RAP)DS

End-to-end data-science and geospatial analytics with GPUs, RAPIDS, and Apache Arrow

Joshua Patterson - GM, Data Science

RAPIDS End-to-End Accelerated GPU Data Science

Data Processing Evolution

Faster data access, less data movement

Hadoop Processing, Reading from disk

Data Movement and Transformation

The bane of productivity and performance

Data Movement and Transformation

What if we could keep data on the GPU?

Learning from Apache Arrow

- Each system has its own internal memory format
- 70-80% computation wasted on serialization and deserialization
- Similar functionality implemented in multiple projects

From Apache Arrow Home Page - https://arrow.apache.org/

- All systems utilize the same memory format
- No overhead for cross-system communication
- Projects can share functionality (eg, Parquet-to-Arrow reader)

Data Processing Evolution

Faster data access, less data movement

Hadoop Processing, Reading from disk

RAPIDS Core

Open Source Data Science Ecosystem Familiar Python APIs

RAPIDS End-to-End Accelerated GPU Data Science

Dask

RAPIDS Scaling RAPIDS with Dask

Why Dask?

PyData Native

- **Easy Migration:** Built on top of NumPy, Pandas Scikit-Learn, etc.
- Easy Training: With the same APIs
- Trusted: With the same developer community

Deployable

- HPC: SLURM, PBS, LSF, SGE
- Cloud: Kubernetes
- Hadoop/Spark: Yarn

Easy Scalability

- Easy to install and use on a laptop
- Scales out to thousand-node clusters

Popular

• Most common parallelism framework today in the PyData and SciPy community

Why OpenUCX? Bringing hardware accelerated communications to Dask

- TCP sockets are slow!
- UCX provides uniform access to transports (TCP, InfiniBand, shared memory, NVLink)
- Python bindings for UCX (ucx-py) in the works
- Will provide best communication performance, to Dask based on available hardware on nodes/cluster

Scale up with RAPIDS

RAPIDS and Others

Accelerated on single GPU

NumPy -> CuPy/PyTorch/.. Pandas -> cuDF Scikit-Learn -> cuML Numba -> Numba

PyData

NumPy, Pandas, Scikit-Learn, Numba and many more

Single CPU core In-memory data

Scale out with RAPIDS + Dask with OpenUCX

RAPIDS and Others

Accelerated on single GPU

NumPy -> CuPy/PyTorch/.. Pandas -> cuDF Scikit-Learn -> cuML Numba -> Numba

RAPIDS + Dask with OpenUCX

Multi-GPU On single Node (DGX) Or across a cluster

PyData

NumPy, Pandas, Scikit-Learn, Numba and many more

Single CPU core In-memory data

Dask

Multi-core and Distributed PyData

NumPy -> Dask Array Pandas -> Dask DataFrame Scikit-Learn -> Dask-ML ... -> Dask Futures

Scale out / Parallelize

RAPIDS

GPU Accelerated data wrangling and feature engineering

ETL - the Backbone of Data Science libcuDF is...

}

CUDA C++ Library

- Low level library containing function implementations and C/C++ API
- Importing/exporting Apache Arrow in GPU memory using CUDA IPC

// Do something with input
// Produce output

- CUDA kernels to perform element-wise math operations on GPU DataFrame columns
- CUDA sort, join, groupby, reduction, etc. operations on GPU DataFrames

ETL - the Backbone of Data Science cuDF is...

- In [2]: #Read in the data. Notice how it decompresses as it reads the data into memory.
 gdf = cudf.read_csv('/rapids/Data/black-friday.zip')
- In [3]: #Taking a look at the data. We use "to_pandas()" to get the pretty printing.
 gdf.head().to_pandas()

Out[3]:		User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Cat
	0	1000001	P00069042	F	0- 17	10	A	2	0	3
	1	1000001	P00248942	F	0- 17	10	A	2	0	1
	2	1000001	P00087842	F	0- 17	10	A	2	0	12
	3	1000001	P00085442	F	0- 17	10	A	2	0	12
	4	1000002	P00285442	М	55+	16	С	4+	0	8

gdf['city_years'] = gdf.Stay_In_Current_City_Years.str.get(0).stoi()

In [7]: #Here we can see how we can control what the value of our dummies with the replace method and turn
strings to ints
gdf['City Category'] = gdf.City Category.str.replace('A', '1')

gdf['City Category'] = gdf.City Category.str.replace('B', '2')

- gdf['City_Category'] = gdf.City_Category.str.replace('C', '3')
- gdf['City_Category'] = gdf['City_Category'].str.stoi()

Python Library

- A Python library for manipulating GPU DataFrames following the Pandas API
- Python interface to CUDA C++ library with additional functionality
- Creating GPU DataFrames from Numpy arrays, Pandas DataFrames, and PyArrow Tables
- JIT compilation of User-Defined Functions (UDFs) using Numba

Benchmarks: single-GPU Speedup vs. Pandas

cuDF v0.9, Pandas 0.24.2

Running on NVIDIA DGX-1:

GPU: NVIDIA Tesla V100 32GB CPU: Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz

Benchmark Setup:

DataFrames: 2x int32 columns key columns, 3x int32 value columns

Merge: inner

GroupBy: count, sum, min, max calculated for each value column

ETL - the Backbone of Data Science String Support

Current v0.9 String Support

•Regular Expressions

•Element-wise operations

- Split, Find, Extract, Cat, Typecasting, etc...
- •String GroupBys, Joins

•Categorical columns fully on GPU

Future v0.10+ String Support

- Combining cuStrings into libcudf
- Extensive performance optimization
- More Pandas String API compatibility
- JIT-compiled String UDFs

Extraction is the Cornerstone culO for Faster Data Loading

- Follow Pandas APIs and provide >10x speedup
- CSV Reader v0.2, CSV Writer v0.8
- Parquet Reader v0.7, Parquet Writer v0.10
- ORC Reader v0.7, ORC Writer v0.10
- JSON Reader v0.8
- Avro Reader v0.9
- GPU Direct Storage integration in progress for bypassing PCIe bottlenecks!
- Key is GPU-accelerating both parsing and decompression wherever possible

1]:	<pre>import pandas, cudf</pre>
2]:	<pre>%time len(pandas.read_csv('data/nyc/yellow_tripdata_2015-01.csv'))</pre>
0.1	CPU times: user 25.9 s, sys: 3.26 s, total: 29.2 s Wall time: 29.2 s
2]:	12748986
3]:	<pre>%time len(cudf.read_csv('data/nyc/yellow_tripdata_2015-01.csv'))</pre>
	CPU times: user 1.59 s, sys: 372 ms, total: 1.96 s Wall time: 2.12 s
3]:	12748986
4]:	!du -hs data/nyc/yellow_tripdata_2015-01.csv
	1.9G data/nyc/yellow tripdata 2015-01.csv

Source: Apache Crail blog: SQL Performance: Part 1 - Input File Formats

ETL is not just DataFrames!

RAPIDS Building bridges into the array ecosystem

Interoperability for the Win DLPack and __cuda_array_interface__ PYTORCH mpi4py

Numba

ETL - Arrays and DataFrames Dask and CUDA Python arrays

- Scales NumPy to distributed clusters
- Used in climate science, imaging, HPC analysis up to 100TB size
- Now seamlessly accelerated with GPUs

More details: <u>https://blog.dask.org/2019/06/27/single-gpu-cupy-benchmarks</u>

Also...Achievement Unlocked:

Petabyte Scale Data Analytics with Dask and CuPy

chitecture	Time	3.2 PETABYTES IN LESS THAN 1 Distributed GPU array parallel reduction usin	
igle CPU Core	2hr 39min	Wall Time Array size (data creation + compute	
ty CPU Cores	11min 30s	3.2 PB 54 min 51 s (20M x 20M doubles)	
	1min 37s	Cluster configuration : 20x GCP instances, each instance has: CPU : 1 VM socket (Intel Xeon CPU @ 2.30GHz), 2-core, 2 threads/core, 132GB mem, GbE ethernet 950 GB disk	
	19s		
ask-array-gpus-first	GPU: 4x NVIDIA Tesla P100-16GB-PCIe (total GPU DRAM across nodes 1.22 TB) Software: Ubuntu 18.04, RAPIDS 0.5.1, Dask=1.1.1, Dask-Distributed=1.1.1, CuPY=5.2.0, CUDA 10.0.130		

Machine Learning More models more problems

Problem Data sizes continue to grow

Massive Dataset

Meet reasonable speed vs accuracy tradeoff

ML Technology Stack

Algorithms GPU-accelerated Scikit-Learn

Cross Validation

Hyper-parameter Tuning

More to come!

RAPIDS matches common Python APIs CPU-Based Clustering

from sklearn.datasets import make_moons import pandas

X, y = make_moons(n_samples=int(1e2), noise=0.05, random_state=0)

X = pandas.DataFrame({'fea%d'%i: X[:, i] for i in range(X.shape[1])})

from sklearn.cluster import DBSCAN dbscan = DBSCAN(eps = 0.3, min_samples = 5)

dbscan.fit(X)

y_hat = dbscan.predict(X)

RAPIDS matches common Python APIs GPU-Accelerated Clustering

from sklearn.datasets import make_moons import **cudf**

X, y = make_moons(n_samples=int(1e2), noise=0.05, random_state=0)

X = **cudf**.DataFrame({'fea%d'%i: X[:, i] for i in range(X.shape[1])})

from **cumi** import DBSCAN dbscan = DBSCAN(eps = 0.3, min_samples = 5)

dbscan.fit(X)

y_hat = dbscan.predict(X)

Benchmarks: single-GPU cuML vs scikit-learn

Road to 1.0 August 2019 - RAPIDS 0.9

cuML	Single-GPU	Multi-GPU	Multi-Node-Multi-GPU
Gradient Boosted Decision Trees (GBDT)			
GLM			
Logistic Regression			
Random Forest			
K-Means			
K-NN			
DBSCAN			
UMAP			
Holt-Winters			
Kalman Filter			
t-SNE			
Principal Components			
Singular Value Decomposition			

Road to 1.0 March 2020 - RAPIDS 0.14

cuML	Single-GPU	Multi-GPU	Multi-Node-Multi-GPU
Gradient Boosted Decision Trees (GBDT)			
GLM			
Logistic Regression			
Random Forest			
K-Means			
K-NN			
DBSCAN			
UMAP			
ARIMA & Holt-Winters			
Kalman Filter			
t-SNE			
Principal Components			
Singular Value Decomposition			

Graph Analytics More connections more insights

GOALS AND BENEFITS OF CUGRAPH

Focus on Features and User Experience

Breakthrough Performance

- Up to 500 million edges on a single 32GB GPU
- Multi-GPU support for scaling into the billions of edges

Multiple APIs

- Python: Familiar NetworkX-like API
- C/C++: lower-level granular control for application developers

Seamless Integration with cuDF and cuML

Property Graph support via DataFrames

Growing Functionality

• Extensive collection of algorithm, primitive, and utility functions

Graph Technology Stack

nvGRAPH has been Opened Sourced and integrated into cuGraph. A legacy version is available in a RAPIDS GitHub repo

* Gunrock is from UC Davis

Algorithms

Louvain Single Run

G = cugraph.Graph()
G.add_edge_list(gdf["src_0"], gdf["dst_0"], gdf["data"])
df, mod = cugraph.nvLouvain(G)

Louvain returns:

cudf.DataFrame with two names columns:

louvain["vertex"]: The vertex id.

louvain["partition"]: The assigned partition.

Dataset	Nodes	Edges
preferentialAttachment	100,000	999,970
caidaRouterLevel	192,244	1,218,132
coAuthorsDBLP	299,067	299,067
dblp-2010	326,186	1,615,400
citationCiteseer	268,495	2,313,294
coPapersDBLP	540,486	30,491,458
coPapersCiteseer	434,102	32,073,440
as-Skitter	1,696,415	22,190,596

Performance Speedup: cuGraph vs NetworkX

Multi-GPU PageRank Performance

PageRank portion of the HiBench benchmark suite

HiBench Scale	Vertices	Edges	CSV File (GB)	# of GPUs	PageRank for 3 Iterations (secs)
Huge	5,000,000	198,000,000	3	1	1.1
BigData	50,000,000	1,980,000,000	34	3	5.1
BigData x2	100,000,000	4,000,000,000	69	6	9.0
BigData x4	200,000,000	8,000,000,000	146	12	18.2
BigData x8	400,000,000	16,000,000,000	300	16	31.8

Multi-GPU PageRank Performance

PageRank portion of the HiBench benchmark suite

HiBench Scale	Vertices	Edges	CSV File (GB)	# of GPUs	PageRank for 3 Iterations (secs)
Huge	5,000,000	198,000,000	3	1	1.1
BigData	50,000,000	1,980,000,000	34	3	5.1
BigData x2	100,000,000	4,000,000,000	69	6	9.0
BigData x4	200,000,000	8,000,000,000	146	12	18.2
BigData x8	400,000,000	16,000,000,000	300	16	31.8

BigData x8, 100x 8-vCPU nodes, Apache Spark GraphX \Rightarrow 96 mins!

Road to 1.0 August 2019 - RAPIDS 0.9

cuGraph	Single-GPU	Multi-GPU	Multi-Node-Multi-GPU
Jaccard and Weighted Jaccard			
Page Rank			
Personal Page Rank			
SSSP			
BFS			
Triangle Counting			
Subgraph Extraction			
Katz Centrality			
Betweenness Centrality			
Connected Components (Weak and Strong)			
Louvain			
Spectral Clustering			
InfoMap			
K-Cores			

Road to 1.0 March 2020 - RAPIDS 0.14

cuGraph	Single-GPU	Multi-GPU	Multi-Node-Multi-GPU
Jaccard and Weighted Jaccard			
Page Rank			
Personal Page Rank			
SSSP			
BFS			
Triangle Counting			
Subgraph Extraction			
Katz Centrality			
Betweenness Centrality			
Connected Components (Weak and Strong)			
Louvain			
Spectral Clustering			
InfoMap			
K-Cores			

RAPIDS Geospatial Applications

RAPIDS Geospatial Applications cuGraph SSSP

Read the source data and adjust the vertex IDs

Import needed libraries
import cugraph
import cudf
import numpy as np

Test file - Read OS Open Roads as a graph. (Store dataset in ./data folder)
datafile='/data/road_graph/gb_road_graph_20190528.csv'

Read the data file with length, drive time and coordinates cols = ["src", "dst","length","drivetime","type","x1","y1","x2","y2"] dtypes =["int32", "int32", "float32", "float32", "int32", "float64", "float64", "float64", "float64", "float64"] gdf = cudf.read_csv(datafile, names=cols, dtype=dtypes ,skiprows=1)

Need to shift the vertex IDs to start with zero rather than one (next version of cuGraph will fix this issue)
gdf["src_0"] = gdf["src"] - 1
gdf["dst_0"] = gdf["dst"] - 1

Display the results print(gdf)

	src	dst	length	drivetime	type	x1		y1	dst_0
0	16	20	162.0	18.119202	37	464331.0	1213440	.0	19
1	20	16	162.0	18.119202	37	464387.0	1213370	.0	15
2	56	55	855.0	95.629	37	462043.0	1213380	.0	54
3	55	56	855.0	95.629	37	461949.0	1214150	.0	55
4	72	22	382.0	17.0902	9	464065.0	1213380	.0	21
5	22	72	382.0	17.0902	9	464433.0	1213480	.ø	71
6	72	71	270.0	15.0993	25	464065.0	1213380	.0	70
7	71	72	270.0	15.0993	25	463833.0	1213520	.0	71
8	17	18	48.0	5.36865	37	464332.0	1213430	.0	17
9	18	17	48.0	5.36865	37	464333.0	1213390	.0	16
[73	47796	more	rows]						
[3	more	colum	ns]						

RAPIDS Geospatial Applications cuGraph SSSP

Load the stores list and calculate one hour drive times

Load stores list datafile='/data/road_graph/test_stores.csv' cols = ["id", "x", "y"] dtypes =["int32", "float64", "float64"] sdf = cudf.read_csv(datafile, names=cols, dtype=dtypes ,skiprows=1) stores = [sdf['id'].to_array(),sdf['x'].to_array(),sdf['y'].to_array()]

	id	x	3
3	18257	324049.45	934680.08
1	22739	164087.59	823684.59
2	58323	388440.0	819496.0
3	102962	277367.0	701611.0
1	103272	263501.89	705534.7699999999
5	128342	339283.12	729293.71
5	145558	315452.83999999997	790942.41
7	146959	379043.98000000004	767064.31
В	275566	235338.62	623894.12
9	457087	448150.53	519823.61

%%time

store_drivetimes = []

for each store find the drive times to all vertices within 1 hour drive time by filtering initially on 70 miles

for i in range(len(stores[0])):

initial filter on 70 miles (112654 metres) grid from store node

query_x = "((x1>="+str(stores[1][i]-112654)+" and x1<="+str(stores[1][i]+112654)+") or (x2>="+str(stores[1][i]-112654)+" and x2<="+str(stores[1][i]+112654)+"))"
query_y = "((y1>="+str(stores[2][i]-112654)+" and y1<="+str(stores[2][i]+112654)+") or (y2>="+str(stores[2][i]-112654)+" and y2<="+str(stores[2][i]+112654)+"))"
qdf = gdf.query("("+query_x+" and "+query_y+")")</pre>

create a road Graph weighted on drive time

G = cugraph.Graph()

G.add_edge_list(qdf["src_0"], qdf["dst_0"],qdf['drivetime'])

Call cugraph.sssp to get the drivetime from store vertex

df = cugraph.sssp(G,stores[0][i])

Filter 1 hour (3600 seconds) and save results

store_drivetimes += [df.query("distance<=3600")]</pre>

CPU times: user 45.7 s, sys: 19.7 s, total: 1min 5s Wall time: 1min 5s

RAPIDS Geospatial Applications cuML K-means

[23]: # Pearson Correlation Coefficient class stats_df(cudf.DataFrame): def pearson_correl(self,c1,c2): c1_m = self[c1].mean() c2_m = self[c2].mean() c1_s = self[c2].std() c2_s = self[c2].std() n = self[c1].count() return ((self[c1]*self[c2]).sum()-n*c1_m*c2_m) / ((n-1) * c1_s * c2_s)

def prediction_interval(self,c):

- m = self[c].mean()
- s = self[c].std()
 return(m-s*1.96,m+s*1.96)
- [24]: gdf.__class__ = stats_df
- [25]: print(gdf.pearson_correl('P_INFANT','P_75+'))
 print(np.array(gdf.prediction_interval('P_75+'))*(1-0.1357827525739096))

-0.503099498141717 [0.01640483 0.13712953]

- [26]: m = (gdf['P_INFANT']*gdf['P_75+']).mean()
 - s = (gdf['P_INFANT']*gdf['P_75+']).std(ddof=1)
 - p = (gdf['P_INFANT']*gdf['P_75+']).std(ddof=0)

print(m,s,p)

0.002964567335037682 0.0010167776413762544 0.0010167773042338017

[27]: %%time

kids_kmeans = cuml.KMeans(n_clusters=10)
kids_kmeans.fit(gdf[fields])

CPU times: user 338 ms, sys: 74.9 ms, total: 413 ms Wall time: 411 ms

RAPIDS Geospatial Applications

John Murray @MurrayData

@MurrayData Follows you

CTO @FusionDataSci Research Fellow @geodatascience @LivUni #opendata #AI #LiDAR #geospatial #datascience & occasional transport related posts. RT≠endorsement.

◎ Chester, UK S uk.linkedin.com/in/murraydata/ Ø Born June 21
 I Joined January 2012

4,522 Following 4,497 Followers

"RAPIDS opens up new opportunities by simplifying the application of geographic data science at scale, at speed. Applications are limited only by your imagination.

"While we have achieved a lot with RAPIDS, in the short time since initial launch, I believe that we have only scratched the surface so far."

John Murray, Geographic Data Science Lab, University of Liverpool

RAPIDS Geospatial Applications

I'll walk 500 miles...

It's [every walkable road in Great Britain] a sizeable graph consisting of 3,078,131 vertices and 7,347,806 edges so represents a significant mathematical challenge, so I used Graphics Processing Unit (GPU) computing.

https://www.citymetric.com/horizons/so-where-exactly-did-proclaimers-walk-500-miles-4629

Geospatial Challenges

Still much more to do

Data Representation & Management Indexing, Database Queries, Aggregation & KPIs Positioning & Navigation (Indoor, Outdoor) Machine Learning, Big Data Analytics, Behavior Models Event Analytics & Anomaly Detection Map-based Visualization

cuSpatial

cuSpatial Technology Stack

cuSpatial 0.10

- 1. Data Representation for point, line, polygon (Columinar/SoA)
- 2. Location Data Ingestion from JSON schema (IVA schema data)
- 3. Spatial window query
- 4. **Point-in-polygon test**
- 5. **Converting lat/lon to x/y**
- 6. Haversine Distance between pairs of lat/lon points
- 7. Location-to-trajectory
- 8. Computing trajectory distance/speed
- 9. Computing trajectory spatial bounding box
- 10. Directed Hausdorff distance
- 11. Python bindings for all the above features
- 12. Python test code, sample application & performance evaluation scripts

cuSpatial

Today and Tomorrow

Layer	0.10/0.11 Functionality	Functionality Roadmap (2020)
High-level Analytics	C++ Library w. Python bindings enabling distance, speed, trajectory similarity, trajectory clustering	C++ Library w. Python bindings for additional spatio-temporal trajectory clustering, acceleration, dwell-time, salient locations, trajectory anomaly detection, origin destination, etc.
Graph layer	cuGraph	Map matching, Djikstra algorithm, Routing
Query layer	Nearest Neighbor, Range Search	KNN, Spatiotemporal range search and joins
Index layer	Grid, Quad Tree	R-Tree, Geohash, Voronoi Tessellation
Geo-operations	Point in polygon (PIP), Haversine distance, Hausdorff distance, lat-lon to xy transformation	Line intersecting polygon, Other distance functions, Polygon intersection, union
Geo-representation	Shape primitives, points, polylines, polygons	Additional shape primitives

cuSpatial 0.10

Performance at a Glance

cuSpatial Operation	Input data	cuSpatial Runtime	Reference Runtime	Speedup	
Point-in-Polygon Test	1.3+ million vehicle point locations and 27 Region of Interests	1.11 ms (C++) 1.50 ms (Python) [Nvidia Titan V]	334 ms (C++, optimized serial) 130468.2 ms (python Shapely API, serial) [Intel i7-7800X]	301X (C++) 86,978X (Python)	
Haversine Distance Computation	13+ million Monthly NYC taxi trip pickup and drop-off locations	7.61 ms (Python) [Nvidia T4]	416.9 ms (Numba) [Nvidia T4]	54.7X (Python)	
Hausdorff Distance Computation (for clustering)	10,700 trajectories with 1.3+ million points	13.5s [Quadro V100]	19227.5s (Python SciPy API, serial) [Intel i7-6700K]	1,400X (Python)	

cuSpatial 0.10 Try It Today!

conda install -c rapidsai-nightly cuspatial

Ecosystem Partners CONTRIBUTORS

ADOPTERS

OPEN SOURCE

%Numba

Building on top of RAPIDS

A bigger, better, stronger ecosystem for all

Streamz

High-Performance Serverless event and data processing that utilizes RAPIDS for GPU Acceleration GPU accelerated SQL engine built on top of RAPIDS Distributed stream processing using RAPIDS and Dask

Explore: RAPIDS Code and Blogs

Check out our code and how we use it

cuDF - GPU DataFrames	RAPIDS 0.8 Software Available Now
build running	
NOTE: For the latest stable README.md ensure you are on the master branch.	RAPIDS Release 0.8: Same Community New Freedoms
Built based on the A <mark>pache Arrow</mark> columnar memory format, cuDF is a GPU DataFrame library for loading, joining, aggregating, filtering, and otherwise manipulating data.	Making more friends and building m bridges to more ecosystems. It's nov
cuDF provides a pandas-like API that will be familiar to data engineers & data scientists, so they can use it to easily accelerate their workflows without going into the details of CUDA programming.	easier than ever to get started with RAPIDS.
For example, the following snippet downloads a CSV, then uses the GPU to parse it into rows and columns and run calculations:	Jul 19 - 7 min read
import cudf, io, requests from io import StringIO	
url="https://github.com/plotly/datasets/raw/master/tips.csv"	XGBoost XGBoost
<pre>content = requests.get(url).content.decode('utf-8')</pre>	
<pre>tips_df = cudf.read_csv(StringIO(content)) tips_df['tip_percentage'] = tips_df['tip']/tips_df['total_bill']*100</pre>	
# display average tip by dining party size	NVIDIA GPUs and Apache
<pre>print(tips_df.groupby('size').tip_percentage.mean())</pre>	Spark, One Step Closer
Dutput:	RAPIDS XGBoost4J-Spark Package N Available
size	Karthikeyan Rajendran

gQuant-GPU Accelerated examples for Quantitative Analyst Tasks

A simple trading strategy backtest for 5000 stocks using GPUs and getting 20X speedup

Yi Dong 🐝 / Jul 16 · 6 min read ★

Financial data modeling with RAPIDS.

See how RAPIDS was used to place 17th in the Banco Santander Kaggle Competition

Nightly News: CI produces latest packages

Release code early and often. Stay current on latest features with our nightly conda and container releases.

https://medium.com/rapids-ai

When Less is More: A brief

story about XGBoost feature engineering

A glimpse into how a Data Scientist makes decisions about featuring engineering an XGBoost machine

Getting Started

RAPIDS How do I get the software?

- https://github.com/rapidsai
- <u>https://anaconda.org/rapidsai/</u>

- <u>https://ngc.nvidia.com/registry/nvidia-rapidsai</u>
 <u>-rapidsai</u>
- <u>https://hub.docker.com/r/rapidsai/rapidsai/</u>

Join the Movement Everyone can help!

Integrations, feedback, documentation support, pull requests, new issues, or code donations welcomed!

THANK YOU

Joshua Patterson joshuap@nvidia.com

RAP)DS