
OpenGIS - Catalog Interface
Implementation Specification
(Version1.0)

The Joint Submission

Submitters:

Blue Angel Technologies

Environmental Systems Research Institute (ESRI)

Geomatics Canada (Canada Centre for Remote Sensing (CCRS))

Intergraph Corporation

Marconi Integrated Systems, inc.

MITRE

Oracle Corporation

U.S. Federal Geographic Data Committee (FGDC)

U.S. National Aeronautics and Space Administration (NASA)

U.S. National Imagery and Mapping Agency (NIMA)

Contributors:

Compusult Limited, GEODAN IT bv, HJW, JRC - European Commission, SICAD
GEOMATICS

OpenGIS Project Document 99-051s

OpenGIS Catalog Interface Version 1.0ii

NOTICE

The companies listed above hereby grant a royalty-free, paid up license to the Open GIS Consortium, Inc. (OGC)
for worldwide distribution of this document or any derivative works thereof, so long as OGC reproduces the
copyright notices and the below paragraphs on all distributed copies.

The material in this document is submitted to the OGC for evaluation. Submission of this document does not
represent a commitment to implement any portion of this specification in the products of the submitters.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELEIVED TO BE ACCURATE, THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. The companies listed above shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, performance or use
of this material. The information contained in this document is subject to change without notice.

This document contains information which is protected by copyright. All Rights Reserved. Except as otherwise
provided herein, no part of this work may be reproduced or used in any form or by any meansgraphic, electronic,
or mechanical including photocopying, recording, taping, or information storage and retrieval systemswithout
the permission of one of the copyright owners. All copies of this document must include the copyright and other
information contained on this page.

The copyright owners grant member companies of the OGC permission to make a limited number of copies of this
document (up to fifty copies) for their internal use as a part of the OGC evaluation process.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set
forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS
252.227.7013.

OpenGIS Catalog Interface Version 1.0iii

Table of Contents

1. Preface ..1

2. Overview...3

3. General Catalog Interface Model..9

4. OGC_Common Catalog Query Language...75

5. CORBA Profiles ..84

6. OLEDB Profile..121

7. WWW Profile..155

8. Proposed Additional OGC Basic Data Types ..176

OpenGIS Catalog Interface Version 1.0iv

Detailed Table of Contents

1. Preface ..1

1.1 Submitting Entities...1

1.2 Contributing Entities ..1

1.3 Contact Points..1

2. Overview...3

2.1 Context of Catalog Services..3

2.2 Reference Model Architecture ..3

2.3 Cross Profile Interoperability..4

2.4 Catalog Object Model...5

2.5 Metadata Model Independence ...6

2.6 Query Language...7

2.7 Use of XML...7

2.8 Browse...7

2.9 Interoperability and Compliance with Simple Features..7

2.10 Distributed Search..8

3. General Catalog Interface Model..9

3.1 Introduction of The General Model...9

3.2 Coarse-Grain Structural Model ...11

3.2.1 Overview of The Coarse-Grained Interface Model..11

3.2.2 The Messaging Model ..12

3.2.3 CG_CatalogService Interface..16

3.2.4 CG_Discovery Interface ...21

3.2.5 CG_Access Interface ..27

3.2.6 CG_CatalogManager Interface..30

3.2.7 Parameter Type Definitions ..33

3.3 Fine-Grain Structural Model...45

3.3.1 Overview..45

3.3.2 Managers..45

3.3.3 Responses...49

3.3.4 DataTypes ..53

3.3.5 Catalog Specific DataTypes ..53

3.3.6 Callbacks..58

3.4 Coarse-Grain Dynamic Model ..59

3.4.1 UML State Diagram Notation ...59

3.4.2 Catalog Server State Machine ...59

OpenGIS Catalog Interface Version 1.0v

3.4.3 Discovery State ..60

3.4.4 Access State Diagram ...63

3.4.5 Management State ..65

3.4.6 Utility State Diagram..65

3.5 Fine-Grain Dynamic Model ..66

3.6 Cross-Model Interoperability..70

3.6.1 Coarse to Fine Grain Mapping ..70

3.6.2 DCP Bridge Dynamics..73

4. OGC_Common Catalog Query Language...75

4.1 Assumptions during the development of OGC_Common Query Language:75

4.2 BNF definition of OGC_Common Query Language..75

5. CORBA Profiles ..84

5.1 Fine-Grain CORBA Profile ..84

5.1.1 Sequence Diagrams ..84

5.1.2 IDL Definition..84

5.1.3 Module FGCatalog ..84

5.1.4 Module CB...94

5.1.5 Module UID ...94

5.1.6 Module OGCBasic ...95

5.2 Coarse-Grained CORBA Profile ...98

5.2.1 Architecture - Object Model..98

5.2.2 Event Traces...98

5.2.3 Interface Definition - IDL ...98

6. OLEDB Profile..121

6.1 Architecture ...121

6.1.1 Mandatory OLEDB Interfaces...121

6.1.2 OGC Extensions to OLEDB..122

6.2 Sequence Diagram ...122

6.3 Parameter Translation...123

6.3.1 CG_AttributeCategory..124

6.3.2 CG_BrokeredAccessRequestType...124

6.3.3 CG_Status ..124

6.3.4 CG_Capability..124

6.3.5 CG_QueryLanguage...127

6.3.6 CG_CatalogEntryType..127

6.3.7 CG_CharacterSet..128

6.3.8 CG_CollectionName...128

OpenGIS Catalog Interface Version 1.0vi

6.3.9 CG_MessageFormat ...128

6.3.10 CG_PredefinedPresentationType...128

6.3.11 CG_PresentationDescription ...128

6.3.12 CG_QueryExpression ...129

6.3.13 CG_QueryScope...129

6.3.14 CG_RequestID ...129

6.3.15 CG_ResultType..129

6.3.16 CG_ReturnData..129

6.3.17 CG_SortField ...130

6.3.18 CG_SortOrder ..130

6.3.19 CG_UserInformation ..130

6.3.20 CG_PaymentMethod ..130

6.3.21 TupleType..130

6.3.22 Schema ..130

6.3.23 CG_SchemaID ...131

6.4 Detailed Implementation Guidance...131

6.4.1 Establish a catalog session ..131

6.4.2 End a Catalog Session...133

6.4.3 Query the server properties ...134

6.4.4 Check the status of a request ...136

6.4.5 Cancel a request ...138

6.4.6 Issue a Query..140

6.4.7 Present Query Results...146

6.4.8 Get the schema ...151

7. WWW Profile..155

7.1 Architecture ...155

7.1.1 Supported Services ...155

7.1.2 Transport (HTTP)...155

7.1.3 Transport (TCP) ...155

7.2 Sequence Diagrams..155

7.3 Example Sequence Diagram ...156

7.4 Interface Definition – XML..158

7.5 Definition of Externals ...165

7.5.1 Additional Search Info..165

7.5.2 Order Extended Service ..165

8. Proposed Additional OGC Basic Data Types..176

8.1 AbsTime..176

OpenGIS Catalog Interface Version 1.0vii

8.2 BinData ...176

8.3 Cardinality ...176

8.3.1 Public Attributes:..176

8.4 DG_DirectedGraph ..176

8.5 DG_DirectedGraphList ..177

8.6 Date ...177

8.6.1 Public Attributes:..177

8.7 Edge ..177

8.7.1 Public Attributes:..177

8.8 EdgeList ..177

8.9 FileLocation...177

8.9.1 Public Attributes:..177

8.10 FileLocationList...177

8.11 Name ...177

8.12 NameList ...178

8.13 NameValue ..178

8.13.1 Public Attributes:..178

8.14 NameValueList ..178

8.15 NameValueTable ...178

8.16 Node ..178

8.16.1 Public Attributes:..178

8.17 NodeID ..178

8.18 NodeList ..178

8.19 NodeType ..178

8.19.1 Public Attributes:..178

OpenGIS Catalog Interface Version 1.0viii

Table of Figures

Figure 1 - Information Discovery Continuum...3

Figure 2 - Reference Model Architecture ...4

Figure 3- Decomposition of Catalog Services ..4

Figure 4- An Example of a One-Way Bridge ...5

Figure 5- Catalog Object Model...6

Figure 6 - Top Level General Model..10

Figure 7 -Main Static Class Diagram of the Coarse-Grained General Interface Model...............................11

Figure 8 - Main Class Diagram for Message Package...12

Figure 9 - Request Message Classes and Their Attributes (Parameters) Defined for OGC Coarse-Grain
Catalog Interface Model...14

Figure 10 -Response Message Classes and Their Attributes (Parameters) Defined for OGC Coarse-Grained
Catalog Interface Model...15

Figure 11 - Static Class Diagram showing CG_Capability Class and Its Instantiated Subtypes.34

Figure 12 - The Library and Managers...45

Figure 13 - Response Interfaces ...50

Figure 14 - UML State Diagram Notation ..59

Figure 15 - Catalog Session State Diagram ..60

Figure 16 - Discovery State Diagram (without Status and Cancel)..61

Figure 17 - Discovery State Diagram (Complete)...62

Figure 18- Access State Diagram...63

Figure 19- Order Estimation State Diagram ...64

Figure 20 - Order Submit State Diagram..64

Figure 21 - Management State Diagram...65

Figure 22 - Utility State Diagram...65

Figure 23 - Typical Query Sequence..66

Figure 24 - Minimal Query Sequence ..67

Figure 25 - Query with Callback Sequence ..68

Figure 26 - Coarse to Fine Bridge..74

Figure 27 - WWW Profile Sequence Diagram..157

Figure 28 - The DG_DirectedGraph...176

OpenGIS Catalog Interface Version 1.0ix

Table of Tables

Table 1 - The Profile Matrix ..5

Table 2 - The Operations of the CG_CatalogService Interface..16

Table 3 - The Operations of the CG_Discovery Interface ...21

Table 4 - The Operations of the CG_CatalogManager Interface..30

Table 5 - Brokered Access Request Types33

Table 6 - Order Status Codes38

Table 7 - Minimal Mandatory Attribute Definitions ..42

Table 8 - Sort Order Operations..43

Table 9 - CG_ResultType as used in Discovery State Diagrams ...61

Table 10 - Order Request Type Diagram Codes63

Table 11 - Coarse to Fine Grain Mapping70

Table 12 - General Model to WWW Profile Message Mapping ..156

Table 13 - Order Extended Service ..166

OpenGIS Catalog Interface Version 1.01

1. Preface

1.1 Submitting Entities

The following entities are pleased to jointly submit this specification in response to the OGC Request 6,
Core Task Force, Catalog Working Group, A Request for Proposals: OpenGIS Catalog Interface (OpenGIS
Project Document Number 98-001r2):

Blue Angel Technologies, Inc.

Environmental Systems Research Institute (ESRI)

Geomatics Canada (Canada Centre for Remote Sensing (CCRS))

Intergraph Corporation

Marconi Integrated Systems, Inc.

MITRE

Oracle Corporation

U.S. Federal Geographic Data Committee (FGDC)

U.S. National Aeronautics and Space Administration (NASA)

U.S. National Imagery and Mapping Agency (NIMA)

1.2 Contributing Entities

The submitting entities were grateful for the contributions from the following companies in the
development of this response to the OGC Request 6, Core Task Force, Catalog Working Group, A Request
for Proposals: OpenGIS Catalog Interface (OpenGIS Project Document Number 98-001r2):

Compusult Limited

GEODAN IT bv

Hammon, Jensen, Wallen & Associates, Inc (HJW)

JRC (Joint Research Centre), European Commission

SICAD GEOMATICS

1.3 Contact Points

All questions about the joint submission should be directed to one of the following contacts:

Yonsook Enloe
SGT, Inc.
7701 Greenbelt Rd
Greenbelt, MD 20770
yonsook.enloe@gsfc.nasa.gov
voice : +1-704-243-2085
fax : +1-704-243-2150

OpenGIS Catalog Interface Version 1.02

Doug Nebert
U.S. Federal Geographic Data Committee
USGS National Center, Mail Stop 590
12201 Sunrise Valley Drive
Reston, VA 20192
ddnebert@usgs.gov
voice : +1-703-648-4151
fax : +1-703-648-5755

Larry Stephens
National Imagery and Mapping Agency
12310 Sunrise Valley Drive
Mail Stop P-23
Reston, VA 20191
stephenl@nima.mil
voice : +1-703-262-4583
fax : +1-703-262-4599

OpenGIS Catalog Interface Version 1.03

2. Overview

Section 2 provides a descriptive overview of key issues in the development of the OGC Catalog Interface.
Section 2 is non-normative.

2.1 Context of Catalog Services

The geospatial community is a very broad based community which works in many different operational
environments. On one extreme there are tightly coupled systems dedicated to well defined functions in a
tightly controlled environment. At the other extreme are Web based services which know nothing about
the client. The initial catalog submittals addressed two parts of this continuum The DCS proposal
addressed the controlled Enterprise environment where a degree of a-priori knowledge exists about the
client and server. The EO/GO proposal addressed the global internet case where no a-priori knowledge
exists between client and server. This document provides a specification which is applicable to the full
range of catalog operating environments.

SimpleFeatures

domain knowledge

Global Information
Discovery

Information
Exploitation

AltaVista GEO CIP DCS

Heterogeneous Homogeneous

highlow

architectures

Figure 1 - Information Discovery Continuum

2.2 Reference Model Architecture

The Reference Model for the OGC Catalog Interface is composed of two parts: a Reference Architecture
and a Decomposition of Catalog Services.

Figure 2 shows the Reference Architecture assumed for development of the OGC Catalog Interface. The
architecture is a multi-tier arrangement of clients and servers. To provide a context, the architecture shows
more than just catalog interfaces. The bold lines illustrate the scope of OGC Catalog and Features
interfaces. Where appropriate, OGC Feature interfaces have been re-used in the OGC Catalog interface, as
discussed in Section 2.9.

The Application shown Figure 2 interfaces with the Application Server using the OGC Catalog Interface.
The Application Server may draw on one of three sources to respond to the Catalog Service request: a
Metadata Store local to the Application Server, another Application Server, or a Data Store. The interface
to the local metadata store is internal to the Application Server. The interface between Application Servers
is the OGC Catalog Interface. The interface to the Data Store is the OGC Features Interface. In this case an
Application Server is acting as both a client and server. See Section 2.10 for more about Distributed
Searching. Data returned from a OGC Features query is processed by the Application Server to return the
data appropriate to a Catalog request.

OpenGIS Catalog Interface Version 1.04

describes

OGC Features
Interfaces

ApplicationApplication

Application
Server

Application
Server

Metadata Store
(local)

Metadata Store
(local)

Data StoreData Store

OGC Catalog
Interfaces

Internal
Interfaces,
e.g. OGC
Features

Figure 2 - Reference Model Architecture

Figure 2 shows a decomposition of the OGC Catalog Services. Discovery Services are those services
which allow a client to locate metadata that describes data. Access Services provide the client with
methods to request services on the data. Access Services are divided into two types. Direct Access
provides the client with a handle which when used by the client will provide the data to the client. The
specific definition of such a handle is outside of the scope of the OGC Catalog Interface. Brokered Access
provides the client with methods to order data that will be delivered in some means outside of the Catalog
Interface. The Management Service defines methods for a client to change the metadata held by a catalog.

The Discovery Service is to be provided by all Application Servers claiming compliance with the OGC
Catalog Interface. The Access and Management Services are optionally required for an OGC compliant
catalog. But, if an application server claims Access or Management compliance this OGC Catalog
Interface specification defines how the services are to be implemented.

Discovery
Service

(mandatory)

Discovery
Service

(mandatory)

Access
Service

(optional)

Access
Service

(optional)

Management
Service

(optional)

Management
Service

(optional)
Services

Includes init, close
functions

DirectDirect BrokeredBrokered

Catalog
Service

Catalog
Service

Figure 3- Decomposition of Catalog Services

2.3 Cross Profile Interoperability

The OGC Catalog General Model defines the behaviors and interfaces applicable to all implementations of
OGC Catalogs. In the real world, there is no one solution that fits everyone’s needs. The OGC Catalog

OpenGIS Catalog Interface Version 1.05

Profiles provide refinements of the General Model targeted toward specific implementation communities.
For those communities, the Profile defines the standards for compliance.

Profiles can be categorized by their location in a matrix. The primary axis of this matrix is the Distributed
Computing Platform (DCP). The DCP specifies the distributed computing environment that the Profile will
operate within. This Specification defines a DCP as any set of protocols and services which allow two
entities to communicate. DCPs addressed in this specification include CORBA, OLEDB and The World
Wide Web. The secondary axis of the matrix describes the complexity of the interfaces. This specification
applies to environments as diverse as the internet and workgroup clusters. At the one extreme, the client
and server have very little knowledge of one another. The interfaces in this environment must be flexible,
well defined and simple. Profiles designed for this environment are classified as coarse grained profiles.
At the other extreme, the client and server are closely coupled. The standards and conventions imposed by
the system design allow for a much more detailed interface between the catalog components. Profiles
addressing this environment are classified as fine grained profiles.

Table 1 - The Profile Matrix

DCP Fine Grained Coarse Grained

CORBA Section 5.1 Section 5.2

COM NA Section 6

Web NA Section 7

The General Model provides the glue that ties the Profiles together. Every Profile must demonstrate
consistency with the General Model in terms of behaviors and interfaces. This consistency allows for the
construction of Bridges between Profile implementations. A Catalog Bridge would consist of software
layered over implementations of two or more Profiles. The Profile implementations would all expose the
same interfaces to the Bridge code. In this way, the Bridge serves as little more than a store and forward
device for Catalog request and response messages. The Profile implementations are responsible for
executing those messages within their implementation domain.

Client
CORBA Fine

Grained

Server
Web Course

Grained

Client
Web Course

Grained

Server
CORBA Fine

Grained

Bridge

Workgroup LAN

WEB

Figure 4- An Example of a One-Way Bridge

2.4 Catalog Object Model

The static class diagram of Figure 5 illustrates how the Catalog Services can utilize a OGC Features
Implementation. A catalog entry" references" the data it describes through a feature-to-feature association.
Since metadata can be associated at any level in the feature hierarchy, the target of this reference can be
any subclass of feature, but would most commonly be associated to the feature collection, or logical data
set. The catalog entry consists of an aggregation of metadata attributes, at least one of which would

OpenGIS Catalog Interface Version 1.06

describe the "footprint" of the data referenced. Thus, a catalog entry meets the fundamental definition of a
feature. For this reason, the Catalog Entry class realizes the Feature interface, that is, it supports all
interface protocols defined on Feature. Since the catalog entries are sub-types of feature, their aggregation,
the Catalog, would be a sub-type of feature collection. Thus, the Catalog realizes the interface for Feature
Collection. Assuming that the catalog has been implemented according to an OGC compliant feature
datastore, it would be possible to access that datastore directly using any OGC feature data access interface.
Thus, one mechanism to implement robust catalogs would be to use OGC compliant feature datastores.

Coverage
<<Interface>>

CG_CatalogService

+ explainServer()
+ ini tSession()
+ terminateSession()
+ status()
+ cancelRequest()

(from Services)

<<Interface>>

CG_C atalog

CG_MetadataEntity

Feature
<<Interfac e>>

Exte rnalDataSetCG_CatalogEntry

F eatureCollection
<<In terface>>

FeatureCollection
<<Interface>>

Feature
<<Interface>>

FeatureAttribute
<<In terface>>

Figure 5- Catalog Object Model

2.5 Metadata Model Independence

Metadata structures, dependencies, and definitions -- known as schema -- exist for multiple information
communities. For the purposes of interchange of information within an information community, a metadata
schema may be defined that provides for a common vocabulary supporting search, retrieval, display, and
association between the description and the object being described. Although this specification does not
require the use of a specific schema, the adoption of a given schema within an information community
ensures the ability to communicate and discover information

The geomatics standardization activity under Technical Committee 211 includes a formal schema for
geospatial metadata that is intended to be applied to all types of information. This standard, currently in
Committee Draft form (June 1999) includes a proposal for an Essential Profile of metadata elements in
common use. All future registered ISO TC211 metadata profiles must include these Essential Profile
elements. For the purpose of information exchange across OpenGIS/Geomatics communities, the schema

OpenGIS Catalog Interface Version 1.07

and elements within the Essential Profile of ISO 15046-15 must be implemented by conforming
implementations.

2.6 Query Language

The Query Capabilities of the OpenGIS Catalog Interface are intended to provide a minimum subset of
query capabilities that can be assumed at OGC Compliant Catalog implementations while providing
maximum flexibility for enabling alternate styles of query, result presentation, and query languages. The
flexibility goals are accomplished through the use of a query service call that contains the parameters
needed to establish the query /result presentation style and a query expression parameter that includes the
actual query and an indication of the query language used.

The interoperability goal is supported by the specification of a minimal query language, which must be
supported at all compliant OpenGIS Catalog Service sites (defined in Section 4). This query language
supports nested Boolean queries, text matching operations, temporal data types, the Simple Features “well
known text representations “ and Simple Features relational operators. The minimal query language syntax
is based on the SQL WHERE clause in the SQL SELECT statement.

The minimal query language assists the consumer in the discovery of datasets of interest at all sites
supporting the OpenGIS Catalog Services. The ability to specify alternative query languages allows for
evolution and higher levels of interoperability among more tightly coupled subsets of Catalog Service
Providers and Consumers

2.7 Use of XML

The eXtensible Markup Language (XML) version 1.0 is used in the implementation of certain aspects of
catalog services to promote easy encoding and decoding of structured information. To facilitate translation
of information between implementation profiles XML is used: 1) to package the elements of a query, and
2) to package the structured information being returned from a query.

Standard metadata schemas are expressed in this specification using eXtensible Markup Language (XML)
using Document Type Declarations (DTDs) that are separate from the XML document they describe. In
catalog applications, the documents marked-up in XML must include either reference to the DTD in the
header line, and/or the DTD embedded in the document. XML-Schema is a proposal under development
(June 1999) within the World Wide Web Consortium that is likely to define a more rigorous successor to
the DTD.

2.8 Browse

In the OpenGIS community there are a significant number of non-character data items that can be used for
Discovery. A good example of this type of metadata is a browse image, a reduced resolution version of an
image that is used by the consumer to select the data he wishes to order. The browse image can be
acquired from a service or as a standard piece of metadata based on the size and ability to accept
parameterization. A very small data item such as a thumbnail image would be useful to include in the
catalog results presentation. A large static browse or a dynamic browse that selected different resolutions
or bands of the image based on request parameters would use the access service and be represented by the
appropriate URI in the catalog results. There is a large spectrum between these two extremes and our
legacy systems handle browse images in all the ways discussed.

The current advice of this specification is to encode very small browses such as thumbnail images as part of
the catalog query result presentation using a common encoding supported in XML Schema. For all larger
browse images treat them as an access service and place a referencing URI in the appropriate result fields.

2.9 Interoperability and Compliance with Simple Features

A functional requirement for this proposal was to use the Simple Feature types and functions wherever
possible, such as Feature, Feature Collection, Geometry, and Spatial Reference System and the spatial

OpenGIS Catalog Interface Version 1.08

operators. This proposal tries to maintain conceptual compatibility with the Simple Features
Implementation Specifications in the following manners:

- Query comparison operators consistent with those defined in simple features are used in the Catalog
Specification Metadata query mechanism.

- The Access service of the catalog specification allows for a simple transition to Simple Feature access
mechanisms.

The consistency between the query mechanism within the catalog specification and the query language
within the simple features specification allows an implementation to use a simple features data store for the
storing of metadata.

An alternative design would have been to use the simple features query language directly to access
metadata. This design was rejected to preserve legacy implementations using Z39.50 metadata servers
incapable of supporting a complex query language. Since many Z39.50 metadata servers use SQL
databases as backends, a negotiation phase between a client and a particular server could promote the query
language to a full object-SQL for Simple Features.

The current query model allows for three types of query language:

- A common, mandatory query language using SQL style syntax, Z39.50 Type 1 operation style, and
spatial operations derived from the simple features model in the OGC Simple Features Implementation
Specification.

- Any dialect of SQL conformant with the OGC Simple Features Implementation Specification.

- Z.39.50 Type 1 query.

This specification allows support of additional query languages as they are identified.

Each conformant server must support the mandatory query language. Other languages are optional.
Because of the limitations placed upon the mandatory query language it will be possible to implement a
service that would translate the mandatory query language syntax into either of the other two languages.

2.10 Distributed Search

The Reference Architecture for the OGC Catalog allows for catalog requests to be distributed to multiple
catalogs. The architecture allows for a Catalog to accept a request from a client and distribute the request
to other Catalogs. For the OGC Catalog Service, Distributed Catalog Searching is defined as a service that
involves services of multiple Catalog Servers, in addition to the primary client-server interaction.
Distributed Searching is accomplished by a catalog server propagating secondary catalog service requests
to other catalog servers.

To enable Distributed Searching, the following items are needed:

- A multi-tier Reference Architecture as provided by this specification (as defined in Section 2.1)

- A data model to define how searches are to be distributed as defined by an information community.

- Messages with elements applicable to Distributed Searching as provided by this specification

To support distributed searching, a community develops a data model that determines how a search will be
distributed to coordinated data servers. The OGC Catalog General model allows data model neutrality with
respect to distributed searching.

Several of the Discovery messages defined in Section 3 contain elements that pertain to distributed
searching. The query message contains elements that allow the client to request certain search behavior
with respect to distribution. The request and response messages define elements that allow for the retrieval
and comprehension of a distributed result set. The request and response messages contain elements that
allow for understanding the status of distributed searches.

OpenGIS Catalog Interface Version 1.09

3. General Catalog Interface Model

3.1 Introduction of The General Model

The General Catalog Interface Model is composed of two equivalent views (also referred to as entry points
into the object model), one being “Coarse-Grain” the other “Fine-Grain”. It also touches on the concept of
having an OGC Service Architecture Framework where the Catalog Interface would be one component of
such a framework. Both Structural and Dynamic models are provided for both views. The Fine Grain view
provides the client with a rich set of objects and interfaces for interfacing with the server. This model
supports the creation of integrated systems of OGC Catalog Clients and Servers. These client and server
components exercise a fine degree of control and coordination upon each other. This environment also
facilitates the integration of Catalog Management and Simple Features Access within the catalog Discovery
context. The Coarse Grain model provides a more generalized interface between the client and server.
Coarse Grain systems require all control and coordination client and server components to occur at a
aggregated level. These profiles are appropriate where a client is accessing a number of dissimilar servers,
or is not engaging in singular interactions with a server. What the Coarse Grain client gives up in detailed
control it gains in flexibility. The General Model also contains a small set of interfaces that an implementer
would need to provide to facilitate a mapping between these two entry points. These interfaces would be
private and left up to an implementer to specify how they would be developed.

Figure 6 provides a top-level view of the structural General Model. The classes of the Coarse-Grained
model are shown at the top of Figure 6. A Translator is shown in the middle of Figure 6. Elements of the
Fine-Grain model are shown in the bottom of the Figure. The Coarse-Grain structural model is detailed in
Section 3.2. The Fine-Grain structural model is detailed in Section 3.3.

Both the Coarse and Fine –Grained interface models provide a set of service interfaces that support the
discovery, access, maintenance and organization of catalogs of geospatial information. The interfaces
specified are intended to allow users or application software to find information that exists in multiple
distributed computing environment, including the World Wide Web (WWW) environment.

The dynamic models take different forms for coarse grained and fine grained approaches. For the Coarse-
grained approach, the dynamics are represented as transitions in the state of the CG_CatalogService object.
That is, all of the behavior is expressed by the states and the state transitions of the CG_CatalogService
object which is effected by the messages sent by the client (see Section 3.4). With the Fine-Grain
approach, the behavior is represented as the sequence of interactions between various fine grained objects.
Therefore, the Fine Grained behavior is represented by sequence diagrams (see Section 3.5).

A key aspect of interoperability for the OGC Catalog Interface is the ability to bridge across Distributed
Computing Platforms (DCPs). Section 3.6 describes the dynamics of a Bridge that accepts Catalog
requests in one profile and outputs the request in another profile. The simplicity of the Bridge is one
measure of the ease of achieving interoperability across DCPs.

OpenGIS Catalog Interface Version 1.010

Coarse Grain
(from CatalogFunctionalView)

TranslatorService
(from CatalogFunctionalView)

Fine Grain

Figure 6 - Top Level General Model

OpenGIS Catalog Interface Version 1.011

3.2 Coarse-Grain Structural Model

3.2.1 Overview of The Coarse-Grained Interface Model

Figure 7 shows the Coarse-Grained service interfaces. These interfaces allow the discovery, access and
management of geospatial data and services. This model is based on the concept of interface operations
passing Request – Response Message Pairs between a client and a server. Stated another way, the Coarse-
Grained architecture uses a messaging based structure to describe the access and invocation of Catalog
services.

As seen in Figure 7 there are four major interfaces, CG_CatalogService, CG_Discovery, CG_Access and
CG_CatalogManager. These are described in more detail in the following sections of this document. The
taxonomy of interfaces that have been placed above the CG_CatalogService interface (i.e., OGC_Service
and OGC_Stateful) have been created to put forth the idea of having an overall architectural framework for
the different services that will be developed over time to populate the OGC Service Architecture. In the
future, a Stateless Catalog service will be defined.

CG_CatalogManager

+ createCatalog(create : CreateCatalogRequest) : CreateCatalogResponse
+ createMetadata(create : CreateMetadataRequest) : CreateMetadataResponse
+ updateCatalog(update : UpdateCatalogRequest) : UpdateCatalogResponse
+ deleteCatalog(delete : DeleteCatalogRequest) : DeleteCatalogResponse

<<Interface>>

CG_Access

+ BrokeredAccess(request : CG_BrokeredAccessRequest) : CG_BrokeredAccessResponse

<<Interface>>

OGC_Service
(from OGC Service Client)

<<Interface>>

CG_CatalogService

+ initSession(message : CG_InitSessionRequest) : CG_InitSessionResponse
+ terminateSession(message : CG_TerminateRequest) : CG_TerminateResponse
+ status(message : CG_StatusRequest) : CG_StatusResponse
+ cancelRequest(message : CG_CancelRequest) : CG_CancelResponse
+ explainServer(message : CG_ExplainServerRequest) : CG_ExplainServerResponse

<<Interface>>

CG_Discovery

+ query(query : CG_QueryRequest) : CG_QueryResponse
+ present(present : CG_PresentRequest) : CG_PresentResponse
+ explainCollection(message : CG_ExplainCollectionRequest) : CG_ExplainCollectionResponse

<<Interface>>

OGC_Stateful
(from OGC Service Client)

<<Interface>>
OGC_Stateless

(from OGC Service Client)

<<Interface>>

The OGC_Stateless Service
is to be defined in a future
Catalog Implementation

Figure 7 -Main Static Class Diagram of the Coarse-Grained General Interface Model

OpenGIS Catalog Interface Version 1.012

3.2.2 The Messaging Model

As previously noted, the Coarse-Grain general interface model is based on the passing of messages
between a client and catalog server. To support this type of model, a messaging based structure has been
developed to describe the access and invocation of catalog services. Figure 8, Figure 9, and Figure 10 are
static class diagrams that depict this message based taxonomy.

Central to this taxonomy is the CG_Message class. CG_Message provides a consistent set of parameters
that are populated for all messages. These parameters are used by the underlying implementation platform
to perform message routing and session management. Subclasses of CG_Message are CG_Request and
CG_Response. CG_Request messages encompass all messages from a client requesting a service from the
server. CG_Response messages encompass all messages from a server generated in response to a client
request. There is a one to one relationship between requests and responses. That is to say, for each request,
one and only one response will be generated

CG_Message
+ sessionID : Integer
+ destinationID : CharacterString
+ requestID : RequestID
+ additionalInfo : CharacterString

<<Abstract>>

CG_Request
<<Abstract>> CG_Response

+ diagnostic : CharacterString

<<Abstract>>

Figure 8 - Main Class Diagram for Message Package

3.2.2.1 The Message Class (CG_Message)

The CG_Message class defines the core set of parameters expected of each message exchanged between a
client and server. These parameters support message routing and session management. All request and
reply messages are subclasses of the CG_Message class.

CG_Message ::= sessionID destinationID requestID additionalInfo format

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

3.2.2.1.1 Message Parameters:

sessionID: Type = Integer

OpenGIS Catalog Interface Version 1.013

This is a unique identifier for this client/server session. The session identifier value is assigned in response
to a CG_InitSessionRequest. All further messages within that session will contain that identifier in the
sessionID parameter.

destinationID: Type = CharacterString

The DestinationID parameter identifies the target for this message. It can identify a server, service, or a
process within a service.

requestID: Type = CG_RequestID

The RequestID parameter is an identifier unique to this message. In the case of a request message, this
identifier can be used to monitor and control the processing resulting from the request message. The
formal definition of the CG_RequestID data type is in Section 3.2.7.

additionalInfo: Type = CharacterString

This parameter provides a means of passing additional data that may only be relevant within the context of
a specific message exchange.

3.2.2.1.2 Message Operations: None

3.2.2.2 Request Messages (CG_Request)

Catalog services are invoked by a client through request messages. Request messages include the
parameters of the message class but do not add any of their own. All messages to invoke specific catalog
services are subclasses of the CG_Request class.

CG_Request ::= sessionID destinationID requestID additionalInfo format

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

3.2.2.2.1 Message Parameters: None

3.2.2.2.2 Message Operations: None

3.2.2.3 Response Messages (CG_Response)

Response messages are used by the server to reply to client requests. The CG_Response class is the root
class for all response messages constructed by the server in response to a client request.

CG_Response ::= sessionID destinationID requestID additionalInfo format diagnostic

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

diagnostic ::= CharacterString

3.2.2.3.1 Message Parameters:

diagnostic: Type = CharacterString

This parameter provides a means of passing diagnostic data relevant within the context of the specific
message exchange.

3.2.2.3.2 Message Operations: None

OpenGIS Catalog Interface Version 1.014

CG_BrokeredAccessRequest
+ productHandle : CharacterString
+ orderInformation : CG_OrderInformation
+ requestType : CG_BrokeredAccessRequestType
+ userInformation : CG_UserInformation
+ packageSpecification : CG_PackageSpecification
+ orderID : CharcterString

CG_CancelRequest
+ requestIDtoCancel : CharacterString
+ freeResources : Boolean = True

CG_ExplainCollectionRequest
+ attributeCategory : CG_AttributeCategory
+ collectionID : CG_CollectionName

CG_PresentRequest
+ presentation : CG_PresentationDescript ion
+ sortField : Sequence<CG_SortField>
+ returnFormat : CG_MessageFormat
+ iteratorSize : Integer
+ cursor : Integer
+ resultSetID : CG_CollectionName CG_QueryRequest

+ queryExpression : CG_QueryExpression
+ resultType : CG_ResultType
+ iteratorSize : Integer
+ cursor : Integer
+ returnFormat : CG_MessageFormat
+ presentation : CG_PresentationDescription
+ sortField : Sequence<CG_SortField>
+ queryScope : CG_QueryScope
+ collectionID : CG_CollectionName
+ catalogType : CG_CatalogEntryType

CG_StatusRequest
+ requestIDtoStatus : RequestID

CG_Request
(from Messages)

<<Abstract>>

CG_ExplainServerRequest
+ capabilities : Sequence<CG_Capability>

CG_TerminateRequest

CG_InitSessionRequest

Figure 9 - Request Message Classes and Their Attributes (Parameters) Defined for OGC Coarse-Grain Catalog Interface Model

OpenGIS Catalog Interface Version 1.015

CG_PresentResponse
+ retrievedData : CG_ReturnedData
+ cursor : Integer
+ status : CG_Status

CG_CancelResponse
+ status : CG_Status
+ canceledRequest : CG_RequestID

CG_ExplainCollectionResponse
+ collectionID : CG_CollectionName
+ dataModel : SchemaID
+ status : CG_Status

CG_QueryResponse
+ retrievedData : CG_ReturnedData
+ resultSetID : CG_CollectionName
+ resultType : CG_ResultType
+ status : CG_Status
+ hits : Integer
+ cursor : Integer

CG_StatusResponse
+ status : CG_Status
+ requestIDtoStatus : RequestID

CG_Response

+ diagnostic : CharacterString

(f rom Messages)

<<Abstract>>

CG_ExplainServerResponse
+ capabilit ies : Set<CG_Capability>

CG_TerminateResponse
+ status : CG_Status

CG_InitSessionResponse

CG_BrokeredAccessResponse
+ resourceEstimate : Integer
+ order : CG_CollectionName
+ orderStatus : CG_OrderStatus
+ orderID : CharacterString
+ status : CG_Status
+ requestType : CG_BrokeredAccessRequestType

Figure 10 -Response Message Classes and Their Attributes (Parameters) Defined for OGC Coarse-Grained Catalog Interface Model.

OpenGIS Catalog Interface Version 1.016

3.2.3 CG_CatalogService Interface

Server level interfaces (i.e., those provided in the interface CG_CatalogService) provide access to the
services that support the establishment and management of a user session. Core capabilities include the
discovery of server capabilities, session initialization and termination and request status and termination.
The specific operations put forth in the coarse-grained general model supporting the CG_CatalogService
Server are listed in Table 2.

Table 2 - The Operations of the CG_CatalogService Interface

Operation Name Input Message Type Returned Message
Type

Function Provided

InitSession CG_InitSession-
Request

CG_InitSessionResponse This operation generates a
unique identifier used to track
the context of session.

TerminateSession CG_TerminateRequest CG_TerminateResponse This operation terminates the
session

Status CG_StatusRequest CG_StatusResponse This operation is used to check
on the status of a current
pending request.

CancelRequest CG_CancelRequest CG_CancelResponse This operation is used to
terminate any request.

ExplainServer CG_ExplainServer-
Request

CG_ExplainServer-
Response

This operation lists all the
conventions and services
available during the current
session.

All request messages generated for these interfaces must specify the Catalog Server in the destinationID
parameter, and the sessionID is also needed in some instances..

Catalog services are accessed through request messages, and the results returned through response
messages. Errors in processing a request message are reported to the client by returning the appropriate
response message using the diagnostic parameter to return the error status and error message and with all
service specific parameters unpopulated.

3.2.3.1 CG_InitSessionRequest

The CG_InitSessionRequest message is used to establish a session between the Catalog Server and the
Catalog Client. SessionID may be null in CG_InitSessionRequest. If a sessionID is supplied in
CG_InitSessionRequest, the server is not obliged to accept the sessionID. The server is free to supply any
SessionID in CG_InitSessionResponse.

CG_InitSessionRequest ::= sessionID destinationID requestID additionalInfo

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

Message Parameters: None

OpenGIS Catalog Interface Version 1.017

Message Operations: None

3.2.3.2 CG_InitSessionResponse

The CG_InitSessionResponse message is used to acknowledge the establishment of a session between the
Catalog Server and the Catalog Client. This message provides the session identifier that will be used to
establish the session context for each subsequent message.

CG_InitSessionResponse ::= sessionID destinationID requestID additionalInfo diagnostic

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

diagnostic ::= CharacterString

Message Parameters: None

Message Operations: None

3.2.3.3 CG_TerminateRequest

The CG_TerminateRequest message is used to terminate the current session. These messages originate at
the client and are addressed to the catalog server. Upon receipt of the message, the Catalog Server will
validate the message, stop all processing for that session and delete any queries and result sets.

CG_TerminateRequest ::= sessionID destinationID requestID additionalInfo

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

Message Parameters: None

Message Operations: None

3.2.3.4 CG_TerminateResponse

The CG_TerminateResponse message is used by the server to deliver back to a client the completion status
of a CG_TerminateRequest.

CG_TerminateResponse ::= sessionID destinationID requestID additionalInfo diagnostic status

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

diagnostic ::= CharacterString

status ::= CG_Status

3.2.3.4.1 Message Parameters:

status: Type = CG_Status

The Status parameter conveys the success or failure of the terminate request.

3.2.3.4.2 Message Operations: None

OpenGIS Catalog Interface Version 1.018

3.2.3.5 CG_ExplainServerRequest

The CG_ExplainServerRequest message is used to expose and negotiate the services and conventions
governing this session. CG_ExplainServerRequest messages originate at the client. They are initially
populated with the properties desired by that client using the capabilities parameter. Each capabilities
component can be populated with either a value or a “wildcard”. When populated with a wildcard, the
client is requesting the server to report on the options available for that capability. In response to a request,
the server can confirm, deny or report on each capability. Capabilities requested by value are confirmed by
returning the same capability/value pair as requested. Capabilities requested by value that are not
supported by the server are denied by not returning that capability. When reporting the server returns all of
the values supported for a requested capability. The CG_Capability data type is described in Section
3.2.7.3

CG_ExplainServerRequest ::= sessionID destinationID requestID additionalInfo capabilities

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

capabilities ::= Set<CG_Capability>

3.2.3.5.1 Message Parameters:

capabilities: Type = Set<CG_Capability>

The capabilities parameter passes a list of CG_Capability data types specifying the capabilities and
conventions of interest to the user. CG_Capability is a complex data type that is described in Section 3.2.7.

3.2.3.5.2 Message Operations: None

3.2.3.6 CG_ExplainServerResponse

The CG_ExplainServerResponse message is used to expose and negotiate the services and conventions
governing this session. The capabilities parameter is received from the Explain Server request and
populated with the data desired. The details of populating the response are given in the
CG_ExplainServerRequest. This parameter is then inserted into the response message and returned to the
user.

CG_ExplainServerResponse ::= sessionID destinationID requestID additionalInfo

diagnostic capabilities

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

diagnostic ::= CharacterString

capabilities ::= Set<CG_Capability>

3.2.3.6.1 Message Parameters:

capabilities: Type = Set<CG_Capability>

The capabilities parameter contains a list of CG_Capability data types detailing the capability and
convention information requested by the user. CG_Capability is a complex data type that is described in
Section 3.2.7.

3.2.3.6.2 Message Operations: None

OpenGIS Catalog Interface Version 1.019

3.2.3.7 CG_StatusRequest

The CG_StatusRequest message is used by the client to discover the current status of any processing taking
place as a result of a specific request. A CG_StatusResponse message is generated by the server returning
the current status of the request.

CG_StatusRequest ::= sessionID destinationID requestID additionalInfo requestIDtoStatus

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

requestIDtoStatus ::= CG_RequestID

3.2.3.7.1 Message Parameters:

requestIDtoStatus: Type = CG_RequestID

The identifier of the Request about which the user desires information.

3.2.3.7.2 Message Operations: None

3.2.3.8 CG_StatusResponse

The CG_StatusResponse message is used by the server to deliver to the client the current status of any
processing taking place relating to the specified request. These messages are generated by the server in
response to a CG_StatusRequest message.

CG_StatusResponse ::= sessionID destinationID requestID additionalInfo requestIDtoStatus status

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

requestIDtoStatus ::= CG_RequestID

status ::= CG_Status

3.2.3.8.1 Message Parameters:

requestIDtoStatus: Type = CG_RequestID

The identifier of the Request which this message is delivering information about.

status: Type = CG_Status

The status parameter conveys the current status of the selected request.

3.2.3.8.2 Message Operations: None

3.2.3.9 CG_CancelRequest

The CG_CancelRequest message is used to terminate any request. It is assumed that in terminating a
request that any result set or other resources associated with the request will be “garbage collected” by the
server if freeResources is true. Upon receipt of the message, the Catalog Server will validate the message,
stop all processing for the target and release appropriate resources dependent on the request.

CG_CancelRequest ::= sessionID destinationID requestID additionalInfo

requestIDtoCancel freeResources

sessionID ::= Integer

OpenGIS Catalog Interface Version 1.020

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

requestIDtoCancel ::= CG_RequestID

freeResources ::= Boolean

3.2.3.9.1 Message Parameters:

requestIDtoCancel: Type = CG_RequestID

The identifier of the Request to be canceled.

freeResources: Type = Boolean

If set to FALSE, the partial result set is not deleted until the client terminates the session. Default value is
TRUE.

3.2.3.9.2 Message Operations: None

3.2.3.10 CG_CancelResponse

The CG_CancelResponse message is used by the server to report on the success or failure of an attempt to
cancel a request.

CG_CancelResponse ::= sessionID destinationID requestID additionalInfo diagnostic

status canceledRequest

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

diagnostic ::= CharacterString

status ::= CG_Status

canceledRequest ::= CG_RequestID

3.2.3.10.1 Message Parameters:

status: Type = CG_Status

Status indicator for whether the cancel request was successful or if there was an error.

canceledRequest: Type = CG_RequestID

Identifier for the request object that was the target of the cancel request.

3.2.3.10.2 Message Operations: None

OpenGIS Catalog Interface Version 1.021

3.2.4 CG_Discovery Interface

The CG_Discovery Interface provides users a way to discover what data, services and other resources are
available to them. These interfaces do not provide access to the resources themselves, rather, they provide
information on what the resources are and how to access them. The specific operations of CG_Discovery
are found in Table 3.

Table 3 - The Operations of the CG_Discovery Interface

Operation Name Input Message Type Returned Message
Type

Function Provided

Query CG_QueryRequest CG_QueryResponse This operation is used to search
for data/services from a given
catalog server and may return
records from the result set.

Present CG_PresentRequest CG_PresentResponse This operation is used to
retrieve records from a result
set created from the issuance of
a query.

ExplainCollection CG_ExplainCollection
Request

CG_ExplainCollection-
Response

This operation is used to
explain the data model of the
catalog.

3.2.4.1 CG_QueryRequest

The CG_QueryRequest message is used to request that the Catalog Server create a subset (Result Set) of
the catalog holdings or to further subset an existing Result Set. CG_QueryRequest messages originate at
the client. They are populated with the criteria to be used to select the Result Set and parameters governing
the scope of the query and the format of the response. Upon receipt of the message, the Catalog Server will
identify those elements of the query space to be included in the Result Set and create a Result Set
containing those elements. Response to the client will be through the CG_QueryResponse message.
Timing of the response message is governed by the resultType parameter.

CG_QueryRequest ::= sessionID destinationID requestID additionalInfo queryExpression resultType

iteratorSize cursor returnFormat presentation sortField queryScope

collectionID catalogType

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

queryExpression ::= CG_QueryExpression

resultType ::= CG_ResultType

iteratorSize ::= Integer

cursor ::= Integer

returnFormat ::= CG_MessageFormat

presentation ::= CG_PresentationDescription

sortField ::= Set<CG_SortField>

OpenGIS Catalog Interface Version 1.022

queryScope ::= CG_QueryScope

collectionID ::= CG_CollectionName

catalogType ::= CG_CatalogEntryType

3.2.4.1.1 Message Parameters:

queryExpression: Type = CG_QueryExpression

The queryExpression parameter contains the criteria used to subset the search space. CG_QueryExpression
is formally defined in Section 3.2.7

resultType: Type = CG_ResultType

The resultType parameter is used to specify how the user wants the result set to be presented.
CG_ResultType is formally defined in Section 3.2.7

iteratorSize: Type = Integer

The iteratorSize parameter indicates the maximum number of result set entries to be returned in the
CG_QueryResponse.

cursor: Type = Integer

The Cursor parameter identifies the first result set entry to be returned in the CG_QueryResponse.

returnFormat: Type = CG_MessageFormat

This parameter specifies the encoding standard to be used for returning the result set. CG_MessageFormat
is formally defined in Section 3.2.7

presentation: Type = CG_PresentationDescription

The Presentation parameter is only valid when results are requested to be returned directly in the
CG_QueryResponse. This parameter informs the server which of the attributes in the result set elements
are to be returned to the client. The CG_PresentationDescription parameter is defined in Section 3.2.7

sortField: Type = Set(CG_SortField)

The sortField parameter specifies how the result set data is to be sorted prior to presentation. The
CG_SortField type is defined in Section 3.2.7.

queryScope: Type = CG_QueryScope

The queryScope parameter is used to specify the size of the query space for distributed catalogs.
CG_QueryScope is formally defined in Section 3.2.7.

See Section 2.10 for a discussion about distributed searching.

collectionID: Type = CG_CollectionName

This parameter identifies the search space for this query. A search space can be the catalog holdings, a
result set, or a named subspace of the catalog holdings. CG_CollectionName is formally defined in section
3.2.7

catalogType: type = CG_CatalogEntryType

The catalogType parameter specifies the types of catalog entries to query. CG_CatalogEntryType is an
enumerated code list formally defined in Section 3.2.7.

3.2.4.1.2 Message Operations: None

3.2.4.2 CG_QueryResponse

The CG_QueryResponse message is used by the server to report back to a client on the status of a
CG_QueryRequest. The behavior of the CG_QueryResponse depends on the result type parameter as
shown in Figure 16. Additionally, the contents of the CG_QueryResponse depends on the result type
parameter.

OpenGIS Catalog Interface Version 1.023

CG_QueryResponse ::= sessionID destinationID requestID additionalInfo diagnostic

retrievedData resultSetID resultType status hits cursor

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

diagnostic ::= CharacterString

retrievedData ::= CG_ReturnData

resultSetID ::= CG_CollectionName

resultType ::= CG_ResultType

status ::= CG_Status

hits ::= integer

cursor ::= Integer

3.2.4.2.1 Message Parameters:

retrievedData: Type = CG_ReturnData

The retrievedData parameter contains a subset of the results of this query request. It is organized and
formatted as specified in the presentation, messageFormat, and sortField parameters. This parameter is
only populated if resultType = Results. A formal definition of the CG_ReturnData type can be found in
Section 3.2.7.

resultSetID: Type = CG_CollectionName

This parameter identifies the Result Set generated for the query. Further query, present and cancel requests
for this Result Set will supply this value through the collectionID parameter. The CG_CollectionName
type is defined in Section 3.2.7.

resultType: Type = CG_ResultType

The resultType parameter indicates how the server responded to the query request.
CG_ResultType is formally defined in Section 3.2.7.

status: Type = CG_Status

The Status parameter conveys the success or failure of the query request. The CG_Status type is formally
defined later in Section 3.2.7.

hits: Type = Integer

Indication of the number of entries in the result set.

cursor: Type = Integer

The Cursor parameter identifies the last item in the result set that was returned in this retrieved data set.

3.2.4.2.2 Message Operations: none

3.2.4.3 CG_PresentRequest

The CG_PresentRequest message is used to request that the Catalog Server deliver a portion of a Result
Set. CG_PresentRequest messages originate at the client. CG_PresentRequest messages are populated
with the identifier for the Result Set and parameters governing the format of the response. Upon receipt of
the message, the Catalog Server will build a subset of the Result Set based on the specified cursor location,
the iterator size, and the attributes defined in the presentation parameter. This subset will then be returned
to the client through the CG_PresentResponse message.

OpenGIS Catalog Interface Version 1.024

CG_PresentRequest ::= sessionID destinationID requestID additionalInfo resultSetID presentation

sortField returnFormat iteratorSize cursor

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

resultSetID ::= CG_CollectionName

presentation ::= CG_PresentationDescription

sortField ::= Set<CG_SortField>

returnFormat ::= CG_MessageFormat

iteratorSize ::= Integer

cursor ::= Integer

3.2.4.3.1 Message Parameters:

presentation: Type = CG_PresentationDescription

The Presentation parameter informs the server which of the attributes in the result set elements are to be
returned to the client. Presentation serves the same function and has the same format as the corresponding
parameter in the CG_QueryRequest message. The CG_PresentationDescription parameter is defined in
Section 3.2.7.

sortField: Type = Set(CG_SortField)

The sortField parameter specifies how the result set data is to be sorted prior to presentation. The
CG_SortField type is defined in Section 3.2.7

returnFormat: Type = CG_MessageFormat

This parameter specifies the encoding standard to be used for returning the result set. CG_MessageFormat
is formally defined in Section 3.2.7.

iteratorSize: Type = Integer

The iteratorSize parameter indicates the maximum number of result set entries to be returned at one time.

cursor: Type = Integer

The Cursor parameter identifies the first result set entry to be accessed when traversing the result set.

3.2.4.3.2 Message Operations: None

3.2.4.4 CG_PresentResponse

The CG_PresentResponse message is used by the server to deliver to a client a subset of the Result Set.
These messages are generated by the server in response to a CG_PresentRequest message.

CG_PresentResponse ::= sessionID destinationID requestID additionalInfo diagnostic retrievedData

cursor hits status

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

diagnostic ::= CharacterString

OpenGIS Catalog Interface Version 1.025

retrievedData ::= CG_ReturnData

cursor ::= Integer

hits ::= Integer

status ::= CG_Status

3.2.4.4.1 Message Parameters:

retrievedData: Type = CG_ReturnData

The retrievedData parameter contains a subset of the results of the query request. It is organized and
formatted as specified in the presentation, returnFormat, and sortField parameters. A formal definition of
the CG_ReturnData type can be found in Section 3.2.7.

cursor: Type = Integer

The Cursor parameter identifies the last item in the result set that was returned in this retrieved data set.

hits: Type = Integer

Indication of the number of entries in the result set.

status: Type = CG_Status

The Status parameter conveys the success or failure of the query request. The CG_Status type is formally
defined in Section 3.2.7

3.2.4.4.2 Message Operations: None

3.2.4.5 CG_ExplainCollectionRequest

The CG_ExplainCollectionRequest inquires for information on the data taxonomy (model) of a particular
catalog or catalog collection.

CG_ExplainCollectionRequest ::= sessionID destinationID requestID additionalInfo

attributeCategory collectionID returnFormat

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

attributeCategory ::= CG_AttributeCategory

collectionID ::= CG_CollectionName

returnFormat ::= CG_MessageFormat

3.2.4.5.1 Message Parameters:

attributeCategory: Type = CG_AttributeCategory

This parameter allows the client to specify the types of attributes that they want data about. Currently
defined values are queriable, presentable and all. CG_AttributeCategory is formally defined in Section
3.2.7.

collectionID: Type = CG_CollectionName

This parameter specifies the collection for which the client wants the data structure explained.
CG_CollectionName is formally defined in Section 3.2.7.

3.2.4.5.2 Message Operations: None

3.2.4.6 CG_ExplainCollectionResponse

OpenGIS Catalog Interface Version 1.026

The CG_ExplainCollectionResponse returns the requested information on the data taxonomy of the
selected catalog collection.

CG_ExplainCollectionResponse ::= sessionID destinationID requestID additionalInfo diagnostic

collectionID dataModel returnFormat

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

diagnostic ::= CharacterString

collectionID ::= CG_CollectionName

dataModel ::= CG_SchemaID

returnFormat ::= CG_MessageFormat

3.2.4.6.1 Message Parameters:

collectionID: Type = CG_CollectionName

This parameter specifies the collection from which the dataModel parameter was derived.
CG_CollectionName is formally defined in Section 3.2.7.

dataModel: Type = CG_SchemaID

This parameter provides the data model information requested by the client. CG_SchemaID is formally
defined in Section 3.2.7.

status: Type = CG_Status

The Status parameter conveys the success or failure of the request. The CG_Status type is formally defined
in Section 3.2.7

3.2.4.6.2 Message Operations: None

OpenGIS Catalog Interface Version 1.027

3.2.5 CG_Access Interface

The CG_Access Interface provides the user with a means to access the items located through the Discovery
service. Access is divided into two categories, direct and brokered. Direct access is for those resources
that are readily available over public interfaces such as the OGC Simple Features and Catalog. Methods
for Direct Access are outside of the scope of the Catalog Interface, although the Catalog Interface will
return a "handle" to the client to allow Direct Access. Not all resources can be accessed directly. Brokered
access provides interfaces for gaining access to resources that are controlled. Controlled resources could
include those for which the following applies: 1) a fee is charged, 2) have security limitations, 3) require
additional processing or 4)are not available electronically. The brokered access operation provides a means
for the user to provide the necessary information to request access to a resource (i.e., order) and for the
owner to provide the data necessary to achieve that access.

3.2.5.1 CG_BrokeredAccessRequest

The CG_BrokeredAccessRequest is a service requesting data that cannot be made available directly.

CG_BrokeredAccessRequest ::= sessionID destinationID requestID additionalInfo

productHandle orderInformation orderID requestType

userInformation statusOrderUpdateType packageSpecification

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

productHandle ::= CharacterString

orderInformation ::= CG_OrderSpecification

orderID ::= CharacterString

requestType ::= CG_BrokeredAccessRequestType

userInformation ::= CG_UserInformation

statusOrderUpdateType ::= CG_StatusUpdateType

packageSpecification ::= CG_PackageSpecification

3.2.5.1.1 Message Parameters:

productHandle: Type = CharacterString

The product handle is the identifier for a specific product taken from the catalog metadata for that product.

orderInformation: Type = CG_OrderSpecification

The specification of the order request as provided as input by the client if
CG_BrokeredAccessRequestType = orderEstimate or OrderQuoteAndSubmit. For
CG_BrokeredAccessRequestType = orderMonitor or orderCancel, CG_OrderSpecification shall be empty.

orderID: type = CharacterString

The orderID parameter provides a unique identifier for an order in progress. This ID can be used to inquire
about the status of the order as it is being processed. For CG_BrokeredAccessRequestType = orderMonitor
or orderCancel, orderID shall be supplied. For requestType = orderEstimate or OrderQuoteAndSubmit,
orderID shall be empty.

requestType: Type = CG_BrokeredAccessRequestType

OpenGIS Catalog Interface Version 1.028

The request type parameter identifies the type of service the client needs from the server. Valid values are
estimate, submit, monitor and cancel. Estimate is used to check if the order is valid and to request an
estimate of resources required to fill the order. Submit is a request to order and deliver the products(s).
Monitor provides the current status of the order. Cancel requests that the order be cancelled. Cancellation
of the order must be granted by the server.. CG_BrokeredAccessRequestType is formally defined in
Section 3.2.7.

userInformation: Type = CG_UserInformation

To receive products it is necessary to provide requester identification, billing and delivery data as part of
the order. This parameter is used to provide that data.

statusOrderUpdateType : Type = CG_StatusUpdateType

How a given client would like to be kept informed about the status of a given order.

packageSpecification: Type = CG_PackageSpecification

The specification of a single package of a requested order, or multiple packages.

3.2.5.1.2 Message Operations: None

3.2.5.2 CG_BrokeredAccessResponse

The CG_BrokeredAccessResponse message is generated by the server in response to a
CG_BrokeredAccessRequest.

CG_BrokeredAccessResponse ::= sessionID destinationID requestID additionalInfo diagnostic format

orderStatus resourceEstimate order orderID status requestType

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

diagnostic ::= CharacterString

format ::= CG_MessageFormat

orderStatus ::= CG_OrderStatus

resourceEstimate ::= Sequence<Integer>

order ::= CG_CollectionName

orderID ::= CharacterString

status ::= CG_Status

requestType ::= CG_BrokeredAccessRequestType

3.2.5.2.1 Message Parameters:

orderStatus Type ::= CG_OrderStatus

This parameter indicates the status of the order. The status of the order is different than the status of a
CG_Access message. The status of the message is reported in the response in the status parameter. The
CG_OrderStatus type is formally defined in Section 3.2.7 of this specification.

resourceEstimate: Type = Sequence<Integer>

This parameter reports back on the resources needed to process and/or deliver the requested resource.

OpenGIS Catalog Interface Version 1.029

order: Type = CG_CollectionName

The order parameter returns a name or id of the requested product object which can be used for direct
access (such as through simple features). The CG_CollectionName type is formally defined in Section
3.2.7 of this specification.

orderID: type = CharacterString

The orderID parameter provides a unique identifier for an order in progress. This ID can be used to inquire
about the status of the order as it is being processed.

status: Type = CG_Status

The Status parameter conveys the status of the requested product. The CG_Status type is formally defined
in Section 3.2.7.

requestType: Type = CG_BrokeredAccessRequestType

The request type parameter identifies the type of service the client needs from the server.
CG_BrokeredAccessRequestType is formally defined in Section 3.2.7.

3.2.5.2.2 Message Operations: None

OpenGIS Catalog Interface Version 1.030

3.2.6 CG_CatalogManager Interface

The CG_CatalogManager Interface provides for the maintaining and updating of a catalog service. The
operations defined for this interface are listed in Table 4

Table 4 - The Operations of the CG_CatalogManager Interface

Operation
Name

Input Message Type Returned Message Type Function Provided

createCatalog CG_CreateCatalogRequest CG_CreateCatalogRequest This operation would be done
to start the process of creating
a new catalog or a new set of
catalog entries of an existing
catalog service.

createMetadata CG_CreateMetadataRequest CG_CreateMetadataResponse This operation would be
initiated to create metadata
about a given set of products
held in a catalog.

updateCatalog CG_UpdateCatalogRequest CG_UpdateCatalogResponse This operation is used to
update the contents of a given
catalog service.

deleteCatalog CG_DeleteCatalogRequest CG_DeleteCatalogResponse This operation is used to
delete the contents of a given
catalog service entry (entries).

3.2.6.1 CG_CreateCatalogRequest

This message is used by a client with the appropriate user privileges to add new information to a catalog
service.

CG_CreateCatalogRequest ::= sessionID destinationID requestID additionalInfo

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

Message Parameters: TBD

Message Operations: TBD

3.2.6.2 CG_CreateCatalogResponse

This message is used/sent by the server to acknowledge/accept the request to add new information to the
catalog.

CG_CreateCatalogResponse ::= sessionID destinationID requestID additionalInfo diagnostic

sessionID ::= Integer

OpenGIS Catalog Interface Version 1.031

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

diagnostic ::= CharacterString

Message Parameters: TBD

Message Operations: TBD

3.2.6.3 CG_CreateMetadataRequest

This message is used to by a client that has the appropriate user privileges to add metadata entries to a
catalog.

CG_CreateCatalogRequest ::= sessionID destinationID requestID additionalInfo

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

Message Parameters: TBD

Message Operations: TBD

3.2.6.4 CG_CreateMetadataResponse

This message is used/sent by the server to acknowledge/accept the request to add new metadata entries to
the catalog.

CG_CreateCatalogResponse ::= sessionID destinationID requestID additionalInfo diagnostic

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

diagnostic ::= CharacterString

Message Parameters: TBD

Message Operations: TBD

3.2.6.5 CG_UpdateCatalogRequest

This message is used to by a client that has the appropriate user privileges to update various types of
information (e.g., data or metadata) to a catalog.

CG_UpdateCatalogRequest ::= sessionID destinationID requestID additionalInfo

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

OpenGIS Catalog Interface Version 1.032

additionalInfo ::= CharacterString

Message Parameters: TBD

Message Operations: TBD

3.2.6.6 CG_UpdateCatalogResponse

This message is used/sent by the server to acknowledge/accept the request to update various types of
information (e.g., data or metadata) to a catalog.

CG_UpdateCatalogRequest ::= sessionID destinationID requestID additionalInfo diagnostic

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

Message Parameters: TBD

Message Operations: TBD

3.2.6.7 CG_DeleteCatalogRequest

This message is used to by a client that has the appropriate user privileges to delete various types of
information (e.g., data or metadata) to a catalog.

CG_UpdateCatalogRequest ::= sessionID destinationID requestID additionalInfo

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

Message Parameters: TBD

Message Operations: TBD

3.2.6.8 CG_DeleteCatalogResponse

This message is used/sent by the server to acknowledge/accept the request to delete various types of
information (e.g., data or metadata) to a catalog.

CG_UpdateCatalogRequest ::= sessionID destinationID requestID additionalInfo diagnostic

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

Message Parameters: TBD

Message Operations: TBD

OpenGIS Catalog Interface Version 1.033

3.2.7 Parameter Type Definitions

This section provides definitions for all of the parameter data types used in Request-Response Message
Pairs. These definitions assume the use of the OGC well known data types where applicable.

3.2.7.1 CG_AttributeCategory

Type: Code_List

Used By: CG_ExplainCollectionRequest

CG_AttributeCategory is a code list for selecting the types of catalog entry attributes to be exposed by an
explain request. The valid values for this type are the following:

queriable

presentable

both

3.2.7.2 CG_BrokeredAccessRequestType

Type: Code_List

Used By: CG_BrokeredAccessRequest

CG_BrokeredAccessRequestType is a code list for identifying the nature of a brokered access request.
Valid values for this type are shown in Table 5

Table 5 - Brokered Access Request Types

Value Explanation

orderEstimate Validate and obtain the estimate of an order specification

orderQuoteAndSubmit Obtain a quote and subsequently submit an order specification

orderMonitor Monitor the progress of an order request

orderCancel Cancel an order request

3.2.7.3 CG_Capability

Type: Complex data structure

Used By: CG_ExplainServerRequest, CG_ExplainServerResponse

Uses: CG_AllSupportedRequest, CG_Defaults, CG_Explain, CG_Query, CG_Messaging, CG_Session,
CG_SoftwareInformation, CG_SupportedCollections

CG_Capability is a super class for organizing descriptions of catalog capabilities and session conventions.
It is a collection of subtypes (subclasses) which can be aggregated together into a single data entity in the
CG_ExplainServerRequest and CG_ExplainServerResponse. Each subtype addresses a specific piece of
data relating to the interactions between a client and the server Figure 11 shows the Capability Class and its
subclasses that have been defined for the Coarse-Grained Catalog General Interface Model.

OpenGIS Catalog Interface Version 1.034

CG_Capabi li ty
<<Abstract>>

CG_Explain

CG_Query
+ version : CharacterString
+ characterSet : CG_CharacterSet
+ queryLanguage : CG_QueryLanguage

<<DataType>>

CG_Messaging
+ characterSet : CG_CharacterSet
+ messageFormat : CG_MessageFormat

<<DataType>>

CG_AllSupportedRequest

CG_Defaults
<<DataType>>

CG_Session
+ language : CharacterString
+ catalogSpecificationVersion : CharacterString
+ characterSet : CharacterSet

<<DataType>>

CG_SoftwareInformation
+ vendor : CharacterString
+ versionNumber : CharacterString

<<DataType>>

CG_ExposeCollectionName
+ supportedColl ect ion : Set<CG_Col lect ionName>

<<DataType>>

CG_DefaultTimeOut
+ timeOut : UomTime

<<DataType>>

Figure 11 - Static Class Diagram showing CG_Capability Class and Its Instantiated Subtypes.

3.2.7.3.1 CG_AllSupportedRequest

Type: Boolean

Used By: CG_Capability

This parameter is only submitted as part of a request message from the client. When this parameter is set,
the response shall include a complete list of all capabilities supported by the server.

3.2.7.3.2 CG_Defaults

Type: Boolean

Used By: CG_Capability

CG_Defaults is a Boolean parameter which when set in a request message causes the return of all of the
default settings of that particular catalog server.

3.2.7.3.3 CG_DefaultTimeOut

Type: DataType

Used By: CG_Capability

The default time out that a client can set for a session. After a period of no activity in a session, the server
may unilaterally close a session without notification to the client (see Section 3.4.2). The server should be
prepared to respond to client request for a session which has timed out by returning the paired response
containing a diagnostic indicating that the session does not exist. The single parameter in
CG_DefaultTimeOut is the default time out and it is specified using the UomTime data type from the OGC
Basic Package1, Unit of Measure.

1 OGC Basic Package: see OpenGIS project document 99-005r3, January 1993.

OpenGIS Catalog Interface Version 1.035

3.2.7.3.4 CG_Explain

Type: Boolean

Used By: CG_Capability

CG_Explain is a Boolean type for expressing whether or not the explain Collection facility is provided by
a catalog server.

3.2.7.3.5 CG_Messaging

Type: Data structure

Used By: CG_Capability

Uses: CG_CharacterSet, CG_MessageFormat

The CG_Messaging parameter is a data structure containing data describing the messaging conventions a
particular server observes. Sub-types of the messaging type are:

characterSet: (type = CG_CharacterSet) describes the character sets supported

messageFormat: (type = CG_MessageFormat) describes the formatting of the messages.

3.2.7.3.6 CG_Query

Type: data structure composed of version, characterSet and queryLanguage fields

Used By: CG_Capability

Uses: CG_QueryLanguage, CG_CharacterSet

This parameter provides information on one of the query languages supported by the server. This is a data
structure composed of the following elements:

version: (type = character string) specifies the version of queryLanguage supported.

characterSet: (type = CG_CharacterSet) specifies the expected character set.

queryLanguage: (type = CG_QueryLanguage) specifies the query language supported.

3.2.7.3.7 CG_QueryLanguage

Type: Code_List

Used By: CG_Query, CG_QueryExpression

This code list contains the query languages supported by a given catalog server that the client has initiated a
session with. OGC_Common is the default for all implementations. The list of query languages follows:

OGC_Common

Z3950_TypeOne

SQL3_SimpleFeature

SQL2_SimpleFeature

The OGC_Common query language is defined in Section 4. All implementations must support
OGC_Common.

3.2.7.3.8 CG_Session

Type: Data Structure

Used By: CG_Capability

Uses: CG_CharacterSet

The CG_Session parameter contains data describing the constraints on any sessions supported by a server.
This is a data structure containing the following elements:

OpenGIS Catalog Interface Version 1.036

language: (type = Character String) – language supported by the interface

catalogSpecificationVersion: (type = Character String) – OGC Catalog compliance version

characterSet: (type = CG_CharacterSet) – character set used for text encoding

3.2.7.3.9 CG_SoftwareInformation

Type: Data structure

Used By: CG_Capability

This parameter is a CG_Capability type used to identify the vendor and version number of the server
software suite. CG_SoftwareInformation is a data structure containing the following elements:

vendor: (type = Character String) – name of the software manufacturer

SWversionNumber: (type = Character String) – version number of this release

IFversionNumber (type = Character String) – version number of OGC Catalog Interface supported
by the software suite.

3.2.7.3.10 CG_SupportedCollections

Type: set(CG_CollectionName)

Used By: CG_ExposeCollectionName

Uses: CG_CollectionName

A capability used for requesting and returning the collections that the server has knowledge of and can
provide access to a client request.

3.2.7.4 CG_CatalogEntryType

Type: Code_List

Used By: CG_QueryRequest, CG_PresentResponse

A catalog contains several different types of data. This parameter provides for the selection of one of those
types for processing. It is implemented as a code list that takes the following values:

product - the lowest level Feature accessible

collection - a Feature Collection

catalog - a server which provides metadata about Features and Collections

service - a implementation of software that acts on Features.

3.2.7.5 CG_CharacterSet

Type: Code_List

Used By: CG_Messaging, CG_Query, CG_Session

This parameter type represents one of the standard computer character representation systems. It is
implemented as a code list that takes the following values:

ASCII

UniCode

Shift-JIS

3.2.7.6 CG_CollectionName

Type: Union data

Used By: CG_QueryRequest, CG_QueryResponse, CG_ExplainCollectionRequest,
CG_ExplainCollectionResponse, CG_BrokeredAccessResponse, CG_ReturnData

OpenGIS Catalog Interface Version 1.037

Collection Name is a type that identifies a catalog data resource. It can point to a catalog, catalog entry,
named catalog subspace, named catalog superspace or a result set. This type is a union of two base types;
collection ID (character string) and collection Name (character string).

3.2.7.7 CG_Dictionary

Type: Interface

Used By: CG_Schema

A dictionary is a simple look-up and query mechanism that associates keys (of a selected type) to values (of
another selected type). Most commonly used for finding attributes by name within a tuple or tuple-like
associative memory entity, but may also be used in other similar cases where structure is not important.

select – return a value using a key

insert – add a value using a key

delete – delete a value using a key

keylist – list the keys

3.2.7.8 CG_MessageFormat

Type: Code_List

Used By: CG_QueryRequest, CG_PresentRequest, CG_Messaging

CG_MessageFormat is an enumerated code list of the available formats for encoding a returned data set.
Valid values for this type are:

XML

HTML

TXT

3.2.7.9 CG_OrderItem

Type: Data Structure

Used by: GC_BrokeredAccessRequestType

This data structure contains the specification of a single order item (i. e. the product that is ordered and that
is to be delivered):

• productId, which is the identifier of the ordered product.

• productPrice, which is the price of the product.

• productDeliveryOptions, which contains delivery options for the product.

• processingOptions, which specifies the processing options that are to be applied on the product
before delivery.

• sceneSelectionOptions, which specifies the selection of the scene from the whole product that is
to be delivered.

3.2.7.10 CG_OrderSpecification

Type: Data Structure

Used By: CG_BrokeredAccessRequest

OpenGIS Catalog Interface Version 1.038

The specification of the order request as provided as input by the client if
CG_BrokeredAccessRequestType = orderEstimate or OrderQuoteAndSubmit.

The structure contains the following information about the product specification:

orderCentreID – identifies the order center at which the order will be performed

orderPrice –the price for the whole order

orderDeliveryDate - the latest date at which the order can be expected to be delivered to the user.

orderCancellationDate – the latest date at which the user can cancel the order.

deliveryMethod – how the order will be delivered to the user: e-mail, ftp or mail.

package – contains the definition of how the packages which compose the order

3.2.7.11 CG_OrderStatus

Type: Code_List

Used By: CG_BrokeredAccessResponse

CG_ OrderStatus is a code list for identifying the status of an order. Valid values for this type are:

Table 6 - Order Status Codes

Value Explanation

orderBeingEstimated the order is currently being estimated by the target order handling system.

An Estimate is an approximation only.

orderEstimated indicates that the order has been successfully validated and that an
estimate is provided.

orderBeingQuoted the order is currently being quoted by the target order handling system.

A Quote shall be considered contractually binding.

orderBeingProcessed the order is currently being processed by the target order handling
system.

orderCompleted processing of order has been completed.

orderNotValid the order has not been successfully validated.

orderCancelled the order has been cancelled

3.2.7.12 CG_PackageSpecification

Type: Data Structure

Used By: CG_BrokeredAccessRequest, CG_OrderSpecification, CG_PackagingType

The specification of a single package, or multiple packages.

The structure contains the following information about the packaging order:

packageId – the identifier of the ordered package

packagePrice –the price for the package

package – the detailed information concerning the specification of package. (see packagingType)

packageMedium –the medium on which the package will be delivered to a user.

OpenGIS Catalog Interface Version 1.039

packageSize – the size of the package in kilobytes.

3.2.7.13 CG_PackagingType

Type: Code List

Used By: CG_PackageSpecification, CG_BrokeredAccessRequest

The specification of the packaging method being used to deliver an order to a user.

predefinedPackage: A package predefined by the given catalog service

adhocPackage: A package constructed of OrderItems to fulfil a particular order

3.2.7.14 CG_PaymentMethod

Type: Code_List

Used By: CG_UserInformation

This code list contains the payment methods for an order secured through using a CG_Access operation.
The supported methods are the following:

credit

cash

purchaseOrder

3.2.7.15 CG_PredefinedPresentationType

Type: Code_List

Used By: CG_PresentationDescription

This parameter is a code list defining pre-defined query presentation descriptions supported by a data
server. Current values that this parameter can take are:

full - includes all defined standard elements from the information community schema. This is a
large set of elements, but it ensures that clients receive everything their users may need to evaluate
the retrieval record for further processing. Note that, while all schema elements are returned, some
elements may be meaningless for the record that is actually returned, and may contain undefined
values.

brief - includes a minimal subset of the defined standard information community schema elements
available from the appropriate database schema.

3.2.7.16 CG_PresentationDescription

Type: Data Union

Used By: CG_QueryRequest, CG_QueryResponse

Uses: CG_PredefinedPresentationType, TupleType

This parameter type contains the name and types of the requested attributes that will be returned by a query
or present request. Alternately, this parameter may be the name of a Predefined Presentation Type.

attributes: (type = sequence<TupleType>) – list of attribute name/type pairs

name: (type = CG_PredefinedPresentationType) –), identifying a predefined presentation type.

3.2.7.17 CG_QueryExpression

Type: Data Structure

OpenGIS Catalog Interface Version 1.040

Used By: CG_QueryRequest

Uses: CG_QueryLanguage

CG_QueryExpression contains a description of the query language being used and the query string. The
query string is a character string. The query language is specified using the CG_QueryLanguage type.

theQuery: (type = CharacterString) – the text defining the query

theNamespace: (type = CharacterString) – where the attributes used in theLanguage are defined.

theLanguage: (type = CG_QueryLanguage) – the query language being used

3.2.7.18 CG_QueryScope

Type: Code_List

Used By: CG_QueryRequest

CG_QueryScope is a code list describing the size of the search space for a query. Current valid values for
this type are:

distributed

local

See Section 2.10 for a discussion of distributed search behavior.

3.2.7.19 CG_RequestID

Type: Data Structure

Used By: CG_Message, CG_StatusRequest, CG_CancelRequest, CG_CancelResponse

CG_RequestID is a compound number used to uniquely identify a specific request in a global context.
These parameters are created by the client from two values, the SessionID and a counter. The Session ID
provides a globally unique identifier for this request context. A counter provides a session unique
identifier. Joined together, they form a globally unique identifier for a request.

sessionID: (type = uint) – globally unique session identifier

counter: (type = uint) – session unique identifier

3.2.7.20 CG_ResultType

Type: Code_List

Used By: CG_QueryRequest, CG_QueryResponse

CG_ResultType is a code list describing the type of data to be returned in a query response message and the
behavior of the message response (see Figure 16). Current valid values for this type are:

validate - the CG_QueryResponse is returned as soon as CG_QueryRequest has been determined
to be valid. Query processing continues after the CG_QueryResponse is returned. CG_Status will
be set to 'failure' in case of an invalid query and to 'processing ' in case of a valid query. Reasons
for failure are provided in the diagnostic of CG_QueryResponse.

resultSetID - the CG_QueryResponse is returned as soon as the resultSetID is available and the
query has completed processing.

hits- the CG_QueryResponse is returned as soon as the query has completed processing and the
number of hits has been determined. Metadata records are not returned in the CG_QueryResponse

results - the CG_QueryResponse is returned as soon as the query has completed processing and
the results have been formatted for return. Metadata records are returned in the
CG_QueryResponse

3.2.7.21 CG_ReturnData

OpenGIS Catalog Interface Version 1.041

Type: Data Structure

Used By: CG_QueryResponse, CG_PresentResponse

Uses: CG_MessageFormat

CG_ReturnData is a data type for packaging result set elements for return to the client. This data structure
contains two components. The encoding component identifies the technique used to encode the result set
data. The payload component contains the actual encoded data.

encoding: (type = CG_MessageFormat) – this component identifies the encoding technique used to package
the catalog data. It is of type CG_MessageFormat which is defined in Section 3.2.7.8.

payload: (type = CharacterString) – payload is a “blob” for holding the returned catalog data. The
structure of this component is defined by the encoding parameter.

3.2.7.22 CG_Schema

Type: Complex Data

Used By: CG_SchemaID

An OGC class containing a FeatureClassDescription. FeatureClassDescriptions are dictionaries with
character string keys and TupleType values. This allows name-type pairs (TupleTypes) to be aggregated
into a larger named context.

Sample Feature Collection CG_Schema: A Feature Collection is a class with a set of attributes and a set of
aggregated features. Note that a Feature Collection is a type of feature. A Feature Collection is
represented using CG_Schema as follows:

CG_Schema(featureCollection) = Dictionary (Attribute1, TupleType(Attribute1);

Attribute2, TupleType(Attribute2);

Feature1, TupleType(Feature1);

Feature2, TupleType(Feature2);

Feature3, TupleType(Feature3))

TupleType(Atttribute1) = (Attribute1, CG_Schema(Attribute1))

TupleType(Feature1) = (Feature1, CG_Schema (Feature1))

The other attributes and features in the feature collection have the same Tuple Types as shown here.

Sample Feature CG_Schema: A Feature is a class with a set of attributes. A Feature is represented using
CG_Schema as follows:

CG_Schema(feature) = Dictionary (Attribute3, TupleType(Attribute3);

Attribute4, TupleType(Attribute4))

Sample Attribute schema: The minimal schema for an Attribute is defined in Table 7 which is based on
ISO/IEC 11179 - Information technology -- Specification and standardization of data elements. An
Attribute Schema is represented using CG_SchemaID as follows:

OpenGIS Catalog Interface Version 1.042

CG_Schema(Attribute1) = Dictionary (Name, valueName;

Definition, valueDefinition;

Representation Category, valueRepresentationCategory;

Form of Representation, valueFormRepresentation;

Datatype of data element values, valueDatatype)

Table 7 - Minimal Mandatory Attribute Definitions

Name Single or multi word designation assigned to a data element.

Definition Statement that expresses the essential nature of a data element and permits its
differentiation from all other data elements.

Representation
Category

Type of symbol, character or other designation used to represent a data
element.

Form of Representation Name or description of the form of representation for the data element, e.g.
’quantitative value’, ’code’, ’text’, ’icon’.

Datatype of data
element values

A set of distinct values for representing the data element value.

3.2.7.23 CG_SchemaID

Type: Union Data

Used By: CG_ExplainCollectionResponse

Uses: CG_Schema, SchemaName

The CG_SchemaID is a data type used to represent the schema of a data, feature or catalog collection. It is
a union of two elements, a named identifier for a well known schema, or an element of type CG_Schema.

schemaName : (type = CharacterString)

schema := (type = CG_Schema)

3.2.7.24 CG_SortField

Type: Data Structure

Used By: CG_QueryRequest, CG_PresentRequest

Uses: CG_SortOrder

CG_SortField provides sorting information to the server for formatting data returned to the client. This
type consists of an attribute name and sort order descriptor. The attribute name identifies the result set
attribute type to be sorted on. The sort order descriptor is of the CG_SortOrder type.

attributeName: (type = character string) – name of attribute to sort on

sortOrder: (type = CG_SortOrder) – how the attributes are to be ordered by the sort

3.2.7.25 CG_SortOrder

Type: Code_List

Used By: CG_SortField

CG_SortOrder is an enumerated code list for defining how a value is to be sorted. The current valid values
for this type are shown in Table 8

OpenGIS Catalog Interface Version 1.043

Table 8 - Sort Order Operations

OPERATOR DESCRIPTION

ascending Sort in ascending alphanumeric order based on the attribute

descending Sort in descending alphanumeric order based on the attribute

3.2.7.26 CG_Status

Type: Code_List

Used By: CG_TerminateResponse, CG_StatusResponse, CG_CancelResponse, CG_PresentResponse,
CG_BrokeredAccessResponse

CG_Status is a code list for representing the current status of a resource or request. The valid values for
this type are the following:

success: the request has been processed without error.

successResultsAvailable: the request has been processed without error and outputs of the
processing can be retrieved.

processingNormal: the requested operations have begun but are not completed. No errors have
been identified.

processingQueued: the requested operations have begun but are not completed. No errors have
been identified. The processing has been temporally suspended and will resume when other
processing has been completed.

processingPausedOrSuspended: the requested operations have begun but are not completed. No
errors have been identified. The processing has been temporally suspended and will resume when
triggered by an external event.

failure: the request could not be completed due to errors being encountered. On a best effort basis
the server has returned to the state prior to the request.

failureAccessDenied : the request could not be completed because the privileges of the client did
not permit the operation. On a best effort basis the server has returned to the state prior to the
request.

3.2.7.27 CG_StatusUpdateType

Type: Code List

Used By: CG_BrokeredAccessRequest

This parameter defines how the user requesting the order desires to be kept informed about the order
processing.

manual: The user performs the status request using the Catalog Interface

automatic: The OHS filling the order provides status updates for the user via email

3.2.7.28 CG_UserInformation

Type: Data Structure

Used By: CG_BrokeredAccessRequest

This parameter type is a data structure used to provide information about the user.

userName: (type = Character String) – name of the user

OpenGIS Catalog Interface Version 1.044

userAddress: (type = CharacterString) – billing, home or delivery address of user

phoneNumber: (type = CharacterString) – home or office phone number for user

faxNumber: (type = CharacterString) – home or office fax number for user

emailAddress: (type = CharacterString) – e-mail address for the user

NetAddress: (type = CharacterString) – Address of the users’ primary computer.

PaymentMethod: (type = CG_PaymentMethod) – defines the payment method

3.2.7.29 TupleType

Type: MetaClass

Used By: CG_PresentationDescription

A set of AttributeName - AttributeType pairs. A structural metadata entity for controlling the instances of
the class Tuple.

OpenGIS Catalog Interface Version 1.045

3.3 Fine-Grain Structural Model

3.3.1 Overview

This section define the Fine Grain section of the Catalog General Model. The Fine Grain portion is divided
for purposes of explanation into 4 sections:

1) The Library and Manager interfaces – Used to place requests with the Catalog Service

2) The Responses – Used to retrieve the results of a request

3) The Datatypes – the data types used as parameters in the requests and responses operations

4) Callback – Used to notify clients of the status of a request

These elements are used together in a simple 3 step pattern to provide the Catalog Service capabilities:

1) The Library object provides a Manager object to the client.

2) This manager object provides one or more operations for a specific capability such as query or access.
These operation when successfully invoked by the client, these operations return a Response object.

3) That Response object provides one or more operations allow retrieval of the results of the request, such
as the results of a query.

3.3.2 Managers

The Manager segment of the Fine Grain General Model is composed of the Library interface, which acts as
a Factory for the Managers, two abstract interfaces (LibraryManager and ResponseManager) which define
operations common to the concrete Managers and five concrete Managers (CatalogMgr, OrderMgr,
CreationMgr, UpdateMgr and DataModelMgr) each specialized to provide a specific capability. Figure 12
shows the UML describing these interfaces, relationships and their operations. Details for each interface are
given below.

CatalogMgr

submitQuery()
hitCount()
validateQuery()

<<Interface>>

CreationMgr

create()
createMetadata()

<<Interface>>

DataModelMgr

listDataViews()
attributes()
queryableAttributes()
entities()
entityAttributes()

<<Interface>>

Library

managerTypes()
manager()
libraryDescription()

<<Interface>>

LibraryManager

propertyNames()
propertyValues()
libraries()

<<Interface>>

OrderMgr

packageSpecifications()
validateOrder()
order()

<<Interface>>

ResponseManager

listActiveResponses()
defaultTimeout()
deleteRequest()

<<Interface>>

UpdateMgr

update()
updateByQuery()
release_lock()

<<Interface>>

Figure 12 - The Library and Managers

OpenGIS Catalog Interface Version 1.046

3.3.2.1 Library

The Library interface is intended to serve as the starting point for any interaction with the rest of the fine-
grained interfaces. All capabilities of a library system are accessed through the concrete manager objects.
The Library interface is the mechanism by which a client discovers and requests access to manager objects.

3.3.2.1.1 Public Operations:

managerTypes () : ManagerTypeList

This operation allows a client to discover which managers are supported by a particular library. A
ManagerTypeList structure is returned from a successful invocation of this operation.

manager (manager_type : in ManagerType, access_criteria : in OGCBasic::NameValueList) :
LibraryManager

This operation is a request to be given access to a manager object. A successful invocation will return a
reference to an object of type LibraryManager. The client then can use this Manager to make requests for
specific Catalog services.

libraryDescription () : LibraryDescription

This operation returns descriptive information about the library. A successful invocation of this operation
will return a populated LibraryDescription structure. See the Datatypes section for details on the
LibraryDescription structure.

3.3.2.2 LibraryManager

The LibraryManager interface serves as the (abstract) root for all types of manager objects in the Fine
Grained Model. It is abstract in the sense that a concrete LibraryManager object by itself would serve no
real purpose. Its real purpose is to define certain operations that are common to all types of manager
objects in the Fine Grained Model.

3.3.2.2.1 Public Operations:

propertyNames () : OGCBasic::NameList

This selector operation allows a client to obtain a list property names. A property name is the name
component of a NameValue pair. The NameList returned by this operation identifies all the property names
supported or known by this manager. These properties are used to describe any characteristics of a
Manager.

propertyValues (desired_properties : in OGCBasic::NameList) : PropertyList

This operation allows a client to discover the properties and the current values of those properties that
describe a Manager.

libraries () : LibraryList

This selector operation allows a client to determine the specific geospatial library system(s) this Manager
supports.

3.3.2.3 ResponseManager

The RequestManager is an abstract interface that defines operations common to all managers that use
Response objects as part of their operations.

3.3.2.3.1 Public Operations:

listActiveResponses () : ResponseList

This operation allows a client to determine what responses are being managed by this RequestManager. A
successful invocation of this operation will return a ResponseList structure

OpenGIS Catalog Interface Version 1.047

defaultTimeout () : OGCBasic::RelativeTime

This operation allows a client to get the default value of the lifetime of the Requests being managed by this
RequestManager. This is the length of time the Response will be maintained by the Manager before it is
deleted. This is a count down timer which is reset with each invocation of a method on the object. When
the count down is expired, i.e., no invocations in the defaultTimeout, the object may be “garbaged
collected”.

deleteRequest (response : in Response) : void

This operation allows a client to destroy a Responses and free all resources associated with that Response.

3.3.2.4 CatalogMgr

The CatalogManager Interface allows a client to submit queries to search the catalog of holdings of a
geospatial library.

3.3.2.4.1 Derived from LibraryManager, ResponseManager

3.3.2.4.2 Public Operations:

submitQuery (view_name : in ViewName, query : in Query, result_attributes : in
OGCBasic::NameList, sort_attributes : in SortAttributeList, properties : in PropertyList) :
SubmitQueryResponse

This operation allows a client to submit a query to search a catalog of products. The client indicates the
product type of interest by supplying the desired value in view_name. The client indicates the view of the
catalog of interest in view_name, the query expression itself in query, the set of attributes to be returned in
result_attributes and any sorting to be done in sort_attributes. The parameter properties is used to supply
any implementation specific parameters. A successful invocation returns a SubmitQueryResponse object,
which is used to retrieve the query results. If the property list contains the property “lock” (type =
Boolean) and the lock is set to true, the products that are returned by the query are locked for update.

hitCount (view_name : in ViewName, query : in Query, properties : in PropertyList) :
HitCountResponse

This operation allows a client to determine the number of results ("hits") that would be returned from a
particular query. The parameters used are the same as used in the submitQuery operation.

validateQuery (view_name : in ViewName, query : in Query, result_attributes : in
OGCBasic::NameList, sort_attributes : in SortAttributeList, properties : in PropertyList) : boolean

This operation allows a client to verify that a specific query is valid. the parameters used are the same as
used in the submitQuery operation.

3.3.2.5 OrderMgr

The OrderMgr Interface allows a client to submit orders for data sets or products from a geospatial library.
The OrderMgr provides operations to place an order (order), specify how it is to packaged and delivered
(i.e., packageSpecifications), and to validate an order specification prior to submitting the order to a library
(validate).

3.3.2.5.1 Derived from LibraryManager, ResponseManager

3.3.2.5.2 Public Operations:

packageSpecifications () : OGCBasic::NameList

This operation returns a NameList containing all packaging specifications known or acceptable to this
OrderMgr. The details of the packageSpecifications are implementation dependent.

OpenGIS Catalog Interface Version 1.048

validateOrder (order : in OGCBasic::DG_DirectedGraph, properties : in PropertyList) :
ValidationResults

This operation is used to determine if an order request for a data set or product from a geospatial library is
valid. The operation returns a data structure indicating the validity of the order and information concerning
details specific to the validation of the order.

order (order : in OGCBasic::DG_DirectedGraph, properties : in PropertyList) : OrderResponse

This operation is used to request delivery of one more products (i.e. place an order). The client defines the
order by assembling a DG_DirectedGraph containing all necessary elements of the desired order.

3.3.2.6 CreationMgr

The CreationMgr interface allows a client to nominate a data set or product to a library(s) for inclusion in
the library holdings. This interface also allows a client to nominate the metadata of a data set or product for
inclusion without supplying the data set or product itself.

3.3.2.6.1 Derived from LibraryManager, ResponseManager

3.3.2.6.2 Public Operations:

create (new_product : in OGCBasic::FileLocationList, creation_metadata : in
OGCBasic::DG_DirectedGraph, properties : in PropertyList) : CreateResponse

This operation allows a client to nominate a data set or product for inclusion in the holdings of a library(s).
The data set or product nominated must be accompanied by the appropriate metadata. The metadata may be
in the product itself in the DG_DirectGraph or a combination of the two.

createMetadata (creation_metadata : in OGCBasic::DG_DirectedGraph, view_name : in ViewName,
properties : in PropertyList) : CreateMetaDataResponse

This operation allows a client to nominate the metadata of a data set or product for inclusion in a library(s)
without supplying the data set or product itself. The client nominates the metadata by supplying all
metadata elements in the DG_DirectedGraph creation_metadata.

3.3.2.7 UpdateMgr

The UpdateManager Interface provides the capability for a client to modify existing catalog entries.

3.3.2.7.1 Derived from LibraryManager, ResponseManager

3.3.2.7.2 Public Operations:

update (view : in ViewName, changes : in UpdateDG_DirectedGraphList, properties : in
PropertyList) : UpdateResponse

This operation allows a client to modify existing catalog entries that match a specific que

updateByQuery (updated_attribute : in OGCBasic::NameValue, query : in Query, view_name : in
ViewName, properties : in PropertyList) : UpdateByQueryResponse

This operation allows a client to update one or more catalog entries by supplying a query to select the
entries to be changes in query and a NameValue pair containing the attribute to be updated in and its new
value in updated_attribute.

release_lock (lockedProduct : in UID::Product) : void

This operation manually release a lock that has been placed on a Product. The Product reference for the
locked Product is provided in the parameter lockedProduct. A product is locked through the Catalog
Manager.

OpenGIS Catalog Interface Version 1.049

3.3.2.8 DataModelMgr

The DataModelManager Interface allows a client to discover and access the metadata model being used by
a given Geospatial Library.

3.3.2.8.1 Derived from LibraryManager

3.3.2.8.2 Public Operations:

listDataViews (properties : in PropertyList) : ViewList

This operation exposes the hierarchy of data views types recognized by this library. See the Data types
section for details of the ViewList structure.

attributes (view_name : in ViewName, properties : in PropertyList) : AttributeInformationList

This operation returns a AttributeInformationList, which describes the requested data view. The
AttributeInformationList is composed of elements of type AttributeInformation. The
AttributeInformationList contains both queryable and non-queryable attributes. See the data types section
for the details of the AttributeInformation structure.

queryableAttributes (view_name : in ViewName, properties : in PropertyList) :
AttributeInformationList

This operation returns an AttributeInformationList , which describes a specific data view. The
AttributeInformationList is a sequence of elements of type AttributeInformation. The
AttributeInformationList contains the subset of all attributes that are queryable. See the data types section
for the details of the AttributeInformation structure.

entities (view_name : in ViewName, properties : in PropertyList) : OGCBasic::DG_DirectedGraph

This operation returns a DG_DirectedGraph, which represents a set of entities and their relationships that
compose a specific data view.

entityAttributes (entity : in Entity, properties : in PropertyList) : AttributeInformationList

This operation returns a AttributeInformationList, which represents a set of attributes that describes a
specific entity. The AttributeInformationList contains elements of type AttributeInformation. See the data
types section for the details of the AttributeInformation structure.

3.3.3 Responses

The Response segment of the Fine Grain General Model is composed of one abstract interface (Response)
and six concrete Responses. Each of these concrete responses is returned by a specific Manager operation. .
Figure 13 shows the UML describing these interfaces, relationships and their operations. Details for each
interface are given below.

OpenGIS Catalog Interface Version 1.050

CreateMetaDataResponse

complete()

<<Interface>>

CreateResponse

complete()

<<Interface>>

OrderResponse

complete()

<<Interface>>

Response

requestDescription()
userInfo()
status()
cancel()
remainingDelay()
registerCallback()
freeCallback()
responseManager()

<<Interface>>

SubmitQueryResponse

completeGraphResults()
completeTableResults()
completeXMLResults()

<<Interface>>

UpdateByQueryResponse

complete()

<<Interface>>

UpdateResponse

complete()

<<Interface>>

Figure 13 - Response Interfaces

3.3.3.1 Response

The Response Interface is an abstract interface that defines those operations that are common to all
concrete Response objects.

3.3.3.1.1 Public Operations:

requestDescription () : OGCBasic::RequestDescription

This operation returns a populated RequestDescription structure that describes the Request that generated
this Response. See the data types section for details on the RequestDescription structure.

userInfo (message : in string) : void

This operation allows a user to provide information that describes the Response. The client supplies this
information, in the form of a string in a message form. A successful invocation of this operation associates
the client’s message with the Request.

status () : OGCBasic::Status

This operation returns the current status of the Response. This operation can be used to poll the Response to
determine whether or not it has completed processing.

cancel () : void

OpenGIS Catalog Interface Version 1.051

This operation is used to terminate further processing of a Response.

remainingDelay () : OGCBasic::RelativeTime

This operation returns an estimate of the time until the Response reaches completion.

registerCallback (callback : in CB::Callback) : void

This operation allows a client to register a callback object with a Response. The purpose of a callback
object is to provide a method to allow the Request to notify the client that processing of a Response has
reached a terminal state.

freeCallback (callback : in CB::Callback) : void

This operation allows a client to remove a callback previously registered with a Response. The client
supplies a reference to the Callback that is to be de-registered

responseManager () : ResponseManager

This operation allows a client to discover which RequestManager is managing the Request

3.3.3.2 SubmitQueryResponse

The SubmitQueryResponse Interface is used to obtain the results from submitting a query to the catalog
service of a geospatial library. This Response is returned from the submitQuery operation of the
CatalogMgr.

3.3.3.2.1 Derived from Response

3.3.3.2.2 Public Operations:

completeGraphResults (start_point : in unsigned long, length : in unsigned long, results : out
QueryResults) : OGCBasic::State

This operation returns a set of query results expressed as a Directed Graph structure. See the data types
section for details on the DG_DirectedGraph structure.

completeTableResults (start_point : in unsigned long, length : in unsigned long, results : out
OGCBasic::NameValueTable) : OGCBasic::State

This operation returns a set of query results expressed as a Name Value table structure. See the data types
section for details on the NameValueTable structure.

completeXMLResults (start_point : in unsigned long, length : in unsigned long, results : out string) :
OGCBasic::State

This operation returns a set of query results expressed as an XML document.

3.3.3.3 OrderResponse

The OrderResponse Interface is used to return the status of the processing of an order. This Response is
returned from the order operation of the OrderMgr.

3.3.3.3.1 Derived from Response

3.3.3.3.2 Public Operations:

complete () : OGCBasic::State

This operation allows a client to check if processing of the OrderResponse is complete.

3.3.3.4 CreateMetaDataResponse

OpenGIS Catalog Interface Version 1.052

This Interface is used to create new metadata entries for the catalog holdings of a geospatial library. This
Response is returned from the createMetadata operation of the CreationMgr.

3.3.3.4.1 Derived from Response

3.3.3.4.2 Public Operations:

complete (new_product : out UID::Product) : OGCBasic::State

This operation allows a client to check if processing of the CreateMetaDataResponse is complete. It returns
the identifier for the product just created.

3.3.3.5 CreateResponse

The CreateResponse interface is used to create new product entries in a geospatial library. This Response is
returned from the create operation of the CreationMgr.

3.3.3.5.1 Derived from Response

3.3.3.5.2 Public Operations:

complete (new_product : out UID::Product) : OGCBasic::State

This operation returns a ProductList containing the references to all newly created product(s).

3.3.3.6 UpdateByQueryResponse

The UpdateByQueryRespsonse is used to complete the processing of an update of a catalog entry
operation. This Response is returned from the updateByQuery operation of the UpdateMgr.

3.3.3.6.1 Derived from Response

3.3.3.6.2 Public Operations:

complete () : OGCBasic::State

Allows a client to check if processing of the of an update operation is complete.

3.3.3.7 UpdateResponse

The UpdateResponse Interface is used to complete the processing of an update operation of a catalog entry.
This Response is returned from the update operation of the UpdateMgr.

3.3.3.7.1 Derived from Response

3.3.3.7.2 Public Operations:

complete () : OGCBasic::State

This operation completes the processing of a catalog update operation. It returns the status of the update
operation.

OpenGIS Catalog Interface Version 1.053

3.3.4 DataTypes

 This section defines the data types used by the operations of the Managers and Response interfaces. This
section is broken into two subsections: Catalog Types and OGC Types. Catalog Types are types defined
specifically for the use of the Catalog Service. OGC Types are used by the Catalog Service but are very
general in nature i.e. could be used by other OGC services.

3.3.5 Catalog Specific DataTypes

3.3.5.1 AttributeInformation

A collection of elements that together describe an attribute used in a metadata model.

3.3.5.1.1 Public Attributes:

attribute_name : string
The name of the attribute being described

attribute_units : string
The units of measure for this attributes

description : string
A human readable description of the attribute.

sortable : boolean
A flag indicating whether this attribute is sortable.

updateable : boolean
A flag indicating whether this attribute is updateable by clients

3.3.5.2 AttributeInformationList

A sequence of AttributeInformation structures.

3.3.5.3 AttributeType

Defines the list of all possible Attribute Types

3.3.5.3.1 Public Attributes:

text

integer

floating_point

ogcbasic_coordinate

ogcbasic_polygon

ogcbasic_abs_time

ogcbasic_rectangle

ogcbasic_image

ogcbasic_height

ogcbasic_elevation

ogcbasic_distance

ogcbasic_percentage

ogcbasic_ration

OpenGIS Catalog Interface Version 1.054

ogcbasic_angle

ogcbasic_file_size

ogcbasic_file_location

ogcbasic_count

ogcbasic_weight

ogcbasic_date

ogcbasic_linestring

ogcbasic_data_rate

ogcbasic_bin_data

boolean_data

ogcbasic_duration

3.3.5.4 Change

Indicate which node of a DG_DirectGraph is to be changed and what type of change is to be performed.

3.3.5.5 ChangeList

A sequence of Change structures

3.3.5.6 ChangeType

Indicates the type of change to an attribute value being requested.

3.3.5.6.1 Public Attributes:

add_change :
Indicates a change to add a new node to a DG_DirectedGraph

update_change :
Indicates a change that will update an existing Node in a DG_DirectedGraph

delete_change :
Indicates a change that will delete a Node from a DG_DirectedGraph

3.3.5.7 DateRange

Defines a range of dates.

3.3.5.8 Domain

Defines a container to hold a domain value.

3.3.5.8.1 Public Attributes:

t : unsigned long

bv : boolean

3.3.5.9 DomainType

This enumeration defines the set of all possible data types expected to be used in metadata model. It is used
by the DataModelMgr to describe an attribute in a metadata model.

3.3.5.9.1 Public Attributes:

date_value :

OpenGIS Catalog Interface Version 1.055

text_value :

integer_ value:

floating_point_ value:

list :

ordered_list :

integer_range :

floating_point_range :

geographic :

integer_set :

floating_point_set :

geographic_set :

binary_data :

boolean_value :

3.3.5.10 Entity

An identifier for an entity in a metadata model.

3.3.5.11 FloatingPointRange

Defines a range of floating point numbers.

3.3.5.11.1 Public Attributes:

lower_bound : double
The lower limit of the range.

upper_bound : double
The upper limit of the range.

3.3.5.12 FloatingPointRangeList

Defines a set of floating point ranges.

3.3.5.13 IntegerRange

Defines a range of integers.

3.3.5.13.1 Public Attributes:

lower_bound : long
The lower limit of the range

upper_bound : long
The upper limit of the range.

3.3.5.14 IntegerRangeList

Defines a set of integer ranges.

OpenGIS Catalog Interface Version 1.056

3.3.5.15 LibraryDescription

A human readable description of a Library.

3.3.5.15.1 Public Attributes:

library_name : string
An identifier for this instance of a Library.

library_description : string
A human readable description of this Library. This may contain information such as a
description of its holdings and ordering or pricing schemes.

library_version_number : string
A field that indicates the version of the Library system software i.e. N.N.N

3.3.5.16 LibraryDescriptionList

A sequence of LibraryDescriptions.

3.3.5.17 LibraryList

A sequence of Library identifiers.

3.3.5.18 ManagerType

An identifier for a type of Manager. The current valid values are "CatalogMgr" , "OrderMgr" ,
"DataModelMgr", "CreationMgr" and "UpdateMgr"

3.3.5.19 ManagerTypeList

A sequence of ManagerTypes

3.3.5.20 Polarity

Indicates the direction of a sort.

3.3.5.20.1 Public Attributes:

ascending :

descending :

3.3.5.21 PropertyList

A list of properties and their values.

3.3.5.22 Query

A string that contains a query expression.

3.3.5.23 QueryResults

A structure that is used as one of the three means to encode a set of query results, the others being
NameValueTable and XML. See the operations of the SubmitQueryResposnse interface.

3.3.5.24 RequirementMode

OpenGIS Catalog Interface Version 1.057

Defines a flag to indicate whether the attribute is required to be present in every catalog entry.

3.3.5.24.1 Public Attributes:

mandatory :

optional :

3.3.5.25 ResponseList

A sequence of Response identifiers.

3.3.5.26 SortAttribute

Indicates the attribute to be sorted upon and its direction.

3.3.5.27 SortAttributeList

3.3.5.28 UpdateDG_DirectedGraph

A structure that defines changes to another DG_DirectedGraph. It includes the new values (data) and how
these changes are to be applied to the other DG_DirectedGraph (changes)

3.3.5.29 UpdateDG_DirectedGraphList

A sequence of UpdateDG_DirectedGraph structures.

3.3.5.30 ValidationResults

This type is returned to indicate if a requested operation is valid. It is used in the
CatalogMgr::validateQuery and OrderMgr::validateOrder operations.

The field valid

3.3.5.30.1 Public Attributes:

valid : boolean
If TRUE requested operation is valid. If FALSE requested operation is not valid.

warning : boolean
If TRUEwarning field contains a description of a warning condition associated with the
validity of the requested operation (i.e. Valid but ...). If FALSE no warning is given.

details : string
The text describing the warning.

3.3.5.31 ValidationResultsList

A sequence of ValidationResult structures.

3.3.5.32 View

This structure is used to define the relationship between views and other views (sub-views)

3.3.5.33 ViewList

A sequence of Views

3.3.5.34 ViewName

OpenGIS Catalog Interface Version 1.058

An identifier for a view. A view is used to denote a specific set of attributes which may be used together in
queries.

3.3.5.35 ViewNameList

A sequence of ViewName

3.3.6 Callbacks

Callbacks are an optional portion of the Fine Grain General Model that allow clients to monitor the status
of their requests without either blocking or polling for status. This is done by the client implementing the
Callback interface and supplying a pointer to this interface in the registerCallback operation of the
Response interface. See the Response interface for the details of this operation.

3.3.6.1 Callback

The Callback interface is implemented by clients wishing to be notified of changes in state of their
requests.

3.3.6.1.1 Public Operations:

notify (description : in OGCBasic::RequestDescription) : void

This operation is invoked by a server to notify the client which owns this Callback that the state of a
request has changed. A description of the Request that has changed is provided in the RequestDescription
parameter.

release () : void

This operation is invoked by the server to indicate to the client that the callback resources may be released.

OpenGIS Catalog Interface Version 1.059

3.4 Coarse-Grain Dynamic Model

The Coarse-Grain Catalog Interface defines a stateful server (a stateless interface will be added in future
versions of the Implementation Specification). This section defines the states of the server and the allowed
transitions between the states. All other state transitions are disallowed and are consider errors if exhibited
by a server.

3.4.1 UML State Diagram Notation

The state diagrams in the following sections use the UML notation2. Figure 14 provides a summary of the
UML notation used in the following sections. Both the Sequential Composite State and the Concurrent
Composite State types are used. In a Sequential Composite State only one state in the composite is active
at any given time. UML defines that when a transition enters Concurrent Composite State all of the
concurrent states are active, although some of the concurrent states may only be in the Initial State.

State A

Event / Action

State A

Transition 1
Transition 2

State A State B

Event / Action Event / Action

Event /
 Action

State A State B

Event / Action
Event / Action

Simple State

Transition

Initial State

Final State

State with
internal
transitions

Sequential, Composite State

Concurrent, Composite State

Figure 14 - UML State Diagram Notation

3.4.2 Catalog Server State Machine

The top level state diagram for the Coarse Grained Catalog Interface is shown in Figure 15. A session can
only begin with an initialization that leaves the Server in the "Session Ready" state. While in the Session
Ready state, if any request (except a terminate request) is received, the Server transitions to the concurrent,
composite state containing four substates: Discovery, Access, Management, and Utility. Details of the four
substates is provided in subsequent sections. When a termination is received, the session will transition
from any current state to the end state. The state machine allows for the server to session to end after a
designated time, i.e., timeout. When a session times-out, the server closes the session without notification
to the client. The server should be prepared to respond to client request for a session which has timed out
by returning the paired response containing a diagnostic indicating that the session does not exist.

2 "The Unified Modeling Language Reference Manual", J. Rumbaugh, I. Jacobson, G. Booch, Addison-
Wesley, 1999.

OpenGIS Catalog Interface Version 1.060

OGC Catalog Session

Initializing
Session

CG_Request (except
CG_TerminateRequest) /

Discovery Access Management Utility

Session
Ready

session established /
 CG_InitSessionResponse

timeout /
 clean-up session

CG_CancelRequest /
 clean-up session,
 CG_CancelResponse,
 CG_InitSessionResponse

CG_TerminateRequest /
 clean-up session,
 CG_TerminateResponse

CG_InitSessionRequest /

CG_StatusRequest /
 CG_StatusResponse

timeout /
 clean-up session

CG_TerminateRequest /
 clean-up session,
 CG_TerminateResponse

Figure 15 - Catalog Session State Diagram

3.4.3 Discovery State

Two views of the Discovery State diagram are provided: Figure 16 shows an abbreviated version, Figure 17
shows the complete Discovery state diagram. The abbreviated version is only provided to assist the reader
in understanding the complete diagram. When a CG_QueryRequest message is received by the Server, the
state transitions to one of three states depending upon the value of the CG_ResultType in the
CG_QueryRequest. For CG_ResultType equals Validate, the transition is to the Type 1 state. A transition
out of the Type 1 state occurs when the CG_QueryResponse is ready, which happens relatively quickly
because the CG_QueryResponse contains little information. A CG_QueryResponse is returned for Type 1
prior to the server completing the query, therefore there is a Processing Query state. Transitions out of the
Types 2& 3 and Type 4 states occur after the query is complete. Type 4 has the additional constraint that
the records be formatted before transitioning to the Wait with Result Set state.

OpenGIS Catalog Interface Version 1.061

Discovery

CG_QueryRequest
 [Type = 1] /

waiting with
result set

Type 1 Types 2 & 3 Type 4

CG_QueryRequest
 [Type = 2 or 3] /

CG_QueryRequest
 [Type = 4] /

processing
query

Process Query Process Query
Format Records

Response Ready /
 CG_QueryResponse

Query complete /

Query complete /
 CG_QueryResponse

Records formatted /
 CG_QueryResponse

CG_PresentRequest /

Formatting
Records

Formatting
Records

Records Formatted /
 CG_PresentResponse

CG_PresentRequest /Records Formatted /
 CG_PresentResponse

Figure 16 - Discovery State Diagram (without Status and Cancel)

Table 9 - CG_ResultType as used in Discovery State Diagrams

1 Validate

2 Result set ID

3 Hits

4 Results

OpenGIS Catalog Interface Version 1.062

Discovery

CG_QueryRequest
 [Type = 1] /

waiting with
result set

Type 1 Types 2 & 3 Type 4
CG_StatusRequest /
 CG_StatusResponse

CG_StatusRequest /
 CG_StatusResponse

CG_StatusRequest /
 CG_StatusResponse

CG_QueryRequest
 [Type = 2 or 3] /

CG_QueryRequest
 [Type = 4] /

processing
query

CG_StatusRequest /
 CG_StatusResponse

Process Query Process Query
Format Records

Response Ready /
 CG_QueryResponse

Query complete /

Query complete /
 CG_QueryResponse

Records formatted /
 CG_QueryResponse

CG_CancelRequest,
result set not available /
 CG_CancelResponse ,
 CG_QueryResponse

CG_CancelRequest,
result set not available /
 CG_CancelResponse

CG_CancelRequest,
 result set available /
 CG_CancelResponse

Processing
Query &

Formatting
Records

Formatting
Records

CG_CancelRequest /
 CG_CancelResponse,
 CG_PresentResponse

Records Formatted /
 CG_PresentResponse

CG_CancelRequest /
 CG_CancelResponse,
 CG_PresentResponse

CG_CancelRequest,
result set available,
freeResources = false /
 CG_CancelResponse ,
 CG_QueryResponse

CG_PresentRequest /

Records Formatted /
 CG_PresentResponse

CG_StatusRequest /
 CG_StatusResponse

CG_StatusRequest /
 CG_StatusResponse

CG_CancelRequest,
result set available,
freeResources = true /
 CG_CancelResponse ,
 CG_QueryResponse

CG_StatusRequest /
 CG_StatusResponse

CG_PresentRequest /

Figure 17 - Discovery State Diagram (Complete)

OpenGIS Catalog Interface Version 1.063

3.4.4 Access State Diagram

The Access State Diagram is shown in Figure 18. There is only one substate of the Access State. The
Processing Request state is entered whenever a CG_BrokeredAccessRequest is received. During the
Processing Request state the state of an Order may be modified based on the contents of the
CG_BrokeredAccessRequest. The state of the Order is a separate state machine, see Figure 19 and Figure
20. Transitions in the Order state may occur independent of OGC Catalog Interface requests, e.g., order
fulfilled is a transition which occurs without a CG_BrokeredAccessRequest. Orders may be deleted by the
server. The server should be prepared to respond to client request for an order that has been deleted by
returning the paired response containing a diagnostic indicating that the order does not exist.

Processing
Request

CG_BrokeredAccessRequest /

request complete /
 CG_BrokeredAccessResponse

CG_StatusRequest /
 CG_StatusResponse

Access

CG_CancelRequest /
 CG_CancelResponse,
 CG_BrokeredAccessResponse

Figure 18- Access State Diagram

Table 10 - Order Request Type Diagram Codes

Value Code in Diagrams

orderEstimate 1

orderQuoteAndSubmit 2

orderMonitor 3

orderCancel 4

OpenGIS Catalog Interface Version 1.064

Order Estimation

order
cancelled

order being
estimated

order
estimated

order not
valid

CG_BrokeredAccessRequest
 [RequestType = 1] /
 CG_BrokeredAccessResponse

order not valid during estimation /
CG_BrokeredAccessRequest
 [RequestType = 3] /
 CG_BrokeredAccessResponse

CG_BrokeredAccessRequest
 [RequestType = 3] /
 CG_BrokeredAccessResponse

CG_BrokeredAccessRequest
 [RequestType = 3] /
 CG_BrokeredAccessResponse

CG_BrokeredAccessRequest
 [RequestType = 3] /
 CG_BrokeredAccessResponse

CG_BrokeredAccessRequest
 [RequestType = 4] /
 CG_BrokeredAccessResponse

estimation complete /

order deleted/

order deleted/

order deleted/

Figure 19- Order Estimation State Diagram

Order Submission

order
cancelled

order not
valid

CG_BrokeredAccessRequest
 [RequestType = 2] /
 CG_BrokeredAccessResponse

order not valid
during quotation /

CG_BrokeredAccessRequest
 [RequestType = 3] /
 CG_BrokeredAccessResponse

CG_BrokeredAccessRequest
 [RequestType = 3] /
 CG_BrokeredAccessResponse

CG_BrokeredAccessRequest
 [RequestType = 3] /
 CG_BrokeredAccessResponse

CG_BrokeredAccessRequest
 [RequestType = 4] /
 CG_BrokeredAccessResponse

quotation
complete /

order deleted/

order deleted/

order deleted/

order
completed

order being
processed

order being
quoted

order fulfilled /

CG_BrokeredAccessRequest
 [RequestType = 3] /
 CG_BrokeredAccessResponse

CG_BrokeredAccessRequest
 [RequestType = 3] /
 CG_BrokeredAccessResponse

CG_BrokeredAccessRequest [RequestType = 4],
 processing can be cancelled /
 CG_BrokeredAccessResponse

order not valid
during processing /

CG_BrokeredAccessRequest [RequestType = 4],
 processing cannot be cancelled /
 CG_BrokeredAccessResponse

Figure 20 - Order Submit State Diagram

OpenGIS Catalog Interface Version 1.065

3.4.5 Management State

The Management State Diagram is shown in Figure 21.

Processing
Request

Management

CG_UpdateCatalogRequest /

request complete /
 CG_CreateCatalogResponse

CG_CreateCatalogRequest /

request complete /
 CG_UpdateCatalogResponse

CG_StatusRequest /
 CG_StatusResponse

CG_CancelRequest /
 CG_CancelResponse,
 CG_UpdateCatalogResponse

CG_CancelRequest /
 CG_CancelResponse,
 CG_CreateCatalogResponse

Processing
Request

CG_StatusRequest /
 CG_StatusResponse

Figure 21 - Management State Diagram

3.4.6 Utility State Diagram

Requests which do not fit in the previous states are handle as part of the Utility State Machine (See Figure
22).

CancelRequest / cancel request,
 CancelResponse

Processing
Request

St
at

us
R

eq
ue

st
 /

St
au

sR
es

po
ns

e

Utility

ExplainServerRequest /

Response ready /
 ExplainServerResponse

Figure 22 - Utility State Diagram

OpenGIS Catalog Interface Version 1.066

3.5 Fine-Grain Dynamic Model

This section contains sequence diagrams that show how the Fine Grain General Model is used.

3.5.1.1 Typical Query Sequence

 : CG_Client : Library : CatalogManager : SubmitQueryResponse

1: libraryDescription()

2: managerTypes()

3: requestManager(ManagerType, NameValueList)

4: submitQuery(String, String, NameList, SortAttributeList, NameValueList)

5: complete(QueryResults)

6: complete(QueryResults)

7: deleteRequest(Response)

Figure 23 - Typical Query Sequence

The typical query sequence diagram shows how a client may submit a query against a Catalog Service and
retrieve the results.

1. The client retrieves a description of the Library. This could contain such information as a summary of
the libraries holdings, its capabilities or its pricing model.

2. The client retrieves a list of the Manager types supported by this implementation. Using this list, the
client software can determine what set of capabilities this implementation offers (i.e., discovery,
access/order, creation etc). The client selects one Manager value from this list (in this case the value
“CatalogMgr”) and uses it in a call to the requestManager operation.

3. The client requests a specific Manager type, passing in the desired ManagerType (“CatalogMgr”) and a
set of name value pairs that are used as access criteria. User name and password would be the most
common examples of access criteria. A successful invocation of this operation returns a reference
(pointer) to a Manager of the requested type. The client can now interact directly with that Manager.

OpenGIS Catalog Interface Version 1.067

4. The client submits a query to the CatalogManager, which includes the query expression itself
(comparable to a SQL where clause), a set of attributes to be returned (comparable to a SQL select clause)
and any desired sorting of the result set. A successful invocation of this operation returns a reference to a
SubmitQueryResponse object. The results of the query can be accessed through this Response object.

5. The client can retrieve the results of the query via the complete operation. Each invocation returns the
specified sequence of "hits".

6. The client calls complete to retrieve as many hits as needed or desired.

7. The client deletes the SubmitQueryRequest when its no longer has need of it.

3.5.1.2 Minimal Query Sequence

 : CG_Client : Library : CatalogManager : SubmitQueryResponse

1: requestManager(ManagerType, NameValueList)

2: submitQuery(String, String, NameList, SortAttributeList, NameValueList)

3: complete(QueryResults)

Figure 24 - Minimal Query Sequence

This is the minimum set of operations required to perform a single query and retrieve some results.

1. The client requests access to a Manager passing in the desired ManagerType (in this case a
CatalogManager) and a set of name value pairs that are used as access criteria.(User name and
password would be common examples of access criteria). A successful invocation of this operation
returns a reference (pointer) to a Manager of the requested type. The client can now interact directly
with that Manager.

2. The client submits a query to the CatalogManager, including the query expression itself (comparable to
a where clause), a set of attributes to be returned (a select clause) and any desired sorting of the result
set. A successful invocation of this operation returns a reference to a SubmitQueryResponse object.
The results of the query can be accessed through this object.

3. The client can retrieve the results of the query via the complete operation. Each invocation returns the
specified sequence of “hits”. This operation is invoked repeatedly to return as many hits as needed or
desired.

OpenGIS Catalog Interface Version 1.068

3.5.1.3 Query With Callback Sequence

 : CG_Client : Library : CatalogManager : SubmitQueryResponse : Callback

1: libraryDescription()

2: managerTypes()

3: requestManager(ManagerType, NameValueList)

4: submitQuery(String, String, NameList, SortAttributeList, NameValueList)

9: deleteRequest(Response)

7: complete(QueryResults)

8: complete(QueryResults)

5: registerCallback(Callback)

6: notify(RequestDescription)

10: release()

The callback is
associated with the client

Figure 25 - Query with Callback Sequence

The query with callback sequence diagram shows how a client may use a callback object to be notified that
a query has been completed.

1. The client retrieves a description of the Library. This could contain such information as a summary of
the libraries holdings, its capabilities or its pricing model.

2. The client retrieves a list of the Manager types supported by this implementation. Using this list, the
client software can determine what set of capabilities this implementation offers (i.e., discovery,
access/order, creation etc). The client selects one Manager value from this list (in this case the value
“CatalogMgr”) and uses it in a call to the requestManager operation.

3. The client requests a specific Manager type, passing in the desired ManagerType (“CatalogMgr”) and
a set of name value pairs that are used as access criteria. User name and password would be the most
common examples of access criteria. A successful invocation of this operation returns a reference
(pointer) to a Manager of the requested type. The client can now interact directly with that Manager.

OpenGIS Catalog Interface Version 1.069

4. The client submits a query to the CatalogManager, which includes the query expression itself
(comparable to a SQL where clause), a set of attributes to be returned (comparable to a SQL select
clause) and any desired sorting of the result set. A successful invocation of this operation returns a
reference to a SubmitQueryResponse object. The results of the query can be accessed through this
Response object.

5. The client registers a callback object with the SubmitQueryResponse object.

6. The Catalog Service invokes the notify operation on the Callback object indicating the Response has
completed processing.

7. The client can retrieve the results of the query via the complete operation. Each invocation returns the
specified sequence of "hits".

8. The complete operation is called repeatedly to retrieve as many results as desired.

9. The client deletes the Response object

10. The Catalog Service invokes the release operation on the Callback since it will not be called again.

OpenGIS Catalog Interface Version 1.070

3.6 Cross-Model Interoperability

This section addresses interoperability between the Coarse-Grained and Fine-Grain models.

3.6.1 Coarse to Fine Grain Mapping

Table 11 provides a mapping between the capabilities of the Fine Grain Interfaces and their operations to
the capabilities put forth in the Request-Response Message Pairs of the Coarse Grain General Model View.
The mapping has been done at the Request/Response to Interface Operation level, a more detailed mapping
to the Request/Response Message Class parameters will be provided with revisions of this initial
specification.

Table 11 - Coarse to Fine Grain Mapping

Fine Grain Interfaces and Their
Operation(s)

Coarse Grain Message Classes

Library
managerTypes CG_ExplainServerRequest

manager CG_ExplainServerRequest

libraryDescription CG_ExplainServerRequest

LibraryManager (abstract)

propertyValues CG_ExplainServerRequest

propertyNames CG_ExplainServerRequest

libraries CG_ExplainServerRequest

RESPONSEMANAGER (ABSTRACT)
listActiveResponses

CG_StatusRequest

defaultTimeout CG_Timeout

deleteRequest CG_CancelRequest

CatalogManager

submitQuery CG_QueryRequest

hitCount CG_QueryRequest

validateQuery CG_QueryRequest

DataModelManager

listDataViews CG_ExplainCollectionRequest

attributes CG_ExplainCollectionRequest

queryableAttributes CG_ExplainCollectionRequest

entities CG_AttributeCategory

OpenGIS Catalog Interface Version 1.071

Fine Grain Interfaces and Their
Operation(s)

Coarse Grain Message Classes

entityAttributes CG_AttributeCategory

OrderManager

packageSpecifications CG_PackageSpecification

validateOrder CG_BrokeredAccessResponse

order CG_BrokeredAccessRequest

UpdateManager

update CG_UpdateCatalogRequest

releaseLock N/A

updateByQuery

CreationManager

create CG_CreateCatalogRequest

createMetadata CG_CreateMetadataRequest

Callback

notify N/A

release N/A

RESPONSE (ABSTRACT)

requestDescription N/A

userInfo CG_UserInformation

status CG_StatusRequest

remainingDelay N/A

cancel CG_CancelRequest

registerCallback N/A

freeCallback N/A

responseManager N/A

SubmitQueryResponse

One of the three complete operations
depending on what the type of data is
returned in the CG_QueryResponse
message parameter “retrievedData””

CG_QueryResponse

OpenGIS Catalog Interface Version 1.072

Fine Grain Interfaces and Their
Operation(s)

Coarse Grain Message Classes

OrderResponse

complete CG_BrokeredAccessResponse

SubmitQueryResponse

One of the three complete operations:

completeGraphResults;

completeTableResults;

completeXMLResults.

CG_QueryResponse
CG_PresentResponse

UpdateResponse

complete CG_UpdateCatalogResponse

UpdateByQueryResponse

complete CG_UpdateCatalogResponse

CreateResponse

complete CG_CreateCatalogResponse

CreateMetaDataResponse

complete CG_CreateMetadataResponse

OpenGIS Catalog Interface Version 1.073

3.6.2 DCP Bridge Dynamics

To achieve cross-DCP interoperability, a Bridge between Coarse and Fine Grain implementation is needed.
It’s basic function is to translate the receipt of a message (the basic element of the Coarse Grain General
Model) into one or more object invocations (the basic element of the Fine Grain General Model) and then
inversely translate one or more object invocations into the appropriate message. The Bridge is composed of
a server from one profile, a translator, and a client for another profile. A Coarse-to-Fine translator exposes
only Coarse Grain interfaces and maps these to the appropriate Fine Grain operations. Likewise a Fine-to-
Coarse Translator exposes only Fine Grain interfaces and maps these to the appropriate message transfers.
Figure 26shows a sequence diagram that traces a query request from the Coarse side to the Fine and its
return.

OpenGIS Catalog Interface Version 1.074

 : Translator : Library :
CatalogManager

 :
SubmitQueryResponse

 : CG_Client :
CG_CatalogServices

1: initSession(CG_InitSessionRequest)

10: terminateSession(CG_TerminateRequest)

2: assembleMessage()

12: deleteRequest(Response)
11: assembleMessage()

4: query(CG_QueryRequest)

7: present(CG_PresentRequest)

5: assembleMessage()

8: assembleMessage()

6: submitQuery(String, String, NameList, SortAttributeList, NameValueList)

9: complete(QueryResults)

3: requestManager(ManagerType, NameValueList)

These two interfaces make up the Bridge

Figure 26 - Coarse to Fine Bridge

OpenGIS Catalog Interface Version 1.075

4. OGC_Common Catalog Query Language

This section defines the OGC_Common Catalog Query Language. OGC_Common is the query language
to be supported by all OGC Catalog Interfaces in order to support search interoperability.

4.1 Assumptions during the development of OGC_Common Query Language:

- The query will have a syntax similar to the SQL “Where Clause”

- The expressiveness of the query will not require extensions to various current query systems used in
geospatial catalog queries other than the implementation of some geo operators.

- The query language should be extensible

- OGC_Common should support both tight and loose queries. A tight query is defined where if a catalog
doesn’t support an attribute/column specified in the query, no entity/row can match the query and the
null set is returned. In a loose query, if an attribute is undefined, it is assumed to match

4.2 BNF definition of OGC_Common Query Language

<SQL terminal character> ::=
 <SQL language character>

<SQL language character> ::=
 <simple Latin letter>
 | <digit>
 | <SQL special character>

<simple Latin letter> ::=
 <simple Latin upper case letter>
 | <simple Latin lower case letter>

<simple Latin upper case letter> ::=
 A | B | C | D | E | F | G | H | I | J | K | L | M | N | O
 | P | Q | R | S | T | U | V | W | X | Y | Z

<simple Latin lower case letter> ::=
 a | b | c | d | e | f | g | h | i | j | k | l | m | n | o
 | p | q | r | s | t | u | v | w | x | y | z

<digit> ::=
 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<SQL special character> ::=
 <space>
 | <double quote>
 | <percent>
 | <ampersand>
 | <quote>
 | <left paren>
 | <right paren>
 | <asterisk>
 | <plus sign>
 | <comma>
 | <minus sign>
 | <period>
 | <solidus>

OpenGIS Catalog Interface Version 1.076

 | <colon>
 | <semicolon>
 | <less than operator>
 | <equals operator>
 | <greater than operator>
 | <question mark>
 | <left bracket>
 | <right bracket>
 | <circumflex>
 | <underscore>
 | <vertical bar>
 | <left brace>
 | <right brace>

<space> ::= /*space character in character set in use In ASCII it would be
40*/

<double quote> ::= "

<percent> ::= %

<ampersand> ::= &

<quote> ::= ’

<left paren> ::= (

<right paren> ::=)

<asterisk> ::= *

<plus sign> ::= +

<comma> ::= ,

<minus sign> ::= -

<period> ::= .

<solidus> ::= /

<colon> ::= :

<semicolon> ::= ;

<less than operator> ::= <

<equals operator> ::= =

<greater than operator> ::= >

<question mark> ::= ?

<left bracket> ::= [

<right bracket> ::=]

<circumflex> ::= ^

<underscore> ::= _

<vertical bar> ::= |

OpenGIS Catalog Interface Version 1.077

<left brace> ::={

<right brace> ::=}

<separator> ::= { <comment> | <space> | <newline> }...

/* The next section of the BNF defines the tokens available to the language.
I have deleted the concepts of bit string, hex string and national
character string literal, since those types do not have
equivalents in GIAS or CIP/GEO. Also a significant number of the
keywords have been removed with Keywords have been added to
support the geo literals. */

<token> ::=
 <nondelimiter token>
 | <delimiter token>

<nondelimiter token> ::=
 <regular identifier>
 | <key word>
 | <unsigned numeric literal>

<regular identifier> ::= <identifier body>

<identifier body> ::=
 <identifier start> [{ <underscore> | <identifier part> }...]

<identifier start> ::= <simple latin letter>

<identifier part> ::=
 <identifier start>
 | <digit>

<key word> ::=
 <reserved word>

<reserved word> ::=
 AND | POINT |LINESTRING
 |POLYGON |MULTIPOINT |MULTILINESTRING |MULTIPOLYGON
 | EMPTY | DATE | TIME | TIMESTAMP|FALSE| TRUE| UNKNOWN |LIKE | MINUTE

| MONTH
 | NOT | NULL |

<unsigned numeric literal>::=
 <exact numeric literal>
 | <approximate numeric literal>

<exact numeric literal> ::=
 <unsigned integer> [<period> [<unsigned integer>]]
 | <period> <unsigned integer>

<unsigned integer> ::= <digit>...

<approximate numeric literal> ::= <mantissa> E <exponent>

<mantissa> ::= <exact numeric literal>

<exponent> ::= <signed integer>

<signed integer> ::= [<sign>] <unsigned integer>

<sign> ::= <plus sign> | <minus sign>

OpenGIS Catalog Interface Version 1.078

< character string literal> ::=
 <quote> [<character representation>...] <quote>

 <character representation> ::=
 <nonquote character>
 | <quote symbol>

<quote symbol> ::= <quote><quote>

/*End of non delimiter tokens*/

/* I have limited the delimiter tokens by eliminating, interval strings and
delimited identifiers BNF and simplifying the legal character set
to the characters to a single set so no identification of
character set would be needed decision. */

<delimiter token> ::=
 <character string literal>
 | <SQL special character>
 | <not equals operator>
 | <greater than or equals operator>
 | <less than or equals operator>
 | <concatenation operator>
 | <double greater than operator>
 | <right arrow>
 | <left bracket>
 | <right bracket>

< character string literal> ::=
<quote> [<character representation>...] <quote>

<character representation> ::=
 <nonquote character>
 | <quote symbol>

<quote symbol> ::= <quote><quote>

<not equals operator> ::= <>

<greater than or equals operator> ::= >=

<less than or equals operator> ::= <=

/*The following section is intended to give context for identifier and
namespaces. It assumes that the default namespace is specified in
the query request and does not allow any overrides of the namepace
*/

< identifier> ::=
 < identifier start [{ <underscore> | <identifier part> }...]

< identifier start> ::= <simple Latin letter>

< identifier part> ::=
 <simple Latin letter>
 | <digit>.

OpenGIS Catalog Interface Version 1.079

<attribute name> ::= <simple attribute name>
 | <compound attribute name>

<simple attribute name>::=<identifier>

<compound attribute name>::= < identifier><period> [{<identifier><period>}…]
 <simple attribute name>

/*The rest of the BNF is the real BNF for the query capabilities.*/

<search condition> ::=<boolean value expression>

<boolean value expression> ::=
 <boolean term>
 | <boolean value expression> OR <boolean term>

<boolean term> ::=
 <boolean factor>
 | <boolean term> AND <boolean factor>

<boolean factor> ::=
 [NOT] <boolean primary>

<boolean primary> ::=
 <predicate>
 | < routine invocation>

<predicate> ::=
 <comparison predicate>
 | <text predicate>
 | < null predicate>

<comparison predicate> ::= <attribute name> <comp op> <literal>

<text predicate> ::= <attribute name> [NOT] LIKE <character pattern>

<null predicate> ::= <attribute name> IS [NOT] NULL

<character pattern> ::= <character string literal> /* In a character pattern
the character percent is used as a wildcard to represent an
arbitrary string. This allows LIKE to implement the effect of many
characters matching operations, such as: contains, begins with,
ends with, not contains, not begins with, not ends with, and so
forth. For example:

 attribute like '%contains_this%'
 attribute like 'begins_with_this%'
 attribute like '%ends_with_this'
 attribute like ‘d_ve’ will match ‘dave’ or “dove””
 attribute not like '%will_not_contain_this%'
 attribute not like 'will_not_begin_with_this%'
 attribute not like '%will_not_end_with_this’*/

<comp op> ::=
 <equals operator>
 | <not equals operator>
 | <less than operator>

OpenGIS Catalog Interface Version 1.080

 | <greater than operator>
 | <less than or equals operator>
 | <greater than or equals operator>

<literal> ::=
 <signed numeric literal>
 | <general literal>

<signed numeric literal> ::=
 [<sign>] <unsigned numeric literal>

<general literal> ::=
 <character string literal>
 | <datetime literal>
 | <boolean literal>
 | <geography literal

<boolean literal> ::=
 TRUE
 | FALSE
 | UNKNOWN

<routine invocation> ::=
 | <geoop name>< georoutine argument list>
 | <relgeoop name><relgeoop argument list>
 | <routine name> <argument list>

<routine name> ::= < attribute name>

<geoop name> ::= EQUAL |DISJOINT |INTERSECT |TOUCH |CROSS |WITHIN |CONTAINS
|OVERLAP |RELATE

<relgeoop name> ::= DWITHIN |BEYOND
<argument list> ::=
 <left paren> [<positional arguments>] <right paren>

<positional arguments> ::=
 <argument> [{ <comma> <argument> }...]

<argument> ::= <literal> | <attribute name>

<georoutine argument list> ::=
 <left paren> <attribute name> <comma> <geometry literal> <right paren>

<relgeoop argument list> ::=
 <left paren> <attribute name> <comma> <geometry literal> <comma>

<tolerance>
 <right paren>

<tolerance> ::=
 <unsigned numeric literal> <comma> <distance units>

<distance units> ::= = “feet” | “meters” | “statute miles” | “nautical miles”
| “kilometers”

/*this set of units is just an example. The real list of distance unit must
be developed*?

<geometry literal> :=
 <Point Tagged Text>
…. | <LineString Tagged Text>
 | <Polygon Tagged Text>

OpenGIS Catalog Interface Version 1.081

 | <MultiPoint Tagged Text>
 | <MultiLineString Tagged Text>
 | <MultiPolygon Tagged Text>
 | <GeometryCollection Tagged Text>
 | <Envelope Tagged Text>

<Point Tagged Text> :=
 POINT <Point Text>

<LineString Tagged Text> :=
 LINESTRING <LineString Text>

<Polygon Tagged Text> :=
 POLYGON <Polygon Text>

<MultiPoint Tagged Text> :=
 MULTIPOINT <Multipoint Text>

<MultiLineString Tagged Text> :=
 MULTILINESTRING <MultiLineString Text>

<MultiPolygon Tagged Text> :=
 MULTIPOLYGON <MultiPolygon Text>

<GeometryCollection Tagged Text> :=
 GEOMETRYCOLLECTION <GeometryCollection Text>

<Point Text> := EMPTY | <left paren> <Point> <right paren>

<Point> := <x> <space><<y>

<x> := numeric literal

<y> := numeric literal

<LineString Text> := EMPTY
 | <left paren> <Point > {<comma> <Point > }… <right paren>

<Polygon Text> := EMPTY
 | <left paren> <LineString Text > {<comma> < LineString Text > }…<right

paren>

<Multipoint Text> := EMPTY
 | <left paren> <Point Text > {<comma> <Point Text > }… <right paren>

<MultiLineString Text> := EMPTY
 | <left paren> <LineString Text > {<comma> < LineString Text > }…

<right paren>

<MultiPolygon Text> := EMPTY
 | <left paren> < Polygon Text > {<comma> < Polygon Text > }… <right

paren>

<GeometryCollection Text> := EMPTY
 | <left paren> <Geometry Tagged Text> {<comma> <Geometry Tagged Text> }…
 <right paren>
<Envelope Tagged Text> ::=
 ENVELOPE <Envelope Text>

<Envelope Text> := EMPTY
| <left paren> > <WestBoundLongitude> <comma> EastBoundLongitude> <comma>
NorthBoundLatitude <comma> <SouthBoundLatitude> < <right paren>

OpenGIS Catalog Interface Version 1.082

<WestBoundLongitude> := numeric literal

<EastBoundLongitude> := numeric literal

<NorthBoundLatitude> := numeric literal

<SouthBoundLatitude> := numeric literal
<datetime literal> ::=
<date literal>
| <time literal>
| <timestamp literal>

<date literal> ::=
 DATE <date string>
<date string> ::=
 <quote> <unquoted date string> <quote>

<unquoted date string> ::= <date value>

<date value> ::=
 <years value> <minus sign> <months value><minus sign> <days

value>

<years value> ::= <datetime value>

<datetime value> ::= <unsigned integer>

<months value> ::= <datetime value>

<days value> ::= <datetime value>

<time literal> ::=
TIME <time string>

<time string> ::=
 <quote> <unquoted time string> <quote>
 unquoted time string> ::=
 <time value> [<time zone interval>]
<time value> ::=
 <hours value> <colon> <minutes value> <colon> <seconds value>

<hours value> ::= <datetime value>

<minutes value> ::= <datetime value>

<seconds value> ::=
<seconds integer value> [<period> [<seconds fraction>]]

<seconds integer value> ::= <unsigned integer>

<seconds fraction> ::= <unsigned integer>

<time zone interval> ::=
<Z>|<sign> <hours value> <colon> <minutes value> /* Z= Coordinated

Universal Time, signed numerics are offsets from UTC*/

<timestamp literal> ::=

OpenGIS Catalog Interface Version 1.083

TIMESTAMP <timestamp string>
<timestamp string> ::=
<quote> <unquoted SQL timestamp string> <quote>
|<quote> <unquoted ISO timestamp string> <quote>

<unquoted SQL timestamp string> ::=
<unquoted date string> <space> <unquoted time string>

<unquoted ISO timestamp string> ::=
<unquoted date string> <T> <unquoted time string>

OpenGIS Catalog Interface Version 1.084

5. CORBA Profiles

The CORBA Profile contains two profiles, the Fine-Grain that maps to the Fine-Grain General Interface
Model and a Coarse-Grained CORBA Profile that maps to the Coarse-Grained Discovery Interfaces of the
General Model.

5.1 Fine-Grain CORBA Profile

This profile defines a mapping of the Fine Grained segment of the Catalog General Model into a form
suitable for implementation using CORBA technology. Specifically, it provides an interpretation of the
General Model into OMG Interface Definition Language (OMG-IDL). Since the mapping described here is
based on the standardized UML to IDL mapping3 the architecture of the Fine Grained CORBA Profile is
identical to the Fine Grained segment of the General Model with the following exception: All General
Model elements stereotyped as “DataType” where modified to have a more specific CORBA-specific
stereotype (i.e. “CORBAStruct”, “CORBAEnum”, “CORBAUnion” or “CORBATypedef” as appropriate).
Given these more specific stereotypes, the OMG-IDL was auto-generated from the General Model.

5.1.1 Sequence Diagrams

The sequence diagrams that indicate how the elements of the Fine Grained CORBA profile are used are
identical to those included in the Fine Grained segment of the General Model (see Figure 23, Figure 24,
and Figure 25).

5.1.2 IDL Definition

The Fine Grained CORBA profile is broken into four CORBA Modules:

1) FGCatalog module – The Primary Catalog Service interfaces and data types

2) CB module– The Callback interface

3) UID module – A unique identifier handle

4) OGCBasicTypes module – Some fundamental data types used by the Catalog Service but which are
not specific to Catalog Services.

5.1.3 Module FGCatalog

#ifndef __FGCATALOG_DEFINED
#define __FGCATALOG_DEFINED

#include "ogcBasic.idl"
#include "cb.idl"
#include "uid.idl"

module FGCatalog {

/* Forward References */
interface Library;
interface Response;

3 As defined in OMG Unified Modeling Language Specification (Draft), Version 1.3 alpha R5, March
1995.

OpenGIS Catalog Interface Version 1.085

/* The Catalog Specific Data Types */
typedef OGCBasic::NameValueList PropertyList;

struct ValidationResults {
boolean valid;
boolean warning;
string details;

};

typedef sequence <ValidationResults> ValidationResultsList;

typedef string ViewName;

typedef sequence <ViewName> ViewNameList;

struct View {
ViewName view_name;
ViewNameList sub_views;

};

typedef sequence <View> ViewList;

enum DomainType {
DATE_VALUE,
TEXT_VALUE,
INTEGER_VALUE,
FLOATING_POINT_VALUE,
LIST,
ORDERED_LIST,
INTEGER_RANGE,
FLOATING_POINT_RANGE,
GEOGRAPHIC,
INTEGER_SET,
FLOATING_POINT_SET,
GEOGRAPHIC_SET,
BINARY_DATA,
BOOLEAN_VALUE

};

struct DateRange {
OGCBasic::AbsTime earliest;
OGCBasic::AbsTime latest;

};

struct IntegerRange {
long lower_bound;
long upper_bound;

};

struct FloatingPointRange {
double lower_bound;
double upper_bound;

};

typedef sequence <IntegerRange> IntegerRangeList;

typedef sequence <FloatingPointRange> FloatingPointRangeList;

OpenGIS Catalog Interface Version 1.086

union Domain switch(DomainType) {
case DATE_VALUE: DateRange d;
case TEXT_VALUE: unsigned long t;
case INTEGER_VALUE: IntegerRange iv;
case INTEGER_SET: IntegerRangeList is;
case FLOATING_POINT_VALUE: FloatingPointRange fv;
case FLOATING_POINT_SET: FloatingPointRangeList fps;
case LIST: OGCBasic::NameList l;
case ORDERED_LIST: OGCBasic::NameList ol;
case INTEGER_RANGE: IntegerRange ir;
case FLOATING_POINT_RANGE: FloatingPointRange fr;
case GEOGRAPHIC: OGCBasic::Rectangle g;
case GEOGRAPHIC_SET: OGCBasic::RectangleList gs;
case BINARY_DATA: OGCBasic::BinData bd;
case BOOLEAN_VALUE: boolean bv;

};

enum AttributeType {
TEXT,
INTEGER,
FLOATING_POINT,
OGCBasic_COORDINATE,
OGCBasic_POLYGON,
OGCBasic_ABS_TIME,
OGCBasic_RECTANGLE,
OGCBasic_IMAGE,
OGCBasic_HEIGHT,
OGCBasic_ELEVATION,
OGCBasic_DISTANCE,
OGCBasic_PERCENTAGE,
OGCBasic_RATIO,
OGCBasic_ANGLE,
OGCBasic_FILE_SIZE,
OGCBasic_FILE_LOCATION,
OGCBasic_COUNT,
OGCBasic_WEIGHT,
OGCBasic_DATE,
OGCBasic_LINESTRING,
OGCBasic_DATA_RATE,
OGCBasic_BIN_DATA,
BOOLEAN_DATA,
OGCBasic_DURATION

};

enum RequirementMode {
MANDATORY,
OPTIONAL

};

struct AttributeInformation {
string attribute_name;
AttributeType attribute_type;
Domain attribute_domain;
string attribute_units;
RequirementMode mode;
string description;

OpenGIS Catalog Interface Version 1.087

boolean sortable;
boolean updateable;

};

typedef string Entity;

typedef sequence <AttributeInformation> AttributeInformationList;

typedef string ManagerType;

typedef sequence <ManagerType> ManagerTypeList;

struct LibraryDescription {
string library_name;
string library_description;
string library_version_number;

};

typedef sequence <LibraryDescription> LibraryDescriptionList;

typedef string Query;

typedef OGCBasic::DG_DirectedGraphList QueryResults;

enum Polarity {
ASCENDING,
DESCENDING

};

struct SortAttribute {
OGCBasic::Name attribute_name;
Polarity sort_polarity;

};

typedef sequence <SortAttribute> SortAttributeList;

enum ChangeType {
ADD_CHANGE,
UPDATE_CHANGE,

DELETE_CHANGE
};

struct Change {
OGCBasic::NodeID changed_node;
ChangeType change_type;

};

typedef sequence <Change> ChangeList;

struct UpdateDG_DirectedGraph {
OGCBasic::DG_DirectedGraph data;
ChangeList changes;

};

typedef sequence <UpdateDG_DirectedGraph>
UpdateDG_DirectedGraphList;

OpenGIS Catalog Interface Version 1.088

/* The Exceptions */

struct ExceptionInfo {
string exception_details;

};

exception BadAccessCriteria {
ExceptionInfo info;

};

exception BadAccessValue {
ExceptionInfo info;

};

exception BadCreationAttributeValue {
ExceptionInfo info;

};

exception BadLocation {
ExceptionInfo info;

};

exception BadPropertyValue {
ExceptionInfo info;

};

exception BadQuery {
ExceptionInfo info;

};

exception BadQueryAttribute {
ExceptionInfo info;

};

exception BadQueryValue {
ExceptionInfo info;

};

exception ImplementationLimit {
ExceptionInfo info;

};

exception UnknownCallBack {
ExceptionInfo info;

};

exception UnknownManagerType {
ExceptionInfo info;

};

exception UnknownProduct {
ExceptionInfo info;

};

exception UnknownProperty {
ExceptionInfo info;

};

OpenGIS Catalog Interface Version 1.089

exception UnknownResponse {
ExceptionInfo info;

};

exception UnregisteredCallback {
ExceptionInfo info;

};

exception ProductUnavailable {
ExceptionInfo info;

};

exception BadOrder {
ExceptionInfo info;

};

exception UnknownViewName {
ExceptionInfo info;

};

exception BadSortAttribute {
ExceptionInfo info;

};

exception NonUpdateableAttribute {
ExceptionInfo info;

};

exception LockUnavailable {
ExceptionInfo info;

};

exception UnsafeUpdate {
ExceptionInfo info;

};

exception BadFileType {
ExceptionInfo info;

};

exception BadResultAttribute {
ExceptionInfo info;

};

exception UnknownEntity {
ExceptionInfo info;

};

exception UnknownCreationAttribute {
ExceptionInfo info;

};

exception BadUpdateAttribute {
ExceptionInfo info;

};

OpenGIS Catalog Interface Version 1.090

typedef sequence <Library> LibraryList;

/* The interfaces */

interface LibraryManager {
OGCBasic::NameList propertyNames ();

PropertyList propertyValues (
in OGCBasic::NameList desired_properties
)
raises (UnknownProperty);

LibraryList libraries ();

};

interface Library {
ManagerTypeList managerTypes ();

LibraryManager manager (
in ManagerType manager_type,
in OGCBasic::NameValueList access_criteria
)
raises (UnknownManagerType,BadAccessCriteria,BadAccessValue);

LibraryDescription libraryDescription ();

};

interface DataModelMgr : LibraryManager {
ViewList listDataViews (

in PropertyList properties
)
raises (UnknownProperty,BadPropertyValue);

AttributeInformationList attributes (
in ViewName view_name,
in PropertyList properties
)
raises (UnknownViewName,UnknownProperty,BadPropertyValue);

AttributeInformationList queryableAttributes (
in ViewName view_name,
in PropertyList properties
)
raises (UnknownViewName,UnknownProperty,BadPropertyValue);

OGCBasic::DG_DirectedGraph entities (
in ViewName view_name,
in PropertyList properties
)
raises (UnknownViewName,UnknownProperty,BadPropertyValue);

AttributeInformationList entityAttributes (
in Entity entity,
in PropertyList properties
)

OpenGIS Catalog Interface Version 1.091

raises (UnknownEntity,UnknownProperty,BadPropertyValue);

};

typedef sequence <Response> ResponseList;

interface ResponseManager {
ResponseList listActiveResponses ();

OGCBasic::RelativeTime defaultTimeout ();

void deleteRequest (
in Response response
)
raises (UnknownResponse);

};

interface Response {
OGCBasic::RequestDescription requestDescription ();

void userInfo (
in string message
)
raises (ImplementationLimit);

OGCBasic::Status status ();

void cancel ();

OGCBasic::RelativeTime remainingDelay ();

void registerCallback (
in CB::Callback callback
)
raises (UnknownCallBack);

void freeCallback (
in CB::Callback callback
)
raises (UnknownCallBack,UnregisteredCallback);

ResponseManager responseManager ();

};

interface OrderResponse : Response {
OGCBasic::State complete ();

};

interface OrderMgr : LibraryManager, ResponseManager {
OGCBasic::NameList packageSpecifications ();

ValidationResults validateOrder (
in OGCBasic::DG_DirectedGraph order,
in PropertyList properties

OpenGIS Catalog Interface Version 1.092

)
raises (UnknownProperty,BadPropertyValue);

OrderResponse order (
in OGCBasic::DG_DirectedGraph order,
in PropertyList properties
)
raises

(UnknownProduct,BadOrder,UnknownProperty,BadPropertyValue,Pr
oductUnavailable);

};

interface CreateResponse : Response {
OGCBasic::State complete (

out UID::Product new_product
);

};

interface CreateMetaDataResponse : Response {
OGCBasic::State complete (

out UID::Product new_product
);

};

interface CreationMgr : LibraryManager, ResponseManager {
CreateResponse create (

in OGCBasic::FileLocationList new_product,
in OGCBasic::DG_DirectedGraph creation_metadata,
in PropertyList properties
)
raises

(BadLocation,UnknownCreationAttribute,BadCreationAttributeVa
lue,UnknownProperty,BadPropertyValue);

CreateMetaDataResponse createMetadata (
in OGCBasic::DG_DirectedGraph creation_metadata,
in ViewName view_name,
in PropertyList properties
)
raises

(UnknownCreationAttribute,BadCreationAttributeValue,UnknownP
roperty,BadPropertyValue);

};

interface UpdateResponse : Response {
OGCBasic::State complete ();

};

interface SubmitQueryResponse : Response {
OGCBasic::State completeGraphResults (

in unsigned long start_point,
in unsigned long length,

OpenGIS Catalog Interface Version 1.093

out QueryResults results
);

OGCBasic::State completeTableResults (
in unsigned long start_point,
in unsigned long length,
out OGCBasic::NameValueTable results
);

OGCBasic::State completeXMLResults (
in unsigned long start_point,
in unsigned long length,
out string results
);

};

interface HitCountResponse : Response {
OGCBasic::State complete (

out unsigned long number_of_hits
);

};

interface CatalogMgr : LibraryManager, ResponseManager {
SubmitQueryResponse submitQuery (

in ViewName view_name,
in Query query,
in OGCBasic::NameList result_attributes,
in SortAttributeList sort_attributes,
in PropertyList properties
)
raises

(UnknownViewName,BadQuery,BadQueryAttribute,BadQueryValue,Ba
dResultAttribute,BadSortAttribute,UnknownProperty,BadPropert
yValue);

HitCountResponse hitCount (
in ViewName view_name,
in Query query,
in PropertyList properties
)
raises

(UnknownViewName,BadQuery,BadQueryAttribute,BadQueryValue,Un
knownProperty,BadPropertyValue);

boolean validateQuery (
in ViewName view_name,
in Query query,
in OGCBasic::NameList result_attributes,
in SortAttributeList sort_attributes,
in PropertyList properties
);

};

interface UpdateByQueryResponse : Response {

OpenGIS Catalog Interface Version 1.094

OGCBasic::State complete ();

};

interface UpdateMgr : LibraryManager, ResponseManager {
UpdateResponse update (

in ViewName view,
in UpdateDG_DirectedGraphList changes,
in PropertyList properties
)
raises (NonUpdateableAttribute,UnsafeUpdate,UnknownViewName);

UpdateByQueryResponse updateByQuery (
in OGCBasic::NameValue updated_attribute,
in Query query,
in ViewName view_name,
in PropertyList properties
)
raises

(NonUpdateableAttribute,BadUpdateAttribute,LockUnavailable,U
nknownViewName,BadQuery,BadQueryAttribute,BadQueryValue,Unkn
ownProperty,BadPropertyValue);

void release_lock (
in UID::Product lockedProduct
);

};

};
#endif

5.1.4 Module CB

#ifndef __CB_DEFINED
#define __CB_DEFINED

#include "ogcBasic.idl"

module CB {

interface Callback {
void notify (

in OGCBasic::RequestDescription description
);

void release ();

};

};
#endif

5.1.5 Module UID
#ifndef __UID_DEFINED
#define __UID_DEFINED

OpenGIS Catalog Interface Version 1.095

module UID {

interface Product {
};

};
#endif

5.1.6 Module OGCBasic

#ifndef __OGCBASIC_DEFINED
#define __OGCBASIC_DEFINED

module OGCBasic {

typedef string Name;

typedef sequence <Name> NameList;

struct NameValue {
OGCBasic::Name theName;
any theValue;

};

typedef sequence <NameValue> NameValueList;

typedef sequence <NameValueList> NameValueTable;

/* Placeholder - What is OGC definition for Rectangle? */
typedef string Rectangle;

typedef sequence <Rectangle> RectangleList;

struct FileLocation {
string user_name;
string password;
string host_name;
string path_name;
string file_name;

};

typedef sequence <FileLocation> FileLocationList;

struct Date {
unsigned short year;
unsigned short month;
unsigned short day;

};

struct Time {
unsigned short hour;
unsigned short minute;
float second;

OpenGIS Catalog Interface Version 1.096

};

struct AbsTime {
Date date;
Time time;

};

typedef AbsTime RelativeTime;

typedef sequence <octet> BinData;

typedef unsigned long NodeID;

enum NodeType {
ROOT_NODE,
ENTITY_NODE,
RECORD_NODE,
ATTRIBUTE_NODE

};

struct Node {
NodeID id;
NodeType node_type;
string attribute_name;
any value;

};

enum Cardinality {
ONE_TO_ONE,
ONE_TO_MANY,
MANY_TO_ONE,
MANY_TO_MANY

};

struct Edge {
NodeID start_node;
NodeID end_node;
string relationship_type;
Cardinality start_to_end_card;
Cardinality end_to_start_card;

};

typedef sequence <Node> NodeList;

typedef sequence <Edge> EdgeList;

struct DG_DirectedGraph {
NodeList nodes;
EdgeList edges;

};

typedef sequence <DG_DirectedGraph> DG_DirectedGraphList;

enum State {
COMPLETED,
IN_PROGRESS,
ABORTED,

OpenGIS Catalog Interface Version 1.097

CANCELED,
PENDING,
SUSPENDED,
RESULTS_AVAILABLE,
TRANSFER_COMPLETE

};

struct Status {
State completion_state;
boolean warning;
string status_message;

};

struct RequestDescription {
string user_info;
string request_type;
string request_info;
NameValueList request_details;

};

typedef sequence <RequestDescription> RequestDescriptionList;

};
#endif

OpenGIS Catalog Interface Version 1.098

5.2 Coarse-Grained CORBA Profile

5.2.1 Architecture - Object Model

This paragraph describes the coarse grained CORBA profile. The intention of the coarse grained CORBA
profile is to follow the general model closely. This enables the building of lightweight bridges between the
coarse-grained CORBA profile and the coarse-grained WWW profile.

The CORBA profile is described in IDL (interface definition language) of OMG (the Object Management
Group).

5.2.2 Event Traces

The interfaces in the IDL follow the general model as closely as possible. Therefore all conventions,
operation names and cases are borrowed from the general model. An alternative is using the conventions of
the CORBA IDL for Simple Features, in which all names are in lower case. This alternative is rejected to
stay close to the general model.

The core of the coarse grained CORBA profile consists of only one interface: CG_CatalogService. The
separate services of the general model (discovery, access and management) are defined in separate
interfaces to reflect the general model. They are all realized by the central interface CG_CatalogService.
The operations of CG_CatalogService take without exception a request message as an input parameter and
return a response parameter. All messages are filled with standard or compound CORBA structures. Name
value pairs, an optional way to transfer meta information, are borrowed from the Simple Feature
specification.

5.2.3 Interface Definition - IDL

This section describes the CORBA IDL. First enumerations are described. Then structures and unions will
be treated. After that the messages are described. Finally the core of the profile, the CG_CatalogService
interface and other interfaces are discussed.

All enumerations, structures, unions, messages and interfaces are part of the module OGC_CatalogService.

module OGC_CatalogService
{
...
};

5.2.3.1 Enumerations

Enumerations can be modeled by a direct translation of all code-lists of the general model. The following
enumerations are borrowed literally:

enum CG_AttributeCategory {queriable, presentable, both};
enum CG_CatalogEntryType {product, collection, catalog, service};
enum CG_CharacterSet {ASCII, uniCode, shiftJIS, uniCodeJ};
enum CG_PredefinedPresentationType {full, brief};
enum CG_QueryLanguage {OGC_Common, Z3950_TypeOne, SQL3_SimpleFeature,

SQL2_SimpleFeature};
enum CG_QueryScope {distributed, local};
enum CG_ResultType {validate, resultSetID, hits, results};

OpenGIS Catalog Interface Version 1.099

enum CG_SortOrder {ascending, descending, ascendingSize,
descendingSize, none};

enum CG_Status {success, processing, failure, canceled, queued,
pausedOrSuspended, resultsAvailable, accessDenied};

The coarse grained CORBA profile adds a NV entry to the message format enumeration. Specifying NV let
the server give results back as name value pairs. Name-value pairs are specified in the simple feature
specification, but to be complete the definition is repeated below.

enum CG_MessageFormat {XML, DG_DirectedGraph, HTML, TXT, NV};

module OGIS
{

...
struct NVPair
{

string name;
any value;

};

typedef sequence<NVPair> NVPairSeq;
...

};

So if the server gives the results back as XML in the next example:

<?xml version="1.0"?>
<!DOCTYPE Metadata SYSTEM "min.dtd" >
<Metadata><Title>Countries of Europe</Title>
<Abstract>This dataset contains the countries of Europe</Abstract>
<GeographicBoundingBox><westBoundLongitude>-

24.17</westBoundLongitude>
<eastBoundLongitude>40.71</eastBoundLongitude>
<northBoundLatitude>71.26</northBoundLatitude>
<southBoundLatitude>27.63</southBoundLatitude>
</GeographicBoundingBox>
</Metadata>

In name-value pairs the results are as follows:

name: Metadata
value: NVPairSeq

name: Title
value: Countries

of Europe

name: Abstract
value: This
dataset ...

name:
GeographicBoun
dingBox value:

NVPairSeq

name:
westBoundLongit
ude value: -24.17

OpenGIS Catalog Interface Version 1.0100

The advantage is that pure CORBA environments do not have to parse the XML to get the results. They
receive them in a suitable general structure. If the CORBA server is combined with another type of client,
e.g. a web client, then probably XML (the default) will be preferred.

5.2.3.2 Structures and unions

Also most of the structures and unions from the general model can be translated directly into CORBA
structs and unions.

union CG_CollectionName
switch(long)
{

case 1 : string collectionID;
case 2 : string collectionName;

};

struct CG_QueryExpression
{

string theQuery;
string theNamespace;
CG_QueryLanguage theLanguage;

};

struct CG_RequestID
{

long sessionID;
long counter;

};

struct CG_SortField
{

string attributeName;
CG_SortOrder sortOrder;

};

The General Model specifies for the CG_ReturnData the structure member payload as string, indicating it
as a ’blob’. For CORBA it is more correct to specify an any structure member here, in where strings or
directed graphs, name-value pairs or sequences can be stored.

struct CG_ReturnData
{

CG_MessageFormat encoding;
any payload;

};

The CG_PresentationDescription union in the General Model contains a sequence of tuple-types in the
presentation description. For the coarse grained CORBA profile it is not necessary to have tuple-types here,
a sequence of attribute names is sufficient. The tuple-types are not defined in the coarse grained CORBA
profile.

union CG_PresentationDescription
switch(long)
{

case 1 : sequence<string> attributes; // CG_TupleType in GM

OpenGIS Catalog Interface Version 1.0101

case 2 : CG_PredefinedPresentationType presentationType;
};

The CG_SchemeID structure uses a structure member CG_Schema. This is in the CORBA profile defined
as a sequence of name-value pairs from the Simple Feature Specification for CORBA. In name-value pairs
all names, types, used sequences can be specified. A schema, tuple-type or a dictionary is not needed here.
If a schema or anything like that is specified in a general OGIS module later on, it could be taken over here.

typedef OGIS::NVPairSeq CG_Schema;
struct CG_SchemaID
{

string schemeName;
CG_Schema schema;

};

5.2.3.3 Definitions for brokered access

The general model defines some code-lists and structures for brokered access. These definitions are directly
translated into their CORBA counterparts:

enum CG_BrokeredAccessRequestType {orderEstimate,
orderQuoteAndSubmit,

orderMonitor, orderCancel};

struct CG_OrderItem
{

// Note: datatypes not provided by GM
any productID;
any productPrice;
any productDeliveryOptions;
any processingOptions;
any sceneSelectionOptions;

};

struct CG_OrderSpecification
{

// Note: datatypes not provided by GM
any orderCentreID;
any orderPrice;
any orderDeliveryDate;
any orderCancellationDate;
any deliveryMethod;
any package;

};

enum CG_OrderStatus {orderBeingEstimated, orderEstimated,
orderBeingQuoted, orderBeingProcessed,
orderCompleted, orderNotValid, orderCancelled};

enum CG_PackagingType {predefinedPackage, adhocPackage};

struct CG_PackageSpecification
{

// Note: datatypes not provided by GM
any packageId;

OpenGIS Catalog Interface Version 1.0102

any packagePrice;
CG_PackagingType package;
any packageMedium;
long packageSize;

};

enum CG_PaymentMethod {credit, cash, purchaseOrder};
enum CG_StatusUpdateType {manual, automatic};
struct CG_UserInformation
{

string userName;
string userAddress;
string phoneNumber;
string faxNumber;
string emailAddress;
string netAddress;
CG_PaymentMethod paymentMethod;

};

5.2.3.4 Capabilities

The capabilities in the general model are designed with inheritance. In CORBA designing capabilities as
interfaces can reflect this, but this is not useful. Capabilities (like messages, see below) have to be
transferred over the network. Therefore they are defined as either type definitions or structures.

typedef boolean CG_AllSupportedRequest;

typedef boolean CG_Defaults;

struct CG_DefaultTimeOut
{

OGC_Basic::UomTime timeOut;
};

typedef boolean CG_Explain;

struct CG_Messaging
{

CG_CharacterSet characterSet;
CG_MessageFormat messageFormat;

};

struct CG_Query
{

string version;
CG_CharacterSet characterSet;
CG_QueryLanguage queryLanguage;

};

struct CG_Session
{

string language;
string catalogSpecificationVersion;
CG_CharacterSet characterSet;

};

OpenGIS Catalog Interface Version 1.0103

struct CG_SoftwareInformation
{

string vendor;
string SVversionNumber;
string IFversionNumber;

};

typedef sequence<CG_CollectionName> CG_SupportedCollections;

To be able to make a sequence of different capabilities, a union CG_Capability is created, encompassing all
derived capabilities.

A union normally has a discriminator. This can be a long value, but this is generally not preferred because
you have to remember the value indicating the intended capability. Therefore an enumeration of
capabilities is included in the CORBA profile.

enum CG_CapabilityType
{ ctAllSupportedRequest, ctDefaults, ctDefaultTimeOut, ctExplain,

ctMessaging, ctQuery, ctSession, ctSoftwareInformation,
ctSupportedCollections };

union CG_Capability
switch(CG_CapabilityType)
{

case ctAllSupportedRequest : CG_AllSupportedRequest
allSupportedRequest;

case ctDefaults : CG_Defaults defaults;
case ctDefaultTimeOut : CG_DefaultTimeOut timeOut;
case ctExplain : CG_Explain explain;
case ctMessaging : CG_Messaging messaging;
case ctQuery : CG_Query query;
case ctSession : CG_Session session;
case ctSoftwareInformation : CG_SoftwareInformation

softwareInformation;
case ctSupportedCollections : CG_SupportedCollections

supportedCollections;
};

5.2.3.5 General messages

The general model (coarse grained) is a message based model, where messages are designed in the form of
a class hierarchy. In CORBA IDL the messages are translated as structs. Writing them in the form of
interfaces is not useful. In CORBA the objects (instances of interfaces) stay on a remote server machine
and are referred to by a client machine. They are not transferred over the network. This is definitely not the
intention for messages.

All messages have the same form as the messages described in the general model. However, messages in
the form of structs cannot inherit from each other in CORBA. Therefore the CG_Message class is also
included in the CORBA profile and a member of all other messages, called ’base’.

struct CG_Message
{

OpenGIS Catalog Interface Version 1.0104

long sessionID;
string destinationID;
CG_RequestID requestID;
string additionalInfo;
CG_MessageFormat format;

};

All other messages, which in the general model inherit from CG_Message, have in the CORBA profile the
CG_Message as a structure member. The next messages do not add extra structure members. They could
also have been modeled by a typedef. But to be consistent with the rest of the messages also these message
have base as a structure member.

Note that the response in the general model also contains a string structure member diagnostic. This
parameter is not specified in the CORBA profile. Error handling will be handled by exceptions, the
standard CORBA facility. Exceptions are described below. WWW/CORBA bridges can catch these
exceptions and convert them into diagnostic info if necessary.

struct CG_InitSessionRequest
{

CG_Message base;
};

struct CG_InitSessionResponse
{

CG_Message base;
};
struct CG_TerminateSessionRequest
{

CG_Message base;
};
struct CG_TerminateSessionResponse
{

CG_Message base;
};

The status and cancel messages add a few structure members in addition to the base structure member.

struct CG_StatusRequest
{

CG_BaseMessage base;
CG_RequestID requestIDtoStatus;

};

struct CG_StatusResponse
{

CG_BaseMessage base;
CG_RequestID requestIDtoStatus;
CG_Status status;

};
struct CG_CancelRequest
{

CG_BaseMessage base;
CG_RequestID requestIDtoCancel;
boolean freeResources;

};

OpenGIS Catalog Interface Version 1.0105

struct CG_CancelResponse
{

CG_BaseMessage base;
CG_RequestID requestIDtoCancel;
CG_Status status;
CG_RequestID canceledRequest;

};

5.2.3.6 Discovery messages

There are three request/response message pairs in the discovery service. To enhance distributed searching,
an additional structure member for the query message is provided, this member is not included in the
general model. This structure member asynchronous can be set to true to force asynchronous searching.
The query method will return immediately, setting structure member hits in the response to zero. Query
results can be retrieved later on, when the query is ready. The progress of the query can be examined with
the status messages. The query can be cancelled with the cancel messages.

Another structure member, maxLevel, is added to have more control in the range of the distribution. If one
catalog contains another one, that other one contains a third one, and so on, you will possibly specify that
only two levels of sub-catalogs will be searched through. Setting the maxLevel member to two will force
this. Setting maxLevel to -1 forces searching all sub-catalogs. Note that if the queryScope is Local there is
no distributed search at all.

struct CG_QueryRequest
{

CG_BaseMessage base;
CG_QueryExpression queryExpression;
CG_ResultType resultType;
long iteratorSize;
long cursor;
CG_MessageFormat returnFormat;
CG_PresentationDescription presentation;
sequence<CG_SortField> sortField;
CG_QueryScope queryScope;
CG_CollectionName collectionID;
CG_CatalogEntryType catalogType;
boolean asynchronous;
long maxLevel;

};
struct CG_QueryResponse
{

CG_Message base;
CG_ReturnData retrievedData;
CG_CollectionName resultSetID;
CG_Status status;
long hits;
long cursor;

};

struct CG_PresentRequest
{

CG_Message base;
CG_PresentationDescription presentation;
sequence<CG_SortField> sortField;
CG_MessageFormat returnFormat;

OpenGIS Catalog Interface Version 1.0106

long iteratorSize;
long cursor;
CG_CollectionName resultSetID;

};

struct CG_PresentResponse
{

CG_Message base;
CG_ReturnData retrievedData;
long cursor;
long hits;
CG_Status status;

};

struct CG_ExplainCollectionRequest
{

CG_Message base;
CG_AttributeCategory attributeCategory;
CG_CollectionName collectionID;

};

struct CG_ExplainCollectionResponse
{

CG_Message base;
CG_CollectionName collectionID;
CG_SchemaID dataModel;
CG_Status status;

};

Note that this asynchronous behavior is only specified for the query request message. All other operations
(e.g. init, terminate, status, cancel, explain, present) are not considered as time-consuming and return
immediately after processing.

5.2.3.7 Management messages

The general model defines messages for managing catalogs. These messages are translated to the CORBA
coarse grained profile literally. The general model must still define the contents of the messages. Therefore
not all messages are taken described here, they are described in the full IDL below.

struct CG_CreateCatalogRequest
{

CG_Message base;
// tbd

};
struct CG_CreateCatalogResponse
{

CG_Message base;
// tbd

};
...

5.2.3.8 Access messages

OpenGIS Catalog Interface Version 1.0107

The general model specifies direct access and brokered access. Direct access is provided by interfaces such
as the OGC Simple Features and Coverage interfaces for CORBA. If a catalog entry denotes an OGC
Feature, a Feature Collection or a Coverage, the meta-information of this entry can be populated with an
ior (interoperable object reference). This meta-information entity is called ior and is filled with the
standard representation of an ior, specified by the OMG (Object Management Group), the creators of
CORBA. In XML this looks like the following (abbreviated) example:

<ior>IOR:010631002800000049444c3a6f6d672e6f...</ior>

Brokered access is specified by a request and a response message, conform all operations of the general
model. The messages are listed below.

struct CG_BrokeredAccessRequest
{

CG_Message base;
string productHandle;
CG_OrderSpecification orderInformation;
string orderID;
CG_BrokeredAccessRequestType requestType;
CG_UserInformation userInformation;
CG_StatusUpdateType statusOrderUpdateType;
CG_PackageSpecification packageSpecification;

};

struct CG_BrokeredAccessResponse
{

CG_Message base;
CG_OrderStatus orderStatus;
sequence<long> resourceEstimate;
CG_CollectionName order;
string orderID;
CG_Status status;
CG_BrokeredAccessRequestType requestType;

};

5.2.3.9 Exceptions

Exceptions are not specified in the general model because they are profile specific. In CORBA exceptions
are considered as an appropriate way to notify error situations to clients. The coarse grained CORBA
profile specifies exceptions. The diagnostic structure member of the response messages are not used in the
CORBA profile, their role is taken over by the exceptions. Some exceptions specify the diagnostic string
as an exception parameter. By other exceptions this is not necessary, as the exceptions are self-explaining.

exception InvalidRequest{};
exception InvalidSession{};
exception InvalidCollection{ string diagnostic; };

The exception InvalidQuery is thrown if the client specifies an invalid query. Note that the exception is not
thrown if the resultType field is set to validate.

exception InvalidQuery{ string diagnostic; };

OpenGIS Catalog Interface Version 1.0108

The exception NotImplemented is defined in cases where not-implemented behavior is asked by the client.
This might occur by requesting the optional access or management services.

exception NotImplemented{ string diagnostic; };

The NotSupported exception is thrown if the client specifies something in a request parameter that is not
implemented by the server. For example the client can specify its query in Z3950_TypeOne but the server
can only interpret OGC_Common queries.

exception NotSupported{ string diagnostic; };

The last exception, CatalogError, is to notify error situations where none of the above exceptions is
appropriate.

exception CatalogError{ string diagnostic; };

5.2.3.10 Catalog Service interfaces

The interface CG_Discovery implements methods for discovery: query, present and explainCollection.
These methods take a request message as input parameter and return a response message as output
parameter.

interface CG_Discovery
{

CG_QueryResponse query(in CG_QueryRequest request)
raises(InvalidSession, CatalogError);

CG_PresentResponse present(in CG_PresentRequest request)
raises(InvalidSession, CatalogError);

CG_ExplainCollectionResponse explainCollection(in
CG_ExplainCollectionRequest request)

raises(CatalogError);
};

The next interface describes the CG_Manager interface, which defines catalog management functions. All
methods are taken literally from the general model. These methods create, update or delete catalog entries.
In the request messages the appropriate meta information will be provided.

By specifying a CORBA ior (interoperable object reference) in the meta-information, the following
functions are possible:

• direct access to OGC Simple Features, OGC Feature Collections or OGC Coverages
• distributed search through multiple catalog services

To enable this functionality the field ior must be filled with the correct ior in the standard OMG ior string
representation.

interface CG_Manager
{

CG_CreateMetadataResponse
createMetadata(in CG_CreateMetadataRequest request)

raises(NotImplemented, CatalogError);
CG_CreateCatalogResponse

OpenGIS Catalog Interface Version 1.0109

createCatalog(in CG_CreateCatalogRequest request)
raises(NotImplemented, CatalogError);

CG_UpdateCatalogResponse
updateCatalog(in CG_UpdateCatalogRequest request)

raises(NotImplemented, CatalogError);
CG_DeleteCatalogResponse

deleteCatalog(in CG_DeleteCatalogRequest request)
raises(NotImplemented, CatalogError);

};

The interface CG_Access is the interface for access messages. It describes only one operation: the
brokeredAccess function which has the request as input and which returns the response. Direct access is
provided by interfaces as the Simple Feature interface and the Coverage interface. These interfaces are not
described here. The client can get a reference to these interfaces by examining the ior field in the meta-
information.

interface CG_Access
{

CG_BrokeredAccessResponse
brokeredAccess(in CG_BrokeredAccessRequest request)

raises(NotImplemented, CatalogError);
};

The CG_CatalogService interface is the core of the coarse grained CORBA profile. All operations have a
comparable form of the operations specified in the general model. This consists of a request message as an
input parameter and a response message as a return value.

The CG_CatalogService inherits from the interfaces CG_Discovery, CG_Access and CG_Manager. In this
way these services are realized. Note that access and manager services are optional. If a server does not
implement these services it throws the exception NotImplemented. The CG_CatalogService also inherits
from OGC_StatefulService that is described below.

interface CG_CatalogServices : OGC_StatefulService, CG_Discovery,
CG_Access, CG_Manager

{
CG_InitSessionResponse initSession(in CG_InitSessionRequest

request)
raises(CatalogError);

CG_TerminateSessionResponse terminateSession(in
CG_TerminateSessionRequest request)

raises(InvalidSession, CatalogError);
CG_ExplainServerResponse explainServer(in CG_ExplainServerRequest

request)
raises(CatalogError);

CG_StatusResponse status(in CG_StatusRequest request)
raises(InvalidSession, InvalidRequest, CatalogError);

CG_CancelResponse cancel(in CG_CancelRequest request)
raises(InvalidSession, InvalidRequest, CatalogError);

};

5.2.3.11 Basic interfaces

OpenGIS Catalog Interface Version 1.0110

Because of the asynchronous behavior of the query operation, a callback notifying the termination of the
query could be useful. The Observer Design Pattern [GAMMA97] describes a standard mechanism for
notifications to one or more clients. We envision that such a mechanism will be useful for many operations
in the OpenGIS world. Therefore the OGC_Observer and the OGC_Subject interfaces are modeled
separately. These interfaces could be moved to an OGC general module, in the same or a similar form. The
next interfaces describe the mechanism. Note that they are not mentioned in the general model, as this is a
CORBA specific behavior.

interface OGC_Observer;

interface OGC_Subject
{

void attachObserver(in OGC_Observer Observer);
void detatchObserver(in OGC_Observer Observer);
void notifyObserver();

};

interface OGC_Observer
{

void updateSubject(in OGC_Subject ChangedSubject);
};

The CG_CatalogService interface inherits from OGC_Service. This is envisioned as the basic interface for
all OpenGIS services. As it does not exist yet, the content of this interface is not clear.

interface OGC_Service : OGC_Subject
{
};

interface OGC_StatefulService : OGC_Service
{
};

5.2.3.12 Complete IDL

//---
// Module : OGC_CatalogService
//---
// Purpose : Coarse grained CORBA profile for catalog services
//---
// Authors : Barend Gehrels, Geodan IT b.v., the Netherlands
// Joined Catalog Response Team
// Date : july 13, 1999
//---

module OGC_CatalogService
{

//---
// Parameter type definitions
//---

// 3.2.7.1
enum CG_AttributeCategory {queriable, presentable, both};

OpenGIS Catalog Interface Version 1.0111

// 3.2.7.2
enum CG_BrokeredAccessRequestType {orderEstimate,

orderQuoteAndSubmit,
orderMonitor, orderCancel};

// 3.2.7.3 capabilities see below

// 3.2.7.4
enum CG_CatalogEntryType {product, collection, catalog, service};

// 3.2.7.5
enum CG_CharacterSet {ASCII, uniCode, shiftJIS, uniCodeJ};

// 3.2.7.6
union CG_CollectionName

switch(long)
{

case 1 : string collectionID;
case 2 : string collectionName;

};

// 3.2.7.7 CG_Dictionary see CG_Scheme

// 3.2.7.8
enum CG_MessageFormat {XML, DG_DirectedGraph, HTML, TXT, NV};

// 3.2.7.9
struct CG_OrderItem
{

// Note: datatypes not provided by GM
any productID;
any productPrice;
any productDeliveryOptions;
any processingOptions;
any sceneSelectionOptions;

};

// 3.2.7.10
struct CG_OrderSpecification
{

// Note: datatypes not provided by GM
any orderCentreID;
any orderPrice;
any orderDeliveryDate;
any orderCancellationDate;
any deliveryMethod;
any package;

};

// 3.2.7.11
enum CG_OrderStatus {orderBeingEstimated, orderEstimated,

orderBeingQuoted, orderBeingProcessed,
orderCompleted, orderNotValid, orderCancelled};

// 3.2.7.13
enum CG_PackagingType {predefinedPackage, adhocPackage};

OpenGIS Catalog Interface Version 1.0112

// 3.2.7.12
struct CG_PackageSpecification
{

// Note: datatypes not provided by GM
any packageId;
any packagePrice;
CG_PackagingType package;
any packageMedium;
long packageSize;

};

// 3.2.7.14
enum CG_PaymentMethod {credit, cash, purchaseOrder};

// 3.2.7.15
enum CG_PredefinedPresentationType {full, brief};

// 3.2.7.16
union CG_PresentationDescription

switch(long)
{

case 1 : sequence<string> attributes; // CG_TupleType in GM
case 2 : CG_PredefinedPresentationType presentationType; //

name in GM
};

// 3.2.7.3.7
enum CG_QueryLanguage {OGC_Common, Z3950_TypeOne,

SQL3_SimpleFeature, SQL2_SimpleFeature};

// 3.2.7.17
struct CG_QueryExpression
{

string theQuery;
string theNamespace;
CG_QueryLanguage theLanguage;

};

// 3.2.7.18
enum CG_QueryScope {distributed, local};

// 3.2.7.19
struct CG_RequestID
{

long sessionID;
long counter;

};

// 3.2.7.20
enum CG_ResultType {validate, resultSetID, hits, results};

// 3.2.7.21
struct CG_ReturnData
{

CG_MessageFormat encoding;

OpenGIS Catalog Interface Version 1.0113

any payload;

// XML,HTML,TXT will return a string
// DAG will return a DAG-structure
// NV will return a OGIS::NVPairSeq (from CORBA SF)

};

// 3.2.7.22 CG_Scheme
typedef OGIS::NVPairSeq CG_Schema;

// 3.2.7.23 CG_SchemeID
struct CG_SchemaID
{

string schemeName;
CG_Schema schema;

};

// 3.2.7.25
enum CG_SortOrder {ascending, descending, ascendingSize,

descendingSize, none};

// 3.2.7.24
struct CG_SortField
{

string attributeName;
CG_SortOrder sortOrder;

};

// 3.2.7.26
enum CG_Status {success, processing, failure, canceled, queued,

pausedOrSuspended, resultsAvailable, accessDenied};

// 3.2.7.27
enum CG_StatusUpdateType {manual, automatic};

// 3.2.7.28 CG_TupleType

// 3.2.7.29
struct CG_UserInformation
{

string userName;
string userAddress;
string phoneNumber;
string faxNumber;
string emailAddress;
string netAddress;
CG_PaymentMethod paymentMethod;

};

//---
// Capabilities, 3.2.7.3
//---
enum CG_CapabilityType

{ ctAllSupportedRequest, ctDefaults, ctDefaultTimeOut,
ctExplain, ctMessaging, ctQuery, ctSession,
ctSoftwareInformation, ctSupportedCollections };

OpenGIS Catalog Interface Version 1.0114

// 3.2.7.3.1
typedef boolean CG_AllSupportedRequest;

// 3.2.7.3.2
typedef boolean CG_Defaults;

// 3.2.7.3.3
struct CG_DefaultTimeOut
{

OGC_Basic::UomTime timeOut;
};

// 3.2.7.3.4
typedef boolean CG_Explain;

// 3.2.7.3.5
struct CG_Messaging
{

CG_CharacterSet characterSet;
CG_MessageFormat messageFormat;

};

// 3.2.7.3.6
struct CG_Query
{

string version;
CG_CharacterSet characterSet;
CG_QueryLanguage queryLanguage;

};

// 3.2.7.3.8
struct CG_Session
{

string language;
string catalogSpecificationVersion;
CG_CharacterSet characterSet;

};

// 3.2.7.3.9
struct CG_SoftwareInformation
{

string vendor;
string SVversionNumber;
string IFversionNumber;

};

// 3.2.7.3.10
typedef sequence<CG_CollectionName> CG_SupportedCollections;

// 3.2.7.3
union CG_Capability

switch(CG_CapabilityType)
{

case ctAllSupportedRequest : CG_AllSupportedRequest
allSupportedRequest;

case ctDefaults : CG_Defaults defaults;

OpenGIS Catalog Interface Version 1.0115

case ctDefaultTimeOut : CG_DefaultTimeOut timeOut;
case ctExplain : CG_Explain explain;
case ctMessaging : CG_Messaging messaging;
case ctQuery : CG_Query query;
case ctSession : CG_Session session;
case ctSoftwareInformation : CG_SoftwareInformation

softwareInformation;
case ctSupportedCollections : CG_SupportedCollections

supportedCollections;
};

//---
// Messages
//---

struct CG_Message
{

long sessionID;
string destinationID;
CG_RequestID requestID;
string additionalInfo;
CG_MessageFormat format;

};

struct CG_InitSessionRequest
{

CG_Message base;
};

struct CG_InitSessionResponse
{

CG_Message base;
};
struct CG_TerminateSessionRequest
{

CG_Message base;
};
struct CG_TerminateSessionResponse
{

CG_Message base;
};

struct CG_ExplainServerRequest
{

CG_Message base;
sequence<CG_CapabilityType> capabilities;

};

struct CG_ExplainServerResponse
{

CG_Message base;
sequence<CG_Capability> capabilities;

};

struct CG_StatusRequest
{

OpenGIS Catalog Interface Version 1.0116

CG_Message base;
CG_RequestID requestIDtoStatus;

};

struct CG_StatusResponse
{

CG_Message base;
CG_RequestID requestIDtoStatus;
CG_Status status;

};

struct CG_CancelRequest
{

CG_Message base;
CG_RequestID requestIDtoCancel;
boolean freeResources;

};

struct CG_CancelResponse
{

CG_Message base;
CG_RequestID requestIDtoCancel;
CG_Status status;
CG_RequestID canceledRequest;

};
struct CG_QueryRequest
{

CG_Message base;

CG_QueryExpression queryExpression;
CG_ResultType resultType;
long iteratorSize;
long cursor;
CG_MessageFormat returnFormat;
CG_PresentationDescription presentation;
sequence<CG_SortField> sortField;
CG_QueryScope queryScope;
CG_CollectionName collectionID;
CG_CatalogEntryType catalogType;

boolean asynchronous;
long maxLevel;

};

struct CG_QueryResponse
{

CG_Message base;
CG_ReturnData retrievedData;
CG_CollectionName resultSetID;
CG_Status status;
long hits;
long cursor;

};

struct CG_PresentRequest
{

CG_Message base;

OpenGIS Catalog Interface Version 1.0117

CG_PresentationDescription presentation;
sequence<CG_SortField> sortField;
CG_MessageFormat returnFormat;
long iteratorSize;
long cursor;
CG_CollectionName resultSetID;

};
struct CG_PresentResponse
{

CG_Message base;
CG_ReturnData retrievedData;
long cursor;
long hits;
CG_Status status;

};

struct CG_ExplainCollectionRequest
{

CG_Message base;
CG_AttributeCategory attributeCategory;
CG_CollectionName collectionID;

};
struct CG_ExplainCollectionResponse
{

CG_Message base;
CG_CollectionName collectionID;
CG_SchemaID dataModel;
CG_Status status;

};

// Messages for access
// 3.2.5.1
struct CG_BrokeredAccessRequest
{

CG_Message base;
string productHandle;
CG_OrderSpecification orderInformation;
string orderID;
CG_BrokeredAccessRequestType requestType;
CG_UserInformation userInformation;
CG_StatusUpdateType statusOrderUpdateType;
CG_PackageSpecification packageSpecification;

};

// 3.2.5.2
struct CG_BrokeredAccessResponse
{

CG_Message base;
CG_OrderStatus orderStatus;
sequence<long> resourceEstimate;
CG_CollectionName order;
string orderID;
CG_Status status;
CG_BrokeredAccessRequestType requestType;

};

OpenGIS Catalog Interface Version 1.0118

// Messages for managing functions
struct CG_CreateCatalogRequest
{

CG_Message base;
// tbd

};
struct CG_CreateCatalogResponse
{

CG_Message base;
// tbd

};
struct CG_UpdateCatalogRequest
{

CG_Message base;
// tbd

};
struct CG_UpdateCatalogResponse
{

CG_Message base;
// tbd

};
struct CG_DeleteCatalogRequest
{

CG_Message base;
// tbd

};
struct CG_DeleteCatalogResponse
{

CG_Message base;
// tbd

};
struct CG_CreateMetadataRequest
{

CG_Message base;
// tbd

};
struct CG_CreateMetadataResponse
{

CG_Message base;
// tbd

};

//---
// Exceptions
//---
exception InvalidSession{};
exception InvalidRequest{};
exception InvalidCollection{ string diagnostic; };
exception InvalidQuery{ string diagnostic; };
exception NotImplemented{ string diagnostic; };
exception NotSupported{ string diagnostic; };
exception CatalogError{ string diagnostic; };

//---
// Interfaces

OpenGIS Catalog Interface Version 1.0119

//---

interface OGC_Observer;

interface OGC_Subject
{

oneway void attachObserver(in OGC_Observer Observer);
oneway void detachObserver(in OGC_Observer Observer);
oneway void notifyObserver();

};

interface OGC_Observer
{

void updateSubject(in OGC_Subject ChangedSubject);
};

interface OGC_Service : OGC_Subject
{
};
interface OGC_StatefulService : OGC_Service
{
};

interface CG_Discovery
{

CG_QueryResponse query(in CG_QueryRequest request)
raises(InvalidSession, InvalidQuery, InvalidCollection,
NotSupported, CatalogError);

CG_PresentResponse present(in CG_PresentRequest request)
raises(InvalidSession, InvalidCollection, NotSupported,
CatalogError);

CG_ExplainCollectionResponse explainCollection(in
CG_ExplainCollectionRequest request)
raises(CatalogError);

};

interface CG_CatalogServices;

interface CG_Access
{

// Direct access is provided by the IOR fields in the meta-
information

// itself

// Brokered access
CG_BrokeredAccessResponse

brokeredAccess(in CG_BrokeredAccessRequest request)
raises(NotImplemented, CatalogError);

};

interface CG_Manager
{

CG_CreateMetadataResponse
createMetadata(in CG_CreateMetadataRequest request)
raises(NotImplemented, CatalogError);

CG_CreateCatalogResponse

OpenGIS Catalog Interface Version 1.0120

createCatalog(in CG_CreateCatalogRequest request)
raises(NotImplemented, CatalogError);

CG_UpdateCatalogResponse
updateCatalog(in CG_UpdateCatalogRequest request)
raises(NotImplemented, CatalogError);

CG_DeleteCatalogResponse
deleteCatalog(in CG_DeleteCatalogRequest request)
raises(NotImplemented, CatalogError);

};

interface CG_CatalogServices : OGC_StatefulService, CG_Discovery,
CG_Access, CG_Manager

{
CG_InitSessionResponse initSession(in CG_InitSessionRequest

request)
raises(CatalogError);

CG_TerminateSessionResponse terminateSession(in
CG_TerminateSessionRequest request)
raises(InvalidSession, CatalogError);

CG_ExplainServerResponse explainServer(in
CG_ExplainServerRequest request)
raises(CatalogError);

CG_StatusResponse status(in CG_StatusRequest request)
raises(InvalidSession, InvalidRequest, CatalogError);

CG_CancelResponse cancel(in CG_CancelRequest request)
raises(InvalidSession, InvalidRequest, CatalogError);

};
};

OpenGIS Catalog Interface Version 1.0121

6. OLEDB Profile

6.1 Architecture

The COM Profile uses OLEDB as the mechanism for accessing catalog data. OLEDB is the standard
within the Microsoft developer community for locating and exchanging data. As such, this profile
addresses two classes of catalog environment, those using pure OLEDB and those using OGC extensions.
The majority of this profile will address the first case as pure OLEDB will address most of the functional
needs. Extensions will be detailed where they are appropriate.

6.1.1 Mandatory OLEDB Interfaces

The following OLEDB interfaces are mandatory for a data server to act as an OGC Catalog server.

Datasource:

IDBCreateSession (OLEDB Mandatory)

IDBInitialize (OLEDB Mandatory)

IDBProperties (OLEDB Mandatory)
IDBAsyncStatus (OLEDB optional)

Session:

IDBCreateCommand (OLEDB optional)
IDBSchemaRowset (OLEDB optional)

Commands:

IAccessor (OLEDB Mandatory)

IColumnsInfo (OLEDB Mandatory)

ICommand (OLEDB Mandatory)

ICommandProperties (OLEDB Mandatory)

ICommandText (OLEDB Mandatory)

Rowsets:
IAccessor (OLEDB Mandatory)
IColumnsInfo (OLEDB Mandatory)
IRowset (OLEDB Mandatory)
IRowsetView (OLEDB optional)
IDBAsyncStatus (OLEDB optional)

Views:
IColumnsInfo (OLEDB Mandatory)
IAccessor (OLEDB optional)
IViewRowset (OLEDB optional)
IViewSort (OLEDB optional)

OpenGIS Catalog Interface Version 1.0122

6.1.2 OGC Extensions to OLEDB

OLEDB only supports HTML, text and binary formats. To support XML, DAG and SGML return formats
the following flags have been defined for the dwFlag parameter of the DBBINDING entry in the Accessor.

DBBINDFLAG_XML -> 0x4

DBBINDFLAG_DAG -> 0x8

DBBINDFLAG_SGML -> 0x10

OLEDB only supports SQL dialects. Support for non-SQL query languages requires the addition of the
DBPROP_OGCLANG property to Command objects. This property can take the following values:

OGC_Common -> 1

Z3950_TYPEONE -> 2

SQL3_SIMPLEFEATURE -> 3

SQL2_SIMPLEFEATURE -> 4

The DBPROP_OGCLANG property is set instead of the DBPROP_SQLSUPPORT property through the
SetProperties interface on Command objects.

The AttributeCategory Parameter of the Explain Collection Request is not directly supported in the pure
OLEDB environment. To support this parameter, the parameter ATTRIBUTECATEGORY will be added
to the property set supported by the GetRowset interface.

6.2 Sequence Diagram

InitSessionRequest

Initializer::CreateDBInstance()

Datasource->IDBInitialize::Initialize()

Datasource->IDBProperties::SetProperties()

Datasource->IDBCreateSession::CreateSession()

InitSessionResponse

TerminateSessionRequest

Session->Release()

Datasource->Release()

TerminateResponse

ExplainServerRequest

Datasource->IDBProperties::GetProperties()

Datasource->IDBProperties::SetProperties()

Session->QueryInterface(IID_IDBSchemaRowset)

ExplainServerResponse

StatusRequest

OpenGIS Catalog Interface Version 1.0123

Rowset->IDBAsynchStatus::GetStatus()

StatusResponse

CancelRequest

Rowset->IDBAsynchStatus::Abort()

CancelResponse

QueryRequest

Session->IDBCreateCommand::CreateCommand()

Command->ICommandProperties::SetProperties()

Command->ICommandText::SetCommandText()

Command->ICommand::Execute()

Rowset->IRowsetView::CreateView()

View->IColumnsInfo::GetColumnInfo()

View->IViewSort::SetSort()

View->IAccessor::CreateAccessor()

View->IViewRowset::OpenViewRowset()

Rowset->IRowset::GetNextRows()

Rowset->IRowset::GetData()

QueryResponse

PresentRequest

Rowset->IRowsetView::CreateView()

View->IColumnsInfo::GetColumnInfo()

View->IViewSort::SetSort()

View->IAccessor::CreateAccessor()

View->IViewRowset::OpenViewRowset()

Rowset->IRowset::GetNextRows()

Rowset->IRowset::GetData()

PresentResponse

ExplainCollectionRequest

Session->IDBSchemaRowset::GetRowset()

Rowset->IColumnsInfo::GetColumnInfo()

Rowset->IAccessor::CreateAccessor()

Rowset->IRowset::GetNextRows()

Rowset->IRowset::GetData()

ExplainCollectionResponse

6.3 Parameter Translation

This section addresses how catalog message parameter types defined in the General Model can be
translated into and out of OLEDB equivalents.

OpenGIS Catalog Interface Version 1.0124

6.3.1 CG_AttributeCategory

Type: Code_List

Used By: CG_ExplainCollectionRequest

CG_AttributeCategory is a code list for selecting the types of catalog entry attributes to be exposed by an
explain collection request. These values are used by the client code to select the subset of the schema to
return.

• Queriable

• Presentable

• Both
CG_AttributeCategory is supported through an extension to the GetRowset interface.
ATTRIBUTECATEGORY is added to the property set supported by this interface.
ATTRIBUTECATEGORY can take one of two bit values; queriable (0x01) and presentable (0x02). Both
is the inclusive or of Queriable and presentable (0x03).

6.3.2 CG_BrokeredAccessRequestType

Type: Code_List

Used By: CG_BrokeredAccessRequest

Not currently mapped

6.3.3 CG_Status

Type: Code_List

Used By: CG_TerminateResponse, CG_StatusResponse, CG_CancelResponse, CG_PresentResponse,
CG_BrokeredAccessResponse

CG_Status type variables are used to return status information to the general model. This is a direct
mapping of the OLE DB HRESULT values in most cases. More detailed information will be provided with
each message description.

6.3.4 CG_Capability

Type: Complex data structure

Used By: CG_ExplainServerRequest, CG_ExplainServerResponse

Uses: CG_AllSupportedRequest, CG_Defaults, CG_ExplainCollection, CG_Query, CG_Messaging,
CG_Session, CG_SoftwareInformation, CG_SupportedCollections

CG_Capability is an aggregate of the following parameter types.

6.3.4.1 CG_AllSupportedRequest

Type: Boolean

Used By: CG_Capability

When this parameter is set within a capabilities structure all other capabilities will be ignored and the server
will be queried for the all of the capabilities supported.

OpenGIS Catalog Interface Version 1.0125

6.3.4.2 CG_Defaults

Type: Boolean

Used By: CG_Capability

When this parameter is set within a capabilities structure, all other capabilities will be ignored and the
server will be queried for the default capabilities supported.

6.3.4.3 CG_ExplainCollection

Type: Boolean

Used By: CG_Capability

CG_ExplainCollection is supported in OLE DB by the IDBSchemaRowset interface. This parameter will
be set to TRUE for servers that support that interface.

6.3.4.4 CG_Query

Type: data structure composed of version, characterSet and queryLanguage fields

Used By: CG_Capability

Uses: CG_QueryLanguage, CG_CharacterSet

The CG_Query capability structure can be populated from the DBPROP_SQLSUPPORT property of the
Data Source object. This is a read only property that is read from the Data Source object through the
IDBProperties interface. This interface only reports on the variations of SQL supported. The versions of
SQL supported are:

DBPROPVAL_SQL_NONE – no SQL support

DBPROPVAL_SQL_ODBC_MINIMUM

DBPROPVAL_SQL_ODBC_CORE

DBPROPVAL_SQL_ODBC_EXTENDED – cumulative based on ODBC 2.5 definitions

DBPROPVAL_SQL_ESCAPECLAUSES – ODBC escape clause syntax supported

DBPROPVAL_SQL_ANSI92_ENTRY

DBPROPVAL_SQL_FIPS_TRANSITIONAL

DBPROPVAL_SQL_ANSI92_INTERMEDIATE

DBPROPVAL_SQL_ANSI92_FULL - cumulative based on ANSI SQL 92 definitions

DBPROPVAL_SQL_ANSI89_IEF – supports ANSI 89 Integrity Enhancement Facility

DBPROPVAL_SQL_SUBMINIMUM – uses SQL rules but less capable than ODBC minimum.

Support for non-SQL query languages requires the addition of the DBPROP_OGCLANG property to
Dataset objects. This property can take the following values:

OGC_Common -> 1

Z3950_TYPEONE -> 2

SQL3_SIMPLEFEATURE -> 3

SQL2_SIMPLEFEATURE -> 4

OpenGIS Catalog Interface Version 1.0126

The DBPROP_OGCLANG property is set instead of the DBPROP_SQLSUPPORT property through the
SetProperties interface on Dataset objects.

The components of the CG_Query structure are populated as follows:

Version == derived from the DBPROP_SQLSUPPORT property.

CharacterSet == only UNICODE or ASCII is valid. Client code must know what it can support.

QueryLanguage == always SQL.

6.3.4.5 CG_Messaging

Type: Data structure

Used By: CG_Capability

Uses: CG_CharacterSet, CG_MessageFormat

OLE DB only supports binary, text and HTML formatting, UNICODE and ASCII character sets. To
support XML, DAG and SGML return formats the following flags have been defined for the dwFlag
parameter of the DBBINDING entry in the Accessor.

DBBINDFLAG_XML -> 0x4

DBBINDFLAG_DAG -> 0x8

DBBINDFLAG_SGML -> 0x10

6.3.4.6 CG_Session

Type: Data Structure

Used By: CG_Capability

Uses: CG_CharacterSet

This capability provides information that is specific to the Catalog service. These properties can be added
to a server product but are not currently available.

Language == not available

CatalogSpecificationVersion == not currently available

CharacterSet == limited to UNICODE or ASCII

6.3.4.7 CG_SoftwareInformation

Type: Data structure

Used By: CG_Capability

This capability structure can be populated from two of the Data Source Information properties. These are
read only properties that can be read from the Data Source object through the IDBProperties interface.

Vendor == DBPROP_DBMSNAME (the name of the server product)

VersionNumber == DBPROP_DBMSVER (the version of the server product)

6.3.4.8 CG_SupportedCollections

OpenGIS Catalog Interface Version 1.0127

Type: set(CG_CollectionName)

Used By: CG_Capability

Uses: CG_CollectionName

The DBPROP_DATASOURCENAME property can be queried using the IDBProperties interface on the
data source but cannot be set. Only the current catalog data set name can be returned at this point.

6.3.5 CG_QueryLanguage

Type: Code_List

Used By: CG_Query, CG_QueryExpression

The CG_QueryLanguage parameter type can be mapped into the DBPROP_SQLSUPPORT property of the
Data Source object. This is a read only property that is read from the Data Source object through the
IDBProperties interface. This interface only reports on the variations of SQL supported. The versions of
SQL supported are:

DBPROPVAL_SQL_NONE – no SQL support

DBPROPVAL_SQL_ODBC_MINIMUM

DBPROPVAL_SQL_ODBC_CORE

DBPROPVAL_SQL_ODBC_EXTENDED – cumulative based on ODBC 2.5 definitions

DBPROPVAL_SQL_ESCAPECLAUSES – ODBC escape clause syntax supported

DBPROPVAL_SQL_ANSI92_ENTRY

DBPROPVAL_SQL_FIPS_TRANSITIONAL

DBPROPVAL_SQL_ANSI92_INTERMEDIATE

DBPROPVAL_SQL_ANSI92_FULL - cumulative based on ANSI SQL 92 definitions

DBPROPVAL_SQL_ANSI89_IEF – supports ANSI 89 Integrity Enhancement Facility

DBPROPVAL_SQL_SUBMINIMUM – uses SQL rules but less capable than ODBC minimum.

Support for non-SQL query languages requires the addition of the DBPROP_OGCLANG property to
Command objects. This property can take the following values:

OGC_Common -> 1

Z3950_TYPEONE -> 2

SQL3_SIMPLEFEATURE -> 3

SQL2_SIMPLEFEATURE -> 4

The DBPROP_OGCLANG property is set instead of the DBPROP_SQLSUPPORT property through the
SetProperties interface on Command objects.

6.3.6 CG_CatalogEntryType

Type: Code_List

Used By: CG_QueryRequest

OpenGIS Catalog Interface Version 1.0128

There is no direct way to use this parameter in OLEDB. It may be passed as a command parameter to some
servers or included in query text.

6.3.7 CG_CharacterSet

Type: Code_List

Used By: CG_Messaging, CG_Query, CG_Session

OLE DB only supports ASCII and UNICODE character sets. Specific providers may only support one or
the other.

6.3.8 CG_CollectionName

Type: Union data

Used By: CG_QueryRequest, CG_QueryResponse, CG_ExplainCollectionRequest,
CG_ExplainCollectionResponse, CG_BrokeredAccessResponse, CG_ReturnData

CG_CollectionName can be mapped into several types of OLEDB parameters based on the message and
message parameter. Specific mapping details can be found in each message section.

6.3.9 CG_MessageFormat

Type: Code_List

Used By: CG_QueryRequest, CG_PresentRequest, CG_Messaging

OLE DB only supports binary, text and HTML formatting. This parameter is used to build accessors for
retrieving data from a Rowset. To support XML, DAG and SGML return formats the following flags have
been defined for the dwFlag parameter of the DBBINDING entry in the Accessor.

DBBINDFLAG_XML -> 0x4

DBBINDFLAG_DAG -> 0x8

DBBINDFLAG_SGML -> 0x10

6.3.10 CG_PredefinedPresentationType

Type: Code_List

Used By: CG_PresentationDescription

Named presentations are not directly supported by OLEDB.

6.3.11 CG_PresentationDescription

Type: Data Union

Used By: CG_QueryRequest, CG_QueryResponse

Uses: CG_PredefinedPresentationType, TupleType

The list of attribute names is used to build accessors for retrieving data from a Rowset. Named
presentations are not directly supported by OLEDB.

OpenGIS Catalog Interface Version 1.0129

6.3.12 CG_QueryExpression

Type: Data Structure

Used By: CG_QueryRequest

Uses: CG_QueryLanguage

CG_QueryExpression maps directly into two parameters used for building queries in OLE DB. Queries are
built using the IcommandText::SetCommandText interface the parameters are:

dialect == which is similar to the theLanguage element of CG_QueryExpression

command == a pointer to a text string such as the theQuery element

6.3.13 CG_QueryScope

Type: Code_List

Used By: CG_QueryRequest

There is no OLE DB equivalent to this parameter at this time.

6.3.14 CG_RequestID

Type: Data Structure

Used By: CG_Message, CG_StatusRequest, CG_CancelRequest, CG_CancelResponse

CG_RequestID is mapped by the client software into a Rowset handle.

6.3.15 CG_ResultType

Type: Code_List

Used By: CG_QueryRequest, CG_QueryResponse

CG_ResultType is a code list describing the type of data to be returned in a query response message. These
values are used by the OLEDB client code to select the interfaces to exercise.

• resultSet

• results

• validate

• hits

6.3.16 CG_ReturnData

Type: Data Union

Used By: CG_QueryResponse, CG_PresentResponse

Uses: CG_CollectionName, CG_CatalogEntry

Packaging of data into a CG_ReturnData format is performed by the Rowset::GetData() method. The
format of the returned data is determined by the dwFlag parameter of the DBBINDING entry in the
Accessor.

OpenGIS Catalog Interface Version 1.0130

6.3.17 CG_SortField

Type: Data Structure

Used By: CG_QueryRequest, CG_PresentRequest

Uses: CG_SortOrder

CG_SortField parameters can be mapped directly into OLD DB data types with a little processing.

attributeName == map into column information structure (DBCOLUMNINFO). Retrieve the column
information using IcolumnsInfo::GetColumnInfo, identify the proper attribute by comparing attributeName
to the DBCOLUNINFO entry pwszName, get the ordinal for that column from the Iordinal entry. The
ordinal values will be used to identify the sort attributes.

sortOrder == OLE DB type DBSORT

6.3.18 CG_SortOrder

Type: Code_List

Used By: CG_SortField

CG_SortOrder is similar to the OLE DB type DBSORT. DBSORT variables can indicate ascending or
descending sorting only.

6.3.19 CG_UserInformation

Type: Data Structure

Used By: CG_BrokeredAccessRequest

Not yet mapped.

6.3.20 CG_PaymentMethod

Type: CodeList

Used By: CG_UserInformation

Not yet mapped.

6.3.21 TupleType

Type: Complex Data

Used By: CG_PresentationDescription

Maps into a data structure consisting of a key (character string) and a type (codelist).

6.3.22 Schema

Type: Complex Data

Used By: CG_SchemaID

OpenGIS Catalog Interface Version 1.0131

Maps into an array of TupleType

6.3.23 CG_SchemaID

Type: Complex Data

Used By: CG_ExplainCollectionResponse

Uses: Schema, SchemaName

CG_SchemaID maps into a data structure consisting of:

schemaID ::= character string

schema ::= Schema

6.4 Detailed Implementation Guidance

6.4.1 Establish a catalog session

6.4.1.1 Request

CG_InitSessionRequest ::= sessionID destinationID requestID additionalInfo

sessionID ::= Integer

destinationID ::= CG_CollectionName

requestID ::= CG_RequestID

additionalInfo ::= String

6.4.1.2 Response

CG_InitSessionResponse ::= sessionID destinationID requestID additionalInfo diagnostic

sessionID ::= Integer

destinationID ::= CG_CollectionName

requestID ::= CG_RequestID

additionalInfo ::= XMLString

diagnostic ::= CharacterString

6.4.1.3 Pure OLEDB Processing

// Marshall the input parameters

sessionID == not used

destinationID == Name of data source, map to clsid through iterator, Data Links UI or Directory

requestID == not used

additionalInfo == not used

// Create a Data Source object

// clsid is an identifier for the data source. It can be found through the iterator, data links UI or
Active Directory.

OpenGIS Catalog Interface Version 1.0132

myInitialize->CreateDBInstance

(

clsid // clsid generated from destinationID

pUnkOuter // NULL

dwClsContext // CLSTX_INPROC_SERVER (in process server)

pwszReserved // NULL

riid // IID_IDBInitialize

&myDataSource // returned pointer Data source object

)

// Map myDataSource to destinationID. This mapping will be persistent for use in all further
messages within this session.

// Initialize it

myData Source->IDBInitialize::Initialize()

// Set the properties, the following properties are recommended:

// DBPROP_ASYNCTXNABORT

// DBPROP_INIT_ASYNCH

// DBPROP_MULTIPLERESULTS

// DBPROP_MULTIPLESTORAGEOBJECTS

myData Source->IDBProperties::SetProperties

(

cPropertySets // Number of entries in rgPropertySets (4)

rgPropertySets // an array of DBPROPSET data structures

)

// Create a session

myDataSource->IDBCreateSession::CreateSession

(

pUnkOuter // NULL

riid // IID_IOpenRowset

mySession // Pointer to the session object

OpenGIS Catalog Interface Version 1.0133

)

// Map mySession to sessionID. This mapping will be used for all further messages in this session.

// Marshal the output parameters

sessionID == map from mySession

destinationID == map from myDataSource

requestID == NULL

additionalInfo == NULL unless an error occurred

6.4.1.4 Relevant OLE DB Properties

DBPROP_ASYNCTXNABORT – (Data source) select whether transactions can be aborted
asynchronously

DBPROP_INIT_ASYNCH – (Initialization) select asynchronous processing.

DBPROP_INIT_DATASOURCE – (Initialization) the name of the database to connect to.

DBPROP_INIT_LOCATION – (Initialization) the name of the catalog server.

DBPROP_MULTIPLERESULTS – (Data source) set the DBPROPVAL_MR_SUPPORTED and
DBPROPVAL_MR_CONCURRENT flags to allow access to multiple result sets.

DBPROP_MULTIPLESTORAGEOBJECTS – (Data Source) set if access to more than one catalog at a
time is supported

6.4.1.5 OGC OLEDB Extensions

none

6.4.2 End a Catalog Session

6.4.2.1 Request

CG_TerminateRequest ::= sessionID destinationID requestID additionalInfo

sessionID ::= Integer

destinationID ::= CG_CollectionName

requestID ::= CG_RequestID

additionalInfo ::= XMLString

6.4.2.2 Response

CG_TerminateResponse ::= sessionID destinationID requestID additionalInfo diagnostic status

sessionID ::= Integer

destinationID ::= CG_CollectionName

requestID ::= CG_RequestID

additionalInfo ::= XMLString

diagnostic ::= CharacterString

OpenGIS Catalog Interface Version 1.0134

status ::= CG_Status

6.4.2.3 Pure OLEDB Processing

// Marshall the input parameters

sessionID == maps to the session handle “mySession”

destinationID == maps to the Data Source handle “myDataSource”

requestID == not used

additionalInfo == not used

// Terminate the session

mySession->Release()

myDataSource->Release()

// Marshall the output parameters

sessionID == mapped from mySession

destinationID == mapped from myDataSource

requestID == NULL

additionalInfo == NULL

diagnostic == NULL unless an error occurred

status == mapped from HRESULT

6.4.2.4 Relevant OLE DB Properties

None

6.4.2.5 OGC OLEDB Extensions

none

6.4.3 Query the server properties

6.4.3.1 Request

CG_ExplainServerRequest ::= sessionID destinationID requestID additionalInfo capabilities

sessionID ::= Integer

destinationID ::= CG_CollectionName

requestID ::= CG_RequestID

additionalInfo ::= XMLString

OpenGIS Catalog Interface Version 1.0135

capabilities ::= Sequence<Capability>

6.4.3.2 Response

CG_ExplainServerResponse ::= sessionID destinationID requestID additionalInfo

diagnostic capabilities

sessionID ::= Integer

destinationID ::= CG_CollectionName

requestID ::= CG_RequestID

additionalInfo ::= XMLString

diagnostic ::= CharacterString

capabilities ::= Sequence<Capability>

6.4.3.3 Pure OLEDB Processing

// Marshall the input parameters

sessionID == maps to the session handle “mySession”

destinationID == maps to the Data Source handle “myDataSource”

requestID == not used

additionalInfo == not used

capabilities == mapping of capabilities to OLE DB properties is described in section ----

// If CG_AllSupportedRequest or CG_Default specified

// Get all or the properties of the Data Source

myDataSource->IDBProperties::GetProperties

(

cPropertyIDSets // number of entries in rgPropertyIDSets

rgPropertyIDSets // DBPROPIDSET array

pcPropertySets // number of entries returned in rgPropertySets

&rgPropertySets // Pointer to property set buffer

)

// Else set all writeable properties and read them back

myDataSource->IDBProperties::SetProperties

(

cPropertySets // Number of entries in property set buffer

&rgPropertySets // Pointer to property set buffer

OpenGIS Catalog Interface Version 1.0136

)

myDataSource->IDBProperties::GetProperties

(

cPropertyIDSets // number of entries in rgPropertyIDSets

rgPropertyIDSets // DBPROPIDSET array

pcPropertySets // number of entries returned in rgPropertySets

&rgPropertySets // Pointer to property set buffer

)

// See if this server supports CG_ExplainCollection

mySession->QueryInterface

(

riid // IID_IDBSchemaRowset

(void **)&mySchemaRowset // pointer to Schema Rowset interface

)

// If mySchemaRowset == NULL, then set CG_ExplainCollection to FALSE

// ELSE set CG_ExplainCollection to TRUE

// Marshall the output parameters

sessionID == mapped from mySession

destinationID == mapped from myDataSource

requestID == copied from input parameter

additionalInfo == NULL

diagnostic == NULL unless an error occurred

capabilities == remap as described in section ---

6.4.3.4 Relevant OLE DB Properties

DBPROP_DATASOURCENAME – (Data source) the name of the data source

DBPROP_MAXSORTCOLUMNS – (View) maximum number of columns that can be supported in a sort.

DBPROP_SQLSUPPORT – (Data Source) specifies level of SQL support provided by server.

6.4.3.5 OGC OLEDB Extensions

None

6.4.4 Check the status of a request

6.4.4.1 Request

OpenGIS Catalog Interface Version 1.0137

CG_StatusRequest ::= sessionID destinationID requestID additionalInfo requestIDtoStatus

sessionID ::= Integer

destinationID ::= CG_CollectionName

requestID ::= CG_RequestID

additionalInfo ::= XMLString

requestIDtoStatus ::= CG_RequestID

6.4.4.2 Response

CG_StatusResponse ::= sessionID destinationID requestID additionalInfo diagnostic status
requestIDtoStatus

sessionID ::= Integer

destinationID ::= CG_CollectionName

requestID ::= CG_RequestID

additionalInfo ::= XMLString

diagnostic ::= CharacterString

status ::= CG_Status

requestIDtoStatus ::= CG_RequestID

6.4.4.3 Pure OLEDB Processing

// Marshall the input parameters

sessionID == maps to the session handle “mySession”

destinationID == maps to the Data Source handle “myDataSource”

requestID == not used

additionalInfo == not used

requestIDtoStatus == map into myCommand

// Request the status

myCommand->QueryInterface

(

riid // IID_IDBAsynchStatus

(void **)&myAsynchStatus // pointer to asynch status interface

)

myAsynchStatus->GetStatus

(

HCHAPTER hChapter // DB_NULL_HCHAPTER

ULONG ulOperation // DBASYNCHOP_OPEN

OpenGIS Catalog Interface Version 1.0138

ULONG * pulprogress // current progress toward completing this phase

ULONG * pulProgressMax // returned maximum value of pulprogress

ULONG * pulAsynchPhase // Phase – can be initializing, populating or complete

ULONG * ppwszStatusText // supporting text

)

// percentage complete is pulprogress / pulProgressMax

// Marshall the output parameters

sessionID == mapped from mySession

destinationID == mapped from myDataSource

requestID == copied from input parameter

additionalInfo == NULL

diagnostic == copy from ppwszStatusText

requestIDtoStatus == copied from input parameter

status == mapped from pulprogress, pulProgressMax and pulAsynchPhase

6.4.4.4 Relevant OLE DB Properties

DBPROP_CONNECTIONSTATUS – (Data source) gets the status of the catalog connection

6.4.4.5 OGC OLEDB Extensions

None

6.4.5 Cancel a request

6.4.5.1 Request

CG_CancelRequest ::= sessionID destinationID requestID additionalInfo

requestIDtoCancel freeResources

sessionID ::= Integer

destinationID ::= CG_CollectionName

requestID ::= CG_RequestID

additionalInfo ::= XMLString

requestIDtoCancel ::= CG_RequestID

freeResources ::= Boolean

6.4.5.2 Response

CG_CancelResponse ::= sessionID destinationID requestID additionalInfo diagnostic

Status canceledRequest

sessionID ::= Integer

destinationID ::= CG_CollectionName

OpenGIS Catalog Interface Version 1.0139

requestID ::= CG_RequestID

additionalInfo ::= XMLString

diagnostic ::= CharacterString

status ::= CG_Status

canceledRequest ::= CG_RequestID

6.4.5.3 Pure OLEDB Processing

// Marshall the input parameters

sessionID == maps to the session handle “mySession”

destinationID == maps to the Data Source handle “myDataSource”

requestID == not used

additionalInfo == not used
requestIDtoCancel == map into myCommand

freeResources == not sure we can do this here

// Terminate the session

myCommand->QueryInterface

(

riid // IID_IDBAsynchStatus

(void **)&myAsynchStatus // pointer to asynch status interface

)

myAsynchStatus->Abort

(

HCHAPTER hChapter // DB_NULL_HCHAPTER

ULONG ulOperation // DBASYNCHOP_OPEN

)

// Marshall the output parameters

sessionID == mapped from mySession

destinationID == mapped from myDataSource

requestID == copied from input parameter

additionalInfo == NULL

diagnostic == NULL

status == mapped from HRESULT

OpenGIS Catalog Interface Version 1.0140

canceledRequest == copied from input parameter requestIDtoCancel

6.4.5.4 Relevant OLE DB Properties

DBPROP_ABORTPRESERVE – Rowset property to preserve or delete results after an abort

6.4.5.5 OGC OLEDB Extensions

None – freeResources not currently supported

6.4.6 Issue a Query

6.4.6.1 Request

CG_QueryRequest ::= sessionID destinationID requestID additionalInfo queryExpression resultType

iteratorSize cursor returnFormat presentation sortField queryScope

collectionID catalogType

sessionID ::= Integer

destinationID ::= CG_CollectionName

requestID ::= CG_RequestID

additionalInfo ::= XMLString

queryExpression ::= CG_QueryExpression

resultType ::= CG_ResultType

iteratorSize ::= Integer

cursor ::= Integer

returnFormat ::= CG_MessageFormat

presentation ::= CG_PresentationDescription

sortField ::= Sequence<sortField>

queryScope ::= CG_QueryScope

collectionID ::= CG_CollectionName

catalogType ::= CG_CatalogEntryType

6.4.6.2 Response

CG_QueryResponse ::= sessionID destinationID requestID additionalInfo diagnostic
retrievedData resultSetID resultType status hits cursor

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

diagnostic ::= CharacterString

retrievedData ::= CG_ReturnData

resultSetID ::= CG_CollectionName

resultType ::= CG_ResultType

status ::= CG_Status

OpenGIS Catalog Interface Version 1.0141

hits ::= integer

cursor ::= Integer

6.4.6.3 Pure OLEDB Processing

// Marshall the input parameters

sessionID == maps to the session handle “mySession”

destinationID == maps to the Data Source handle “myDataSource”

requestID == not used

additionalInfo == not used

queryExpression

theQuery == local LPCOLSTR variable “string”

theLanguage == local REFGUID variable “dialect”

resultType == used by this client to control query processing

resultSet == only return the resultSet ID

results == Return result data

validate == Only confirm that the query was accepted

hits == Only return the size of the result set

iteratorSize == used directly by IRowSet::GetNextRows

cursor == used directly by IRowSet::GetNextRows

returnFormat == Used to generate the Accessor.

presentation == Used to generate the Accessor

sortField

attributeName == maps into the column ordinal for this attribute

sortOrder == OLEDB type = DBSORT which can indicate ascending or descending sorts only

queryScope == used to indicate distributed query. May be ignored or included as a command parameter.

collectionID == may be included in the query string as an SQL FROM clause or included as a command
parameter

catalogType == may be passed as a command parameter or included in query text.

// Create a command object

mySession->IDBCreateCommand::CreateCommand

(

 pUnkOuter // NULL

riid // IID_ICommand

(void **)&myCommand // pointer to the command object

OpenGIS Catalog Interface Version 1.0142

)

// Set the query language

myCommand->QueryInterface

(

riid // IID_ICommandProperties

(void **)&myCommandProps // pointer to command properties interface

)

myCommandProps->SetProperties

(

cPropSets // Number of property sets (1)

rgPropSets // the DBPROP_SQLSUPPORT property

)

// Insert the query text

myCommand->QueryInterface

(

riid // IID_ICommandText

(void **)&myCommandText // pointer to command text interface

)

myCommandText->SetCommandText

(

DBGUID_SQL // allows use of the DBPROP_SQLSUPPORT property

string // from queryExpression::theQuery

)

// Execute the command

myCommand->QueryInterface

(

riid // IID_ICommand

(void **)&myCommandInterface // pointer to command interface

)

myCommandInterface->Execute

(

OpenGIS Catalog Interface Version 1.0143

NULL

IID_IRowset

NULL

NULL

(void **) &myRowset

)

// If resultType parameter is resultSet or validate then skip to marshalling

// If resultType parameter is hits then -------

// If resultType parameter is results then process the Rowset data

// Create a view from the Rowset

myRowSet->IRowsetView::CreateView

(

pUnkOuter

riid // IID_IView

myView

)

// get the column information

myView->IColumnsInfo::GetColumnInfo

(

ULONG * pcColumns // number of columns returned

DBCOLUMNINFO * prgInfo // array of column information

OLECHAR ** ppStringsBuffer // string data pointed to by prgInfo elements

)

// apply sorting

myView->IViewSort::SetSort

(

ULONG cColumns // Number of entries in rgColumns and rgOrders

Const ULONG rgColumns[] // column ordinals from prgInfo[].iOrdinal

Const DBSORT rgOrders[] // can be DBSORT_ASCENDING or

// DBSORT_DESCENDING

OpenGIS Catalog Interface Version 1.0144

)

// Build an Accessor

// The Accessor defines how the data returned by this query will be processed. This is

// where the presentation and returnFormat parameters come into play. To build the Accessor,

// traverse the list of attributes in the presentation parameter and add to the Accessor the

// instructions for appending that attribute to the end of the retrievedData parameter.

myView->QueryInterface

(

riid // IID_Iaccessor

&myIAccessor // pointer to the Accessor interface

)

// For each attribute on the Presentation list, find the column

// and build a new DBBINDING entry for the Accessor. Key entries are:

// iOrdinal = ordinal defines the location of the attribute in the Rowset

// obValue = offset in retrievedData where the value for this attribute is to be stored

// dwFlag = set DBBINDFLAG_HTML if returnFormat is HTML

// wtType = data format of copied data. If messageFormat is HTML or TXT, set to
DBTYPE_STR for ASCII and DBTYPE_WSTR for UNICODE text output.

myIAccessor->CreateAccesor

(

DBACCESSORFLAGS flags //DBACCESSOR_ROWDATA

ULONG pcBindings // number of entries in prBindings

Const DBBINDING prBindings[] // an array of DBBINDING structures, one for each attribute

ULONG rowsize // not used

HACCESSOR * myAccessor // returned handle of the Accessor

DBBINDSTATUS rgstatus[] // An array of status values, one for each rbindings entry

)

// Create a Rowset with the sorting applied

myView->QueryInterface

(

REFIID riid // IID_IViewRowset

OpenGIS Catalog Interface Version 1.0145

Iunknown ** &myIViewRowset // pointer to the ViewRowset interface

)

myIViewRowset->OpenViewRowset

(

IUnknown ** outer // NULL

REFIID Riid // IID_IRowSet

&myRowset // Sorted Rowset

)

// retrieve the data

myRowset->GetNextRows

(

HCHAPTER chapter // DB_NULL_HCHAPTER

LONG cursor // from input parameter

LONG iteratorSize // from input parameter

ULONG * rowsreceived // number of rows actually returned

HROW ** rowbuffer // memory containing the row data

)

myRowset->GetData

(

HROW rowbuffer // memory containing the row data

HACCESSOR myAccessor // the data Accessor object

Void * retrievedData.payload // payload portion of the returned data parameter

)

// Marshall the output parameters

sessionID == mapped from mySession

destinationID == mapped from myDataSource

requestID == maps to myRowSet

additionalInfo == NULL

diagnostic == NULL unless an error occurred

retrievedData == populated by IRowset::GetData

resultSetID == maps to myRowSet

resultType == copied from input parameter
status == map from HRESULT values

OpenGIS Catalog Interface Version 1.0146

hits == TBD

cursor == input parameter + rowsreceived from Irowset::GetNextRows

6.4.6.4 Relevant OLEDB Properties

DBPROP_ACCESSORDER – (Rowset) set to DBPROPVAL_AO_RANDOM to enable presentation
specification.

DBPROP_CANFETCHBACKWARDS – (Rowset) Boolean to allow backup the cursor

DBPROP_CANSCROLLBACKWARDS _ (Rowset) Boolean to allow backward scrolling of the Rowset

DBPROP_ROWSET_ASYNCH – (Rowset) governs how the Rowset is generated – maps to result type

DBPROP_MAXROWS – (Rowset) maps to iterator size?

DBPROP_SERVERCURSOR (Rowset) sets the cursor location

6.4.6.5 OGC OLEDB Extensions

ReturnFormat: standard OLEDB only supports HTML, text and binary formats. To support XML, DAG
and SGML formats the following flags have been defined for the dwFlag parameter of the DBBINDING
entry in the Accessor.

DBBINDFLAG_XML

DBBINDFLAG_DAG

DBBINDFLAG_SGML

QueryExpression: OLEDB only supports SQL dialects. Support for non-SQL query languages requires the
addition of the DBPROP_OGCLANG property. This property can take the following values:

OGC_Common -> 1

Z3950_TYPEONE -> 2

SQL3_SIMPLEFEATURE -> 3

SQL2_SIMPLEFEATURE -> 4

The DBPROP_OGCLANG property is set instead of the DBPROP_SQLSUPPORT property through the
SetProperties interface on command objects.

queryScope == Add optional command parameter

collectionID == SQL FROM clause equivalent, add optional command parameter or include in query
string.

catalogType == may be passed as a command parameter or included in query text.

6.4.7 Present Query Results

6.4.7.1 Request

CG_PresentRequest ::= sessionID destinationID requestID additionalInfo presentation

sortField returnFormat iteratorSize cursor

sessionID ::= Integer

destinationID ::= CG_CollectionName

requestID ::= CG_RequestID

OpenGIS Catalog Interface Version 1.0147

additionalInfo ::= XMLString

presentation ::= CG_PresentationDescription

sortField ::= Sequence<SortField>

returnFormat ::= CG_MessageFormat

iteratorSize ::= Integer

cursor ::= Integer

6.4.7.2 Response

CG_PresentResponse ::= sessionID destinationID requestID additionalInfo diagnostic retrievedData

cursor hits status

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

diagnostic ::= CharacterString

retrievedData ::= CG_ReturnData

cursor ::= Integer

hits ::= Integer

status ::= CG_Status

6.4.7.3 Pure OLEDB Processing

// Marshall the input parameters

sessionID == maps to the session handle “mySession”

destinationID == map to Rowset (myRowSet) created by previous query

requestID == not used

additionalInfo == not used

presentation == Used to generate the Accessor

sortField

attributeName == maps into the column ordinal for this attribute

sortOrder == OLEDB type = DBSORT which can indicate ascending or descending sorts only

returnFormat == Used to generate the Accessor.

iteratorSize == used directly by IRowSet::GetNextRows

cursor == used directly by IRowSet::GetNextRows

// Create a view from the Rowset

myRowSet->IRowsetView::CreateView

OpenGIS Catalog Interface Version 1.0148

(

pUnkOuter

riid // IID_IView

myView

)

// get the column information

myView->IColumnsInfo::GetColumnInfo

(

ULONG * pcColumns // number of columns returned

DBCOLUMNINFO * prgInfo // array of column information

OLECHAR ** ppStringsBuffer // string data pointed to by prgInfo elements

)

// apply sorting

myView->IViewSort::SetSort

(

ULONG cColumns // Number of entries in rgColumns and rgOrders

Const ULONG rgColumns[] // column ordinals from prgInfo[].iOrdinal

Const DBSORT rgOrders[] // can be DBSORT_ASCENDING or

// DBSORT_DESCENDING

)

// Build an Accessor

// The Accessor defines how the data returned by this query will be processed. This is

// where the presentation and returnFormat parameters come into play. To build the Accessor,

// traverse the list of attributes in the presentation parameter and add to the Accessor the

// instructions for appending that attribute to the end of the retrievedData parameter.

myView->QueryInterface

(

riid // IID_Iaccessor

&myIAccessor // pointer to the Accessor interface

)

OpenGIS Catalog Interface Version 1.0149

// For each attribute on the Presentation list, find the column

// and build a new DBBINDING entry for the Accessor. Key entries are:

// iOrdinal = ordinal defines the location of the attribute in the Rowset

// obValue = offset in retrievedData where the value for this attribute is to be stored

// dwFlag = set DBBINDFLAG_HTML if returnFormat is HTML

// wtType = data format of copied data. If messageFormat is HTML or TXT, set to
DBTYPE_STR for ASCII and DBTYPE_WSTR for UNICODE text output.

myIAccessor->CreateAccesor

(

DBACCESSORFLAGS flags //DBACCESSOR_ROWDATA

ULONG pcBindings // number of entries in prBindings

Const DBBINDING prBindings[] // an array of DBBINDING structures, one for each attribute

ULONG rowsize // not used

HACCESSOR * myAccessor // returned handle of the Accessor

DBBINDSTATUS rgstatus[] // An array of status values, one for each rbindings entry

)

// Create a Rowset with the sorting applied

myView->QueryInterface

(

REFIID riid // IID_IViewRowset

Iunknown ** &myIViewRowset // pointer to the ViewRowset interface

)

myIViewRowset->OpenViewRowset

(

IUnknown ** outer // NULL

REFIID Riid // IID_IRowSet

&myRowset // Sorted Rowset

)

// retrieve the data

myRowset->GetNextRows

(

HCHAPTER chapter // DB_NULL_HCHAPTER

OpenGIS Catalog Interface Version 1.0150

LONG cursor // from input parameter

LONG iteratorSize // from input parameter

ULONG * rowsreceived // number of rows actually returned

HROW ** rowbuffer // memory containing the row data

)

myRowset->GetData

(

HROW rowbuffer // memory containing the row data

HACCESSOR myAccessor // the data Accessor object

Void * retrievedData.payload // payload portion of the returned data parameter

)

// Marshall the output parameters

sessionID == mapped from mySession

destinationID == mapped from myRowset

requestID == mapped from myRowSet

additionalInfo == NULL

diagnostic == NULL unless an error occurred

retrievedData == populated by IRowset::GetData

cursor == input parameter + rowsreceived from Irowset::GetNextRows

hits == rowsreceived
status == map from HRESULT values

6.4.7.4 Relevant OLEDB Properties

DBPROP_ACCESSORDER – (Rowset) set to DBPROPVAL_AO_RANDOM to enable presentation
specification.

DBPROP_CANFETCHBACKWARDS – (Rowset) Boolean to allow backup the cursor

DBPROP_CANSCROLLBACKWARDS _ (Rowset) Boolean to allow backward scrolling of the Rowset

DBPROP_ROWSET_ASYNCH – (Rowset) governs how the Rowset is generated – maps to result type

DBPROP_MAXROWS – (Rowset) maps to iterator size?

DBPROP_SERVERCURSOR (Rowset) sets the cursor location

6.4.7.5 OGC OLEDB Extensions

ReturnFormat: standard OLEDB only supports HTML, text and binary formats. To support XML, DAG
and SGML formats the following flags have been defined for the dwFlag parameter of the DBBINDING
entry in the Accessor.

DBBINDFLAG_XML

DBBINDFLAG_DAG

DBBINDFLAG_SGML

OpenGIS Catalog Interface Version 1.0151

6.4.8 Get the schema

6.4.8.1 Request

CG_ExplainCollectionRequest ::= sessionID destinationID requestID additionalInfo

attributeCategory collectionID

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

attributeCategory ::= CG_AttributeCategory

collectionID ::= CG_CollectionName

6.4.8.2 Response

CG_ExplainCollectionResponse ::= sessionID destinationID requestID additionalInfo diagnostic

collectionID dataModel

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionalInfo ::= CharacterString

diagnostic ::= CharacterString

collectionID ::= CG_CollectionName

dataModel ::= CG_SchemaID

6.4.8.3 Pure OLEDB Processing

// Marshall the input parameters

sessionID == maps to the session handle “mySession”

destinationID == maps to the Data Source handle “myDataSource”

requestID == not used

additionalInfo == not used

attributeCategory == See extensions

collectionID == not yet used

// a local data item to hold schema data

Schemadata == an array of structure

Schema_name – character string

Table – character string

OpenGIS Catalog Interface Version 1.0152

Column_name – character string

Ordinal – integer

Data_type – code list (see OLEDB Programmer’s Reference Appendix A)

// Get the COLUMNS table from the schema Rowsets

mySession->QueryInterface

(

riid // IID_IDBSchemaRowset

(void **)&myISchemaRowset // pointer to Schema Rowset interface

)

myISchemaRowset->GetRowset

(

Iunknown * punkOuter // NULL

REFGUID rguidschema // DBSCHEM_COLUMNS

ULONG crestrictions // 0

Const VARIANT rgrestrictions[] // NULL

REFIID riid // IID_IRowSet

ULONG cpropertysets // 0

DBPROPSET rgpropertysets[] // NULL

Iunknown ** myRowSet // pointer to the schema Rowset

)

// get the column information for this Rowset

myRowSet->IColumnsInfo::GetColumnInfo

(

ULONG * pcColumns // number of columns returned

DBCOLUMNINFO * prgInfo // array of column information

OLECHAR ** ppStringsBuffer // string data pointed to by prgInfo elements

)

// create an Accessor collecting the schema name, table, column name, ordinal and data type

// Table == TABLE_NAME

// Schema_name == TABLE_SCHEMA

// Column_name = COLUMN_NAME

// Data_type == DATA_TYPE

OpenGIS Catalog Interface Version 1.0153

// Ordinal == ORDINAL_POSITION

myRowSet->QueryInterface

(

riid // IID_Iaccessor

&myIAccessor // pointer to the Accessor interface

)

myIAccessor->CreateAccesor

(

DBACCESSORFLAGS flags //DBACCESSOR_ROWDATA

ULONG pcBindings // number of entries in prBindings

Const DBBINDING prBindings[] // an array of DBBINDING structures, one for each attribute

ULONG rowsize // not used

HACCESSOR * myAccessor // returned handle of the Accessor

DBBINDSTATUS rgstatus[] // An array of status values, one for each rbindings entry

)

// get the data from each COLUMNS Rowset

myRowSet->GetNextRows

(

HCHAPTER chapter // DB_NULL_HCHAPTER

LONG cursor // 0

LONG iteratorSize // number of rows that rowbuffer can hold

ULONG * rowsreceived // number of rows actually returned

HROW ** rowbuffer // memory containing the row data

)

myRowset->GetData

(

HROW rowbuffer // memory containing the row data

HACCESSOR myAccessor // the data Accessor object

Void * Schemadata // temporary storage for schema data

)

// Marshall the output parameters

sessionID == mapped from mySession

OpenGIS Catalog Interface Version 1.0154

destinationID == mapped from myDataSource

requestID == mapped from myRowSet
additionalInfo == NULL

diagnostic == NULL unless an error occurred

collectionID == copy from schemadata.table

dataModel == composed of

schemaName == copy from schemadata.schema_name

schema == composed of

key == copy from schemadata.column_name

type == map from schemadata.data_type

6.4.8.4 Relevant OLEDB Properties

DBPROP_COL_DEFAULT – (column) VARIANT specifying the default value for the column

DBPROP_COL_DESCRIPTION – (column) Human readable description of the column

6.4.8.5 OGC OLEDB Extensions

AttributeCategory Parameter: This parameter is not supported by the pure OLEDB environment. To
support this parameter, the parameter ATTRIBUTECATEGORY will be added to the property set
supported by the GetRowset interface.

OpenGIS Catalog Interface Version 1.0155

7. WWW Profile

7.1 Architecture

The WWW Profile uses a message-based client server architecture. The profile maps each of the general
model operations to a corresponding service specified in the ANSI/NISO Z39.50 Application Service
Definition and Protocol Specification [ISO 23950] [http://lcweb.loc.gov/z3950/agency/document.html]. For
conformance, clients and servers must support Z39.50 Version 3.

The WWW Profile specifies the use of the following transport mechanisms:

• HyperText Transport Protocol (HTTP) where services are encoded in XML using the XML Encoding
Rules (XER) [http://asf.gils.net/xer].

• Directly over TCP where services are encoded using the Basic Encoding Rules (BER) [ISO 8825].

7.1.1 Supported Services

Each operation specified in this profile corresponds to a Z39.50 Service, and consists of a client request
message followed by a server response message. The Z39.50 Services used in this profile include the Init,
Search, Present, Resource Control, Trigger Resource Control, Sort, Extended Services and Close.

7.1.2 Transport (HTTP)

The client transmits request messages to the server and the server returns responses to the client over HTTP
version 1.0 or 1.1. A logical session is maintained between the client and server using state management as
specified in IETF RFC 2109: HTTP State Management Mechanism
[http://www.w3.org/Protocols/rfc2109/rfc2109], where the SessionID is maintained in a cookie named
“XERSessionId”.

Request messages are transmitted using the HTTP POST method. As other HTTP methods become widely
available, other HTTP methods may be used (such as the HTTP SEARCH method). The content of the
HTTP method contains the request message, and the content of the HTTP response contains the response
message. In both cases, the message content is encoded in XML and the Content-Type is application/x-
xer-z3950. Once the Content Type is registered, the Content Type will become application/xer-z3950.

7.1.3 Transport (TCP)

The client transmits request messages to the server and the server returns response messages to the client
directly over TCP as specified in IETF RFC 1729: Using the Z39.50 Information Retrieval Protocol in the
Internet Environment [ftp://ftp.ietf.org/rfc/rfc1729.txt], where all request and response messages are
encoded using BER.

7.2 Sequence Diagrams

Table 12 provides a mapping between general model operations and the WWW Profile services. The
WWW profile messages are defined in Section 7.4.

OpenGIS Catalog Interface Version 1.0156

Table 12 - General Model to WWW Profile Message Mapping

General Model Operation WWW Profile Service

CG_InitSessionRequest initRequest1

CG_InitSessionResponse InitResponse1

CG_TerminateRequest close2

CG_TerminateResponse close

CG_ExplainServerRequest searchRequest3, 4

CG_ExplainServerResponse searchResponse

CG_StatusRequest triggerResourceControlRequest

CG_StatusResponse resourceControlRequest

CG_CancelRequest triggerResourceControlRequest

CG_CancelResponse none5

CG_QueryRequest searchRequest3,6 and sortRequest

CG_QueryResponse searchResponse and sortResponse

CG_PresentRequest presentRequest

CG_PresentResponse presentResponse

CG_ExplainCollectionRequest searchRequest7

CG_ExplainCollectionResponse searchResponse7

CG_BrokeredAccessRequest extendedServicesRequest8

CG_BrokeredAccessResponse extendedServicesResponse8

1 The following init Options are used in this profile: search, present, sort, extended-services, trigger-
resource-control, named result sets, and resource-control.
2 Although Z39.50 permits both the client and server to initiate a Close request, for conformance with the
general model, only the client is permitted to initiate a Close request. In practice, a server may terminate a
session after a reasonable amount of idle client activity.
3 Note that the CG_ResultType values of results and hits are supported in this profile. The CG_ResultType
values of result set ID and validate are unsupported.
4 The CG_ExplainServerRequest is implemented using a searchRequest on the Explain Database with
ExplainCategory = TargetInfo and DatabaseInfo.
5 For HTTP transport, a message with no content is returned.
6 The CG_CatalogEntryType and CG_QueryScope parameters in the CG_QueryRequest are implemented
in the WWW Profile as external elements of the SearchRequest. The externals are defined in Section 7.5.1.
7 The CG_ExplainCollectionRequest is implemented using a searchRequest on the Explain Database with
ExplainCategory = TargetInfo and RetrievalRecordDetails.
8 Brokered Access is implemented in the WWW Profile using the Order Extended Service defined in
Section 7.5.2. The Order Extended Service uses the Z39.50 Extended Service mechanism.

7.3 Example Sequence Diagram

The following sequence diagram illustrates a typical set of transactions that may occur between a client and
server, and between the server and its interface to an external catalog system. The client sends an

OpenGIS Catalog Interface Version 1.0157

initRequest message to the server, the external system processes the initRequest message by initializing a
session with the client and the server returns an initResponse message to the client. This interaction
establishes a session in which all subsequent interactions occur.

Figure 27 - WWW Profile Sequence Diagram

Next the client constructs a query and sends the query in the searchRequest message to the server. The
server runs the search on the external catalog system, and returns the requested results in the
searchResponse message. If the search was successful, a virtual result set is created and the client may
request records from the result set using the presentRequest message. In the presentRequest, the client may
request any contiguous set of records from the result set (e.g., records 10 through 20). The server returns
the records to the client in the presentResponse message. The client may continue to perform additional
searches and record retrievals, or may close the session with the server by sending a close message.
Optionally, the server may respond with a close message.

initResponse

initRequest

Client Server External System

searchResponse

searchRequest

presentResponse

presentRequest

close

close

Initialize
session

Perform
search

Obtain
records

Close
session

OpenGIS Catalog Interface Version 1.0158

7.4 Interface Definition – XML

For HTTP transport the XML messages are defined by the XML encoding rules. The specification for the
XML encoding rules can be found at http://asf.gils.net/xer . This specification derives the encoding of the
Application Protocol Data Units (APDUs) from the ASN.1 specification of Z39.50 available from
http://lcweb.loc.gov/z39.50/agency/document.html .

For information a DTD for Z39.50 encoded using XER is given below.

<!-- The ISO23950 namespace is the specification in ASN.1
 maintained at "http://lcweb.loc.gov/z3950/agency/asn1.html" -->

<!ELEMENT Search (
 initRequest |
 initResponse |
 searchRequest |
 searchResponse |
 presentRequest |
 presentResponse |
 resourceControlRequest |
 resourceControlResponse |
 sortRequest |
 sortResponse |
 extendedServicesRequest |
 extendedServicesResponse |
 close
)>

<!-- Initialization service definitions -->
<!ELEMENT initRequest (
 referenceId?,
 protocolVersion,
 options,
 preferredMessageSize,
 exceptionalRecordSize,
 idAuthentication?,
 implementationId?,
 implementationName?,
 implementationVersion?,
 userInformationField?,
 otherInfo?
)>
<!ELEMENT initResponse (
 referenceId?,
 protocolVersion,
 options,
 preferredMessageSize,
 exceptionalRecordSize,
 result,
 implementationId?,
 implementationName?,
 implementationVersion?,
 userInformationField?,
 otherInfo?
)>

<!-- Search service definitions -->
<!ELEMENT searchRequest (
 referenceId?,
 smallSetUpperBound,
 largeSetLowerBound,

OpenGIS Catalog Interface Version 1.0159

 mediumSetPresentNumber,
 replaceIndicator,
 resultSetName,
 databaseNames,
 smallSetElementSetNames?,
 mediumSetElementSetNames?,
 preferredRecordSyntax?,
 query,
 additionalSearchInfo?,
 otherInfo?
)>
<!ELEMENT searchResponse (
 referenceId?,
 resultCount,
 numberOfRecordsReturned,
 nextResultSetPosition,
 searchStatus,
 resultSetStatus?,
 presentStatus?,
 records?,
 additionalSearchInfo?,
 otherInfo?
)>

<!-- Present service definitions -->
<!ELEMENT presentRequest (
 referenceId?,
 resultSetId,
 resultSetStartPoint,
 numberOfRecordsRequested,
 recordComposition?,
 preferredRecordSyntax?,
 otherInfo?
)>
<!ELEMENT presentResponse (
 referenceId?,
 numberOfRecordsReturned,
 nextResultSetPosition,
 presentStatus,
 records?,
 otherInfo?
)>

<!-- Resource control service definition -->
<!ELEMENT resourceControlRequest (
 referenceId?,
 suspendedFlag?,
 resourceReport?,
 partialResultsAvailable?,
 responseRequired,
 triggeredRequestFlag?,
 otherInfo?
)>
<!ELEMENT resourceControlResponse (
 referenceId?,
 continueFlag,
 resultSetWanted?,
 otherInfo?
)>

<!-- Close service definition -->
<!ELEMENT close (
 referenceId?,

OpenGIS Catalog Interface Version 1.0160

 closeReason,
 diagnosticInformation?,
 resourceReportFormat?,
 resourceReport?,
 otherInfo?
)>

<!-- Sort service definition -->
<!ELEMENT sortRequest (
 referenceId?,
 inputResultSetNames,
 sortedResultSetName,
 sortSequence,
 otherInfo?
)>
<!ELEMENT sortResponse (
 referenceId?,
 sortStatus,
 resultSetStatus?,
 diagnostics?,
 otherInfo?
)>

<!-- extendedServices service definition -->
<!ELEMENT extendedServicesRequest (
 referenceId?,
 function,
 packageType,
 packageName?,
 userId?,
 retentionTime?,
 permissions?,
 description?,
 taskSpecificParameters?,
 waitAction,
 elements?,
 otherInfo?
)>

<!ELEMENT extendedServicesResponse (
 referenceId?,
 operationStatus,
 diagnostics?,
 taskPackage?,
 otherInfo?
)>

<!-- Auxiliary initialization service definitions -->
<!ELEMENT protocolVersion (#PCDATA)> <!-- values: version-1 version-2
 version-3 -->
<!ELEMENT options (#PCDATA)> <!-- values: search present delSet
 triggerResourceCtrl resourceCtrl sort
 extendedServices namedResultSets -->
<!ELEMENT preferredMessageSize (#PCDATA)> <!-- integer -->
<!ELEMENT exceptionalRecordSize (#PCDATA)> <!-- integer -->
<!ELEMENT result (#PCDATA)> <!-- values: true | false -->
<!ELEMENT implementationId (#PCDATA)> <!-- general string -->
<!ELEMENT implementationName (#PCDATA)> <!-- general string -->
<!ELEMENT implementationVersion (#PCDATA)> <!-- general string -->
<!ELEMENT userInformationField (External)>

<!-- Auxiliary search service definitions -->

OpenGIS Catalog Interface Version 1.0161

<!ELEMENT smallSetUpperBound (#PCDATA)> <!-- integer -->
<!ELEMENT largeSetLowerBound (#PCDATA)> <!-- integer -->
<!ELEMENT mediumSetPresentNumber (#PCDATA)> <!-- integer -->
<!ELEMENT replaceIndicator (#PCDATA)> <!-- values: true | false -->
<!ELEMENT resultSetName (#PCDATA)> <!-- general string -->
<!ELEMENT smallSetElementSetNames (genericElementSetName | databaseSpecific)>
<!ELEMENT mediumSetElementSetNames (genericElementSetName | databaseSpecific)>
<!ELEMENT preferredRecordSyntax (#PCDATA)> <!-- object identifier -->
<!ELEMENT additionalSearchInfo (#PCDATA)> <!-- subelement omitted -->
<!ELEMENT resultCount (#PCDATA)> <!-- integer -->
<!ELEMENT searchStatus (#PCDATA)> <!-- values: true | false -->

<!-- Query definition -->
<!ELEMENT query (type-0 | type-1 | type-2 | type-100 | type-101 | type-102)>
<!ELEMENT type-0 (#PCDATA)> <!-- any -->
<!ELEMENT type-1 (attributeSet, rpn)> <!-- RPN query -->
<!ELEMENT type-2 (#PCDATA)> <!-- octet string -->
<!ELEMENT type-100 (#PCDATA)> <!-- octet string -->
<!ELEMENT type-101 (attributeSet, rpn)> <!-- RPN query -->
<!ELEMENT type-102 (#PCDATA)> <!-- octet string -->

<!-- Query operand definitions -->
<!ELEMENT rpn (op | rpnRpnOp)> <!-- op is Operator -->
<!ELEMENT rpn1 (op | rpnRpnOp)> <!-- op is Operator -->
<!ELEMENT rpn2 (op | rpnRpnOp)> <!-- op is Operator -->
<!ELEMENT rpnRpnOp (rpn1,
 rpn2,
 op)> <!-- op is Operand -->
<!ELEMENT op (
 (attrTerm | resultSet | resultAttr) |
 (and | or | and-not)
)> <!-- op is Operand & Operator -->
<!ELEMENT attrTerm (attributes, term)> <!-- AttributesPlusTerm -->
<!ELEMENT resultSet (#PCDATA)> <!-- general string -->
<!ELEMENT resultAttr (#PCDATA)> <!-- subelements omitted -->
<!ELEMENT numeric (#PCDATA)> <!-- integer -->
<!ELEMENT string (#PCDATA)> <!-- general string -->
<!ELEMENT general (#PCDATA)> <!-- octet string -->
<!ELEMENT complex (#PCDATA)> <!-- subelements omitted -->

<!-- Query operator definitions -->
<!ELEMENT and EMPTY> <!-- null -->
<!ELEMENT or EMPTY> <!-- null -->
<!ELEMENT and-not EMPTY> <!-- null -->

<!-- Auxiliary present service definitions -->
<!ELEMENT resultSetStartPoint (#PCDATA)> <!-- integer -->
<!ELEMENT numberOfRecordsRequested (#PCDATA)> <!-- integer -->
<!ELEMENT recordComposition (simple)> <!-- complex omitted -->
<!ELEMENT simple (genericElementSetName | databaseSpecific)>

<!-- Auxiliary search and present service definitions -->
<!ELEMENT numberOfRecordsReturned (#PCDATA)> <!-- integer -->
<!ELEMENT nextResultSetPosition (#PCDATA)> <!-- integer -->
<!ELEMENT presentStatus (#PCDATA)> <!-- values: success |
 partial-1 | partial-2 |
 partial-3 | partial-4 |
 failure -->

<!-- Record and diagnostic definitions -->
<!ELEMENT records (
 responseRecords |
 nonSurrogateDiagnostic |

OpenGIS Catalog Interface Version 1.0162

 mutipleNonSurDiagnostics
)>
<!ELEMENT responseRecords (Item*)> <!-- sequence of NamePlusRecord -->
<!ELEMENT name (#PCDATA)> <!-- general string -->
<!ELEMENT record (retrievalRecord | surrogateDiagnostic)>
<!ELEMENT retrievalRecord (External)>
<!ELEMENT surrogateDiagnostic (defaultFormat | externallyDefined)>
<!ELEMENT nonSurrogateDiagnostic (diagnosticSetId | condition | addinfo)>
<!ELEMENT mutipleNonSurDiagnostics (Item*)>

<!-- Auxiliary resource control definitions -->
<!ELEMENT suspendedFlag (#PCDATA)> <!-- values: true | false -->
<!ELEMENT partialResultsAvailable (#PCDATA)> <!-- values: subset | interim
 | none -->
<!ELEMENT responseRequired (#PCDATA)> <!-- values: true | false -->
<!ELEMENT triggeredRequestFlag (#PCDATA)> <!-- values: true | false -->
<!ELEMENT continueFlag (#PCDATA)> <!-- values: true | false -->
<!ELEMENT resultSetWanted (#PCDATA)> <!-- values: true | false -->

<!-- Auxiliary close service definitions -->
<!ELEMENT closeReason (#PCDATA)> <!-- values: finished | shutdown |
 systemProblem | costLimit |
 resources | securityViolation |
 protocolError | lackOfActivity|
 peerAbort | unspecified -->
<!ELEMENT diagnosticInformation (#PCDATA)> <!-- general string -->
<!ELEMENT resourceReportFormat (#PCDATA)> <!-- object identifier -->

<!-- Auxiliary sort definitions -->
<!ELEMENT inputResultSetNames (Item*)> <!-- sequence of general string -->
<!ELEMENT sortedResultSetName (#PCDATA)> <!-- general string -->
<!ELEMENT sortSequence (Item*)> <!-- SeqOf SortRequ.sortSeq -->
<!ELEMENT sortElement (generic | databaseSpecific)>
<!ELEMENT sortRelation (#PCDATA)> <!-- values: ascending | descending
 ascendingByFrequency |
 descendingByFrequency -->
<!ELEMENT caseSensitivity (#PCDATA)> <!-- values: caseSensitive |
 caseInsensitive -->
<!ELEMENT missingValueAction ((abort | null), missingValueData)>
<!ELEMENT abort EMPTY> <!-- null -->
<!ELEMENT null EMPTY> <!-- null -->
<!ELEMENT missingValueData (#PCDATA)> <!-- octet string -->
<!ELEMENT generic (sortfield | elementSpec | sortAttributes)>
<!ELEMENT databaseName (#PCDATA)> <!-- general string -->
<!ELEMENT dbSort (sortfield | elementSpec | sortAttributes)>
<!ELEMENT sortfield (#PCDATA)> <!-- general string -->
<!ELEMENT elementSpec (
 (schema?, elementSpec?) |
 (elementSetName | externalSpec)
)> <!-- SortKey, Specification -->
<!ELEMENT schema (#PCDATA)> <!-- object identifier -->
<!ELEMENT elementSetName (#PCDATA)> <!-- general string -->
<!ELEMENT externalSpec (External)>
<!ELEMENT sortAttributes (id, list)>
<!ELEMENT id (#PCDATA)> <!-- object identifier -->
<!ELEMENT list (Item*)> <!-- SeqOf AttributeElement -->
<!ELEMENT sortStatus (#PCDATA)> <!-- values: success | partial-1 |
 failure -->

<!-- Auxiliary extendedServices definitions -->
<!ELEMENT function (#PCDATA)> <!-- values: create | delete |
 modify -->

OpenGIS Catalog Interface Version 1.0163

<!ELEMENT packageType (#PCDATA)> <!-- object identifier -->
<!ELEMENT packageName (#PCDATA)> <!-- general string -->
<!ELEMENT retentionTime (value | unitUsed)>
<!ELEMENT permissions (Item*)>
<!ELEMENT allowableFunctions (Item*)> <!-- values: delete |
 modifyContents |
 modifyPermissions | present |
 invoke -->
<!ELEMENT description (#PCDATA)>
<!ELEMENT taskSpecificParameters (External)>
<!ELEMENT waitAction (#PCDATA)> <!-- values: wait | waitIfPossible|
 dontWait | dontReturnPackage -->
<!ELEMENT elements (#PCDATA)> <!-- general string -->
<!ELEMENT operationStatus (#PCDATA)> <!-- values: done | accepted |
 failure -->
<!ELEMENT taskPackage (External)>

<!ELEMENT referenceId (#PCDATA)> <!-- octet string -->
<!ELEMENT resultSetId (#PCDATA)> <!-- general string -->
<!ELEMENT diagnostics (Item*)> <!-- sequence of DiagRec -->
<!ELEMENT databaseNames (Item*)>
<!ELEMENT otherInfo (#PCDATA)> <!-- subelement omitted -->
<!ELEMENT resourceReport (External)>
<!ELEMENT resultSetStatus (#PCDATA)> <!-- values: empty | subset |
 interim | unchanged | none -->

<!-- Definition of additional components -->

<!-- Authentication (initRequest) -->
<!ELEMENT idAuthentication (open | idPass | anonymous | other)>
<!ELEMENT open (#PCDATA)> <!-- visible string -->
<!ELEMENT idPass (groupId?, userId?, password?)>
<!ELEMENT groupId (#PCDATA)> <!-- general string -->
<!ELEMENT userId (#PCDATA)> <!-- general string -->
<!ELEMENT password (#PCDATA)> <!-- general string -->
<!ELEMENT anonymous EMPTY> <!-- null -->
<!ELEMENT other (External)>

<!-- AttributesPlusTerm -->
<!ELEMENT attributes (Item*)> <!-- SeqOf AttributeElement -->
<!ELEMENT term (#PCDATA)> <!-- data types omitted -->

<!-- AttributeElement -->
<!ELEMENT attributeSet (#PCDATA)> <!-- object identifier -->
<!ELEMENT attributeType (#PCDATA)> <!-- integer -->
<!ELEMENT attributeValue (numeric | complex)>

<!-- ElementSetNames -->
<!ELEMENT genericElementSetName (#PCDATA)> <!-- general string -->
<!ELEMENT databaseSpecific (Item*)> <!-- sequence of (dbName, esn) -->
<!ELEMENT dbName (#PCDATA)> <!-- general string -->
<!ELEMENT esn (#PCDATA)> <!-- general string -->

<!-- DiagRec -->
<!ELEMENT defaultFormat (diagnosticSetId | condition | addinfo)>
<!ELEMENT diagnosticSetId (#PCDATA)> <!-- object identifier -->
<!ELEMENT condition (#PCDATA)> <!-- integer -->
<!ELEMENT addinfo (v2AddInfo | v3AddInfo)>
<!ELEMENT v2AddInfo (#PCDATA)> <!-- visible string -->
<!ELEMENT v3AddInfo (#PCDATA)> <!-- general string -->
<!ELEMENT externallyDefined (External)>

<!-- IntUnit -->

OpenGIS Catalog Interface Version 1.0164

<!ELEMENT value (#PCDATA)> <!-- integer -->
<!ELEMENT unitUsed (unitSystem | unitType | unit | scaleFactor)>
<!ELEMENT unitSystem (#PCDATA)> <!-- general string -->
<!ELEMENT unitType (string | numeric)>
<!ELEMENT unit (string | numeric)>
<!ELEMENT scaleFactor (#PCDATA)> <!-- integer -->

<!-- Elements added by the XER specification -->
<!-- the Item tag is used for many things:
AttributesPlusTerm (attributes, term)
AttributeList (attributeSet?, attributeType,
 attributeValue)
Records.responseRecords (name, record)
DiagRec (defaultFormat | externallyDefined)
SortRequest.sortSequence (sortElement, sortRelation,
 caseSensitivity, missingValueAction?)
SortElement.databaseSpecific (databaseName, dbSort)
ElemenSetnames.databaseSpecific (dbName, esn)
Permissions (userId, allowableFunctions)>
InternationalString (#PCDATA)
-->
<!ELEMENT Item (#PCDATA)>

<!-- Global auxiliary definitions -->
<!ELEMENT External (direct-reference, encoding)>
<!ELEMENT direct-reference (#PCDATA)>
<!ELEMENT encoding (single-ASN1-type | octet-aligned)>
<!ELEMENT single-ASN1-type (#PCDATA)>
<!ELEMENT octet-aligned (#PCDATA)>

OpenGIS Catalog Interface Version 1.0165

7.5 Definition of Externals

7.5.1 Additional Search Info

This section contains the parameters used in the "otherInfo" part of a Z39.50 searchRequest in order to
implement the CG_CatalogEntryType and CG_QueryScope parameters in the CG_QueryRequest of the
General Model.

"otherInfo" in a SearchRequest may be used by the origin to specify the scope of a search, i. e. whether the
search domain is wide or restricted to a local search. This is achieved using the SearchControl EXTERNAL
in otherInfo. SearchControl is defined below using ASN.1 notation. If otherInfo is not provided, the type
of item descriptors to be searched shall be derived from the query definition and/ or the content of the
collection and the default scope of a local search shall be assumed.

The Search Control structure contains two items: itemDescriptorType which maps to
CG_CatalogEntryType and searchScope which maps to CG_QueryScope. The CIP-Release-B-APDU
{Z39.50-CIP-B-APDU 1} defines the following items:

SearchControl ::= SEQUENCE
 {
 itemDescriptorType [1] IMPLICIT INTEGER
 {
 collectionDescriptorSearch (1),
 productDescriptorSearch (3),
 serviceDescriptorSearch (4),
 catalogDescriptorSearch (5)
 }
 searchScope [2] IMPLICIT INTEGER
 {
 localSearch (1),
 wideSearch (2)
 }
 }

For further information, see Section 3.5.2.5 and Appendix E. 6.1. of Catalogue Interoperability Protocol
(CIP) Specification - Release B, CEOS/WGISS/PTT/CIP-B, June 1998, Issue 2.4, Committee on Earth
Observation Satellites (CEOS) (ftp://harp.gsfc.nasa.gov/incoming/fed/cip_spec24.pdf)

7.5.2 Order Extended Service

 The Order Extended Service, which is a custom Z39.50 Extended Service, allows an origin to order
products previously queried. The Order ES is presented in Table 13.

 Further information describing the Order Extended Service can be found in Catalogue Interoperability
Protocol (CIP) Specification - Release B, CEOS/WGISS/PTT/CIP-B, June 1998, Issue 2.4, Committee on
Earth Observation Satellites (CEOS) (ftp://harp.gsfc.nasa.gov/incoming/fed/cip_spec24.pdf)

OpenGIS Catalog Interface Version 1.0166

Table 13 - Order Extended Service

 ASN.1 Definition Meaning
{Z39.50-CIP-Order-ES} DEFINITIONS ::=
BEGIN
IMPORTS OtherInformation, InternationalString, IntUnit
 FROM Z39.50-APDU-1995;

CIPOrder ::= CHOICE
{
esRequest [1] IMPLICIT SEQUENCE{

toKeep [1] OriginPartToKeep,
notToKeep [2] OriginPartNotToKeep},

taskPackage [2] IMPLICIT SEQUENCE{
originPart [1] OriginPartToKeep,
targetPart [2] TargetPart}

}

 The Order Extended Serivce uses the Z39.50 Extended Servi ce Facility.

OriginPartToKeep ::= SEQUENCE
{
action [1] IMPLICIT INTEGER {

orderEstimate (1),
orderQuoteAndSubmit (2),
orderMonitor (3),
orderCancel (4)},

orderId [2] InternationalString OPTIONAL,
orderSpecification [3] OrderSpecification OPTIONAL,
statusUpdateOption [4] StatusUpdateOption OPTIONAL,
userInformation [5] UserInformation OPTIONAL,
otherInfo [6] OtherInformation OPTIONAL
}

 The OriginPartToKeep contains the following:

• action, which indicates the type of operation that is requested to be
performed for the order request. The supported operations are the
following:

• orderEstimate, which is used to validate and obtain the estimate of
an order specification.

• orderQuoteAndSubmit, which is used to quote4 and submit an
order specification.

• orderMonitor, which is used to monitor the progress of the
processing of an order request.

• orderCancel, which is used to cancel an order request.

4 The estimate for an order is approximate and non-binding, whereas the quote for an order is precise and binding.

OpenGIS Catalog Interface Version 1.0167

 ASN.1 Definition Meaning

• orderId, which is the identifier of the order request as provided as input
by the origin.

• orderSpecification, which is the specification of the order request as
provided as input by the origin.
Note that, in principle, the order request specified by the origin is
unstructured, i.e. it contains a list of item descriptor identifiers and the
order options related to them, but does not attempt to group them into
packages and delivery units.

• statusUpdateOption, which indicates how the origin wishes to be kept
up to date as to the status of the order processing.

• userInformation, which contains the personal user information as
provided as input by the origin.

• otherInformation, which contains additional information not specified
by the CIP.

OriginPartNotToKeep ::= SEQUENCE
{
orderId [1] InternationalString OPTIONAL,
orderSpecification [2] OrderSpecification OPTIONAL,
userInformation [3] UserInformation OPTIONAL,
otherInfo [4] OtherInformation OPTIONAL
}

 The OriginPartNotToKeep5 contains the following:

• orderId, which is the identifier of the order request.

• orderSpecification, which is the specification of the order request.

• userInformation, which contains the personal user information.

• otherInformation, which contains additional information not specified
by the CIP.

 5 The definitions used in OriginPartNotToKeep are strictly identical to the ones provided in OriginPartToKeep. The former is used as input by the target (which
may overwrite some values as appropriate) for the definition of TargetPart, whereas the latter remains unmodified and is stored in the task package. This
duplication therefore allows the comparison of the order as specified by the origin (OriginPartToKeep) with the order as returned by the target (TargetPart).

OpenGIS Catalog Interface Version 1.0168

 ASN.1 Definition Meaning
TargetPart ::= SEQUENCE

{
orderId [1] InternationalString,
orderSpecification [2] OrderSpecification OPTIONAL,
orderStatusInfo [3] OrderStatusInfo OPTIONAL,
userInformation [4] UserInformation OPTIONAL,
otherInfo [5] OtherInformation OPTIONAL
}

 The TargetPart contains the following:

• orderId, which is the identifier of the order request as provided as
output by the target.

• orderSpecification, which is the specification of the order request as
provided as output by the target. This order specification provided by
the target overrides the specification provided as input by the origin in
originPartNotToKeep. It contains the item descriptors and order
options supplied as input, with any necessary modifications or
additions, in a structured manner, i.e. the item descriptors are grouped
into packages and delivery units.

• orderStatusInfo, which indicates the status of the order request being
performed6.

• userInformation, which contains the personal user information.

• otherInfo, which contains additional information not specified by the
CIP

StatusUpdateOption ::= CHOICE
{
manual [1] NULL,
automatic [2] IMPLICIT INTEGER {

eMail (1)}
}

 The StatusUpdateOption provides options for how the user will receive
updates on the status of an extended service request. The parameters are:

• manual the user performs the status request.

• automatic where the OHS filing the order provides status updates for
the user via email7.

6 Note the difference between the operationStatus, which is provided in the ES Response, and the orderStatusInfo, which is included in the task package.
operationStatus provides status information for the ES operation as a whole and indicates whether the ES operation has been performed successfully or not by
the target. orderStatusInfo provides status information for the order specified in the task package and indicates the state of the order or the process being
performed for an order at the LOHS.
7 This could be expanded in the future to include, for example, automatic update via the origin.

OpenGIS Catalog Interface Version 1.0169

 ASN.1 Definition Meaning
UserInformation ::= SEQUENCE

{
userId [1] InternationalString,
userName [2] InternationalString OPTIONAL,
userAddress [3] PostalAddress OPTIONAL,
telNumber [4] InternationalString OPTIONAL,
faxNumber [5] InternationalString OPTIONAL,
emailAddress [6] InternationalString OPTIONAL,
networkAddress [7] InternationalString OPTIONAL,
billing [8] Billing OPTIONAL
}

The Userinformation structure is presented by the origin part of a request to a
target. The information provided contains mandatory fields (the user identifier)
and optional fields. The target will allow the Userinformation structure
contents to be used as an input to the delivery specification for elements which
can be altered by the user. The target will refer to the local database contents
for the user and will use the contents of the database, or the Userinformation
structure depending on the privilege of the user to offer alternative information.
The UserInformation structure consists of the following attributes:

• userId the user identifier, the identifier which the user provides as part
of an InitializeRequest.

• userName the full name of the user.

• userAddress a structure to hold the users address.

• telNumber the users telephone number.

• faxNumber the fax number for the user.

• emailAddress the electronic mail address for the user.

• networkAddress the network address to send files to electronically. For
Internet addresses, the address is written in URL format to allow
directories as well as domain’s to be specified.

• billing the method of payment (and hence of billing) available for the
user.

OrderSpecification ::= SEQUENCE
{
orderingCentreId [1] InternationalString,
orderPrice [2] PriceInfo OPTIONAL,
orderDeliveryDate [3] InternationalString OPTIONAL,
orderCancellationDate [4] InternationalString OPTIONAL,
deliveryUnits [5] SEQUENCE OF DeliveryUnitSpec,
otherInfo [6] OtherInformation OPTIONAL
}

 The OrderSpecification is the specification of the order request and contains
the following:

• orderingCentreId, which identifies the ordering centre at which the
order will be performed.

• orderPrice, which is the price for the whole order.

• orderDeliveryDate, which is the latest date at which the order can be
expected to be delivered to the user.

• orderCancellationDate, which is the latest date at which the user can
cancel the order.

• deliveryUnits, which contains the definition of the delivery units which
compose the order.

• otherInfo, which may be used to provide additional information not
specified by the CIP.

OpenGIS Catalog Interface Version 1.0170

 ASN.1 Definition Meaning
DeliveryUnitSpec ::= SEQUENCE

{
deliveryUnitId [1] InternationalString OPTIONAL,
deliveryUnitPrice [2] PriceInfo OPTIONAL,
deliveryMethod [3] DeliveryMethod OPTIONAL,
billing [4] Billing OPTIONAL,
packages [5] SEQUENCE OF PackageSpec,
otherInfo [6] OtherInformation OPTIONAL
}

 The DeliveryUnitSpec contains the specification of a single delivery unit (i.e.
part of an order that is delivered as a unit):

• deliveryUnitId, which is the identifier of the delivery unit.

• deliveryUnitPrice, which is the price of the delivery unit.

• deliveryMethod, which is the method with which the delivery unit is
delivered to the user.

• billing, which is the method with which the user is going to be billed.

• packages, which contains the definition of the packages which compose
the delivery unit.

• otherInfo, which may be used to provide additional information not
specified by the CIP.

DeliveryMethod ::= CHOICE
{
eMail [1] InternationalString,
ftp [2] FTPDelivery,
mail [3] PostalAddress,
otherInfo [4] OtherInformation
}

 The DeliveryMethod defines the method with which a delivery unit is
delivered to the user and is one of the following:

• eMail, which specifies the email address that the order will be delivered
to

• ftp, which specifies that the order will be delivered via ftp, the type of
transfer and the ftp address

• mail, which specifies that the order will be delivered via mail and
provides the postal address

• otherInfo, which may be used to provide additional information (such
as an alternative delivery method) not specified by the CIP.

OpenGIS Catalog Interface Version 1.0171

 ASN.1 Definition Meaning
FTPDelivery ::= SEQUENCE

{
transferDirection [1] IMPLICIT INTEGER

{
push (0),
pull (1)
},

ftpAddress [2] InternationalString
}

 The FTPMethod defines the method with which a delivery unit is delivered to
the user and is one of the following:

• transferDirection, which specifies that the order will be delivered via
e-mail.

• ftpAddress, which specifies that the order will be delivered via ftp.

Billing ::= SEQUENCE
{
paymentMethod [1] PaymentMethod,
customerReference [2] IMPLICIT CustomerReference,
customerPONumber [3] IMPLICIT InternationalString OPTIONAL
}

 The Billing structure8 contains attributes which describe the method by which
a user will pay for a service, together with supporting information regarding
the payment. The attributes are:

• paymentMethod indicates the method of payment used.

• customerReference is the customer provided reference for the order.

• customerPONumber is the purchase order provided by the customer
for the order.

PaymentMethod ::= CHOICE
{
billInvoice [0] IMPLICIT NULL,
prepay [1] IMPLICIT NULL,
depositAccount [2] IMPLICIT NULL,
privateKnown [3] IMPLICIT NULL,
privateNotKnown [4] IMPLICIT EXTERNAL},
}

 The PaymentMethod structure contains attributes which describe the method
by which a user will pay for a service. The attributes are:

• billInvoice indicates that an invoice is to be sent to the user (or payee).

• prepay indicates that payment has already been agreed/performed.

• depositAccount indicates that there is a deposit account for the
payment.

• privateKnown indicates that the payment method is private and known.

• privateNotKnown contain private unknown payment method
information.

CustomerReference ::= SEQUENCE
{
customerId [1] InternationalString,
accounts [2] SEQUENCE OF InternationalString
}

 The CustomerReference structure contains attributes which provide a
customer reference for the order. The attributes are:

• customerId indicates the customer identifier at the LOHS.

• accounts is the name of the account(s) available to apply charges to on
behalf of the user.

 8 The Billing structure used by the Order Extended Service is derived from the addlBilling structure defined in the Item Order ES.

OpenGIS Catalog Interface Version 1.0172

 ASN.1 Definition Meaning
PostalAddress ::= SEQUENCE

{
streetAddress [1] InternationalString,
city [2] InternationalString,
state [3] InternationalString,
postalCode [4] InternationalString,
country [5] InternationalString
}

 PostalAddress contains the postal address for a user and consists of:

• streetAddress, which is the street name and number.

• city, which is the name of the city (or nearest city).

• state, which is the name of the state or county.

• postalCode, which is the country specific postal code.

• country, which is the name of the country.
PackageSpec ::= SEQUENCE

{
packageId [1] InternationalString OPTIONAL,
packagePrice [2] PriceInfo OPTIONAL,
package [3] CHOICE

{
predefinedPackage [1] PredefinedPackage,
adHocPackage [2] AdHocPackage
},

packageMedium [4] InternationalString,
packageKByteSize [5] INTEGER,
otherInfo [6] OtherInformation OPTIONAL
}

 The PackageSpec contains the specification of a single package (i.e. part of an
order that is delivered on a single medium):

• packageId, which is the identifier of the package.

• packagePrice, which is the price of the package.

• package, which contains the specification of the package. The package
is one of the following:

• predefinedPackage, which is a package pre-defined by the data
provider.

• adHocPackage, which is a package constructed ad-hoc by the data
provider to fulfil the order request.

• packageMedium, which is the medium on which the package will be
delivered to the user.

• packageKByteSize, which contains the size of the package in
kilobytes.

• otherInfo, which may be used to provide additional information not
specified by the CIP.

PredefinedPackage ::= SEQUENCE
{
collectionId [1] InternationalString,
orderItems [2] SEQUENCE OF OrderItem,
otherInfo [3] OtherInformation OPTIONAL
}

 A PredefinedPackage contains the definition of a package that is pre-defined
by the data provider. A PredefinedPackage is a collection that is stored in
advance (i.e. not to fulfil a specific order) on a medium and is defined as
follows:

• collectionId, which is the identifier of the pre-packaged collection.
Must be formatted according to the naming convention for collection
identifiers specified in Appendix E.

• orderItems, which contains the list of the order items contained in the
package.

• otherInfo, which may be used to provide additional information not
specified by the CIP.

OpenGIS Catalog Interface Version 1.0173

 ASN.1 Definition Meaning
AdHocPackage ::= SEQUENCE OF OrderItem An AdHocPackage is a package that is defined ad-hoc by a data provider to

fulfil a specific order. An AdHocPackage contains the list of the order items
contained in the package.

OrderItem ::= SEQUENCE
{
productId [1] InternationalString,
productPrice [2] PriceInfo OPTIONAL,
productDeliveryOptions [3] ProductDeliveryOptions OPTIONAL,
processingOptions [5] ProcessingOptions OPTIONAL,
sceneSelectionOptions [6] SceneSelectionOptions OPTIONAL,
orderStatusInfo [7] OrderStatusInfo OPTIONAL,
otherInfo [8] OtherInformation OPTIONAL
}

 The OrderItem contains the specification of a single order item (i.e. the
product that is ordered and that is to be delivered):

• productId, which is the identifier of the ordered product.

• productPrice, which is the price of the product.

• productDeliveryOptions, which contains delivery options for the
product.

• processingOptions, which specifies the processing options that are to
be applied on the product before delivery.

• sceneSelectionOptions, which specifies the selection of the scene from
the whole product that is to be delivered.

• orderStatusInfo, which indicates the status of the order item9.

• otherInfo, which may be used to provide additional information not
specified by the CIP.

ProductDeliveryOptions ::= SEQUENCE
{
productByteSize [1] INTEGER OPTIONAL,
productFormat [2] InternationalString OPTIONAL,
productCompression [3] InternationalString OPTIONAL,
otherInfo [4] OtherInformation OPTIONAL
}

 The ProductDeliveryOptions contains the specification of the options
regarding the delivery of a product:

• productByteSize, which contains the size of the product in bytes.

• productFormat, which specifies the format of the product.

• productCompression, which specifies the compression mechanism
applied to the product.

• otherInfo, which may be used to provide additional information not
specified by the CIP.

ProcessingOptions ::= CHOICE
{
formattedProcessingOptions [1] EXTERNAL,
unformattedProcessingOptions [2] InternationalString
}

 The ProcessingOptions specifies the processing options that are to be applied
on the product before delivery and is one of the following:

• formattedProcessingOptions, which specifies the processing options
according to the format specified in [ORD].

• unformattedProcessingOptions, which specifies the processing
options in a free-text form.

9 Note the difference between the orderStatusInfo in TargetPart, which indicates the state, or the process being performed for, an order as a whole at the LOHS,
and the orderStatusInfo in OrderItem, which indicates the state, or the process being performed for, a specific order item within an order at the LOHS.

OpenGIS Catalog Interface Version 1.0174

 ASN.1 Definition Meaning
SceneSelectionOptions ::= CHOICE

{
formattedSceneSelectionOptions [1] EXTERNAL,
unformattedSceneSelectionOptions [2] InternationalString
}

 The SceneSelectionOptions specifies the selection of the scene from the whole
product that is to be delivered and is one of the following:

• formattedSceneSelectionOptions, which specifies the scene selection
options according to the format specified in [ORD].

• unformattedSceneSelectionOptions, which specifies the scene
selection options in a free-text form.

PriceInfo ::= SEQUENCE
{
price [1] IntUnit,
priceExpirationDate [2] InternationalString,
additionalPriceInfo [3] InternationalString OPTIONAL
}

 The PriceInfo contains the information related to the price of an item:

• price, which contains the price of the item.

• priceExpirationDate, which specifies the latest date at which the price
provided is valid (i.e. until the expiration date the origin is guaranteed
that the price will not vary. However, after the expiration date the price
may change).

• additionalPriceInfo, which may be used to provide a textual
explanation when the price of a item differs from the sum of the
elements which compose this item (e.g. it can be used to explain why
the price of a delivery unit differs from the sum of the prices of the
packages which compose the delivery unit).

OrderStatusInfo ::= SEQUENCE
{
orderState [1] CHOICE

{
staticState [1] StaticState,
dynamicState [2] DynamicState
},

additionalStatusInfo [2] InternationalString OPTIONAL
}

 OrderStatusInfo describes the status of an extended service order request. The
different status values are:

• orderState indicates the state of the order request or the processing
being performed for the order:

• staticState indicates the state of the order when no order request is
being performed.

• dynamicState indicates the processing that is currently performed
for an order request.

• additionalStatusInfo contains additional status information provided
by the LOHS (e.g. to clarify the meaning of the orderState).

StaticState ::= [1] IMPLICIT INTEGER
{
orderNotValid (1),
orderEstimated (2),
orderCompleted (3)
}

 StaticState describes the state of an order when no order request is active. The
possible states are:

• orderNotValid indicates that the order has not been successfully
validated.

• orderEstimated indicates that the order has been successfully validated
and that an estimate is provided.

• orderCompleted indicates that the order has been completed.

OpenGIS Catalog Interface Version 1.0175

 ASN.1 Definition Meaning
DynamicState ::= [2] IMPLICIT INTEGER

{
orderBeingEstimated (4),
orderBeingQuoted (5),
orderBeingProcessed (6),
orderBeingCancelled (7),
orderBeingDeleted (8)
}

END

 DynamicState describes the state of an order when an order request is active
and thus being process. The possible states are:

• orderBeingEstimated the order is currently being estimated by the
target order handling system.

• orderBeingQuoted the order is currently being quoted by the target
order handling system.

• orderBeingProcessed the order is currently being processed by the
target order handling system.

• orderBeingCancelled the order request which was previously sent
to the target is being cancelled.

• orderBeingDeleted the order is being deleted.

OpenGIS Catalog Interface Version 1.0176

8. Proposed Additional OGC Basic Data Types

This is an informational annex.

8.1 AbsTime
A structure define an absolute time.

8.2 BinData

A "blob" of binary data

8.3 Cardinality

An enumeration that defines the possible values of cardinality.

8.3.1 Public Attributes:

one_to_one :

one_to_many :

many_to_one :

many_to_many :

8.4 DG_DirectedGraph

A Directed Graph structure. See Figure 28 - The DG_DirectedGraph for details of this structure.

Node

NodeType

+node_type

NodeID

+id

Edge

+start_node

+end_node

NodeList

DG_DirectedGraph

+nodes

EdgeList

+edges

Figure 28 - The DG_DirectedGraph

OpenGIS Catalog Interface Version 1.0177

8.5 DG_DirectedGraphList

A sequence of Directed Graphs

8.6 Date

A structure describing a single date with month and year.

8.6.1 Public Attributes:

year : unsigned short
The year stated as a 4 digit number.

month : unsigned short
The month stated as an unsigned short whose valid range is 1-12, where 1=January and
12=December.

day : unsigned short
The day of the month.

8.7 Edge

8.7.1 Public Attributes:

relationship_type : string
Defines the type of relationship if any between two Nodes of a DG_DirectedGraph.

8.8 EdgeList

A sequence of Edges

8.9 FileLocation

This structure contains the location and access information for a file.

8.9.1 Public Attributes:

user_name : string
An identifier for a user that has access to this file.

password : string
A password associated with the user_name field

host_name : string
The host on which this file resides.

path_name : string
The complete path to the directory containing this file.

file_name : string
The name of the file.

8.10 FileLocationList

A sequence of FileLocation structures

8.11 Name

OpenGIS Catalog Interface Version 1.0178

A generic string identifier.

8.12 NameList

A sequence of generic identifiers.

8.13 NameValue

A structure that associates an identifier with a value.

8.13.1 Public Attributes:

theValue : any

theName : string

8.14 NameValueList

A sequence of Name Value pairs

8.15 NameValueTable

A 2D table where each cell is a Name Value structure.

8.16 Node

A Node of a DG_DirectedGraph.

8.16.1 Public Attributes:

attribute_name : string
The attribute being described.

value : any
The value of the attribute

8.17 NodeID

A numeric identifier for a Node in a DG_DirectedGraph

8.18 NodeList

A sequence of Nodes

8.19 NodeType

The type of node in a DG_DirectedGraph.

8.19.1 Public Attributes:

root_node :

entity_node :

record_node :

attribute_node :

