

Open Geospatial Consortium, Inc.

OpenGIS Simple Features Specification

For CORBA

Revision 1.1

Date: June 2, 1999

Copyright © Open Geospatial Consortium, Inc (2005)

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/

ii Copyright © 2012 Open Geospatial Consortium

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this
Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable,
and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be
construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in
violation of U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction
which may impact your right to import, export or use the Intellectual Property, and you represent that you have complied with any
regulations or registration procedures required by applicable law to make this license enforceable

Table of Contents

0 PREFACE .. 0-1
0.1 SUBMITTING COMPANIES ... 0-1
0.2 SUBMISSION CONTACT POINTS... 0-1
0.3 DOCUMENT CONVENTIONS .. 0-2
0.4 REVISION HISTORY .. 0-2
0.5 EDITORIAL NOTES.. 0-2

1 OVERVIEW .. 1-1

2 ARCHITECTURE .. 2-1
2.1 FEATURE MODEL ARCHITECTURE:... 2-1
2.2 GEOMETRY MODEL ARCHITECTURE .. 2-3

3 COMPONENT SPECIFICATIONS.. 3-1
3.1 FEATURE MODULE ... 3-1

3.1.1 Feature Related Interfaces .. 3-1
3.1.1.1 Feature Interface ... 3-1
3.1.1.2 FeaturePropertySetIterator Interface ... 3-3
3.1.1.3 FeatureFactory Interface ... 3-4

3.1.2 Feature Type Related Interfaces.. 3-4
3.1.2.1 FeatureType Interface ... 3-4
3.1.2.2 FeatureTypeFactory Interface ... 3-7
3.1.2.3 PropertyDefIterator Interface .. 3-7

3.1.3 Feature Collection Related Interfaces ... 3-8
3.1.3.1 Feature Collection Interface .. 3-8
3.1.3.2 FeatureCollectionFactory Interface ... 3-10
3.1.3.3 FeatureIterator Interface.. 3-11

3.1.4 Container Feature Collection Interfaces ... 3-13
3.1.4.1 ContainerFeatureCollection Interface ... 3-13
3.1.4.2 ContainerFeatureCollectionFactory Interface ... 3-15

3.1.5 Queryable Interfaces ... 3-16
3.1.5.1 Query Example ... 3-16
3.1.5.2 QueryEvaluator Interface .. 3-17
3.1.5.3 QueryableFeatureCollection Interfaces ... 3-17
3.1.5.4 QueryableContainerFeatureCollection Interfaces... 3-20

3.2 GEOMETRY MODULE.. 3-22
3.2.1 Spatial Reference System Interfaces .. 3-22

3.2.1.1 SpatialReferenceInfo Interface.. 3-22
3.2.1.2 Unit Interface .. 3-22
3.2.1.3 AngularUnit Interface ... 3-23

 Page i

3.2.1.4 LinearUnit Interface .. 3-23
3.2.1.5 Ellipsoid Interface ... 3-23
3.2.1.6 HorizontalDatum Interface.. 3-24
3.2.1.7 PrimeMeridian Interface ... 3-24
3.2.1.8 SpatialReferenceSystem Interface... 3-25
3.2.1.9 GeodeticSpatialReferenceSystem Interface .. 3-25
3.2.1.10 GeographicCoordinateSystem Interface ... 3-25
3.2.1.11 Parameter Interface ... 3-26
3.2.1.12 ParameterList Interface... 3-26
3.2.1.13 GeographicTransform Interface.. 3-27
3.2.1.14 Projection Interface... 3-27
3.2.1.15 ProjectedCoordinateSystem Interface... 3-28
3.2.1.16 SpatialReferenceSystemFactory Interface .. 3-29
3.2.1.17 SpatialReferenceComponentFactory Interface.. 3-29

3.2.2 General Geometry Interfaces .. 3-30
3.2.2.1 Geometry Interface.. 3-30
3.2.2.2 GeometryFactory Interface ... 3-32
3.2.2.3 GeometryCollection Interface ... 3-33

3.2.3 Zero Dimensional Geometries ... 3-35
3.2.3.1 Point Interface ... 3-35
3.2.3.2 PointFactory Interface ... 3-36
3.2.3.3 MultiPoint Interface .. 3-37
3.2.3.4 MultiPointFactory Interface .. 3-37

3.2.4 One-dimensional Geometries .. 3-38
3.2.4.1 Curve Interface.. 3-38
3.2.4.2 LineString Interface .. 3-39
3.2.4.3 LineStringFactory Interface .. 3-40
3.2.4.4 Ring Interface.. 3-41
3.2.4.5 LinearRing Interface ... 3-42
3.2.4.6 MultiCurve Interface... 3-42
3.2.4.7 MultiLineString Interface.. 3-42
3.2.4.8 MultiLineStringFactory Interface.. 3-42

3.2.5 Two-dimensional Geometries .. 3-44
3.2.5.1 Surface Interface ... 3-44
3.2.5.2 Polygon Interface .. 3-45
3.2.5.3 LinearPolygon Interface.. 3-45
3.2.5.4 LinearPolygonFactory Interface.. 3-46
3.2.5.5 MultiSurface Interface .. 3-46
3.2.5.6 MultiPolygon Interface ... 3-47
3.2.5.7 MultiLinearPolygon Interface ... 3-47
3.2.5.8 MultiLinearPolygonFactory Interface ... 3-47

3.2.6 Structures & Enumerations ... 3-48
3.2.6.1 Well-known Structures.. 3-48
3.2.6.2 The Well-known Binary Representation for Geometry (WKBGeometry) 3-49
3.2.6.3 Well-known Text Representation of Spatial Reference Systems .. 3-54

4 FEATURE IDENTITY ... 4-1
4.1 INTRODUCTION... 4-1
4.2 FEATURES VS. REAL WORLD ENTITIES .. 4-1
4.3 IDENTITY ‘OWNERSHIP’ ... 4-1
4.4 ASPECTS OF IDENTITY .. 4-1
4.5 IMPLEMENTATION IDENTITY .. 4-2
4.6 IDENTITY AND DATABASE FEDERATION... 4-2
4.7 EXPOSING IDENTITY... 4-2
4.8 FEATURE & OBJECT IDENTITY IN CORBA... 4-3
4.9 CONCLUSION.. 4-3

5 EXPOSING FEATURE TYPE... 5-1

6 REFERENCES .. 6-1

Page ii

7 FULL IDL SPECIFICATION.. 7-1

0 Preface

0.1 Submitting Companies

The following companies submitted this implementation specification in response to the OGC Request 1,
Open Geodata Model Working Group, A Request for Proposals: OpenGIS Features (OpenGIS Project
Document Number 96-021): Item 3 Simple Feature API for CORBA:

Bentley Systems, Inc.

Environmental Systems Research Institute (ESRI)

Genasys II, Inc.

Oracle Corporation

Sun Microsystems, Inc

University of California at Los Angeles (UCLA)

0.2 Submission Contact Points

All questions about this submission should be directed to:

Brian Gottier
Bentley Systems, Inc.
690 Pennsylvania Drive
Exton, PA 19341, USA
phone: +1 610 458 5000
fax: +1 610 458 1480
email: brian.gottier@bentley.com

David Beddoe
ESRI National Accounts
2070 Chain Bridge Rd, Suite 180
Vienna, VA 22182-2536, USA
phone: +1 703 506 9515
fax: +1 703 506 9514
email: dbeddoe@esri.com

John Davidson
Genasys II, Inc.
107 C. West Federal St. Suite 12

 Page 0-1

OpenGIS Simple Features Specification for CORBA, Revision 1.1

Middleburg, VA 22117, USA
phone: +1 703 648 2490
fax: +1 703 648 2492
email: johnd@genasys.com

Dr John R Herring
Oracle Corporation
196 VanBuren Street
Herndon, VA 22070, USA
phone: +1 703 736 8124
fax: +1 703 708 7233
email: jrherring us.oracle.com

Michael Cosentino
Sun Microsystems, Inc.
901 San Antonio Rd
Mail Stop MPK 15-210
Palo Alto, CA 94303, USA
phone: +1 650 786 4847
email: michael.costentino@eng.sun.com

Prof. Richard Muntz
UCLA Data Mining Laboratory
3277 Boelter Hall
Los Angeles, CA 90025, USA
phone: +1 310 825 3546
fax: +1 310 825 2273
email: muntz@cs.ucla.edu

0.3 Document Conventions

Two different fonts have been employed to disambiguate between CORBA IDL interfaces and CORBA
object instances. CORBA IDL is indicated using this font. CORBA object instances are indicated
using this font.

0.4 Revision History

Revision 1.0 includes the following changes from Revision 0:

• Inserted sections 3.2.6.2 and 3.2.6.3. The source for this change was proposal #2 and #3 from Revision
Request 97-400.

• Many minor cleanups made. The source for these changes was Revision Request 97-404.

Revision 1.1 includes the following changes from Revision 1.0:

• The query evaluator interface has been simplified. QueryableFeatureCollections only
allow queries on the contained features, and always return a feature collection.

• The interfaces of Feature and FeatureIterator have been aligned.

0.5 Editorial Notes

Page 0-2

OpenGIS Simple Features Specification for CORBA, Revision 1.1

1 Overview

The purpose of this specification is to provide interfaces to allow GIS software engineers to develop
applications that expose functionality required to access and manipulate geospatial information comprising
features with ‘simple’ geometry using OMG’s CORBA technology.

CORBA (Common Object Request Broker Architecture) provides a specification for the object-oriented
distributed systems in a language, operating system, platform and vendor independent way.

CORBA consists of a core implemented by the various commercially available ORBs (Object Request
Brokers) and a number of specified object services and application facilities (CORBAservices and
CORBAfacilities). Facilities may be horizontal (provide services of a general nature to applications such as a
graphic user interface or task management) or vertical (provide services targeted to a particular industry or
domain). It is envisaged that this specification will become a candidate for inclusion in the OMG’s work as a
vertical CORBAfacility covering geospatial information management (see Figure 1.1). More information on
the OMG and CORBA may be found in [3].

In the design of this specification, the approach has been to use, where possible, existing CORBA
specifications to allow leveraging of the past and present efforts of OMG and vendors of other CORBA
compliant products and specifications. Where it has been deemed inappropriate, alternative specifications have
been developed that follow as closely as possible existing CORBA specifications.

To use CORBA, it has been necessary to describe the abstract architecture defined in the Abstract
Specification [1] in the language of CORBA’s OMA (Object Management Architecture). This has been
achieved through the creation of interfaces defined in CORBA-IDL (Interface Definition Language) to
represent the various OpenGIS constructs. These interfaces form two sub-systems or modules: the Feature
Module and the Geometry Module.

The Feature and Geometry Models, which form the basic architecture of these modules, are described in
Chapter 2. Chapter 3 describes each of the interfaces and structures in CORBA IDL and natural language.
Chapters 4 and 5 elucidate some of the design choices and assumptions that were made during the
specification process. Chapter 4 addresses the issue of Feature Identity. Chapter 5 addresses the issue of
Feature Type. References are provided in Chapter 6. A full IDL specification is repeated in Chapter 7 for the
convenience of developers.

 Page 1-1

OpenGIS Simple Features Specification for CORBA, Revision 1.1

Object Request Broker

CORBAservices

Query
Service

Collection
Service

Transaction
Service

Application
Objects

CORBAfacilities
Vertical

FacilitiesOpenGIS Features for CORBA Healthcare

Horizontal
FacilitiesUser Interface Task Mgmt. Info. Mgmt.

Figure 1.1 The Architecture of OMG’s CORBA and the possible role of an OpenGIS Features for
CORBA Specification.

The specification is broad enough to allow maximal flexibility in implementation. In particular, it has been
designed with two implementation models is mind:

the exposure of existing (legacy) geospatial data and applications whether they be RDBMS or proprietary file
repositories through some form of object ‘wrapping’.

the development of new distributed object-oriented GIS applications.

This was undertaken to ensure that the OpenGIS Interoperability specification provides a low cost entry point
for existing players in the GIS marketplace while allowing a natural progression towards implementations
based on the increasingly popular and powerful distributed and object-oriented technologies such as Java and
the Internet. In particular, care was taken to ensure that the powerful aspects of the O-O programming
paradigm were exploitable through this specification.

To promote cross-platform interoperability a cooperative effort was made with the authors of the OLE/COM
and SQL item submissions to agree on the semantics of various constructs and operations not adequately
defined in the Abstract Specification. The Geometry Model defined in this specification is semantically
identical to those included in all submissions. Interoperability at the Geometry level may therefore be achieved
by the development of a syntactic bridge between the platforms. Such bridges would be a straight-forward
development task using software currently available which is based on the OMG COM-CORBA Interworking
specification. Additionally, semantic concordance between the specifications will facilitate the development of
applications compliant with multiple OpenGIS Interoperability standards.

Page 1-2

2 Architecture

2.1 Feature Model Architecture:

This specification employs the following model for creating, accessing and querying simple geospatial features
and feature collections.

Real world entities such as “Roads” are typically represented as features comprising a set of spatial and non-
spatial attribute values (e.g., a geometry such as a line string representing the road’s spatial extent, a string
representing its name, etc.). Features may have an associated set of operations or behavior. Features are also
referred to as feature instances.

System engineers categorize representations of these real world entities as feature types. A feature type defines
the set of properties (and possibly behavior) that characterize features of that type. A property has a name and
type. Properties may be of any (IDL) type, including simple types (shorts, longs, floats, strings etc.),
constructed types (structs, unions, sequences) and object references (including references to other features).
Every feature is of primarily one type (systems using type inheritance may allow features to be of multiple
types – the use of inheritance, whether single or multiple, is an implementation issue).

Feature collections are groups of features constructed for various purposes. Feature collections come in two
fundamental flavors. Feature collections supporting the concept of “containment” own their constituent
features i.e. the persistence of the member features is effected through the collection. If a feature is removed
from its containing feature collection (without being moved to another) it ceases to exist. Other feature
collections provide support for organizing and managing existing features without owning them i.e. features
that are contained in other feature collections but which are grouped in some way towards a particular end: e.g.
to scope a query. Features are contained in one and only one container feature collection, although they may
be, by reference, members of other, non-containing, feature collections. A client’s primary access to a given
feature will typically be through a feature collection.

All feature collections may also be considered to be features in their own right and may have various
associated properties and associated types. Thus, Features, may be simple or composite (Features constructed
from sub-Features). This specification only covers simple (atomic) Features.

A containing feature collection must also provide clients with the various feature types it may contain on
demand. This collection of feature types is the feature schema of the collection.

An OpenGIS Server or implementation provides the software that exposes these constructs to outside clients
through specified interfaces. Figure 2.1 provides a diagrammatic representation of how the various interfaces
relate to each other. A typical server application will expose a ContainerFeature-Collection
interface to clients, either through a static (hard-coded) binding or through a dynamic binding mechanism such

 Page 2-1

OpenGIS Simple Features Specification for CORBA, Revision 1.1

as the CORBA Naming and Trader Services (the ‘White Pages’ and ‘Yellow Pages’, respectively, of a
CORBA system). A ContainerFeatureCollection is notionally equivalent to a ‘GIS database’. It contains or
‘owns’ a set of Features each which may be exposed to clients through the Feature interface. Features
have a set of properties, which may be iterated over by a FeaturePropertyIterator. A FeatureType object
defines the properties within this set, which is available through the Feature interface. The FeatureType
object groups PropertyDef structures defining each property. These may be accessed through a
PropertyDefIterator manufactured on demand by the FeatureType object.

QueryableContainer
FeatureCollection

FeatureProperty
Iterator

Feature

FeatureFactory

FeatureType

PropertyDef
(structure)

FeatureType
Factory

PropertyDef
Iterator

ContainerFeature
Collection

ContainerFeature
CollectionFactory

FeatureCollection
Factory

FeatureCollection

QueryableFeature
Collection

QueryEvaluator

FeatureIterator

iterates over
properties groups

groups

creates

cr
ea
tescr

ea
tes

cr
ea
tes

creates

implements

cr
ea
tes

cr
ea
tes

im
ple
m
en
ts

im
ple
m
en
ts

im
ple
m
en
ts

im
ple
m
en
ts

implements

im
ple
m
en
ts

owns

de
fin
es

exposes
schema of

often exposes

often exposes

creates

creates

Figure 2.1The interfaces exposing the OpenGIS Feature Model. Those in bold will typically be
advertised in a naming or trader service.

Systems may enable client applications to create new Feature objects through a FeatureFactory object.
Usually the ContainerFeatureCollection will assume this role. Some ContainerFeatureCollections may
also expose a FeatureTypeFactory to allow client applications to create new FeatureTypes.

FeatureCollection objects may group features. ContainerFeatureCollections are a special type of
FeatureCollection: those that own their member Features. In general FeatureCollections only refer to their
member Features. Such referential collections may group a sub-set of Features within a single
ContainerFeatureCollection (which may be created by a client application through a
FeatureCollectionFactory object exposed by the containing collection) or they may group Features from a
number of containers. Both referential FeatureCollections and ContainerFeatureCollections may provide
query functionality to clients by implementing the QueryEvaluator interface (i.e. by exposing the
QueryableFeatureCollection or QueryableContainerFeatureCollection interfaces).
Clients may issue SQL or OQL queries against these collections. The results are returned through a
QueryableFeatureCollection.

ContainerFeatureCollections will most often be built by system designers using the native tools of a
commercial GIS implementation. Some GIS software vendors may provide the functionality to create new

Page 2-2

 Chapter 2 Architecture

 Page 2-3

ContainerFeatureCollections through a client application using a ContainerFeatureCollectionFactory.
Such objects would need to be bound to either statically or through a Naming or Trader Service.

2.2 Geometry Model Architecture

Interoperable geoprocessing requires the unambiguous exposure of geometric entities. The set of interfaces
included in this proposal provides a means through which various geoprocessors may expose geometric
entities to each other. The interfaces are based on the following abstract model.

All geometric entities belong to an abstract class of ‘geometries’. All have a number of common characteristics
e.g. all have spatial extent, all use some form of spatial reference system, etc.

Geometries are categorized by their dimension as zero-dimensional geometries (points), one-dimensional
geometries (curves) and two-dimensional geometries (surfaces). This model can be extended to three
dimensions (solids), four dimensions (hyper-solids) and higher dimensions if necessary.

These dimension-based categories are also abstract (with the exception of points). They may be further sub-
divided into more specific categories with various properties which are sufficiently well constrained to be
realized unambiguously by software implementations (i.e. are concrete). For example, a specific sub-set of
curves called line-strings are defined by an ordered series of points with linear interpretation between points.
These may be implemented in various ways by software developers and are therefore concrete.

Additionally, individual (‘simple’) geometries may be aggregated to form composite geometries or geometry
collections. These geometry collections form a separate category of geometries. In general, geometry
collections may be composed from geometries of different dimensionality (heterogeneous collections).
Geometry collections, which comprise only geometries of a single dimension (homogenous collections), are
specializations of this general type. Geometry collections may, of course, be further restricted by various
implementations.

All Geometries are capable of exposing their underlying coordinate geometries in the form of Well-known
Structures (WKSs). The semantics of the coordinates (i.e. the mapping between coordinates in coordinate
space and real world locations) is provided by a Spatial Reference System (SRS). This Specification embraces
the European Petroleum Survey Group (EPSG) work in this area which has also been included in the GeoTIFF
specification and the Epicentre Model of the Petrotechnical Open Software Consortium (POSC) (see [6]).

OpenGIS Simple Features Specification for CORBA, Revision 1.1

Geometry

Geometry
Collection

MultiCurve

CurvePoint

MultiPoint MultiSurface

Surface

Zero Dimensional
Geometry

One Dimensional
Geometry

Two Dimensional
Geometry

Figure 2.2Abstract Model of OpenGIS geometry Interfaces

A Spatial Reference System may be composed of a number of components which vary in number and type
depending on the type of the spatial reference system. Most SRSs abstract the shape of the earth to an
ellipsoid. The mapping between this mathematical surface and the earth’s surface is defined by a horizontal
datum. The ellipsoidal or geographic coordinates may be used to define geometries directly. Such an SRS is a
Geographic Coordinate System. These coordinates may also be mapped from the ellipsoid to a plane using
some form of projection. This mapping forms a Projected Coordinate System. Projected and Geographic
Coordinate Systems are grouped in this specification as GeodeticSpatialReferenceSystems to distinguish them
from other forms of SRSs described in the Abstract Specification.

The other components of an SRS (unit definitions, prime meridians, etc.) described in the Epicentre model are
exposed as interfaces in this specification.

Page 2-4

3 Component Specifications

This specification has two major components or modules: the feature module and the geometry module.

3.1 Feature Module

3.1.1 Feature Related Interfaces

3.1.1.1 Feature Interface

3.1.1.1.1 Purpose

The Feature interface is intended to give clients access to a Feature object’s instance data. It is generic:
every Feature object regardless of its type conforms to this interface.

3.1.1.1.2 IDL Specification

interface PropertyDefIterator; // forward declaration
interface Geometry;
interface FeaturePropertySetIterator;
interface FeatureType; // forward declaration

typedef sequence<FeatureType> FeatureTypeSeq;

typedef string Istring;
typedef sequence<Istring> IStringSeq;

// Structure to describe name-value pairs
struct NVPair {
 Istring name; // name is a string
 any value; // value is an 'any' type
};

typedef sequence <NVPair> NVPairSeq;

struct FeatureData {
 FeatureType type;
 NVPairSeq props;
};
typedef sequence<FeatureData> FeatureDataSeq;

struct PropertyDef {
 Istring name;
 TypeCode type;

 Page 3-1

OpenGIS Simple Features Specification for CORBA, Revision 1.1

 boolean required;
};

typedef sequence<PropertyDef> PropertyDefSeq;

struct WKSPoint {
 double x;
 double y;
};

typedef sequence<WKSPoint> WKSPointSeq;
typedef sequence<WKSPoint> WKSLineString;
typedef sequence<WKSLineString> WKSLineStringSeq;
typedef sequence<WKSPoint> WKSLinearRing;
typedef sequence<WKSLinearRing> WKSLinearRingSeq;

struct WKSLinearPolygon {
 WKSLinearRing externalBoundary;
 WKSLinearRingSeq internalBoundaries;
};

typedef sequence <WKSLinearPolygon> WKSLinearPolygonSeq;

enum WKSType {
 WKSPointType,WKSMultiPointType, WKSLineStringType,WKSMultiLineStringType,
 WKSLinearRingType, WKSLinearPolygonType, WKSMultiLinearPolygonType,
 WKSCollectionType
};

union WKSGeometry // near-equivalent to the 'CoordinateGeometry of the spec'

 switch (WKSType) {

 case WKSPointType:
 WKSPoint point;

 case WKSMultiPointType:
 WKSPointSeq multi_point;

 case WKSLineStringType:
 WKSLineString line_string;

 case WKSMultiLineStringType:
 WKSLineStringSeq multi_line_string;

 case WKSLinearRingType:
 WKSLinearRing linear_ring;

 case WKSLinearPolygonType:
 WKSLinearPolygon linear_polygon;

 case WKSMultiLinearPolygonType:
 WKSLinearPolygonSeq multi_linear_polygon;

 case WKSCollectionType:
 sequence<WKSGeometry> collection;
 };

typedef sequence<octet> OctetSeq;

struct Decimal {
 long precision;
 long scale;
 OctetSeq value;
};

interface Feature {
 exception InvalidParams {string why;};

 exception PropertyNotSet {}; // Property does not exist.

Page 3-2

 Chapter 7 Full IDL Specification

 Page 3-3

 exception InvalidProperty {}; // Not a valid property for the given feature.
 exception InvalidValue {}; // value is not valid for property
 exception InvalidConversion {};
 exception RequiredProperty {}; // property is required for the given feature

 // feature type
 readonly attribute FeatureType feature_type;

 // geometry
 Geometry get_geometry (in NVPairSeq geometry_context) raises (InvalidParams);

 // generic property methods to get/set property values
 boolean property_exists(in Istring name) raises(InvalidProperty);

 any get_property(in Istring name) raises(PropertyNotSet,InvalidProperty);

 void set_property(in Istring name, in any value)
 raises(InvalidProperty, InvalidValue);

 void delete_property(in Istring name) raises(PropertyNotSet, InvalidProperty,
 RequiredProperty);

 // accessing property values by property names
 string get_string_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 float get_float_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 double get_double_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 long get_long_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 short get_short_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 boolean get_boolean_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 Decimal get_decimal_by_name(in Istring propertyName)
 raises (InvalidConversion, InvalidProperty);

 OctetSeq get_byte_stream_by_name(in Istring propertyName)
 raises (InvalidConversion, InvalidProperty);

 Geometry get_geometry_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 WKSGeometry get_wksgeometry_by_name(in Istring propertyName)
 raises (InvalidConversion, InvalidProperty);

 OctetSeq get_wkbgeometry_by_name(in Istring propertyName)
 raises (InvalidConversion, InvalidProperty);

 NVPairSeq get_property_sequence(in unsigned long n);

 FeaturePropertySetIterator get_property_iterator();

 void destroy();

};

typedef sequence<Feature> FeatureSeq;

3.1.1.1.3 Interface Description

OpenGIS Simple Features Specification for CORBA, Revision 1.1

feature_type—According to the abstract specification [1] each feature has type. This implementation
specification proposes to represent type through a separate interface: FeatureType. This read only
attribute gives clients access to the feature’s type information including property names and types.

get_geometry—aids in the discovery of geometric attributes. The Abstract Specification states that
features have properties, a subset of which, are geometric. A client may gain access to these geometric
properties though the get_property() operation but this would require the client to either know the
name of particular geometric properties or discover them through the feature’s associated
FeatureType interface. Even with this knowledge a client would need to make a choice as to which
of potentially several geometric attributes it requires. The get_geometry() operation makes this
process easier for clients, by allowing the server to make many of these choices on the basis of optional
context information supplied to it by the client. Examples of contextual information include scale (a
suitable geometric representation of a feature at 1:500 could well be different from that at 1:5000000),
theme (e.g. hydrological vs. topographic) and location (e.g. a clipping polygon). The form of this
context information is a name-value list (NVPairSeq). A server instance may extract and process any
of the supplied context fields; the server is not required to use this information in any way. In due
course, context names and semantics may need to be specified by the OGC or various GICs. A client
can also use get_geometry() to retrieve a default geometric representation of a feature in a context
free manner (the getDefaultGeometry() of Bentley’s first submission). get_geometry()
returns a reference to a Geometry object which may be a point, curve, surface or compound geometry
(collection).

property_exists—checks to see if a property is set in this list. The exception InvalidProperty
is thrown if the property is not a part of the FeatureType supported by the feature.

get_property—gets the value associated with a property name. This operation raises a
PropertyNotSet exception if the named property does not exist. An InvalidProperty
exception is thrown if the property is not a part of the FeatureType supported by the feature.

set_property—sets the named property to the supplied value. If the property is not defined (does not
exist), but is a part of the feature’s property schema, then this operation creates the property. An
InvalidProperty exception is raised if the property is invalid for a given feature and an
InvalidValue exception is raised if the value is not within the valid domain of the named property.

delete_property—deletes the value of the property with the given name and sets that property to null.
Raises PropertyNotSet if specified property is not defined. Raises RequiredProperty if the
property is required. This operation raises an InvalidProperty exception if the property is invalid
for a given feature.

Accessors—The methods of the form get_X_by_name() retrieve the data from the specified
property (by index or name) as the datatype X. An InvalidProperty is raised if the property
name is. A PropertyNotSet is raised if the property is not set for the feature. The purpose of
these accessors is to allow efficient retrieval of properties when the type is known, without the need to
marshall the data into and out of anys.

get_property_sequence—returns at most n name-value pairs from the property set of the feature.

get_property_iterator—returns an iterator over the property set.

destroy—destroys the Feature instance.

Page 3-4

3.1.1.1.2 Type Specific Feature Interfaces

No subclasses of Feature are necessary but they are not precluded. An OpenGIS server may, for
example, define a Road interface that inherits from Feature, and expose it to clients (through IDL or the
CORBA Interface Repository). Some clients may be equipped to take advantage of the additional services
the Road interface provides. Such an interface must inherit from Feature to ensure generic clients
(those unable to use such specialized interfaces) may still access feature data through the generic operations
described above.

3.1.1.1.3 Feature Identity

This proposal specifies that the identity of a Feature is encapsulated into its object reference. This policy is
provided for in CORBA by the upcoming Portable Object Adapter specification [2]. For a discussion of
these issues see Section 4.

3.1.1.1.4 Typical Server Implementations

Typically in object-oriented environments GIS features are implemented as objects. The Feature
interface will be a thin wrapper over these feature objects. The get_property() and set_property()
operations will retrieve and modify these objects’ internal properties. The implementation of the
FeatureType attribute will typically be a class object. The get_geometry() method scans the
Feature’s property list for all properties which have “Geometry” TypeCode.

In RDBMSs, GIS features are typically represented as rows in various relational tables. The feature
interface will allow access to the tuples within a particular row. The get_property() and
set_property() operations will probably be effected by the submission of appropriate SQL calls. The
underlying implementation of the FeatureType attribute will typically be a row in a system table. The
table name and primary key of the row will be encoded by the server into the Feature’s object reference.

3.1.1.1.5 Client Scenarios

Assume that a generic ‘feature browser’ client retrieved a Feature interface reference from a
FeatureIterator (see Section 3.1.3.3). It could use the following algorithm to display the features
geometric and non-geometric properties in some sort of form display:
// generic client pseudocode

Feature featureRef;
FeatureType featureTypeRef;
CORBA_Any propertyValue;
PropertyDefSeq propertySet;
...
// get FeatureType reference
featureTypeRef = featureRef.get_feature_type();

// get Property Names from feature type reference
propertySet = featureTypeRef.get_property_defs();

for (i=0; i< propertySet.length; i++) { // for each property ...
 try {
 propertyValue = featureRef.get_property((propertySet.get(i)).name);

 if (isGeometry(propertyValue.type)
 drawInGraphicsWindow (propertyValue.value);
 else
 writeInTextWindow (propertyValue.value);

 } catch (InvalidPropertyName) {

 Page 3-1

OpenGIS Simple Features Specification for CORBA, Revision 1.1

 // ... exception handling
 } catch (PropertyNotSet) {
 // ... exception handling
 }
}

The details of get_property_defs() function is explained under FeatureType (Section 3.1.2).
Note that this client uses CORBA any types, which contain type information. The client can test what type
of information is contained in an any and act in an appropriate manner: in this case deciding between
graphic and non-graphic output. A more sophisticated client may use this type information to determine the
layout of a form-based dialog. This type information is also available from the FeatureType reference
so the client may get an array of property types with the array of property names and directly cast the any to
a variable of the appropriate type.

A dedicated client (one that is familiar with the server’s type system) may also use the generic interface to
retrieve data.
// dedicated client (generic interface) pseudocode

Feature featureRef;
FeatureType featureTypeRef;

CORBA_Any propertyValue
String roadName;
Geometry roadCentreLine;
...
// get FeatureType reference
if (strcmp(featureRef.get_feature_type().name(),“RoadType”) == 0)
 try {
 // get Road name
 propertyValue = featureRef.get_property(“road_name”);
 roadName = (String)propertyValue.value;

 // get Road centreLine
 propertyValue = featureRef. get_property(“centre_line”);
 roadCentreLine = (Geometry)propertyValue.value;
 } catch (InvalidPropertyName) {
 // ... exception handling
 }
}

This code only differs from the above in that the client already knows what properties a ‘Road’ feature will
have. (There are many cases where clients can be expected to have this sort of knowledge: it may use a GIC
standard; use a published IDL type schema or be an in-house solution based on commercial OpenGIS
compliant software.) Such a client is, however, not restricted to using this generic interface:
// dedicated client (type-specific interface) pseudocode

Feature featureRef;
FeatureType FeatureTypeRef;

Road roadRef;
String roadName;
Geometry roadCentreLine;
...
// get FeatureType reference
if (strcmp(featureRef.get_feature_type().name(),”RoadType”)==0)
 roadRef = (Road)featureRef;

// get Road name
roadName = roadRef.get_road_name();

// get CentreLine
roadCentreLine = roadRef.get_centre_line();
}

Page 3-2

 Chapter 3 Component Specifications

 Page 3-3

This code will provide more performance because the switching into and out of any types has been
eliminated. This is achieved at the cost of generality.

3.1.1.1.6 Rejected Approaches

Requiring the representation of all features as type-specific interfaces and its attendant requirement to insert
feature type details into the Interface Repository as proposed in Bentley’s first submission has been
rejected on the grounds of placing unreasonable obligations on both server and client implementations.
See the discussion under FeatureType interface for further details.

The UCLA proposal to only provide feature data through a ‘GIS_Iterator’ without persistence or identity
was also rejected on the grounds of having insufficient power to fulfill the functional requirements of
RFP 1.

3.1.1.2 FeaturePropertySetIterator Interface

3.1.1.2.1 Purpose

The FeaturePropertyIterator interface provides support for iterating through a given Feature object’s
property set. The factory of a FeaturePropertyIterator instance is a Feature object.

3.1.1.2.2 IDL Specification

interface FeaturePropertySetIterator {

 exception IteratorInvalid {};

 // Get next NVPair structure
 boolean next(out NVPair the_pair)
 raises (IteratorInvalid);

 // Get next "n" NVPair structures.
 boolean next_n(in unsigned long n,
 out NVPairSeq n_pairs)
 raises (IteratorInvalid);

 // Discard the iterator
 void destroy();

 // reset the iterator
 void reset() raises (IteratorInvalid);

};

3.1.1.2.3 Interface Description

next—retrieves the next property name-value pair. The order of retrieved properties is implementation
dependent. This operation returns true if a valid property was placed in the_pair and false if there
are no more properties to retrieve. An IteratorInvalid exception is raised if the iterator has
become invalid.

next_n—retrieves the next n property name-value pairs. If less than n properties are available, then all
remaining pairs are retrieved. This operation returns true if a sequence of properties was placed in
n_pairs and false if there are no more properties to retrieve. An IteratorInvalid exception is
raised if the iterator has become invalid.

OpenGIS Simple Features Specification for CORBA, Revision 1.1

destroy—destroys the iterator object.

reset—resets the iterator to the first property of the set. An IteratorInvalid exception is raised if
the iterator has become invalid.

3.1.1.3 FeatureFactory Interface

3.1.1.3.1 Purpose

The FeatureFactory provides support for the creation of a Feature instance of a given FeatureType.

3.1.1.3.2 IDL Specification

interface FeatureFactory {

 exception FeatureTypeInvalid {string why;};
 exception PropertiesInvalid {string why;};

 Feature create_feature(in FeatureType type, in NVPairSeq properties)
 raises (FeatureTypeInvalid, PropertiesInvalid);

 FeatureSeq create_features(in FeatureDataSeq features)
 raises (FeatureTypeInvalid, PropertiesInvalid);

};

3.1.1.3.3 Interface Description

create_feature—creates a new Feature instance of the desired type (i.e., the FeatureType
argument). A FeatureTypeInvalid exception is thrown if the supplied FeatureType is not
supported by the FeatureFactory instance. A PropertiesInvalid exception is thrown if the
arguments supplied for the Feature object of the given FeatureType are incorrect or insufficient (i.e.,
the required set of parameters is not supplied).

create_features—creates a set of new Feature instances of the desired type (i.e., the
FeatureType argument). A FeatureTypeInvalid exception is thrown if the supplied
FeatureType is not supported by the FeatureFactory instance. A PropertiesInvalid exception
is thrown if the arguments supplied for a given Feature object of the given FeatureType are incorrect
or insufficient (i.e., the required set of parameters is not supplied).

3.1.2 Feature Type Related Interfaces

3.1.2.1 FeatureType Interface

3.1.2.1.1 Purpose

The FeatureType interface is intended to provide details of the type of a Feature that are described as
‘Feature Schema’ in the Abstract Specification’s Essential Model, specifically the names and types of the
properties associated with each instance of a Feature of the given FeatureType.

3.1.2.1.2 IDL Specification

interface FeatureType {
 exception InheritanceUnsupported {};

Page 3-4

 Chapter 3 Component Specifications

 Page 3-5

 exception PropertyDefInvalid {};

 // feature type name
 readonly attribute Istring name;

 // feature type parents
 FeatureTypeSeq get_parents() raises (InheritanceUnsupported);

 // feature type children
 FeatureTypeSeq get_children()raises (InheritanceUnsupported);

 // definition of properties for this feature type
 boolean property_def_exists(in Istring name);
 PropertyDef get_property_def(in Istring name) raises(PropertyDefInvalid);
 PropertyDefSeq get_property_def_sequence(in long levels, in unsigned long n);
 PropertyDefIterator get_property_def_iterator (in long levels);
 void destroy();
};

typedef sequence<FeatureType> FeatureTypeSeq;

3.1.2.1.3 Interface Description

name—a string naming the feature type. This will typically correspond to a table name in an RDBMS and
a class name in an OO environment.

get_parents—returns a sequence of FeatureTypes which represent the direct ancestors of the
FeatureType. The return sequence will be empty if the implementation the FeatureType is a root
type. The sequence will have no more than one member if the implementation supports only single
inheritance. Implementations supporting multiple inheritance will return an arbitrary length sequence.
Implementations that do not support inheritance will raise an InheritanceUnsupported
exception.

get_children—returns a sequence of FeatureTypes which represent the children of the
FeatureType. The return sequence will be empty if the FeatureType has no children.
Implementations that do not support inheritance will raise an InheritanceUnsupported
exception.

property_def_exists—returns true if a property named name is defined.

get_property_def— returns the PropertyDef structure associated with the property name.

get_property_def_sequence—returns a sequence of at most n property definitions. The levels
parameter indicates how many levels of the type hierarchy should be searched for inherited properties.
A value of 0 indicates only properties defined by this FeatureType explicitly should be returned. A
value of 1 indicates properties from this FeatureType and its immediate parent(s) should be returned.
A value of –1 indicates that the all properties should be returned regardless of the depth of the
inheritance tree. This value is ignored by implementations that do not support inheritance.

get_property_def_iterator—returns an iterator over the schema of the FeatureType.

destroy—destroys the FeatureType instance.

3.1.2.1.4 Conceptual framework

For a justification and discussion of the conceptual framework of the FeatureType interface, see Section
5.

OpenGIS Simple Features Specification for CORBA, Revision 1.1

3.1.2.1.5 Feature Polymorphism

A Feature is of one and only one principal type. The FeatureType referred by the Feature’s
feature_type property is its principal type. If the implementation supports inheritance (either single or
multiple), a Feature may inherit properties (and behavior) from parent types.

3.1.2.1.6 Typical Server Implementations

Typically in object-oriented environments a class or factory object embodies object type. These objects are
obvious candidates for the implementation of the FeatureType interface. They have identity, property
(and method) signatures, support polymorphism and are used by the memory management system when
creating new objects.

In RDBMSs, the FeatureType corresponds most closely with the data definition (schema) of a relational
table. Tables also have identity (based on table name) and a set of properties or columns (retrievable from a
row in a system table or data dictionary). The table name is also used in the SQL insert statement when
creating a new row in the table (a new feature instance). Tables have no standard way of addressing
polymorphism or feature behavior but these are not required for OpenGIS compliance.

3.1.2.1.7 Rejected Approaches

Including methods to retrieve feature type from the Feature interface directly was considered. This may
have taken the form of a get_schema() operation. This was rejected on the grounds that such a
identity-free approach to feature type would significantly diminish the power of the specification.

3.1.2.1.8 Feature Behavior & the Interface Repository

Discussions at various OpenGIS fora have indicated that the Abstract Specification’s notion of a “property
set” includes a set of operations defining the behavior of features of a particular type. This proposal
excludes operations from the schema provided through the FeatureType interface. This is a pragmatic
policy: CORBA already has a well-defined mechanism for the dynamic discovery of behavior: the Interface
Repository (IR). In fact, the IR could be used in place of the FeatureType interface to expose all
properties as well as behavior, but it was considered overly onerous to require all OpenGIS servers to
provide IR definitions for all FeatureTypes.

It should be noted, however, that it is likely to become easier for server developers to offer such services as
the vendor community provides increasingly comprehensive development tools in the CORBA
environment. For example, a tool to automatically generate IR entries from data dictionaries in an RDBMS
would remove most of the development effort of the IR approach for server implementers exposing
RDBMS data and metadata. If such tools become sufficiently powerful, the FeatureType interface may
be deprecated.

Server developers prepared to offer feature behavior might include IR entries for each type-specific Feature
interface to allow dynamic discovery of behavior. A client able to dynamically discover and utilize feature
behavior will use the IR to obtain details of available functionality (using the get_interface()
operation which the Feature interface inherits from CORBA_Object). If the response to
get_interface() is the Feature interface the client can assume that no feature behavior is available
and that property set information is only obtainable through the FeatureType interface. Clients unable
to dynamically discover feature behavior will always use the FeatureType interface. To ensure such
clients can always access property information, all OpenGIS compliant servers must provide a
FeatureType object for all features whether or not they also provide feature type specific interface
information through the IR.

Page 3-6

 Chapter 3 Component Specifications

 Page 3-7

3.1.2.2 FeatureTypeFactory Interface

3.1.2.2.1 Purpose

The FeatureTypeFactory interface provides support for the creation of FeatureType object
instances.

3.1.2.2.2 IDL Specification

interface FeatureTypeFactory {

 exception InvalidParams {string why;};

 FeatureType create(in string name, in PropertyDefSeq schema,
 in FeatureTypeSeq parents)
 raises(InvalidParams);
};

3.1.2.2.3 Interface Description

create—creates a FeatureType instance given a type name, attribute schema, and lists of parents of the
FeatureType. Raises an InvalidParams exception if any of the supplied arguments are invalid.

3.1.2.3 PropertyDefIterator Interface

3.1.2.3.1 Purpose

The PropertyDefIterator interface provides support for iterating over a FeatureType’s property
definitions or schema. The factory of a PropertyDefIterator instance is a FeatureType object.

3.1.2.3.2 IDL Specification

interface PropertyDefIterator {

 exception IteratorInvalid {};

 // Get next PropertyDef structure
 boolean next(out PropertyDef schema_property)
 raises (IteratorInvalid);

 // Get next "n" PropertyDef structures
 boolean next_n(in unsigned long n,
 out PropertyDefSeq schema_properties)
 raises (IteratorInvalid);

 // Discard the iterator
 void destroy();

 // reset the iterator
 void reset() raises (IteratorInvalid);

};

3.1.2.3.3 Interface Description

next—retrieves the next property definition. This operation returns true if a property was placed in
schema_property and false if there are no more property definitions to retrieve. An
IteratorInvalid exception is raised if the iterator has become invalid.

OpenGIS Simple Features Specification for CORBA, Revision 1.1

next_n—retrieves the next n schema attributes. If less than n attributes are available, then retrieves all
those remaining. This operation returns true if a sequence of property definitions was placed in
schema_properties and false if there are no more property definitions to retrieve. An
IteratorInvalid exception is raised if the iterator has become invalid.

destroy—deletes the iterator object.

reset—resets the iterator to the first schema attribute of the set. An IteratorInvalid exception is
raised if the iterator has become invalid.

3.1.3 Feature Collection Related Interfaces

3.1.3.1 Feature Collection Interface

3.1.3.1.1 Purpose

This interface provides services for the management of groups of OpenGIS features. These groups can
come into being for a number of reasons: e.g. a project as a whole, for the scope of a query, as the result of
a query or arbitrarily selected by a user for some common manipulation. A feature’s membership of a
particular FeatureCollection does not necessarily imply any relationship with other member features.
Composite or compound features which ‘own’ constituent member Features (e.g. an Airport composed of
Terminals, Runways, Aprons, Hangars, etc) may also support the FeatureCollection interface to
provide a generic means for clients to access constituent members without needing to be aware of the
internal implementation details of the compound feature. Compound features are not specified in this
proposal.

3.1.3.1.2 IDL Specification

interface FeatureIterator; // forward declaration

interface FeatureCollection : Feature {

 exception IteratorInvalid {};
 exception PositionInvalid {};
 exception FeatureInvalid {string why;};
 exception PropertiesInvalid {string why;};

 readonly attribute long number_features;
 FeatureTypeSeq supported_feature_types();

 void add_element (in Feature element) raises (FeatureInvalid);
 void merge (in FeatureCollection elements) raises (FeatureInvalid);

 void insert_element_at (in Feature element, in FeatureIterator where)
 raises (FeatureInvalid, IteratorInvalid);
 void replace_element_at (in Feature element, in FeatureIterator where)
 raises (FeatureInvalid, IteratorInvalid, PositionInvalid);

 void remove_element_at (in FeatureIterator where)
 raises (IteratorInvalid, PositionInvalid);
 void remove_all_elements ();

 Feature retrieve_element_at (in FeatureIterator where)
 raises (IteratorInvalid, PositionInvalid);

 FeatureIterator create_iterator();

};

Page 3-8

 Chapter 3 Component Specifications

 Page 3-9

3.1.3.1.3 Interface Description

Feature Interface inheritance—This interface inherits from the Feature interface. This approach is in
line with the Abstract Specification that allows feature collections to be defined as features [1,
paragraph 3.13.1.4]. FeatureCollections, thus, have persistence and identity mechanisms identical to
those of Features. In the FeatureCollection context, the property set is constituted by attributes of the
collection as a whole rather than single member Features. The specification of property types and
names will, as with features, be the province of system implementers and GICs. These details will be
available to clients through the FeatureCollection’s associated FeatureType object. The
implementation of the get_geometry() method will also be server dependent: it may return the
collection of all features’ geometries or a generalized representation of the feature collection as a whole.
This allows clients which simply require a geometric representation of the collection for review (e.g. a
topographic reference for thematic maps) to retrieve it directly from the collection without dealing with
individual features. As part of a schema definition for a FeatureCollection instance, a user may have a
property like “SupportedFeatureTypes”, which the user can query to find out what FeatureTypes the
given collection supports. The destroy() operation destroys the FeatureCollection instance. In
general, the FeatureCollection’s elements are not destroyed by this operation.

number_features—this attribute identifies the number of Features within the FeatureCollection.

supported_feature_types—this method returns the type description of all feature types supported
by the FeatureCollection.

add_element—adds the Feature element to the FeatureCollection. If element does not adhere to
all membership restrictions of the FeatureCollection a FeatureInvalid exception is raised.

merge—merges the FeatureCollection elements into the FeatureCollection. If a component of
elements does not adhere to the membership restrictions of the FeatureCollection a
FeatureInvalid exception is raised.

insert_element_at—inserts the Feature element at the position in the FeatureCollection
indicated by the FeatureIterator where. A FeatureInvalid exception is raised if element does
not conform to the membership requirements of the FeatureCollection. An IteratorInvalid
exception is raised if where is not a valid iterator of the FeatureCollection. A PositionInvalid
exception is raised if the iterator is not pointing at a Feature.

replace_element_at—replaces the Feature element at the position in the FeatureCollection
indicated by the FeatureIterator where. A FeatureInvalid exception is raised if element does
not conform to the membership requirements of the FeatureCollection. An IteratorInvalid
exception is raised if where is not a valid iterator of the FeatureCollection. A PositionInvalid
exception is raised if the iterator is not pointing at a Feature.

remove_element_at—removes the Feature at the position in the FeatureCollection indicated by the
FeatureIterator where. An IteratorInvalid exception is raised if where is not a valid iterator
of the FeatureCollection. A PositionInvalid exception is raised if the iterator is not pointing at a
Feature.

remove_all_elements—empties the FeatureCollection.

retrieve_element_at—returns the Feature at the position in the FeatureCollection indicated by
the FeatureIterator where. An IteratorInvalid exception is raised if where is not a valid
iterator of the FeatureCollection. A PositionInvalid exception is raised if the iterator is not
pointing at a Feature.

OpenGIS Simple Features Specification for CORBA, Revision 1.1

create_iterator—returns a FeatureIterator which may be used to access Feature objects and data.

3.1.3.1.4 Typical Server Implementations

In an OO environment there are various numbers of possible implementations of FeatureCollections
which group object references together. These include arrays, linked lists, binary or B-trees, hash tables,
etc. The separation of FeatureCollection from FeatureIterator hides these implementation
details from clients.

In an RDBMS, a FeatureCollection will typically be implemented as a table or view.

3.1.3.2 FeatureCollectionFactory Interface

3.1.3.2.1 Purpose

The FeatureCollectionFactory interface provides support for the creation of FeatureCollection
object instances.

3.1.3.2.2 IDL Specification

interface FeatureCollectionFactory {

 exception FeatureTypeInvalid {string why;};
 exception PropertyInvalid {string why;};
 exception FeatureInvalid {string why;};

 FeatureCollection create(in FeatureType collection_type,
 in NVPairSeq collection_properties,
 in FeatureTypeSeq supported_feature_types)
 raises (FeatureTypeInvalid, PropertyInvalid);

 FeatureCollection createFromCollection(in FeatureType collection_type,

 in NVPairSeq collection_properties,
 in FeatureTypeSeq supported_feature_types,

 in FeatureCollection collection)
 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);

 FeatureCollection createFromSequence(in FeatureType collection_type,
 in NVPairSeq collection_properties,
 in FeatureTypeSeq supported_feature_types,
 in FeatureSeq list)
 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);
};

3.1.3.2.3 Interface Description

create—creates a FeatureCollection instance given the FeatureType of the collection and a set of
collection properties, and a list of valid feature types that are supported by the collection. Raises a
FeatureTypeInvalid exception if the supplied FeatureType instance is invalid. A
PropertyInvalid exception is raised if the required collection parameters are not supplied.

createFromCollection—create a FeatureCollection instance given the FeatureType of the
collection, a set of collection properties, a list of valid feature types that are supported by the collection,
and a FeatureCollection instance from which to copy Feature instance references. Raises a
FeatureTypeInvalid exception if the supplied FeatureType instance is invalid. A
PropertyInvalid exception is raised if the required collection parameters are not supplied. A

Page 3-10

 Chapter 3 Component Specifications

 Page 3-11

FeatureInvalid exception is raised if the supplied Feature instances do not adhere to the
collection’s membership restrictions, if any.

createFromSequence—create a FeatureCollection instance given the FeatureType of the
collection, a set of collection properties, a list of valid feature types that are supported by the collection,
and a sequence of Feature instances. Raises a FeatureTypeInvalid exception if the supplied
FeatureType instance is invalid. A PropertyInvalid exception is raised if the required collection
parameters are not supplied. A FeatureInvalid exception is raised if the supplied Feature
instances do not adhere to the collection’s membership restrictions, if any.

3.1.3.3 FeatureIterator Interface

3.1.3.3.1 Purpose

This interface provides clients with the ability to access feature data through a FeatureCollection object.
FeatureCollections act as factories for FeatureIterators. This interface allows OpenGIS servers to expose
Feature data without requiring the exposure of persistent Feature objects to CORBA clients. The process
of CORBA Object creation may be expensive: this iterator allows the service to provide data for multiple
features through a single CORBA Object.

3.1.3.3.2 IDL Specification

interface FeatureIterator {

 exception IteratorInvalid {};
 exception PositionInvalid {};
 exception FeatureNotAvailable {};

 exception InvalidConversion {};
 exception InvalidProperty {};
 exception PropertyNotSet {};
 exception InvalidParameters {};

 // iterating over features
 boolean next (out Feature the_feature)
 raises (IteratorInvalid, PositionInvalid,
 FeatureNotAvailable);

 boolean next_n (in short n, out FeatureSeq the_features)
 raises (IteratorInvalid, PositionInvalid,
 FeatureNotAvailable);

 void advance ()
 raises (IteratorInvalid, PositionInvalid);

 Feature current ()
 raises (IteratorInvalid, PositionInvalid,
 FeatureNotAvailable);

 // accessing current feature via ‘Feature’-like methods
 FeatureType get_feature_type();

 Geometry get_geometry(in NVPairSeq geometry_context) raises (InvalidParameters);

 boolean property_exists(in Istring name) raises(InvalidProperty);
 any get_property(in Istring name) raises (PropertyNotSet,
 InvalidProperty,);

 string get_string_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 float get_float_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

OpenGIS Simple Features Specification for CORBA, Revision 1.1

 double get_double_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 long get_long_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 short get_short_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 boolean get_boolean_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 Decimal get_decimal_by_name(in Istring propertyName)
 raises (InvalidConversion, InvalidProperty);

 OctetSeq get_byte_stream_by_name(in Istring propertyName)
 raises (InvalidConversion, InvalidProperty);

 Geometry get_geometry_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 WKSGeometry get_wksgeometry_by_name(in Istring propertyName)
 raises (InvalidConversion, InvalidProperty);

 OctetSeq get_wkbgeometry_by_name(in Istring propertyName)
 raises (InvalidConversion, InvalidProperty);

 NVPairSeq get_property_sequence(in unsigned long n);
 FeaturePropertySetIterator get_property_iterator();

 void reset() raises (IteratorInvalid);

 boolean more();

 void destroy();
};

3.1.3.3.3 Interface Description

current—returns a reference to a persistent CORBA object conforming to the Feature interface and
representing the Feature at the iterator’s current position. This operation raises a PositionInvalid
exception if the iterator is not pointing to a valid Feature. It raises a FeatureNotAvailable
exception if the server does not support the provision of persistent CORBA object references to its
Features. The operation raises a IteratorInvalid exception if the iterator is no longer valid: this
will probably be due to operations on its underlying collection since the iterator was created (eg.
additions and deletions to and from the FeatureCollection).

next—moves the iterator’s internal pointer to the next Feature and retrieves a reference to a persistent
CORBA object conforming to the Feature interface and representing that Feature. This operation
returns true if a valid Feature reference was placed in the_feature and false if there are no more
Features to retrieve. An IteratorInvalid exception is raised if the iterator has become invalid.
This operation is functionally equivalent to an advance() invocation followed by a current()
invocation. next() raises the same exceptions as current(). The order in which features are
returned is implementation dependent. Consecutive calls to next() will retrieve each Feature within
in the collection exactly once.

next_n—retrieves the next n Features as a sequence of CORBA object references and moves the
iterator’s internal pointer to the next Feature after those retrieved, if any. This operation returns true if
a valid sequence of Feature references was placed in the_feature and false if there are no more
Features to retrieve. An IteratorInvalid exception is raised if the iterator has become invalid.

Page 3-12

 Chapter 3 Component Specifications

 Page 3-13

advance—moves the iterator’s internal pointer to the next Feature. Subsequent calls to retrieve
properties will operate on the Feature at the current position.

Feature Property Access—the FeatureIterator interface provides the user with the ability to retrieve
properties of the Feature at the current iterator position. Generic operations include
get_feature_type, get_property_by_name, and get_geometry.
get_property_by_name—returns the named property’s data. The get_property_sequence
and get_property_iterator operations provide clients with the ability to request the
Feature’s properties as a sequence or to get an iterator over the property set. These operations are
functionally identical to their equivalents in the Feature interface and raise exceptions if the same
manner.

reset—this method resets the iterator’s internal pointer to the first Feature in the collection. This
method will also revalidate an invalid iterator. Which Feature is deemed to be first is implementation
dependent. an IteratorInvalid exception is raised if the iterator has become invalid.

more—returns TRUE if there are more features after the current Feature and FALSE otherwise.

destroy—deletes the FeatureIterator instance.

3.1.3.3.2 Typical Server Implementations

The separation of the FeatureIterator operations from the FeatureCollection interface allows
client applications to deal with various implementations of FeatureCollections in a generic way.
FeatureIterators will, in general be closely coupled with their associated FeatureCollections
which act as factories for iterators. For example, in an OO environment where a FeatureCollection
is implemented as a linked list, the FeatureIterator would be a wrapper around a pointer to the
‘current’ feature.

In an RDBMS, where a FeatureCollection is often implemented as a table or view, the
FeatureIterator will typically be a cursor.

3.1.4 Container Feature Collection Interfaces

3.1.4.1 ContainerFeatureCollection Interface

3.1.4.1.1 Purpose

Typically a FeatureCollection groups its member Features by maintaining a list of references. A
ContainerFeatureCollection’s elements are entirely created and owned by it. The Features belong
logically to the ContainerFeatureCollection, not just referred to by it. Therefore, a
ContainerFeatureCollection acts as a factory for FeatureTypes that it supports. In addition, a feature
added via methods like add_element() is deep-copied i.e., a new feature of the given type is created
by the ContainerFeatureCollection.

3.1.4.1.2 IDL Specification

interface ContainerFeatureCollection : FeatureCollection, FeatureFactory {
};

3.1.4.1.3 Interface Description

OpenGIS Simple Features Specification for CORBA, Revision 1.1

FeatureCollection Interface inheritance—The ContainerFeatureCollection interface also inherits
the FeatureCollection interface for membership access and manipulation. However, it
specializes the implementation of some of these methods with “ownership” semantics rather than
referential semantics (see below). The destroy() method destroys the ContainerFeatureCollection
instance. All of the ContainerFeatureCollection’s elements are destroyed by this operation.

add_element—adds the feature element to the ContainerFeatureCollection. If element does not
adhere to all membership restrictions a FeatureInvalid exception is raised. Otherwise, a deep copy
of the Feature is performed, and a new Feature object is created.

merge—merges the FeatureCollection’s elements into the ContainerFeatureCollection. If a
component of elements does not adhere to the membership restrictions of the ContainerFeature-
Collection a FeatureInvalid exception is raised. Otherwise, a deep copy of each element Feature
of the FeatureCollection is performed, and a new Feature object is created for every element.

insert_element_at—inserts the Feature element at the position in the
ContainerFeatureCollection indicated by the FeatureIterator where. A FeatureInvalid
exception is raised if element does not conform to the membership requirements of the
ContainerFeatureCollection. An IteratorInvalid exception is raised if where is not a valid
iterator of the ContainerFeatureCollection. Otherwise, a deep copy of the Feature is performed, and
a new Feature object is created.

replace_element_at—replaces the Feature element at the position in the
ContainerFeatureCollection indicated by the FeatureIterator where. A deep copy of the Feature is
performed, and a new Feature object is created to replace the Feature located at the position indicated
by the iterator. The old Feature is destroyed. A FeatureInvalid exception is raised if element
does not conform to the membership requirements of the FeatureCollection. An
IteratorInvalid exception is raised if where is not a valid iterator of the FeatureCollection. A
PositionInvalid exception is raised if the iterator is not pointing at a Feature.

remove_element_at—removes the Feature at the position in the ContainerFeatureCollection
indicated by the FeatureIterator where. A successful invocation of this operation will result in the
destruction of the Feature object. An IteratorInvalid exception is raised if where is not a valid
iterator of the ContainerFeatureCollection. A PositionInvalid exception is raised if the iterator
is not pointing at a Feature.

remove_all_elements—empties the ContainerFeatureCollection and deletes all member
Features.

retrieve_element_at—returns the Feature at the position in the ContainerFeatureCollection
indicated by the FeatureIterator where. An IteratorInvalid exception is raised if where is not
a valid iterator of the ContainerFeatureCollection. A PositionInvalid exception is raised if the
iterator is not pointing at a Feature.

FeatureFactory inheritance— create_feature() and create_features() create new Feature
instances of the desired type (i.e., the FeatureType argument). A FeatureTypeInvalid
exception is thrown if the supplied FeatureType is not a member of the collection’s supported
FeatureTypes. A PropertiesInvalid exception is thrown if the arguments supplied for the
Feature object(s) of the given FeatureType are incorrect or insufficient (i.e., the required set of
parameters is not supplied). The ContainerFeatureCollection wholly owns the resultant features.

3.1.4.1.4 Typical Server Implementations

Page 3-14

 Chapter 3 Component Specifications

 Page 3-15

The ContainerFeatureCollection, as the interface exposing creation and deletion of features will typically
be implemented by the module of an application responsible for maintaining the resources required to store
feature data. In an OO system this may be some form of persistent object storage (such as a file system or
an integration mechanism responsible for pulling data into and out of an underlying RDBMS server). In an
RDBMS implementation the ContainerFeatureCollection will typically be a wrapper over a table or a
series of tables.

3.1.4.2 ContainerFeatureCollectionFactory Interface

3.1.4.2.1 Purpose

The ContainerFeatureCollectionFactory interface provides support for the creation of
ContainerFeatureCollection object instances. Clients will typically gain access to such factories through
a naming or trading service.

3.1.4.2.2 IDL Specification

interface ContainerFeatureCollectionFactory {

 exception FeatureTypeInvalid {string why;};
 exception PropertyInvalid {string why;};
 exception FeatureInvalid {string why;};

 ContainerFeatureCollection create(in FeatureType collection_type,
 in NVPairSeq collection_properties)
 raises (FeatureTypeInvalid, PropertyInvalid);

 ContainerFeatureCollection createFromCollection(in FeatureType collection_type,
 in NVPairSeq collection_properties,
 in FeatureCollection collection)
 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);

 ContainerFeatureCollection createFromSequence(in FeatureType collection_type,
 in NVPairSeq collection_properties,
 in FeatureSeq list)
 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);

 ContainerFeatureCollection createFromFeatureData(in FeatureType collection_type,
 in NVPairSeq collection_properties, in FeatureDataSeq list)
 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);

};

3.1.4.2.3 Interface Description

create—creates a ContainerFeatureCollection instance given the FeatureType of the collection and a
set of collection properties. Raises a FeatureTypeInvalid exception if the supplied FeatureType
is invalid. A PropertyInvalid exception is raised if the required collection parameters are not
supplied.

createFromCollection—creates a ContainerFeatureCollection instance given the FeatureType
of the collection, a set of collection properties, and a ContainerFeatureCollection instance from
which to copy Feature instance references. Raises a FeatureTypeInvalid exception if the
supplied FeatureType is unsupported by this factory. A PropertyInvalid exception is raised if
the required collection parameters are not supplied. A FeatureInvalid exception is raised if the
supplied Feature instances do not adhere to the collection’s membership restrictions, if any.

OpenGIS Simple Features Specification for CORBA, Revision 1.1

createFromSequence—creates a ContainerFeatureCollection instance given the FeatureType of
the collection, a set of collection properties, and a sequence of Feature instances. Raises a
FeatureTypeInvalid exception if the supplied FeatureType instance is unsupported by this
factory. A PropertyInvalid exception is raised if the required collection parameters are not
supplied. A FeatureInvalid exception is raised if the supplied Feature instances do not adhere to
the collection’s membership restrictions, if any.

createFromFeatureData—creates a ContainerFeatureCollection instance given the FeatureType
of the collection, a set of collection properties, and a sequence of features described by value structures
(FeatureData). Raises a FeatureTypeInvalid exception if the supplied FeatureType instance
is unsupported by this factory. A PropertyInvalid exception is raised if the required collection
parameters are not supplied. A FeatureInvalid exception is raised if the supplied feature values do
not adhere to the collection’s membership restrictions, if any.

3.1.5 Queryable Interfaces

Implementations wishing to expose their Features to OQS querying may do so in two ways. Firstly, they
may directly evaluate SQL or OQL queries sent to them by exposing a FeatureCollection supporting the
OQS QueryEvaluator interface (i.e. exposing a QueryableFeatureCollection). RDBMS- &
ODBMS-based servers that have internal querying functionality will typically take this course.

Alternatively, the implementation may expose its collection of Features in the form of an OQS
QueryableCollection in which each element is a CORBA Object supporting the Feature interface. This
would allow a commercial implementation of the OQS to evaluate queries against the feature collection
from outside the native implementation of the FeatureCollection. This approach would typically be used
by implementations without a native querying capacity.

The Collection interface of the CORBA Object Query Service (OQS) is intended for use in both scoping
queries and packaging responses to them. An OpenGIS FeatureCollection may be used to scope a query
but it cannot be used to return results of a query. Queries returning a collection of Feature references will
return them as a QueryResultSet and not an OpenGIS FeatureCollection.

The premises of the query largely determine the return type of queries. For example:
SELECT * FROM Roads WHERE name = “Route 66”

will return a QueryResultSet of records (the record contains the desired set of Road Feature properties).

Clients will be able to access the members of these return collections in many ways – as singleton property
values or as a record. Property values may be of any CORBA type. Convenience methods are provided to
retrieve a property as a well-known value type in the situation where the client “knows” what the property
type is. Otherwise, the client may retrieve the data as a Value structure that encodes type information.
Alternatively, one can add direct support value retrieval based on CORBA any or the DynAny object that
allows access to objects of type any without static knowledge of the structure. (The DynAny object is part
of the current OMG effort to improve ORB Portability. For more information see [2]);

3.1.5.1 Query Example

 OGIS::QueryableContainerFeatureCollectionRef countries;

 // Create the geometric constraints for the query
 OGIS::GeomConstraintSeq geom_constraints(0);
 geom_constraints.length(0);

 // the where clause to execute
 char* whereClause = "continent = ‘Europe’";

Page 3-16

 Chapter 3 Component Specifications

 Page 3-17

 // Figure out the supported query languages, verify support for SQL92
 // Verification is left out from code for brevity
 OGIS::QueryEvaluator::QLType qlType = OGIS::QueryEvaluator::QLType::SQL_92Query;

 OGIS::QueryableFeatureCollection results;

 // Execute the query
 try {
 results = countries->query(whereClause, qlType, geom_constraints);
 } catch (CORBA::Exception& e) {
 cout << "Error evaluating the query: " << ODF::exception_to_string(e) << endl;
 exit(1);
 }

 OGIS::FeatureIterator iterator;
 String country_name;

 // Get an iterator over the result collection
 try {
 iterator = results->create_iterator();
 } catch (CORBA::Exception& e) {
 cout << "Error retrieving an iterator: " << ODF::exception_to_string(e) << endl;
 exit(1);
 }

 // Iterate over the result set
 try {
 while ((more = iterator->advance()) == B_TRUE) {
 try {
 country_name = get_property_by_name(“name”);
 } catch (FeatureIterator::InvalidConversion) {
 cout << "error converting the property to a string !"
 << ODF::exception_to_string(exc);
 } catch (FeatureIterator::InvalidProperty) {
 cout << "invalid property name!"
 << ODF::exception_to_string(exc);
 }
 }
 } catch(CORBA::Exception& exc) {
 cout << "error advancing the iterator!"<<ODF::exception_to_string(exc);
 }

 try {
 iterator->destroy();
 results->destroy();
 } catch (CORBA::Exception exc) {
 cout << "error destroying!"<<ODF::exception_to_string(exc);
 }

3.1.5.2 QueryEvaluator Interface

3.1.5.2.1 Purpose

This interface provides support for expressing and evaluating a query statement. The QueryEvaluator
interface provides support to select a query language (from a supported set), define a ‘where’-clause, define
geometric query constraints and to pose a query to a queryable feature collection. The QueryEvaluator
is responsible for the synchronous execution of the query and for producing a result set (if appropriate). By
default, the QueryEvaluator executes queries as atomic operations – no transactional semantics are
supported in this version.

The QueryEvaluator provides a generic framework for expressing queries against a collection of
Features. It is neutral with respect to the query language employed to express the query. The principal
query language dialects are SQL Query and OQL. The QLType enumeration provides a set of well-known
query languages along with their derivatives.

OpenGIS Simple Features Specification for CORBA, Revision 1.1

The results of a query executed by a QueryEvaluator are returned as a QueryableFeature
Collection. This allows the results of a query to be further refined by another query, and to be
manipulated in all of the ways in which other feature collections can be manipulated.

SQLQuery represents a generic term denoting the evolution of the SQL standard process (i.e., SQL89,
SQL92, SQL9x). It is envisioned that SQL92Query, the current standard, will evolve into the SQL9x.
OQL represents a generic term denoting the evolution of the OQL standards process (i.e., OQL-93). It is
envisioned that OQL-93, the current standard, will evolve into OQL-9x.

OQL-93Basic represents the marriage of SQL92Query and OQL-93Query. For more information, the
reader is referred to the CORBA Query Service Specification [5].

3.1.5.2.2 IDL Specification

interface QueryableFeatureCollection; // forward declaration

interface QueryEvaluator {
 exception QueryLanguageTypeNotSupported {};
 exception InvalidQuery {string why;};
 exception QueryProcessingError {string why;};
 exception InvalidGeometry {string why;};
 exception WKBNotImplemented {};
 exception InvalidSpatialOperator {};

 enum QLType {
 SQLQuery, SQL_92Query, OQL, OQLBasic, OQL_93, OQL_93Basic
 };

 typedef sequence<QLType> QLTypeSeq;

 enum SpatialOperatorType {
 TouchOp, ContainsOp, WithinOp, DisjointOp, CrossesOp, OverlapsOp, IntersectsOp
 };

 readonly attribute QLTypeSeq ql_types;
 readonly attribute QLType default_ql_type;

 enum GeomSwitch { GeomType, WKSGeomType };
 union QueryGeom
 switch (GeomSwitch) {
 case GeomType: Geometry geom;

 case WKSGeomType: WKSGeometry wks_geom;
 };

 struct GeomConstraint {
 Istring geom_name;
 SpatialOperatorType spatial_op;
 QueryGeom geo;
 };

 typedef sequence<GeomConstraint> GeomConstraintSeq;

 QueryableFeatureCollection query(
 in string where_clause, in QLType ql_type,
 in GeomConstraintSeq geom_constraints)
 raises(QueryLanguageTypeNotSupported, InvalidQuery,
 InvalidGeometry, QueryProcessingError,
 InvalidSpatialOperator);
};

3.1.5.2.3 Interface Description

Page 3-18

 Chapter 3 Component Specifications

 Page 3-19

query—this method enables a subset of a collection of features to be found which satisfy both geometric
and non-geometric constraints. The where_clause contains a syntactically correct “where clause”
expressed in the query language indicated by the query language type (ql_type) parameter. The
geom_constraints contains a list of geometric constraints which are logicalled ANDed with each
other and with the where_clause to return a collection of features which may subsequently have
further queries made on them. The geometric constraints are expressed in the form “geom_name
spatial_op some_geometry”, allowing different geometric properties to be selected for interaction with
different types of geometry (either live object geometry or a well known structure). If a
where_clause is not specified, it is assumed that a spatial search query is being requested. If
geom_constraints is not supplied, it is assumed that a non-spatial query is to be evaluated. If
both arguments are supplied, then a spatial and non-spatial attribute query is evaluated. Only Features
satisfying both search criteria are returned. If neither geom_constraints nor where_clause are
specified, all features are returned.

3.1.5.3 QueryableFeatureCollection Interfaces

3.1.5.3.1 Purpose

The QueryableFeatureCollection interface provides support for expressing and evaluating
queries against a collection’s contents. The query languages supported, as well as the iteration over the
query result set, are inherited from the QueryEvaluator interface. It is an implementation detail as to
how a QueryableFeatureCollection object evaluates a query: directly, or via delegation to its constituent
members.

The QueryableFeatureCollectionFactory interface provides support for the creation of
QueryableFeatureCollection instances. The interface essentially duplicates the
FeatureCollectionFactory interface, except for returning a specialized
QueryableFeatureCollection instance.

3.1.5.3.2 IDL Specification

interface QueryableFeatureCollection : FeatureCollection, QueryEvaluator{
};

interface QueryableFeatureCollectionFactory {

 exception FeatureTypeInvalid {string why;};
 exception PropertyInvalid {string why;};
 exception FeatureInvalid {string why;};

 QueryableFeatureCollection create(in FeatureType collection_type,
 in NVPairSeq collection_properties)
 raises (FeatureTypeInvalid, PropertyInvalid);

 QueryableFeatureCollection createFromCollection(in FeatureType collection_type,
 in NVPairSeq collection_properties,
 in FeatureCollection collection)
 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);

 QueryableFeatureCollection createFromSequence(in FeatureType collection_type,
 in NVPairSeq collection_properties,
 in FeatureSeq list)
 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);

 QueryableFeatureCollection createFromFeatureData(in FeatureType collection_type,
 in NVPairSeq collection_properties, in FeatureDataSeq list)
 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);

OpenGIS Simple Features Specification for CORBA, Revision 1.1

};

3.1.5.3.3 Interface Description

create—create a QueryableFeatureCollection instance given the FeatureType of the collection and a
set of collection properties. Raises a FeatureTypeInvalid exception if the supplied FeatureType
instance is invalid. A PropertyInvalid exception is raised if the required collection parameters are
not supplied.

createFromCollection—creates a QueryableFeatureCollection instance given the FeatureType
of the collection, a set of collection properties, and a QueryableFeatureCollection instance from
which to copy Feature instance references. Raises a FeatureTypeInvalid exception if the
supplied FeatureType instance is invalid. A PropertyInvalid exception is raised if the required
collection parameters are not supplied. A FeatureInvalid exception is raised if the supplied
Feature instances do not adhere to the collection’s membership restrictions, if any.

createFromSequence—creates a QueryableFeatureCollection instance given the FeatureType of
the collection, a set of collection properties, and a sequence of Feature instances. Raises a
FeatureTypeInvalid exception if the supplied FeatureType instance is invalid. A
PropertyInvalid exception is raised if the required collection parameters are not supplied. A
FeatureInvalid exception is raised if the supplied Feature instances do not adhere to the
collection’s membership restrictions, if any.

createFromFeatureData—creates a QueryableFeatureCollection instance given the FeatureType
of the collection, a set of collection properties, and a sequence of features described by value structures
(FeatureData). Raises a FeatureTypeInvalid exception if the supplied FeatureType
instance is invalid. A PropertyInvalid exception is raised if the required collection parameters are
not supplied. A FeatureInvalid exception is raised if the supplied feature values do not adhere to
the collection’s membership restrictions, if any.

3.1.5.4 QueryableContainerFeatureCollection Interfaces

3.1.5.4.1 Purpose

The QueryableContainerFeatureCollection interface provides support for expressing and
evaluating queries against a container collection’s contents. The query languages supported, as well as the
iteration over the query result set, are inherited from the QueryEvaluator interface. It is an
implementation detail as to how a QueryableContainerFeatureCollection object evaluates a query:
directly, or via delegation to its constituent members.

The QueryableContainerFeatureCollectionFactory interface provides support for the
creation of QueryableContainerFeatureCollection instances. The interface essentially duplicates the
ContainerFeatureCollectionFactory interface, except for returning a specialized
QueryableContainerFeatureCollection instance.

3.1.5.4.2 IDL Specification

interface QueryableContainerFeatureCollection: ContainerFeatureCollection, QueryEvaluator
{
};

interface QueryableContainerFeatureCollectionFactory {
 exception FeatureTypeInvalid {string why;};
 exception PropertyInvalid {string why;};
 exception FeatureInvalid {string why;};

Page 3-20

 Chapter 3 Component Specifications

 Page 3-21

 QueryableContainerFeatureCollection create(in FeatureType collection_type,
 in NVPairSeq collection_properties)
 raises (FeatureTypeInvalid, PropertyInvalid);

 QueryableContainerFeatureCollection createFromCollection(
 in FeatureType collection_type,
 in NVPairSeq collection_properties,
 in FeatureCollection collection)
 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);

 QueryableContainerFeatureCollection createFromSequence(
 in FeatureType collection_type,
 in NVPairSeq collection_properties,
 in FeatureSeq list)
 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);

QueryableContainerFeatureCollection createFromFeatureData
 (in FeatureType collection_type,
 in NVPairSeq collection_properties,
 in FeatureDataSeq list)

 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);

};

3.1.5.4.3 Interface Description

create—creates a QueryableContainerFeatureCollection instance given the FeatureType of the
collection and a set of collection properties. Raises a FeatureTypeInvalid exception if the
supplied FeatureType instance is invalid. A PropertyInvalid exception is raised if the required
collection parameters are not supplied.

createFromCollection—creates a QueryableContainerFeatureCollection instance given the
FeatureType of the collection, a set of collection properties, and a ContainerFeatureCollection
instance from which to copy Feature instance references. Raises a FeatureTypeInvalid
exception if the supplied FeatureType instance is invalid. A PropertyInvalid exception is raised
if the required collection parameters are not supplied. A FeatureInvalid exception is raised if the
supplied Feature instances do not adhere to the collection’s membership restrictions, if any.

createFromSequence—creates a QueryableContainerFeatureCollection instance given the
FeatureType of the collection, a set of collection properties, and a sequence of Feature instances.
Raises a FeatureTypeInvalid exception if the supplied FeatureType instance is invalid. A
PropertyInvalid exception is raised if the required collection parameters are not supplied. A
FeatureInvalid exception is raised if the supplied Feature instances do not adhere to the
collection’s membership restrictions, if any.

createFromFeatureData—creates a QueryableContainerFeatureCollection instance given the
FeatureType of the collection, a set of collection properties, and a sequence of features described by
value structures (FeatureData). Raises a FeatureTypeInvalid exception if the supplied
FeatureType instance is invalid. A PropertyInvalid exception is raised if the required
collection parameters are not supplied. A FeatureInvalid exception is raised if the supplied
feature values do not adhere to the collection’s membership restrictions, if any.

OpenGIS Simple Features Specification for CORBA, Revision 1.1

3.2 Geometry Module

3.2.1 Spatial Reference System Interfaces

3.2.1.1 SpatialReferenceInfo Interface

3.2.1.1.1 Purpose

The SpatialReferenceInfo interface exposes a number of attributes common to all entities with the
EPSG/POSC system. Most of the SRS interfaces inherit directly or indirectly from it.

3.2.1.1.2 IDL Specification

interface SpatialReferenceInfo {

 attribute string name;
 attribute string authority;
 attribute long code;
 attribute string alias;
 attribute string abbreviation;
 attribute string remarks;

 readonly attribute string well_known_text; // UGH!!!!!

};

3.2.1.1.3 Interface Description

name—is the EPSG assigned name of the Spatial Reference System component. This name is unique.

authority—is the organization, body or person who created the entity. For EPSG supplied reference
data the authority is "EPSG".

code—is an EPSG assigned unique code (integer) of the entity. EPSG reserves the integer range 0 to
32767. Non EPSG standard entities will use codes greater than 32767.

alias—is the EPSG assigned alias of the Spatial Reference System component.

abbreviation—is an abbreviation of the Spatial Reference System component.

remarks—is a natural language description of the entity.

well_known_text—is a comma delimited textual representation of the parameters on the Spatial
Reference System component.

3.2.1.2 Unit Interface

3.2.1.2.1 Purpose

The Unit interface abstracts various coordinate units used by spatial reference systems.

3.2.1.2.2 IDL Specification

interface Unit : SpatialReferenceInfo {
};

Page 3-22

 Chapter 3 Component Specifications

 Page 3-23

3.2.1.3 AngularUnit Interface

3.2.1.3.1 Purpose

The AngularUnit interface exposes the definition of the units used by the SRS entity to define angles.
The angular units are defined with respect to radians. Name and identity information is inherited from the
SpatialReferenceInfo interface.

3.2.1.3.2 IDL Specification:

interface AngularUnit : Unit {

 attribute double radians_per_unit;

};

3.2.1.3.3 Interface Description:

radians_per_unit—defines the number of radians per unit.

3.2.1.4 LinearUnit Interface

3.2.1.4.1 Purpose

The LinearUnit interface exposes the definition of the linear units used by an SRS entity, allowing the
use of various standard and non-standard linear units. Name and identity information is inherited from the
SpatialReferenceInfo interface.

3.2.1.4.2 IDL Specification

interface LinearUnit : Unit {

 attribute double metres_per_unit;

};

3.2.1.4.3 Interface Description

metres_per_unit—defines the value of a unit in metres.

3.2.1.5 Ellipsoid Interface

3.2.1.5.1 Purpose

Most Spatial Reference Systems use a mathematical abstraction of the earth’s shape on which to base a
coordinate system. Typically this surface is an ellipsoid of revolution. The ellipsoid interface exposes the
defining parameters of an ellipsoid. Identity parameters are inherited from the
SpatialReferenceInfo interface.

3.2.1.5.2 IDL Specification

interface Ellipsoid : SpatialReferenceInfo {

 attribute double semi_major_axis;
 attribute double semi_minor_axis;

OpenGIS Simple Features Specification for CORBA, Revision 1.1

 attribute double inverse_flattening;
 attribute LinearUnit axis_unit;

};

3.2.1.5.3 Interface Description:

semi_major_axis—is the semi-major axis of the ellipsoid in axis_units.

semi_minor_axis—is the semi-minor axis of the ellipsoid in axis_units.

inverse_flattening—is the inverse flattening the ellipsoid (inverse_flattening =
semi_major_axis /(semi_major_axis - semi_minor_axis)).

axis_unit—indicates the units used to define the axes of the ellipsoid.

3.2.1.6 HorizontalDatum Interface

3.2.1.6.1 Purpose

In the EPSG standards, a horizontal datum provides a mapping between the surface of the earth and the
surface of a base ellipsoid. This datum is exposed through the HorizontalDatum interface.

3.2.1.6.2 IDL Specification

interface HorizontalDatum : SpatialReferenceInfo {

 attribute Ellipsoid base_ellipsoid;

};

3.2.1.6.3 Interface Description

base_ellipsoid—is the ellipsoid on which the HorizontalDatum is based.

3.2.1.7 PrimeMeridian Interface

3.2.1.7.1 Purpose

The PrimeMeridian interface provides access to the definition of a system’s prime meridian. This
allows the selection of an arbitrary standard for the SRS. The prime meridian is defined with respect to the
Greenwich Prime Meridian. Identity and Descriptive attributes are inherited from the
SpatialReferenceInfo interface.

3.2.1.7.2 IDL Specification

interface PrimeMeridian : SpatialReferenceInfo {

 attribute double longitude;
 attribute AngularUnit angular_units;

};

3.2.1.7.3 Interface Description

Page 3-24

 Chapter 3 Component Specifications

 Page 3-25

longitude—is the longitude of the Prime Meridian relative to Greenwich in angular_units.

angular_units—specifies the angular units in which longitude is described.

3.2.1.8 SpatialReferenceSystem Interface

3.2.1.8.1 Purpose

The SpatialReferenceSystem interface is an abstraction of all Spatial Reference Systems. These
may include non-geodetic systems and local SRSs. Identity and descriptive attributes are inherited from
SpatialReferenceInfo; type-specific attributes are specified in the various interfaces derived from
SpatialReferenceSystem.

3.2.1.8.2 IDL Specification

interface SpatialReferenceSystem : SpatialReferenceInfo {
};

3.2.1.9 GeodeticSpatialReferenceSystem Interface

3.2.1.9.1 Purpose

The GeodeticSpatialReferenceSystem interface is an abstraction of all geodetic Spatial
Reference Systems including Geographic SRSs and Projected SRSs. Identity and descriptive attributes are
inherited from SpatialReferenceInfo (through SpatialReferenceSystem); type-specific
attributes are specified in the various interfaces derived from GeodeticSpatialReferenceSystem.

3.2.1.9.2 IDL Specification

interface GeodeticSpatialReferenceSystem : SpatialReferenceSystem {
};

3.2.1.10 GeographicCoordinateSystem Interface

3.2.1.10.1 Purpose

A geographic coordinate system uses spherical or ellipsoidal coordinates (latitudes & longitudes). The
GeographicCoordinateSystem interface exposes the defining parameters of a geographic
coordinate system. It inherits from GeodeticSpatialReferenceSystem.

3.2.1.10.2 IDL Specification

interface GeographicCoordinateSystem : GeodeticSpatialReference {

 attribute string usage; // description?
 attribute HorizontalDatum horizontal_datum;
 attribute AngularUnit angular_unit;
 attribute PrimeMeridian prime_meridian;

};

3.2.1.10.3 Interface Description

usage—is a comment on the usage of the coordinate system.

OpenGIS Simple Features Specification for CORBA, Revision 1.1

horizontal_datum—is the horizontal datum on which the GeographicCoordinateSystem is based.

angular_unit—is the angular units used by the coordinates within the
GeographicCoordinateSystem.

prime_meridian—is the reference meridian of the GeographicCoordinateSystem.

3.2.1.11 Parameter Interface

3.2.1.11.1 Purpose

Various components of spatial reference systems are defined using parameters. As the number and type of
these parameters may vary with different components, a Parameter interface is used to expose this
information to clients.

3.2.1.11.2 IDL Specification

interface Parameter : SpatialReferenceInfo {

 attribute Unit units;
 attribute double value;

};

3.2.1.11.3 Interface Description

units—exposes the units in which value is expressed. This attribute provides the semantics of value.

value—the parameter value in units.

3.2.1.12 ParameterList Interface

3.2.1.12.1 Purpose

The ParameterList interface exposes the set of parameters that are used to define a particular
component of a spatial reference system.

3.2.1.12.2 IDL Specification

typedef sequence<Parameter> ParameterSeq;

interface ParameterList {

 readonly attribute long number_parameters;

 ParameterSeq get_default_parameters();

 void set_parameters (in ParameterSeq parameters);
 ParameterSeq get_parameters ();

};

3.2.1.12.3 Interface Description

number_parameters—is the number of parameters in the ParameterList.

Page 3-26

 Chapter 3 Component Specifications

 Page 3-27

get_default_parameters—returns a sequence of the default parameter values for the spatial
reference system component .

set_parameters—sets the values of the ParameterList.

get_parameters—gets the current values of the ParameterList.

3.2.1.13 GeographicTransform Interface

3.2.1.13.1 Purpose

The GeographicTransform interface provides access to transformation facilities capable of
transforming coordinate geometries in the form of Well-known Structures from one coordinate system into
another.

3.2.1.13.2 IDL Specification

interface GeographicTransform : SpatialReferenceInfo {

 attribute GeographicCoordinateSystem source_gcs;
 attribute GeographicCoordinateSystem target_gcs;

 WKSGeometry forward (in WKSGeometry source_geometry);
 WKSGeometry inverse (in WKSGeometry source_geometry);

};

3.2.1.13.3 Interface Description

source_gcs—is the source coordinate system of the transformation.

target_gcs—is the destination coordinate system of the transformation.

forward—transforms the source_geometry from the source_gcs coordinate system to the
target_gcs coordinate system and returns the result.

inverse—transforms the source_geometry from the target_gcs coordinate system to the
source_gcs coordinate system and returns the result.

3.2.1.14 Projection Interface

3.2.1.14.1 Purpose

A projection maps between an ellipsoid and a coordinate plane. The Projection interface provides
access to the parameters that define this mapping.

3.2.1.14.2 IDL Specification

interface Projection : SpatialReferenceInfo {

 readonly attribute string usage;
 readonly attribute string classification;

 WKSGeometry forward (in WKSGeometry source_geometry);
 WKSGeometry inverse (in WKSGeometry source_geometry);

OpenGIS Simple Features Specification for CORBA, Revision 1.1

 readonly attribute ParameterList parameters;

 attribute AngularUnit angular_units;
 attribute LinearUnit linear_units;
 attribute Ellipsoid base_ellipsoid;

};

3.2.1.14.3 Interface Description

usage—is a comment on the usage of the coordinate system.

classification—indicates the classification of the projection.

forward—transforms the Well-known Structure source_geometry from geographic coordinates into
projected (planar) coordinates and returns the result.

inverse—transforms the Well-known Structure source_geometry from projected (planar)
coordinates into geographic coordinates and returns the result.

parameters—is the set of parameters that defines the projection. These parameters vary between
collection classes.

angular_units—are the angular units used for geographic coordinates.

linear_units—are the linear units used for planar coordinates.

base_ellipsoid—is the base ellipsoid of the Projection.

3.2.1.15 ProjectedCoordinateSystem Interface

3.2.1.15.1 Purpose

A projected coordinate system uses a geographic coordinate system and a projection to map from points on
the earth’s surface to those on a coordinate plane. The ProjectedCoordinateSystem interface
exposes the defining parameters of a geographic coordinate system. It inherits from
GeodeticSpatialReferenceSystem.

3.2.1.15.2 IDL Specification

interface ProjectedCoordinateSystem : GeodeticSpatialReferenceSystem {

 attribute string usage;
 attribute GeographicCoordinateSystem geographic_coordinate_system;
 attribute LinearUnit linear_units;
 attribute Projection base_projection;

 readonly attribute ParameterList parameters;

 WKSGeometry forward (in WKSGeometry source_geometry);
 WKSGeometry inverse (in WKSGeometry source_geometry);

};

3.2.1.15.3 Interface Description

usage—is a comment on the usage of the coordinate system.

Page 3-28

 Chapter 3 Component Specifications

 Page 3-29

geographic_coordinate_system—is the underlying geographic coordinate system.

linear_units—are the linear units of the coordinate plane.

base_projection—is the projection used to project from the ellipsoid to the coordinate plane.

parameters—is the set of parameters that defines the projected coordinate system.

forward—transforms the Well-known Structure source_geometry from geographic coordinates into
projected (planar) coordinates and returns the result.

inverse—transforms the Well-known Structure source_geometry from projected (planar)
coordinates into geographic coordinates and returns the result.

3.2.1.16 SpatialReferenceSystemFactory Interface

3.2.1.16.1 Purpose:

The SpatialReferenceSystemFactory interface provides for the creation of a spatial reference system given
a comma delimited EPSG textual definition (see section 3.2.6.3).

3.2.1.16.2 IDL Specification:

interface SpatialReferenceSystemFactory {

 SpatialReferenceSystem create_from_WKT (in string srs_wkt);

};

3.2.1.16.3 Interface Description:

create_from_WKT—creates a new SpatialReferenceSystem object from the text description srs_wkt.

3.2.1.17 SpatialReferenceComponentFactory Interface

3.2.1.17.1 Purpose

The SpatialReferenceComponentFactory interface provides for the creation of spatial reference system
components from a standard identification code.

3.2.1.17.2 IDL Specification

interface SpatialReferenceComponentFactory {

 readonly attribute string authority;

 ProjectedCoordinateSystem create_projected_coordinate_system (in long code);
 GeographicCoordinateSystem create_geographic_coordinate_system (in long code);
 Projection create_projection (in long code);
 GeographicTransform create_geographic_transform (in long code);
 HorizontalDatum create_horizontal_datum (in long code);
 Ellipsoid create_ellipsoid (in long code);
 PrimeMeridian create_prime_meridian (in long code);
 LinearUnit create_linear_unit (in long code);
 AngularUnit create_angular_unit (in long code);

};

OpenGIS Simple Features Specification for CORBA, Revision 1.1

3.2.1.17.3 Interface Description

authority—is the standards authority which defines the components created by the factory (e.g.
‘EPSG’).

create_projected_coordinate_system—creates the ProjectedCoordinateSystem with the
identifier code.

create_geographic_coordinate_system—creates the GeographicCoordinateSystem with
the identifier code.

create_projection—creates the Projection with the identifier code.

create_geographic_transform—creates the GeographicTransform with the identifier code.

create_horizontal_datum—creates the HorizontalDatum with the identifier code.

create_ellipsoid—creates the Ellipsoid with the identifier code.

create_prime_meridian—creates the PrimeMeridian with the identifier code.

create_linear_unit—creates the LinearUnit with the identifier code.

create_angular_unit—creates the AngularUnit with the identifier code.

3.2.2 General Geometry Interfaces

3.2.2.1 Geometry Interface

3.2.2.1.1 Purpose

Any valid value of a geometric attribute of feature may be exposed through the Geometry interface. This
interface provides access to the properties that are common to all geometric entities.

3.2.2.1.2 IDL Specification

interface Geometry {

 exception WKBNotImplemented {};

 enum EgenhoferElement {
 Empty, NotEmpty, NoTest
 };

 typedef EgenhoferElement EgenhoferOperator[3][3];

 readonly attribute short dimension; // dimension of the geometry
 // - not the coordinate system
 readonly attribute Envelope range_envelope;// minBoundBox in abstract spec

 readonly attribute SpatialReferenceSystem spatial_reference_system;

 // geometric characteristics
 boolean is_empty();
 boolean is_simple();
 boolean is_closed();

Page 3-30

 Chapter 3 Component Specifications

 Page 3-31

 // constructive operators
 Geometry copy();
 Geometry boundary();
 Geometry buffer (in double distance);
 Geometry convex_hull();

 // WKS operators
 WKSGeometry export(); // export geometry to WKS
 OctetSeq export_WKBGeometry() // export geometry to WKB
 raises (WKBNotImplemented);

 // relational operators
 boolean equals (in Geometry other);
 boolean touches (in Geometry other);
 boolean contains (in Geometry other);
 boolean within (in Geometry other);
 boolean disjoint (in Geometry other);
 boolean crosses (in Geometry other);
 boolean overlaps (in Geometry other);
 boolean intersects (in Geometry other);
 boolean relate (in Geometry other, in EgenhoferOperator operator);

 // metric operators
 double distance (in Geometry other);

 // set operators
 Geometry intersection (in Geometry other);
 Geometry union_op(in Geometry other);
 Geometry difference (in Geometry other);
 Geometry symmetric_difference (in Geometry other);

 void destroy();

};

3.2.2.1.3 Interface Description

dimension—returns the dimension of the geometry. For a point this value will be 0, a line string it will
be 1, for a polygon 2. Note: this value is not the dimension of the coordinate space in which the
geometry is defined, nor the dimension of the extent of the geometry.

range_envelope—returns an envelope wholly containing the geometry.

spatial_reference_system—returns a reference to the Geometry’s Spatial Reference System.
The SRS provides the semantics of the coordinates exposed by the Geometry through well-known
structures (i.e. it locates the Geometry with respect to the earth).

is_empty—returns true if the Geometry is the empty set.

is_simple—returns true if the Geometry has no anomalous geometric points, such as self intersection
or self tangency.

is_closed—returns true if the Geometry’s boundary is the empty set.

copy—creates a (deep) copy of the Geometry and returns a reference to it. The Geometry’s associated
Spatial Reference System is not copied (only a reference to it is copied).

boundary—returns the closure of the combinatorial boundary of the Geometry as described in the
Abstract Specification [3.12.3.2].

buffer—returns a Geometry representing all points within distance of this.

OpenGIS Simple Features Specification for CORBA, Revision 1.1

convex_hull—returns a Geometry representing the convex hull of this.

export—returns the coordinate geometry in the form of a Well-known Structure (WKS) of the
Geometry.

export_WKBGeometry—returns the coordinate geometry in the form of a Well-known Binary (WKB)
representation of the Geometry (see section 3.2.6.2). This operation is optional: OpenGIS compliance
does not demand its implementation. A WKBNotImplemented exception is raised if this operation is
not implemented.

equals—returns true if this and other are equivalent geometries.

touches—returns true if this and other only share part of their boundaries.

contains—returns true if other is wholly contained within this.

within—returns true if this is wholly contained by other.

disjoint—returns true if this and other are disjoint geometries.

crosses—returns true if this crosses other.

overlaps—returns true if this overlaps other.

intersects—returns true if this intersects other.

 relate—returns true if the Egenhofer relationship specified by operator exists between this and
other. The Egenhofer operator is specified through the EgenhoferOperator array. This is a 3 x 3
array of trinary elements that correspond to the nine sets of intersection between two geometries. Each
element may have the value Empty, NotEmpty and NoTest. NoTest elements always return true.
Empty elements will return true only if the corresponding intersection set is empty. NotEmpty elements
will only return true if the corresponding intersection set is not empty. The relate operation will only
return true, if all nine elements return true. For more information on Egenhofer operators see [4].

distance—returns the minimum distance between this and other.

intersection—returns the point set intersection of this and other.

union_op—returns the point set union of this and other.

difference—returns the point set difference of this and other.

symmetric_difference—returns the point set symmetric difference of this and other.

destroy—destroys the Geometry.

3.2.2.2 GeometryFactory Interface

3.2.2.2.1 Purpose

The GeometryFactory interface allows client applications to create new Geometry objects which may
then be assigned as values to geometric attributes of Features.

Page 3-32

 Chapter 3 Component Specifications

 Page 3-33

3.2.2.2.2 IDL Specification

interface GeometryFactory {

 exception InvalidWKS {string why;};
 exception InvalidWKB {string why;};
 exception WKBNotImplemented {};

 Geometry create(in Geometry existing);

 Geometry create_from_WKS(in SpatialReferenceSystem srs,in WKSGeometry geo)
 raises (InvalidWKS);

 Geometry create_from_WKB(in SpatialReferenceSystem srs,in OctetSeq geo)
 raises (InvalidWKB, WKBNotImplemented);
};

3.2.2.2.3 Interface Description

create—creates a new Geometry instance that is a deep-copy of existing.

create_from_WKS—creates a new Geometry instance given an spatial referencing system and a
coordinate geometry encoded in the well-known structure (WKS). If the input parameter is not a valid
WKS, an InvalidWKS exception will be thrown.

create_from_WKB—creates a new Geometry instance given an spatial referencing system and a
coordinate geometry encoded in the well-known binary stream (WKB) representation format (see
section 3.2.6.2). If the input parameter is not a valid WKB, an InvalidWKB exception will be thrown.
This operation is optional: OpenGIS compliance does not demand its implementation. A
WKBNotImplemented exception is raised if this operation is not implemented.

3.2.2.3 GeometryCollection Interface

3.2.2.3.1 Purpose:

In many cases a single simple geometry is insufficient to represent a geometric entity. In others, it is
desirable to group arbitrary geometries, and treat them as a single geometry for various purposes. The
GeometryCollection interface allows the grouping of possibly arbitrary Geometries for subsequent
simultaneous manipulation. A GeometryIterator interface allows client access to the components of
such groups or composite geometries, while hiding the structure of the underlying collection
implementation. Particular implementations of GeometryCollections may restrict membership to
Geometries with particular characteristics (e.g. all elements must be co-planar, of a particular dimension or
may not overlap).

3.2.2.3.2 IDL Specification
interface GeometryIterator;
interface GeometryCollection;

interface GeometryCollection : Geometry {

 exception IteratorInvalid {};
 exception PositionInvalid {};
 exception GeometryInvalid {};

 readonly attribute long number_elements;

 // these operations allowing for arbitrary collections
 void add_element (in Geometry element) raises (GeometryInvalid);
 void merge (in GeometryCollection elements) raises (GeometryInvalid);

OpenGIS Simple Features Specification for CORBA, Revision 1.1

 void insert_element_at (in Geometry element, in GeometryIterator where)
 raises (GeometryInvalid, IteratorInvalid);
 void replace_element_at (in Geometry element, in GeometryIterator where)
 raises (GeometryInvalid, IteratorInvalid, PositionInvalid);

 void remove_element_at (in GeometryIterator where)
 raises (IteratorInvalid, PositionInvalid);
 void remove_all_elements ();

 // retrieve a geometry from a collection
 Geometry retrieve_element_at (in GeometryIterator where)
 raises (IteratorInvalid, PositionInvalid);

 // create an iterator over the collection
 GeometryIterator create_iterator();
};

interface GeometryIterator {
 exception IteratorInvalid {};
 exception PositionInvalid {};

 Geometry next () raises (IteratorInvalid, PositionInvalid);
 void reset() raises (IteratorInvalid);
 boolean more();
 void destroy();
};

3.2.2.3.3 Interface Description

number_elements—returns the number of geometries in the GeometryCollection.

add_element—adds the Geometry element to the GeometryCollection. If element does not
adhere to all membership restrictions a GeometryInvalid exception is raised.

merge—merges the GeometryCollection elements into the GeometryCollection. If a component of
elements does not adhere to the membership restrictions of the GeometryCollection a
GeometryInvalid exception is raised.

insert_element_at—inserts the Geometry element at the position in the Collection indicated by
the GeometryIterator where. A GeometryInvalid exception is raised if element does not
conform to the membership requirements of the GeometryCollection. An IteratorInvalid
exception is raised if where is not a valid iterator of the GeometryCollection. A
PositionInvalid exception is raised if the iterator is not pointing at a Geometry.

replace_element_at—replaces the Geometry element at the position in the GeometryCollection
indicated by the GeometryIterator where. A GeometryInvalid exception is raised if element
does not conform to the membership requirements of the GeometryCollection. An
IteratorInvalid exception is raised if where is not a valid iterator of the GeometryCollection.
A PositionInvalid exception is raised if the iterator is not pointing at a Geometry.

remove_element_at—removes the Geometry at the position in the GeometryCollection indicated
by the GeometryIterator where. An IteratorInvalid exception is raised if where is not a valid
iterator of the GeometryCollection. A PositionInvalid exception is raised if the iterator is not
pointing at a Geometry.

remove_all_elements—empties the GeometryCollection.

retrieve_element_at—returns the Geometry at the position in the GeometryCollection indicated
by the GeometryIterator where. An IteratorInvalid exception is raised if where is not a valid

Page 3-34

 Chapter 3 Component Specifications

 Page 3-35

iterator of the GeometryCollection. A PositionInvalid exception is raised if the iterator is not
pointing at a Geometry.

create_iterator—returns an iterator of the GeometryCollection.

3.2.2.3.4 GeometryIterator Interface Description

The GeometryIterator provides clients with access into the components of a GeometryCollection,
and permits them to specify a location within a GeometryCollection without being exposed to the
implementation of the GeometryCollection.

next—returns the next Geometry in the GeometryCollection. The order Geometries are returned is
implementation specific.

reset—resets the GeometryIterator to the beginning of the GeometryCollection.

more—returns true if there are more geometries in the GeometryCollection.

destroy—destroys the GeometryIterator.

3.2.3 Zero Dimensional Geometries

Geometry

Point Curve Surface

MultiPoint

Geometry
Collection

MultiCurve MultiSurface

...

Figure 3.1Zero dimensional Geometry Interfaces. Bold boxes indicate interfaces in this
specification, all others are suggested future extensions.

3.2.3.1 Point Interface

3.2.3.1.1 Purpose

OpenGIS Simple Features Specification for CORBA, Revision 1.1

The Point interface exposes zero-dimensional geometries. It inherits from Geometry. The boundary
of a Point is the empty set. All Points are simple and closed.

3.2.3.1.2 IDL Specification

interface Point : Geometry {
 attribute WKSPoint coordinates;

};

3.2.3.1.3 Interface Description

coordinates—this attribute may be used to retrieve and to set the coordinates of a Point geometry
using the WKSPoint well-known structure.

3.2.3.2 PointFactory Interface

3.2.3.2.1 Purpose

This interface provides support for creating new Point objects. It enforces the geometric policies that a
Point geometry must adhere to, given as input a Well-known Structure, a Well-known Binary
representation, etc.

3.2.3.2.2 IDL Specification

interface PointFactory : GeometryFactory {
 exception InvalidWKSPoint {};
 exception InvalidWKBPoint {};

 Point create_from_Point(in Point existing);

 Point create_from_WKSPoint(in SpatialReferenceSystem srs, in WKSPoint geo)
 raises (InvalidWKSPoint);

 Point create_from_WKBPoint(in SpatialReferenceSystem srs, in OctetSeq geo)
 raises (InvalidWKBPoint, WKBNotImplemented);
};

3.2.3.2.3 Interface Description

Inherited GeometryFactory interface— The PointFactory enforces that the arguments supplied to
the inherited GeometryFactory interface methods are valid Point geometric constructs, be it a
Point object, a WKSPoint or a WKBPoint. The object instance created is a Point object, but is
widened to a Geometry object.

create_from_Point—creates an new Point instance that is a deep-copy of existing.

create_from_WKSPoint—creates a new Point instance given an spatial referencing system and a
coordinate geometry encoded in the well-known structure (WKS). If the input parameter is not a valid
WKSPoint, an InvalidWKSPoint exception will be thrown.

create_from_WKBPoint—creates a new Point instance given an spatial referencing system and a
coordinate geometry encoded in the well-known binary (WKB) representation format (see section
3.2.6.2). If the input parameter is not a valid WKBPoint, an InvalidWKBPoint exception will be
thrown. This operation is optional: OpenGIS compliance does not demand its implementation. A
WKBNotImplemented exception is raised if this operation is not implemented.

Page 3-36

 Chapter 3 Component Specifications

 Page 3-37

3.2.3.3 MultiPoint Interface

3.2.3.3.1 Purpose

The MultiPoint interface exposes a collection of zero-dimensional geometries (points). It inherits from
GeometryCollection. The boundary of a MultiPoint is the empty set. A MultiPoint is simple if no two
components are coincident. All MultiPoints are closed.

3.2.3.3.2 IDL Specification

interface MultiPoint : GeometryCollection {

};

3.2.3.4 MultiPointFactory Interface

3.2.3.4.1 Purpose

This interface provides support for creating new MultiPoint objects. It enforces the geometric policies that
a MultiPoint geometry must adhere to, given as input a Well-known Structure, a Well-known Binary
representation, etc.

3.2.3.4.2 IDL Specification

interface MultiPointFactory : GeometryFactory {
 exception InvalidWKSMultiPoint {};
 exception InvalidWKBMultiPoint {};

 MultiPoint create_from_MultiPoint(in MultiPoint existing);

 MultiPoint create_from_WKSMultiPoint(in SpatialReferenceSystem srs,
 in WKSPointSeq geo)
 raises (InvalidWKSMultiPoint);

 MultiPoint create_from_WKBMultiPoint(in SpatialReferenceSystem srs,
 in OctetSeq geo)
 raises (InvalidWKBMultiPoint,WKBNotImplemented);
};

3.2.3.4.3 Interface Description

Inherited GeometryFactory interface— The MultiPointFactory enforces that the arguments supplied
to the inherited GeometryFactory interface methods are valid MultiPoint geometric constructs,
be it a MultiPoint object, a WKSPoint or a WKBPoint. The object instance created is a MultiPoint
object, but is widened to a Geometry object.

create_from_MultiPoint—creates an new MultiPoint instance that is a deep-copy of existing.

create_from_WKSMultiPoint—creates a new MultiPoint instance given an spatial referencing
system and a coordinate geometry encoded in the well-known structure (WKS). If the input parameter
is not a valid WKSMultiPoint, an InvalidWKSMultiPoint exception will be thrown.

create_from_WKBMultiPoint—creates a new MultiPoint instance given an spatial referencing
system and a coordinate geometry encoded in the well-known binary (WKB) representation format
(see section 3.2.6.2). If the input parameter is not a valid WKBMultiPoint, an
InvalidWKBMultiPoint exception will be thrown. This operation is optional: OpenGIS

OpenGIS Simple Features Specification for CORBA, Revision 1.1

compliance does not demand its implementation. A WKBNotImplemented exception is raised if this
operation is not implemented.

3.2.4 One-dimensional Geometries

Geometry

Point

LineString

LinearRing

Curve

Arc

Surface

BSpline ...

MultiPoint

Ring

Geometry
Collection

MultiCurve

CurveString

MultiSurface

...

Figure 3.2One-dimensional Geometry Interfaces. Bold boxes indicate interfaces in this
specification, all others are suggested future extensions.

3.2.4.1 Curve Interface

3.2.4.1.1 Purpose

The Curve interface is supported by all one-dimensional continuous geometries. It inherits from Geometry.
A Curve has a start point and end point. It is simple if it does not pass through the same point twice (except
possibly at the start and end points). It is closed if the start point and the end point are the same. A Curve’s
boundary is a MultiPoint consisting of the start point and the end point for an unclosed Curve and the
empty set for a closed Curve.

3.2.4.1.2 IDL Specification

exception OutOfDomain {};

interface Curve : Geometry {
 exception WKSNotImplemented {};

 readonly attribute double length;
 readonly attribute Point start_point;
 readonly attribute Point end_point;
 readonly attribute WKSPoint start_point_as_WKS;
 readonly attribute WKSPoint end_point_as_WKS;

 boolean is_planar();

Page 3-38

 Chapter 3 Component Specifications

 Page 3-39

 Point value (in double r) raises (OutOfDomain);
 WKSPoint value_as_WKS (in double r) raises (OutOfDomain);

};

3.2.4.1.3 Interface Description

length—returns the length of the curve (in coordinate units).

start_point—returns the starting Point of the curve.

end_point—returns the end Point of the curve.

start_point_as_WKS—returns the starting point of the curve as a WKSPoint Well-known Structure.

end_point_as_WKS—returns the end point of the curve as a WKSPoint Well-known Structure.

is_planar—returns true if the entire curve lies within a plane.

value—returns the point r coordinate units along the curve from the start point. If r is less than zero or
greater than length a OutOfDomain exception is raised. Note that since value(0.0) = start_point and
value(length) = end_point, the start_point and end_point attributes are technically redundant. They have
been retained for ease of use.

value_as_WKS—returns the coordinates of the point r coordinate units along the curve from the start
point in the form of a WKSPoint Well-known Structure. If r is less than zero or greater than length a
OutOfDomain exception is raised.

3.2.4.1.4 Usage Scenarios

The curve interface will be supported by all one-dimensional geometries including, but not limited to, lines,
line-strings, arcs (circular, elliptical, parabolic, etc.), quadratics and other mathematical curves and b-
splines. Closed curves, including linear rings, circles and ellipses will also support the curve interface.

3.2.4.2 LineString Interface

3.2.4.2.1 Purpose:

The LineString interface exposes linear geometries: curves defined by a series of points with linear
interpolation between points. It inherits from Curve.

3.2.4.2.2 IDL Specification

interface LineString : Curve {

 exception InvalidIndex{};
 exception MinimumPoints{};

 readonly attribute long num_points;

 Point get_point_by_index (in long index) raises (InvalidIndex);
 WKSPoint get_point_by_index_as_WKS (in long index) raises (InvalidIndex);

 void set_point_by_index (in WKSPoint new_point, in long index)
 raises (InvalidIndex);
 void set_point_by_index_with_WKS (in WKSPoint new_point, in long index)

OpenGIS Simple Features Specification for CORBA, Revision 1.1

 raises (InvalidIndex);

 void insert_point_by_index (in Point new_point, in long index)
 raises (InvalidIndex);
 void insert_point_by_index_with_WKS (in WKSPoint new_point, in long index)
 raises (InvalidIndex);

 void append_point (in Point new_point);
 void append_point_with_WKS (in WKSPoint new_point);

 void delete_point_by_index (in long index)
 raises (InvalidIndex, MinimumPoints);

};

3.2.4.2.3 Interface Description:

num_points—returns the number of points in the line string.

get_point_by_index—returns the indexth point of the line string. An InvalidIndex exception
is raised if index is less than zero or greater than num_points.

get_point_by_index_as_WKS—returns the indexth point of the line string as a WKSPoint Well-
known Structure. An InvalidIndex exception is raised if index is less than zero or greater than
num_points.

set_point_by_index—sets the indexth point of the line string to new_point. An
InvalidIndex exception is raised if index is less than zero or greater than num_points.

set_point_by_index_with_WKS—sets the indexth point of the line string to the point defined by
the WKSPoint Well-known Structure new_point. An InvalidIndex exception is raised if
index is less than zero or greater than num_points.

insert_point_by_index—inserts new_point into the linestring before the indexth point. An
InvalidIndex exception is raised if index is less than zero or greater than num_points.

insert_point_by_index_with_WKS—inserts the point defined by the WKSPoint Well-known
Structure new_point into the linestring before the indexth point. An InvalidIndex exception is
raised if index is less than zero or greater than num_points.

append_point—appends new_point to the end of the line string.

append_point_with_WKS—appends the point defined by the WKSPoint Well-known Structure
new_point to the end of linestring.

delete_point_by_index—deletes the indexth point from the line string. A line string will typically
not be permitted to have less than two points. An attempt to delete a point from a two-point line string
will raise a MinimumPoints exception. An InvalidIndex exception is raised if index is less
than zero or greater than num_points.

3.2.4.3 LineStringFactory Interface

3.2.4.3.1 Purpose

Page 3-40

 Chapter 3 Component Specifications

 Page 3-41

This interface provides support for creating new LineString objects. It enforces the geometric policies that
a LineString geometry must adhere to, given as input a Well-known Structure, a Well-known Binary
representation, etc.

3.2.4.3.2 IDL Specification

interface LineStringFactory : GeometryFactory {

 exception InvalidWKSLineString {};
 exception InvalidWKBLineString {};

 LineString create_from_LineString(in LineString existing);

 LineString create_from_WKSLineString (in SpatialReferenceSystem srs,
 in WKSLineString geo)
 raises (InvalidWKSLineString);

 LineString create_from_WKBLineString(in SpatialReferenceSystem srs,
 in OctetSeq geo)
 raises
(InvalidWKBLineString,WKBNotImplemented);
};

3.2.4.3.3 Interface Description

Inherited GeometryFactory interface— The LineStringFactory enforces that the arguments supplied
to the inherited GeometryFactory interface methods are valid LineString geometric constructs,
be it a LineString object, a WKSLineString or a WKBLineString. The object instance created is a
LineString object, but is widened to a Geometry object.

create_from_LineString—creates an new LineString instance that is a deep-copy of existing.

create_from_WKSLineString—creates a new LineString instance given an spatial referencing
system and a coordinate geometry encoded in the well-known structure (WKS). If the input parameter
is not a valid WKSLineString, an InvalidWKSLineString exception will be thrown.

create_from_WKBLineString—creates a new LineString instance given an spatial referencing
system and a coordinate geometry encoded in the well-known binary (WKB) representation format (see
section 3.2.6.2). If the input parameter is not a valid WKBLineString, an
InvalidWKBLineString exception will be thrown. This operation is optional: OpenGIS
compliance does not demand its implementation. A WKBNotImplemented exception is raised if this
operation is not implemented.

3.2.4.4 Ring Interface

3.2.4.4.1 Purpose

Rings are planar, simple, closed curves i.e. they are non-self-intersecting, curves where start_point
and end_point are coincident. The Ring interface simply provides the ‘building blocks’ for polygons, it
does not add any functionality to curve.

3.2.4.4.2 IDL Specification

interface Ring : Curve {

OpenGIS Simple Features Specification for CORBA, Revision 1.1

};

3.2.4.5 LinearRing Interface

3.2.4.5.1 Purpose

The LinearRing interface exposes closed, linear geometries: rings defined by a series of points with linear
interpolation between points. It inherits from Ring and LineString.

3.2.4.5.2 IDL Specification

interface LinearRing : Ring, LineString {
};

3.2.4.6 MultiCurve Interface

3.2.4.6.1 Purpose

The MultiCurve interface exposes a collection of one-dimensional geometries (curves). It inherits from
GeometryCollection. The boundary of a MultiCurve is the modulo 2 union of all start and end
points [1 para. 3.12.3.2]. A MultiCurve is simple if all its components are simple and the interiors of no
two components intersect.

3.2.4.6.2 IDL Specification

interface MultiCurve : GeometryCollection {

 readonly attribute double length;
};

3.2.4.6.3 Interface Description

length—returns the sum of the lengths of all constituent curves (in coordinate units).

3.2.4.7 MultiLineString Interface

3.2.4.7.1 Purpose

The MultiLineString interface exposes a collection of LineStrings. It inherits from
MultiCurve.

3.2.4.7.2 IDL Specification

interface MultiLineString : MultiCurve {

};

3.2.4.8 MultiLineStringFactory Interface

3.2.4.8.1 Purpose

Page 3-42

 Chapter 3 Component Specifications

 Page 3-43

This interface provides support for creating new MultiLineString objects. It enforces the geometric policies
that a MultiLineString geometry must adhere to, given as input a Well-known Structure, a Well-known
Binary representation, etc.

3.2.4.8.2 IDL Specification

interface MultiLineStringFactory : GeometryFactory {

 exception InvalidWKSMultiLineString {};
 exception InvalidWKBMultiLineString {};

 MultiLineString create_from_MultiLineString(in MultiLineString existing);

 MultiLineString create_from_WKSMultiLineString(in SpatialReferenceSystem srs,
 in WKSLineStringSeq geo)
 raises (InvalidWKSMultiLineString);

 MultiLineString create_from_WKBMultiLineString(in SpatialReferenceSystem srs,
 in OctetSeq geo)
 raises
(InvalidWKBMultiLineString,WKBNotImplemented);
};

3.2.4.8.3 Interface Description

Inherited GeometryFactory interface— The MultiLineString enforces that the arguments supplied to
the inherited GeometryFactory interface methods are valid MultiLineString geometric
constructs, be it a MultiLineString object, a WKSMultiLineString or a WKBMultiLineString.
The object instance created is a MultiLineString object, but is widened to a Geometry object.

create_from_MultiLineString—creates an new MultiLineString instance that is a deep-copy of
existing.

create_from_WKSMultiLineString—creates a new MultiLineString instance given an spatial
referencing system and a coordinate geometry encoded in the well-known structure (WKS). If the input
parameter is not a valid WKSMultiLineString, an InvalidWKSMultiLineString exception
will be thrown.

create_from_WKBMultiLineString—creates a new MultiLineString instance given an spatial
referencing system and a coordinate geometry encoded in the well-known binary (WKB)
representation format (see section 3.2.6.2). If the input parameter is not a valid
WKBMultiLineString, an InvalidWKBMultiLineString exception will be thrown. This
operation is optional: OpenGIS compliance does not demand its implementation. A
WKBNotImplemented exception is raised if this operation is not implemented.

OpenGIS Simple Features Specification for CORBA, Revision 1.1

3.2.5 Two-dimensional Geometries

Geometry

Point

Polygon

Curve

Bspline
Surface

Surface

Surface of
Revolution

Surface of
Projection

MultiPoint

...

Geometry
Collection

MultiCurve

Closed
Surface

MultiSurface

...

Shell

Figure 3.3Two-dimensional Geometry Interfaces. Bold boxes indicate interfaces in this
specification, all others are suggested future extensions.

3.2.5.1 Surface Interface

3.2.5.1.1 Purpose

The Surface interface is supported by all two-dimensional continuous geometries. It inherits from
geometry. The boundary of a Surface is the collection of curves constituting its exterior boundary and any
interior boundaries.

3.2.5.1.2 IDL Specification

interface Surface : Geometry {

 readonly attribute double area;
 readonly attribute WKSPoint centroid;
 readonly attribute WKSPoint centroid_as_WKS;
 readonly attribute WKSPoint point_on_surface;
 readonly attribute WKSPoint point_on_surface_as_WKS;

 boolean is_planar();
};

3.2.5.1.3 Interface Description:

area—returns the length of the curve (in coordinate units).

centroid—returns the centroid of the Surface (assuming all points on the Surface are equally
weighted).

Page 3-44

 Chapter 3 Component Specifications

 Page 3-45

centroid_as_WKS—returns the centroid of the Surface (assuming all points on the Surface are
equally weighted) as a Well-known Structure.

point_on_surface—returns a Point on the Surface (i.e. a point within the external boundary and
outside all interior boundaries).

point_on_surface_as_WKS—returns a point on the Surface (i.e. a point within the external
boundary and outside all interior boundaries) as a Well-known Structure.

is_planar—returns true if the entire Surface lies within a plane.

3.2.5.2 Polygon Interface

3.2.5.2.1 Purpose

The Polygon interface exposes planar surfaces defined by one exterior ring and a series of internal rings.
It inherits from surface.

3.2.5.2.2 IDL Specification

interface Polygon : Surface {

 readonly attribute Ring exterior_ring;
 readonly attribute WKSGeometry exterior_ring_as_WKS;

 readonly attribute MultiCurve interior_rings;
 readonly attribute WKSGeometry interior_rings_as_WKS;
};

3.2.5.2.3 Interface Description

exterior_ring—returns the ring defining the external boundary of the polygon.

exterior_ring_as_WKS—returns the ring defining the external boundary of the polygon as a Well-
known Structure.

interior_rings— returns the collection of rings defining the interior rings (holes) within the polygon.

interior_rings_as_WKS— returns the collection of rings defining the interior rings (holes) within
the polygon as a Well-known Structure.

3.2.5.3 LinearPolygon Interface

3.2.5.3.1 Purpose

The LinearPolygon interface inherits from Polygon and restricts the polygon geometry to be linear.

3.2.5.3.2 IDL Specification

interface LinearPolygon : Polygon {
};

OpenGIS Simple Features Specification for CORBA, Revision 1.1

3.2.5.4 LinearPolygonFactory Interface

3.2.5.4.1 Purpose

This interface provides support for creating new LinearPolygon objects. It enforces the geometric policies
that a LinearPolygon geometry must adhere to, given as input a Well-known Structure, a Well-known
Binary representation, etc.

3.2.5.4.2 IDL Specification

interface LinearPolygonFactory : GeometryFactory {

 exception InvalidWKSLinearPolygon {};
 exception InvalidWKBLinearPolygon {};

 LinearPolygon create_from_LinearPolygon(in LinearPolygon existing);

 LinearPolygon create_from_WKSLinearPolygon(in SpatialReferenceSystem srs,
 in WKSLinearPolygon geo)
 raises (InvalidWKSLinearPolygon);

 LinearPolygon create_from_WKBLinearPolygon(in SpatialReferenceSystem srs,
 in OctetSeq geo)
 raises (InvalidWKBLinearPolygon,WKBNotImplemented);
};

3.2.5.4.3 Interface Description

Inherited GeometryFactory interface— The LinearPolygon enforces that the arguments supplied to
the inherited GeometryFactory interface methods are valid LinearPolygon geometric
constructs, be it a LinearPolygon object, a WKSLinearPolygon or a WKBLinearPolygon. The
object instance created is a LinearPolygon object, but is widened to a Geometry object.

create_from_LinearPolygon—creates an new LinearPolygon instance that is a deep-copy of
existing.

create_from_WKSLinearPolygon—creates a new LinearPolygon instance given an spatial
referencing system and a coordinate geometry encoded in the well-known structure (WKS). If the input
parameter is not a valid WKSLinearPolygon, an InvalidWKSLinearPolygon exception will
be thrown.

create_from_WKBLinearPolygon—creates a new LinearPolygon instance given an spatial
referencing system and a coordinate geometry encoded in the well-known binary (WKB)
representation format (see section 3.2.6.2). If the input parameter is not a valid WKBLinearPolygon,
an InvalidWKBLinearPolygon exception will be thrown. This operation is optional: OpenGIS
compliance does not demand its implementation. A WKBNotImplemented exception is raised if this
operation is not implemented.

3.2.5.5 MultiSurface Interface

3.2.5.5.1 Purpose

The MultiSurface interface exposes a collection of two-dimensional geometries (surfaces). It inherits
from GeometryCollection.

3.2.5.5.2 IDL Specification

Page 3-46

 Chapter 3 Component Specifications

 Page 3-47

interface MultiSurface : GeometryCollection {

 readonly attribute double area;

};

3.2.5.5.3 Interface Description:

area—returns the sum of the areas of all constituent surfaces.

3.2.5.6 MultiPolygon Interface

3.2.5.6.1 Purpose

The MultiPolygon interface inherits from MultiSurface.

3.2.5.6.2 IDL Specification

interface MultiPolygon : MultiSurface {
};

3.2.5.7 MultiLinearPolygon Interface

3.2.5.7.1 Purpose

The MultiLinearPolygon interface inherits from MultiPolygon and restricts the polygon
geometries to be linear.

3.2.5.7.2 IDL Specification

interface MultiLinearPolygon : MultiPolygon {
};

3.2.5.8 MultiLinearPolygonFactory Interface

3.2.5.8.1 Purpose

This interface provides support for creating new MultiLinearPolygon objects. It enforces the geometric
policies that a MultiLinearPolygon geometry must adhere to, given as input a Well-known Structure, a
Well-known Binary representation, etc.

3.2.5.8.2 IDL Specification

interface MultiLinearPolygonFactory : GeometryFactory {

 exception InvalidWKSMultiLinearPolygon {};
 exception InvalidWKBMultiLinearPolygon {};

 MultiLinearPolygon create_from_MultiLinearPolygon(in MultiLinearPolygon
existing);

 MultiLinearPolygon create_from_WKSMultiLinearPolygon(in SpatialReferenceSystem
srs,
 in WKSLinearPolygonSeq geo)
 raises (InvalidWKSMultiLinearPolygon);

OpenGIS Simple Features Specification for CORBA, Revision 1.1

 MultiLinearPolygon create_from_WKBMultiLinearPolygon(in SpatialReferenceSystem
srs,
 in OctetSeq geo)
 raises (InvalidWKBMultiLinearPolygon);
};

3.2.5.8.3 Interface Description

Inherited GeometryFactory interface— The MultiLinearPolygon enforces that the arguments
supplied to the inherited GeometryFactory interface methods are valid MultiLinearPolygon
geometric constructs, be it a MultiLinearPolygon object, a WKSMultiLinearPolygon or a
WKBMultiLinearPolygon. The object instance created is a MultiLinearPolygon object, but is
widened to a Geometry object.

create_from_MultiLinearPolygon—creates an new MultiLinearPolygon instance that is a deep-
copy of existing.

create_from_WKSMultiLinearPolygon—creates a new MultiLinearPolygon instance given an
spatial referencing system and a coordinate geometry encoded in the well-known structure (WKS). If
the input parameter is not a valid WKSMultiLinearPolygon, an
InvalidWKSMultiLinearPolygon exception will be thrown.

create_from_WKBMultiLinearPolygon—creates a new MultiLinearPolygon instance given an
spatial referencing system and a coordinate geometry encoded in the well-known binary (WKB)
representation format (see section 3.2.6.2). If the input parameter is not a valid
WKBMultiLinearPolygon, an InvalidWKBMultiLinearPolygon exception will be thrown.
This operation is optional: OpenGIS compliance does not demand its implementation. A
WKBNotImplemented exception is raised if this operation is not implemented.

3.2.6 Structures & Enumerations

3.2.6.1 Well-known Structures

3.2.6.1.1 Purpose:

The Well-known Structures (WKS) allow for the sharing of linear coordinate geometries and collections of
such geometries between interoperating applications. The specification of these structures in IDL allows for
the unambiguous representation of all such geometries independent of platform as required by FR #6 of
RFP1. These structures are the geometric analogue of the basic arithmetic types (short, long, float, double).

3.2.6.1.2 IDL Specification

struct WKSPoint {
 double x;
 double y;
};

typedef sequence<WKSPoint> WKSPointSeq;
typedef sequence<WKSPoint> WKSLineString;
typedef sequence<WKSLineString> WKSLineStringSeq;
typedef sequence<WKSPoint> WKSLinearRing;
typedef sequence<WKSLinearRing> WKSLinearRingSeq;

struct WKSLinearPolygon {
 WKSLinearRing externalBoundary;
 WKSLinearRingSeq internalBoundaries;
};

Page 3-48

 Chapter 3 Component Specifications

 Page 3-49

typedef sequence <WKSLinearPolygon> WKSLinearPolyonSeq;

enum WKSType {
 WKSPointType,WKSMultiPointType, WKSLineStringType,WKSMultiLineStringType,
 WKSLinearRingType, WKSLinearPolygonType, WKSMultiLinearPolygonType,
 WKSCollectionType
};

union WKSGeometry // near-equivalent to the 'CoordinateGeometry of the spec'
 switch (WKSType) {

 case WKSPointType:
 WKSPoint point;

 case WKSMultiPointType:
 WKSPointSeq multi_point;

 case WKSLineStringType:
 WKSLineString line_string;

 case WKSMultiLineStringType:
 WKSLineStringSeq multi_line_string;

 case WKSLinearRingType:
 WKSLinearRing linear_ring;

 case WKSLinearPolygonType:
 WKSLinearPolygon linear_polygon;

 case WKSMultiLinearPolygonType:
 WKSLinearPolygonSeq multi_linear_polygon;

 case WKSCollectionType:
 sequence<WKSGeometry> collection;
 };

struct Envelope {
 WKSPoint minm;
 WKSPoint maxm;
};

3.2.6.2 The Well-known Binary Representation for Geometry (WKBGeometry)

3.2.6.2.1 Component Overview

The Well-known Binary Representation for Geometry (WKBGeometry) provides a portable representation
of a Geometry value as a contiguous stream of bytes. It permits Geometry values to be exchanged between
an ODBC client and an SQL database in binary form.

3.2.6.2.2 Component Description

The Well-known Binary Representation for Geometry is obtained by serializing a geometry instance as a
sequence of numeric types drawn from the set {Unsigned Integer, Double} and then serializing each
numeric type as a sequence of bytes using one of two well defined, standard, binary representations for
numeric types (NDR, XDR). The specific binary encoding (NDR or XDR) used for a geometry byte stream
is described by a one byte tag that precedes the serialized bytes. The only difference between the two
encodings of geometry is one of byte order, the XDR encoding is Big Endian, the NDR encoding is Little
Endian.

3.2.6.2.2.1 Numeric Type Definitions

An Unsigned Integer is a 32-bit (4-byte) data type that encodes a nonnegative integer in the range [0,
4294967295].

OpenGIS Simple Features Specification for CORBA, Revision 1.1

A Double is a 64-bit (8-byte) double precision data type that encodes a double precision number using the
IEEE 754 double precision format

The above definitions are common to both XDR and NDR.

3.2.6.2.2.2 XDR (Big Endian) Encoding of Numeric Types

The XDR representation of an Unsigned Integer is Big Endian (most significant byte first).

The XDR representation of a Double is Big Endian (sign bit is first byte).

3.2.6.2.2.3 NDR (Little Endian) Encoding of Numeric Types

The NDR representation of an Unsigned Integer is Little Endian (least significant byte first).

The NDR representation of a Double is Little Endian (sign bit is last byte).

3.2.6.2.2.4 Conversion between the NDR and XDR representations of WKBGeometry

Conversion between the NDR and XDR data types for Unsigned Integer and Double numbers is a
simple operation involving reversing the order of bytes within each Unsigned Integer or Double
number in the byte stream.

3.2.6.2.2.5 Relationship to other COM and CORBA data transfer protocols

The XDR representation for Unsigned Integer and Double numbers described above is also the
standard representation for Unsigned Integer and for Double number in the CORBA Standard Stream
Format for Externalized Object Data that is described as part of the CORBA Externalization Service
Specification [15].

The NDR representation for Unsigned Integer and Double number described above is also the
standard representation for Unsigned Integer and for Double number in the DCOM protocols that is
based on DCE RPC and NDR [16].

3.2.6.2.2.6 Description of WKBGeometry Byte Streams

The Well-known Binary Representation for Geometry is described below. The basic building block is the
byte stream for a Point, which consists of two Double numbers. The byte streams for other geometries are
built using the byte streams for geometries that have already been defined.

// Basic Type definitions

// byte : 1 byte

// uint32 : 32 bit unsigned integer (4 bytes)

// double : double precision number (8 bytes)

// Building Blocks : Point, LinearRing

Point {

Page 3-50

 Chapter 3 Component Specifications

 Page 3-51

 double x;

 double y;

};

LinearRing {

 uint32 numPoints;

 Point points[numPoints];

}

enum wkbGeometryType {

 wkbPoint = 1,

 wkbLineString = 2,

 wkbPolygon = 3,

 wkbMultiPoint = 4,

 wkbMultiLineString = 5,

 wkbMultiPolygon = 6,

 wkbGeometryCollection = 7

};

enum wkbByteOrder {

 wkbXDR = 0, // Big Endian

 wkbNDR = 1 // Little Endian

};

WKBPoint {

 byte byteOrder;

 uint32 wkbType;
 // 1

 Point point;

}

WKBLineString {

 byte byteOrder;

 uint32 wkbType;
 // 2

 uint32 numPoints;

 Point points[numPoints];

}

WKBPolygon {

 byte byteOrder;

 uint32 wkbType;
 // 3

 uint32 numRings;

OpenGIS Simple Features Specification for CORBA, Revision 1.1

 LinearRing rings[numRings];

}

WKBMultiPoint {

 byte byteOrder;

 uint32 wkbType; // 4

 uint32 num_wkbPoints;

 WKBPoint WKBPoints[num_wkbPoints];

}

WKBMultiLineString {

 byte byteOrder;

 uint32 wkbType;
 // 5

 uint32 num_wkbLineStrings;

 WKBLineString WKBLineStrings[num_wkbLineStrings];

}

wkbMultiPolygon {

 byte byteOrder;

 uint32 wkbType;
 // 6

 uint32 num_wkbPolygons;

 WKBPolygon wkbPolygons[num_wkbPolygons];

}

WKBGeometry {

 union {

 WKBPoint point;

 WKBLineString linestring;

 WKBPolygon polygon;

 WKBGeometryCollection collection;

 WKBMultiPoint mpoint;

 WKBMultiLineString mlinestring;

 WKBMultiPolygon mpolygon;

 }

};

WKBGeometryCollection {

 byte byte_order;

 uint32 wkbType;
 // 7

 uint32 num_wkbGeometries;

 WKBGeometry wkbGeometries[num_wkbGeometries];

Page 3-52

 Chapter 3 Component Specifications

 Page 3-53

}

Figure 3.2 shows a pictorial representation of the Well-known Byte Stream for a Polygon with one outer
ring and one inner ring.

B=1 T=3 NR=2 NP=3 X1 Y1 X2 Y2 X3 Y3 NP=3 X1 Y1 X2 Y2 X3 Y3

Ring 1 Ring 2

WKB Polygon

Figure 3.2Well-known Binary Representation for a Geometry value in NDR format (B=1) of type
Polygon (T=3) with 2 linear rings (NR = 2) each ring having 3 points (NP = 3).

3.2.6.2.2.7 Assertions for Well-known Binary Representation for Geometry

The Well-known Binary Representation for Geometry is designed to represent instances of the geometry
types described in the Geometry Object Model and in the OpenGIS Abstract Specification. Any
WKBGeometry instance must satisfy the assertions for the type of Geometry that it describes. These
assertions may be found in the section 2.2 of the OpenGIS Simple Features for OLE/COM Specification.

These assertions imply the following for Rings, Polygons and MultiPolygons:

3.2.6.2.2.8 Linear Rings

Rings are simple and closed, which means that Linear Rings may not self-touch.

3.2.6.2.2.9 Polygons

No two Linear Rings in the boundary of a Polygon may cross each other, the Linear Rings in the boundary
of a polygon may intersect at most at a single point but only as a tangent.

3.2.6.2.2.10 MultiPolygons

1. The interiors of 2 Polygons that are elements of a MultiPolygon may not intersect.

OpenGIS Simple Features Specification for CORBA, Revision 1.1

2. The Boundaries of any 2 Polygons that are elements of a MultiPolygon may touch at only a finite
number of points.

For more details on the above assertions and for the assertions for each geometry type the reader is referred
to the Geometry Object Model section of the OLE/COM specification.

3.2.6.3 Well-known Text Representation of Spatial Reference Systems

3.2.6.3.1 Component Overview

The Well-known Text Representation of Spatial Reference Systems provides a standard textual
representation for spatial reference system information.

3.2.6.3.2 Component Description

The definitions of the well-known text representation are modeled after the POSC/EPSG coordinate system
data model.

 A spatial reference system, also referred to as a coordinate system, is a geographic (latitude-longitude), a
projected (X,Y), or a geocentric (X,Y,Z) coordinate system.

The coordinate system is composed of several objects. Each object has a keyword in upper case (for
example, DATUM or UNIT) followed by the defining, comma-delimited, parameters of the object in brackets.
Some objects are composed of objects so the result is a nested structure. Implementations are free to
substitute standard brackets () for square brackets [] and should be prepared to read both forms of
brackets.

The EBNF (Extended Backus Naur Form) definition for the string representation of a coordinate system is
as follows, using square brackets, see note above:

<coordinate system> = <projected cs> | <geographic cs> | <geocentric cs>

<projected cs> = PROJCS["<name>", <geographic cs>, <projection>, {<parameter>,}* <linear
unit>]

<projection> = PROJECTION["<name>"]

<parameter> = PARAMETER["<name>", <value>]

<value> = <number>

A data set's coordinate system is identified by the PROJCS keyword if the data are in projected coordinates,
by GEOGCS if in geographic coordinates, or by GEOCCS if in geocentric coordinates.

The PROJCS keyword is followed by all of the "pieces" which define the projected coordinate system. The
first piece of any object is always the name. Several objects follow the projected coordinate system name:
the geographic coordinate system, the map projection, 1 or more parameters, and the linear unit of measure.
All projected coordinate systems are based upon a geographic coordinate system so we will describe the
pieces specific to a projected coordinate system first. As an example, UTM zone 10N on the NAD83 datum
is defined as:

 PROJCS["NAD_1983_UTM_Zone_10N",
 <geographic cs>,
 PROJECTION["Transverse_Mercator"],
 PARAMETER["False_Easting",500000.0],
 PARAMETER["False_Northing",0.0],

Page 3-54

 Chapter 3 Component Specifications

 Page 3-55

 PARAMETER["Central_Meridian",-123.0],
 PARAMETER["Scale_Factor",0.9996],
 PARAMETER["Latitude_of_Origin",0.0],
 UNIT["Meter",1.0]]

The name and several objects define the geographic coordinate system object in turn: the datum, the prime
meridian, and the angular unit of measure.

<geographic cs> = GEOGCS["<name>", <datum>, <prime meridian>, <angular unit>]

<datum> = DATUM["<name>", <spheroid>]

<spheroid> = SPHEROID["<name>", <semi-major axis>, <inverse flattening>]

<semi-major axis> = <number> NOTE: semi-major axis is measured in meters and must be > 0.

<inverse flattening> = <number>

<prime meridian> = PRIMEM["<name>", <longitude>]

<longitude> = <number>

The geographic coordinate system string for UTM zone 10 on NAD83 is

 GEOGCS["GCS_North_American_1983",
 DATUM["D_North_American_1983",
 SPHEROID["GRS_1980",6378137,298.257222101]],
 PRIMEM["Greenwich",0],
 UNIT["Degree",0.0174532925199433]]

The UNIT object can represent angular or linear unit of measures.

<angular unit> = <unit>

<linear unit> = <unit>

<unit> = UNIT["<name>", <conversion factor>]

<conversion factor> = <number>

<conversion factor> specifies number of meters (for a linear unit) or number of radians (for an
angular unit) per unit and must be greater than zero.

So the full string representation of UTM Zone 10N is

PROJCS["NAD_1983_UTM_Zone_10N",
 GEOGCS["GCS_North_American_1983",
 DATUM["D_North_American_1983",SPHEROID["GRS_1980",6378137,298.257222101]],
 PRIMEM["Greenwich",0],UNIT["Degree",0.0174532925199433]],
 PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],
 PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",-123.0],
 PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_of_Origin",0.0],
 UNIT["Meter",1.0]]

A geocentric coordinate system is quite similar to a geographic coordinate system. It is represented by

<geocentric cs> = GEOCCS["<name>", <datum>, <prime meridian>, <linear unit>]

4 Feature Identity

4.1 Introduction

Unfortunately the issue of identity has become confused at the OpenGIS. This paper clarifies the
interpretation of what the Abstract Specification intended with respect to feature identity that was used in
this implementation specification.

4.2 Features vs. Real World Entities

‘Features’ are, according to the Abstract Specification, digital representations of real world entities. Feature
Identity thus refers to mechanisms to identify such representations: not to identify the real world entities
that are the subject of a representation. Thus two different representations of a real world entity (say the
Mississippi River) will be two different features with distinct identities. Real world identification systems,
such as title numbers, while possibly forming a sound basis for an implementation of a feature identity
mechanism, are not of themselves such a mechanism.

4.3 Identity ‘Ownership’

As feature identity thus pertains to the digital representation of real world entities and not to the entities
themselves, designing an identity mechanism is clearly the province of the system implementer and not an
Information Community.

4.4 Aspects of Identity

The term ‘Identity’ has been commonly used at OpenGIS in two utilitarian senses which, for convenience,
we term ‘discriminating identity’ and ‘referential identity’. Discriminating identity allows a client to
reliably determine if two features it is holding are in fact the same, or not. A GUID is an example of a
mechanism, which provides discriminating identity. Referential identity provides a client with a means of
locating the implementation of the feature, subsequently allowing access to all state information (property
values). CORBA IORs and COM Monikers are examples of referential identity mechanisms. Without some
means of locating a feature, a GUID does not give referential identity.

When referring to identity, the Abstract Specification is referring to referential identity. This can be seen
from its corresponding OIDs (Feature IDs) to pointers in object systems [1 para. 3.13.1.2]. Referential
identity is important for a number of reasons. Clients often want to retrieve information from a particular
feature within or across sessions and referential identity mechanisms provide a handle to do this.
Referential identity is also important in the establishment of relationships between features. Any
implementation providing only discriminating identity is not adequate for the requirements of OpenGIS.

 Page 4-1

OpenGIS Simple Features Specification for CORBA, Revision 1.1

4.5 Implementation Identity

Most existing and legacy feature implementations have some notion of identity (although some flat-file
formats do not). In a typical RDBMS, a feature may be identified by its table (feature type) and a primary
key consisting one or more attributes which together are unique. The table/key couplet provides
discriminating identity within the context of the database. Provided an SQL evaluation engine is available,
such a couplet can also provide referential identity.

In O-O systems, some form of persistent object reference usually provides identity. Some flat-file systems
also provide feature identity through a unique integer identifier and associated location mechanism.

Each of these internal implementation identity mechanisms provides the identity services required for the
functionality the implementation supports. For example, an RDBMS can easily relate two (or more)
features together by establishing a relationship table, which uses keys to identify participating, features.
Alternatively, a relationship can be established by defining a column in a feature table to be of foreign key
type.

4.6 Identity and Database Federation

One of the goals of interoperability is the federation of different feature implementations (databases) into a
unified network of cooperating databases: a ‘one-stop shop’ for feature data consumers. To achieve this
federation and provide the basis for services such as the ability to establish relationships between features
with differing implementation, some form of global identity scheme is required. The abstract specification
recognized this requirement by mandating that feature identity “is unique for all features in all data sets
everywhere through time” [1 para. 3.13.1.2]. This can best be done by extending the internal identity
mechanisms into the global domain (thus avoiding the massive expense of building a new identity
mechanism onto existing legacy data sets).

4.7 Exposing Identity

Using IORs for identity purposes obliges the server implementation to create one and only one CORBA
object for each feature it exposes. For servers with some notion of persistent identity (usually the case) this
is not a particularly onerous requirement. There will be problems with replication, client caching, smart
proxies etc. but these problems are likely to arise for any reasonable complete identification scheme. These
will need to be treated in due course. This implementation specification uses IORs for identity.

It has been suggested that a server’s internal identity mechanism (e.g. a table name & primary key for
RDBMSs) can be used externally to provide feature identity thus avoiding the requirement to create a
CORBA object for each Feature. However, this internal identity would need to be encapsulated in a
CORBA wrapper to isolate clients from internal implementation details of servers: (otherwise clients would
need to be prepared to deal with any number of different identity schemes). This requires the ID to be
embedded in a CORBA object. If identity is required and the server is willing to support it, it ought to be
done through the provision of Feature objects.

Page 4-2

 Chapter 4 Feature Identity

 Page 4-3

Alternatively, OpenGIS could mandate the establishment of a global identity mechanism that all compliant
systems would be required to support. In the CORBA context this would take the form of an OpenGIS
object referencing protocol. This rather autocratic course has the disadvantages that it would (a) exclude all
legacy systems without major (i.e. expensive) re-establishment of feature identity and (b) unnecessarily
restrict the choices of system implementers

4.8 Feature & Object Identity in CORBA

The CORBA 2.0 Basic Object Adapter is in the process of being replaced by the Portable Object Adapter
(POA) [2]. The Object Adapter is the component of the Object Request Broker (ORB) which is
responsible for locating and activating the implementation of an object given an object reference.

The POA will be adopted as a CORBA standard later this year (September 1997). The POA clarifies how
persistent object identity is maintained across sessions and server processes. In particular this specification
mandates the ability of an object’s implementation (i.e. the server process) to be maximally responsible for
the object’s behavior including the definition of the object’s identity and the relationship between an
object’s identity and its state.

The POA Specification defines Object Identity thus: “An Object Id is a value that is used by the POA and
by the user-supplied implementation to identify a particular abstract CORBA object. Object Id values may
be assigned and managed by the POA, or they may be assigned and managed by the implementation.
Object Id values are hidden from clients, encapsulated by references” ([2] 3.2.1 p3.3).

In the OpenGIS context, this policy means that an OpenGIS server implementation may assign Object Ids
to Features (and other OpenGIS entities) as it sees fit. A server implementation with an underlying RDBMS
could use an identity mechanism based on the table name and primary key of the row in the database
corresponding to the feature. This would wholly incorporate the identity of the feature into the object
references passed out by the implementation negating the need for addition identity information to be kept.
As all Object Ids are encapsulated, clients do not need to concern themselves with the formulation of
Object Ids.

This approach allows minimal implementations of OpenGIS interoperability over legacy systems (as
existing identity mechanisms may be leveraged) whilst not imposing the requirement that clients deal with
multiple identity mechanisms (as native Object Ids may be encapsulated within the Object reference).

4.9 Conclusion

The identity requirements of OpenGIS features within the CORBA context are adequately fulfilled by
mandating the encapsulation of an internal server feature identity into any feature object references passed
by an OpenGIS server process to a client. This is the approach that has been adopted for this specification.

5 Exposing Feature Type

The Abstract Specification states that each OpenGIS Feature Instance belongs to a recognized Feature Type
[1 para. 2.11.1.1 p.17]. The specification also demands that Feature Type information (Feature Schema) be
exposed to clients by OpenGIS compliant applications. The CORBA implementation specification must use
some form of CORBA construct to fulfill this requirement. Earlier submissions offered the following
responses to this problem:

Bentley Submission: InterfaceDef - an Interface Repository (IR) construct.

UCLA Submission: Not specified: there is no entity explicitly representing either Features or Feature
Type.

Bentley’s solution was criticized because the IR was allegedly expensive and there were also significant
costs in synchronizing the IDL/IR representation with the underlying datastore technology’s type system.

UCLA’s solution is deficient because it assumes and relies upon an SQL query capability from both feature
clients and feature implementations: a situation that may or may not apply. (If such a situation did apply an
ODBC/SQL based solution would probably be a better choice than CORBA).

To avoid the expense of the IR and its associated synchronization problems an alternative was needed. If
feature types are not IR constructs it follows that features must be accessible through a generic ‘Feature’
interface rather than type-specific interfaces as required by the first Bentley submission. Thus, a generic
Feature interface is needed and is specified in this proposal.

If the interface is generic how do clients know how to deal with type specific properties? The obvious
solution, prima facie, is that clients can ask a feature through the generic Feature interface for a list
(sequence) of its properties as name/value pairs. However this obvious solution has a major flaw: it does
not allow the client to generalize features by type (essentially each feature is of its own unique type). The
number of feature types in a typical GIS is small compared to the number of feature instances (usually by a
factor of two or three orders of magnitude). Thus, requiring each feature to respond separately to a
get_properties operation and then have the client parse through the response to ascertain type information
would usually be grossly inefficient. To avoid this unnecessary overhead, a separate FeatureType object
can supply type information to a client once, which it can then use to extract type-specific information from
potentially large numbers of features. Such a FeatureType object will usually map closely to some entity in
the underlying datastore technology (table for RDBMS, class for OO, some form of external lexicon for
flat-files). Thus, a FeatureType interface was needed.

What are the characteristics of this FeatureType interface? This depended on the scope of the abstract
definition of feature type. Unfortunately the Abstract Specification is extremely vague on this point.

 Page 5-1

OpenGIS Simple Features Specification for CORBA, Revision 1.1

According to the abstract specification’s Open Geodata Specification Model: “The feature type is an
abstract class. It has a set of properties, each of which is distinguished by a role name (corresponding to the
attribute name in a relational model, or the member variable name in an object-oriented model) and a value
from the types chosen for that property. The role name and property types are defined by the specific
feature class specification. The class specification is the schema for the feature class. A subset, potentially
empty, of the properties are of type geometry and represent the spatial-temporal extent of the feature.
Property interfaces include information on the data, such as accuracy information, the object class of its
value(s), and if it is NULL (has no value).” [1 para. 3.13.1.1].

There are a number of problems with this definition, including:

the use of the word ‘class’ in a context (interoperability) where it is ambiguous.

confusion between a feature type specification and a feature instance specification (e.g. property types must
be defined in the former, property values in the latter).

confusion between property type and a property interface: some properties may be defined as object
references (interfaces) but this is hardly essential for every property.

there is no notion of feature type identity. (Issues like: If two features have identical property sets then are
they ipso facto of the same type? If one feature’s properties are a superset of another’s, is that feature a sub-
class of the other’s type (i.e. can an instance of the first be described as an instance of the second)? Can
properties defined as feature OIDs be restricted to features of a particular type or types? etc. are not
answered) Note: this issue is distinct from the notion of feature identity.

no provision is made for feature behavior: an omission that would compromise the potential of OpenGIS
interoperability (it should be noted that the definition of ‘property’ may be broad enough to include
operations with typed parameter lists and return types).

no provision has been made for polymorphism.

Unfortunately these omissions and ambiguities make the abstract definition too weak to be usable as the
basis for interoperability across divergent platforms particularly those such as CORBA that build on the
object-oriented paradigm. The last two are particularly grievous when defining standards for OO systems.
Some clarification is needed. This implementation specification makes the following clarifying
assumptions:

Every feature instance has feature type.

A feature type, like an instance, has a unique identity (OID) which can be used as a type for property sets.

A feature type is defined by a set of typed properties and operations with parameter lists. Either the set of
properties or operations or both may be null sets. Note that rows in a relation table still fit this definition,
while allowing for feature behavior in OO environments.

A subset of a feature type’s property set may be of type ‘Geometry’

A feature must yield its type on demand to an OpenGIS client in a ‘well-known’ format. This may be done
directly or by passing a reference to a ‘FeatureType’ object.

Properties are either of ‘well-known’ type or expose their type in a ‘well-known’ format on demand. They
may be simple types (longs, floats, strings, etc.) or compound types (structs, unions, sequences) or object
references.

Page 5-2

 Chapter 5 Exposing Feature Type

 Page 5-3

If the underlying platform supports it (i.e. this is not required for OpenGIS compliance), features may be
polymorphic i.e. features may conform to a number of types. (Whether this is achieved through single or
multiple inheritance, aggregation or some other means may be DCP and/or implementation dependent.)

‘Well-known’ means defined using some means commonly understandable by OpenGIS clients. This could
be explicitly defined in the implementation specification but preferably some means available at the DCP
level ought to be used if possible (e.g. TypeCodes or IDL in CORBA).

6 References

1. The OpenGIS Abstract Specification Rev 1, OpenGIS Consortium, Inc OpenGIS Project Document
Number 96-015R1, 1996.

2. ORB Portability Joint Submission, Draft 14, Open Management Group Inc, Document Number
orbos/97-04-04, April 1997.

3. Jon Siegel, CORBA Fundamentals and Programming, John Wiley & Sons, 1996

4. Max Egenhofer & John Herring, “A Mathematical Framework for the Definition of Topological
Relationships”, in K Brassel & H Kishimoto, Proceedings of the 4th Internation Symposium on Spatial
Data Handling, Zurich, 1990, p803-813.

5. Object Query Service Specification, Open Management Group Inc, OMG TC Document 95-1-1, 1995.

6. Epicentre Model, Petrotechnical Open Software Consortium (POSC), available at
www.petroconsultants.com.

 Page 6-1

7 Full IDL Specification

module OGIS {

//--
// Forward declarations of interfaces
//--
interface Geometry; // forward declarations
interface FeaturePropertySetIterator;
interface FeatureType;
interface PropertyDefIterator;
interface FeatureIterator;
interface QueryResultSetIterator;

//--
// Common structures
//--
typedef sequence<FeatureType> FeatureTypeSeq;
typedef string Istring;
typedef sequence <Istring> IStringSeq;
typedef sequence<octet> OctetSeq;

struct Decimal {
 long precision;
 long scale;
 OctetSeq value;
 };

// Structure to describe name-value pairs
struct NVPair {
 Istring name; // name is a string
 any value; // value is an 'any' type
};

typedef sequence <NVPair> NVPairSeq;

struct PropertyDef {
 Istring name;
 TypeCode type;
 boolean required;
};

typedef sequence<PropertyDef> PropertyDefSeq;

struct FeatureData {
 FeatureType type;
 NVPairSeq props;
};

typedef sequence<FeatureData> FeatureDataSeq;

 Page 7-1

OpenGIS Simple Features Specification for CORBA, Revision 1.1

//--
// Well-known Structures
//--

struct WKSPoint {
 double x;
 double y;
};

typedef sequence<WKSPoint> WKSPointSeq;
typedef sequence<WKSPoint> WKSLineString;
typedef sequence<WKSLineString> WKSLineStringSeq;
typedef sequence<WKSPoint> WKSLinearRing;
typedef sequence<WKSLinearRing> WKSLinearRingSeq;

struct WKSLinearPolygon {
 WKSLinearRing externalBoundary;
 WKSLinearRingSeq internalBoundaries;
};

typedef sequence <WKSLinearPolygon> WKSLinearPolygonSeq;

enum WKSType {
 WKSPointType,WKSMultiPointType, WKSLineStringType,WKSMultiLineStringType,
 WKSLinearRingType, WKSLinearPolygonType, WKSMultiLinearPolygonType,
 WKSCollectionType
};

union WKSGeometry // near-equivalent to the 'CoordinateGeometry of the spec'

 switch (WKSType) {

 case WKSPointType:
 WKSPoint point;

 case WKSMultiPointType:
 WKSPointSeq multi_point;

 case WKSLineStringType:
 WKSLineString line_string;

 case WKSMultiLineStringType:
 WKSLineStringSeq multi_line_string;

 case WKSLinearRingType:
 WKSLinearRing linear_ring;

 case WKSLinearPolygonType:
 WKSLinearPolygon linear_polygon;

 case WKSMultiLinearPolygonType:
 WKSLinearPolygonSeq multi_linear_polygon;

 case WKSCollectionType:
 sequence<WKSGeometry> collection;
 };

struct Envelope {
 WKSPoint minm;
 WKSPoint maxm;
};

//--
// Feature Interface

interface Feature {
 exception InvalidParams {string why;};

Page 7-2

 Chapter 7 Full IDL Specification

 Page 7-3

 exception PropertyNotSet {}; // Property does not exist.
 exception InvalidProperty {}; // Not a valid property for the given feature.
 exception InvalidValue {}; // value is not valid for property
 exception InvalidConversion {};
 exception RequiredProperty {}; // property is required for the given feature

 // feature type
 readonly attribute FeatureType feature_type;

 // geometry
 Geometry get_geometry (in NVPairSeq geometry_context) raises (InvalidParams);

 // generic property methods to get/set property values
 boolean property_exists(in Istring name) raises(InvalidProperty);

 any get_property(in Istring name) raises(PropertyNotSet,InvalidProperty);

 void set_property(in Istring name, in any value)
 raises(InvalidProperty, InvalidValue);

 void delete_property(in Istring name) raises(PropertyNotSet, InvalidProperty,
 RequiredProperty);

 // accessing property values by property names
 string get_string_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 float get_float_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 double get_double_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 long get_long_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 short get_short_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 boolean get_boolean_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 Decimal get_decimal_by_name(in Istring propertyName)
 raises (InvalidConversion, InvalidProperty);

 OctetSeq get_byte_stream_by_name(in Istring propertyName)
 raises (InvalidConversion, InvalidProperty);

 Geometry get_geometry_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 WKSGeometry get_wksgeometry_by_name(in Istring propertyName)
 raises (InvalidConversion, InvalidProperty);

 OctetSeq get_wkbgeometry_by_name(in Istring propertyName)
 raises (InvalidConversion, InvalidProperty);

 NVPairSeq get_property_sequence(in unsigned long n);

 FeaturePropertySetIterator get_property_iterator();

 void destroy();

};

typedef sequence <Feature> FeatureSeq;

//--
// FeaturePrepertySetIterator Interface
//--

OpenGIS Simple Features Specification for CORBA, Revision 1.1

interface FeaturePropertySetIterator {

 exception IteratorInvalid {};

 // Get next NVPair structure
 boolean next(out NVPair the_pair)
 raises (IteratorInvalid);

 // Get next "n" NVPair structures.
 boolean next_n(in unsigned long n, out NVPairSeq n_pairs)
 raises (IteratorInvalid);

 // Discard the iterator
 void destroy();

 // reset the iterator
 void reset() raises (IteratorInvalid);

};

//--
// FeatureFactory Interface
//--
interface FeatureFactory {

 exception FeatureTypeInvalid {string why;};
 exception PropertiesInvalid {string why;};

 Feature create_feature(in FeatureType type, in NVPairSeq properties)
 raises (FeatureTypeInvalid, PropertiesInvalid);

 FeatureSeq create_features(in FeatureDataSeq features)
 raises (FeatureTypeInvalid, PropertiesInvalid);

};

//--
// FeatureType Interface
//--

interface FeatureType {

 exception InheritanceUnsupported {};
 exception PropertyDefInvalid {};

 // feature type name
 readonly attribute Istring name;

 // feature type parents
 FeatureTypeSeq get_parents() raises (InheritanceUnsupported);

 // feature type children
 FeatureTypeSeq get_children()raises (InheritanceUnsupported);

 // definition of properties for this feature type
 boolean property_def_exists(in Istring name);
 PropertyDef get_property_def(in Istring name) raises(PropertyDefInvalid);
 PropertyDefSeq get_property_def_sequence(in long levels, in unsigned long n);
 PropertyDefIterator get_property_def_iterator (in long levels);
 void destroy();
};

typedef sequence<FeatureType> FeatureTypeSeq;
//--
// FeatureTypeFactory Interface
//--
interface FeatureTypeFactory {

 exception InvalidParams {string why;};

Page 7-4

 Chapter 7 Full IDL Specification

 Page 7-5

 FeatureType create(in string name, in PropertyDefSeq schema,
 in FeatureTypeSeq parents)
 raises(InvalidParams);
};

//--
// PropertyDefIterator Interface
//--
interface PropertyDefIterator {

 exception IteratorInvalid {};

 // Get next PropertyDef structure
 boolean next(out PropertyDef schema_property)
 raises (IteratorInvalid);

 // Get next "n" PropertyDef structures
 boolean next_n(in unsigned long n, out PropertyDefSeq schema_properties)
 raises (IteratorInvalid);

 // Discard the iterator
 void destroy();

 // reset the iterator
 void reset() raises (IteratorInvalid);

};

//--
// FeatureCollection Interface
//--
interface FeatureCollection : Feature {

 exception IteratorInvalid {};
 exception PositionInvalid {};
 exception FeatureInvalid {string why;};
 exception PropertiesInvalid {string why;};

 readonly attribute long number_features;
 FeatureTypeSeq supported_feature_types();

 void add_element (in Feature element) raises (FeatureInvalid);
 void merge (in FeatureCollection elements) raises (FeatureInvalid);

 void insert_element_at (in Feature element, in FeatureIterator where)
 raises (FeatureInvalid, IteratorInvalid);
 void replace_element_at (in Feature element, in FeatureIterator where)
 raises (FeatureInvalid, IteratorInvalid, PositionInvalid);

 void remove_element_at (in FeatureIterator where)
 raises (IteratorInvalid, PositionInvalid);
 void remove_all_elements ();

 Feature retrieve_element_at (in FeatureIterator where)
 raises (IteratorInvalid, PositionInvalid);

 FeatureIterator create_iterator();

 };

//--
// FeatureCollectionFactory Interface
//--
interface FeatureCollectionFactory {

 exception FeatureTypeInvalid {string why;};
 exception PropertyInvalid {string why;};
 exception FeatureInvalid {string why;};

 FeatureCollection create(in FeatureType collection_type,

OpenGIS Simple Features Specification for CORBA, Revision 1.1

 in NVPairSeq collection_properties,
 in FeatureTypeSeq supported_feature_types)
 raises (FeatureTypeInvalid, PropertyInvalid);

 FeatureCollection createFromCollection(in FeatureType collection_type,

 in NVPairSeq collection_properties,
 in FeatureTypeSeq supported_feature_types,

 in FeatureCollection collection)
 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);

 FeatureCollection createFromSequence(in FeatureType collection_type,
 in NVPairSeq collection_properties,
 in FeatureTypeSeq supported_feature_types,
 in FeatureSeq list)
 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);

};

//--
// FeatureIterator Interface
//--
interface FeatureIterator {

 exception IteratorInvalid {};
 exception PositionInvalid {};
 exception FeatureNotAvailable {};

 exception InvalidConversion {};
 exception InvalidProperty {};
 exception PropertyNotSet {};
 exception InvalidParameters {};

 // iterating over features
 boolean next (out Feature the_feature)
 raises (IteratorInvalid, PositionInvalid,
 FeatureNotAvailable);

 boolean next_n (in short n, out FeatureSeq the_features)
 raises (IteratorInvalid, PositionInvalid,
 FeatureNotAvailable);

 void advance ()
 raises (IteratorInvalid, PositionInvalid);

 Feature current ()
 raises (IteratorInvalid, PositionInvalid,
 FeatureNotAvailable);

 // accessing current feature via ‘Feature’-like methods
 FeatureType get_feature_type();

 Geometry get_geometry(in NVPairSeq geometry_context) raises (InvalidParameters);

 boolean property_exists(in Istring name) raises(InvalidProperty);
 any get_property(in Istring name) raises (PropertyNotSet,
 InvalidProperty,);

 string get_string_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 float get_float_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 double get_double_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 long get_long_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 short get_short_by_name(in Istring propertyName)

Page 7-6

 Chapter 7 Full IDL Specification

 Page 7-7

 raises (PropertyNotSet, InvalidProperty);

 boolean get_boolean_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 Decimal get_decimal_by_name(in Istring propertyName)
 raises (InvalidConversion, InvalidProperty);

 OctetSeq get_byte_stream_by_name(in Istring propertyName)
 raises (InvalidConversion, InvalidProperty);

 Geometry get_geometry_by_name(in Istring propertyName)
 raises (PropertyNotSet, InvalidProperty);

 WKSGeometry get_wksgeometry_by_name(in Istring propertyName)
 raises (InvalidConversion, InvalidProperty);

 OctetSeq get_wkbgeometry_by_name(in Istring propertyName)
 raises (InvalidConversion, InvalidProperty);

 NVPairSeq get_property_sequence(in unsigned long n);
 FeaturePropertySetIterator get_property_iterator();

 void reset() raises (IteratorInvalid);

 boolean more();

 void destroy();
};

//--
// ContainerFeatureCollection Interface
//--
interface ContainerFeatureCollection : FeatureCollection, FeatureFactory {
};

//--
// ContainerFeatureCollectionFactory Interface
//--
interface ContainerFeatureCollectionFactory {

 exception FeatureTypeInvalid {string why;};
 exception PropertyInvalid {string why;};
 exception FeatureInvalid {string why;};

 ContainerFeatureCollection create(in FeatureType collection_type,
 in NVPairSeq collection_properties)
 raises (FeatureTypeInvalid, PropertyInvalid);

 ContainerFeatureCollection createFromCollection(in FeatureType collection_type,
 in NVPairSeq collection_properties,
 in FeatureCollection collection)
 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);

 ContainerFeatureCollection createFromSequence(in FeatureType collection_type,
 in NVPairSeq collection_properties,
 in FeatureSeq list)
 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);

 ContainerFeatureCollection createFromFeatureData(in FeatureType collection_type,
 in NVPairSeq collection_properties, in FeatureDataSeq list)
 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);

};

//--
// Queryable Collection Interfaces
//--

OpenGIS Simple Features Specification for CORBA, Revision 1.1

//--
// QueryEvaluator Interface
//--
interface QueryableFeatureCollection; // forward declaration

interface QueryEvaluator {
 exception QueryLanguageTypeNotSupported {};
 exception InvalidQuery {string why;};
 exception QueryProcessingError {string why;};
 exception InvalidGeometry {string why;};
 exception InvalidSpatialOperator {};

 enum QLType {
 SQLQuery, SQL_92Query, OQL, OQLBasic, OQL_93, OQL_93Basic
 };

 typedef sequence<QLType> QLTypeSeq;

 enum SpatialOperatorType {
 TouchOp, ContainsOp, WithinOp, DisjointOp, CrossesOp, OverlapsOp, IntersectsOp
 };

 readonly attribute QLTypeSeq ql_types;
 readonly attribute QLType default_ql_type;

 enum GeomSwitch { GeomType, WKSGeomType };
 union QueryGeom
 switch (GeomSwitch) {
 case GeomType: Geometry geom;

 case WKSGeomType: WKSGeometry wks_geom;
 };

 struct GeomConstraint {
 Istring geom_name;
 SpatialOperatorType spatial_op;
 QueryGeom geo;
 };

 typedef sequence<GeomConstraint> GeomConstraintSeq;

 QueryableFeatureCollection query(
 in string where_clause, in QLType ql_type,
 in GeomConstraintSeq geom_constraints)
 raises(QueryLanguageTypeNotSupported, InvalidQuery,
 InvalidGeometry, QueryProcessingError,
 InvalidSpatialOperator);
};

//--
// QueryableFeatureCollection Interface
//--
interface QueryableFeatureCollection : FeatureCollection, QueryEvaluator {
};

//--
// QueryableFeatureCollectionFactory Interface
//--
interface QueryableFeatureCollectionFactory {

 exception FeatureTypeInvalid {string why;};
 exception PropertyInvalid {string why;};
 exception FeatureInvalid {string why;};

 QueryableFeatureCollection create(in FeatureType collection_type,
 in NVPairSeq collection_properties)
 raises (FeatureTypeInvalid, PropertyInvalid);

 QueryableFeatureCollection createFromCollection(in FeatureType collection_type,
 in NVPairSeq collection_properties,

Page 7-8

 Chapter 7 Full IDL Specification

 Page 7-9

 in FeatureCollection collection)
 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);

 QueryableFeatureCollection createFromSequence(in FeatureType collection_type,
 in NVPairSeq collection_properties,
 in FeatureSeq list)
 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);

 QueryableFeatureCollection createFromFeatureData(in FeatureType collection_type,
 in NVPairSeq collection_properties, in FeatureDataSeq list)
 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);
};

//--
// QueryableContainerFeatureCollection Interface
//--
interface QueryableContainerFeatureCollection: ContainerFeatureCollection, QueryEvaluator
{
};

//--
// QueryableContainerFeatureCollectionFactory Interface
//--
interface QueryableContainerFeatureCollectionFactory {

 exception FeatureTypeInvalid {string why;};
 exception PropertyInvalid {string why;};
 exception FeatureInvalid {string why;};

 QueryableContainerFeatureCollection create(in FeatureType collection_type,
 in NVPairSeq collection_properties)
 raises (FeatureTypeInvalid, PropertyInvalid);

 QueryableContainerFeatureCollection createFromCollection(
 in FeatureType collection_type,
 in NVPairSeq collection_properties,in FeatureCollection collection)
 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);

 QueryableContainerFeatureCollection createFromSequence(
 in FeatureType collection_type, in NVPairSeq collection_properties,
 in FeatureSeq list)
 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);

 QueryableContainerFeatureCollection createFromFeatureData(
 in FeatureType collection_type, in NVPairSeq collection_properties,
 in FeatureDataSeq list)
 raises (FeatureTypeInvalid,PropertyInvalid,FeatureInvalid);

};

//--
// Spatial Reference Systems
//--

//--
// SpatialReferenceInfo
//--
interface SpatialReferenceInfo {

 attribute string name;
 attribute string authority;
 attribute long code;
 attribute string alias;
 attribute string abbreviation;
 attribute string remarks;

 readonly attribute string well_known_text;
};

OpenGIS Simple Features Specification for CORBA, Revision 1.1

//--
// Unit interface
//--
interface Unit : SpatialReferenceInfo {
};

//--
// AngularUnit interface
//--
interface AngularUnit : Unit {

 attribute double radians_per_unit;

};

//--
// LinearUnit interface
//--
interface LinearUnit : Unit {

 attribute double metres_per_unit;

};

//--
// Ellipsoid interface
//--
interface Ellipsoid : SpatialReferenceInfo {

 attribute double semi_major_axis;
 attribute double semi_minor_axis;
 attribute double inverse_flattening;
 attribute LinearUnit axis_unit;

};

//--
// HorizontalDatum interface
//--
interface HorizontalDatum : SpatialReferenceInfo {

 attribute Ellipsoid base_ellipsoid;

};

//--
// PrimeMeridian interface
//--
interface PrimeMeridian : SpatialReferenceInfo {

 attribute double longitude;
 attribute AngularUnit angular_units;

};

//--
// SpatialReferenceSystem interface
//--
interface SpatialReferenceSystem : SpatialReferenceInfo {
};

//--
// GeodeticSpatialReferenceSystem interface
//--
interface GeodeticSpatialReferenceSystem : SpatialReferenceSystem {
};

//--
// GeographicCoordinateSystem interface

Page 7-10

 Chapter 7 Full IDL Specification

 Page 7-11

//--
interface GeographicCoordinateSystem : GeodeticSpatialReferenceSystem {

 attribute string usage; // description?
 attribute HorizontalDatum horizontal_datum;
 attribute AngularUnit angular_unit;
 attribute PrimeMeridian prime_meridian;

};

//--
// Parameter interface
//--
interface Parameter : SpatialReferenceInfo {

 attribute Unit units;
 attribute double value;

};

typedef sequence<Parameter> ParameterSeq;

//--
// ParameterList interface
//--
interface ParameterList {

 readonly attribute long number_parameters;

 ParameterSeq get_default_parameters();

 void set_parameters (in ParameterSeq parameters);
 ParameterSeq get_parameters ();

};

//--
// GeographicTransform interface
//--
interface GeographicTransform : SpatialReferenceInfo {

 attribute GeographicCoordinateSystem source_gcs;
 attribute GeographicCoordinateSystem target_gcs;

 WKSGeometry forward (in WKSGeometry source_geometry);
 WKSGeometry inverse (in WKSGeometry source_geometry);

};

//--
// Projection interface
//--
interface Projection : SpatialReferenceInfo {

 readonly attribute string usage;
 readonly attribute string classification;

 WKSGeometry forward (in WKSGeometry source_geometry);
 WKSGeometry inverse (in WKSGeometry source_geometry);

 readonly attribute ParameterList parameters;

 attribute AngularUnit angular_units;
 attribute LinearUnit linear_units;
 attribute Ellipsoid base_ellipsoid;

};

//--
// ProjectedCoordinateSystem interface

OpenGIS Simple Features Specification for CORBA, Revision 1.1

//--
interface ProjectedCoordinateSystem : GeodeticSpatialReferenceSystem {

 attribute string usage;
 attribute GeographicCoordinateSystem geographic_coordinate_system;
 attribute LinearUnit linear_units;
 attribute Projection base_projection;

 readonly attribute ParameterList parameters;

 WKSGeometry forward (in WKSGeometry source_geometry);
 WKSGeometry inverse (in WKSGeometry source_geometry);

};

//--
// SpatialReferenceSystemFactory interface
//--
interface SpatialReferenceSystemFactory {

 SpatialReferenceSystem create_from_WKT (in string srs_wkt);

};

//--
// SpatialReferenceComponentFactory interface
//--
interface SpatialReferenceComponentFactory {

 readonly attribute string authority;

 ProjectedCoordinateSystem create_projected_coordinate_system (in long code);
 GeographicCoordinateSystem create_geographic_coordinate_system (in long code);
 Projection create_projection (in long code);
 GeographicTransform create_geographic_transform (in long code);
 HorizontalDatum create_horizontal_datum (in long code);
 Ellipsoid create_ellipsoid (in long code);
 PrimeMeridian create_prime_meridian (in long code);
 LinearUnit create_linear_unit (in long code);
 AngularUnit create_angular_unit (in long code);

};

//--
// Geometry interface
//--
interface Geometry {

 exception WKBNotImplemented {};

 enum EgenhoferElement {
 Empty, NotEmpty, NoTest
 };

 struct EgenhoferOperator {
 EgenhoferElement elements[3][3];
 };

 readonly attribute short dimension; // dimension of the geometry
 // - not the coordinate system
 readonly attribute Envelope range_envelope;// minBoundBox in abstract spec

 readonly attribute SpatialReferenceSystem spatial_reference_system;

 // geometric characteristics
 boolean is_empty();
 boolean is_simple();
 boolean is_closed();

 // constructive operators

Page 7-12

 Chapter 7 Full IDL Specification

 Page 7-13

 Geometry copy();
 Geometry boundary();
 Geometry buffer (in double distance);
 Geometry convex_hull();

 // WKS operators
 WKSGeometry export(); // export geometry to WKS
 OctetSeq export_WKBGeometry() // export geometry to WKB
 raises (WKBNotImplemented);

 // relational operators
 boolean equals (in Geometry other);
 boolean touches (in Geometry other);
 boolean contains (in Geometry other);
 boolean within (in Geometry other);
 boolean disjoint (in Geometry other);
 boolean crosses (in Geometry other);
 boolean overlaps (in Geometry other);
 boolean intersects (in Geometry other);
 boolean relate (in Geometry other, in EgenhoferOperator operator);

 // metric operators
 double distance (in Geometry other);

 // set operators
 Geometry intersection (in Geometry other);
 Geometry union_op(in Geometry other);
 Geometry difference (in Geometry other);
 Geometry symmetric_difference (in Geometry other);

 void destroy();
};

//--
// GeometryFactory interface
//--
interface GeometryFactory {
 exception InvalidWKS {string why;};
 exception InvalidWKB {string why;};
 exception WKBNotImplemented {};

 Geometry create(in Geometry existing);

 Geometry create_from_WKS(in SpatialReferenceSystem srs,in WKSGeometry geo)
 raises (InvalidWKS);

 Geometry create_from_WKB(in SpatialReferenceSystem srs,in OctetSeq geo)
 raises (InvalidWKB, WKBNotImplemented);
};

interface GeometryCollection;
interface GeometryIterator;

//--
// GeometryCollection interface
//--
interface GeometryCollection : Geometry {

 exception IteratorInvalid {};
 exception PositionInvalid {};
 exception GeometryInvalid {};

 readonly attribute long number_elements;

 // these operations allowing for arbitrary collections
 void add_element (in Geometry element) raises (GeometryInvalid);
 void merge (in GeometryCollection elements) raises (GeometryInvalid);

 void insert_element_at (in Geometry element, in GeometryIterator where)
 raises (GeometryInvalid, IteratorInvalid);

OpenGIS Simple Features Specification for CORBA, Revision 1.1

 void replace_element_at (in Geometry element, in GeometryIterator where)
 raises (GeometryInvalid, IteratorInvalid, PositionInvalid);

 void remove_element_at (in GeometryIterator where)
 raises (IteratorInvalid, PositionInvalid);
 void remove_all_elements ();

 // retrieve a geometry from a collection
 Geometry retrieve_element_at (in GeometryIterator where)
 raises (IteratorInvalid, PositionInvalid);

 // create an iterator over the collection
 GeometryIterator create_iterator();
};

//--
// GeometryIterator interface
//--

interface GeometryIterator {

 exception IteratorInvalid {};
 exception PositionInvalid {};

 Geometry next () raises (IteratorInvalid, PositionInvalid);
 void reset() raises (IteratorInvalid);
 boolean more();
 void destroy();
};

//--
// Point interface
//--
interface Point : Geometry {

 attribute WKSPoint coordinates;

};

//--
// PointFactory interface
//--
interface PointFactory : GeometryFactory {

 exception InvalidWKSPoint {};
 exception InvalidWKBPoint {};

 Point create_from_Point(in Point existing);

 Point create_from_WKSPoint(in SpatialReferenceSystem srs, in WKSPoint geo)
 raises (InvalidWKSPoint);

 Point create_from_WKBPoint(in SpatialReferenceSystem srs, in OctetSeq geo)
 raises (InvalidWKBPoint, WKBNotImplemented);
};

//--
// MultiPoint interface
//--
interface MultiPoint : GeometryCollection {
};

//--
// MultiPointFactory interface
//--
interface MultiPointFactory : GeometryFactory {

 exception InvalidWKSMultiPoint {};

Page 7-14

 Chapter 7 Full IDL Specification

 Page 7-15

 exception InvalidWKBMultiPoint {};

 MultiPoint create_from_MultiPoint(in MultiPoint existing);

 MultiPoint create_from_WKSMultiPoint(in SpatialReferenceSystem srs,
 in WKSPointSeq geo)
 raises (InvalidWKSMultiPoint);

 MultiPoint create_from_WKBMultiPoint(in SpatialReferenceSystem srs,
 in OctetSeq geo)
 raises (InvalidWKBMultiPoint,WKBNotImplemented);

};

//--
// Curve interface
//--
interface Curve : Geometry {

 exception OutOfDomain {};

 readonly attribute double length;
 readonly attribute Point start_point;
 readonly attribute Point end_point;
 readonly attribute WKSPoint start_point_as_WKS;
 readonly attribute WKSPoint end_point_as_WKS;

 boolean is_planar();

 Point value (in double r) raises (OutOfDomain);
 WKSPoint value_as_WKS (in double r) raises (OutOfDomain);

};

//--
// LineString interface
//--
interface LineString : Curve {

 exception InvalidIndex{};
 exception MinimumPoints{};

 readonly attribute long num_points;

 Point get_point_by_index (in long index) raises (InvalidIndex);
 WKSPoint get_point_by_index_as_WKS (in long index) raises (InvalidIndex);

 void set_point_by_index (in WKSPoint new_point, in long index)
 raises (InvalidIndex);
 void set_point_by_index_with_WKS (in WKSPoint new_point, in long index)
 raises (InvalidIndex);

 void insert_point_by_index (in Point new_point, in long index)
 raises (InvalidIndex);
 void insert_point_by_index_with_WKS (in WKSPoint new_point, in long index)
 raises (InvalidIndex);

 void append_point (in Point new_point);
 void append_point_with_WKS (in WKSPoint new_point);

 void delete_point_by_index (in long index)
 raises (InvalidIndex, MinimumPoints);
};

//--
// LineStringFactory interface
//--
interface LineStringFactory : GeometryFactory {

 exception InvalidWKSLineString {};

OpenGIS Simple Features Specification for CORBA, Revision 1.1

 exception InvalidWKBLineString {};

 LineString create_from_LineString(in LineString existing);

 LineString create_from_WKSLineString (in SpatialReferenceSystem srs,
 in WKSLineString geo)
 raises (InvalidWKSLineString);

 LineString create_from_WKBLineString(in SpatialReferenceSystem srs,
 in OctetSeq geo)
 raises (InvalidWKBLineString,WKBNotImplemented);
};

//--
// Ring interface
//--
interface Ring : Curve {
};

//--
// LinearRing interface
//--
interface LinearRing : Ring, LineString {
};

//--
// MultiCurve interface
//--
interface MultiCurve : GeometryCollection {

 readonly attribute double length;

};

//--
// MultiLineString interface
//--
interface MultiLineString : MultiCurve {
};

//--
// MultiLineStringFactory interface
//--
interface MultiLineStringFactory : GeometryFactory {
 exception InvalidWKSMultiLineString {};
 exception InvalidWKBMultiLineString {};

 MultiLineString create_from_MultiLineString(in MultiLineString existing);

 MultiLineString create_from_WKSMultiLineString(in SpatialReferenceSystem srs,
 in WKSLineStringSeq geo)
 raises (InvalidWKSMultiLineString);

 MultiLineString create_from_WKBMultiLineString(in SpatialReferenceSystem srs,
 in OctetSeq geo)
 raises (InvalidWKBMultiLineString,WKBNotImplemented);
};

//--
// Surface interface
//--
interface Surface : Geometry {

 readonly attribute double area;
 readonly attribute Point centroid;
 readonly attribute WKSPoint centroid_as_WKS;
 readonly attribute Point point_on_surface;
 readonly attribute WKSPoint point_on_surface_as_WKS;

Page 7-16

 Chapter 7 Full IDL Specification

 Page 7-17

 boolean is_planar();
};

//--
// Polygon interface
//--
interface Polygon : Surface {

 readonly attribute Ring exterior_ring;
 readonly attribute WKSGeometry exterior_ring_as_WKS;

 readonly attribute MultiCurve interior_rings;
 readonly attribute WKSGeometry interior_rings_as_WKS;
 };

//--
// LinearPolygon interface
//--
interface LinearPolygon : Polygon {

};

//--
// LinearPolygonFactory interface
//--
interface LinearPolygonFactory : GeometryFactory {

 exception InvalidWKSLinearPolygon {};
 exception InvalidWKBLinearPolygon {};

 LinearPolygon create_from_LinearPolygon(in LinearPolygon existing);

 LinearPolygon create_from_WKSLinearPolygon(in SpatialReferenceSystem srs,
 in WKSLinearPolygon geo)
 raises (InvalidWKSLinearPolygon);

 LinearPolygon create_from_WKBLinearPolygon(in SpatialReferenceSystem srs,
 in OctetSeq geo)
 raises (InvalidWKBLinearPolygon,WKBNotImplemented);
};

//--
// MultiSurface interface
//--
interface MultiSurface : GeometryCollection {

 readonly attribute double area;

};

//--
// MultiPolygon interface
//--
interface MultiPolygon : MultiSurface {
};

//--
// MultiLinearPolygon interface
//--
interface MultiLinearPolygon : MultiPolygon {
};

//--
// MultiLinearPolygon interface
//--
interface MultiLinearPolygonFactory : GeometryFactory {

 exception InvalidWKSMultiLinearPolygon {};

OpenGIS Simple Features Specification for CORBA, Revision 1.1

Page 7-18

 exception InvalidWKBMultiLinearPolygon {};

 MultiLinearPolygon create_from_MultiLinearPolygon(in MultiLinearPolygon existing);

 MultiLinearPolygon create_from_WKSMultiLinearPolygon(in SpatialReferenceSystem srs,
 in WKSLinearPolygonSeq geo)
 raises (InvalidWKSMultiLinearPolygon);

 MultiLinearPolygon create_from_WKBMultiLinearPolygon(in SpatialReferenceSystem srs,
 in OctetSeq geo)
 raises (InvalidWKBMultiLinearPolygon);
};

}; // End OGIS Module

	Preface
	Submitting Companies
	Submission Contact Points
	Document Conventions
	Revision History
	Editorial Notes

	Overview
	Architecture
	Feature Model Architecture:
	Geometry Model Architecture

	Component Specifications
	Feature Module
	Feature Related Interfaces
	Feature Interface
	Purpose
	Type Specific Feature Interfaces
	Feature Identity
	Typical Server Implementations
	Client Scenarios
	Rejected Approaches

	FeaturePropertySetIterator Interface
	Purpose
	IDL Specification
	Interface Description

	FeatureFactory Interface
	Purpose
	IDL Specification
	Interface Description

	Feature Type Related Interfaces
	FeatureType Interface
	Purpose
	IDL Specification
	Interface Description
	Conceptual framework
	Feature Polymorphism
	Typical Server Implementations
	Rejected Approaches
	Feature Behavior & the Interface Repository

	FeatureTypeFactory Interface
	Purpose
	IDL Specification
	Interface Description

	PropertyDefIterator Interface
	Purpose
	IDL Specification
	Interface Description

	Feature Collection Related Interfaces
	Feature Collection Interface
	Purpose
	IDL Specification
	Interface Description
	Typical Server Implementations

	FeatureCollectionFactory Interface
	Purpose
	IDL Specification
	Interface Description

	FeatureIterator Interface
	Purpose
	Typical Server Implementations

	Container Feature Collection Interfaces
	ContainerFeatureCollection Interface
	Purpose
	IDL Specification
	Interface Description
	Typical Server Implementations

	ContainerFeatureCollectionFactory Interface
	Purpose
	IDL Specification
	Interface Description

	Queryable Interfaces
	Query Example
	QueryEvaluator Interface
	QueryableFeatureCollection Interfaces
	Purpose
	IDL Specification
	Interface Description

	QueryableContainerFeatureCollection Interfaces
	Purpose
	IDL Specification
	Interface Description

	Geometry Module
	Spatial Reference System Interfaces
	SpatialReferenceInfo Interface
	Purpose
	IDL Specification
	Interface Description

	Unit Interface
	Purpose
	IDL Specification

	AngularUnit Interface
	Purpose
	IDL Specification:
	Interface Description:

	LinearUnit Interface
	Purpose
	IDL Specification
	Interface Description

	Ellipsoid Interface
	Purpose
	IDL Specification
	Interface Description:

	HorizontalDatum Interface
	Purpose
	IDL Specification
	Interface Description

	PrimeMeridian Interface
	Purpose
	IDL Specification
	Interface Description

	SpatialReferenceSystem Interface
	Purpose
	IDL Specification

	GeodeticSpatialReferenceSystem Interface
	Purpose
	IDL Specification

	GeographicCoordinateSystem Interface
	Purpose
	IDL Specification
	Interface Description

	Parameter Interface
	Purpose
	IDL Specification
	Interface Description

	ParameterList Interface
	Purpose
	IDL Specification
	Interface Description

	GeographicTransform Interface
	Purpose
	IDL Specification
	Interface Description

	Projection Interface
	Purpose
	IDL Specification
	Interface Description

	ProjectedCoordinateSystem Interface
	Purpose
	IDL Specification
	Interface Description

	SpatialReferenceSystemFactory Interface
	Purpose:
	IDL Specification:
	Interface Description:

	SpatialReferenceComponentFactory Interface
	Purpose
	IDL Specification
	Interface Description

	General Geometry Interfaces
	Geometry Interface
	Purpose
	IDL Specification
	Interface Description

	GeometryFactory Interface
	Purpose
	IDL Specification
	Interface Description

	GeometryCollection Interface
	Purpose:
	IDL Specification
	Interface Description
	GeometryIterator Interface Description

	Zero Dimensional Geometries
	Point Interface
	Purpose
	IDL Specification
	Interface Description

	PointFactory Interface
	Purpose
	IDL Specification
	Interface Description

	MultiPoint Interface
	Purpose
	IDL Specification

	MultiPointFactory Interface
	Purpose
	IDL Specification
	Interface Description

	One-dimensional Geometries
	Curve Interface
	Purpose
	IDL Specification
	Interface Description
	Usage Scenarios

	LineString Interface
	Purpose:
	IDL Specification
	Interface Description:

	LineStringFactory Interface
	Purpose
	IDL Specification
	Interface Description

	Ring Interface
	Purpose
	IDL Specification

	LinearRing Interface
	Purpose
	IDL Specification

	MultiCurve Interface
	Purpose
	IDL Specification
	Interface Description

	MultiLineString Interface
	Purpose
	IDL Specification

	MultiLineStringFactory Interface
	Purpose
	IDL Specification
	Interface Description

	Two-dimensional Geometries
	Surface Interface
	Purpose
	IDL Specification
	Interface Description:

	Polygon Interface
	Purpose
	IDL Specification
	Interface Description

	LinearPolygon Interface
	Purpose
	IDL Specification

	LinearPolygonFactory Interface
	Purpose
	IDL Specification
	Interface Description

	MultiSurface Interface
	Purpose
	IDL Specification
	Interface Description:

	MultiPolygon Interface
	Purpose
	IDL Specification

	MultiLinearPolygon Interface
	Purpose
	IDL Specification

	MultiLinearPolygonFactory Interface
	Purpose
	IDL Specification
	Interface Description

	Structures & Enumerations
	Well-known Structures
	Purpose:
	IDL Specification

	The Well-known Binary Representation for Geometry (WKBGeometry)
	Component Overview
	Component Description
	Numeric Type Definitions
	XDR (Big Endian) Encoding of Numeric Types
	NDR (Little Endian) Encoding of Numeric Types
	Conversion between the NDR and XDR representations of WKBGeometry
	Relationship to other COM and CORBA data transfer protocols
	Description of WKBGeometry Byte Streams
	Assertions for Well-known Binary Representation for Geometry
	Linear Rings
	Polygons
	MultiPolygons

	Well-known Text Representation of Spatial Reference Systems
	Component Overview
	Component Description

	Feature Identity
	Introduction
	Features vs. Real World Entities
	Identity ‘Ownership’
	Aspects of Identity
	Implementation Identity
	Identity and Database Federation
	Exposing Identity
	Feature & Object Identity in CORBA
	Conclusion

	Exposing Feature Type
	References
	Full IDL Specification

