
Joshua Patterson – GM, Data Science

End-to-end data-science and geospatial analytics
with GPUs, RAPIDS, and Apache Arrow

2

RAPIDS
End-to-End Accelerated GPU Data Science

cuDF cuIO
Analytics

 GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

Dask

3

Data Processing Evolution
Faster data access, less data movement

25-100x Improvement
Less code

Language flexible
Primarily In-Memory

HDFS
Read

HDFS
Write

HDFS
Read

HDFS
Write

HDFS
ReadQuery ETL ML Train

HDFS
Read Query ETL ML Train

HDFS
Read

GPU
ReadQuery CPU

Write
GPU
Read ETL CPU

Write
GPU
Read

ML
Train

5-10x Improvement
More code

Language rigid
Substantially on GPU

Traditional GPU Processing

Hadoop Processing, Reading from disk

Spark In-Memory Processing

4

APP A

Data Movement and TransformationData Movement and Transformation
The bane of productivity and performance

CPU

APP B

Copy & Convert

Copy & Convert

Copy & Convert

APP A GPU
Data

APP B
GPU
Data

Read Data

Load Data

APP B

APP A

GPU

5

Data Movement and TransformationData Movement and Transformation
What if we could keep data on the GPU?

APP A

APP B

Copy & Convert

Copy & Convert

Copy & Convert

Read Data

Load Data

CPU

APP A GPU
Data

APP B
GPU
Data

APP B

APP A

GPUCopy & Convert

6

Learning from Apache Arrow

From Apache Arrow Home Page - https://arrow.apache.org/

● Each system has its own internal memory format
● 70-80% computation wasted on serialization and deserialization
● Similar functionality implemented in multiple projects

● All systems utilize the same memory format
● No overhead for cross-system communication
● Projects can share functionality (eg, Parquet-to-Arrow

reader)

7

Data Processing Evolution
Faster data access, less data movement

25-100x Improvement
Less code

Language flexible
Primarily In-Memory

HDFS
Read

HDFS
Write

HDFS
Read

HDFS
Write

HDFS
ReadQuery ETL ML Train

HDFS
Read Query ETL ML Train

HDFS
Read

GPU
ReadQuery CPU

Write
GPU
Read ETL CPU

Write
GPU
Read

ML
Train

Arrow
Read ETL ML

Train

5-10x Improvement
More code

Language rigid
Substantially on GPU

50-100x Improvement
Same code

Language flexible
Primarily on GPU

RAPIDS

Traditional GPU Processing

Hadoop Processing, Reading from disk

Spark In-Memory Processing

Query

8

RAPIDS Core

9

Pandas
Analytics

CPU Memory

Data Preparation VisualizationModel Training

Scikit-Learn
Machine Learning

NetworkX
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

Matplotlib/Seaborn
Visualization

Open Source Data Science Ecosystem
Familiar Python APIs

Dask

10

cuDF cuIO
Analytics

 GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

RAPIDS
End-to-End Accelerated GPU Data Science

Dask

11

Dask

12

cuDF cuIO
Analytics

 GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

RAPIDS
Scaling RAPIDS with Dask

Dask

13

Why Dask?

• Easy Migration: Built on top of NumPy, Pandas
Scikit-Learn, etc.

• Easy Training: With the same APIs
• Trusted: With the same developer community

PyData Native

• Easy to install and use on a laptop
• Scales out to thousand-node clusters

Easy Scalability

• Most common parallelism framework today
in the PyData and SciPy community

Popular

• HPC: SLURM, PBS, LSF, SGE
• Cloud: Kubernetes
• Hadoop/Spark: Yarn

Deployable

14

Why OpenUCX?

• TCP sockets are slow!

• UCX provides uniform access to transports (TCP,
InfiniBand, shared memory, NVLink)

• Python bindings for UCX (ucx-py) in the works
https://github.com/rapidsai/ucx-py

• Will provide best communication performance, to Dask
based on available hardware on nodes/cluster

Bringing hardware accelerated communications to Dask

https://github.com/rapidsai/ucx-py

15

Scale up with RAPIDS

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

NumPy, Pandas, Scikit-Learn,
Numba and many more

Single CPU core
In-memory data

PyData

Sc
al

e
U

p
/

Ac
ce

le
ra

te

16

Scale out with RAPIDS + Dask with OpenUCX

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

Multi-GPU
On single Node (DGX)
Or across a cluster

RAPIDS + Dask with
OpenUCX

Sc
al

e
U

p
/

Ac
ce

le
ra

te

Scale out / Parallelize

NumPy, Pandas, Scikit-Learn,
Numba and many more

Single CPU core
In-memory data

PyData
Multi-core and Distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures

Dask

17

cuDF

18

cuDF cuIO
Analytics

 GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

RAPIDS
GPU Accelerated data wrangling and feature engineering

Dask

19

ETL - the Backbone of Data Science
libcuDF is…

CUDA C++ Library

● Low level library containing function
implementations and C/C++ API

● Importing/exporting Apache Arrow in GPU
memory using CUDA IPC

● CUDA kernels to perform element-wise math
operations on GPU DataFrame columns

● CUDA sort, join, groupby, reduction, etc.
operations on GPU DataFrames

20

ETL - the Backbone of Data Science
cuDF is…

Python Library

● A Python library for manipulating GPU
DataFrames following the Pandas API

● Python interface to CUDA C++ library with
additional functionality

● Creating GPU DataFrames from Numpy arrays,
Pandas DataFrames, and PyArrow Tables

● JIT compilation of User-Defined Functions
(UDFs) using Numba

21

cuDF v0.9, Pandas 0.24.2

Running on NVIDIA DGX-1:

GPU: NVIDIA Tesla V100 32GB
CPU: Intel(R) Xeon(R) CPU E5-2698 v4
 @ 2.20GHz

Benchmark Setup:

DataFrames: 2x int32 columns key columns,
3x int32 value columns

Merge: inner

GroupBy: count, sum, min, max calculated
for each value column

Benchmarks: single-GPU Speedup vs. Pandas

22

ETL - the Backbone of Data Science
String Support

•Regular Expressions
•Element-wise operations

• Split, Find, Extract, Cat, Typecasting, etc…
•String GroupBys, Joins
•Categorical columns fully on GPU

Current v0.9 String Support

• Combining cuStrings into libcudf
• Extensive performance optimization
• More Pandas String API compatibility
• JIT-compiled String UDFs

Future v0.10+ String Support

23

• Follow Pandas APIs and provide >10x speedup

• CSV Reader - v0.2, CSV Writer v0.8

• Parquet Reader – v0.7, Parquet Writer v0.10

• ORC Reader – v0.7, ORC Writer v0.10

• JSON Reader - v0.8

• Avro Reader - v0.9

• GPU Direct Storage integration in progress for
bypassing PCIe bottlenecks!

• Key is GPU-accelerating both parsing and
decompression wherever possible Source: Apache Crail blog: SQL Performance: Part 1 - Input File Formats

Extraction is the Cornerstone
cuIO for Faster Data Loading

http://crail.incubator.apache.org/blog/2018/08/sql-p1.html

24

ETL is not just DataFrames!

25

 GPU Memory

Data Preparation VisualizationModel Training

RAPIDS
Building bridges into the array ecosystem

Dask

cuDF cuIO
Analytics

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

26

Interoperability for the Win
DLPack and __cuda_array_interface__

mpi4py

27

Interoperability for the Win
DLPack and __cuda_array_interface__

mpi4py

28

ETL – Arrays and DataFrames
Dask and CUDA Python arrays

• Scales NumPy to distributed clusters
• Used in climate science, imaging, HPC analysis

up to 100TB size
• Now seamlessly accelerated with GPUs

29

Benchmark: single-GPU CuPy vs NumPy

More details: https://blog.dask.org/2019/06/27/single-gpu-cupy-benchmarks

https://blog.dask.org/2019/06/27/single-gpu-cupy-benchmarks

30

Architecture Time

Single CPU Core 2hr 39min

Forty CPU Cores 11min 30s

One GPU 1min 37s

Eight GPUs 19s

Also…Achievement Unlocked:
Petabyte Scale Data Analytics with Dask and CuPy

Cluster configuration: 20x GCP instances, each
instance has:
CPU: 1 VM socket (Intel Xeon CPU @ 2.30GHz),
2-core, 2 threads/core, 132GB mem, GbE ethernet,
950 GB disk
GPU: 4x NVIDIA Tesla P100-16GB-PCIe (total GPU
DRAM across nodes 1.22 TB)
Software: Ubuntu 18.04, RAPIDS 0.5.1, Dask=1.1.1,
Dask-Distributed=1.1.1, CuPY=5.2.0, CUDA 10.0.130

https://blog.dask.org/2019/01/03/dask-array-gpus-first-steps

31

cuML

32

 GPU Memory

Data Preparation VisualizationModel Training

Dask

Machine Learning
More models more problems

cuDF cuIO
Analytics

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

33

Problem
Data sizes continue to grow

Histograms / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Massive Dataset

Better to start with as much data as
possible and explore / preprocess to scale
to performance needs.

Iterate. Cross Validate & Grid Search.

Iterate some more.

Meet reasonable speed vs accuracy tradeoff

Hours? Days?

Time
Increases

34

ML Technology Stack

Python

Cython

cuML Algorithms

cuML Prims

CUDA Libraries

CUDA

Dask cuML
Dask cuDF

cuDF
Numpy

Thrust
Cub

cuSolver
nvGraph
CUTLASS
cuSparse
cuRand
cuBlas

35

Algorithms
GPU-accelerated Scikit-Learn

Classification / Regression

Inference

Clustering

Decomposition & Dimensionality Reduction

Time Series

Decision Trees / Random Forests
Linear Regression
Logistic Regression
K-Nearest Neighbors

Random forest / GBDT inference

K-Means
DBSCAN
Spectral Clustering

Principal Components
Singular Value Decomposition
UMAP
Spectral Embedding

Holt-Winters
Kalman Filtering

Cross Validation

More to come!

Hyper-parameter Tuning
Key:

● Preexisting
● NEW for 0.9

36

RAPIDS matches common Python APIs

from sklearn.cluster import DBSCAN
dbscan = DBSCAN(eps = 0.3, min_samples = 5)

dbscan.fit(X)

y_hat = dbscan.predict(X)

Find Clusters

from sklearn.datasets import make_moons
import pandas

X, y = make_moons(n_samples=int(1e2),
 noise=0.05, random_state=0)

X = pandas.DataFrame({'fea%d'%i: X[:, i]
 for i in range(X.shape[1])})

CPU-Based Clustering

37

RAPIDS matches common Python APIs

from cuml import DBSCAN
dbscan = DBSCAN(eps = 0.3, min_samples = 5)

dbscan.fit(X)

y_hat = dbscan.predict(X)

Find Clusters

from sklearn.datasets import make_moons
import cudf

X, y = make_moons(n_samples=int(1e2),
 noise=0.05, random_state=0)

X = cudf.DataFrame({'fea%d'%i: X[:, i]
 for i in range(X.shape[1])})

GPU-Accelerated Clustering

38

Benchmarks: single-GPU cuML vs scikit-learn

1x V100
vs
2x 20 core CPU

39

Road to 1.0
August 2019 - RAPIDS 0.9

cuML Single-GPU Multi-GPU Multi-Node-Multi-GPU

Gradient Boosted Decision Trees (GBDT)

GLM

Logistic Regression

Random Forest

K-Means

K-NN

DBSCAN

UMAP

Holt-Winters

Kalman Filter

t-SNE

Principal Components

Singular Value Decomposition

40

Road to 1.0
March 2020 - RAPIDS 0.14

cuML Single-GPU Multi-GPU Multi-Node-Multi-GPU

Gradient Boosted Decision Trees (GBDT)

GLM

Logistic Regression

Random Forest

K-Means

K-NN

DBSCAN

UMAP

ARIMA & Holt-Winters

Kalman Filter

t-SNE

Principal Components

Singular Value Decomposition

41

cuGraph

42

 GPU Memory

Data Preparation VisualizationModel Training

Dask

Graph Analytics
More connections more insights

cuDF cuIO
Analytics

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

43

GOALS AND BENEFITS OF CUGRAPH
Focus on Features and User Experience

• Property Graph support via DataFrames

Seamless Integration with cuDF and cuML

• Up to 500 million edges on a single 32GB GPU
• Multi-GPU support for scaling into the billions

of edges

Breakthrough Performance

• Python: Familiar NetworkX-like API
• C/C++: lower-level granular control for

application developers

Multiple APIs

• Extensive collection of algorithm, primitive,
and utility functions

Growing Functionality

44

Graph Technology Stack

Python

Cython

cuGraph Algorithms

Prims

CUDA Libraries

CUDA

Dask cuGraph
Dask cuDF

cuDF
Numpy

thrust
cub

cuSolver
cuSparse
cuRand

Gunrock*

cuGraphBLAS cuHornet

nvGRAPH has been Opened Sourced and integrated into cuGraph. A legacy version is available in a RAPIDS GitHub repo * Gunrock is from UC Davis

45

Algorithms
GPU-accelerated NetworkX

Community

Components

Link Analysis

Link Prediction

Traversal

Structure

Spectral Clustering
Balanced-Cut
Modularity Maximization

Louvain
Subgraph Extraction
Triangle Counting

Jaccard
Weighted Jaccard
Overlap Coefficient

Single Source Shortest Path (SSSP)
Breadth First Search (BFS)

COO-to-CSR (Multi-GPU)
Transpose
Renumbering

Multi-GPU

More to come!

Utilities

Weakly Connected Components
Strongly Connected Components

Page Rank (Multi-GPU)
Personal Page Rank

Query Language

46

Louvain Single Run

Dataset Nodes Edges

preferentialAttachment 100,000 999,970

caidaRouterLevel 192,244 1,218,132

coAuthorsDBLP 299,067 299,067

dblp-2010 326,186 1,615,400

citationCiteseer 268,495 2,313,294

coPapersDBLP 540,486 30,491,458

coPapersCiteseer 434,102 32,073,440

as-Skitter 1,696,415 22,190,596

Louvain returns:
cudf.DataFrame with two names columns:
 louvain["vertex"]: The vertex id.
 louvain["partition"]: The assigned partition.

G = cugraph.Graph()
G.add_edge_list(gdf["src_0"], gdf["dst_0"], gdf["data"])
df, mod = cugraph.nvLouvain(G)

47

Multi-GPU PageRank Performance

PageRank portion of the HiBench benchmark suite

HiBench Scale Vertices Edges CSV File
(GB)

of GPUs PageRank for
3 Iterations (secs)

Huge 5,000,000 198,000,000 3 1 1.1

BigData 50,000,000 1,980,000,000 34 3 5.1

BigData x2 100,000,000 4,000,000,000 69 6 9.0

BigData x4 200,000,000 8,000,000,000 146 12 18.2

BigData x8 400,000,000 16,000,000,000 300 16 31.8

48

Multi-GPU PageRank Performance

PageRank portion of the HiBench benchmark suite

HiBench Scale Vertices Edges CSV File
(GB)

of GPUs PageRank for
3 Iterations (secs)

Huge 5,000,000 198,000,000 3 1 1.1

BigData 50,000,000 1,980,000,000 34 3 5.1

BigData x2 100,000,000 4,000,000,000 69 6 9.0

BigData x4 200,000,000 8,000,000,000 146 12 18.2

BigData x8 400,000,000 16,000,000,000 300 16 31.8

BigData x8, 100x 8-vCPU nodes, Apache Spark GraphX ⇒ 96 mins!

49

Road to 1.0
August 2019 - RAPIDS 0.9

cuGraph Single-GPU Multi-GPU Multi-Node-Multi-GPU

Jaccard and Weighted Jaccard

Page Rank

Personal Page Rank

SSSP

BFS

Triangle Counting

Subgraph Extraction

Katz Centrality

Betweenness Centrality

Connected Components (Weak and Strong)

Louvain

Spectral Clustering

InfoMap

K-Cores

50

Road to 1.0
March 2020 - RAPIDS 0.14

cuGraph Single-GPU Multi-GPU Multi-Node-Multi-GPU

Jaccard and Weighted Jaccard

Page Rank

Personal Page Rank

SSSP

BFS

Triangle Counting

Subgraph Extraction

Katz Centrality

Betweenness Centrality

Connected Components (Weak and Strong)

Louvain

Spectral Clustering

InfoMap

K-Cores

51

RAPIDS Geospatial Applications

52

RAPIDS Geospatial Applications
cuGraph SSSP

53

RAPIDS Geospatial Applications
cuGraph SSSP

54

RAPIDS Geospatial Applications
cuML K-means

55

RAPIDS Geospatial Applications

“RAPIDS opens up new opportunities by simplifying the
application of geographic data science at scale, at speed.
Applications are limited only by your imagination.

“While we have achieved a lot with RAPIDS, in the short
time since initial launch, I believe that we have only
scratched the surface so far.”

John Murray, Geographic Data Science Lab, University of
Liverpool

John Murray @MurrayData

56

RAPIDS Geospatial Applications
I’ll walk 500 miles...

https://www.citymetric.com/horizons/so-where-exactly-did-proclaimers-walk-500-miles-4629

It’s [every walkable road in Great Britain] a sizeable graph
consisting of 3,078,131 vertices and 7,347,806 edges so
represents a significant mathematical challenge, so I used
Graphics Processing Unit (GPU) computing.

https://www.citymetric.com/horizons/so-where-exactly-did-proclaimers-walk-500-miles-4629

57

Geospatial Challenges

Data Representation & Management
Indexing, Database Queries, Aggregation & KPIs
Positioning & Navigation (Indoor, Outdoor)
Machine Learning, Big Data Analytics, Behavior Models Event
Analytics & Anomaly Detection
Map-based Visualization

Still much more to do

58

cuSpatial

59

cuSpatial Technology Stack

Python

Cython

cuSpatial

cuDF C++

Thrust

CUDA

60

cuSpatial 0.10

1. Data Representation for point, line, polygon (Columinar/SoA)

2. Location Data Ingestion from JSON schema (IVA schema data)

3. Spatial window query

4. Point-in-polygon test

5. Converting lat/lon to x/y

6. Haversine Distance between pairs of lat/lon points

7. Location-to-trajectory

8. Computing trajectory distance/speed

9. Computing trajectory spatial bounding box

10. Directed Hausdorff distance

11. Python bindings for all the above features

12. Python test code, sample application & performance evaluation scripts

61

cuSpatial
Today and Tomorrow

Layer 0.10/0.11 Functionality Functionality Roadmap (2020)

High-level Analytics C++ Library w. Python bindings enabling
distance, speed, trajectory similarity, trajectory
clustering

C++ Library w. Python bindings for additional
spatio-temporal trajectory clustering, acceleration,
dwell-time, salient locations, trajectory anomaly
detection, origin destination, etc.

Graph layer cuGraph Map matching, Djikstra algorithm, Routing

Query layer Nearest Neighbor, Range Search KNN, Spatiotemporal range search and joins

Index layer Grid, Quad Tree R-Tree, Geohash, Voronoi Tessellation

Geo-operations Point in polygon (PIP), Haversine distance,
Hausdorff distance, lat-lon to xy transformation

Line intersecting polygon, Other distance functions,
Polygon intersection, union

Geo-representation Shape primitives, points, polylines, polygons Additional shape primitives

62

cuSpatial 0.10

cuSpatial Operation Input data cuSpatial Runtime Reference Runtime Speedup

Point-in-Polygon Test 1.3+ million vehicle point
locations and 27 Region of
Interests

1.11 ms (C++)
1.50 ms (Python)
[Nvidia Titan V]

334 ms (C++, optimized
serial)
130468.2 ms (python
Shapely API, serial)
[Intel i7-7800X]

301X
(C++)
86,978X (Python)

Haversine Distance
Computation

13+ million Monthly NYC taxi
trip pickup and drop-off
locations

7.61 ms (Python)
[Nvidia T4]

416.9 ms (Numba)
[Nvidia T4]

54.7X (Python)

Hausdorff Distance
Computation (for
clustering)

10,700 trajectories with 1.3+
million points

13.5s
[Quadro V100]

19227.5s (Python SciPy
API, serial)
[Intel i7-6700K]

1,400X (Python)

Performance at a Glance

63

cuSpatial 0.10

conda install -c rapidsai-nightly cuspatial

Try It Today!

64

Community

65

Ecosystem Partners

66

Building on top of RAPIDS
A bigger, better, stronger ecosystem for all

Streamz

High-Performance
Serverless event and
data processing that
utilizes RAPIDS for GPU
Acceleration

Distributed stream
processing using
RAPIDS and Dask

GPU accelerated SQL
engine built on top of
RAPIDS

67

Explore: RAPIDS Code and Blogs
Check out our code and how we use it

https://github.com/rapidsai https://medium.com/rapids-ai

https://github.com/rapidsai
https://medium.com/rapids-ai

68

Getting Started

69

• https://ngc.nvidia.com/registry/nvidia-rapidsai
-rapidsai

• https://hub.docker.com/r/rapidsai/rapidsai/

• https://github.com/rapidsai

• https://anaconda.org/rapidsai/

RAPIDS
How do I get the software?

https://ngc.nvidia.com/registry/nvidia-rapidsai-rapidsai
https://ngc.nvidia.com/registry/nvidia-rapidsai-rapidsai
https://hub.docker.com/r/rapidsai/rapidsai/
https://github.com/rapidsai
https://anaconda.org/rapidsai/

70

Join the Movement
Everyone can help!

Integrations, feedback, documentation support, pull requests, new issues, or code donations welcomed!

APACHE ARROW GPU Open Analytics
Initiative

https://arrow.apache.org/

@ApacheArrow

http://gpuopenanalytics.com/

@GPUOAI

RAPIDS

https://rapids.ai

@RAPIDSAI

Dask

https://dask.org

@Dask_dev

THANK YOU

Joshua Patterson @datametrician

joshuap@nvidia.com

