
3D Data Container and Tiles API Pilot
Summary Engineering Report

Publication Date: YYYY-MM-DD

Approval Date: YYYY-MM-DD

Submission Date: YYYY-MM-DD

Reference number of this document: OGC 20-031

Reference URL for this document: http://www.opengis.net/doc/PER/20-031

Category: OGC Public Engineering Report

Editor: Tim Miller, Gil Trenum, Ingo Simonis

Title: 3D Data Container and Tiles API Pilot Summary Engineering Report

OGC Public Engineering Report
COPYRIGHT

Copyright © 2020 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report
created as a deliverable in an OGC Interoperability Initiative and is not an official position of the
OGC membership. It is distributed for review and comment. It is subject to change without notice
and may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report
should not be referenced as required or mandatory technology in procurements. However, the
discussions in this document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/20-031
http://www.opengis.net/doc/PER/20-031
http://www.opengis.net/doc/PER/20-031
http://www.opengis.net/doc/PER/20-031
http://www.opengis.net/doc/PER/20-031
http://www.opengis.net/doc/PER/20-031
http://www.opengis.net/doc/PER/20-031
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the
terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated
documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without
limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the
Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that all
copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to
the above copyright notice, a notice that the Intellectual Property includes modifications that have not been
approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT MAY
BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER
OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE
INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL
PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE
ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT,
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED
INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE IMPLEMENTATION, USE,
COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition of
this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a third
party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or
liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks or
other special designations to indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement
of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies
available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise
exported or reexported in violation of U.S. export laws and regulations. In addition, you are responsible for

2

complying with any local laws in your jurisdiction which may impact your right to import, export or use the
Intellectual Property, and you represent that you have complied with any regulations or registration procedures
required by applicable law to make this license enforceable.

3

Table of Contents
1. Subject . 5
2. Executive Summary . 6

2.1. Document contributor contact points . 8

2.2. Foreword . 8

3. High-Level Architecture . 10
4. Existing Space-Centric 3D Standards . 12
5. Technical Challenges and Interoperability Issues . 13
6. 3D Data Container . 14
7. GeoVolumes API . 17
8. Implementations, Experiences, and Lessons Learned by Participants 19

8.1. Experiences. 19

8.2. Implementations . 21

9. Commercial Potential . 28
10. Way Forward and Standardization. 29
Appendix A: References . 31
Appendix B: Terms and definitions . 32
Appendix C: Revision History . 34

4

Chapter 1. Subject
This Engineering Report summarizes the purpose and key results of the 3D Data Container and
Tiles API Pilot [https://www.ogc.org/projects/initiatives/3dt], an OGC Innovation Program
[https://www.ogc.org/ogc/programs/ip] initiative conducted between October 2019 and July 2020. In
the context of both existing and emerging 3D and 2D standards, the focus of the Pilot was on the
exchange and visualization of 3D data using open standards.

[1] Source: Tiles-3D Community Standard [https://www.ogc.org/standards/3DTiles] 3D Tiles Community Standard 1.0 (18-053r2)

5

https://www.ogc.org/projects/initiatives/3dt
https://www.ogc.org/projects/initiatives/3dt
https://www.ogc.org/ogc/programs/ip
https://www.ogc.org/standards/3DTiles

Chapter 2. Executive Summary
A variety of solutions and standards co-exist to access and transfer 3D geospatial content over
the internet (e.g. 3D Tiles [https://www.ogc.org/standards/3DTiles], I3S [https://www.ogc.org/standards/
i3s], glTF [https://www.khronos.org/gltf/], CDB [https://www.ogc.org/standards/cdb], CityGML
[https://www.ogc.org/standards/citygml]). These solutions were developed for various technical and
commercial reasons. They use different distribution mechanisms and are optimized for particular
user requirements and bandwidth situations (e.g. image stream, scenes, or raw vector data
delivery). As each of these co-existing solutions binds the user to a particular approach, it is
challenging to access a variety of 3D content from different providers. The 3D Data Container and
Tiles API Pilot addressed this challenge. The Pilot achieved its goal to develop a resource model
and corresponding Application Programming Interface (API) to integrate various approaches into
a single, open standards based solution. The developed GeoVolumes API and 3D Container
resource model allow efficient discovery and access of 3D content based on a space-centric
perspective.

The goal of the 3D Data Container and Tiles API Pilot was not to replace existing APIs and
distribution models for 3D data, but to develop an integration concept for existing OGC 3D
delivery standards to:

• support smooth transitions between 2D and 3D environments;

• allow applications to get 2D, 2.5D, and 3D resources; and

• enable 3D bounding volumes to support multiple types of 3D content.

To achieve these goals, the Pilot developed a 3D geospatial data container and a corresponding
draft OGC API - GeoVolumes providing browse and query access to 3D geospatial content.
GeoVolumes (aka 3D Containers) can be hierarchically defined with nesting support. The 3D data
resources supported by the GeoVolumes API include feature geometries, feature attribute values,
elevation models, texture data, and other resource types. The API provides both link-follow and
bounding-box query methods of access to 2D and 3D content in a manner independent of the
underlying data store. Multiple standard geospatial distribution formats such as 3D Tiles, I3S,
CDB, and CityGML are supported for streamed data delivery by means of the GeoVolumes API.

6

https://www.ogc.org/standards/3DTiles
https://www.ogc.org/standards/i3s
https://www.khronos.org/gltf/
https://www.ogc.org/standards/cdb
https://www.ogc.org/standards/citygml

Figure 1. Client connecting to various offerings in multiple formats through single API

Multiple data server and client implementations were developed during the Pilot in order to test
interoperable 3D content delivery via the GeoVolumes API. The API was defined using the
OpenAPI 3.0 definition language and conforms to the building blocks of the draft OGC API -
Common – Part 1: Core [http://docs.opengeospatial.org/DRAFTS/19-072.html] specification. Thus, the
Pilot developed and tested the GeoVolumes API in order to advance open standards-based and
unified approaches for delivering 3D content using state of the art API practices that work across
different data formats, streaming protocols, and model types.

This summary first outlines a high-level architecture with different distribution levels, bandwidth
options, and required capabilities. This approach helps to better understand where the
GeoVolume (also known as 3D Container) and its corresponding API actually exist and integrate
with other established or emerging standards. The summary then briefly introduces differences
between existing solutions to further illustrate the challenge described above.

Once the context is set, the summary outlines the technical challenges that had to be addressed,
defines the GeoVolume/3D Container (3DC), describes its capabilities and constraints, and
introduces the API that uses the GeoVolume as its resource model. The summary describes how
wide-spread tools have been used to document the building blocks of the API and provides
further insights into taken design decisions using statements from the Pilot participants on initial
challenges, tested approaches, and final solutions. The summary briefly illustrates the developed
prototypes and ends with an assessment of the commercial potential of the proposed solutions,
their future path in the standardization process, and required next steps towards a fully
interoperable, space-centric 3D data exchange and exploration environment.

From a standardization perspective, the Pilot developed a draft API and resource model that have
been proven mature enough to be introduced to OGC’s Standards Program. The next steps now
include generating a new OGC Standards Working Group (SWG), which requires defining the SWG
charter. Once the charter is approved by the OGC Technical and Planning Committees (TC & PC),
the SWG starts with the consensus based standard development process and eventually

7

http://docs.opengeospatial.org/DRAFTS/19-072.html
http://docs.opengeospatial.org/DRAFTS/19-072.html

recommends to the Technical Committee the release of the final Standard to the public.

It is important that additional integration tests and real-world deployment demonstrations
further explore the potential of the GeoVolumes API, resolve any outstanding interoperability
issues, and explore best practices for the organization of GeoVolumes within different domains
and disciplines. Several of these tests are scheduled to begin in September 2020.

2.1. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization Role

Ryan Gauthier US Army Geospatial
Center

Sponsor/Contributor

Jeff Harrison US Army Geospatial
Center

Sponsor/Contributor

Tom Myers US Army Geospatial
Center

Sponsor/Contributor

Tim Miller Leidos Editor

Gil Trenum Leidos Editor

Ingo Simonis OGC Editor

Josh Lieberman OGC Contributor

Rob Jones Helyx Contributor

Matthew Knight Helyx Contributor

Anneley Hadland Helyx Contributor

Jerome Jacovella-St-
Louis

Ecere Contributor

Michala Hill Cognitics Contributor

Nacho Correas Skymantics Contributor

Volker Coors Steinbeis Contributor

Thunyathep
Santhanavanich

Steinbeis Contributor

Kevin Ring Cesium Contributor

2.2. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights. The Open Geospatial Consortium shall not be held responsible for

8

identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that
might be infringed by any implementation of the standard set forth in this document, and to
provide supporting documentation.

9

Chapter 3. High-Level Architecture
The high-level architecture is built around the needs of the various entities ('A'), ('B'), and ('C') in
an enterprise as illustrated in the Figure 2. The three entities differ in the amount of data that can
be stored and processed, the available bandwidth for data transport, the multiplicity of
supported analytics, and the offered data products. Despite these differences, it was the goal of
this Pilot to develop a model that allows offering, discovering, requesting, and processing data at
each entity using a common single API on top of a single organizational model of 3D data in
space. At the same time, this common single API should acknowledge available 3D data format
and distribution standards such as 3D Tiles [https://www.ogc.org/standards/3DTiles], I3S
[https://www.ogc.org/standards/i3s], CityGML [https://www.ogc.org/standards/citygml], or CDB
[https://www.ogc.org/standards/cdb] to ensure that customers can retrieve 3D data in the optimal
format for their respective tasks.

Figure 2. High level architecture with high capacity data center ('A'), medium capacity data center ('B'),
and low capacity field operations ('C').

High capacity data centers ('A') have 3D data available for broad regions or on a global scale. Data
can be made available in multiple formats and distributions based on a set of converters and
transcoders. Access to the data is offered to other entities in the enterprise by means of the
GeoVolumes API as developed in this Pilot. Depending on users’ needs, data can be made
available at alternative APIs in 2D or in raw format, such as e.g. OGC API Tiles or OGC API Features.

Medium capacity data centers ('B') do not require all data that is available at the data center ('A'),
but are more selective. The amount of data transferred to ('B') depends on the available
bandwidth and specific needs for data analysis and re-distribution. To obtain required data in the
best suited format and minimum size, medium capacity data centers make use of the specific
space-centric indexing scheme that is the fundamental idea of GeoVolumes/3D Container and the

10

https://www.ogc.org/standards/3DTiles
https://www.ogc.org/standards/i3s
https://www.ogc.org/standards/citygml
https://www.ogc.org/standards/cdb

corresponding GeoVolumes API offered by ('A'). The indexing scheme is illustrated further below.
It allows organizing data according to the human conceptual model of space. That is, it makes
data available that corresponds to cognitive entities like a country with its cities and cities with
its buildings, streets, or underground infrastructure. Medium capacity data centers again make
their products available at the GeoVolume API; following the same conceptual model and
distribution options as the high capacity data centers.

The high-level architecture defines a third enterprise entity, the low capacity field operations
('C'). These are connected at various bandwidth down to complete offline situations. In these
cases, offline data packaging mechanisms and data volume optimized data selection and
transmission processes are essential. Customers at this level want to go back and forth between
3D data optimized for visualization via low bandwidth connections and attribute-loaded data
that provides detailed information about selected elements in a given view. That is, server-side
rendering pipelines need to be integrated with scene graphs delivered to client applications.

11

Chapter 4. Existing Space-Centric 3D
Standards
Several 3D data related standards are currently available or in development. In the context of
OGC, these are CityGML and CDB on the data model and storage format end, and the 3D Portrayal
Service (3DPS) as a content transmission format agnostic service for 3D scene navigation and
retrieval of feature information. The community standards 3D Tiles and I3S exist for data delivery.
On the content transmission side, additional standards such as X3D [https://www.web3d.org/
standards/number/19775-1] or glTF [https://www.khronos.org/gltf/] have been explored in the OGC
context several times. All these standards either serve different roles or have different strengths
and weaknesses within 3D data visualization and analysis pipelines and will co-exist in future. A
detailed comparison between 3D transmission formats 3D Tiles and I3S is available in the 3D
Container Engineering Report [https://portal.ogc.org/files/?artifact_id=94028]; their usage and
performance have been a subject of the OGC Testbed-13: 3D Tiles and I3S Interoperability and
Performance ER [https://docs.ogc.org/per/17-046.html].

12

https://www.web3d.org/standards/number/19775-1
https://www.khronos.org/gltf/
https://portal.ogc.org/files/?artifact_id=94028
https://portal.ogc.org/files/?artifact_id=94028
https://docs.ogc.org/per/17-046.html
https://docs.ogc.org/per/17-046.html

Chapter 5. Technical Challenges and
Interoperability Issues
This Pilot addressed a number of technical challenges and interoperability issues such as:

1. Web-ready conceptual data containers, access and management of web API optimized for
rendering and streaming

2. Compression for mesh-data exchanged in payloads and efficient handling of both attribute
streams and geometry buffers

3. Integration of hierarchical level-of-detail approaches with 2D tile concepts and support for
multiple Coordinate Reference Systems (CRS)

4. General alignment between 3D spaces and 2D tiled geospatial resources solutions

5. Integration of existing and emerging standards

6. Support for various visualization and processing pipelines, such as server- or client-based
filtering, mapping, and rendering as well as analytical requirements

13

Chapter 6. 3D Data Container
The 3D (Data) Container (3DC), is a geo-volume information resource described by an enclosing
bounding volume (2D/3D). The 3DC has an enclosing bounding box and contains at most one 3D
model dataset that is relevant to that volume. The 3D model dataset is represented by reference
to one or more distributions. This summary uses the terms 3DC, 3D Container, and 3D Data
Container interchangeably. The reason is that the original term “3D Container” is used in the
GeoVolume API, but was questioned towards the end of the Pilot due to the potential risk of term
overloading.

A bounding volume is a closed volume containing the union of a set of geometric objects. The
following figure illustrates typical bounding volumes (red) with enclosed objects (yellow, green,
and blue cuboids).

Figure 3. Bounding volumes: Box (left), region (middle), sphere (right)

GeoVolumes follow one conceptual organization of space applied by humans, which is a nested
collection of spaces where every space contains either a number of sub-spaces or a set of objects.
As an example, the GeoVolume “Earth” contains a set of child GeoVolumes, one for each
continent. Each continent then may have a set of child GeoVolumes for the various countries, or,
if countries are irrelevant in that scenario, a number of datasets that represent the topography,
rivers, and human settlements.

Thus, 3DC may describe a collection of spatially disjoint GeoVolumes or a nested, hierarchical
collections of GeoVolumes. This concept is illustrated in the following figure. Here, the
GeoVolume “North America” contains the two child GeoVolumes “Montreal” and “New York City”.
Both are spatially disjoint. The GeoVolume “New York City” again contains a single 3D model
dataset representing buildings. These buildings are available in distribution formats CityGML, 3D
Tiles, and I3S.

14

Figure 4. Hierarchical organization 3DC with varying distribution formats

The default representations of a 3D-Container are json/html information documents that define
the bounding box, link to an implicit tileset scheme if applicable, and provide links to the actual
content. The complete definition of the 3D Container is available in the 3D Container Engineering
Report [https://portal.ogc.org/files/?artifact_id=94028]. The following figure illustrates the main
elements of the container. It does not provide all details to improve readability. 3D Containers are
organized in collections as described above.

Figure 5. High level model of 3D Container (some details omitted)

What a content reference links to is dependent on content type and currently defined for the

15

https://portal.ogc.org/files/?artifact_id=94028
https://portal.ogc.org/files/?artifact_id=94028

following types:

• 3DTiles: tileset.json

• I3S: NodeIndexDocument

• CityGML: Collection document and/or logical space feature (CityModel)

• CDB: Root folder

• 2D features: Link to collection information document

16

Chapter 7. GeoVolumes API
The following section describes the key elements of the GeoVolumes API, an OpenAPI 3.0 REST
API developed for this Pilot. The GeoVolumes API conforms to the OGC API-Common foundation
resources: landing page, API definition, conformance declaration, and collections (spatial
resources). It provides access to 3D resources and allows the exchange of content compliant with
the 3D Container also developed in this Pilot. Table 1 describes the resources and applicable
HTTP methods for the GeoVolumes API. Those resources and methods are illustrated graphically
in Figure 6.

Resource Path HTTP
method

Document reference

Landing Page / GET Landing Page

Conformance
Declaration

/conformance GET Conformance

API Definition /api GET API/Definition

Collections /collections GET Collections

3D Container /collections/{3DContainerID

}

GET 3D Container

Table 1. Overview of API resources and applicable HTTP methods

Figure 6. UML diagram of API resources

Landing Page: The entry point to the API (/). The landing page provides links to the service
description, API definition (/api), conformance declaration (/conformance) and collections
(/collections). The landing page requires no parameters. The HTTP / GET response returns
landing page content in JSON.

17

Conformance: The Conformance declaration states the conformance classes from standards or
community specifications, identified by a URI, to which the API conforms. The conformance
resource requires no parameters. The HTTP /conformance GET response returns the list of URIs
of conformance classes implemented by the server in JSON.

API/Definition: Provides the API definition that describes the capabilities of the server and which
can be used by developers to understand the API, by software clients to connect to the server, or
by development tools to support the implementation of servers and clients. The api resource
requires no parameters. The HTTP /api GET response returns the list of URIs of API definitions in
JSON.

Collections: Collections provides the information and access collection of 3D containers. The
collection resources accept the 2D or 3D bounding box (bbox) and format parameter. The
resource accepts query or header parameters for the format parameter. The bounding box query
parameter lower left: x, y, {z}, and upper right x, y, {z} (z-coordinate is optional) returns 3DC that
are within the area. The HTTP /collection GET response returns JSON containing two
properties, links (link: URI, type, relationship) and 3D Data Container.

3D Container: The collection resources support access to 3DC with a unique identifier
(/collections/{3DContainterID}). The format and bounding box parameters in the collections
request can be applied to a specific 3DC request. The bbox query on a 3DC will apply filtering on
the contents within the 3DC. The HTTP /collections/{3DContainterID} GET response returns
JSON representing the 3D Data Container.

18

Chapter 8. Implementations, Experiences,
and Lessons Learned by Participants
Five clients have been implemented in the course of the Pilot that interact with six
implementations of the GeoVolume API and its 3D Container resources. Figure 7 shows the setup.
Clients and servers have been thoroughly tested for interoperability. The connectors only
illustrate the technical interoperability experiments, some are omitted to improve readability.

Figure 7. Client and server implementations. The connectors are exemplary only. All clients have been
tested with all GeoVolume APIs.

8.1. Experiences
Participants shared the following experiences and lessons learned:

• The new API developed in this Pilot is useful for discovering a spatially-organized collection
of 3D datasets, particularly where the datasets are available in multiple formats.

• It is our view that this concept is not only useful for discovering spatially-organized
collections. It is also useful to be able to organize and search for datasets by theme or by
other criteria. Future work could allow searches by additional criteria.

• Also, this concept is not only useful for 3D data. It’s easy to imagine a dataset in GML format,
for example, being made available in a wide variety of other ways as well: As an "OGC API -
Features" service, as 2D vector and raster tiles using "OGC API - Tiles", and as extruded 3D
volumes served in 3D Tiles and I3S. Future work could extend the API developed in this Pilot
to allow all six of these formats / APIs to be discoverable via a single API, and make it clear
that all are distributions of the same dataset.

• The new 3D data container format helped considering 3D Tiles and I3S as complementary
representations, increasing the attractiveness for 3D apps with support for both
representations. The proof of concept of the I3S-to-3DTiles tool, which allowed apps
supporting only 3D Tiles representation to render I3S models, lowers the barriers for such a

19

move.

• The decision to implement the 3D Tiles API separated from the original 3D Server offered
great flexibility and allowed to easily deploy hierarchical 3D Container federated catalogs

• We tested two main approaches – to serve data from static files (e.g. 3D Tiles or Scene
Package) and to chain / federate services from third party servers. Both worked well.

• In terms of key design decisions, we chose to represent our API using both JSON responses
and HTML to provide an API that was easier to navigate.

• In terms of lessons learned, as well as API interoperability challenges, there are often
subsidiary challenges such as CORS headers and server / service structure (trailing slashes)
that can trip up interoperability between servers and clients.

• In terms of recommendations, we found that it would be fruitful if there were further tools
available to easily convert CityGML data to I3S or 3D Tiles (particularly data with textures),
and that converter services to convert between the I3S and 3D Tiles were a promising tool
that warrants more development.

• Our experience with implementation of the API was relatively linear. Once we aligned our API
implementation to the specifications and schemas outlined in the 3D Container
Recommendation, only minor modifications were required to achieve and support
successful TIEs with the other servers.

• APIs can now combine 3D Tiles and I3S. This Pilot has drafted a new API that allows for the
delivery of 3D Models through the combination of two different representation formats: 3D
Tiles and I3S. Other storage formats, such as CityGML and CDB, have also been tested in this
Pilot by some participants. This is an important step forward, as it provides two distinct
advantages:

◦ APIs can be more interoperable, as they can offer two different representations for the
same data. If a client only supports one representation, they can still render the model.

◦ For ecosystems where clients support both representations, 3D Models can be richer
and more performant, by combining 3D Tiles and I3S representations to deliver a
model. This allows us to use each standard for the use cases with the best fit. However,
there does not seem to be a clear recommendation as to which standard is the best for
each use case. This becomes a particularly steep learning curve for newcomers, as they
need to learn several standards before they can make educated decisions on which
formats to use for their own case.

• The hierarchical structure for 3D Containers defined in this Pilot opens the door to offer 3D
Models in a natural way. But from the service architecture point of view, it also allows to
deploy 3D Container federated catalogs, that is, APIs that offer 3D Containers from different
sources, combining 3D Tiles and I3S, without hosting the data. This could be a natural way to
separate the responsibilities for creating and hosting local 3D data (for local and regional
entities) and for finding, aggregating and serving national or global 3D data (for national or
global entities).

• During the Pilot there were numerous examples of rendering issues in the various clients.
Some issues could be fixed during the Pilot but most remain confirmed and open. There

20

seems to be the need to put development teams from different 3D app vendors in touch, for
example by organizing regular 3D rendering interoperability sprints to help finding and
ironing out all these interoperability issues.

8.2. Implementations

8.2.1. Cesium

Cesium developed and deployed an implementation of the 3D Container and Tiles API, as well as
a web-based client application to query and render 3D datasets from servers implementing the
API. The Cesium client application was able to successfully integrate with the API provided by all
other participants, and the Cesium server was successfully accessed by all other participants'
client applications.

Figure 8. Screenshot of Cesium’s Web-based 3D Client

The client can query GeoVolumes API endpoints and display the discovered datasets in a
hierarchical catalog. The catalog interface displays the metadata for each dataset, including an
inlaid map showing the data’s bounding box. The user can add 3D Tiles datasets to the CesiumJS-
based 3D globe. The user can also add datasets in I3S format, in which case each I3S request is
passed through a service (courtesy the Terria team at CSIRO’s Data61) that automatically
converts each I3S resource to an equivalent 3D Tiles resource. The client can also display
"groups" which use the API’s bounding box search capability to restrict the view to those datasets
that lie within a given bounding box.

In addition to the client, Cesium implemented a server offering the GeoVolumes API. The server
supports a number of features:

21

• Hierarchical collections of 3D data

• Querying for 3D containers by 2D and 3D bounding boxes

• Datasets may be hosted on the API server or on a different server

• Open source code

8.2.2. Cognitics

Cognitics implemented a static Node.js 3D server providing 3DTiles and developed a client using
Unity 3D to query and display 3D data from other participant servers. The implementation
provides glTF content as a single container based on the request to the 3D Data Container and
Tiles API. The glTF models represent the valid JSON responses through the API. The
implementation fully supports embedded binary data and external binary data glTF models.
Correct placement is ensured using B3DM.

The Cognitics implementation supports Unity by placing glTF models inside of a CDB
environment at runtime. It also converts glTF and 3D Tiles into Unity meshes that render very
quickly. The figure below shows the results of the Unity 3D client request for the "New York
Buildings" collection.

Figure 9. Screenshot of Cognitics' client application

8.2.3. Ecere

Ecere provided both server and client components based on its GNOSIS technology, integrating
multiple ways to deliver and access 3D data within these OGC API components, including the
Tiles API and 3D Tiles.

22

Ecere improved its dynamic GNOSIS Map Server with capabilities to distribute 3D data using both
the Tiles API and 3D Tiles. Multi-resolution tiles for 3D data are distributed as either a 3D mesh
covering a whole tile, or as tiles of vector points referencing individual 3D Models. Tiles of
imagery, elevation or vector data are also supported. The tiles follow tiling schemes described by
the TileMatrixSet standard. The Tiles API could also easily be extended with vertical sub-division
to support highly detailed multi-stories buildings, organizing the data in a geographic space
octree.

Support for distributing the data as a 3D Tiles tileset linking to batched 3D Models following a
fixed tiling scheme was also developed. This capability was tested using the CesiumJS client.
Future work will focus on also providing access to pre-tessellated versions of the terrain as
quantized terrain mesh, as well as on the ability to load 3D datasets from CityGML sources onto
the GNOSIS Map Server.

Ecere also implemented a simple static server, based on Apache, used in TIEs. The static server
distributed the New York City buildings served by all participants as 3D Tiles.

Figure 10. CesiumJS client accessing Camp Pendleton data from GNOSIS Map Server as 3D Tiles
generated on-the-fly

Ecere’s client component, GNOSIS Cartographer, re-used existing support for common OGC API
capabilities such as accessing landing pages and data layers. The client supported retrieving 3D
data using both a Tiles API approach as well as 3D Tiles Bounding Volume Hierarchy tilesets.

The multi-resolution tiles accessed using the Tiles API included imagery, terrain elevation, as well
as points referencing 3D Models with position and orientation information, and were all
integrated within a 3D view. The GNOSIS engine tessellates a 3D mesh of the terrain on-the-fly
from the elevation gridded coverage tiles.

23

Figure 11. Camp Pendleton CDB dataset accessed from GNOSIS Map Server using the Tiles API

Support for 3D Tiles in the latest version of Ecere’s GNOSIS software was implemented during the
Pilot. The Ecere client could access and visualize all data from other services being provided as
batched 3D Models (.b3dm) 3D Tiles.

8.2.4. Helyx

For this Pilot Helyx provided a static 3D server built on Apache, and deployed on Microsoft Azure
as a Docker image. The server was loaded with an array of different data sources for clients to
test. Helyx chose a static server implementation to demonstrate and test the type of data that
could be served even with a simple web server. The API was built in both JSON and HTML
representations for ease of both machine and human navigation. The server demonstrated a
couple of concepts, detailed below:

• Serving a 3D Container from the local server:

◦ 3D Tiles: 3D Tiles data of New York were sourced from the Pilot partners - The quadtree
version of the data was chosen, so all the data tiles were placed on level 14 of a double-
headed quadtree where the Level 0 tiles are -180°→0° (Western Hemisphere) and
0°→180° (Eastern Hemisphere).

◦ I3S: Building data for Montreal was sourced from the city’s data portal
(donnees.ville.montreal.qc.ca). An I3S scene layer package was created using Esri’s
CityGML Import tools, and associated 3D City Information Model. This was then
exported as a Scene Layer Package, which was unzipped and served on the server. Both
the buildings and the textures were served.

• Incorporating 3rd party 3D services into the Pilot’s 3D container: As well as serving data
directly from the server, the Helyx server also showed 3D data being served from 3rd party

24

servers. In the case of i3s, this used Esri’s ArcGIS Online. In the case of 3D Tiles, Cesium’s Ion
server was used. These were passed through as URLs in the API content and links section.

8.2.5. Skymantics

Skymantics participation in this Pilot consisted of two different implementations: A server that
offered 3D data through the 3D Tiles API and a client that queried the 3D Tiles API and rendered
visually the 3D data.

Skymantics chose Hexagon’s Luciad Fusion as the main 3D data server, but decided to implement
the 3D Tiles API independently. This allowed for greater flexibility in the deployment, as the 3D
data server was transparent for the clients. Additional servers and repositories could be added to
the API as if they were in the same server. Even other 3D Tiles APIs could be connected following
the same hierarchical concept that was included in the 3D Containers, much like in a federated
catalog. In the Skymantics implementation, the Marseille 3D Container was hosted at Hexagon’s
services, and the I3S representation of the NYC buildings was borrowed from Steinbeis servers
through their 3D Tiles API. The Luciad server was deployed on a virtual Linux server on Azure, and
so was the 3D Tiles API.

Skymantics 3D Tiles API offered a landing page, following the structure specified in OGC API -
Common. It also provided detailed information on all the 3D Containers offered by the API,
including a human-readable description, spatial extent and links to the 3D Tiles data, as well as
information on children 3D Containers and links to parent 3D Containers when applicable. It
could offer alternate representations (I3S) if available. It was also possible to query the 3D
Containers available within a specific bounding box, or even filter by available representation
(3DTiles or I3S).

Skymantics developed a visual, mouse-governed client, based on Luciad RIA, to test the Pilot’s 3D
Tiles API implementations. The figure below shows the visualization of the Marseille 3D container
in Skymantics’ client application.

25

Figure 12. Screenshot of Skymantics' client application

The bottom-left corner provided direct access to all the Pilot participants' APIs. Clicking each
button triggered the process to query the API landing page and explore through the 3D containers
finding the available data. The top-right corner showed the map layers of the app, consisting of
all the visible 3D containers found in the API. The bottom-right controller allowed to filter by
bounding box.

8.2.6. Steinbeis

Steinbeis provided an API server to deliver 3D content supporting New York City buildings. The
API was implemented as per the draft OGC API – Common - Part 1: Core
[http://docs.opengeospatial.org/DRAFTS/19-072.html] specification, with general information on the API
as well as links to the API definition, conformance classes and the 3D containers.

The Steinbeis 3D web client is implemented to interact and visualize the 3D geospatial contents
from the OGC API -Tiles-3D servers. The client is developed with the CesiumJS library and ArcGIS
for JavaScript library. In addition, the client can interact with the OGC 3D Portrayal Service. The
figure below shows the client in action. Users can request 3D contents to the 3DPS by drawing a
bounding area on the 3D map in the example area of New York City, USA, and the server will
respond with the 3D contents in the requested area.

26

http://docs.opengeospatial.org/DRAFTS/19-072.html

Figure 13. Screenshot of Steinbeis' client application

In this Pilot the geoportal client has been extended with support for OGC API - Features, which
provide methods to query and export geospatial contents through HTTP GET requests.

27

Chapter 9. Commercial Potential
There has been significant development in recent years at the intersection of geospatial, 3D
graphics, and modeling and simulation communities. A number of specifications, standards, and
frameworks have emerged to store, visualize, and analyze 3D geospatial content. The Sponsors of
the Pilot identified a need for a unified access interface and consistent conceptual understanding
of tiled 3D resources to make use of diverse 3D data in various formats. Pilot participants
developed a resource model - the 3DC - and a corresponding API that provides access to a variety
of 3D content in multiple formats. Participants also demonstrated an implementation that allows
applications working with tiled 2D geospatial resources to retrieve and position glTF 3D Models
via an extension to OGC API – Features.

The draft specifications and other artifacts developed in the Pilot, as well as implementation
demonstrations using various server and client configurations, provide a strong foundation for
future work. The intent of this evolving body of work is to simplify access to 3D geospatial
resources, to promote consistency through an open standards based approach, and ultimately to
reduce implementation barriers for organizations interested in building 3D geospatial
capabilities. Conducting this work through the OGC, in coordination with complimentary
standards organizations like the Khronos Group, creates opportunities to tightly integrate 3D
geospatial resources into the existing geospatial architecture for the web.

28

Chapter 10. Way Forward and
Standardization
A follow-on activity, the OGC Interoperable Simulation and Gaming Sprint [https://www.ogc.org/
projects/initiatives/isg-sprint], will continue to advance the draft specifications developed in the Pilot
through practical exercise and testing. The Sprint event is scheduled to take place September 14-
18, 2020.

Opportunities for future work include:

1. Explore performance in denied, degraded, intermittent, or low bandwidth (DDIL)
environments.

a. What mechanisms are available to deliver updated 3D content (delta updates) - and not
an entire dataset - to users in the field?

b. There are use cases in which users need to download a subset of a larger dataset to the
client for offline use. Pilot participants explored the idea of a package format to contain
3D content of various types, but ultimately decided that the proposal wasn’t feasible
within the Pilot period. Consideration was given to GeoPackage, Scene Layer Package
(SLPK), and Cesium’s internal SQLite transport format (3D Tiles) as potential
foundations for this notional package format.

2. Investigate best practices for organizing data within a 3DC. The OGC Interoperable
Simulation and Gaming Sprint Call for Participation [https://portal.ogc.org/files/?artifact_id=94059]
challenges participants to explore this area while acknowledging that solutions will vary by
specific use case:

a. Is there one bounding volume hierarchy per county, region, city, or some other geo-
political boundaries?

b. How are features (buildings, vegetation, transportation networks, etc.) structured in the
data store? Are they layers in geo-political sets, or are geo-political data layers in
feature sets?

3. Demonstrate integration with the OGC Sensor Things API.

4. Continue to advance integration with the modeling and simulation community. In particular,
explore integration with game engines and other applications that require attribution at the
individual polygon level (as opposed to feature-level attribution that is typical within 2D
geospatial applications).

5. Explore methods of cataloging / traversing catalogs of 3D geospatial resources

In terms of standardization, the Pilot developed a draft API and resource model that have been
proven mature enough to be introduced to OGC’s Standards Program. The next steps now
include the generation of a new OGC Standards Working Group (SWG), which requires the
definition of the SWG charter. Once the charter is formally approved by the OGC Technical and
Program Committees (TC & PC), the SWG starts with the consensus based standard development

29

https://www.ogc.org/projects/initiatives/isg-sprint
https://portal.ogc.org/files/?artifact_id=94059
https://portal.ogc.org/files/?artifact_id=94059

process and eventually recommends to the Technical Committee the release of the final
Standard to the public.

30

Appendix A: References
The following two OGC Innovation Program Engineering Reports contain the detailed
experiences, lessons learned, implementation descriptions, and the draft GeoVolumes API:

• 3D Container Engineering Report [https://portal.ogc.org/files/?artifact_id=94028]

• 3D Container API Engineering Report [https://portal.ogc.org/files/?artifact_id=94029]

31

https://portal.ogc.org/files/?artifact_id=94028
https://portal.ogc.org/files/?artifact_id=94029

Appendix B: Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&
version=2] shall apply. In addition, the following terms and definitions apply.

● coordinate reference system

Coordinate system that is related to the real world by a datum term name (source: ISO 19111)

● Bounding Volume

Typically a simple shape like a sphere, rectangular box, or convex hull that can simply be
tested for intersection or overlap. [2]

● YAML

YAML is a human friendly data serialization standard for all programming languages.

Abbreviated terms

NOTE: The abbreviated terms clause gives a list of the abbreviated terms and the symbols necessary for
understanding this document. All symbols should be listed in alphabetical order. Some more frequently

used abbreviated terms are provided below as examples.

• API Application Programming Interface

• CDB Common Database

• COM Component Object Model

• CORBA Common Object Request Broker Architecture

• COTS Commercial Off The Shelf

• CRS Coordinate Reference Systems

• B3DM Batched 3D Model

• BIM Building Information Model

• BVH Bounding Volume Hierarchy

• DCE Distributed Computing Environment

32

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

• DCOM Distributed Component Object Model

• glTF GL Transmission Format

• I3DM Instanced 3D Model

• IDL Interface Definition Language

• JSON JavaScript Object Notation

• MBV Minimum Bounding Volume

• MBS Minimum Bounding Sphere

• LOD Level of Detail

• OBB Oriented Bounding Box

• RS Regular Subdivision

• TMS Tile Map Services

• YAML A recursive acronym for "YAML Ain’t Markup Language"

• 3DC 3D-Container (3DC)

[2] Source: Tiles-3D Community Standard [https://www.ogc.org/standards/3DTiles] 3D Tiles Community Standard 1.0 (18-053r2)

33

https://www.ogc.org/standards/3DTiles

Appendix C: Revision History

NOTE
Example History (Delete this note).

replace below entries as needed

Date Editor Release Primary
clauses
modified

Descriptions

July 03, 2020 I. Simonis 0.1 all initial version

July 14,2020 I. Simonis 0.2 all first draft

July 15,2020 I. Simonis 1.0 all final version

July 15,2020 I. Simonis 1.1 all final version

July 16,2020 I. Simonis 1.2 8.1 editorial
changes

September
30,2020

G. Hobona 1.3 multiple final staff review

Table 2. Revision History

34

	{title}
	Table of Contents
	Chapter 1. Subject
	Chapter 2. Executive Summary
	2.1. Document contributor contact points
	2.2. Foreword

	Chapter 3. High-Level Architecture
	Chapter 4. Existing Space-Centric 3D Standards
	Chapter 5. Technical Challenges and Interoperability Issues
	Chapter 6. 3D Data Container
	Chapter 7. GeoVolumes API
	Chapter 8. Implementations, Experiences, and Lessons Learned by Participants
	8.1. Experiences
	8.2. Implementations

	Chapter 9. Commercial Potential
	Chapter 10. Way Forward and Standardization
	Appendix A: References
	Appendix B: Terms and definitions
	Appendix C: Revision History

