
Using GeoMesa on top of Apache Accumulo, HBase,
Cassandra, and big data file formats for massive geospatial

data
ApacheCon 2019

James Hughes

James Hughes
● CCRi’s Director of Open Source Programs
● Working in geospatial software on the JVM

for the last 7 years
● GeoMesa core committer / product owner
● SFCurve project lead
● JTS committer
● Contributor to GeoTools and GeoServer
● Committer representative to the

LocationTech Steering Committee

● Background
○ LocationTech Projects
○ Foundational LocationTech Projects

● GeoMesa
○ Distributed Databases (HBase/Accumulo)
○ Apache File formats
○ Streaming with Kafka
○ Analysis with Spark

● Other LocationTech big-data projects
○ GeoTrellis
○ GeoWave
○ RasterFrames

Talk outline

What is LocationTech?
LocationTech is a working group of the Eclipse Software Foundation

LocationTech Projects
● Foundational Libraries

○ JTS
○ Spatial4j
○ SFCurve
○ Proj4j
○ ImageN
○ libspatialindex

● Big Data Projects
○ GeoMesa
○ GeoTrellis
○ GeoWave
○ RasterFrames

● Other
○ GeoGig
○ GeoPeril

Foundational
Libraries ● JTS,

● Spatial4J
● SFCurve

Geometry
Topology
Indexing

LocationTech JTS
The JTS Topology Suite is a Java library for creating and manipulating vector
geometry.

Provides implementations of

● OGC Geometry classes
● Basic relationships
● Topology operations

LocationTech JTS License
LocationTech JTS is available under a dual-license:

● Eclipse Public License 1.0
● Eclipse Distribution License 1.0 (BSD style)

“The Eclipse Foundation makes available all content in this project ("Content").
Unless otherwise indicated below, the Content is provided to you under the terms
and conditions of either the Eclipse Public License 1.0 ("EPL") or the Eclipse
Distribution License 1.0 (a BSD Style License). For purposes of the EPL, "Program"
will mean the Content.”

Representations:

OGC Simple Features

 Point
 LineString
 LinearRing
 Polygon
 MultiPoint
 MultiLineString
 MultiPolygon
 GeometryCollection

9

JTS Data Types

JTS Supported IO Formats
IO:

● WKT
● WKB
● GeoJSON
● KML
● GML2

10

11

Predicates (DE-9IM)

 Equals
 Disjoin
 Intersects
 Touches
 Crosses
 Within
 Contains
 Overlaps
 Covers
 CoveredBy

JTS Topological Predicate Support

JTS Topology Operations
Algorithms

 Convex Hull
 Buffer
 Validation
 Dissolve
 Overlay operations
 Polygonization
 Simplification
 Triangulation
 Voronoi
 Linear Referencing
 and more...

JTS is EVERYWHERE

13

 JTS

 GEOS

GeoMesa
GeoTrellis

GeoWave

Spatial4J

JSTS

Net Topology
Suite

RasterFrames

Spatial4j
● Spatial4j is a general purpose spatial / geospatial ASL licensed open-source

Java library. Capabilities:
○ provide common shapes that can work in Euclidean and geodesic world models
○ provide distance calculations and other math
○ read & write shapes from formats like WKT and GeoJSON

● Came out of need to add spatial indexing to Apache Lucene

SFCurve
● This library represents a collaborative attempt to create a solid, robust and

modular library for dealing with space filling curves on the JVM.
● Implementations of space-filling curves:

○ Hilbert (2D)
○ Z-order (2D, 3D, nD)

LocationTech
GeoMesa ● GeoMesa Overview

● Reference Architecture
● Live Demo

What is GeoMesa?

A suite of tools for streaming, persisting, managing, and analyzing
spatio-temporal data at scale

What is GeoMesa?

A suite of tools for streaming, persisting, managing, and analyzing
spatio-temporal data at scale

What is GeoMesa?

A suite of tools for streaming, persisting, managing, and analyzing spatio-temporal
data at scale

What is GeoMesa?

A suite of tools for streaming, persisting, managing, and analyzing
spatio-temporal data at scale

2
1

© Hortonworks Inc. 2011–2018. All rights
reserved

GeoMesa NiFi

⬢ GeoMesa-NiFi allows you to ingest data into GeoMesa straight from NiFi by
leveraging custom processors.

⬢ NiFi allows you to ingest data into GeoMesa from every source GeoMesa supports
and more.

Data

SimpleFeatureType
Schema

GeoMesa NiFi
Processors enabled datastores

What is GeoMesa?

A suite of tools for streaming, persisting, managing, and analyzing
spatio-temporal data at scale

Extending Spark’s Catalyst Optimizer

https://databricks.com/blog/2015/04/13/deep-dive-into-spark-sqls-catalyst-optimizer.html

Extending Spark’s Catalyst Optimizer

https://databricks.com/blog/2015/04/13/deep-dive-into-spark-sqls-catalyst-optimizer.html

Catalyst exposes hooks to insert
optimization rules in various points in
the query processing logic.

SQL optimizations for Spatial Predicates
SELECT

 activity_id,user_id,geom,dtg

FROM

 activities

WHERE

 st_contains(st_makeBBOX(-78,37,-77,38),geom) AND

 dtg > cast(‘2017-06-01’ as timestamp) AND

 dtg < cast(‘2017-06-05’ as timestamp)

SQL optimizations for Spatial Predicates
SELECT

 activity_id,user_id,geom,dtg

FROM

 activities

WHERE

 st_contains(st_makeBBOX(-78,37,-77,38),geom) AND

 dtg > cast(‘2017-06-01’ as timestamp) AND

 dtg < cast(‘2017-06-05’ as timestamp)

GeoMesa Relation

SQL optimizations for Spatial Predicates
SELECT

 activity_id,user_id,geom,dtg

FROM

 activities

WHERE

 st_contains(st_makeBBOX(-78,37,-77,38),geom) AND

 dtg > cast(‘2017-06-01’ as timestamp) AND

 dtg < cast(‘2017-06-05’ as timestamp)

Relational Projection

SQL optimizations for Spatial Predicates
SELECT

 activity_id,user_id,geom,dtg

FROM

 activities

WHERE

 st_contains(st_makeBBOX(-78,37,-77,38),geom) AND

 dtg > cast(‘2017-06-01’ as timestamp) AND

 dtg < cast(‘2017-06-05’ as timestamp)

Topological Predicate

SQL optimizations for Spatial Predicates
SELECT

 activity_id,user_id,geom,dtg

FROM

 activities

WHERE

 st_contains(st_makeBBOX(-78,37,-77,38),geom) AND

 dtg > cast(‘2017-06-01’ as timestamp) AND

 dtg < cast(‘2017-06-05’ as timestamp)

Geometry Literal

SQL optimizations for Spatial Predicates
SELECT

 activity_id,user_id,geom,dtg

FROM

 activities

WHERE

 st_contains(st_makeBBOX(-78,37,-77,38),geom) AND

 dtg > cast(‘2017-06-01’ as timestamp) AND

 dtg < cast(‘2017-06-05’ as timestamp)

Date range predicate

Proposed Reference Architecture

Live Demo!

● Filtering by spatio-temporal
constraints

● Filtering by attributes
● Aggregations
● Transformations

GeoMesa’s
Persistence ● Distributed Databases

○ Accumulo, HBase, Cassandra

● File formats
○ Arrow, Avro, Orc, Parquet

Indexing
Geospatial Data

In Key-Value Stores
Accumulo / HBase / Cassandra

● Key Design using Space Filling
Curves

● Goal: Index 2+ dimensional data
● Approach: Use Space Filling Curves

Space Filling Curves (in one slide!)

● Goal: Index 2+ dimensional data
● Approach: Use Space Filling Curves
● First, ‘grid’ the data space into bins.

Space Filling Curves (in one slide!)

● Goal: Index 2+ dimensional data
● Approach: Use Space Filling Curves
● First, ‘grid’ the data space into bins.
● Next, order the grid cells with a space filling

curve.
○ Label the grid cells by the order that the curve

visits the them.
○ Associate the data in that grid cell with a byte

representation of the label.

Space Filling Curves (in one slide!)

● Goal: Index 2+ dimensional data
● Approach: Use Space Filling Curves
● First, ‘grid’ the data space into bins.
● Next, order the grid cells with a space filling

curve.
○ Label the grid cells by the order that the curve

visits the them.
○ Associate the data in that grid cell with a byte

representation of the label.

● We prefer “good” space filling curves:
○ Want recursive curves and locality.

Space Filling Curves (in one slide!)

● Goal: Index 2+ dimensional data
● Approach: Use Space Filling Curves
● First, ‘grid’ the data space into bins.
● Next, order the grid cells with a space filling

curve.
○ Label the grid cells by the order that the curve

visits the them.
○ Associate the data in that grid cell with a byte

representation of the label.

● We prefer “good” space filling curves:
○ Want recursive curves and locality.

● Space filling curves have higher
dimensional analogs.

Space Filling Curves (in one slide!)

To query for points in the grey rectangle, the
query planner enumerates a collection of index
ranges which cover the area.

Note: Most queries won’t line up perfectly with the
gridding strategy.

Further filtering can be run on the tablet/region
servers (next section)
or we can return ‘loose’ bounding box results
(likely more quickly).

Query planning with Space Filling Curves

Server-Side
Optimizations

Filtering and transforming records

● Pushing down data filters
○ Z2/Z3 filter
○ CQL Filters

● Projections

Filtering and transforming records overview
Using Accumulo iterators and HBase filters, it is possible to filter and map over the
key-values pairs scanned.

This will let us apply fine-grained spatial filtering, filter by secondary predicates,
and implement projections.

Pushing down filters
Let’s consider a query for tankers which are inside a bounding box for a given time
period.

GeoMesa’s Z3 index is designed to provide a set of key ranges to scan which will
cover the spatio-temporal range.

Additional information such as the vessel type is part of the value.

Using server-side programming, we can teach Accumulo and HBase how to
understand the records and filter out undesirable records.

This reduces network traffic and distributes the work.

Projection
To handle projections in a query, Accumulo Iterators and HBase Filters can change
the returned key-value pairs.

Changing the key is a bad idea.

Changing the value allows for GeoMesa to return a subset of the columns that a
user is requesting.

GeoMesa Server-Side Filters
● Z2/Z3 filter

○ Scan ranges are not decomposed enough to be very accurate - fast bit-wise comparisons on
the row key to filter out-of-bounds data

● CQL/Transform filter
○ If a predicate is not handled by the scan ranges or Z filters,

then slower GeoTools CQL filters are applied to the serialized SimpleFeature in the row value
○ Relational projections (transforms) applied to reduce the amount of data sent back

● Other specialized filters
○ Age-off for expiring rows based on a SimpleFeature attribute
○ Attribute-key-value for populating a partial SimpleFeature with an attribute value from the row
○ Visibility filter for merging columns into a SimpleFeature when using attribute-level visibilities

Server-Side
Optimizations

Aggregations

● Generating heatmaps
● Descriptive Stats
● Arrow format

Aggregations
Using Accumulo Iterators and HBase coprocessors, it is possible to aggregate
multiple key-value pairs into one response. Effectively, this lets one implement
map and reduce algorithms.

These aggregations include computing heatmaps, stats, and custom data formats.

The ability to aggregate data can be composed with filtering and projections.

GeoMesa Aggregation Abstractions
Aggregation logic is implemented in a shared module, based on a lifecycle of

1. Initialization
2. observing some number of features
3. aggregating a result.

This paradigm is easily adapted to the specific implementations required by
Accumulo and HBase.

Notably, all the algorithms we describe work in a single pass over the data.

Visualization Example: Heatmaps
Without powerful visualization options, big data is big nonsense.

Consider this view of shipping in the Mediterranean sea

Visualization Example: Heatmaps
Without powerful visualization options, big data is big nonsense.

Consider this view of shipping in the Mediterranean sea

Generating Heatmaps
Heatmaps are implemented in DensityScan.

For the scan, we set up a 2D grid array representing the pixels to be displayed. On
the region/tablet servers, each feature increments the count of any cells
intersecting its geometry. The resulting grid is returned as a serialized array of
64-bit integers, minimizing the data transfer back to the client.

The client process merges the grids from each scan range, then normalizes the
data to produce an image.

Since less data is transmitted, heatmaps are generally faster.

https://github.com/locationtech/geomesa/blob/geomesa_2.11-2.3.0/geomesa-index-api/src/main/scala/org/locationtech/geomesa/index/iterators/DensityScan.scala

Statistical Queries
We support a flexible stats API that includes counts, min/max values,
enumerations, top-k (StreamSummary), frequency (CountMinSketch), histograms
and descriptive statistics. We use well-known streaming algorithms backed by
data structures that can be serialized and merged together.

Statistical queries are implemented in StatsScan.

On the region/tablet servers, we set up the data structure and then add each
feature as we scan. The client receives the serialized stats, merges them together,
and displays them as either JSON or a Stat instance that can be accessed
programmatically.

https://github.com/locationtech/geomesa/blob/geomesa_2.11-2.3.0/geomesa-index-api/src/main/scala/org/locationtech/geomesa/index/iterators/StatsScan.scala

Arrow Format
Apache Arrow is a columnar, in-memory data format that GeoMesa supports as an
output type. In particular, it can be used to drive complex in-browser visualizations.
Arrow scans are implemented in ArrowScan.

With Arrow, the data returned from the region/tablet servers is similar in size to a
normal query. However, the processing required to generate Arrow files can be
distributed across the cluster instead of being done in the client.

As we scan, each feature is added to an in-memory Arrow vector. When we hit the
configured batch size, the current vector is serialized into the Arrow IPC format
and sent back to the client. All the client needs to do is to create a header and then
concatenate the batches into a single response.

https://github.com/locationtech/geomesa/blob/geomesa_2.11-2.3.0/geomesa-index-api/src/main/scala/org/locationtech/geomesa/index/iterators/ArrowScan.scala

Optimizing Big Data
Formats for Vector

Data ● File formats overview
● Spatial extensions to file

formats

Specialized Big data file formats

Benefits of big data file formats
● Columnar layouts

● Dictionary encoding

● Efficient compression

● Structured

● Optimized filtering on read

● Language interoperability

Benefits of big data file formats
● Columnar layouts

● Dictionary encoding

● Efficient compression

● Structured

● Optimized filtering on read

● Language interoperability

One problem!
● No spatial types!

Row vs Columnar Layouts
● Row layout

○ All the data for a single record is contiguous
○ Easier to write and stream

● Columnar layout
○ All the data for a single column is contiguous
○ Can be compressed much more efficiently
○ Requires much less I/O for filtering and projections

Row vs Columnar Layouts

Source: Apache Arrow

Row vs Columnar Layouts

Source: Apache Arrow

Apache Avro
● Row-based layout
● Schemas

○ Embedded (file format) or centralized (message format)
○ Supports versioning and evolution

● Optimal for streaming data (i.e. Apache Kafka), as each
message is self-contained

Apache Parquet
● Column-based layout
● Optimized for Hadoop/Spark
● Schema is embedded in the file
● Per-column compression
● Push-down predicates during read
● Column chunking allows skipping I/O

Apache Orc
● Column-based layout
● Optimized for Hadoop/Hive
● Optimized for streaming reads
● Per-column compression
● File-level indices
● Push-down predicates during read
● Column stripes provide parallelism

Apache Arrow
● Column-based layout
● Optimized for in-memory use
● IPC file format
● Dictionary encoding
● Zero-copy reads

Spatial File Formats in GeoMesa
● No native spatial types
● Geometries are built up with lists of primitive columns
● Similar to GeoJSON, can be read without special type

awareness

Spatial File Formats in GeoMesa
● Points

○ Stored as two columns of type Double, one for X and one for Y
○ Arrow - stored as tuples (FixedSizeList)

● Allows for push-down filtering against each dimension

Spatial File Formats in GeoMesa
● Points

○ Stored as two columns of type Double, one for X and one for Y
○ Arrow - stored as tuples (FixedSizeList)

● Allows for push-down filtering against each dimension
● LineStrings, MultiPoints

○ Stored as two columns of type List[Double]

Spatial File Formats in GeoMesa
● Points

○ Stored as two columns of type Double, one for X and one for Y
○ Arrow - stored as tuples (FixedSizeList)

● Allows for push-down filtering against each dimension
● LineStrings, MultiPoints

○ Stored as two columns of type List[Double]

● MultiLineStrings, Polygons
○ Stored as two double precision List[List[Double]] columns

● MultiPolygons
○ Stored as two double precision List[List[List[Double]]] columns

Spatial File Formats in GeoMesa
● Points

○ Stored as two columns of type Double, one for X and one for Y
○ Arrow - stored as tuples (FixedSizeList)

● Allows for push-down filtering against each dimension
● LineStrings, MultiPoints

○ Stored as two columns of type List[Double]

● MultiLineStrings, Polygons
○ Stored as two double precision List[List[Double]] columns

● MultiPolygons
○ Stored as two double precision List[List[List[Double]]] columns

● Avro - row based - WKB/TWKB/WKT

Reading and Writing Spatial Formats
● Parquet

○ geomesa-fs-storage-parquet - SimpleFeatureParquetWriter,
FilteringReader

● Orc
○ geomesa-fs-storage-orc - OrcFileSystemReader/Writer

● Arrow
○ geomesa-arrow-jts - PointVector, LineStringVector, etc

● Avro
○ geomesa-feature-avro - AvroFeatureSerializer,

AvroDataFileReader/Writer

https://github.com/locationtech/geomesa/tree/master/geomesa-fs/geomesa-fs-storage/geomesa-fs-storage-parquet
https://github.com/locationtech/geomesa/tree/master/geomesa-fs/geomesa-fs-storage/geomesa-fs-storage-orc
https://github.com/locationtech/geomesa/tree/master/geomesa-arrow/geomesa-arrow-jts
https://github.com/locationtech/geomesa/tree/master/geomesa-features/geomesa-feature-avro

Reading and Writing Spatial Formats
● Parquet/Orc

○ GeoMesa file system data store
○ GeoMesa CLI export/ingest

● Arrow
○ WFS/WPS requests through GeoServer
○ GeoMesa CLI export

● Avro
○ WFS/WPS requests through GeoServer
○ GeoMesa CLI export/ingest

● Standard format tools

Spatial File Format
Use Cases ● Streaming Data

● Spark analytics
● ETL and tiered storage
● Data visualization

Streaming Data - Apache Avro
● Each message is a single record (row based)
● Apache Kafka/Streams for data exchange
● Confluent schema registry is used for managing schemas

○ Small header per message uniquely identifies schema
○ Schema evolution for adding/removing fields

● GeoMesa Kafka data store for in-memory indexing

Data Kafka GeoServer
/ GeoMesa

KStreams

Queries

Spark Analytics - Apache Parquet and Orc
● GeoMesa Spark integration adds spatial UDFs/UDTs

○ st_contains, st_point, etc

● Native input formats provide high throughput
● Relational projections take advantage of columnar

layouts
● Predicates are pushed down into the file reads

Data QueriesS3 Spark

Tiered Storage and ETL - Apache Parquet and Orc
● Data is pre-processed into S3 using the GeoMesa

converter library to create Parquet or Orc
● Processed files are ingested directly from S3 into HBase
● Processed files are accessed with the GeoMesa file

system data store for large-scale analytics
● Data age-off is used to keep your HBase cluster small
● Merged view data store shows combined HBase + S3

Data

GeoServer
/ GeoMesa

Queries

S3

HBase

Spark

Data Visualization - Apache Arrow
● Query Arrow IPC data through WFS/WPS

○ Distributed aggregation used where possible

● Arrow-js wraps the raw bytes and exposes the underlying
data

● Can efficiently filter, sort, count, etc to display
maps, histograms, timelapses

Data Visualization in browser with Apache Arrow

Big-Data
LocationTech

Projects
● GeoMesa
● GeoTrellis
● GeoWave
● RasterFrames

What is GeoWave?

An open source framework that

leverages the scalability of key-value

stores for effective storage, retrieval, and

analysis of massive geospatial datasets

At its core, GeoWave handles
spatial and spatiotemporal
indexing within distributed
key-value stores with natural
integrations for various
popular frameworks

popular geospatial platforms distributed processing
 frameworks

GeoWave bridges the gap between and

GeoTrellis

• a Scala library for geospatial data types and
operations.

• enables Spark with geospatial capabilities

• Build tile servers for on-the-fly transformations of
COGs

• storage and query raster from HDFS, Accumulo,
Cassandra and S3

Thanks!
James Hughes

● jhughes@ccri.com
● http://geomesa.org
● http://gitter.im/locationtech/geomesa
● https://github.com/locationtech/geomesa/

● @CCR_inc

mailto:jhughes@ccri.com
http://geomesa.org
http://gitter.im/locationtech/geomesa
https://github.com/locationtech/geomesa/

