
Joshua Patterson – GM, Data Science

End-to-end data-science and geospatial analytics 
with GPUs, RAPIDS, and Apache Arrow
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RAPIDS
End-to-End Accelerated GPU Data Science

cuDF cuIO
Analytics

        GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

Dask



3 

Data Processing Evolution
Faster data access, less data movement

25-100x Improvement
Less code

Language flexible
Primarily In-Memory

HDFS 
Read

HDFS 
Write

HDFS 
Read

HDFS 
Write

HDFS 
ReadQuery ETL ML Train

HDFS 
Read Query ETL ML Train

HDFS 
Read

GPU 
ReadQuery CPU

Write
GPU 
Read ETL CPU

Write
GPU 
Read

ML
Train

5-10x Improvement
More code

Language rigid
Substantially on GPU

Traditional GPU Processing

Hadoop Processing, Reading from disk

Spark In-Memory Processing
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APP A

Data Movement and TransformationData Movement and Transformation
The bane of productivity and performance

CPU

APP B

Copy & Convert

Copy & Convert

Copy & Convert

APP A GPU 
Data

APP B
GPU 
Data

Read Data

Load Data

APP B

APP A

GPU
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Data Movement and TransformationData Movement and Transformation
What if we could keep data on the GPU?

APP A

APP B

Copy & Convert

Copy & Convert

Copy & Convert

Read Data

Load Data

CPU

APP A GPU 
Data

APP B
GPU 
Data

APP B

APP A

GPUCopy & Convert
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Learning from Apache Arrow

From Apache Arrow Home Page - https://arrow.apache.org/

● Each system has its own internal memory format
● 70-80% computation wasted on serialization and deserialization
● Similar functionality implemented in multiple projects

● All systems utilize the same memory format
● No overhead for cross-system communication
● Projects can share functionality (eg, Parquet-to-Arrow 

reader)
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Data Processing Evolution
Faster data access, less data movement

25-100x Improvement
Less code

Language flexible
Primarily In-Memory

HDFS 
Read

HDFS 
Write

HDFS 
Read

HDFS 
Write

HDFS 
ReadQuery ETL ML Train

HDFS 
Read Query ETL ML Train

HDFS 
Read

GPU 
ReadQuery CPU

Write
GPU 
Read ETL CPU

Write
GPU 
Read

ML
Train

Arrow
Read ETL ML

Train

5-10x Improvement
More code

Language rigid
Substantially on GPU

50-100x Improvement
Same code

Language flexible
Primarily on GPU

RAPIDS

Traditional GPU Processing

Hadoop Processing, Reading from disk

Spark In-Memory Processing

Query
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RAPIDS Core
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Pandas
Analytics

CPU Memory

Data Preparation VisualizationModel Training

Scikit-Learn
Machine Learning

NetworkX
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

Matplotlib/Seaborn
Visualization

Open Source Data Science Ecosystem
Familiar Python APIs

Dask
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cuDF cuIO
Analytics

        GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

RAPIDS
End-to-End Accelerated GPU Data Science

Dask
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Dask
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cuDF cuIO
Analytics

        GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

RAPIDS
Scaling RAPIDS with Dask

Dask
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Why Dask?

• Easy Migration: Built on top of NumPy, Pandas 
Scikit-Learn, etc.

• Easy Training: With the same APIs
• Trusted: With the same developer community

PyData Native

• Easy to install and use on a laptop
• Scales out to thousand-node clusters

Easy Scalability

• Most common parallelism framework today 
in the PyData and SciPy community

Popular

• HPC: SLURM, PBS, LSF, SGE
• Cloud: Kubernetes
• Hadoop/Spark: Yarn

Deployable
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Why OpenUCX?

• TCP sockets are slow!

• UCX provides uniform access to transports (TCP, 
InfiniBand, shared memory, NVLink)

• Python bindings for UCX (ucx-py) in the works 
https://github.com/rapidsai/ucx-py

• Will provide best communication performance, to Dask 
based on available hardware on nodes/cluster

Bringing hardware accelerated communications to Dask

https://github.com/rapidsai/ucx-py
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Scale up with RAPIDS

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

NumPy, Pandas, Scikit-Learn, 
Numba and many more

Single CPU core
In-memory data

PyData
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Scale out with RAPIDS + Dask with OpenUCX

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

Multi-GPU
On single Node (DGX)
Or across a cluster

RAPIDS + Dask with 
OpenUCX

Sc
al

e 
U

p 
/ 

Ac
ce

le
ra

te

Scale out / Parallelize

NumPy, Pandas, Scikit-Learn, 
Numba and many more

Single CPU core
In-memory data

PyData
Multi-core and Distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures

Dask
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cuDF
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cuDF cuIO
Analytics

        GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

RAPIDS
GPU Accelerated data wrangling and feature engineering

Dask
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ETL - the Backbone of Data Science
libcuDF is…

CUDA C++ Library

● Low level library containing function 
implementations and C/C++ API

● Importing/exporting Apache Arrow in GPU 
memory using CUDA IPC

● CUDA kernels to perform element-wise math 
operations on GPU DataFrame columns

● CUDA sort, join, groupby, reduction, etc. 
operations on GPU DataFrames
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ETL - the Backbone of Data Science
cuDF is…

Python Library

● A Python library for manipulating GPU 
DataFrames following the Pandas API

● Python interface to CUDA C++ library with 
additional functionality

● Creating GPU DataFrames from Numpy arrays, 
Pandas DataFrames, and PyArrow Tables

● JIT compilation of User-Defined Functions 
(UDFs) using Numba
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cuDF v0.9, Pandas 0.24.2

Running on NVIDIA DGX-1:

GPU: NVIDIA Tesla V100 32GB
CPU: Intel(R) Xeon(R) CPU E5-2698 v4 
        @ 2.20GHz

Benchmark Setup:

DataFrames: 2x int32 columns key columns, 
3x int32 value columns

Merge: inner

GroupBy: count, sum, min, max calculated 
for each value column

Benchmarks: single-GPU Speedup vs. Pandas
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ETL - the Backbone of Data Science
String Support

•Regular Expressions
•Element-wise operations

• Split, Find, Extract, Cat, Typecasting, etc…
•String GroupBys, Joins
•Categorical columns fully on GPU

Current v0.9 String Support

• Combining cuStrings into libcudf
• Extensive performance optimization
• More Pandas String API compatibility
• JIT-compiled String UDFs

Future v0.10+ String Support
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• Follow Pandas APIs and provide >10x speedup

• CSV Reader - v0.2, CSV Writer v0.8

• Parquet Reader – v0.7, Parquet Writer v0.10

• ORC Reader – v0.7, ORC Writer v0.10

• JSON Reader - v0.8

• Avro Reader - v0.9

• GPU Direct Storage integration in progress for 
bypassing PCIe bottlenecks!

• Key is GPU-accelerating both parsing and 
decompression wherever possible Source: Apache Crail blog: SQL Performance: Part 1 - Input File Formats

Extraction is the Cornerstone
cuIO for Faster Data Loading

http://crail.incubator.apache.org/blog/2018/08/sql-p1.html
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ETL is not just DataFrames!
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        GPU Memory

Data Preparation VisualizationModel Training

RAPIDS
Building bridges into the array ecosystem

Dask

cuDF cuIO
Analytics

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization
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Interoperability for the Win
DLPack and __cuda_array_interface__

mpi4py
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Interoperability for the Win
DLPack and __cuda_array_interface__

mpi4py
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ETL – Arrays and DataFrames
Dask and CUDA Python arrays

• Scales NumPy to distributed clusters
• Used in climate science, imaging, HPC analysis 

up to 100TB size
• Now seamlessly accelerated with GPUs
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Benchmark: single-GPU CuPy vs NumPy

More details: https://blog.dask.org/2019/06/27/single-gpu-cupy-benchmarks

https://blog.dask.org/2019/06/27/single-gpu-cupy-benchmarks
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Architecture Time

Single CPU Core 2hr 39min

Forty CPU Cores 11min 30s

One GPU 1min 37s

Eight GPUs 19s

Also…Achievement Unlocked: 
Petabyte Scale Data Analytics with Dask and CuPy

Cluster configuration: 20x GCP instances, each 
instance has:
CPU: 1 VM socket (Intel Xeon CPU @ 2.30GHz), 
2-core, 2 threads/core, 132GB mem, GbE ethernet, 
950 GB disk
GPU: 4x NVIDIA Tesla P100-16GB-PCIe (total GPU 
DRAM across nodes 1.22 TB)
Software: Ubuntu 18.04, RAPIDS 0.5.1, Dask=1.1.1, 
Dask-Distributed=1.1.1, CuPY=5.2.0, CUDA 10.0.130

https://blog.dask.org/2019/01/03/dask-array-gpus-first-steps
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cuML
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        GPU Memory

Data Preparation VisualizationModel Training

Dask

Machine Learning
More models more problems

cuDF cuIO
Analytics

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization
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Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

Iterate. Cross Validate & Grid Search.

Iterate some more.

Meet reasonable speed vs accuracy tradeoff

Hours? Days?

Time
Increases
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ML Technology Stack

Python

Cython

cuML Algorithms

cuML Prims

CUDA Libraries

CUDA

Dask cuML
Dask cuDF

cuDF
Numpy

Thrust
Cub

cuSolver
nvGraph
CUTLASS
cuSparse
cuRand
cuBlas
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Algorithms
GPU-accelerated Scikit-Learn

Classification / Regression

Inference

Clustering

Decomposition & Dimensionality Reduction

Time Series

Decision Trees / Random Forests
Linear Regression
Logistic Regression
K-Nearest Neighbors

Random forest / GBDT inference

K-Means
DBSCAN
Spectral Clustering

Principal Components
Singular Value Decomposition
UMAP
Spectral Embedding

Holt-Winters
Kalman Filtering

Cross Validation

More to come!

Hyper-parameter Tuning
Key:

● Preexisting
● NEW for 0.9
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RAPIDS matches common Python APIs

from sklearn.cluster import DBSCAN
dbscan = DBSCAN(eps = 0.3, min_samples = 5)

dbscan.fit(X)

y_hat = dbscan.predict(X)

Find Clusters

from sklearn.datasets import make_moons
import pandas

X, y = make_moons(n_samples=int(1e2), 
                  noise=0.05, random_state=0)

X = pandas.DataFrame({'fea%d'%i: X[:, i]
                     for i in range(X.shape[1])})

CPU-Based Clustering
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RAPIDS matches common Python APIs

from cuml            import DBSCAN
dbscan = DBSCAN(eps = 0.3, min_samples = 5)

dbscan.fit(X)

y_hat = dbscan.predict(X)

Find Clusters

from sklearn.datasets import make_moons
import cudf

X, y = make_moons(n_samples=int(1e2), 
                  noise=0.05, random_state=0)

X =   cudf.DataFrame({'fea%d'%i: X[:, i]
                     for i in range(X.shape[1])})

GPU-Accelerated Clustering
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Benchmarks: single-GPU cuML vs scikit-learn

1x V100 
vs 
2x 20 core CPU
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Road to 1.0 
August 2019 - RAPIDS 0.9

cuML Single-GPU Multi-GPU Multi-Node-Multi-GPU

Gradient Boosted Decision Trees (GBDT)

GLM

Logistic Regression

Random Forest

K-Means

K-NN

DBSCAN

UMAP

Holt-Winters

Kalman Filter

t-SNE

Principal Components

Singular Value Decomposition
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Road to 1.0 
March 2020 - RAPIDS 0.14

cuML Single-GPU Multi-GPU Multi-Node-Multi-GPU

Gradient Boosted Decision Trees (GBDT)

GLM

Logistic Regression

Random Forest

K-Means

K-NN

DBSCAN

UMAP

ARIMA & Holt-Winters

Kalman Filter

t-SNE

Principal Components

Singular Value Decomposition
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cuGraph
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        GPU Memory

Data Preparation VisualizationModel Training

Dask

Graph Analytics
More connections more insights

cuDF cuIO
Analytics

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization
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GOALS AND BENEFITS OF CUGRAPH
Focus on Features and User Experience

• Property Graph support via DataFrames

Seamless Integration with cuDF and cuML

• Up to 500 million edges on a single 32GB GPU
• Multi-GPU support for scaling into the billions 

of edges

Breakthrough Performance 

• Python: Familiar NetworkX-like API
• C/C++: lower-level granular control for 

application developers

Multiple APIs

• Extensive collection of algorithm, primitive, 
and utility functions

Growing Functionality
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Graph Technology Stack

Python

Cython

cuGraph Algorithms

Prims

CUDA Libraries

CUDA

Dask cuGraph
Dask cuDF

cuDF
Numpy

thrust
cub

cuSolver
cuSparse
cuRand

Gunrock*

cuGraphBLAS cuHornet

nvGRAPH has been Opened Sourced and integrated into cuGraph.  A legacy version is available in a RAPIDS GitHub repo * Gunrock is from UC Davis
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Algorithms
GPU-accelerated NetworkX

Community

Components

Link Analysis

Link Prediction

Traversal

Structure

Spectral Clustering
Balanced-Cut
Modularity Maximization

Louvain
Subgraph Extraction
Triangle Counting

Jaccard
Weighted Jaccard
Overlap Coefficient

Single Source Shortest Path (SSSP)
Breadth First Search (BFS)

COO-to-CSR (Multi-GPU)
Transpose
Renumbering

Multi-GPU

More to come!

Utilities

Weakly Connected Components
Strongly Connected Components

Page Rank (Multi-GPU)
Personal Page Rank

Query Language
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Louvain Single Run

Dataset Nodes Edges

preferentialAttachment 100,000 999,970

caidaRouterLevel 192,244 1,218,132

coAuthorsDBLP 299,067 299,067

dblp-2010 326,186 1,615,400

citationCiteseer 268,495 2,313,294

coPapersDBLP 540,486 30,491,458

coPapersCiteseer 434,102 32,073,440

as-Skitter 1,696,415 22,190,596

Louvain returns:
cudf.DataFrame with two names columns:
  louvain["vertex"]: The vertex id.
  louvain["partition"]: The assigned partition.

G = cugraph.Graph()
G.add_edge_list(gdf["src_0"], gdf["dst_0"], gdf["data"])
df, mod = cugraph.nvLouvain(G)
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Multi-GPU PageRank Performance 

PageRank portion of the HiBench benchmark suite

HiBench Scale Vertices Edges CSV File 
(GB)

# of GPUs PageRank for
3 Iterations (secs)

Huge 5,000,000 198,000,000 3 1 1.1

BigData 50,000,000 1,980,000,000 34 3 5.1

BigData x2 100,000,000 4,000,000,000 69 6 9.0

BigData x4 200,000,000 8,000,000,000 146 12 18.2

BigData x8 400,000,000 16,000,000,000 300 16 31.8
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Multi-GPU PageRank Performance 

PageRank portion of the HiBench benchmark suite

HiBench Scale Vertices Edges CSV File 
(GB)

# of GPUs PageRank for
3 Iterations (secs)

Huge 5,000,000 198,000,000 3 1 1.1

BigData 50,000,000 1,980,000,000 34 3 5.1

BigData x2 100,000,000 4,000,000,000 69 6 9.0

BigData x4 200,000,000 8,000,000,000 146 12 18.2

BigData x8 400,000,000 16,000,000,000 300 16 31.8

BigData x8, 100x 8-vCPU nodes, Apache Spark GraphX ⇒ 96 mins!
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Road to 1.0 
August 2019 - RAPIDS 0.9

cuGraph Single-GPU Multi-GPU Multi-Node-Multi-GPU

Jaccard and Weighted Jaccard

Page Rank

Personal Page Rank

SSSP

BFS

Triangle Counting

Subgraph Extraction

Katz Centrality

Betweenness Centrality

Connected Components (Weak and Strong)

Louvain

Spectral Clustering

InfoMap

K-Cores
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Road to 1.0 
March 2020 - RAPIDS 0.14

cuGraph Single-GPU Multi-GPU Multi-Node-Multi-GPU

Jaccard and Weighted Jaccard

Page Rank

Personal Page Rank

SSSP

BFS

Triangle Counting

Subgraph Extraction

Katz Centrality

Betweenness Centrality

Connected Components (Weak and Strong)

Louvain

Spectral Clustering

InfoMap

K-Cores
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RAPIDS Geospatial Applications
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RAPIDS Geospatial Applications
cuGraph SSSP
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RAPIDS Geospatial Applications
cuGraph SSSP
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RAPIDS Geospatial Applications
cuML K-means
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RAPIDS Geospatial Applications

 
“RAPIDS opens up new opportunities by simplifying the 
application of geographic data science at scale, at speed. 
Applications are limited only by your imagination.
 
“While we have achieved a lot with RAPIDS, in the short 
time since initial launch, I believe that we have only 
scratched the surface so far.”
 
John Murray, Geographic Data Science Lab, University of 
Liverpool

John Murray @MurrayData
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RAPIDS Geospatial Applications
I’ll walk 500 miles...

https://www.citymetric.com/horizons/so-where-exactly-did-proclaimers-walk-500-miles-4629

It’s [every walkable road in Great Britain] a sizeable graph 
consisting of 3,078,131 vertices and 7,347,806 edges so 
represents a significant mathematical challenge, so I used 
Graphics Processing Unit (GPU) computing.

https://www.citymetric.com/horizons/so-where-exactly-did-proclaimers-walk-500-miles-4629
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Geospatial Challenges

Data Representation & Management
Indexing, Database Queries, Aggregation & KPIs
Positioning & Navigation (Indoor, Outdoor)
Machine Learning, Big Data Analytics, Behavior Models Event 
Analytics & Anomaly Detection
Map-based Visualization

Still much more to do
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cuSpatial
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cuSpatial Technology Stack

Python

Cython

cuSpatial

cuDF C++

Thrust

CUDA
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cuSpatial 0.10

1. Data Representation for point, line, polygon (Columinar/SoA)

2. Location Data Ingestion from JSON schema (IVA schema data)

3. Spatial window query

4. Point-in-polygon test

5. Converting lat/lon to x/y

6. Haversine Distance between pairs of lat/lon points

7. Location-to-trajectory

8. Computing trajectory distance/speed

9. Computing trajectory spatial bounding box

10. Directed Hausdorff distance

11. Python bindings for all the above features

12. Python test code, sample application & performance evaluation scripts
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cuSpatial
Today and Tomorrow

Layer 0.10/0.11 Functionality Functionality Roadmap (2020)

High-level Analytics C++ Library w. Python bindings enabling 
distance, speed, trajectory similarity, trajectory 
clustering

C++ Library w. Python bindings for additional 
spatio-temporal trajectory clustering, acceleration, 
dwell-time, salient locations, trajectory anomaly 
detection, origin destination, etc.

Graph layer cuGraph Map matching, Djikstra algorithm, Routing

Query layer Nearest Neighbor, Range Search KNN, Spatiotemporal range search and joins

Index layer Grid, Quad Tree R-Tree, Geohash, Voronoi Tessellation

Geo-operations Point in polygon (PIP), Haversine distance, 
Hausdorff distance, lat-lon to xy transformation

Line intersecting polygon, Other distance functions, 
Polygon intersection, union

Geo-representation Shape primitives, points, polylines, polygons Additional shape primitives
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cuSpatial 0.10

cuSpatial Operation Input data cuSpatial Runtime Reference Runtime Speedup

Point-in-Polygon Test 1.3+ million vehicle point 
locations and 27 Region of 
Interests

1.11 ms (C++)
1.50 ms (Python)
[Nvidia Titan V]

334 ms (C++, optimized 
serial)
130468.2 ms (python 
Shapely API, serial)
[Intel i7-7800X]

301X
(C++)
86,978X (Python)

Haversine Distance 
Computation

13+ million Monthly NYC taxi 
trip pickup and drop-off 
locations

7.61 ms (Python)
[Nvidia T4]
 

416.9 ms (Numba)
[Nvidia T4]

54.7X (Python)

Hausdorff Distance 
Computation (for 
clustering)

10,700 trajectories with 1.3+ 
million points

13.5s
[Quadro V100]
 

19227.5s (Python SciPy 
API, serial)
[Intel i7-6700K]

1,400X (Python)

Performance at a Glance
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cuSpatial 0.10

conda install -c rapidsai-nightly cuspatial

Try It Today!
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Community
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Ecosystem Partners
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Building on top of RAPIDS
A bigger, better, stronger ecosystem for all

Streamz

High-Performance 
Serverless event and 
data processing that 
utilizes RAPIDS for GPU 
Acceleration

Distributed stream 
processing using 
RAPIDS and Dask

GPU accelerated SQL 
engine built on top of 
RAPIDS
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Explore: RAPIDS Code and Blogs
Check out our code and how we use it

https://github.com/rapidsai https://medium.com/rapids-ai

https://github.com/rapidsai
https://medium.com/rapids-ai
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Getting Started
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• https://ngc.nvidia.com/registry/nvidia-rapidsai
-rapidsai

• https://hub.docker.com/r/rapidsai/rapidsai/

• https://github.com/rapidsai

• https://anaconda.org/rapidsai/

RAPIDS
How do I get the software?

https://ngc.nvidia.com/registry/nvidia-rapidsai-rapidsai
https://ngc.nvidia.com/registry/nvidia-rapidsai-rapidsai
https://hub.docker.com/r/rapidsai/rapidsai/
https://github.com/rapidsai
https://anaconda.org/rapidsai/
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Join the Movement
Everyone can help!

Integrations, feedback, documentation support, pull requests, new issues, or code donations welcomed!

APACHE ARROW GPU Open Analytics 
Initiative

https://arrow.apache.org/

@ApacheArrow

http://gpuopenanalytics.com/

@GPUOAI

RAPIDS

https://rapids.ai

@RAPIDSAI

Dask

https://dask.org

@Dask_dev



THANK YOU

Joshua Patterson @datametrician

joshuap@nvidia.com


