPshUsQ5ySq@46974q5PpB3c/
7C2TrnK2wbGLALWLH/311y@VOFtz0DbbFCRjyMHuOqEeYBQ/qadsEy5gBi+ZLgSh
L8cSVy6Gi+dxPkQ7zUdQL4w6UKBx88PDpJAFkjrAT165dGp/UXNsTtb6Uj3AGuT3
KTVV61mpN9pVBxuASq7Qwe3n3z6eATgv@3X0Q5crhBOb168CLYYGTcjuoaCNEGme
kQQeFj9sCfOwSKx8/gc9Atq2CEAR2LEmSMoL zPW4dZyVdI8RXEC5/b6eznWohjIUE
qTMsrMJYvhz7WFqY21099n0sUgwE/RGGdZUXYxn2mNogWjqgbwIkkH5++WoW217
hT1mHLBx35xI4rmWexBAZjuMIGISAVu9eNn4hhbbG2+wukpL+EicBPzKmk8QsNY1
8h0SXL@2V7jXxrPITHoocmU9XPIpr7D6tYhAn25mFcXiN5wiynNjh8VicAUg4S3mr
S5LjjZ5P007WNahcYABpWHT86Ykw/usBbtkDohwevF8FTpalDetb5JYGC2K1moFs
Sn1Naxp5XQ==</CipherValue>
</CipherData>
</EncryptedData>
</mb:Data>
</mb:MetadataBinding>
</mb:MetadataBindingContainer>
<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-
20010315"/>
<ds:SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal"/>
<ds:Reference Id="id" URI="#WFS">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rqg/2000/09/xmldsig#enveloped-
signature"/>
</ds:Transforms>

<ds:DigestMethod Algorithm="http://www.w3.0rqg/2000/09/xmldsig#shal"/>
<ds:DigestValue>ywlTa+g5URZREK68RIsVyIMVTII=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>

<ds:SignatureValue>U7BjCkr8DIOm7CWVM7EMDCiol3b@Eavj/kQIJUFi4WA++nmTwHAFNTYLL/STwAL1
jeLn7g2bchE6@20jE7q8/e850sZEz/LRmXpWInBg8K1qzPm7y/80szZTASmemnUa
6SuP70kvKRaTeA9f4j77QS3n1zvP0O3krXsk+Sj5HZye3mF91GcoMOZz5TBDRk6Z5]
wfrSBalLGkd/@wVE2czHC6ctnivVneVNIR83z4cTjHik3uJoAGSQsEHPV117rUTba
hoFfrV/2T604KKUSNQCX82U7q61z1kb8WSHK2IqEAAUC9++gscBHAt0edc7wlix0
WfIdYBUiKCxffVmchjvlxA==</ds:SignatureValue>
<ds:KeyInfo>
<ds:KeyName>Dr. No</ds:KeyName>
<ds:X509Data>
<ds:X509SubjectName>CN=Andreas Matheus,0U=Secure Dimensions GmbH,0=Secure

Dimensions GmbH,L=Munich,ST=Bavaria,C=DE</ds:X509SubjectName>

<ds:X509Certificate>MIIDuTCCAqGgAwWIBAgIEYpLIdjANBgkqhkiG9w@BAQsFADCB]jDELMAKGATUEBhMC
REUxEDAOBgNVBAgGTB@JIhdmFyaWExDzANBgNVBAcTBk11bm1jaDEfMBAGATUEChMW
U2VjdXJ1IERpbWVuc21vbnMgR211SDEfMBAGATUECXMWU2VjdXITIERpbWVuc21v
bnMgR211SDEYMBYGATUEAXMPQWSkemVheyBNYXRoZXVzMBAXDTETMTAYNTEONDEw
MVoXDTE2MDEyMzE@ONDEwMVowgYwxCzAJBgNVBAYTAKRFMRAwDGYDVQQIEwdCYXZh
cm1hMQ8wDQYDVQQHEwZNdW5pY2gxHzAdBgNVBAOTFIN1Y3VyZSBEaW11bnNpb25z
IEdtYkgxHzAdBgNVBASTFIN1Y3VyZSBEaW11bnNpb25zIEdtYkgxGDAWBgNVBAMT
DOFuZHI1YXMgTWF@aGV1czCCASIwDQYIKoZIhveNAQEBBQADggEPADCCAQoCggEB
AJBxrjwhMmOGnSKT4DLsOx+R+c4dN3gA74/03NdsxUdy2r6QB65AVF8Rm3YF5ply
Hzdr1f43I0bjOHK2yRn6p@tXpc5yYwBGd3tZMGTkyj4qhqqy/ugdLxYy4HYfCXE/
ec9UOTCDu7vfkbvmEfg8V@M2DfT6t5XnvFZmkUkSA14L4vQIPIthsFLyJXg2nN1h
t0MQeBWxc0zbogbEBAB7qalyumlrrIojksHd9Tb40m/BIp+IxcocRjGmSq7XoKZ1
GuXmWXSnrc877AnET/+KbeadzqH+0044zP2GOXdCCMiKtL7nxqIAfwucp3SEGtqH
XGNv61RGsqihQbt1bhRkprcCAwEAAaMhMB8wHQYDVRAOBBYEFIVLBZDvNUo/OX9F
MKRLz70FaUXXMA@GCSqGSIb3DQEBCWUAA4IBAQCA7FkGIOEOkIPr4yjCT8HxIvAd
1zNW539t1/SVYe4ducBm41523G6P0KvzokVHbS30I2H1Nd2FoQL9s2DMPN2ag9Q3
myzI8E9x8dowNKhaupmTJI/Edneqnp7pr/8/0612qBXTf00T4j8QPImZxUreqC+x
TCV9GCO0XuIVpBM6sGbE1FfjglxLs3HO7kBH1a78WAb8EyZGvIaoHCsqoIE+A/L9
e++xrYO9TN/wjIKrv6651RF3XG+WHjO1rUvz1PZzNHbLykqS048DhDc/ImaadiqZ
cNFF8NBHOLz1csSo+GpeEnSIBKNCYwxStWI+dFWoHQxwyHrkn+0m+E1Q6/2w</ds: X509Certificate>
</ds:X509Data>
</ds:KeyInfo>
</ds:Signature>
</mb:BindingInformation>

The response is a NATO STANAG 4778 encoded XML instance document inside element
<mb:BindingInformation>. The entire response is digitally signed (<ds:Signature> element). Each
feature is included in the <mb:Data> element along with metadata. The response above contains two
encrypted metadata elements where the <mb:Metadata xml:id="STANAG4774"> element contains the
NATO STANAG 4774 metadata and the <mb:Metadata xml:id="FeatureType"
xmime:contentType="application/xml"> element contains the XML Schema for the data structure of
the included feature (DescribeFeatureType response with WFS 2.0). The data and the two metadata
elements are encrypted with different cipher keys. The references in the response can be resolved

90

via the Key Management Server (/dcs/{key_id}) endpoint as described above.

STANAG+]JWS response

eyJhbGci0iATUTMyNTYiLCAia21kIjogIkRyLiBObyIsICJIjdHki01A1YXBwbG1jYXRpb24vc3RhbmFnK2pzb?
4ifQ.ewogICAgINR5cGUi0iATUTRBTkFHNDc30CIsCiAgICAidGltc3RhbXAi0i1AiMjAYMCOXMCAOXM1QwOToxM
TozM101LAogICAgIm51bWI1c1I1dHVybmVkIjogMSWKICAGICIudW11ZXINYXRjaGVkIjogNiwKICAgICIsaW5
rcyI6IFsKICAgICAgICB7CiAgICAgICAgICAgICIocmVmIjogImh@dHBzO1wvXCIvZ2Muc2VjdXI1LWRpbWVuc
21vbnMuY29tXC9kY3NcL2NvbGx1Y3Rpb25zXCOwb21cL210ZW1zP2xpbW1OPTEMZj1zdGFuYWerandzImt1leV9
jaGFsbGVuzZ2U9a2V5X2NoYWxsZW5nZV9tZXRob2Q9IiwKICAgICAGICAQICAgINI1bCIGICIZZWXxmIiwKICAQI
CAgICAQICAQINR5cGUi01A1YXBwbG1jYXRpb25cL3NAYW5hZytqd3MiLAogICAgQICAGICAGICAIdG1AbGUI0TA
1VGhpcyBkb2N1bWVudCIKICAgICAgICBILA0gICAgICAgIHSKICAgICAgICAgICAgImhyZWYi01AiaHROcHMEX
C9cL29nYy5zZWN1emUtZG1tZW5zaW9ucy5jb21cL2RjcTwvY29sbGVjdGlvbnNeL3BvaVwvaXR1bXM_Zj1zdGF
uYWerandzImxpbWLOPTEmb2Zme2VOPTEMa2V5X2NoYWxsZW5nZT1rZX1fY2hhbGx1bmd1X211dGhvZD@1LAogI
CAgICAgICAgICAicmVsIjogIm51leHQiLAogICAgICAGICAGICATdHIwZSI6ICIhcHBsaWNhdGlvblwve3RhbmF
nK2p3cyIsCiAgICAgICAgICAgICI0aXRsZSI6ICI0ZXhOIHBhZ2Ui1Ci1AgICAgICAgfSwKICAgICAGICB7CiAqgl
CAgICAQICAQICIyZWwiOiA1YWx@ZXJuYXR1IiwKICAgICAGICAGICAgImhyZWYi0i1A1aHROcHM6XCIcL29nYy5
zZWN1emUtZG1tZW5zaW9ucy5jb21cL2RjcTwvY29sbGVjdGlvbnNcL3BvaVwvaXR1bXM_Zj1zdGFuYWerandz]
mxpbW1OPTEmIiwkKICAgICAgICAgICAgInR5¢cGUi01ATYXBwbG1jYXRpb25¢cL2d1bytqc29uliwkICAgICAGICA
gICAgInRpdGx1IjogI1RoaXMgZG9jdW11bnQgYXMgR2VvSINPT1IKICAGQICAGICBILA0gICAgICAGIHSKICAQI
CAgICAgICAgINI1bCI6ICIhbHR1cm5hdGU1LAogICAGICAGQICAGICA1aHI1ZiI6ICIodHRwezpel Twvb2djLnN
1Y3VyZS1kaW11bnNpb25zLmNvbVwvZGNzXC9jb2xsZWN@aW9uc TwvcGIpXCIpdGVtczImPXNOYWS5hZytqd3Mmb
G1taXQIMSYiLAogICAgICAGICAGICATdHIWZSI6ICIhcHBsaWNhdGlvblwvZ2VvK2p3cyIsCiAgICAgICAGICA
9ICJ0aXRsZSI6ICIUaG1zIGRVY3VtZW50IGFzIGRpZ210YWxseSBzaWduZWQgR2VvSINPTiIKICAGICAgICBIL
AogICAgICAgIHSKICAgICAGICAGICAgInI1bCI6ICIhbHR1ecm5hdGUiLAogICAgICAGICAGICAIaHI1ZiI6IC]
odHRwezpelL Twvb2djLnN1Y3VyZS1kaW11bnNpb25zLmNvbVwvZGNzXC9jb2xsZWNOaW9uc Twve@IpXCIpdaVte
z9mPXNOYW5hZytqd3MmbG1taXQIMSYiLAogICAgICAgICAGICATdH1wZSI6ICIhcHBsaWNhdGlvblwve3RhbmF
nK2dtbCIsCiAgICAgICAgICAQICI0aXRsZSI6ICIUaG1zIGRvY3VtZW50IGFZIFNUQUSBRYArIEANTCIKICAQI
CAgICBILAogICAgICAGIHSKICAGICAGICAGICAGINI1bCI6ICIhbHR1em5hdGU1LAogICAgICAGICAGICA1aH]
1Zi16ICJodHRwezpcLTwvb2djLnN1Y3VyZSTkaW11bnNpb25zLmNvbVwvZGNzXC9jb2xsZWNO@aW9uc TwvcGIpX
C9pdGVtczImPXNOYW5hZytqd3MmbG1taXQIMSYiLAogICAgICAGICAGICATdHIWZSI6ICIhcHBsaWNhdGlvblw
veG1sK2dtbDtjb250ZW50PWdtbDtwemImaWx 1PVwiaHROcDpcL 1wvd3d3LmIwZW5naXMubmVOXCIkZWZcL3Byb
2ZpbGVeL29nYTwvMi4wXCOnbWwtc2YyXCI7dmVyc21vbj0zLjIcIiIsCiAgICAgQICAgICAQICIAaXRsZSIHIC]
UaG1zIGRvY3VtZW50IGFzIEANTCIKICAQICAQICBILA0gICAgICAgIHSKICAQICAGICAGICAgInI1bCI6ICIhD
HR1cm5hdGU1LAogICAgICAQICAQICAiaHI1ZiI6ICJodHRwezpeLTwvb2djLnNTY3VyZS1kaW11bnNpb25zLmN
vbVwvZGNzXC9jb2xsZWN@aWI9uc TwvcGIpXCIpdGaVtezImPXNOYWShZytqd3MmbG1taXQIMSYiLAogICAgICAgI
CAgICAidH1wZSI6ICIAZXh@XC90dG1sIiwKICAgICAGICAGICAGINRpdGXx1IjogI1RoaXMgZG9jdW11bnQgYXM
gSFRNTCIKICAQICAQICB9CiAgICBdLAogICAgIm9iamVjdHMi0iBbCiAgICAgICAgewogICAgICAgICAQICAIT
WVOYWRhdGEi01B7CiAgICAgICAgICAgICAGICA1Q29uZmlkZW50aWFsaXR5SW5mb3JtYXRpb24i0iB7CiAgICA
gICAgICAgICAQICAQICAgI1BvbG1jeUlkZW50aWZpZXIi01A1VEIXN1IsCiAgICAgQICAGQICAGICAGICAQICAQI
kNsYXNzaWZpY2F@aW9uIjogInRvcF9zZWNyZXQiCiAgICAgICAgICAgICAgICBILA0gICAgICAGICAgICAGICA
gIkNyZWF@aW9uRGFOZVRpbWUi0iAiMjAyMCOXMCOXM1QWOToxMTozM101CiAgICAgQICAGICAGIHASCiAgICAgI
CAgICAQICIEYXRhIjogImV5SmhiR2NpT21BaVpHbH1JaXdnSW1WdV15STZIQ@pCTWpVMLEWSKRMVWAUT1RFeUl
pd2dJbXRwWkNINk1DSmtPR1ptWTINeU15MHdPVGRpTFRRMV1tUXRZbU5STVMweFpUYzFPRGxoWLRBMLTUUWLmU
S4uazVEOWIXNmFDUGI5N@dxd1BsQmIBZy5LY3NWenNValpsYjBjakF5Yk44UV]jdWd4WLFPOEVDWFFSNWTHLWL
oMGNGZTRsSkNaUWo@bTFYRAdzV19VcENVUXIyQ25LRkx2NHNj ZWZBc3ZZUTNXNEw2eGdUeGxRSE9jd19XYmFqd
3RxUWZzR210RkdhRWtwU@piSkhjT1ZYRktKYm1iVV9YaTZ@TDAHYnIqWVIr0XZjUXV1T1VXd3hNa135U210X10
4M2p2VnkzMGYzSWtpV1hBZ0Ox1cGQAadxpVUcyNTN2c2xWRTktM2dneU15WnZk TUA2TZzV3MEtRWmIMULFvRGxX Vb
T1DemJsTFRNUHRNOF96LXhuVV1UdFhHbHdQVEN20XBKUWYyWVNLem9GaDBXRUxYZj IDZGIhNmxxRWh5TWInX1F
rTUISRINGRKVSbE51SnUtVjRmemJ@UjVzVEFmTHR6TDVUUTM5cn1iNENVYmc4MOhNS@LTS1RBeDEWZTIXRTIPW
EFqa2pCM3JGd1JIsRmF@dWpPQOdkd3VHQkItc1Z0MVZtaFNyTDBUUDNHRkdZYXhNST1RBa21LdUdCQ2x3NEJESUR

FLTRuY1J6Y1VsQUx6TKNCQm5YRFpTdVdRUGINSnkzREZGUTpRN2diUFNhZjgiCiAgICAgICAgfQogICAgXQp9C
g.03GEWjM37ydZGYovsABi8ESECFjBNDojJgeHF3Pp-kS4yX@IFdDQENUdwFt1QHK1 fkeQG4-
sdAo8HfrcWIPdsXnWNtEdu5NGuCpzBNu7HbXdbTdDeCe4xuEnEQ-
5Dy23kGTuYJKkj6QeQYEIYV81whA2tqjukUzPt@DIqC-pS-RDBsOK63GsZRZUtZCuGbn-5GcqKPZ-
0C13nTqt8PDbN8QcKz2UK1jHoHmgOfGQRdbfqiNTNkN56f8g1pP12QkvoFsPMAVScGmL56-UHtDQgGF307dr -
H2q2WTPhuRi1kLRp9F8DVZv4yA3SP72MHImzP4kKxbWZvx5ZFQE-NNrrgw

Decoding the JWT header shows that the algorithm for the digital signature is RS256 and the key
name is Dr. No. The cty (content type) is expressed to be STANAG+]JSON.

JWT header

{
"alg": "RS256",
"kid": "Dr. No",
"cty": "application/stanag+json”

}

JWT payload

{
"type": "STANAG4778",

"timstamp": "2020-10-12T09:11:332",
"numberReturned": 1,
"numberMatched": 6,
"links": [
{
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?1imit=1&f=stanag+jws&key_challenge=key_challenge_method=",
"rel": "self",
"type": "application\/stanag+jws",
"title": "This document"
},
{

"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+jws&limit=1&offset=1&key_challenge=key_challenge_method=",

"rel": "next",

"type": "application\/stanag+jws",

"title": "Next page"

"rel": "alternate",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+jws&limit=1&",
“type": "application\/geo+json",
"title": "This document as GeoJSON"
}
{

"rel": "alternate",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi

92

\/items?f=stanag+jws&limit=1&",
"type": "application\/geo+jws",
"title": "This document as digitally signed GeoJSON"
¥
{

"rel": "alternate",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+jws&limit=1&",
"type": "application\/stanag+gml",
“title": "This document as STANAG + GML"
¥
{
"rel": "alternate",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+jws&limit=1&",
"type": "application\/xml+gml;content=gml;profile=\"http:\/
\/www.opengis.net\/def\/profile\/ogc\/2.0\/gml-sf2\";version=3.2\"",
"title": "This document as GML"
¥
{

"rel": "alternate",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+jws&limit=1&",
"type": "text\/html",
"title": "This document as HTML"
}
1,
"objects": [
{
"Metadata": {
"ConfidentialityInformation": {
"PolicyIdentifier": "TB16",
"Classification": "top_secret"

+
"CreationDateTime": "2020-10-12T709:11:33Z"

H

"Data":
"eyJhbGci0i1AiZG61lyIiwgImVuYyI6ICIBMjU2Q@IDLURTNTEYIiwgImtpZCI6ICIkOGZmY2MyMyOwOTdiLTQTY
mQtYmN1MSOxZTc10D1hZTA2YTQifQ. .k5D90W6aCPb97GqwP1BoAg.KcsVrsUkZ1b@cjAybN8QRcugxZQOBECX
Q15mG-
1h@cFe411CZQj4m1XGGsW_UpCUQr2CnKFLv4scefAsvYSSWAL6xgTx1QHOcv_WbajwtqQfsGmtFGaEkpSIbIHc
NVXFKJIbmbU_Xi6tL7GbrjY_k9vcQuuNUWwxMkRySit_z83jvVy30f3IkiWXAgLepd4kLiUG253vs1VGY-
3ggyMyZvdMM605wOKQZoLRQoD1UMICrb1LTgPtg8_z-
xnUYTtXG1wjTCvIpIQf2YSKzoFhOWELXf2CdbablqEhyMbg_QkMORFSjFERINbJuU-
VAfzbtR5sTAfLtzL5TSS9ryb4Cobg83HMKISITAx10e2qE20XAjkjB3rFvR1Fatuj0CGdwuGBOmsVNTVmhSrLo
TP3GFGYaxMITAkiKuGBC1w4BDIDE. TncRzbU1ALzNCBBnXDZSuWQSBgJy3DFFRZQ7gbPSaf8"

}
]

STANAG+JSON response

94

"type": "STANAG4778",
"timstamp": "2020-10-12T08:59:112",
"numberReturned": 1,
"numberMatched": 6,
"links": [
{
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?1limit=1&f=stanag+json&key_challenge=key_challenge_method=",
"rel": "self",
"type": "application\/stanag+json",
"title": "This document"
1
{
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+json&limit=1&offset=1&key_challenge=key_challenge_method=",
"rel": "next",
"type": "application\/stanag+json",
"title": "Next page"

"rel": "alternate",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+json&limit=1&",
"type": "application\/geo+json",
"title": "This document as GeoJSON"
e
{

"rel": "alternate",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+json&limit=1&",
“type": "application\/geo+jws",
"title": "This document as digitally singed GeoJSON"
Ifs
{

"rel": "alternate",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+json&limit=1&",
"type": "application\/stanag+jws",
"title": "This document as digitally signed STANAG in JSON"
i
{

"rel": "alternate",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+json&limit=1&",
"type": "application\/stanag+gml",
“title": "This document as STANAG + GML"
Iy
{

"rel": "alternate",

"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+json&limit=1&",

"type": "application\/xml+gml;content=gml;profile=\"http:\/
\/www.opengis.net\/def\/profile\/ogc\/2.0\/gml-sf2\";version=3.2\"",

“title": "This document as GML"

¥
{

"rel": "alternate",

"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=stanag+json&limit=1&",

"type": "text\/html",

"title": "This document as HTML"

}
1
"objects": [
{

"Metadata": {

"ConfidentialityInformation": {
"PolicyIdentifier": "TB16",
"Classification": "top_secret”

s

"CreationDateTime": "2020-10-12T708:59:11Z"

}

"Data":
"eyJhbGci0iAiZGlyIiwgImVuYyI6ICIBMjU2Q@IDLURTNTEYIiwgImtpZCI6ICI4N2RjODEQY102N2E2LTQwY
jgtOWMzNi0ONDZiMzkwZjk1YmIifQ..qrZPZESremlwevxM@XemgA. ru9PkdcEveUMPiyNVaubBM36tv2c1fEK
Nz@bMPseTf1djcsHdI13zN8d3dRbZwCbhgcGkaGES6Q080j jQeq1rRWhGG_2FVb1ttImIcKA4orBrsPEHI6aP8
yz-01TACHARKXIX_xw9efvpTXkpVyiubfGHVe6--wrC-IH_WOTSZW-tKOkAz8ud920NZKLh401xT3RmVbOuW-
w_BNcOaYBVubEBw_nII6J9ZFW30haHR32vAdaRhESYSats8jicVRNFvc5-M1K-
t4MNs90xqI703zZ5Kpf1AXuBgbv1tzIbyuIQrqazcpPdUGpkVZi4b5CfbFK1K]jyz040Ld7zKsIMIXgDXTYB7S1
Pg4xRCCvaCyypzMAI1YbR5Uo-Aqlzkn_08Qm1IDfA@71qJCInpcVmEdTPCniOuxugbWQYpqtRPL-
Q.1izLY7AmM10sMOnwI7CU7Sr-VoxwgNdSATrdtwp7IUZo"

¥
]

The response includes a JSON data structure with an array of (data) objects where each element
contains a Metadata and a Data element. The Metadata element above contains the unencrypted
description mimicking the STANAG 4774 structure. The Data element is in JWE encrypted format
using the compact serialization. Decoding the header shows:

{

"alg": "dir",

"enc": "A256(CBC-HS512",

"kid": "87dc814b-6736-40b8-9c36-446b390F95bb"
}

The alg=dir denotes direct encoding of the data with a symmetric cipher key where the key is not
included inline. This results in the two dots (..) separating the JWE header and initialization vector.

95

For inline cipher keys, the encrypted key would be included between those dots. The enc=A256CBC-
HS512 defines the cipher key algorithm (A256CBC) and the hashing algorithm (HS512) to compute
the authentication tag. The actual key kid=87dc814b-67a6-40b8-9¢36-446b390f95bb must be obtained
from the Key Management Server.

GeoJSON+JWS response

eyJhbGci0iAiUIMyNTYiLCAia21kIjogIkRyLiBObyIsIC]jdHki01A1YXBwbG1jYXRpb24vZ2VvK2pzb24ifQ
.ewogICAgInR5¢cGUi101ATRmVhdHVyZUNvbGx1Y3Rpb24iLAogICAgImxpbmtzIjogWwogICAgICAgIHSKICAQI
CAgICAQICAgImhyZWYi0iA1aHROcHM6XCIcL29nYy5zZWNTemUtZG1tZW5zaW9ucy5jb21cL2RjcTwvY29sbGY
jdGlvbnNcL3BvaVwvaXR1bXM_Zj1nZW8randzImt1eV9jaGFsbGVuZ2U9a2V5X2NoYWxsZW5nZV9tZXRob2Q91
iwKICAgICAgICAQICAgInI1bCI6ICIzZWxmIiwKICAgICAgICAGICAgINR5cGU101A1YXBwbG1jYXRpb25cL2d
1bytqd3MiLAogICAgICAgICAGICA1dG1@bGU101A1VGhpcyBkb2N1bWVudCIKICAGICAGICBILA0gICAgICAgI
HsKICAgICAgICAgICAgInJ1bCI6ICIhbHR1ecm5hdGU1LAogICAgICAGICAgICATaHI1ZiI6ICIodHRwezpeL 1w
vb2djLnN1Y3VyZS1kaW11bnNpb25zLmNvbVwvZGNzXC9jb2xsZWN@aW9ucTwvcGIpXCIpdGVtezImPWp3cyYil
AogICAgICAgICAgQICA1dH1wZSI6ICIhcHBsaWNhdGlvblwvZ2VvK2pzb24iLAogICAgICAgICAgICA1dG1ObGU
101A1VGhpcyBkb2N1bWVudCBhcyBHZWIKUA90IgogICAgICAgIHASCiAgICAgICAgewogICAgICAgICAgICAiIC
mVsIjogImFsdGVybmF@ZSIsCiAgICAgICAGICAgICIocmVmIjogImh@dHBzO1wvXC9vZ2Muc2VjdXI1LWRpbWV
uc21vbnMuY29tXC9kY3NcL2NvbGx1Y3Rpb25zXC9wb21cL210ZW1zP2Y9andzJiIsCiAgICAgICAgICAgICI0e
XB1IjogImFwcGxpY2F@aW9uXC9zdGFuYWeranNvbiIsCiAgICAgQICAgICAgICIAaXRsZSI6ICIUaGLzIGRVY3V
tZW50IGFzIFNUQUSBRYArIEpTT041CiAgICAgICAgTSWKICAgICAQICB7CiAgICAgICAGICAGICIyZWwi0iATY
Wx@ZXJuYXR1IiwKICAGICAgICAgICAgImhyZWYi01AiaHRAcHM6XC9cL29nYy5zZWNTemUtZG1tZW5zaW9ucy5
jb21cL2RjcTwvY29sbGVjdGlvbnNcL3BvaVwvaXR1bXM_Zj1qd3MmIiwKICAgQICAgICAgICAgINR5cGUi0iATY
XBwbG1jYXRpb25cL3N@YW5hZytqd3MiLAogICAgICAGICAgICA1dG1ObGUT101A1VGhpcyBkb2N1bWVudCBheyB
kaWdpdGFsbHkgc21nbmVkIFNUQU5BRyBpbiBKUA90IgogICAgICAgIHASCiAgICAgICAgewogICAgICAGICAGI
CAicmVsIjogImFsdGVybmF@ZSIsCiAgICAgICAgICAgICIocmVmIjogImh@dHBzO1wvXCIvZ2Muc2VjdXITLWR
pbWVuc21vbnMuY29tXC9kY3NcL2NvbGx1Y3Rpb25zXCIwb21cL210ZW1zP2Y9andz]iIsCiAgICAgICAgICAgI
(J0eXB1IjogImFwcGxpY2F0aW9uXC9zdGFuYWerZ21sIiwkKICAgICAgICAgICAgInRpdGx1IjogI1RoaXMgZG9
jdW11bnQgYXMgU1RBTkFHICsgRATMIgogICAgQICAgIHASCiAgICAgICAgewogICAgICAQICAgICAicmVsIjogl
mFsdGVybmF@ZSIsCiAgICAgICAgICAgICIocmVmIjogImh@dHBZzO1wvXCIvZ2Muc2VjdXITLWRpbWVuc21vbnM
uY29tXC9kY3NcL2NvbGx1Y3Rpb25zXC9wb21cL210ZW1zP2Y9andz]1IsCiAgICAgICAgICAgICIAeXB1Ijogl
mFwcGxpY2F0aW9uXC94bWwrZ21s02NvbnR1bnQ9Z21s03Byb2ZpbGUIXCIodHRwO1wvXC93d3cub3B1lbmdpcy5
uZXRcL2R1Z1wvcHIvZmlsZVwvb2djXC8yLjBclL2dtbC1zZj]cIjt2ZXIzaWIuPTMuMlwiIiwkKICAgICAgICAgI
CAgInRpdGx1IjogI1RoaXMgZG9jdW11bnQgYXMgRATMIgogICAgICAgIHASCiAgICAgICAgewogICAgICAGICA
gICAicmVsIjogImFsdGVybmF@ZSIsCiAgICAgICAgICAgICIocmVmIjogImh@dHBZzOTwvXCIvZ2Muc2VjdXI1L
WRpbWVuc21vbnMuY29tXCIkY3NcL2NvbGx1Y3Rpb25zXC9wb21cL210ZW1zP2Y9andzJ1IsCiAgICAgICAgICA
gICJ0eXB1IjogInRleHRcL2h@bWwilAogICAgICAgICAGICA1dG1@AbGUiI01A1VGhpcyBkb2N1bWVudCBhcyBIV
E1MIgogICAgICAGIHOKICAgIF@SCiAgICAibnVtYmVyUmVAdXJuZWQi0iA2LAogICAgIm51bWIlck1hdGNoZWQ
101A2LA0ogICAgInRpbWVTdGFtcCI6ICIyMDIwWLTEWLTEYVDA40jM20jQ4WiIsCiAgICATZmVhdHVyZXMi01iBbC
1AgICAgICAgewogICAgICAgICAgICA1dHIwZSI6ICIGZWFOdXI1IiwkKICAgICAGICAgICAgImlkIjogInBvaS4
xI1wKICAgICAgICAgICAgImd1b211dHI5Ij0gewogICAgICAgICAgICAgICAGINR5cGUi01A1UGIpbnQilLAogl
CAgICAQICAQICAGICAgImNvb3JkaW5hdGVzIjogWwogICAgQICAGQICAGQICAGQICAGQICAGICA3NCAWMTATLA0gICA
gICAgICAgICAGICAgICAQIDQwLjcwNzYKICAgICAgICAGICAgICAgIFAKICAGICAGICAGICAgfSWKICAgICAgI
CAgICAgInByb3BlcnRpZXMi0iB7CiAgICAQICAQICAGICAGICAI TKFNRSI6GICItdXN1YWAi1LAogICAgICAGICA
gICAgICAQITRIVUTCTKFITCI6ICIwaWNzXC8yMjAzNzgyNy1UaS5qcGeilAogICAgICAgICAgICAgICAgIk1BS
U5QQUdFIjogInBpY3NcLzIyMDM30DI3LUwuanBnIgogICAgICAgICAGICBICiAgICAgICAgfSWKICAGICAGICB
7CiAgICAQICAQICAQICI0eXB1IjogIkZ1YXR1cmUiLAogICAgICAGICAQICA1aWQiOiAicGIpLjIiLAogICAgI
CAgICAgICAi1Z2VvbWV@cnki0iB7CiAgICAgICAgICAGICAGICATdHIwZSI6ICIQb21udCIsCiAgICAgICAGICA
gICAgICAi1Y29vcemRpbmFOZXMi01BbCiAgICAgICAGICAGQICAGICAGICAgLTcOLjAXMDgsCiAgICAgICAGICAgI
CAgICAgICAgNDAuNzA3NQogICAgICAgICAgICAgICAgXQogICAgICAGICAgICBILA0gICAgICAGICAGICAicH]
veGVydGl1leyI6IHSKICAGICAGICAGICAGICAGICIOQUTFIjogInN@b2Nr IiwKICAgICAQICAGQICAGICAGICIUS

96

FVNQk5BSUwi0iAicGLjcTwvMjIwMzc4MjktVGkuanBnIiwkKICAgICAgICAgICAgICAgICINQUTOUEFHRSIOIC]
walWNzXC8yMjAzNzgyOSTMLmpwZyIKICAgICAgICAgICAgfQogICAgICAgIHASCiAgICAgICAgewogICAgICAgI
CAgICAidH1wZSI6ICIGZWFAdXI1IiwKICAgQICAGQICAGICAgImlkIjogInBvaS4zIiwKICAgQICAGQICAGICAgImd
1b211dH]5IjogewogICAgICAgICAGICAGICAgINR5cGU101A1UGIpbnQiLAogICAgICAgICAgICAGICAgImNVD
3JkaW5hdGVzIjogWwogICAgICAGICAGICAGICAGICAGICA3NCAWMTATLAogICAgICAGICAGICAGICAGICAQIDQ
wLjcwOTQKICAgICAgICAgICAGICAGIFOKICAGICAGICAGICAgfSWKICAGICAGICAGICAgInByb3B1enRpZXMi0
iB7CiAgICAgICAgICAgICAgICATTKFNRSI6ICIhecnQiLAogICAgICAgICAgICAgICAgITRIVUTCTKFITCIOIC]
waWNzXC8yMjAzNzgTNi1UaS5qcGeiLAogICAgICAgICAgICAGICAgIk1BSUSQQUAFIjogInBpY3NcLzIyMDM30
DU2LUwuanBnIgogICAgICAgICAgICBICiAgICAgICAgfSWKICAGICAQICB7CiAgICAgICAgICAgICI0eXB1Ijo
gIkZ1YXR1cmUiLAogICAgICAgICAgICA1aWQi0iAicGIpLjQiLAogICAgICAGICAGICAIZ2VvbWVAcnki0iB7C
1AgICAgICAgICAgICAgICATdHIwZSI6ICIQb21udCIsCiAgICAgICAgICAgICAgICATY29vemRpbmFOZXMi01B
bCiAgICAgICAgICAgICAgICAQICAgLTcOLjAWODYsCiAgICAgICAgICAGICAGICAGICAgNDAUNZEX0QogICAgI
CAgICAgICAgICAgXQogICAGICAgICAgICBILA0gICAgICAGICAgICAIcHIvcGVydGl1ecyI6IHSKICAGICAGICA
gICAgICAgICIOQU1FIjogImxveCIsCiAgICAgICAgICAgICAQICAiVERVTUIOQUIMIjogInBpY3NcLzIyMDM30
Dg@LVRpLmpwZyIsCiAgICAgICAgICAGICAgICATTUFIT1BBROUi101AicGLjcTwvMjIwMzc40DQtTC5qecGeiCiA
gICAgICAgICAgIHOKICAQICAQICBILA0gICAgICAgIHSKICAQICAGICAQICAgINR5cGU101A1RmVhdHVYZSIsC
1AgICAgICAgICAgICIpZCI6ICIwb2kuNSIsCiAgICAgICAgICAGICInZWItZXRyeSI6IHSKICAgICAGICAGICA
9ICAgICJ0eXB1IjogI1BvaW50IiwKICAgICAgICAQICAQICAQICIjb29yZG1uYXR1eyIbIFSKICAGQICAQICAQI
CAgICAQICAQICAtNzQuMDEXOCWKICAGICAGICAGICAGICAGICAGICA@MC43MDg1CiAgICAGICAGICAGICAGICB
dCiAgICAgICAGICAgIH@SCiAgICAGICAGICAGICIwemIwZXI@aWVzIjogewogICAgICAGICAGICAGQICAGIKSBT
UU101Ai1Y2h1cmNoIiwKICAgICAQICAgICAgICAQICIUSFVNQk5BSUWi01AicGljclwvMjIwMzc4MzktVakuanB
nIiwKICAgICAgICAgICAgICAgICINQULOUEFHRSI6ICIwaWNzXC8yMjAzNzgz0STMLmpwZyIKICAQICAQICAGI
CAgfQogICAgICAgIHOSCiAgICAgICAgewogICAGICAGICAGICATdHIWZSI6ICIGZWFOdXI1I1wKICAGQICAGICA
gICAgImlkIjogInBvaS42IiwKICAgICAQICAgICAgImd1b211dHI5IjogewogICAgICAGQICAGICAGICAgINRSc
GU101A1UG9pbnQiLA0ogICAgICAgICAgICAGICAgImNvb3IkaW5hdGVzIjogWwogICAgICAgICAgQICAGICAGICA
gICO3NCAWMDE1LAogICAgICAgICAgICAgICAGICAQIDQWL jexOTkKICAGQICAGQICAGICAGICAGIFOKICAGICAQI
CAgICAgfSwKICAgICAgICAgICAgInByb3BlcnRpZXMi0iB7CiAgICAgICAgICAGICAGICAITkFNRSI6ICImaX]
1I1wKICAgICAgICAgICAgICAQICIUSFVNQk5BSUwWi01AicGljcTwvMjg2NDA50DQtVGkuanBnIiwKICAgICAgI
CAgICAgICAGICINQUTOUEFHRSI6ICIwaWNzXC8yODYOMDkANCIMLmpwZyIKICAQICAGICAgICAgTQogICAgICA
9IHOKICAQIFOKfQo.g_PI7SdkdZEwdDqn50p98FjPyfIwFdQm_v_W4qCGYBIIEFZzU_v7nAwdEyKmWsXNoLVedF
-Jph804ULIjYmWo8YHLvjr1lbnuNfUUe_BPxdHhS5mdDKDGpS_KBaXEiPsDO6hQ_E@YpCDPOUNIT2n0KeAcB
-kKUB1GS1
-5xShfNUF@0gqHZG5BMhIrb7TMC1FqOA2YzyKmygLPDdiSYLBnSo5kauv]tG7VOFXkiQK8eRINe965rO0ahIUw
4Pb1bo_RIh6WbpvY2ruTh]Ib_TiFsRhQm_epEXKu5fse2xgcG4Hq9X_3INo9Xva9KI7IrWhD1nP9;j2WBgj4-
kEC20hXoUyg

Response Header decoded

{
"alg": "RS256",
"kid": "Dr. No",
"cty": "application/geo+json”
}
Response Body decoded
{

"type": "FeatureCollection",
"links": [
{

98

"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=geo+jws&key_challenge=key_challenge_method=",

"rel": "self",

"type": "application\/geo+jws",

"title": "This document"

"rel": "alternate",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=jws&",
"type": "application\/geo+json",
"title": "This document as GeoJSON"
¥
{
"rel": "alternate",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=jws&",
"type": "application\/stanag+json",
"title": "This document as STANAG + JSON"
¥
{
"rel": "alternate",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=jws&",
"type": "application\/stanag+jws",
"title": "This document as digitally signed STANAG in JSON"
I
{
"rel": "alternate",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=jws&",
"type": "application\/stanag+gml",
"title": "This document as STANAG + GML"
}
{
"rel": "alternate",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=jws&",
"type": "application\/xml+gml;content=gml;profile=\"http:\/
\/www.opengis.net\/def\/profile\/ogc\/2.0\/gml-sf2\";version=3.2\"",
“title": "This document as GML"
¥
{

"rel": "alternate",
"href": "https:\/\/ogc.secure-dimensions.com\/dcs\/collections\/poi
\/items?f=jws&",
"type": "text\/html",
"title": "This document as HTML"
}
1

"numberReturned": 6,

"numberMatched": 6,
"timeStamp": "2020-10-12708:36:487",
"features": [

{
"type": "Feature",
"id": "poi.1",
"geometry": {
"type": "Point",
"coordinates": [
-74.0105,
40.7076
]
Jrs
"properties": {
"NAME": "museam",
"THUMBNAIL": "pics\/22037827-Ti.jpg",
"MAINPAGE": "pics\/22037827-L.jpg"
}
+
{
"type": "Feature",
"id": "poi.2",
"geometry": {
"type": "Point",
"coordinates": [
-74.0108,
40.7075
]
Js
"properties": {
"NAME": "stock",
"THUMBNAIL": "pics\/22037829-Ti.jpg",
"MAINPAGE": "pics\/22037829-L.jpg"
}
b
{
"type": "Feature",
"id": "poi.3",
"geometry": {
"type": "Point",
"coordinates": [
-74.0105,
40.7094
]
e
"properties": {
"NAME": "art",
“THUMBNAIL": "pics\/22037856-Ti.jpg",
"MAINPAGE": "pics\/22037856-L.jpg"
}
b

99

"type": "Feature",
"id": "poi.4",
"geometry": {
"type": "Point",
"coordinates": [
-74.0086,
40.7119
]
}

roperties": {
“NAME": "lox",
"THUMBNAIL": "pics\/22037884-Ti.jpg",
"MAINPAGE": "pics\/22037884-L.jpg"

"type": "Feature",
"id": "poi.5",
"geometry": {
"type": "Point",
"coordinates": [
-74.0118,
40.7085

]
}

roperties": {
"NAME": "church",
"THUMBNAIL": "pics\/22037839-Ti.jpg",
"MAINPAGE": "pics\/22037839-L.jpg"

"type": "Feature",
"id": "poi.6",
"geometry": {
"type": "Point",
"coordinates": [
-74.0015,
40.7199

]
}

roperties": {
"NAME": "fire",
"THUMBNAIL": "pics\/28640984-Ti.jpg",
"MAINPAGE": "pics\/28640984-L.jpg"

100

B.5.2. OpenAPI

The DCS Server’s API is described using OpenAPI v3: https://ogc.secure-dimensions.com/dcs/api/

Data Centic Security - OGC API Features

This is the OGC Testbed 16 Data implementation of Centric Security Server. Some fealure types are protected.

‘You need to oblain an access loken from the OGC Testbed Token App. The available logins and their access rights are in tha OGC Testbed 15 Data Centric Security Enginaering Report:

= jane/secret => feature types ‘pol','poly_landmarks', 'states’, ‘tigar_roads’
» bobfsecret = feature types ‘poly_landmarks', 'states', tiger_roads'

= alicefsecret == lealure lypes 'states’, liger_roads'

= joslsecrel =- featuras lype 'states’

Hint: You need to login with the "OGC Testbed IdP".
The public key for validating responses can be found here

= JWA farmat
= PEM format

Andreas Matheus - Website
Send email to Andreas Matheus
NONE

Server

[s |

Figure 39. DCS Server described in OpenAPI

Some data endpoints are protected as illustrated below.

Authorize ﬂ ‘

101

https://ogc.secure-dimensions.com/dcs/api/

Data access o data (features)

|m /collections/archsites/items rotrieve feawres of Spearfish archeclogical sites feature collection

| m /collections/archsites/items/{featureld} reirieve a Spearfish archeological sites

|m f/collections/bugsites/items retrieve features of Spearfish bug locations feature collection

| m /collections/bugsites/items/{featureld} ratrieve a Spearfish bug locations

| m /collections/giant_polygon/items rsirievs features of World rectangle feature collaction

|m /eollections/giant_polygon/items/{featureld} ratrieve a Warld rectangle

|m /collections/poi/items retrisve features of Manhattan (NY) points of inferest {profected) feature collaction

| m /collections/poi/items/{featureld} retrieve a Manhatian (NY) points of interest (protectad)

| m /eollections/poly_landmarks/items retrisve f=atures of Manhattan (NY) landmarks fsature collsction

|m /collections/poly 1 Jitems/{ Id} retrievea NY)

[A SN CHEN D

|m /collections/restricted/items retrieve leatures of Spearfish restricted areas featurs collection

| m /collections/restricted/items/{featureld} retrieve a Spearfish restricled areas

|m /collections/roads/items retieve features of Spearfish roads feature collection

| m /collections/roads/items/{featureld} retrieve a Spearfish roads

|m /collections/states/items retriove features of USA Population featura collectian

|m /collections/states/items/{featureld} ratrisve a USA Population

|m /collections/streams/items reirieve features of Spearfish streams feature collection

| m /collections/streams/items/{featureld} retrieve a Spearfish streams

| m /collections/tasmania_cities/items retrisve features of Tasmania cifies feature collection

| m /ecollections/tasmania_cities/items/{featureld} retriove a Tasmania cities

| m /collections/tasmania_roads/items retrieve features of Tasmania roads featura collection

|m /collections/tasmania_roads/items/{featureId} retrieve a Tasmania roads

|m /collections/tasmania_state_boundaries/items retrieve features of Tasmania state boundaries feature collection

| m /collections/tasmania_state boundaries/items/{featureId} retrieve a Tasmania state boundaries

| m /collections/tasmania_water_bodies/items retrieve features of Tasmania water bodies feature collection

| m /eollections/tasmania_water_bodies/items/{featureld} retisve a Tasmania water bodies

|m /collections/tiger_roads/items retriove features of Manhattan (NY) roads (protected) feature collection

| m /eollections/tiger_roads/items/{featureld} retrieve a Manhattan (NY) roads {protecied)

Screenshot

Figure 40. DCS Server Data endpoints described in OpenAPI

Fetching features via the OGC API - Features endpoint for a protected feature type requires to
provide a valid access token (via the lock) and to submit two additional parameters, not common to
OGC APIL:

* key_challenge is the (optionally hashed) one-time secret that allows the client in later
communication with the Key Management Server to prove ownership of the cipher keys that

will be created and registered by the DCS for the request.

* key_challenge_method is the hashing method to be used to verify the key_challenge in later
communication with the Key Management Server. When using plain, the key_challenge and

key_verifier values are identical.

The following is an example request leveraging Curl:

102

curl -X GET "https://ogc.secure-
dimensions.com/dcs/collections/poi/items?key_challenge=secret&key_challenge_method=pla
in&limit=10&crs=http%3A%2F%2Fwww.opengis.net%2Fdef%2Fcrs%2F0GC%2F1.3%2FCRS84&bbox-
crs=http%3A%2F%2Fwww.opengis.net%2Fdef%2Fcrs%2F0GC%2F1.3%2FCRS84" -H "accept:
application/stanag+json" -H "Authorization: Bearer
adef6389a31d65cadbc@24d8208777648c4cdbed”

B.6. Conclusions

The DCS Server and the Key Management Server implemented for Testbed 16 demonstrate the
ability to encrypt geospatial data and metadata separately as denoted in NATO STANAG 4778. The
implementation illustrates the use of OGC API Features returning STANAG 4778 and 4774 encrypted
data in XML and JSON encoding. Data is encrypted from a clear data source (Geoserver default
data) with different cipher key strength, depending on the fictitious classification label of the
feature type. The cipher keys created by the DCS Server can be obtained with the client application
via the key identifier. Access control at the Key Management Server ensures that only a legitimate
user / client combination can fetch the cipher key to decrypt the data or to delete (inactivate) a
cipher key.

The Key Management Server supports encrypted responses to ensure data centric security at the
highest level. This requires the use of public keys that can be registered by a user, client or the DCS
server.

To ensure that all components (client, DCS server and Key Management Server) are able to share a
common security context, Bearer access tokens are used from a common Authorization Server as
defined in RFC 6750. The use of OAuth2 and OpenID Connect interfaces ensure an easy-to-use API as
many SDKs exist in various programming languages.

103

Appendix C: Engineering Aspects for D146

This annex introduces the engineering aspects of the DCS component D146 (Key Management
Server) implemented for Testbed 16 by Helyx Secure Information Services Limited. In particular it
describes the architecture of the Key Management Server (KMS) and its interactions with clients.

C.1. Overview

Helyx decided to take an existing standard for key management services as a starting point for the
implementation of a KMS for DCS. Given the likely scenarios where DCS systems may be
implemented, it was felt that basing the KMS on an implementation of the OASIS Key Management
Interoperability Protocol (KMIP) Specification 2.x was of particular interest, given the strong
protection for keys afforded by KMIP-compliant Servers. KMIP defines standard interfaces for both
clients and servers and categorizes them in terms of basic and advanced cryptographic clients and
servers. As this is a research task, a hardware KMIP server was not available to the team, so a
software implementation in the form of PyKMIP Server was selected as the back-end key
management server with a database.

As well as providing a Server module, PyKMIP also provides a Client module that simplifies the
interactions with a KMIP Server. Client and Server communications are protected using mutually
authenticated TLS. This client is used as part of a Python Flask application that uses the Connexion
framework that handles HTTP requests based on OpenAPI Specification of the API described in
YAML format. Connexion maps the endpoints to our underlying Python functions; this is preferable
to other tools that generate the specification based on the underlying Python code. Connexion also
validates requests and endpoint parameters automatically, based on the specification, and supports
API versioning as well as providing a Web Swagger Console Ul

[annex helyx kms architecture] | images/annex-helyx-kms-architecture.png

Figure 41. KMS architecture overview

C.2. Key Management Server (KMS)

The implementation of the interface and functionality for the KMS is based on the requirements
derived from the mobile / server use case. A number of different interface categories exist:

* Managing symmetric keys that can be used to encrypt/decrypt data and metadata
* Encrypt and MAC data and decrypt encrypted data

* Managing RSA key pairs that can be used to sign encrypted data.

C.2.1. Managing Symmetric Keys

The current implementation allows a client to create, read and delete a symmetric key.

104

‘ {90 /Key Create a new key

[EEE /vey/tkey_ia) oelee oy

‘ /key/{key_id} Geta key

Figure 42. Symmetric keys overview

C.2.1.1. OpenAPI Implementation

To create a symmetric key, the KMS requires an algorithm and an appropriate length for that key.
The KMS also allows giving a name (an identifier) to the key being created and an intended usage
for that key. If the user intends to use the other functionality of the KMS then a usage must be

supplied in line with the expected use of the key.

The return value of this endpoint is a JWK containing only the key ID.

/Key Create a new key

This is an example operation to show how security is applied to the call
Parameters

Name Description

algorithm * auired
string The algorithm used to generate a new key

o

|ength * required
Length, in bits, of the key.

integer
(query)

128
name
string The name to give the key. Default: 'None'
(query)

key 1

Send empty value

usage

array[string] Descriptions for the use of the key created. Ctl+click to select multiple.

{query)

SIGN
VERIFY
ENCRYPT
DECRYPT

Send empty value

Request body
Store pre-generated symmetric key

{
"symmetric_key”: "string”
}

Cancel

application/json w

Clear

Figure 43. Create symmetric key

Alternatively send a cURL request similar to the following:

105

curl -X POST "https://kms.example.ogc.org/Helyx-
SIS/KMS/1.0.0/key?algorithm=AES&1length=128&name=key_1&usage=ENCRYPT, DECRYPT" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d "{\"symmetric_key\":\"string\"}"

To elicit a response similar to the following:

{
"kid": "20123"
}
C.2.1.2. Get key

The symmetric key’s ID is required in order to get the key as a JWK. Within that JWK there is a use
parameter in line with RFC 7517.

/key/{key_id} Geta key

This is an example operation to show how security is applied to the call.

Parameters
Name Description
key_id * reauired
integer ID of the key
(path)
20123
wrapping_id i)
wrapping_id

string

(query)
et Send empty value

wrapping_method [-
string
(query)

Send empty value

e
Figure 44. Get symmetric key

Alternatively send a cURL request similar to the following:

curl -X GET "https://kms.example.ogc.org/Helyx-
SIS/KMS/1.0.0/key/20123?wrapping_id=&wrapping_method=" \
-H "accept: application/json"

To elicit a response similar to the following:

{
"k": "zdKgK31iVW42X-0rNbJ98PQ",
"kid": "20123",
"kty": Iloctll’
"USQ": "enC“
}

106

C.2.1.3. Delete key

This only requires the key ID of the symmetric key to be deleted and will return an empty 204
response if successful.

/key/{key_id} Delete a key

This is an example operation to show how security is applied to the call.

Name Description
key_id * reauired
integer ID of the key

(path)
20123

Figure 45. Delete symmetric key

Alternatively send a cURL request similar to the following:

curl -X DELETE "https://kms.example.ogc.org/Helyx-SIS/KMS/1.0.0/key/20123" \
-H "accept: */*"

C.2.2. Managing RSA Key Pairs

The current implementation allows a client to create an RSA key pair, as well as to read and delete
their public and private key components.

‘ ol /key_pair Create a new key pair ‘

I /private_key/{private_key_id} Delete a private key

| /private_key/{private_key_id} Get a private key

I /public_key/{public_key_id} Delete a public key

| /public_key/{public_key id} Get a public key

Figure 46. Asymmetric keys overview

C.2.2.1. OpenAPI Implementation

Creating a key pair requires the algorithm and an appropriate length of the key. The server also
allows names to be specified for each key and an intended usage for each key. If the user wants to
use other functionality of the KMS, then the usage parameter should be supplied for the intended
use of the key.

The KMS will return JWKS containing both keys created. The first key will be public key and the
second key will be the private key.

107

m Shey_pair create a new key pair

This operation will create 3 asyMMeric key pair in the specification supplied. If the creabon & successhul the respanse will have the public key as the frst key in the jwics and the private ey will

be the second.

Parameters

Hamu

algorithm * s
atring

fquery)

length = i
Anmmger
Jquiry |

public_key_name
atrimg

fquirry)

private_key_name
atrimg

fquirry !

public_key_usage
array[string]

{quirry

private_key usage
array[atring]

fquirry)

Aequest bady

Bamicription

The algarithm uzed to generate a new key

Length, in bits, of the key. [Default: XXX)

2048

The name to give the public key. Default: 'None'
public_key_1

Sand ampty vl

The name to give the private key. Default: 'None”

private_key 1

Sand ampty vl

Descriptions for the use of the key created. Ctl+click to select multiple.

SIGM
VERIFY
ENCRYPT

Sand ampty vl

Descriptions for the use of the key created. Ctl+click to select multiple.

VERIFY
ENCRYPT

Send empty value

SEOre pre-Qenarated asy mmetric key pair

i

Enecute

Figure 47. Create asymmetric key

Alternatively send a cURL request similar to the following:

108

curl -X POST "https://kms.example.ogc.org/Helyx-
SIS/KMS/1.0.0/key_pair?algorithm=RSA&length=2048&public_key_name=public_key_1&private_
key_name=private_key_1&public_key_usage=VERIFY&private_key_usage=SIGN" \

-H "accept: application/json" \

-H "Content-Type: application/json" \

-d
"{\"keys\":[{\"d\":\"string\",\"dp\":\"string\",\"dq\":\"string\",\"e\":\"string\",\"k
\":\"string\",\"kid\":\"string\",\"kty\":\"string\",\"n\":\"string\",\"p\":\"string\",
\"g\":\"string\",\"qi\":\"string\"}]}"

To elicit a response similar to the following:

{
"keys": [
{
"kid": "21828"
Iy
{
"kid": "21829"
}
]
}

C.2.2.2. Get public key

The public key’s ID is required in order to get the key as a JWK. Within that JWK there is a use
parameter in line with RFC 7517.

/public_key/{public_key_id} Get a public key

This operation shows how to override the global security defined above, as we want to open it up for all users.

Parameters Cance I

Name Description

public_key_id * reavired

integer ID of the public key
(path)

21828
wrapping_id)
string wrapping_id

Send empty value

wrapping_method [- -
string
(query) Send empty value

Figure 48. Get public key

Alternatively send a cURL request similar to the following:

109

curl -X GET "https://kms.example.ogc.org/Helyx-

SIS/KMS/1.0.0/public_key/218287wrapping_id=&wrapping_method=" \

-H "accept: application/json"

To elicit a response similar to the following:

{
"e": "AQAB",
"kid": "21828",
"kty": "RSA",

n": "t6dZ02wgn19uZdgQT9qH5a3k_Bgch-4kmwtk1Yg8GYGET290200CQ-

0BR70fgpyOasqpsEi3FIdE]TrioVfepThtBnRy-mqiziJibmrajfIxGeNSdGg-

q2IxMwH23Vh81cSj1Zt90IvVP6GLKTNGjOkidZ6k5vbdExa-

n588y9hmHsbrpb1XyUb0sd7U1it_KHXkHMo_3DV52100yUw@culIuGWIeGE12CvRYBvoWbLgcI81Vidulz_PZom

WZz40D9811-

BogZfxMEc4fY5119B4Tx3WACT54RnvpXv3RUW5aazVCoVEXINE_EXGroeZKGa3mdyx2uwvgnwC65TivCxg",

use": "sig"

}

C.2.2.3. Delete public key

This only requires the key ID of the public key to be deleted and will return an empty 204 response

if successful.

m /public_key/{public_key id} Delete a public key

Parameters

Name Description

public_key_id * reauired
integer ID of the public key

(path)
21828

This operation shows how to override the global security defined above, as we want to open it up for all users.

Figure 49. Delete public key

Alternatively send a cURL request similar to the following:

curl -X DELETE "https://kms.example.ogc.org/Helyx-SIS/KMS/1.0.0/public_key/21828" \

-H "accept: */*"

C.2.2.4. Get private key

The private key’s ID is required in order to get the key as a JWK. Within that JWK there is a use

parameter in line with RFC 7517.

110

/private_key/{private_key id} Geta private key

This operation shows how to override the global security defined above, as we want to open it up for all users.

Parameters

Name Description

private_key_id * r=auired

integer ID of the private key
(path)

21829
wrapping_id)
string wrapping_id

(query)
Send empty value

wrapping_method [- -
string
(query) Send empty value

Cancel

Clear

Figure 50. Get private key

Alternatively send a cURL request similar to the following:

curl -X GET "https://kms.example.ogc.org/Helyx-

SIS/KMS/1.0.0/private_key/21829?wrapping_id=&wrapping_method=" \

-H "accept: application/json"

To elicit a response similar to the following:

111

{

"d": "wUVuM1FqG5F8aJ]11swpRHy4JUtPrKDD8vU64zswZtBkrkEHC _hCFz2raGed-
XvilaDe3L6_xn6_yn]Gio8Z4Z0L_9WKRMPBABkA4V1Wvk_qtoTHM1YxxP7zSqw21Wvob@EP@119_ak@dDtYkgN
g5EVQEnzYhBu7z1tyi3DpYD2gt_SnJZa-EyuTUvFiVtvj9Qhjigz_0Q0303xgXcf-
To_sxbmpXRD2W9BuMW3K7m16-7bOR02Zt55GKf30b30YOpoK04ZK4yuC1AjPLAOVShFUUXXHKLNXeGhE5feX1-
1Fjewt03Lky3q4ZToOfvrALQKHCvoaiBzSooz7W-Xt_8GQ",

"dp":

"4V766NrGo8pcFVQbfavArGkwXxxy99rATMQ810895179pezQF syNuWFwu330HpSb3950YHADEfbvj5M0gsvNk
UF4irwVVkh87D8q8rPLSTI9mj3F_gOwAlYv4ulHyebUpj_tLmRQ67shYC1vLqOSTMZ2Rx-
PCO5mqROFE21YHAU",

"dq":
"qyFcBR4KmbGMtx6R6cwq1WvbCm7gYAzY7n9W37rMSbZr6mD7stbowhQBLEGjVBAILYjXjKkkqecN8XQtZMaoYa
bcdIC2NyJbkTgmPQUyiSVeDtmYHTFNo35um42zU-XusLksZGfIv3iT-
0aBTIWveBt7KzPsLrCXy_YZp1SSuj3u",

llell: IIAQAB"’
"kid": "21829",
llktyll: "RSA“’

“n": "t6dZ02wgn19uZdgQT9qH5a3k_Bgch-4kmwtk1Yg8GYGEf290200CQ-
0BR70fgpyOasqpsEi3FIdE]TrioVfepThtBnRy-mqiziJibmrajfIxGeNSdGg-
q2IxMwH23Vh81¢Sj12t90]vVP6GLKTNGjOkidZ6k5vbdExa-
n588y9hmHs6rob1XyUb0sd7U1it_KHXkHMo_3DV52i00yUw@cuIIuGWIeGE12CvRYBvoWbLgcI81VidulUz_PZom
Wz40D98]1-
BogZfxMEc4fY5119B4Tx3WACT54RnvpXv3RUW5aazVC6VtXINE_EXGroeZKGa3mdyx2uwvgnwC65TivCxg",

"p": "Vybx5qgcuJEomw8Ivy1dC73sgZ3psvCapUjIgjyxD9iRvIcoY7F4-eCwgND_Ubw1g7t4gqfT4-
I10qchYYZ7zHrL3Q5Fq_h11HOAsHk11fFTNMW7pMIIKwZYkp@XuSVAEXjgk11WVL7nx790SFSL6zdAOR4gIWBL7
jJz6XAcwz_o",

"q": "obUY4JCTXXK1Nw6XMZ2YgB8mIe3I7NL4Ke21825T_gy6]-
7tp5aDt3ChxJ7Md61UN5zH6PVGhSqVLAXwKTUbGj2A6yKFaFQGxAQoEDLZJw_Cc-ulL81-
s1cyTxaXPqLIq9ptC-8822v85QswumhDS1-JKazXhY-M3VRcIgQY2380",

"qi":
"1RpUfbmPGGf8GYh1c1xqu8cfxgRzFFARIA_tWbWzDLFqluykkdygFcpnRvAapt1b6obofbIddRTwQrrT6IH1u
s8gv5-0_6Zh1E2-hi2acj2Yn7d0vLRdmBal-L7qzdYfzILDg8DCHrHfcZPQ76fIsKyFASx-
Smllthkam1HyFio",

use": "sig"

}

C.2.2.5. Delete private key

This only requires the key ID of the private key to be deleted and will return an empty 204 response
if successful.

112

m /private_key/{private_key_id} Delete a private key

This operation shows how to override the global security defined above, as we want to open it up for all users.

Parameters Cancel
Name Description

private_key_id * =avired

integer
(path)

ID of the private key

21829

Figure 51. Delete private key

Alternatively send a cURL request similar to the following:

curl -X DELETE "https://kms.example.ogc.org/Helyx-SIS/KMS/1.0.0/private_key/21829" \
-H "accept: */*"

C.2.3. Other Functionality

C.2.3.1. Encrypt

The underlying PyKMIP server currently only supports symmetric key encryption. This symmetric
key must have the encrypt usage mask associated to it.

The KMS allows for many different methods of encrypting data. These different parameters include
the block cipher mode, the padding method and the hashing algorithm. This allows for the user to
input their own initialization vector (IV) as long as it’s base64 encoded. If an IV is not supplied, the
server will return one automatically generated, also base64 encoded.

113

m fencrypt Encrynt some data

Encrypts some data suppled using the key

e

Hamu Darscription

u’_id & regulred
A The ID of the key used to encrypt the data

fquasy)

20123
block_cipher_mode i . . .
atring Block cipher mode to be used with the cryptographic algorithm.

fquary)
[cec -

Semnd empty value

padding_method . : . .
atring Padding method to use to pad the data during the oryptegraphic operation.

Fauisy)
FECSS -

Serd empty value
iv_counter_nance o .
aering The initialisation vector to be used when encrypting the data.

Fauisy)

YmFzZTYOZVI3jbZRIdGhpcw

Serd empty value

hashing_algorithm :
e Algorithm te use on the data

o [

Sariell &Py vl

hashing_length

Entager Length of hashing algorithm if applicable
quiry)
56
Sitfd armn Ly valus
— wimon

Data to be encrypted, basedd encoded
—

“plain_text": “SddvlGEgatvacion

e |
Figure 52. Encrypt data

Alternatively send a cURL request similar to the following:

curl -X POST "https://kms.example.ogc.org/Helyx-
SIS/KMS/1.0.0/encrypt?key_id=20123&block_cipher_mode=CBC&padding_method=PKCS5&iv_count
er_nonce=YmFzZTY0ZW5jb2R1dGhpcw&hashing_algorithm=SHA&hashing_length=256" \

-H "accept: application/json" \

-H "Content-Type: application/json" \

-d "{\"plain_text\":\"SSdtIGEgdGVhcGI0O\"}"

To elicit a response similar to the following:

114

{
"cipher_text": "A820fAGma-S7AFb6rpN6Pw"

}

C.2.3.2. Decrypt

The symmetric key that encrypted the data should also have the decrypt usage mask in order to
allow for the decryption of the data.

If the same parameters are sent to the KMS as was inputted when encrypting the original piece of
data, then the KMS will decrypt the cipher text to the original data. This also includes the IV,
whether it was supplied by the user or created by the PyKMIP server.

115

m fdecrypt Dwcrypt some data

Decrypts datas supplied using key

roametrs
Hamu Bancription
key_id * e

The ID of the key used to decrypt data

fntugar
fquary)

20122

block_cipher_mode
wtring
Iquary)

Block cipher mode to be used with the cryphographic algorithm.

[cec -

Sarsd @mply vl i

padding_method

atring
fquary)
PECSS w

Sl &mply walud

Padding method to use to pad the data during the cryptographic operation.

v_counter_nonce

R riny The initialisation wechor used during the encryption of the provided data

fquary

YmFzZTYOZIWSjb2RIdGhpow

Sarsd empty value

hashing_algarithm

wtrimg
o [

Sarsd empty value

Algorithm te use on the data

hashing_length
Entagar
fquary)

Length of hashing algorithm if applicable

256

Seinrell ALY vl

—

Encrypted data to be decrypted

Examples: [Medified value] -

{
“eigher_taxt”: “AEI0TAGE -3 TAF rpaERe——
¥

e |

Figure 53. Decrypt data

Alternatively send a cURL request similar to the following:

curl -X POST "https://kms.example.ogc.org/Helyx-
SIS/KMS/1.0.0/decrypt?key_i1d=20123&block_cipher_mode=CBC&padding_method=PKCS5&iv_count
er_nonce=YmFzZTY0ZW5jb2R1dGhpcw&hashing_algorithm=SHA&hashing_length=256" \

-H "accept: application/json" \

-H "Content-Type: application/json" \

-d "{\"cipher_text\":\"A820fAGma-S7AFb6rpN6Pw==\"1}"

To elicit a response similar to the following:

116

{
"plain_text": "SSdtIGEgdGVhcG90"

}

C.2.3.3. MAC

MACing data requires the key that is to be used have the MAC generate and MAC verify usage masks
associated to them.

This function allows several different versions of the HMAC algorithm to be used on the data.

J/mac MAC some data using a key

This operation will MAC the supplied data using the key provided that has the usage mask of mac and the cryptographic algorithm

Name Description

key_Id * reavired
integer
(query)

The ID of the key used to mac the data

21830

algorithm * reauired

string The MAC algorithm used on the data

(query)
HMAC_SHA256 ~
Reguest body application/json hd
Data to be MAC'd, base64 encoded
Examples: | Data ~

i
“plain_text": "SSdtIGEgdGVhcGIe"
1

Figure 54. MAC data

Alternatively send a cURL request similar to the following:

curl -X POST "https://kms.example.ogc.org/Helyx-
SIS/KMS/1.0.0/mac?key_id=21830&algorithm=HMAC_SHA256" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d "{\"plain_text\":\"SSdtIGEgdGVhcGIO\"}"

To elicit a response similar to the following:

{
"mac": "0ZnilHhU81J98VGEiIPPyqFQ2PDT08SxTCPP-q8gCu"

}

117

C.2.3.4. Sign

Signing data requires the private key that will sign them have the sign usage mask associated to it.

m [sign Sign some data

Sign data using a private key provided that has a usage mask that can do se

Parameters Cancel

Name Description

private_key _id * reauired
Sl The ID of the private key used to sign the data
fquery)

21829

block_cipher_mode
string
fquery}

Block cipher mode to be used with the cryptographic algorithm.

CBC -

Send empty value

padding_method
string

o [

Send empty value

Padding method to use to pad the data during the cryptographic operation

hashing_algorithm
string

o (swa -]

hashing_length
integer Length of hashing algorithm if applicable

The hashing algorithm used when signing the data. Default: SHA256

iquery)

256

Request body application/json A

Data to be signed, basefd encoded

Data o

i
. "plain_text": "S5dtIGEgdGWhcGIa™

e 1

Figure 55. Sign data

Alternatively send a cURL request similar to the following:

curl -X POST "https://kms.example.ogc.org/Helyx-
SIS/KMS/1.0.0/sign?private_key_id=21829&block_cipher_mode=CBC&padding_method=PSS&hashi
ng_algorithm=SHA&hashing_length=256" \

-H "accept: application/json" \

-H "Content-Type: application/json" \

-d "{\"plain_text\":\"SSdtIGEgdGVhcGIO\"}"

To elicit a response similar to the following:

118

{

"signature":
"qrLLOC6uDRhG3700mGI]ZBD6A7t6hPOVEXCwAGT4wXYC6gDvvwADdF1WTlyuBxTmB_BiT69k-PP@Dcy_6-
dr4Q4705636NCR6by1BjcuXAZHTyANqtTLy-Em92YkXTj2d42k8-
oc/WforITFcUiRdXG5_MeZyAmI9I0nPqSzkjw51vZCOR772HKpobbbvXtkEJdsNAQmYqo7AQzb8hgxwS6f04BC
PpCKnI9EhYbknU2doEYgWdKAnIMXv1ez0jgs9VpyZOxtXcfItle@lcOvzj1BTOk802q3-yyoaGmDels-
UnkuFAa5u_UPjpfdLr4L81QVRbrx_mx2RRdYxwSi5fzQ"

}

C.2.4. Docker-Compose Deployment

The Key Management Server is run on two docker containers deployed using docker-compose. The
PyKMIP server is in one and the OpenAPI KMS is in the other.

KMIP relies on mutual TLS authentication to allow a client and server to communicate. In the Helyx
implementation, for research and development purposes, Helyx bundled the client and server
certificates within the container images. This is done as follows:
* Build the PyKMIP Server image:
o The certificates for the PyKMIP server and the client are created
o The PyKMIP image is built using these certificates and the PyKMIP package
- This image also has the config file, the policy file and certificates budled into it
o The run command starts the PyKMIP server in Python
* Build the Key Management Server image:
- Bundle the required certificates for the client and the public key for the server

> Add an .env file to the image containing details of the PyKMIP server address and port: the
default values are KMS_SERVER_ADDRESS="pykmip-server"" and KMS_SERVER_PORT=5696

o Add the KMS Python source files and any required packages (including PyKMIP)

o The run command starts the KMS Flask server in Python.

A docker compose file is used to execute the two connected containers:

119

version: '3’

services:
swagger_server:
image: kms:0.0.1
ports:
- "8080:8080"
environment:
- KMS_SERVER_ADDRESS=pykmip_server
- KMS_SERVER_PORT=5696
pykmip_server:
image: pykmip:0.0.1
ports:
- "5696:5696"

C.3. Conclusions

The implementation of an OpenAPI compliant interface to interact with a KMIP Server was largely
successful and provided a number of useful insights into how a KMS to support OGC APIs may be
integrated into such a service in the future.

At the start of the Testbed, the architecture was intended to be close to mirroring the KMIP
endpoints, in order to provide as much flexibility as possible to the client implementations. During
the course of the Testbed, there was significant thought put into how a KMS might interact with a
DCS client, including the standards used for encoding keys, encrypted data and signing data. These
ideas were not known at the time the decision was made on what the API might look like. As a
result, this implementation of the KMS is quite different to that implemented in D145.

Whilst it has great flexibility it also poses some challenges especially in the offline scenario: the
interface is relatively chatty, requiring a number of separate calls to the API to create a key, encrypt
data, MAC data, sign data and then retrieve a key; this is just for one data item. This is required to
be repeated for as many data items that exist and undertaking this via a RESTful interface can take
long time. There are a number of potential approaches for dealing with this, such as:

* Providing support for bulk operations

* Providing support for key creation, encryption, MACing and signing in a single operation.

In addition, it does not currently provide endpoints that allow a client to request a JWE or a JWS
directly, which would be useful to the clients as they have been implemented with these standards
in mind, which were not envisaged at the start of the Testbed. The KMS implements a content-type
within the request of application/json though it may be that alternative content-types could be
considered that modify the response according to their needs, for example application/jose+json.

A fundamental underpinning capability of KMIP-compliant servers is its support for KMIP
operation policies that provide access controls over keys and operations on them. An operation
policy is a set of permissions, indexed by object type and operation. For any KMIP object type and
operation pair, the policy defines who is allowed to conduct the operation on the object type. In the
current implementation, all operations are permitted by all users. However, if KMIP is to be used in

120

the future, consideration needs to be given to whether and how these policies align with
(Geo)XACML policies used to protect the data itself and how they might be kept up to date. This is
additionally complicated by the fact that the Flask web service that provides the RESTful API uses
its own mutual authentication with the KMIP Server; there is currently no capability to provide "on
behalf of" operations. It is possible that when a client is registered to the KMS, it could also register
a keypair with the KMS that is then also registered for authentication with the KMIP server and the
KMS dynamically switches its authentication keys based on the client. Otherwise, it may also be
possible for the KMS to provide its own authorization that could be linked to a PDP.

As PyKMIP is a software implementation that is not designed to be used in production, it does not
provide all key variants and encryption options that are available in a commercial implementation.
For example, it is not currently able to encrypt using an RSA key. Further development of the KMS
may require changes to the PyKMIP implementation or workarounds to emulate the KMIP
functionality within the KMS itself.

The KMS also has some of its own limitations due to the constraints of time and the focus on
particular features required of the client. These include:

* Clients are currently unable to supply their own keys to the KMS for storage: they must create a
new one

* Key wrapping is not currently supported i.e. One cannot wrap a key when getting a key and
return it as a JWE.

* As described above, it does not provide endpoints that support JWE or JWS

* Integration of an authorization server using OAuth 2.0.

121

Appendix D: Access Control Policies for DCS
Server and Mobile Clients

D.1. Overview

This annex introduces the engineering aspects of the policy decision and enforcement points and
the policy documents used to specify the rules of access to DCS protected content.

Two implementations for desktop client and mobile clients uses different policy enforcement
techniques for access control. In both cases we consider temporal and spatial aspects of access
control as well as a role based security classification.

D.2. GeoXACML Policies for DCS Server in Desktop
Scenario

The DCS Server in the desktop/client scenario has the functionality to dynamically construct NATO
STANAG compliant responses from an OGC API Features backend service using XML or JSON
encodings. This DCS functionality is realized in two modules, as illustrated in Figure 20: The GeoPEP
and the GeoPDP.

According to the "Data Flow Model" of the XACML 3 standard (Data-flow diagram - Figure
1)[http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html], the GeoPEP implements the
PEP, the context handler and the obligation service. According to the (Figure 3 - Policy language
model)[http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html], an Authorization
Decision sent from the PDP to the PEP can contain a set of obligations (0..1 ObligationExpression).
The PEP processes each obligation which can be used to activate specfiic processing. When it comes
to control the GeoPEP for achieving the DCS processing goals for this testbed, specific obligations
are leveraged:

* XML Encryption

XML Digital Signatures

XML XSLT

* JSON Rewrite

* JSON Encryption (JWE)

* JSON Signatures (JWS)
In addition to the data response obligations listed above, the GeoPEP can also be instrumented to
modify the incoming request befre sending it to the backend service. The relevant obligations to
achive that request rewriting are:

* HTTP GET query_string rewrite

* HTTP POST rewrite for www-x-form-encoded request bodies

* HTTP POST rewrite for XML encoded request bodies

122

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

To explaind how the policy controls the GeoPEP processing for the desktop/client use case, the
GeoXACML policy is illustrated using ALFA.

namespace 0gc

import Obligations.SECD.*

import Attributes.SECD. requestKVP.*
import Attributes.SECD.responseXSLT.x*
import Attributes.SECD.responseDSIG.*
import Attributes.SECD. responseENC.*
import Attributes.SECD.responselSON.=
import Attributes.SECD. responselWS.#
import Attributes.SECD. responseSTANAG.*
import Attributes.SECD.=*

import Attributes.API.x

attribute accept {
id = "urn:sd:accept"
type = string
category = environmentCat

policyset tbl6 = "urn:secd:policyset:tblg"
{

apply denyOverrides

policy reguestFormatPolicy = "urn:secd:policy:tbl6:request—policy:format" []
policy reguestlLocationPolicy = "urn:secd:policy:tbl6:request-policy: location" []
policy gmlPolicy = "urn:secd:policy:tbl6:gml-policy"[]

policy jsonPolicy = "urn:secd:policy:tbl6:json-policy'[]

policy jwsPolicy = "urn:secd:policy:tbl6:jws—policy”[]

policyset stanaglSOMNPolicySet = “urn:secd:pulicy:thlﬁ:;;gnag-j;gn—poLicy-set“D
policyset stanagJWSPolicySet = “urn:secd:pulicy:tblﬁ:gxauag-jyi-pulicy-set“i

i

Figure 56. GeoXACML Policy Overview

As illustated in Figure 54 the policy consists of a PolicySet and individual policies that apply to
specific circumstances. The urn:secd:policy:tb16:request-policy:format policy evaluates decisions
based on the request HTTP ACCEPT header. The urn:secd:policy:tb16:request-policy:location
policy ensures that users in a particular location have elevated access. The urn:secd:policy:tb16:*-
policy policies apply to particular data processing requirements.

123

The following listing illustrates the location part of the policy.

policy requestLocationPolicy = "urn:secd:policy:tb16:request-policy:location”
{
apply denyOverrides
rule requestlLocationRule
{
permit
target
clause
GeoXACML3.subject_location <=
"CRS=EPSG:4326;POLYGON((40.704586878965245 -74.0361785888672,40.76962180287486
-74.0361785888672,40.76962180287486 -73.94966125488283,40.704586878965245
-73.94966125488283,40.704586878965245 -74.0361785888672))" :geometry
and
time <= "18:00:007":time
on permit {
obligation requestKVP {
action = "insert"
key = "bbox"
value = "40.704586878965245,-74.0361785888672,40.76962180287486, -
73.94966125488283"
}
obligation requestKVP {
action = "remove"
key = "access_token"
}
obligation requestKVP {
action = "remove"
key = "subjectlocation"

124

The following policy instruments the GeoPEP to transform backend service response into NATO STANAG
4778 compliant container format.

policyset stanagJSONPolicySet = "urn:secd:policy:tb16:stanag-json-policy-set"”
{

target
clause
f == "stanag+json" or
accept == "application/stanag+json”
apply denyOverrides
featurePolicySet

policy JSON {
apply permitOverrides
rule {
permit
}
on permit {
obligation responseJSON {
content_type = "application/stanag+json”

}

Important in the policy above is the involvement of the responseJSON obligation attached to the
PERMIT response.

To transform GML backend response into STANAG 4778 including Digital Signature and Encryption (for the
'poi’ feature type), the following policy is used.

policyset stanagXMLPolicySet = "urn:secd:policy:tb16:stanag-gml-policy-set"
{

target
clause
f == "stanag" or
f == "stanag+gml" or
accept == "application/stanag+gml”

apply permitOverrides
policy poiPolicy = "urn:secd:policy:tb16:poi-policy"
{
target
clause
path == "/dcs/collections/poi/items"
apply permitOverrides
rule responselLocationRule
{
permit
target
clause
GeoXACML3.subject_location <=

125

"CRS=EPSG:4326;POLYGON((40.704586878965245 -74.0361785888672,40.76962180287486
-74.0361785888672,40.76962180287486 -73.94966125488283,40.704586878965245
-73.94966125488283,40.704586878965245 -74.0361785888672))":geometry
and
time <= "18:00:007":time
on permit {
obligation responseXSLT {
document = "..."
parameter = "unclassifiedFeatureType=states tiger_roads
poly_landmarks poi"
}
}

}
rule permitRule
{
permit
target
clause
subject_clearance == "top_secret"
or
subject_affiliation == "0GC Testbed-16"
on permit {
obligation responseXSLT {
document = "..."
}
}
on permit {
obligation responseENC {
xpath = "//*[1ocal-name()
'Metadata'][./@xml:id="FeatureType']/*"
responseENC.key_algorithm
“http://www.w3.0rg/2009/xmlenc11#aes128-cbc"
}
obligation responseENC {
xpath = "//*[local-name()
responseENC.key_algorithm
“http://www.w3.0rg/2009/xmlenc11#aes256-gcm"
}
obligation responseENC {
xpath = "//*[1ocal-name()
responseENC.key_algorithm
“http://www.w3.0rg/2009/xmlenc11#aes256-gcm"

"Metadata'][./@xml:id="STANAG4774']/*"

'Data']/*"

}
}
}
rule denyRule
{
deny
target
clause

126

subject_clearance == "secret"

or
subject_clearance == "classified"
or
subject_clearance == "unclassified"
}
}
on permit {
obligation responseDSIG {
private_key_file = "/etc/pki/tls/private/testbed15.pem"
private_key_name = "Dr. No"
certificate_file = "/ete/pki/tls/certs/testbed15.crt"”
id_element_value = "#WFS"
id_element_gname = "id"
}
}

Examining the Obligations from the policy explain naturally how the GeoPEP converts XML
backend to NATO STANAG 4778:

* use of responseXSLT obligation to transform GML into NATO STANAG 4778 structure
* use responseENC obligation to encrypt Metadata, Data sections

* use responseDSIG obligation to digitally sign the response

D.3. GeoXACML Policies for Mobile Scenarios

D.3.1. Use Case:

* Access to the features is only possible if user location is within an operational boundary:

o POLYGON 40.8175 -74.0008, 40.753 -74.0008, 40.753 -73.9499, 40.8175 -73.9499, 40.8175
-74.0008

Location of user is defined by attribute

o “urn:sd:location” := GeoXACML geometry: CRS=EPSG:4326;Point(40.76 -74.0)

Bell-La Padula Policy for classified feature types
o Permit: clearance(user) >= classification(feature_type)
» Users have attribute clearance
o “urn:sd:clearance” := {top_secret, secret, confidential, classified}
» Resources are features of feature_type

o “urn:sd:feature-type” := {“poi”, “poly_landmarks”, “tiger_roads”, “states”}

Classification per feature type
o “poi” := “top_secret”

o “poly_landmarks” := “secret”

127

o “tiger_roads” := “confidential”

o “states” := “classified”

* Any other feature type is not classified

D.3.2. GeoXACML Policy in ALFA

ALFA, the Abbreviated Language For Authorization, is a pseudocode language used in the
formulation of access-control policies.

Option (i)

Packaged a one inline PolicySet Produces one single Policy file

namespace SD

{

import Attributes.API.x

policyset tb1l6Mobile = "urn:secd:policyset:tb1l6:mobile"

{

apply denyOverrides

policy
policy
policy
policy
policy

policy
}

locationPolicy = "urn:secd:policy:tbl6:mobile:location" []

topSecretPolicy = "urn:secd:policy:tb16:mobile:top_secret" []

secretPolicy = "urn:secd:policy:tbl6:mobile:secret" []
confidentialPolicy = "urn:secd:policy:tbl6:mobile:confidential"
classifiedPolicy = "urn:secd:policy:tbl6:mobile:classified" []
unclassifiedPolicy = "urn:secd:policy:tbl6:mobile:unclassified"

Figure 57. Single Policy file

Option (ii)

Packaged as linked Policies Produces one file for the PolicySet and one file per each Policy

128

namespace SD

{

import Attributes.API.x

policyset tb1l6Mobile = "urn:secd:policyset:tbl6:mobile"

apply denyOverrides

locationPolicy

topSecretPolicy

secretPolicy

confidentialPolicy

classifiedPolicy

unclassifiedPolicy

policy locationPolicy = "urn:secd:policy:tbl6:mobile: location" []

policy topSecretPolicy = "urn:secd:policy:thl6:mobile:top_secret" []
policy secretPolicy = "urn:secd:policy:tbl6:mobile:secret" []

policy confidentialPolicy = "urn:secd:policy:tb16:mobile:confidential™ []
policy classifiedPolicy = "urn:secd:policy:tbl6:mobile:classified" []
policy unclassifiedPolicy = "urn:secd:policy:tbl6:mobile:unclassified" []

+
}

Figure 58. Linked policies

D.3.3. Policy and Verification

Endpoint

* https://ogc.secure-dimensions.com/geopdp-mobile

POST requests with Http header Content-Type

» “Content-Type: application/xacml+json”

Example ADR

129

https://ogc.secure-dimensions.com/geopdp-mobile

{

"Request": {

"ReturnPolicyldlList": false,
"CombinedDecision": false,
"Category": [
{
"CategoryId": "urn:oasis:names:tc:xacml:1.0:subject-category:access-subject”,
"Attribute": [
{
"IncludeInResult": false,
"AttributeId": "urn:sd:subject-location", User location
"DataType": "urn:ogc:def:dataType:geoxacml:1.0:geometry",
"Value": ["CRS=EPSG:4326;Point(40.76 -74.0)"]
},
{
"IncludeInResult": false,

"AttributeId": "urn:sd:clearance" | User clearance
"DataType": "http://www.w3.0org/2001/XMLSchema#string",
"Value": ["top_secret"]

]
}
{
"CategoryId": "urn:oasis:names:tc:xacml:3.0:attribute-category:resource”,
"Attribute": [
{
"IncludeInResult": false,
"Attributeld": "urn:sd:feature-type", Feature type
"DataType": "http://www.w3.org/2001/XMLSchema#string”,
"Value": ["poi"]
}
]
b

Figure 59. ADR example

D.3.4. Verification

Table 8. First Table

ADR User Location Decision
0 CRS=EPSG:4326;Point(40.76 -74.0) Permit
1 CRS=EPSG:4326;Point(40.75 -74.0) Deny

Table 9. Second Table

ADR Clearance Feture Type Decision
10 top_secret poi, poi, poly_landmarks archsites Permit, Permit, Permit
20 secret secret poly_landmarks, poly_landmarks Permit, Permit

21

130

tiger_roads

secret poi, poi archsites Deny, Deny

D.3.5. ADR Example

{
"Request” : {0
"ReturnPolicyIdlList": false,
"CombinedDecision": false,
"Category": [
{0
"CategoryId": "urn:oasis:names:tc:xacml:1.0:subject-category:access-
subject",
"Attribute": [
{0
"TncludeInResult": false,
"AttributeId": "urn:sd:subject-location",
"DataType": "urn:ogc:def:dataType:geoxacml:1.0:geometry",
"Value": ["CRS=EPSG:4326;Point(40.76 -74.0)"]
¥
{0
"IncludeInResult": false, "AttributeId": "urn:sd:clearance",
"DataType": "http://www.w3.0rg/2001/XMLSchema#string",
"Value": ["top_secret"]n
30
10

b
{0
"CategoryId": "urn:oasis:names:tc:xacml:3.0:attribute-
category:resource",
"Attribute": [

{0
"IncludeInResult": false, "AttributeId": "urn:sd:feature-type
"DataType": "http://www.w3.0rg/2001/XMLSchema#string",
"Value": ["poi"]

}

10

131

Appendix E: Data Centric Security Roles

E.1. Mobile Scenario

The Testbed-16 DCS scenario for the mobile client was defined as the following:

Cell-phone scenario

A Sargent in the U.S. National Guard has been deployed on a disaster recovery mission. He
carries with him a smart phone which contains sensitive data. When meeting with first
responders, how does he share critical information with them without compromising
sensitive information? How does internet connectivity affect that scenario?

Hypothesis: Use of the Data Centric Security techniques developed in Testbed-16 could
address this problem. All sensitive data is encapsulated in a Data Centric Security package.
Security policies are defined using GeoXACML. A Policy Enforcement Point (PEP) applet only
allows access that data allowed under the currently active security policy. Authorized users
can set the active security policy.

End State: The Sargent selects the security policy appropriate for the intended audience. He
can now access data on his smart phone without worries about exposing sensitive
information.

Multiple mobile implementations were created to explore how to address the goals of this scenario,
some of which include the concept of "DCS Roles".

E.2. DCS Roles

Within the Mobile Scenario, an individual DCS Role is either the clearance/security authorizations
for a specific person, or a generic clearance for a group of people (as defined by an administrator) -
a member of the "intended audience" with whom the primary user wishes to share critical
information without exposing sensitive information.

E.2.1. DCS Roles vs Users

Within this role-based mobile implementation, a user is the specific assigned user for the mobile
device. That user has their personal security clearance loaded onto the device as a DCS Role. In
addition to that personal DCS Role, per the scenario multiple generic DCS Roles representing
generic security clearances for the categories of people the user may encounter in the field who the
user may wish to share information.

E.2.2. DCS Roles vs DCS Data

Within this concept, each DCS Data item is to be restricted according to a specific Policy Identifier
and a specific Classification, as specified within a DCS Data container (as described elsewhere in
this document). Whereas each DCS Role could potentially specify access to multiple Classifications

132

and multiple Contexts.

This allows the "filtering" of data being displayed on the mobile device to show only DCS Data items
that meet the restrictions of the current active DCS Role.

Furthermore, this allows for (requires) the DCS Data and (list of) DCS Roles to be distributed and
installed separately on the mobile devices.

E.2.3. DCS Roles vs NATO STANAG 4774

The DCS Roles concept was informed by and adapted from NATO 4774 Appendix 2, which details
that each clearance must have (at least) the following items: * Policyldentifier (e.g. "NATO", "USA",
"GBR") * ClassificationList (e.g. "UNCLASSIFIED, RESTRICTED, CONFIDENTIAL, SECRET....") * Context
(the different categories of information/context that this clearance allows)

The following is an "example clearance for the United Kingdom, a founding member of NATO" from
4774, as well as a GeoJSON adaptation equivalent.

133

UK NATO 4774 Example

<sclr:ConfidentialityClearance xmlns:sclr=
"urn:nato:stanag:4774:confidentialityclearance:1:0" xmlns=
"urn:nato:stanag:4774:confidentialitymetadatalabel:1:0"> <Policyldentifier>
NATO</Policyldentifier> <sclr:ClassificationList>
<Classification>UNCLASSIFIED</Classification> <Classification>
RESTRICTED</Classification> <Classification>CONFIDENTIAL</Classification>
<Classification>SECRET</Classification> <Classification>TOP SECRET</Classification>
</sclr:ClassificationList>

<Category TagName="Context" Type="PERMISSIVE">

<GenericValue>NATO</GenericValue>

App 2-A4

Edition A Version 1

Annex A to Appendix 2 to ADatP-4774

<GenericValue>EAPC</GenericValue> <GenericValue>GEORGIA</GenericValue>
<GenericValue>ISAF</GenericValue> <GenericValue>KFOR</GenericValue> <GenericValue>
PFP</GenericValue> <GenericValue>RUSSIA</GenericValue> <GenericValue>
UKRAINE</GenericValue> <GenericValue>Releasable</GenericValue>

</Cateqgory>

<Category TagName="Releasable To" Type="PERMISSIVE">
<GenericValue>NATO</GenericValue> <GenericValue>EAPC</GenericValue> <GenericValue>
ISAF</GenericValue> <GenericValue>KFOR</GenericValue> <GenericValue>PFP</GenericValue>
<GenericValue>GBR</GenericValue>

</Cateqgory>

<Category TagName="Only" Type="PERMISSIVE">

<GenericValue>NATO</GenericValue>

<GenericValue>GBR</GenericValue>

</Cateqgory>

<Category TagName="Additional Sensitivity" Type="RESTRICTIVE">
<GenericValue>ATOMAL</GenericValue> <GenericValue>BOHEMIA</GenericValue>
<GenericValue>CRYPTO</GenericValue>

</Cateqory> </sclr:ConfidentialityClearance>

134

UK NATO GeoJSON Adaptation Example

{
"name": "UK NATO",

"id": "GBR",

"PolicyIdentifier": "NATO",

"ClassificationList": [
"UNCLASSIFIED",
"RESTRICTED",
"CONFIDENTIAL",
"SECRET",
"TOP SECRET"

1

"Context": [
"NATO",
"EAPC",
"GEORGIA",
"TSAF",
"KFOR",
"PFP",
"RUSSIA",
"UKRAINE",
"Releasable”

IE

"Only": [
"NATO",
"GBR"

E.3. DCS Mobile Client Role Switching

The following is an example implementation of the mobile client displaying DCS Role selection on a
user device, as well as the filtering of different features by clearance as represented by DCS Role.

E.3.1. DCS Mobile Client Role Selection

135

Figure 60. Choose Role

136

8:33 .
keys DCS: Choose Role -

.’)
g

JClarksburg

Loluml
JHighland
,Germantown
i Ashton Fulton
JGaithershurg ° o a4
Derwood
o
Burtonsville® JLaurel
O .
Rockville
] i Beltsville
\) _Potomac JKensington o

;Silver Spring
‘. Bethesda®
Ty by % fcollege Park
Somersets Hyattsyille
267 MclLean
D e N\ °MountRainijer

\-_ . \\
aeon - Washington

S p)
lirfax Arlington ,Suitland
JAnnandale \

9 . "
*Wakefield \ ¥4 Morningsid
-Springfield OJ’AIexa ndria

Burke
> °Clinton

0Kingstown'e

i

/
JLorton =

//
c,Woodbridge(,

"Marumsco |

,South Run

Forest®
JFort Washington

JAccokeek

- Bryans Road JWaldorf
Neabs/cp»' JIndian Head
1friés Pomfret
J
K aps Legal
lngM P I a Plata =

8:34 ol T o

Clart Marcus Alzona
(keys): SECRET Loluml

G
PEIMAL 1 NATO: TOP SECRET o,

Jessu

US NATO: TOP SECRET Laurel

US DHS: SECRET

. lille
\/ ¢ US HHS: CONFIDENTIAL
g e Park
\‘. .
Public: UNCLASSIFIED
3) N)
D . Mount‘Rainier
s K
akon” Washington
%
lirfax °Arlington ,Suitland
JAnnandale \ B
°Wakefield Morningsic
ingfield~ Alexandria
_Burke Springfield a
oy Clinton
Kingstowne
,South Run
Forest®
JLorton JFort Washington
oWoodbridge JAccokeek
O,
MEI=CO JBryans Road Waldorf
Neabsco oindian Head
ries JLomfret
aps Legal
mgM P I a Plata -

Figure 61. Choose Role Selection

E.3.2. DCS Mobile Client - National Geospatial Intelligence Agency

137

=

8:35 “
keys DCS: US NATO - TOP SECRET
JDunn Loring LeLIYELL

IIIC‘0

202\9 »

Falls Church’ .
4
West Falls Church

\

Litt|e Ri
erToke - Annandale

on

ich’
ys Park West

n
Springfield

Burke
°Kingstowne

=D o
Huntley

National Geospatial-Intelligence Agency s dows Pi
Newington Forest

nte® e
Ft.Belvoir -
Golf Club
JLorton
> |
o
o7
gquan® Mason Neck //
4
/
Woodbridge :
Belmont ‘1
o Bay G
Marumsco \
€ Maps 3 ..

Figure 62. NGA - US NATO TS

138

=

8:35 “
keys DCS: UK NATO - TOP SECRET
JDunn Loring LeLIYELL

IIIC‘0

202\9 »

Falls Church’ .
4
West Falls Church

\

Litt|e Ri
erToke - Annandale

on

ich’
ys Park West

n
Springfield

Burke
°Kingstowne

=D o
Huntley

National Geospatial-Intelligence Agency s dows Pi
Newington Forest

nte® e
Ft.Belvoir -
Golf Club
JLorton
> |
o
o7
gquan® Mason Neck //
4
/
Woodbridge :
Belmont ‘1
o Bay G
Marumsco \
€ Maps 3 ..

Figure 63. NGA - UK NATO TS

139

8:35 ol T H

keys DCS: US HHS - CONFIDENTIAL

niag ODunn Loring LeulryeLlu
7,
2
(]
on Falls Church’ %,
o4
West Falls Church
Little River T, |
i pke Annandale
ich
ys Park West
n
Springfield
Burke
Kingstowne
=) 0
Huntley
- Meadows Pi
Newington Forest
nte® (L)
Ft.Belvoir -
Golf Club
JLorton
vy
V
quan® Mason Neck Y 4
y
/
Woodbridge ;’
Belmont |
o Bay i
Marumsco ‘
®€Maps

Figure 64. NGA - US HHS CON

E.3.3. DCS Mobile Client - United States Capitol Outbreak

140

8:36 w! T
keys DCS: US DHS - SECRET

Unitedl States
o Senate

U.S. Capitol

VIsItii Center

itol ——"

.

Independence.

@Rayburn House Cannon House

y
@ office Building Office Building
&pizza \\
CStsw C St

m-
z/
INNE D.St SW DSt SE <
A ' /g‘
i)
®
: I I
(| goR L‘%L

Figure 65. US Capitol - US DHS S

141

8:36

9)

(o))

keys DCS: Public - UNCLASSIFIED

o
3 1
WL =
&
%3
foi)
2
& 3
2 Q
() ¢
Ecapitol Cir
.“
Capito!™
OUnited States
ace/Monument Senate
U.S. Capitol
Visitor Center
UlyssesS. Lil“
CSreogiiemorisl United Stategm&%pitol
UNITED
STATES
CAPITOL
James;Abram
Garfield
Memorial
>United States
Botanic Garden
Independence Ave SW Independence

o

Cannon House
Rayburn House) i
O office Building ©ffice Building

&pizza
CStSwW C St
2
D.St.SW. D St SE <
) —
' o
®
(ﬂﬂaps Legal
| oG

\
N

Figure 66. US Capitol - Public UNC

E.3.4. DCS Mobile Client Bethesda Walter Reed

142

8:36

o T H#
keys DCS: UK NATO - TOP SECRET

Tilden Woods

North
LocanPark oBet hesda
JGarrett Par
Ken
DCabin Joh X
(VarkRAEHRRAYAsHA MR °Che
(&) p
Bethesda Chas
sountry Club -
Golf Course NoI
Walter Reed Ch:
N ;malg (
i tary=
(L) Naticigi) I STtinses Méigaliicenter
Burni .
Trg;né?fb Sutkeptsan Hocs)BEIt hesda
.Chevy Cl
,Cabin John B chevy Ch
e °Glen Echo ° ‘Chev
— Somerset Villa
N
oI \\
ngley
s Park h %
Y ¢ %
@ \ 4 E
A\ ; %
WX 3
\ il
. \ WASHING
$Maps W Glover- 8N
Figure 67. Bethesda Walter Reed - UK NATO TS

143

8:35

Ty
keys DCS: US HHS - CONFIDENTIAL

UL Yo
.

Tilden Woods North
LocanPark

Bethesda
Garrett Par
Ken
DCabin Joh X
MarkRASHRRFYA6HA HQ °Che\
(L) <
Bethesda Cha:
sountry/ Club -
Golf Course Noi
WalterfeedI OChi
N bna
— _r\]_HlaryQ
(2] I5jtitutesof Health
Burni .
Trgérfné?ngb Sulkestsan Hocs)BEItheSda
LChevy Cl
,Cabin John B chevy Ch
o o
Glen Echo ° Chev
S Somerset “Villa
N .
o \\
ngley
:s Park \ Z
\ a
\ p Y
@SN i 5
N A %
N o
ol
®#Maps pa— \N

WASHING
Glover-~ JefoN

CATHENDE

Figure 68. Bethesda Walter Reed - US HHS CON

144

8:35

=
keys DCS: Public - UNCLASSIFIED

Tilden Woods

ytes North
tocaiPark Bethesda
Garrett Par
= Ken
DCabiq Johnimi)
G\ﬂagkd%hhkternatlonal HQ °Chey
Bethesda Cha:
sountry/ Club -
Golf Course ter Recli No|
Walter Ree]
National g oChi
—Military
= Medij@f center
Burni .
Trggnclt?fb Suburban Hogg@lt h eSd a
LChevy Cl
,Cabin John B chevy ch
o AL
Glen Echo ° Chev
N, Somerset Villa
N g7
o N
ngley N &
's Park ‘\ V. %
4 2
\ o %
QR ¥ :
N A C
N o
\(\
)\ M
o : WASHING
.Maps [proy | \\ G|0Vel’-n r',nTl-u:r';IE
Figure 69. Bethesda Walter Reed - Public UNC

145

Appendix F: Revision History

This table presents the document revision history.

Table 10. Revision History

Date

April 25, 2020

August 13, 2020

October 15, 2020

October 31, 2020

November 11,
2020

November 11,
2020

November 18,
2020

146

Editor

A. Balaban

A. Balaban

A. Matheus

A. Balaban

A. Matheus

A. Matheus

A. Balaban

November 20,

2020

Release

1.0

A. Balaban

Primary
clauses
modified
all

all

Appendix B

all

Appendix D

all

all

11

Descriptions

Initial draft
version

Second draft
version

Contributed first
draft

Incorporated
comments for
final draft

Contributed first
draft
Proofreading

Release version

all

Appendix G: Bibliography

147

	OGC Testbed-16: Data Centric Security Engineering Report
	Table of Contents
	Chapter 1. Subject
	Chapter 2. Executive Summary
	2.1. Document contributor contact points
	2.2. Foreword

	Chapter 3. References
	Chapter 4. Terms and definitions
	4.1. Abbreviated terms

	Chapter 5. Overview
	Chapter 6. Data Centric Security (DCS)
	6.1. Introduction
	6.2. Key Concepts

	Chapter 7. Requirements, Scenarios and Architecture
	7.1. Requirements
	7.2. Scenarios (Use Cases)
	7.2.1. Use Case 1 (Online Streaming)
	7.2.2. Use Case 2 (Offline Authorization)

	7.3. DCS Architecture Components
	7.3.1. Scenario 1, DCS Desktop/Client/Server
	7.3.2. Scenario 2, DCS Mobile App/Client & Policy Enforcement Point

	7.4. DCS Architecture Interactions
	7.4.1. Desktop/Client/Server Interactions
	7.4.2. Mobile App/Server Interactions

	Chapter 8. Data Encodings, DCS Containers and Media Types
	8.1. Introduction
	8.2. DCS Container
	8.3. STANAG 4774/8 DCS Container
	8.4. STANAG 4774/8 DCS Container in JSON
	8.5. JOSE (JWS & JWE) Containers
	8.5.1. DCS Container based on JWS
	8.5.2. Structure of Information as Metadata
	8.5.3. DCS Container based on JWE

	8.6. Media Types and profiles for DCS content negotiation

	Chapter 9. Results
	9.1. Issue Explanations
	9.1.1. Third Party Open Source Library implementations impede the implementation of decryption
	9.1.2. Mobile Application and long-running synchronous operations
	9.1.3. Timeout Issues with Large Data Requests
	9.1.4. Mobile Process / Power Management

	Chapter 10. Future Work
	10.1. New features in DCS
	10.2. KMS for DCS
	10.3. Federated security and DCS
	10.4. Packaging of data in the scope of DCS
	10.5. Binary related Media Types
	10.6. DCS Roles and User Clearances vs Data Classification(s)

	Chapter 11. Technology Integration Experiments (TIEs)
	11.1. TIEs for Scenario One
	11.1.1. D120 / D121 TIE

	11.2. TIEs for Scenario Two

	Appendix A: Container Media Type Examples
	A.1. GML Feature Collection as defined by OGC
	A.2. GML Feature Class where each feature is a STANAG 4774/8 data object
	A.3. Feature Collection in GeoJSON
	A.4. Feature Collection in GeoJSON signed or encrypted
	A.5. Feature Collection in GeoJSON signed or encrypted
	A.6. GeoJSON with STANAG 4774/8 in JSON Encrypted or Signed
	A.7. STANAG 4774/8 JSON encoded Feature Collection in GeoJSON

	Appendix B: Engineering Aspects for D120 and D145
	B.1. Overview
	B.2. Deployment
	B.3. Protecting the Cipher Keys
	B.4. DCS Key Management Server
	B.4.1. Protecting Keys at Rest
	B.4.2. Managing Public Keys
	B.4.3. Managing Cipher Keys
	B.4.4. Create a Cipher Key
	B.4.5. OpenAPI
	B.4.6. Use Example

	B.5. DCS Server
	B.5.1. Requesting encrypted data
	B.5.2. OpenAPI

	B.6. Conclusions

	Appendix C: Engineering Aspects for D146
	C.1. Overview
	C.2. Key Management Server (KMS)
	C.2.1. Managing Symmetric Keys
	C.2.2. Managing RSA Key Pairs
	C.2.3. Other Functionality
	C.2.4. Docker-Compose Deployment

	C.3. Conclusions

	Appendix D: Access Control Policies for DCS Server and Mobile Clients
	D.1. Overview
	D.2. GeoXACML Policies for DCS Server in Desktop Scenario
	D.3. GeoXACML Policies for Mobile Scenarios
	D.3.1. Use Case:
	D.3.2. GeoXACML Policy in ALFA
	D.3.3. Policy and Verification
	D.3.4. Verification
	D.3.5. ADR Example

	Appendix E: Data Centric Security Roles
	E.1. Mobile Scenario
	E.2. DCS Roles
	E.2.1. DCS Roles vs Users
	E.2.2. DCS Roles vs DCS Data
	E.2.3. DCS Roles vs NATO STANAG 4774

	E.3. DCS Mobile Client Role Switching
	E.3.1. DCS Mobile Client Role Selection
	E.3.2. DCS Mobile Client - National Geospatial Intelligence Agency
	E.3.3. DCS Mobile Client - United States Capitol Outbreak
	E.3.4. DCS Mobile Client Bethesda Walter Reed

	Appendix F: Revision History
	Appendix G: Bibliography

