Open GIS Consortium, Inc.
OpenGIS® Simple Features Specification
For OLE/COM

Revision 1.1

OpenGIS Project Document 99-050
Release Date: May 18, 1999

WARNING: The Open GIS Consortium (OGC) releases this specification to the public without

warranty. It is subject to change without notice. This specification is currently under active revision
by the OGC Technical Committee.

Requests for clarification and/or revision can be made by contacting the OGC at
revisions@opengis.org.

Copyright 1997, 1998, 1999 Camber Corporation

Copyright 1997, 1998, 1999 Environmental Systems Research Institute
Copyright 1997, 1998, 1999 Intergraph Corporation

Copyright 1997, 1998, 1999 Laser-Scan, Ltd.

Copyright 1997, 1998, 1999 Maplnfo Corporation

Copyright 1997, 1998, 1999 Smallworldwide, plc.

The companies listed above have granted the Open GIS Consortium, Inc. (OGC) a nonexclusive, royalty-free, paid up, worldwide
license to copy and distribute this document and to modify this document and distribute copies of the modified version.

Each of the copyright holders list above has agreed that no person shall be deemed to have infringed the copyright, in the included
material of any such copyright holder by reason of having used the specification set forth herein or having conformed any computer
software to the specification.

NOTICE
The information contained in this document is subject to change without notice.

The material in this document details an Open GIS Consortium specification in accordance with the license and notices set forth on
this page. This document does not represent a commitment to implement any portion of this specification in any company’s products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OPEN GIS CONSORTIUM
AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. The Open GIS Consortium and the companies list above shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the furnishing, performance or use of this material.

The copyright holders list above acknowledge that the Open GIS Consortium (acting itself or through its designees) is and shall at all
times be the sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks,
trademarks, or other special designations to indicate compliance with these materials.

This document contains information, which is protected by copyright. All Rights Reserved. No part of this work covered by copyright
herein may be reproduced or used in any form or by any means—graphic, electronic, or mechanical, including photocopying,
recording, taping, or information storage and retrieval systems—without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in subdivision
(c)(2)(ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013

OpenGIS® is a trademark or registered trademark of Open GIS Consortium, Inc. in the United States and in other countries.

Table of Contents

0

L N 0 PP 0-1
0.1 SUBMITTING COMPANIES ... tttititiiittestteesireesteeesireesssessbaeessseesbseessaesstseesbaeestbeessaeestbeessneessbessnneensneas 0-1
0.2 SUBMISSION CONTACT POINTS .. .eiittiitieiieieesiesseesseesieesteesseassesseesseesseesseessessssssesssessseesseensesssesseenes 0-1
0.3 DOCUMENT CONVENTIONS. .. .vteitteetttestteestteesueeestssesseeestssassesassssesseesssssesssssssssassessssssesessssssensssssns 0-2
0.4 REVISION HISTORY ...ttt ittt ettt sttt ettt e bt et et e e b e et eebe e et e e nbe e e beeennne e e 0-2
0.5 EDITORIAL NOTES ..oiiiiiiiiii ittt bbb bbb 0-2

OVERVIEW ...ttt ettt et s b e e st e et e e at e e bt e et e e beebeesbesteesteesaeesaeenbeenns 1-1

ARCHITECTUREoo ottt ettt e be et e et a e s te e s be e sbeesbeeabeeatesatesbeesbeesbestbesreens 2-1
2.1 [y 7N o= SR 2-1

211 OLE DB OVEIVIEWecuviciiectieete ettt ettt te e s te e ste et e sab e sae e sbeesbeesbaesbestaestaesbeesteesreenneennas 2-1

2.1.2 (D= -l 01V o [T USSR 2-2

2.1.2.1 Data ProVIdEr OVEIVIBW.ccueuiiiiieiieeiirieieisteest ettt ettt ettt sttt b bbb nnebe e 2-2
2.1.2.2 Requirements fOr Data PrOVIOEISccviiveiiieiiiiesiei ettt sttt enas 2-4

2.1.3 Data ConsUMErS (ADO)oouiiiiecieieeie et sttt et s beere e e e e e e e e sre e 2-5
2.2 GEOMETRY OBJIECT IMODELvtvviitteitt et et stiesteestaesteestessaesneesseesseenseessesssessessseesseessnsssssnessseenseenes 2-6

221 LC1=T0] 1 (=11 TP TP PP PRTURPROPRPTTPPRPRPN 2-6

2.2.1.1 ATIDULES OF GEOMELIY ...ttt bttt b bbb et eae e 2-7
2.2.1.2 BasiC Methods ON GEOIMELIYcouiiuiieieiiitieie ettt b bbbt b bbbt eees 2-7
2.2.1.3 Methods for testing Spatial Relations between geometric 0DJeCtS :........ccccvreieeiiiienciccee, 2-7
2.2.1.4 Methods that support Spatial ANAIYSIS.........cccciiiiiiiii s 2-8
2.2.2 GEOMELTY COIBCIION ...ttt bbbt e e sae 2-9
2,221 IMBENOGS. ...t bbbt bbbt b e 2-9
2.2.3 0]) USRS 2-9
A N R A\ 1 1410111 (= OSSPSR RRSRPRPIR 2-9
2.2.4 LT o] [ST 2-9
225 LGN TSRS 2-9
2251 Y=g oo TSRS 2-10
2.2.6 LineString, Ling, LINEAIRINGcccooiiiiiiiiieiee et 2-10
2.2.6.1 IMIBENOGS. ...ttt bbbt b et e b bbb 2-11
2.2.7 IMIUILICUIVE ...ttt ettt st be b e b e et et e st et e s beabeeteeneenee e e beseesrenrs 2-11
2271 Y =11 a Lo TS SRPSRP 2-12
2.2.8 LT LTI T3]] o T 2-12
2.2.9 SUITBCE ..ttt ettt e et e et e st e e s te e s be e s be e be e abeeaeesaeeebe e beenbeeabeeraenreens 2-12
2.29.1 Y=g oo TSRS 2-13
2210 POIYQON ...t bbbttt bbbt b b e b e 2-13
2.2.10.1 IMIBENOUS ...t b bbbttt bbbt 2-15

2.2.01 MURISUITACE .. ettt ettt e et e e e ettt e e st e e s ettt e e s aata e e s sbeeessbbeeesaseaesesanees 2-15

22111 IMIBENOOS ... bbb bbbt b bbbt 2-15
2212 MUIIPOIYGON .ttt bbbt b e et b e 2-15
2.2.13 Relational OPEratOrsSccccvcieiiieiieiiiiesestes e e e iee s e ste s e sre e s e e st e bestesbesresaeesaeeebeseesrenes 2-17

2.2.13.1 [FETod o (011 o TSRS 2-17

2.2.13.2 The Dimensionally Extended Nine-Intersection Model...........c..ccoooveiiiiiiiiiiineneeee e 2-18

2.2.13.3 Named Spatial Relationship predicates based on the DE-9IMcccooeiiiiineienciee e 2-20

2.3 SPATIAL REFERENCE SYSTEM OBIECT MODEL.....ccuviiiiiitiiieitisieeiieie et sne e 2-24
24 SUMMOARY L.ttt etie sttt sttt ettt s bt e sbe e bt e st e as b e et e sbeesbe e s be e ee e R et e Re e ehe e eRe e bt en b e enbenb e e nbeenbeenbeeeeaneas 2-25
24.1 REQUIFEMENT SUMMATYtiiieiieiete ettt ettt bbb e e e e b e sbe b b ees 2-25
3 COMPONENT SPECIFICATIONSottt e 3-1
3.1 OLEDB AND ADO COMPONENTSctteiteeiteartasreaseesseesseessesssesssessesssesssesssesssesssesssesssessesssesssesssens 3-1
311 OGIS Data Provider REQIStIrY ENTIIESccciviereieseeieeieeveeste s ste e sresne e sneas 3-2
3.1.2 L] R 17 1o - - VPP STPRN 3-2
3.1.3 DBSCHEMA_OGIS_FEATURE_TABLES ROWSELceiiiiiiiiesieeiieeieeie e 3-2
314 DBSCHEMA_OGIS_GEOMETRY_COLUMNS ROWSEL........ccceerieriiaiieienienienieenieeiennne 3-3
3.15 DBSCHEMA_OGIS_SPATIAL_REF_SYSTEMS ROWSEL........cccoiiiiiieiieieie e 3-4
3.16 OGS PrOPEITY SEL.....outiiiitiiieitieieee et nne 3-5
3.1.7 IColumnsRowset: GEtCOIUMNSROWSELcciiiiiiiiieiieie e s 3-6
3.1.8 LCTeTo] 0 1=] PSPPSR 3-6
3.1.9 O Lo I] (=T =T To! 3-7
3110 SPAtIAl FIIET ..eeeiceee e b 3-7
3.1.11 OGIS_Geometry ENUMErAted TYPE ...ccveiuiiiirieiiieiierieie sttt 3-8
3.2 GEOMETRY COMPONENTS—INTERFACES AND CLASSEScuviitiiitierieiesiresine e sieesneennesne e e 3-8
3.2.1 COMPONENE OVEIVIBW ...vveveieeeiesiesiesieseestesseeseeseesses e ssessessesseaseassesseseessessessessessesssessessessessens
3.2.2 A NOLE ON INNEIILANCE. ..ottt neesneees
3.2.3 INEITACES ANA CIASSESeieiie ettt bbbttt e bbb s
3.24 [T=Tod] o] o] ST
3241 1GEOMELIY INTEITACE ...viviiee ettt ettt ettt e e e reenenean
3.24.1.1 1Geometry::get_Dimensionc.ccccceveevvernennnn
3.24.1.2 1Geometry::get_SpatialReference
3.24.1.3 1Geometry::put_SpatialREFEIENCEciieieiiieee s 3-16
3.24.0.4 1GEOMELIY I ISEMPLY ..ottt b et b et b e nrenre e
3.24.15 IGeometry::SetEmpty
3.24.1.6 1GEOMELIY:IISSIMPIE ...
32417 1GEOMEtry:iget ENVEIOPE.....ciiiiiiiieeiieieectc ettt sttt sttt 3-17
B T (1o 1111 Y45 @ (o 1= RSOOSR 3-17
B R (1= o] 111 1 Y0 o {01! OSSR SSPS 3-18
3.2.4.2 TPOINE INTEITACE. .. it ieite ettt ettt ettt s e be st sttt reeaeneen

3.24.21 IPoint::get_X
3.24.22 IPoint::get_Y

3.2.4.2.3 IPOINE:IQEE _COOMUS. ... ittt sttt sttt sttt ettt st st e
3.2.4.3 TCUNVE INEITACE .eviiieieiieee ettt st ene et sbenean
3.24.3.1 ICurve:get_Length ...cccooovvieiiiiniiciceee
3.2.4.3.2 ICurve:get_StartPoint
3.24.3.3 1CUNVE:GEt_ENUPOINT......cuiiiiiiceece et
3.2.4.3.4 ICUIVEIISCIOSEA.ttt ettt b e
3.24.3.5 ICurve::get_Value
3.2.4.4 ILINESTING INTEITACE . ..eviieieieiicece ettt sae s

3.2.4.4.1 ILineString::get_ NUMPOINTS.......cc.ciiiiieiiieee e
3.2.4.4.2 ILINEStriNG::get POINT......iiiiiiiieiccee e
3245 ISUITACE INTEITACEeovieiieeiee e
BT T R 110 (ot B =1 A AN =T VOO USPTT
3.2.4.5.2 I1Surface::get_Centroidccccvoiieiieriieisce e
3.2.4.53 ISurface::get_POINTONSUITACEccoiiiieeiicerie ettt
3.24.6 IPOIYQGON INEITACEottt ettt sttt eeaeneas
3.24.6.1 IPolygon::get EXTEriOrRINGc.coveiiieiieie ettt

Page ii

3.2.4.6.2 IPolygon::get NUMINTEFIOrRINGScoueitiiiiiiee e 3-22
3.2.4.6.3 IPolygon::get_InteriorRing

3.24.7 1GeometryCollection INtEIfACE.cov i e
3.24.7.1 1GeometryCollection::get_ NUMGEOMELIIES.........cerireriirieieeeii et 3-23
3.24.7.2 1GeometryCollection::get_Geometry

3.2.4.8 IMUItISUITACE INTEITACEveviiiriiiecee e
3.2.4.8.1 IMUIISUITACE: 10T AT ... cuetieteeieeee ettt sttt b et b e et ere e
3.2.4.8.2 IMultiSurface::get_Centroid

3.2.4.83 IMultiSurface::get_POINTONSUITACEcoiiuiieiiieiese e
3.2.4.9 IMUItICUIVE INEITACEeevveiiiiecieiee ettt
3.249.1 IMultiCurve::get_Length
3.2.4.9.2 IMUIICUIVEIIISCIOSEM. ..ot
3.24.10 I1SpatialRelation INTEITACEooiiiiee et
3.24.10.1 ISpatialRelation::
3.2.4.10.2 ISpatialRelation::
3.2.4.10.3 ISpatialRelation::
3.2.4.10.4 |SpatialRelation::

3.2.4.10.5 1SpatialRelation::DISJOINT.........cciieieieeic et
3.24.10.6 1SPALIAIREIAIION:ICIOSSESvivieieeeeiieieete ettt sttt se et et besbe st e e e ere e
3.2.4.10.7 ISpatialRelation::Overlaps
3.2.4.10.8 1SPatialRelatioN: INTEISECLSoiveieeeeiieieiei ettt et

3.24.11 I1SpatialRelation2 INEEITACEcoeieiiee e e
3.24.11.1 |SpatialRelation2::Relate

3.24.12 1SPatial OPErator INTEITACE.coi ittt
3.24.12.1 1SpatialOperator::BOUNTAIYccoiiiieiieceee ettt
3.2.4.12.2 |SpatialOperator::Distance
3.2.4.12.3 1SpatialOperator::BUFEr..... ..o e
3.2.4.12.4 1SpatialOperator::INtEISECTIONcciiieriecieieete ettt
3.2.4.12.5 ISpatialOperator::Union
3.24.12.6 1SpatialOperator::DIffEreNCeccoi e
3.2.4.12.7 |SpatialOperator::SymmetricDIffereNCe.ccovoiiiie e 3-30
3.2.4.12.8 ISpatialOperator::ConvexHull

3.2.4.13 IWKS INEEITACE ...t
3.24.13. 1 IWKS:EXPOITTOWKB ...ttt ettt ae e

3.24.13.2 IWks::ExportTOWKT
3.2.4.13.3 IWks:: ImportFromWKB
3.24.13.4 IWks::ImportFromWKT
3.24.14 IGeometryFactory Interface

3.24.14.1 1GeometryFactory::CreateFrOMWKBcccooiiiiiiiiiiie e 3-32
3.24.14.2 1GeometryFactory::CreateFrOMWKTooiiiiiiiiiiiie e 3-32
3.25 Exceptions, Errors, and Error COUES........coiiiiiiiiiiiieieese et 3-33

3.3 THE WELL-KNOWN BINARY REPRESENTATION FOR GEOMETRY (WKBGEOMETRY)ccervennene 3-33
331 COMPONENE OVEIVIBWviveieeiieiestesiestestesteetaesae st e testesbesteessesaessesbesaesbestesaeesaessenseseesseneenns 3-33
3.3.2 ComMPONENE DESCIIPLIONueiiieeieiesese sttt et sne e e e e seenre e e 3-33

3.3.21 Numeric Type DefiNItIONS.ccoiiiiiiieeee et eas 3-33
3.3.22 XDR (Big Endian) Encoding of NUMEIIC TYPESceoiiiiireiiieieesie et 3-33
3.3.2.3 NDR (Little Endian) Encoding of NUMEIC TYPES.....cuiuiriiiririeieeaisiesie et 3-34
3.3.24 Conversion between the NDR and XDR representations of WKBGeOMetrycccccoeeveenuenne. 3-34
3.3.25 Relationship to other COM and CORBA data transfer protocolsccoceoeeieneiennieiencseneees 3-34
3.3.2.6 Description of WKBGeometry Byte SErEaMSooveieiieiirieiieiiesieeee et 3-34
3.3.2.7 Assertions for Well-known Binary Representation for GEOMEtryccoceoeieneieneieieciseneens 3-36
IR S 14 T=F. T gl = o o [OOSR 3-37
TR e oo |V o] OO TUS U USRRSPR 3-37
3.3.2.10 IMUIETPOIYGONS ..t ettt a ettt ettt st eb e e neene e 3-37

3.4 SPATIAL REFERENCE SYSTEM COMPONENTS—INTERFACES AND CLASSES........cccevviireriinriniennens 3-37
34.1 COMPONENT OVEIVIBW ...ttt sttt se et bbbt be e e e e besae s b e st e sbe e b e e e eneeneesbe e e 3-37
3.4.2 Interface(s), Data Structures, Language CONSIIUCES........ccccveieieieeieerieieieese e sre e seeneas 3-37
3.4.3 = o]] o] o S

3.4.3.1 ISpatialReferencelnfo Interface
3.4.3.1.1 ISpatialReferencelnfo:iget NAMEooeiiiiie e 3-45

3.4.3.1.2 ISpatialReferencelnfo:iput INAMEoccoiiiiiii e
3.4.3.1.3 ISpatialReferencelnfo::get_Authority
3.4.3.1.4 ISpatialReferencelnfo::put_Authority
3.4.3.1.5 ISpatialReferencelnfo::get_Code
3.4.3.1.6 ISpatialReferencelnfo::put_Code
3.4.3.1.7 ISpatialReferencelnfo::get_Alias

3.4.3.1.8 ISpatialReferencelnfo:iput_ALIAScooeiiiiiei e
3.4.3.1.9 ISpatialReferencelnfo::get_Abbreviation
3.4.3.1.10 ISpatialReferencelnfo::put_ADBDIEVIAtIONccoiiiiiiiie e 3-47

3.4.3.1.11 ISpatialReferencelnfo::get_Remarks
3.4.3.1.12 |SpatialReferencelnfo::put_Remarks

3.4.3.1.13 ISpatialReferencelnfo::get WellKNOWNTEXE........coieiiiieiiiieiee e 3-48
3.4.3.2 TUNIEINEEITACE ...t n e
3.4.3.3 lAngularUnit Interface

3.4.3.3.1 1AngularUnit::get_RadianSPerUNItc.cooiiiiiieiie e 3-48

3.4.3.3.2 1AngularUnit::put_RadianSPerURNitccoiiiiiieiie e 3-48
3.4.3.4 ILinearUnit Interface

3.4.3.4.1 ILinearUnit::get MetersPerUNIL..........ccoiiiiiiiciii et 3-49

3.4.3.4.2 ILinearUnit::put_MetersPerUNItcccoiiiiieiiieeie e e 3-49

3.4.3.5 IEllipsoid Interface
3.4.35.1 IEllipsoid::get_SemiMajorAxis
3.4.35.2 IEllipsoid::put_SemiMajorAxis
3.4.3.5.3 IEllipsoid::get_SemiMinorAxis
3.4.35.4 IENipsoid::put_SEMIMINOIAXISccceieeuiieiiiieenieieee ettt st see e e ene e
3.4.35.5 IEllipsoid::get_InverseFlattening
3.4.35.6 IEllipsoid::put_InverseFlattening
3.4.35.7 IENIPSOid::get AXISUNIL.......cciiiiiiiieieeit ettt
3.4.35.8 IEHIPSOId::PUL_AXISUNIL ...ttt sttt
3.43.6 IHorizontalDatum Interface
3.4.3.6.1 IHorizontalDatum::get_Ellipsoid
3.4.3.6.2 IHorizontalDatum::put_Ellipsoid
3.4.3.7 IPrimeMeridian Interface
3.4.3.7.1 IPrimeMeridian::get_LONGITUAEccciieiiiiieieeere e
3.4.3.7.2 IPrimeMeridian::put_LONGITUEccooiieiiieieeeeee et e
3.4.3.7.3 IPrimeMeridian::get_AngularUnit ...
3.4.3.7.4 IPrimeMeridian::put_ ANGUIAIUNILooiiii e
3.4.3.8 ISpatialReference INTEITACEo i
3.4.3.9 IGeodeticSpatialReference Interface
3.4.3.10 1GeographicCoordinateSystem INTErface..........oooii e
3.4.3.10.1 IGeographicCoordinateSystem::get_Usage
3.4.3.10.2 IGeographicCoordinateSystem::put_Usage

3.4.3.10.3 IGeographicCoordinateSystem::get_HorizontalDatum.............ccooeieiieiiiiineieneeecee 3-54
3.4.3.10.4 1GeographicCoordinateSystem::put_HorizontalDatum..............ccccereirieniieneicieese e 3-54
3.4.3.10.5 IGeographicCoordinateSystem::get_AngularUnit

3.4.3.10.6 IGeographicCoordinateSystem::put_AngularUnitccooeiiiiniiiiiieieee e
3.4.3.10.7 IGeographicCoordinateSystem::get_PrimeMeridian
3.4.3.10.8 IGeographicCoordinateSystem::put_PrimeMeridian
34311 IParameter INTEITACE.ceiriiiee e
3.4.3.11.1 IParameter::get_ValueUnit
3.4.3.11.2 IParameter::put_ValueUnit

3.4.3.11.3 1PArameter:iget_ValUB......ccoiiieiieeeeei ettt
3.4.3.11.4 1PArameter:iPUL_ValUEcouoiiiiiii et
3.4.3.12 IParameterinfo Interface

3.4.3.12.1 IParameterInfo::get NUMPAraMEtersc.coieiiiiiie e

3.4.3.12.2 IParameterInfo::get_DefaultParameters....... ..o iereieeei e

3.4.3.12.3 IParameterinfo::get_Parameters

3.4.3.12.4 I1ParameterInfo::pUL_ParameterS.cooiiiiirieiie et
3.4.3.13 1GeographicTransform INEEIfACEcooiiiiiiee s

3.4.3.13.1 IGeographicTransform::get_SourceGCS
3.4.3.13.2 1GeographicTransform::put_SOUIFCEGCScooiiiieieiieese sttt
3.4.3.13.3 IGeographicTransform::get_TargetGCSot e

Page iv

5

3.4.3.14 IProjection Interface

3.4.3.13.4 1GeographicTransform::put_TargetGCS.........coiiiireiiieieeee et 3-59
3.4.3.13.5 IGeographicTransform::Forward
3.4.3.13.6 1GeographicTransSfOrM:IINVEISEcoieiiiiieieceere et
3.4.3.13.7 IGeographicTransform::get_Parameterinfo

3.4.3. 141 IPrOJeCtioN:iget USAQEoiuieeeeeieieeie ettt sttt st ettt b et se e e re s
3.4.3.14.2 IPrOJECHION:IPUL_USAGE .. .cvieeeeuieieeteetesteeteeeiee ittt stesee e s seebesbesbesee e ese e st abesbesbe e ene e e eneerees
3.4.3.14.3 IProjection::get_Classification....

3.4.3.14.4 IProjection::put_ClasSifiCation...........c.ccoiiiiiiiiiieie e
3.4.3.145 IPrOJECLION:IFOIWAITcuoiiiiiieee ettt sttt st sn e et e
3.4.3.14.6 IProjection::Inverse

3.4.3.14.7 IProjection::get_Parameterinfo ..o
3.4.3.14.8 IProjection::get_AngularUnit
3.4.3.14.9 IProjection::put_AngularUnit
3.4.3.14.10 IProjection::get_LinearUnit
3.4.3.14.11 IProjection::put_LinearUnit
3.4.3.14.12 IProjection::get_Ellipsoid
3.4.3.14.13 IProjection::pUt_EHPSOIoiiiiiieieieee e e

3.4.3.15 IProjectedCoordinateSystem INTEITACEcccoiiiiiiiiiciee s

3.4.3.15.1 IProjectedCoordinateSystem::get_Usage
3.4.3.15.2 IProjectedCoordinateSyStem:iPUL_USAQEcviuerueriereeiaieeieatesiesieseeesreene e see e see s
3.4.3.15.3 IProjectedCoordinateSystem::get_GeographicCoordinateSystem
3.4.3.15.4 IProjectedCoordinateSystem::put_GeographicCoordinateSystem

3.4.3.15.5 IProjectedCoordinateSystem::get LinearUNit..........ccooooieiiiiineneieeese e
3.4.3.15.6 IProjectedCoordinateSystem::put_LinearUNitccoooiiiiiieneiisesc e
3.4.3.15.7 IProjectedCoordinateSystem::get_Projection
3.4.3.15.8 IProjectedCoordinateSystem::put_ProjECtIONccccooeoieiriiiniene e
3.4.3.15.9 IProjectedCoordinateSystem::get_Parameterinfocccoooeiiiineiiiiiicceecee e
3.4.3.15.10 IProjectedCoordinateSystem::Forward
3.4.3.15.11 IProjectedCoordinateSySteM:IINVEISEeiviiiieieie e
3.4.3.16 ISpatialReferenceFactory INEIfACE ..o s
3.4.3.16.1 ISpatialReferenceFactory::CreateFromWKT
3.4.3.17 ISpatialReference AuthorityFactory INterfaceooeeeiiiiiieieee e
3.4.3.17.1 ISpatialReference AuthorityFactory::get_ AULhOIILYcccooviiiiiiie i
3.4.3.17.2 |SpatialReferenceAuthorityFactory::CreateProjectedCoordinateSystem
3.4.3.17.3 ISpatialReferenceAuthorityFactory::CreateGeographicCoordinateSystemccccceee... 3-68
3.4.3.17.4 |SpatialReference AuthorityFactory::CreateProjection..........c.cocereieieenineneieeees e
3.4.3.17.5 ISpatialReferenceAuthorityFactory::CreateGeographicTransform
3.4.3.17.6 ISpatialReferenceAuthorityFactory::CreateHorizontalDatumcccoccoveveiennincncnnenn
3.4.3.17.7 ISpatialReferenceAuthorityFactory::CreateEllipsoid...........cocoveieiiiiieniiineeeee e
3.4.3.17.8 ISpatialReferenceAuthorityFactory::CreatePrimeMeridian
3.4.3.17.9 ISpatialReferenceAuthorityFactory::CreateLinearUnit...........cocoooeiiiiieniiencieieeee e
3.4.3.17.10 ISpatialReferenceAuthorityFactory::CreateAngularUnit............ccocooiieiiiineiinnnenene
3.4.4 Exceptions, Errors, and Error COUES........cuvverinireiineneeieeee e
3.5 WELL-KNOWN TEXT REPRESENTATION OF SPATIAL REFERENCE SYSTEMS
35.1 COMPONENE OVEIVIBWveveieetieieeieitesteste e ste s e esaeaesrestestestes e snessaensesseseessessesnens
3.5.2 Component Description
SUPPORTED SPATIAL REFERENCE DATAttt 4-1
4.1 SUPPORTED LINEAR UNITS ettt st an et nne s
4.2 SUPPORTED ANGULAR UNITS
4.3 SUPPORTED SPHEROIDS........cccoveruiniernnnninne
4.4 SUPPORTED GEODETIC DATUMS
45 SUPPORTED PRIME IMERIDIANSccutitiiiiititistesiestisieeseese s st bt sne s snesne bt s snesnenne e
4.6 SUPPORTED MAP PROJECTIONSccuiiiiiiieiieitiireniestisiesiee e sresre st bt sre e sne e sn s
4.7 MAP PROJECTION PARAMETERS

REFERENGCES ...ttt r bbb e nn e an e ane s 5-1

0 Preface

0.1 Submitting Companies

The following companies submitted this implementation specification in response to the OGC
Request 1, Open Geodata Model Working Group, A Request for Proposals: OpenGIS Features

(OpenGIS Project Document Number 96-021):

e Camber Corporation

e Environmental Systems Research Institute (ESRI)
e Intergraph Corporation

e Laser-Scan, Ltd.

e Maplinfo Corporation

e Smallworldwide, plc.

0.2 Submission Contact Points

All questions about the joint submission should be directed to:

Ed Runnion

Camber Corporation

635 Discovery Drive
Huntsville, AL 35806-2801
205-922-3590

David Beddoe

ESRI National Accounts

2070 Chain Bridge Road, Suite 180
Vienna, VA 22182

(703)-506-9515

Sam Bacharach
Intergraph Corporation
2051 Mercator Drive
Reston, VA 20191
703-264-5711

Page 0-1

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

David Arctur, Ph.D.
Laser-Scan, Inc.

45635 Willow Pond Plaza
Sterling, VA 20164

John Reilly

Maplnfo Corporation
One Global View
Troy, NY 12180
518-285-7229

Peter Batty

Smallworld Systems, Inc.
5600 Greenwood Plaza Blvd.
Englewood, CO 80111
303-779-6980

0.3 Document Conventions

Courier New font is used to identify code segment and names.

0.4 Revision History

Revision 1.0 includes the following changes from Revision O:

o Replaced the term “ADC” with “RDS” and updated the accompanying text in the Overview that
discusses RDS. The source for this change was proposal #1 from Revision Request 97-407.

e Adam Gawne-Cain, Cadcorp Ltd, 8" March 1999: Replaced Geometry and SpatialReference IDL
code segments with latest versions. This means that potential implementors can cut/paste the
definative IDL from this document Also editted descriptive text to match latest version of these IDL
files.

0.5 Editorial Notes

Page 0-2

1 Overview

The Open GIS Consortium, Inc. vision statement states that “OGC envisions the full integration of
geospatial data and geoprocessing resources into mainstream computing and the widespread use of
interoperable geoprocessing software and geospatial data products throughout the information
infrastructure.” (http://www.opengis.org/vision.html) The attached specification is founded in two
fundamental principles that are critical for the GIS industry to reach its goal of open geodata and
geoprocessing interoperability “throughout the information infrastructure.” Those two principles are
summed up in the following statement:

e The GIS database, by nature, is a fundamental component of a much larger corporate information
infrastructure, and must, therefore, integrate and leverage accepted standards for enterprise-wide
information management.

In other words, the GIS is an extension of the overall corporate information system that today is
“standardized” on relational database management systems and Microsoft Windows applications. Going
forward however, the database management systems being implemented may be relational, object-
relational, or some yet to be determined data storage technology. Therefore, the GIS industry needs to
adopt a direction that maximizes the opportunity to leverage today’s relational databases while at the same
time provides a direction towards emerging data management technologies.

As an OLE/COM based proposal, current Microsoft technologies for database access were evaluated with
respect to geographic information processing. These technologies included ODBC, DAO, RDO, ADO and
OLE DB. ADO specifically provides the OLE Automation object oriented standards for accessing and
manipulating databases, additionally OLE Automation, as a language independent technology, is quickly
becoming the standard for application customization and integration. These paradigms match the needs of
GIS data access quite well; GIS can, and should, be considered a database problem with the additional
requirements being geodetic coordinate systems, geometry, and graphics display. This specification
addresses these additional problems with GIS specific interfaces above and beyond the current interfaces
available through current Microsoft data access technologies.

This specification does not take on the responsibility of database technology interfaces however, as many
data sources are not true databases. This specification is designed to take full advantage of accepted
industry standards thus providing a geographic standard and evolution of that standard that minimizes the
impact on the GIS technology providers and yet provides the GIS users with the interoperability and
integration they demand. This strategy is not unique to geographic information systems, and as such,
Microsoft has leveraged its success and experience with DAO and RDO to provide extensible and robust
data access technology through OLE DB. This specification is, then, based on use of the OLE DB and
ADO facilities provided by Microsoft.

Page 1-1

OpenGIS

Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

“OLE DB is a set of OLE interfaces that provide applications with uniform access to data stored in
diverse information sources, regardless of location or type. These interfaces allow data sources to
share their data through common interfaces without having to implement database functionality not
native to the datastore.

OLE DB is a freely published specification designed with industry-wide participation through
Microsoft's Open process. OLE DB is a developing industry standard for data access to and
manipulation of both SQL and non-SQL data sources. This provides consistency and
interoperability in an enterprise's network, from the mainframe to the desktop.”
(http://www.microsoft.com/oledb)

Going forward, Microsoft has embraced OLE DB as the foundation for data access within the OLE/COM
environment. Microsoft states, “OLE DB is the fundamental Component Object Model (COM) building
block for storing and retrieving records and unifies Microsoft's strategy for database connectivity. It will be
used throughout Microsoft's line of applications and data stores.”

As background, Microsoft defines OLE DB as follows:

Figure 1.

“OLE DB is a specification for a set of data access interfaces designed to enable a multitude of
data stores, of all types and sizes, to work seamlessly together. These interfaces comprise an
industry standard for data access and manipulation that can ensure consistency and interoperability
in a heterogeneous world of data and data types.

OLE DB goes beyond simple data access by partitioning the functionality of a traditional relational
database into logical components, and the events needed for those components to communicate.
Developers can use these interfaces to define very simple data providers as well as fully relational
databases. This is a strategic part of Microsoft's enterprise infrastructure for component-based
computing. Components can be thought of as the combination of both process and data into a
secure, reusable object. As a result, it often makes sense to treat components as both consumers
and providers of data at the same time. Since the OLE DB specification is a definition of how
databases interoperate at various levels, components can be built using OLE DB to behave as a
table, even though very complex computing processes can actually occur between the data sources
and the consuming applications. This capability will have considerable impact on how multi-tier
applications are assembled.” (http://www.microsoft.com/oledb/prodinfo/wpapers/wpapers.htm)

1 presents a conceptual view of the solution and architecture presented in this proposal:

Page 1-2

Chapter 1 Overview

Data Access Architecture

Consumers .
Application or Tool
\
| Active Data Objects (ADO) |
5 S
©
| OLE DB | =
! ! ! g
= (@)
Service 8 Cursor Dist. Query Rel. Query S
Providers a Engine Engine Engine 2
= @
2 :
3 ! ! ! g
| OLE DB °
L
{ { { { I |3
2
Data Provide Spread ODBC/ @
Sheet soL ISAM SPATIAL FILE A

Figure 1.1—Data Access Architecture in the OLE/COM environment

The benefits of an OLE DB based OpenGIS architecture go well beyond the inherent benefits of OLE DB
itself. OLE DB is a useful technology in its own right, but becomes much more powerful when leveraging
other enterprise technologies provided by Microsoft and other third party developers. For example:

o Distributed Transaction Coordinator—Microsoft’s OLE-based transaction product, will utilize OLE
DB for data access and makes it possible to coordinate transactions spanning multiple, diverse OLE
DB data sources.

e ODBC—OLE DB data consumers, both applications and development tools, have full access to all
ODBC drivers through OLE DB and the OLE DB/ODBC Provider (code named Kagera).

¢ Index Server—Microsoft Index Server works with Windows NT Server 4.0 and Internet Information
Server 2.0 to provide your organization access to all of the documents stored on your intranet or
Internet site. Index Server is an OLE DB data provider.

e Remote Data Service— The Microsoft® Remote Data Service (RDS) delivers a new Web data access
technology that allows developers to create data-centric applications within ActiveX™-enabled
browsers such as Microsoft® Internet Explorer. RDS creates a framework that permits easy interaction
with ODBC databases on corporate intranets and over the Internet. In addition, the design of the
Microsoft® Remote Data Service offers a programming model that leverages the knowledge of Visual
Basic® developers. RDS provides the advantages of client-side caching of data results, updateable
data, and support for data-aware ActiveX controls. This capability was previous called Active Data
Connection (ADC). ADC has now been integrated with ActiveX Data Objects (ADO) to provide data
remoting within the same programming model as ADO. This makes it easier to design, code, and
deploy both Web-based and LAN-based applications. To clarify the relationship of ADC to ADO,
ADC is now known as the Remote Data Service (RDS), a feature of ADO. RDS goes beyond the
current generation of Web data access tools by allowing clients to update the data they see
(http:/lwww.microsoft.com/data/rds/).

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

As an enterprise-wide information component the GIS community now has the opportunity to provide
industry wide geodata and geoprocessing interoperability while also leveraging mainstream information
systems processing resources and technologies.

Page 1-4

2 Architecture

The architecture for this specification can be classified into three major components. They are
e OLE DB for implementing data providers

e ADO for presenting a simplified data access model on top of OLE DB

e Geometry and Spatial References for detailed geometry and reference operations

Each of these components is implemented using the Microsoft Component Object Model (COM). ADO
and the Geometry and Spatial Reference objects implement IDispatch and are therefore accessible to rapid
development languages such as Visual Basic, Java, and Power Builder. All COM interfaces are accessible
from lower level languages such as C++ for optimal performance.

2.1 Data Access

2.1.1 OLE DB Overview

In the OLE DB specification, Microsoft writes:

OLE DB is a set of OLE interfaces that provide applications with uniform access to data stored in
diverse information sources. These interfaces support the amount of DBMS functionality
appropriate to the data source, enabling it to share its data.

As such, OLE DB is an ideal interface for exposing geographic data. One of the principal advantages to
exposing and consuming data via the OLE DB interface is that geographic data can then be easily
integrated with other databases and office applications. It also means that a wider variety of data can also
be utilized within geographic applications such as GIS. It yields a true GIS system by allowing the “G” to
be tightly integrated with the corporate “IS”.

There has been no attempt to reproduce the OLE DB specification. The interested reader should consult
the Microsoft OLE DB web pages or the OLE DB SDK for details.

The OLE DB architecture diagram shown in Figure 2.1 has been extracted from a Microsoft presentation
on OLE DB. It and the preceding table illustrate the interaction between three fundamental categorizations
of software:

Page 2-1

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

Category

Relationship to geographic applications

Data Providers

Vendors of commercial GIS software should provide OLE DB data sources
which expose their spatial data as well as any attribute data associated with it.
Data providers or software vendors may also elect to expose government and
other commercially available data sources such as DCW and Tiger.

Service Providers

Geographic services may also be supplied by software vendors or end users.
These services might include spatial query processors, buffer zone services,
geocoding services, or network analysis services.

Consumers

One of the most significant direct consumers of OLE DB is the ADO
interface. The ADO interface consumes OLE DB and then projects a simpler
programming model for accessing data.

Table 2.1—Categories of software and their relationship to geographic applications

Data Access Architecture

Consumers

Service
Providers

Data Provide

COM / DCOM

Application or Tool

A
| Active Data Objects (ADO) |

¢ §
©
| OLE DB | =
I ! ' 8
Cursor Dist. Query Rel. Query 5
Engine Engine Engine 5
©
2]
i ¢ ¢
| OLE DB %
) 1 ! b2
Spread OPBC 1| 1sam || spaTiaL || FILE 73

Sheet SQL

Figure 2.1— Microsoft OLE DB Data Access Architecture

2.1.2 Data Providers

2.1.2.1 Data Provider Overview

The Data Provider category is the most fundamental set of components that must be implemented in order
to allow geographic data to be shared among different applications. These applications may be as diverse
as data collection, analysis or simple viewing. With OLE DB interfaces to relevant geographic data,
customers and other software vendors will be able to view and analyze heterogeneous collections of data
from a wide range of data sources without first trying to convert them all to a compatible data format.

Page 2-2

Chapter 2 Architecture

Data providers wishing to simply expose data to services and client applications are only required to
implement the minimal set of OLE DB interfaces. The minimal set of interfaces for Rowsets is shown in
Figure 2.2. Clients must be prepared to work with a data server that implements only the minimal set of
interfaces.

Data providers wishing to allow simple creation and modification of data must implement additional OLE
DB interfaces (Figure 2.3). The data provider must always be sure that the integrity of the data is preserved
according to the rules of valid data for that particular data set. One data provider may allow any geometry
to be input which meets the requirements of valid OGIS data. A second data provider may require that
geometric data be limited to a smaller set of geometries and be topologically clean because of a supporting
topological index. This specification does not attempt to define any data validation rules others than those
described in the Geometry and Spatial Reference objects.

Data providers with sophisticated relationship models may elect to expose custom COM interfaces which
only allow data to be modified using a special set of operations. An example would be a data provider for
parcel data (Figure 2.4). The custom interface for this may only expose methods for splitting and merging
parcels. The underlying implementation may modify several tables and keep a history of the operation.
Although a custom interface is used for modifying the data, the standard OLE DB interfaces should be
implemented to expose the data to simpler applications such as viewers. Of course, custom interfaces
could be implemented which allow more sophisticated clients to view more of the underlying data
structures for analysis purposes. This specification does not attempt to describe the details of any such
models or interfaces.

It is therefore clear that the OLE DB data provider interfaces scale well. They are easily extended using
COM mechanisms to handle sophisticated data modeling issues.

—O |Accessor
—O IRowsetInfo
—O IColumninfo
— O IRowset

Rowset

—O IConvertType

Figure 2.2— Minimum Rowset implementation for a read only data source

Page 2-3

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

—O |Accessor

—O IRowsetInfo
Rowset

—O IColumninfo
Additional
qeometry —O |Rowset
validation — O IRowsetChange
software

—O IConvertType

Figure 2.3—Minimum Rowset implementation for a data source that allows modifications

—O |Accessor

—O IRowsetInfo
Rowset

—O 1Columninfo
Additional
geometry —O [Rowset
validation —O |RowsetChange (only allows attribute
software fields to be modified)
— —O |Parcel
manipulation ‘
software —O IConvertType

Figure 2.4—Custom implementation for sophisticated modeling

2.1.2.2 Requirements for Data Providers

There is no strict “level of compliance” scheme for OGIS data servers. Clients are expected to use standard
COM and OLE DB techniques for determining if a data server supports a specified type of functionality. It
is the client’s responsibility to decide what action it will take if a data provider fails to support a given
service.

The minimum level of support that a data server must pass is:

e Support the minimum set of interfaces as defined by the OLE DB standard

e Require providers to register support for the “OGISDataProvider” component category.

o Geometry values must be exposed as Well Know Binaries (WKB) as described in Section 4.

Page 2-4

Chapter 2 Architecture

Data providers which do not support schema rowsets or IColumnsRowset::GetColumnsRowset are
encouraged to name their geometry columns “OGIS_GEOMETRY”. Clients are also encouraged to look
for columns with this name if the provider does not support the schema methods noted above.

A data provider which wishes to provide additional GIS Metadata and Geometry information to the client,
should do so in compliance with Sections 3.1 and 3.2

2.1.3 Data Consumers (ADO)

ADO is a Microsoft implementation of an OLEDB data consumer. While it is not an OLEDB data
provider, its purpose is to provide the essence of OLEDB data to automation clients via a standard
automation server. This allows easy access to data from high level languages such as Visual Basic and
Power Builder. The ADO model is analogous to, but much simpler than the OLEDB model. The
fundamental objects in the ADO object hierarchy are:

e Connection—This bundles the DSO and the Session and allows the automation client to connect to the
data source, access schema information and begin posing queries.

e Command—This exposes the OLEDB Command capabilities, allowing queries to be posed (Including
spatial queries for OGIS data servers).

e Recordset—This is the result of a query or a request for information.

e Field—Column values that one would access via IRowset::GetData in OLEDB are accessed as the
Value property of Field objects in the Recordset’s Fields collection.

Note that, via COM, the consumer can use Querylnterface to determine the capabilities of the provider.
With ADO, the automation client must be prepared to catch exceptions thrown when the client attempts an
activity not supported by the underlying Data Source. For example, a data provider may not support
IRowsetL ocate (no backwards scrolling), and so ADO’s Recordset.MovePrevious and
Recordset.Bookmark may throw exceptions. Clients should be prepared for errors so that they may work
with a wide variety of data providers.

Geometry is served up through Well-known Binaries (WKB). This allows a user to then construct a
geometry object or use the WKB directly. An example of code that accesses geometry is shown below.

Dim geom as 1Geometry

Dim rs as ADODB.Recordset

Dim fld as ADODB.Field

Dim factory as IGeometryFactory

Dim srs as ISpatialReference

“ Insert code to initialise factory and srs

rs.open "Schools”, connectString

set fld = rs(*“OGIS_GEOMETRY™")

Do Until rs.EOF * Do until end of recordset
set geom = factory.CreateFromWKB(fld.value , srs)
AddToDisplay geom
rs.MoveNext * ® Move to next record.

Loop

Page 2-5

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

2.2 Geometry Object Model

This section describes the object model for geometry. It is Distributed Computing Platform neutral and

uses OMT notation. The object model for geometry is shown in Figure 2.5. The base Geometry class has
subclasses for Point, Curve, Surface and Geometry Collection. Each geometric object is associated with a
Spatial Reference System, which describes the coordinate space in which the geometric object is defined.

Figure 2.5 is based on extending the Geometry Model specified in the OpenGIS Abstract Specification
with specialized zero-, one- and two-dimensional collection classes named MultiPoint, MultiLineString
and MultiPolygon for modelling geometries corresponding to collections of Points, LineStrings and
Polygons respectively. MultiCurve and MultiSurface are introduced as abstract superclasses at this RFP
that generalize the collection interfaces to handle Curves and Surfaces. The figure shows aggregation lines
between the leaf collection classes and their element classes, the aggregation lines for non-leaf collection
classes are described in the text.

The attributes, methods and assertions for each geometry class are described below. In describing methods,
this is used to refer to the receiver of the method (the object being messaged). The scope of the methods
and attributes is based on the scope of RFP1 (SimpleFeatures).

Geometry SpatialRef erenceSystem
Point Curve Surface GeometryCollection
o |)& A
1 LineString Polygon MultiSurface MultiCurve MultiPoint
+
1+ Q
Line LinearRing MultiPolygon MultiLineString
1+

Figure 2.5—Geometry Class Hierarchy

2.2.1 Geometry

Geometry is the root class of the hierarchy. Geometry is an abstract (non-instantiable) class. All geometry
objects must support the IGeometry interface.

The instantiable subclasses of Geometry defined in this specification are restricted to 0, 1 and two-
dimensional geometric objects that exist in two-dimensional coordinate space (%?).

Page 2-6

Chapter 2 Architecture

All instantiable geometry classes described in this specification are defined so that valid instances of a
geometry class are topologically closed (i.e. all defined geometries include their boundary).

2.2.1.1 Attributes of Geometry

Property Dimension As Long—The inherent dimension of this geometric object, which must be less than
or equal to the coordinate dimension. This specification is restricted to geometries in two-dimensional
coordinate space.

Property IsEmpty As Boolean—Returns TRUE if this geometry is the empty geometry . If true, then this
geometry represents the empty point set, &, for the coordinate space.

Property IsSimple As Boolean—Returns TRUE if the geometry has no anomalous geometric points, such
as self intersection or self tangency. The description of each instantiable geometric class will include the
specific conditions that cause an instance of that class to be classified as not simple.

Property SpatialReference As ISpatialReference—Returns the Spatial Reference System for this
geometry.

2.2.1.2 Basic Methods on Geometry

Function Clone() As IGeometry —Return a copy of this geometry.

Function Envelope() As IGeometry—The minimum bounding box for this geometry, returned as a
geometry. The polygon is defined by the corner points of the bounding box ((MINX, MINY),(MAXX,
MINY), (MAXX, MAXY), (MINX, MAXY), (MINX, MINY)).

Sub Extent2D(minX As Double, minY As Double, maxX As Double, maxY As Double) —The minimum
bounding box for this geometry.

Function Project(newSystem As ISpatialReference) As IGeometry— Projects coordinates of this geometry
into the specified coordinate space, returning a new geometry.

Sub SetEmpty()—Sets this geometry to the empty geometry, making this geometry represents the empty
point set, &, for the coordinate space.

2.2.1.3 Methods for testing Spatial Relations between geometric objects :

The methods in this section are defined and described in more detail following the description of the sub
types of Geometry. These methods are part of the optional ISpatialRelation interface, which geometry
objects may support.

Function Contains(other As IGeometry) As Boolean— Returns TRUE if this geometry ‘spatially contains’
another geometry.

Function Crosses(other As IGeometry) As Boolean— Returns TRUE if this geometry ‘spatially crosses’
another geometry.

Function Disjoint(other As IGeometry) As Boolean— Returns TRUE if this geometry is ‘spatially disjoint’
from another geometry.

Function Equals(other As IGeometry) As Boolean—Returns TRUE if this geometry is “spatially equal’ to
another geometry.

Page 2-7

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

Function Intersects(other As IGeometry) As Boolean— Returns TRUE if this geometry ‘spatially
intersects’ another geometry.

Function Overlaps(other As IGeometry) As Boolean— Returns TRUE if this geometry “spatially overlaps’
another geometry.

Function Touches(other As IGeometry) As Boolean— Returns TRUE if this geometry ‘spatially touches’
another geometry.

Function Within(other As IGeometry) As Boolean— Returns TRUE if this geometry is ‘spatially within’
another geometry.

A second optional spatial relationship interface, ISpatialRelation2, may be used for generalised spatial
testing with the Relate function.

Function Relate(other As IGeometry, intersectionPatternMatrix As String) As Boolean— Returns TRUE if
this geometry is spatially related to another Geometry, by testing for intersections between the Interior,
Boundary and Exterior of the two geometries as specified by the values in the intersectionPatternMatrix.

2.2.1.4 Methods that support Spatial Analysis

These methods are part of the optional ISpatialOperator interface, which geometry objects may support.

Function Boundary() As IGeometry)—Returns the closure of the combinatorial boundary of the
geometry.. Because the result of this function is a closure, and hence topologically closed, the resulting
boundary can be represented using representational geometry primitives.

Function Buffer(Distance As Double) As IGeometry—Returns a geometry that represents all points whose
distance from this geometry is less than or equal to distance. Calculations are in the Spatial Reference
System of this geometry.

Function ConvexHull() As IGeometry—Returns a geometry that represents the convex hull of this
geometry.

Sub Difference(other As IGeometry, result As IGeometry) —Returns a geometry that represents the point
set difference of the source geometry with anotherGeometry.

Function Distance(other As IGeometry) As Double—Returns the shortest distance between any two points
in the two geometries as calculated in the spatial reference system of this geometry.

Sub Intersection(other As IGeometry, result As IGeometry) —Returns a geometry that represents the
point set intersection of the source geometry with anotherGeometry.

Sub SymmetricDifference(other As IGeometry, result As IGeometry) —Returns a geometry that
represents the point set symmetric difference of the source geometry with anotherGeometry.

Sub Union(other As IGeometry, result As IGeometry) —Returns a geometry that represents the point set
union of the source geometry with anotherGeometry.

Page 2-8

Chapter 2 Architecture

2.2.2 Geometry Collection

A GeometryCollection is a geometry that is a collection of 1 or more geometries.

All the elements in a GeometryCollection must be in the same Spatial Reference. This is also the Spatial
Reference for the GeometryCollection.

GeometryCollection places no other constraints on its elements. Subclasses of GeometryCollection may

restrict membership based on dimension and may also place other constraints on the degree of spatial
overlap between elements.

2.2.2.1 Methods

Property NumGeometries As Long —Returns the number of geometries in the collection.

Function Geometry(index As Long) As IGeometry—Returns an indexed geometry in the collection. The
indexing starts from zero.

2.2.3 Point

A Point is a 0-dimensional geometry and represents a single location in coordinate space. A point has an x-
coordinate value and a y-coordinate value.

The boundary of a point is the empty set.

2.2.3.1 Attributes :

Property x As Double —The x-coordinate value for the point.
Property y As Double —The y-coordinate value for the point.

Sub Coords(x As Double, y As Double) — the X and Y coordinates for the point

2.2.4 MultiPoint

A MultiPoint is a 0 dimensional geometric collection. The elements of a MultiPoint are restricted to Points.
The points are not connected or ordered.

A MultiPoint is simple if no two Points in the MultiPoint are equal (have identical coordinate values).

The boundary of a MultiPoint is the empty set.

2.2.5 Curve

A curve is a one-dimensional geometric object usually stored as a sequence of points, with the subtype of
curve specifying the form of the interpolation between points. This specification defines only one subclass
of curve, LineString, which uses linear interpolation between points.

Topologically a curve is a one-dimensional geometric object that is the homeomorphic image of a real,
closed, interval D = [a, b] ={x e R Ja<=x<= b} under a mapping f:[a,b] — %? as defined in [1],
section 3.12.7.2.

Page 2-9

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

A curve is simple if it does not pass through the same point twice ([1], section 3.12.7.3)
¢ e Curve, [a, b] = c.Domain,
c.IsSimple < (¥'x1, x2 € (a, b] x1 #x2 = f(x1) =f (x2)) A (V'X1, X2 € [a, b) X1 =x2 = f(x1) =f(x2))
A curve is closed if its start point is equal to its end point. ([1], section 3.12.7.3)
The boundary of a closed curve is empty.
A Curve that is simple and closed is a Ring.
The boundary of a non-closed curve consists of its two end points. ([1], section 3.12.3.2).

A Curve is defined as topologically closed.

2.2.5.1 Methods

Property Length As Double —The length of the curve in its associated spatial reference.

Function StartPoint() As IPoint —The start point of the curve.

Function EndPoint() As IPoint —The end point of the curve.

Function Value(t As Double) As IPoint—The position of a point on the line, parameterised by length.

Property IsClosed As Boolean—Returns TRUE if the curve is closed. The start point and end point of a
closed curve are in the same place.
2.2.6 LineString, Line, LinearRing

A LineString is a curve with linear interpolation between points. Each consecutive pair of points defines a
line segment.

A Line is a LineString with exactly 2 points.
A LinearRing is a LineString that is both closed and simple. The curve in Figure 2.6—(3) is a closed

LineString that is a LinearRing. The curve in Figure 2.6—(4) is a closed LineString that is not a
LinearRing.

Page 2-10

Chapter 2 Architecture
S

R

1) 2 (3) ()]

simple non-simple closed closed
simple non-simple

e

Figure 2.6—(1) a simple LineString, (2) a non-simple LineString, (3) a simple, closed LineString (a
LinearRing), (4) a non-simple closed LineString

2.2.6.1 Methods

Property NumPoints As Long—The number of points in the LineString.

Function Point(index As Long) As IPoint—Returns an indexed point in the LineString. The indexing
starts with zero.

2.2.7 MultiCurve

A MultiCurve is a one-dimensional GeometryCollection whose elements are Curves (Figure 2.7).

MultiCurve is a non-instantiable class in this specification, it defines a set of methods for its subclasses and
is included for reasons of extensibility.

A MultiCurve is simple if and only if all of its elements are simple and the only intersections between any
two elements occur at points that are on the boundaries of both elements.

The boundary of a MultiCurve is obtained by applying the “mod 2” union rule: A point is in the boundary
of a MultiCurve if it is in the boundaries of an odd number of elements of the MultiCurve. ([1], section
3.12.3.2).

A MultiCurve is closed if all of its elements are closed. The boundary of a closed multicurve is always
empty.

A MultiCurve is defined as topologically closed.

Page 2-11

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

2.2.7.1 Methods

Property I1sClosed As Boolean—Returns TRUE if the MultiCurve is closed

Property Length As Double—The Length of this MultiCurve which is equal to the sum of the lengths of
the element Curves.

2.2.8 MultiLineString

A MultiLineString is a MultiCurve whose elements are LineStrings.

e s
s 2 1

S, €,

€ s,

(€ (@) 3

simple non-simple closed
simple

Figure 2.7—(1) a simple MultiLineString, (2) a non-simple MultiLineString with 2 elements, (3) a
simple, closed MultiLineString with 2 elements

The boundaries for the MultiLineStrings in Figure 2.7 are (1}—{s1, e2}, (2—{s1, el}, (3—J

2.2.9 Surface

A Surface is a two-dimensional geometric object.

The OpenGIS Abstract Specification defines a simple surface as consisting of a single ‘patch’ that is
associated with one ‘exterior boundary’ and O or more ‘interior’ boundaries. Simple surfaces in three-
dimensional space are isomorphic to planar surfaces. Polyhedral surfaces are formed by ‘stitching’ together
simple surfaces along their boundaries, polyhedral surfaces in three-dimensional space may not be planar
as a whole ([1], sections 3.12.9.1, 3.12.9.3).

The boundary of a simple surface is the set of closed curves corresponding to its ‘exterior’ and “interior
boundaries. ([1], section 3.12.9.4).

Page 2-12

Chapter 2 Architecture

The only instantiable subclass of surface defined in this specification, Polygon, is a simple surface that is
planar.

2.2.9.1 Methods

Property Area As Double—The area of the surface, as measured in its spatial reference system.

Function Centroid() As IPoint—The mathematical centroid for the surface. The result is not guaranteed to
be on the surface.

Function PointOnSurface() As IPoint—A point guaranteed to be on the surface.

2.2.10 Polygon

A Polygon is a planar surface, defined by 1 exterior boundary and 0 or more interior boundaries. Each
interior boundary defines a hole in the polygon.

The assertions for polygons (the rules that define valid polygons) are:
1. Polygons are topologically closed.

2. The boundary of a polygon consists of a set of LinearRings that make up its exterior and interior
boundaries.

3. No two rings in the boundary cross, the rings in the boundary of a polygon may intersect at a point but
only as a tangent :

P e Polygon, ¥'c1, c2 e P.Boundary(), c1 #c2, ¥'p,q € Point,p,q ecl,p #q,[p €2 =q £ 2]
4. A Polygon may not have cut lines, spikes or punctures:

P e Polygon, P = Closure(Interior(P))
5. The Interior of every Polygon is a connected point set.

6. The Exterior of a Polygon with 1 or more holes is not connected. Each hole defines a connected
component of the Exterior.

In the above assertions, Interior, Closure and Exterior have the standard topological definitions. The
combination of 1 and 3 make a Polygon a Regular Closed point set.

Polygons are simple geometries.
Figure 2.8 shows some examples of Polygons. Figure 2.9 shows some examples of geometric objects that

violate the above assertions and are not representable as single instances of Polygon. The objects shown in
Figure 2.9—(1) and 2.9—(4) can be represented as 2 separate Polygons.

Page 2-13

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

‘og

(@) @ ®

Figure 2.8—Examples of Polygons with 1, 2 and 3 rings respectively .

0o el

(€0 @ (©) 4

Figure 2.9—Examples of objects not representable as a single instance of Polygon. (1) and (4) can be
represented as 2 separate Polygons.

Page 2-14

Chapter 2 Architecture

2.2.10.1 Methods

Function ExteriorRing() As ILinearRing—Returns the exterior ring of the Polygon.
Property NumlnteriorRings As Long—Returns the number of interior rings in the Polygon.

Sub InteriorRing(index As Long, InteriorRing As ILinearRing) —Returns an indexed interior ring. The
indexing starts at zero.

2.2.11 MultiSurface

A MultiSurface is a two-dimensional geometric collection whose elements are surfaces. The interiors of
any two surfaces in a MultiSurface may not intersect. The boundaries of any two elements in a
MultiSurface may intersect at most at a finite number of points.

MultiSurface is a non-instantiable class in this specification, it defines a set of methods for its subclasses

and is included for reasons of extensibility. The instantiable subclass of MultiSurface is MultiPolygon,
corresponding to a collection of Polygons.

2.2.11.1 Methods

Property Area As Double —The area of the MultiSurface, as measured in its spatial reference system.

Function Centroid() As IPoint —The mathematical centroid for the MultiSurface. The result is not
guaranteed to be on the MultiSurface.

Function PointOnSurface() As IPoint —A point guaranteed to be on the MultiSurface.

2.2.12 MultiPolygon

A MultiPolygon is a MultiSurface whose elements are Polygons..

The assertions for MultiPolygons are :

1. The interiors of 2 Polygons that are elements of a MultiPolygon may not intersect.
M e MultiPolygon, V'Pi, Pj € M.Geometries(), i=j, Interior(Pi) » Interior(Pj) = &

2. The Boundaries of any 2 Polygons that are elements of a MultiPolygon may not “‘cross’ and may touch
at only a finite number of points. (Note that crossing is prevented by assertion 1 above).

M e MultiPolygon, V'Pi, Pj € M.Geometries(), V'ci e Pi.Boundaries(), cj Pj.Boundaries()
cincj={pl,, pk| pi e Point, 1 <=i <=k}

3. A MultiPolygon is defined as topologically closed.

4. A MultiPolygon may not have cut lines, spikes or punctures, a MultiPolygon is a Regular, Closed
point set:

7'M e MultiPolygon, M = Closure(Interior(M))

5. The interior of a MultiPolygon with more than 1 Polygon is not connected, the number of connected
components of the interior of a MultiPolygon is equal to the number of Polygons in the MultiPolygon.

Page 2-15

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

The boundary of a MultiPolygon is a set of closed curves (LineStrings) corresponding to the boundaries of
its element Polygons. Each curve in the boundary of the MultiPolygon is in the boundary of exactly 1
element Polygon, and every curve in the boundary of an element Polygon is in the boundary of the
MultiPolygon.

The reader is referred to work by Worboys, et. al (7, 8) and Clementini, et. al (5, 6) for work on the
definition and specification of MultiPolygons.

Figure 2.10 shows 4 examples of valid MultiPolygons with 1, 3, 2 and 2 polygon elements respectively.

b
q®

@ @ 3 4

Figure 2.10—Examples of MultiPolygons
Figure 2.11 shows examples of geometric objects not representable as single instances of MultiPolygons.
Note that the subclass of Surface named Polyhedral Surface described in the [1], is a faceted surface whose

facets are Polygons. A Polyhedral Surface is not a MultiPolygon because it violates the rule for
MultiPolygons that the boundaries of the element Polygons intersect only at a finite number of points.

Page 2-16

Chapter 2 Architecture

@ @ ®

Figure 2.11—Geometric objects not representable as a single instance of a MultiPolygon.

2.2.13 Relational Operators

This section provides a more detailed specification of the relational operators on geometries.

2.2.13.1 Background

The Relational Operators are Boolean methods that are used to test for the existence of a specified
topological spatial relationship between two geometries. Topological spatial relationships between two
geometric objects have been a topic of extensive study in the literature [4,5,6,7,8,9,10]. The basic
approach to comparing two geometries is to make pair-wise tests of the intersections between the Interiors,
Boundaries and Exteriors of the two geometries and to classify the relationship between the two geometries
based on the entries in the resulting ‘intersection’ matrix.

The concepts of Interior, Boundary and Exterior are well defined in general topology. For a review of these
concepts the user is referred to Egenhofer, et al [4]. These concepts can be applied in defining spatial
relationships between two-dimensional objects in two-dimensional space (%3?). In order to apply the
concepts of Interior, Boundary and Exterior to 1 and 0 dimensional objects in %%, a combinatorial topology
approach must be applied. ([1], section. 3.12.3.2). This approach is based on the accepted definitions of the
boundaries, interiors and exteriors for simplicial complexes [12] and yields the following results:

The boundary of a geometry is a set of geometries of the next lower dimension. The boundary of a Point or
a MultiPoint is the empty set. The boundary of a non-closed Curve consists of its two end Points, the
boundary of a closed Curve is empty. The boundary of a MultiCurve consists of those Points that are in the
boundaries of an odd number of its element Curves. The boundary of a Polygon consists of its set of Rings.
The boundary of a MultiPolygon consists of the set of Rings of its Polygons. The boundary of an arbitrary
collection of geometries whose interiors are disjoint consists of geometries drawn from the boundaries of
the element geometries by application of the “mod 2 union rule ([1], section 3.12.3.2).

Page 2-17

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

The domain of geometric objects considered is those that are topologically closed. The interior of a
geometry consists of those points that are left when the boundary points are removed. The exterior of a
geometry consists of points not in the interior or boundary.

Studies on the relationships between two geometries both of maximal dimension in " and % considered
pair-wise intersections between the Interior and Boundary sets and led to the definition of a 4 Intersection
Model [8]. The model was extended to consider the exterior of the input geometries, resulting in a nine
intersection model [11] and further extended to include information on the dimension of the results of the
pair-wise intersections resulting in a dimensionally extended nine intersection model [5]. These extensions
allow the model to express spatial relationships between points, lines and areas, including areas with holes
and multi component lines and areas [6].

2.2.13.2 The Dimensionally Extended Nine-Intersection Model

Given a geometry a, let I(a), B(a) and E(a) represent the Interior, Boundary and Exterior of a respectively.
The intersection of any two of I(a), B(a) and E(a) can result in a set of geometries, x, of mixed dimension.
For example, the intersection of the boundaries of two polygons may consist of a point and a line. Let
dim(x) return the maximum dimension (-1, 0, 1, or 2) of the geometries in x, with a numeric value of -1
corresponding to dim(&©). A dimensionally extended nine-intersection matrix (DE-9IM) then has the form:

Interior Boundary Exterior
Interior dim(1(a) i (b)) dim(I(@~B()) dim(l(a) E(b))
Boundary dim(B@)l()) dimB@)B(b) dim(B(a) E(b))
Exterior dimE@NI(b) dimE@B(b) dim(E@@)E(b)

Table 2.2—The DE-9IM

For regular, topologically closed input geometries, computing the dimension of the intersection of the
Interior, Boundary and Exterior sets does not have as a prerequisite the explicit computation and
representation of these sets. For example to compute if the interiors of two regular closed polygons
intersect, and to ascertain the dimension of this intersection, it is not necessary to explicitly represent the
interior of the two polygons (which are topologically open sets) as separate geometries. In most cases the
dimension of the intersection value at a cell is highly constrained given the type of the two geometries. For
example, in the Line-Area case the only possible values for the Interior-Interior cell are drawn from {-1, 1}
and in the Area-Area case the only possible values for the Interior-Interior cell are drawn from {-1, 2}. In
such cases no work beyond detecting the intersection is required.

Figure 2.12 shows an example DE-9IM for the case where a and b are two polygons that overlap.

Page 2-18

Chapter 2 Architecture

Interior Boundary Exterior
Interior 2 1 2
Boundary 1 0 1
Exterior 2 1 2

Figure 2.12—An example instance and its DE-9IM

A spatial relationship predicate can be formulated on two geometries that takes as input a pattern matrix
representing the set of acceptable values for the DE-91M for the two geometries. If the spatial relationship
between the two geometries corresponds to one of the acceptable values as represented by the pattern
matrix, then the predicate returns TRUE.
The pattern matrix consists of a set of 9 pattern-values, one for each cell in the matrix. The possible
pattern-values p are {T, F, *, 0, 1, 2} and their meanings for any cell where x is the intersection set for the
cell are as follows:

p=T=>dim(x) €0, 1, 2}, i.e. x =&

p=F=>dim(x)=-1,ie.x=&

p=*=>dim(x) €{-1,0, 1, 2}, i.e. Don’t Care

p=0=>dim(x)=0

p=1=>dim(x)=1

p=2=>dimx)=2

The pattern matrix can be represented as an array or list of nine characters in row major order. As an
example the following code fragment could be used to test for “Overlap” between two areas:

char * overlapMatrix = “T*T***T**>;
Geometry* a, b;

Boolean b = a->Relate(b, overlapMatrix);

Page 2-19

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

2.2.13.3 Named Spatial Relationship predicates based on the DE-9IM

The Relate predicate based on the pattern matrix has the advantage that clients can test for a large number
of spatial relationships and fine tune the particular relationship being tested. It has the disadvantage that it
is a lower level building block and does not have a corresponding natural language equivalent. Users of the
proposed system include IT developers using the COM API from a language such as Visual Basic, and
interactive SQL users who may wish, for example, to select all features “spatially within” a query polygon,
in addition to more spatially ‘sophisticated’ GIS developers.

To address the needs of such users a set of named spatial relationship predicates have been defined in [5,6]
for the DE-9IM. The five predicates are named Disjoint, Touch, Cross, In and Overlap and have the
following properties:

1. They are mutually exclusive.

2. They provide a complete covering of all topological cases.

3. They apply to spatial relationships between two geometries of either the same or different dimension.
4. Each predicate can be expressed in terms of a corresponding set of DE-91M matrix patterns.

5. Any realizable DE-91M can be expressed as a boolean expression over the 5 predicates, given the
Boundary method on Geometry and the StartPoint and EndPoint method on Curve.

The definition of these predicates [5,6] is given below. In these definitions the term P is used to refer to 0
dimensional geometries (Points and MultiPoints), L is used to refer to one-dimensional geometries
(LineStrings and MultiLineStrings) and A is used to refer to two-dimensional geometries (Polygons and
MultiPolygons).
Disjoint
Given two (topologically closed) geometries a and b,

a.Disjoint(b) anb=o
Expressed in terms of the DE-9IM:

a.Disjoint(b) < (1(a)I(b) = &) A (1(2) NB(b) = &) A (B(@) NI(b) = &) A (B(a) NB(b) = &)
Qa.ReIate(b, “FF*FF****")

Touches

The Touches relation between two geometries a and b applies to the A/A, L/L, L/A, P/A and P/L groups of
relationships but not to the P/P group. It is defined as:

a.Touches(b) < (I(@)Nl(b) = D) A (a nb) =&
Expressed in terms of the DE-9IM:

a.Touches(b) < (1(@)l(b) = &) A ((B(@) »1(b) #2) v (I(a) "B(b) #2) v (B(a)B(b) =))
o a.Relate(h, “FT*******”) | a Relate(h, “F**T*****”) a Relate(h, “F***T****")

Figure 2.13 shows some examples of the Touches relation.

Page 2-20

Chapter 2 Architecture

Polygon/Polygon

@ () m<>

LineString/LineString

@ ‘%\‘; ®) / \2

Polygon/LineString

OM

Polygon/Point

3

LineString/Point

/

Figure 2.13—Examples of the Touch relationship
Crosses
The Crosses relation applies to P/L, P/A, L/L and L/A situations. It is defined as:

a.Crosses(b) < (dim(l(a) » I(b) < max(dim(l(a)), dim(1(b)))) A (a nb =za) A (a nb =b)
Expressed in terms of the DE-9IM:
Casea eP,b eLorCasea eP,b cAorCasea elL,b e A
a.Crosses(b) < (1(a) N I(b) =) A (I(a) N E(b) =) < a.Relate(h, “T*T******")
Casea eL,b eL:
a.Crosses(b) < dim(I(a)nl(b)) = 0 < a.Relate(b, “Q********>).

Figure 2.14 shows some examples of the Crosses relation.

Page 2-21

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

Polygon/LineString

LineString/LineString

Figure 2.14—Examples of the Cross relationship
In (Within)
The Within relation is defined as:
a.Within(b) < (a nb =a) 4 (I(a) NE(b) = ©)
Expressed in terms of the DE-9IM:
aWithin(b) < (Ia)~l(b) = 2) 4 (1(a) ~E(b) =2) A (B(a)E(b) =€)) < aRelate(b, “TF*Fr+x+x")

Figure 2.15 shows some examples of the Within relation.

Page 2-22

Chapter 2 Architecture

Polygon/Polygon

(@) (@

LineString/LineString

A~

Polygon/LineString

-

Polygon/Point

(D

Figure 2.15—Examples of the Within relationship
Overlaps
The Overlaps relation is defined for A/A, L/L and P/P situations.
It is defined as:
a.Overlaps(b) < (dim(I(a)) = dim(I(b)) = dim(l(a) Nl(b))) A (@ "b =a) A(a nb =bh)
Expressed in terms of the DE-9IM:
Casea eP,b ePorCasea eA /b €A:
a.Overlaps(b) < (1(a) Nl(b)z2) A (1(a) NE(b)=D) A (E(a) NI(b)2D) < a.Relate(b, “T*T***T**")
Casea elL,b eL:
a.Overlaps(b) < (dim(I(a) Nl(b) = 1) A (1(a) NE(b)=zD) A (E(a) NI(b)=D) < a.Relate(b, “1*T***T**")

Figure 2.16 shows some examples of the Overlaps relation.

Page 2-23

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

Polygon/LineString

LineString/LineString

Figure 2.16—Examples of the Overlap relationship
The following additional named predicates are also defined for user convenience:
Contains
a.Contains(b) < b.Within(a)
Intersects

a.Intersects(b) < /a.Disjoint(b)

2.3 Spatial Reference System Object Model

The Spatial Reference System Object Model proposed in this specification is shown in Figure 2.17. This
object model is based upon the OpenGIS Abstract Specification and uses the geodetic model for spatial
reference systems of the European Petroleum Survey Group (EPSG) and the Petrotechnical Open Software
Corp. (POSC). Chapter 3 of this document describes the set of COM Classes and Interfaces that
implement this object Model.

Page 2-24

Chapter 2 Architecture

SpatialReference

GeodeticSpatialReference

Unit Datum

T

HorizontalDatum

ProjectedCS GeographicCS

LinearUnit AngularUnit

Projection Ellipsoid

Figure 2.17—The Spatial Reference System Object Model

2.4 Summary

The architecture and details contained in this specification satisfy the functional requirements of this
specification subject to the detail notes in the narrative. The architecture has the following characteristics:

e Provides a COM OLE implementation consistent with OLE DB
o Easily implemented by multiple vendors

o Designed with performance in mind

o Designed with reliability and data integrity in mind

e Testable implementations

e Extensible in all key areas

2.4.1 Requirement summary

This specification describes data access methodologies, geometry objects, and spatial reference objects.
Vendors, consultants and users are not required to implement the complete suite of objects. It is expected
that implementations from a variety of users will be mixed in a given application environment. For

Page 2-25

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

example, a consultant may utilize data providers from Vendors A, B and C. He can then use Vendor D’s
geometry objects to analyze the geometry extracted from the data sources.

Page 2-26

3 Component Specifications

3.1 OLEDB and ADO Components

ADO and OLEDB are the facilities by which consumers and providers communicate data and metadata. To
achieve a sense of seamless interoperability, standards must be defined to allow GIS consumers and
providers to communicate GIS information using these facilities. These standards enable an OLEDB data
consumer to determine the GIS capabilities of an OLEDB data provider and retrieve GIS information in a
predictable manner.

An OLEDB data consumer that cares nothing about GIS may still utilize data from an OGIS data provider
as if it were any other OLEDB data provider. This consumer will simply not take advantage of the GIS
information. Similarly, an OGIS data consumer can use the same OLEDB API, without the GIS standards,
to utilize data from any OLEDB data provider.

These standards involve:

e OGIS Data Provider Registry Entries—OGIS data providers must register support for the
"OGISDataProvider" component category so that consumers can distinguish them from other
OLEDB Data Providers.

e GIS Metadata—Required and Optional GIS Metadata and the manner by which the client retrieves it
are described. To a great extent, this is the bulk of the proposal—this is how the client knows there is
GIS information and how to get it.

e Which tables are considered GIS features

e Which columns contain geometry; what the geometry’s spatial reference is and what type of
geometry column it is.

e What the Spatial Reference(s) of the Data Source are.
e What Spatial Operators are supported by the OLEDB Data Provider

e IColumnsRowset—~Additional GIS columns are defined for the Rowset returned by the
GetColumnsRowset method.

Page 3-1

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

e Geometry—Methods are described for acquiring geometry from a Column or Field as a
WKBGeometry in OLEDB or a variant in ADO.

e Spatial Reference Information—Methods are described for acquiring Spatial Reference information
from the session level as well as from the Rowset as a Variant in OLEDB or in ADO.

e Spatial Filter—Standard spatial filter parameters are defined for use with a command in ADO and in
OLEDB. Parameters are spatial filter, spatial operator and Geometry Field/Column name.

Although these standards are needed to allow GIS consumers and providers to communicate GIS
information, there is no strict "level of compliance" scheme for OGIS data servers. Clients are expected to
use standard COM and OLE DB techniques for determining if a data server supports a specified type of
functionality. It is up to the client to decide what action it will take if a provider does not provide that
support.

The minimum level of support that a data server must pass is registering support for the
"0GISDataProvider" component category.

Data providers which do not support schema rowsets or IColumnsRowset : : Get ColumnsRowset are
encouraged to name their geometry columns "oc1s_croMETRY". Clients are also encouraged to look for
columns with this name if the provider does not support the schema methods noted above.

A data provider which wishes to provide additional GIS Metadata and Geometry information to the client,
should do so in compliance with the following sections.

3.1.1 OGIS Data Provider Registry Entries

OGIS OLEDB Data Providers must register support for the "oGIsbataProvider" component category.
Its GUID is CATID 0oGISDataProvider®. Consumers can use this to distinguish OGIS OLEDB Data
Providers.

3.1.2 GIS Metadata

When an OLEDB data provider exposes GIS Metadata, the consumer can subsequently access and
interpret data in a GIS context. This metadata is three additional SchemaRowsets and an additional
PropertySet.

3.1.3 DBSCHEMA_OGIS_FEATURE_TABLES Rowset

This rowset indicates those tables that the consumer can query as features. Any entry in the
DBSCHEMA OGIS_FEATURE TABLES Rowset also appears as an entry in the standard OLEDB Tables
Rowset’.The columns in the two rowsets are different, but the rows in the standard Tables Rowset should
be a superset of the rows in the DBSCHEMA OGIS FEATURE_TABLES Rowset .. Although there is a
column for FEATURE TABLE_ALIAS Which might be exposed in a Graphical User Interface, this is not
what should be used while querying. TABLE_NAME along with TABLE CATALOG and TABLE_SCHEMA
should be used when performing database queries.

Column_Name Type_Indicator Description

' The CATID OGISDataProvider GUID is defined in OLEDBGIS.h, supplied separately

2 This specification makes no restriction on Table Type and assumes appropriate use of OLE/DB schema rowsets.

Page 3-2

Chapter 3 Component Specifications

FEATURE_TABLE_ALIAS DBTYPE_WSTR User Friendly Feature Name—may be NULL

TABLE_CATALOG DBTYPE_WSTR Catalog name in which the table is defined. NULL if
the provider does not support catalogs.

TABLE_SCHEMA DBTYPE_WSTR Schema name in which the Feature Table is defined,
NULL if the provider does not support schemas.

TABLE_NAME DBTYPE_WSTR Feature Table Name

ID_COLUMN_NAME DBTYPE_WSTR Preferred column name to reference rows. OGIS
requires this column to have a name®.

DG_COLUMN_NAME DBTYPE_WSTR Default Geometry column name. OGIS requires this
column to have a name.

This rowset can be accessed in OLEDB from the session via IDBSchemaRowset: : GetRowset, passing
the GUID (0GIS_FEATURE_TABLES_GUID) for the DBSCHEMA_0GI1S_FEATURE_TABLES Rowset. In
ADO this is achieved via Connection.OpenSchema (enum, [restrictions], [guid]). The
enum value in this case will be a specific ADO enum* indicating that the last argument is a GUID that must
be supplied by the caller and that GUID is what is passed to the OLE-DB provider. In this case it is the
0GIS_FEATURE_TABLES_GUID®.

There are no restrictions defined on the DBSCHEMA_0GI1S_FEATURE_TABLES Rowset.

3.1.4 DBSCHEMA_OGIS_GEOMETRY_COLUMNS Rowset

This rowset identifies the feature columns in the catalog which are geographic geometry. The feature
identified by TABLE_CATALOG, TABLE_SCHEMA, and TABLE_NAME must appear in the
DBSCHEMA_OGIS_FEATURE_TABLES Rowset. The geometry type and spatial reference system are
specified for the column.

Column_Name Type_Indicator Description

TABLE_CATALOG DBTYPE_WSTR Catalog name in which the Feature’s Table is
defined. NULL if the provider does not support
catalogs.

TABLE_SCHEMA DBTYPE_WSTR Schema name in which the Feature’s Table is
defined, NULL if the provider does not support
schemas.

TABLE_NAME DBTYPE_WSTR The Feature Table Name.

COLUMN_NAME DBTYPE_WSTR Name of column containing geometry

® The use of just COLUMN_GUID and COLUMN_PROP I D is not sufficient for OGIS.
* The ADO-supplied enum for this will be available with ADO 1.5.
®The OGIS_FEATURE_TABLES_GUID is defined in OLEDBGIS.h, supplied separately.

Page 3-3

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

GEOM_TYPE DBTYPE_UI4 Type of geometry column. Values taken from the
0GI1S_Geometry Enumerated Type.

SPATIAL_REF_SYSTEM_ID DBTYPE_14 Foreign Key—this is the 1D of the Spatial
Reference System of the geometry column. This

ID can be used to find the Spatial Reference in the
DBSCHEMA_OGIS_SPATIALREFERENCESYSTEMS
Rowset

This rowset can be accessed from the Session via 1DBSchemaRowset: :GetRowset, passing the GUID
(DBSCHEMA _0GIS_GEOMETRY_COLUMNS) for the DBSCHEMA_0GIS_GEOMETRY_COLUMNS Rowset. In
ADO this is achieved via Connection.OpenSchema (enum, [restrictions], [guid]). The enum
value in this case will be a specific ADO enum indicating that the last argument is a GUID that must be
supplied by the caller and that GUID is what is passed to the OLE-DB provider. In this case it is the
DBSCHEMA 0GIS_GEOMETRY_COLUMNS_GUID®.

There are no restrictions defined on the DBSCHEMA_0GI1S_GEOMETRY_COLUMNS Rowset.

3.1.5 DBSCHEMA_OGIS_SPATIAL_REF_SYSTEMS Rowset

This Rowset indicates the Spatial Reference Systems supported by the data provider in this Session.
There can be more than one row in the Rowset. This Rowset contains the set of all the Spatial Reference
Systems encountered for all the columns found in the DBSCHEMA_0GIS_GEOMETRY_COLUMNS Rowset.

Column_Name Type_Indicator Description

SPATIAL_REF_SYSTEM_ID DBTYPE_14 ID of the Spatial Reference System. May be
NULL only if SPATIAL_REF_SYSTEM_WKT is
NULL.

AUTHORITY_NAME DBTYPE_WSTR Defining Authority for this Spatial Reference

System, e.g., “POSC”, “USGS”. May be NULL.

AUTHORITY_ID DBTYPE_14 Authority specific identifier. This is a Well-
known id assigned to the spatial reference
system by the authority. May be NULL.

SPATIAL_REF_SYSTEM_WKT DBTYPE_BSTR The Well-known Text Representation of the
Spatial Reference System. May be NULL.

This rowset can be accessed from the Session via 1DBSchemaRowset: :GetRowset, passing the GUID
(DBSCHEMA_0GIS_SPATIAL_REFERENCE) for the DBSCHEMA_OGIS_SPATIAL_REF_SYSTEMS
Rowset. In ADO this is achieved via Connection.OpenSchema (enum, [restrictions],

[guid]). The enum value in this case will be a specific ADO enum indicating that the last argument is a
GUID that must be supplied by the caller and that GUID is what is passed to the OLE-DB provider. In this
case it is the DBSCHEMA_OGIS_SPATIAL_REFERENCE7.

® The DBSCHEMA_OGI1S_GEOMETRY_COLUMNS is defined in OLEDBGIS.h, supplied separately.
" The DBSCHEMA_OGIS_SPATIAL_REF_SYSTEMS is defined in OLEDBGIS.h, supplied separately.

Page 3-4

Chapter 3 Component Specifications

There are no restrictions defined on the DBSCHEMA_0OGI1S_SPATIAL_REF_SYSTEMS Rowset.

3.1.6 OGIS Property Set

This is a property set for OGIS specific attributes of a Data Source. This property set has GUID
DPPROPSET_OGIS_SPATIAL_OPS

NOTE: Need to add two columns to table. First new column is the short description, second column is
READ or READ/WRITE flag.

Property 1D® Type Description
Indicator
DBPROP_OGIS_TOUCHES VT_BOOL All points in the intersection of geometries of

Data Source and the Spatial Filter lie on a
geometry boundary and the interiors of the
geometries of the Data Source and the Spatial
Filter do not intersect

DBPROP_OGIS_WITHIN VT_BOOL Geometries of the Data Source are wholly
contained by the Spatial Filter.

DBPROP_OGIS_CONTAINS VT_BOOL The Spatial Filter is wholly contained by
geometries of the Data Source.

DBPROP_OGIS_CROSSES VT_BOOL Geometries of the Data Source and the Spatial
Filter intersect, but do not wholly contain each
other, and the dimension of the intersection of
their interiors is one less than the maximum
dimension of their interiors.

DBPROP_OGIS_OVERLAPS VT_BOOL Geometries of the Data Source and the Spatial
Filter intersect and the dimension of the
intersection is the same as that of the input
geometries but the intersection is different
than the input geometries.

DBPROP_OGIS_DISJOINT VT_BOOL Intersection of geometries of the Data Source
and the Spatial Filter is the empty set.

DBPROP_OGIS_INTERSECTS VT_BOOL Intersection of geometries of the Data Source
and the Spatial Filter is not the empty set.

DBPROP_OGIS_ENVELOPE_INTERSECT | VT_BOOL Intersection of the envelope of geometries of

S the Data Source and the envelope of the
Spatial Filter is not the empty set.

DBPROP_OGIS_INDEX_INTERSECTS VT_BOOL Intersection of the spatial index entries of the

8 Values of Property IDs of the OGIS Property Set are defined in OLEDBGIS.h, supplied separately.

Page 3-5

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

geometries of the Data Source and the
geometry of the Spatial Filter is not the empty
set.

3.1.7 IColumnsRowset:GetColumnsRowset

The consumer can access schema rowset information from the Session level via
IDBSchemaRowset : : GetRowset. However, given a Rowset, the consumer can get specific information
about that Rowset via 1ColumnsRowset : : GetColumnsRowset without reverting to the Session.

The standard columns in the 1ColumnsRowset are as defined by the OLEDB specification.

The OGIS Rowset consumer requires more columns than the standard 1ColumnsRowset or the
1ColumnsInfo interfaces can provide. The 1ColumnsRowset: : GetColumnsRowset must additionally
provide all columns from the DBSCHEMA_OGIS_GEOMETRY_COLUMNS Rowset defined earlier except for
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, and COLUMN_NAME. Currently, that includes GEOM_TYPE
and SPATIAL_REF_SYSTEM_ID. In addition, the OGIS OLEDB data provider is obligated to provide the
SPATIAL_REF_SYSTEM_WKT from the DBSCHEMA_OGIS_SPATIALREFERENCESYSTEM Rowset that
corresponds to the SPATIAL_REF_SYSTEM_ID if the consumer requests it. The consumer requests this
optional column by specifying it in rgOptColumns.

For the rows corresponding to non-geometry columns the values of GEOM_TYPE and
SPATIAL_REF_SYSTEM_ID (and optional SPATIAL_REF_SYSTEM_WKT) will be NULL.

This information is available to the ADO user by accessing Property objects in the Properties
collection for each Field off of the Recordset. If a Field has a non-NULL Property with name
GEOM_TYPE, then it contains geometry.

3.1.8 Geometry

The consumer can determine which columns contain geometry by calling

IDBSchemaRowset : : GetRowset or IColumnsRowset: :GetColumnsRowset. Geometry columns
should be accessible by binding to the column as DBTYPE_BYTES or as DBTYTPE_ IUNKNOWN. In the latter
case the requested 11D must be either 11D_1Stream or 11D_ISequentialStream.

The consumer can access geometry in a variety of ways
o (C++:
e build an Accessor with a DBBINDING Structure specifying a wType as DBTYPE_BYTES or
DBTYPE_BYTES | DBTYPE_BYREF and use IRowset: :GetData to access the geometry as
a Well-known Binary Representation of Geometry or WKBGeometry.

e ADO:

e dimavariable as Variant and retrieve the Well-known Binary Representation of Geometry
(WKBGeometry) via

variable = Field.GetChunk

In this situation ADO binds to the geometry column as DBTYPE_ IUNKNOWN and requests the
IStreanm interface. It reads the data with this interface to produce a variant of type
VT_ARRAY|VT_UI1.

Page 3-6

Chapter 3 Component Specifications

e dima variable as Variant and retrieve the WKBGeometry via

variable = Field.value

In this case ADO binds to the geometry column as DBTYPE_BYTES and reads the data to build a
variant of type VT_ARRAY |VT_UI1°.

3.1.9 Spatial Reference

The consumer can determine what Spatial References are in the data source by calling
IDBSchemaRowset : : GetRowset. The consumer can determine the Spatial Reference System of a
geometry column of a Rowset by calling 1ColumnsRowset: :GetColumnsRowset. The
Spatial_Reference_System_WKT should be accessible by binding to the column as DBTYPE_BSTR.

The consumer can access the values in the Spatial_Reference_System_ WKT column in a variety of
ways

o C++;

e Dbuild an Accessor with a DBBINDING Structure specifying a wType as DBTYPE_BSTR and
use IRowset: :GetData to access the geometry as a Well-known Text Representation of
SpatialReference (WKTSpatialReference).

e ADO:
e dimavariable as String or Variant and retrieve the WKTSpatialReference via

variable = Field.value

In this case ADO binds to the geometry column as DBTYPE_BSTR.

3.1.10 Spatial Filter

OLEDB data providers may allow queries to be spatially filtered. Consumers specify spatial filtering
criteria by setting parameters on the Command before execution. There are three parameters for spatial
filtering:

Parameter Name Type Description

SPATIAL_FILTER DBTYPE_VARIANT Variant of type VT_ARRAY|VT_UI1 or
VT_UNKNOWN. This is the Well-known
Binary Representation of Geometry
containing the geometry of the Spatial
Filter. In the latter case, the supplied
interface pointer must be convertible to

° Be acquainted with Chapter 6, “Getting and Setting Data”, in the OLEDB Programmer’s Reference when binding with WType as
DBTYPE_BYTES | DBTYPE_BYREF; especially “Data Parts—Length—Length Values”, “DBBIND ING Structures—
dbMemOwner™” and “Memory Management”. When using DBTYPE_BYREF and not copying data into the consumer’s buffer,
dbMemOwner governs how memory for the data is freed and its lifetime from the provider and consumer point of view. Also be
acquainted with Chapter 7, “BLOBs and OLE Objects” section “BLOBs as In-Memory Data” as well as “Appendix A Data Types”
where it describes DBTYPE_BYTES.

Page 3-7

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

IStream or ISequentialStream.

SPATIAL_OPERATOR DBTYPE_Ul4 Property ID of the spatial operator. OGIS
Property Set contains the operators
supported by this Data Source.

SPATIAL_GEOM_COL_NAME DBTYPE_WSTR Name of column to be spatially filtered.

These parameters are independent of the command language text (e.g. SQL). If the command language
text is parameterized, then the spatial parameters appear after any command language parameters. The
order of the Spatial Filter parameters is [SPATIAL_FILTER, SPATIAL_OPERATOR,
SPATIAL_GEOM_COL_NAME].

3.1.11 OGIS_Geometry Enumerated Type

The enumeration value identifies the geometry type and appears as the GEOM_TYPE of the
DBSCHEMA_0GIS_GeometryColumns Rowset. A geometry column may contain geometry of any
subclass of the type indicated by the value of GEOM_TYPE.

Value®

DBGEOM_GEOMETRY

DBGEOM_POINT

DBGEOM_CURVE

DBGEOM_L INESTRING

DBGEOM_SURFACE

DBGEOM_POLYGON

DBGEOM_COLLECTION

DBGEOM_MULT ISURFACE

DBGEOM_MULT IPOLYGON

DBGEOM_MULTICURVE

DBGEOM_MULTILINESTRING

DBGEOM_MULTIPOINT

3.2 Geometry Components—Interfaces and Classes

3.2.1 Component Overview

The Geometry interfaces provide methods for accessing, analyzing, and performing operations on
geometric objects. The interfaces described are based upon [1] and the detailed geometry model presented

0 values of OGI'S_Geometry Enumerator are defined in OLEDBGIS.h, supplied separately.

Page 3-8

Chapter 3 Component Specifications

in section 2.2. The instantiable geometry objects are Point, LineString, Polygon, MultiPoint,
MultiLineString , MultiPolygon and GeometryCollection. Each instantiable object class must implement a
number of mandatory (core) interfaces. Different geometry classes will require other interfaces specific to
their properties and behavior. These other interfaces are more advanced and considered optional.

3.2.2 A Note on Inheritance

The IDL below uses interface inheritance sparingly. The conceptual inheritance model specified by the
Geometry Object Model requires that all objects of a class C support the (mandatory) methods defined on
C and on all ancestor classes of C in the class hierarchy. In COM this implies that all the interfaces defined
on C and on its ancestor classes should be supported on any instance of C. For example, all LineStrings
must support the ILineString, ICurve and 1Geometry interfaces. It does not necessarily imply that the
ILineString interface inherit from the 1Curve interface and that 1Curve inherit from 1Geometry. The
latter is avoided in this IDL in order to retain maximum flexibility of implementation for implementers of
this specification and room for future expansion of the class hierarchy.

3.2.3 Interfaces and Classes

The detailed interface specification is defined using Microsoft’s Interface Definition
Language (MIDL).interface IMultiCurve;

interface IMultiPoint;

//

// Geometry interfaces

//

[object, uuid(6A124031-FE38-11d0-BECE-00805F7C4268)]
interface IGeometry : IUnknown

{

[propget] HRESULT Dimension([out, retval] long * dimension);

[propget] HRESULT SpatialReference([out, retval] ISpatialReference** spatialRef);
[propputref] HRESULT SpatialReference([in] ISpatialReference* spatialRef);

[propget] HRESULT IsEmpty([out, retval] VARIANT _BOOL * isEmpty);

HRESULT SetEmpty();

[propget] HRESULT IsSimple([out, retval] VARIANT_BOOL * isSimple);

HRESULT Envelope([out, retval] 1Geometry** envelope);

HRESULT Clone([out, retval] IGeometry ** newShape);

HRESULT Project([in] ISpatialReference * newSystem, [out, retval] IGeometry **result);

HRESULT Extent2D([out] double* minX, [out] double* minY, [out] double* maxX, [out]
double* maxY);

¥

[object, uuid(6A124032-FE38-11d0-BECE-00805F7C4268)]
interface IWks : IUnknown
{
HRESULT ExportToWKB([in, out] VARIANT* wkb);
HRESULT ExportToWKT([out, retval] BSTR* wkt);
HRESULT ImportFromWKB([in] VARIANT wkb, [in] ISpatialReference* spatialRef);

Page 3-9

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

HRESULT ImportFromWKT([in] BSTR wkt, [in] ISpatialReference* spatialRef);
}:

[object, uuid(6A124033-FE38-11d0-BECE-00805F7C4268) 1]
interface IGeometryFactory : IUnknown

{

HRESULT CreateFromWKB([in] VARIANT wkb, [in] ISpatialReference* spatialRef, [out,
retval] 1Geometry** geometry);

HRESULT CreateFromWKT([in] BSTR wkt, [in] ISpatialReference* spatialRef, [out, retval]
1Geometry** geometry);

}

[object, uuid(6A124035-FE38-11d0-BECE-00805F7C4268)]

interface IPoint : 1Geometry

{

HRESULT Coords([out] double* x, [out] double * y);
[propget] HRESULT X([out, retval] double * x); // for OLE Automation Clients
[propget] HRESULT Y([out, retval] double * y); // for Automation Clients

}:

[object, uuid(6A124036-FE38-11d0-BECE-00805F7C4268)]
interface ICurve : IGeometry
{
[propget] HRESULT Length([out, retval] double* value);
HRESULT StartPoint([out, retval] IPoint** sp);
HRESULT EndPoint([out, retval] IPoint** ep);
[propget] HRESULT IsClosed([out, retval] VARIANT_BOOL * isClosed);
HRESULT Value([in] double t, [out, retval] IPoint** p);

¥

[object, uuid(6A124037-FE38-11d0-BECE-00805F7C4268)]

interface ILineString : ICurve

{
[propget] HRESULT NumPoints ([out, retval] long * numPoints);
HRESULT Point ([in] long index, [out, retval] IPoint ** point);

[object, uuid(6A124038-FE38-11d0-BECE-00805F7C4268)]

interface ILinearRing : lILineString
{
}:

[object, uuid(6A124039-FE38-11d0-BECE-00805F7C4268)]

interface ISurface : I1Geometry

{

Page 3-10

Chapter 3 Component Specifications

[propget] HRESULT Area ([out, retval] double* area);
HRESULT Centroid ([out, retval] IPoint** result);
HRESULT PointOnSurface ([out, retval] IPoint** result);

[object, uuid(6A12403A-FE38-11d0-BECE-00805F7C4268)]
interface IGeometryCollection : 1Geometry
{
[propget] HRESULT NumGeometries ([out, retval] long* numberOf) ;
HRESULT Geometry ([in] long index, [out, retval] 1Geometry** geometry);

[object, uuid(6A12403C-FE38-11d0-BECE-00805F7C4268)]

interface IPolygon : ISurface

{
HRESULT ExteriorRing([out, retval] ILinearRing ** exteriorRing);
[propget] HRESULT NumlnteriorRings([out, retval] long * count);
HRESULT InteriorRing([in] long index, [out] ILinearRing ** interiorRing);

[object, uuid(6A12403D-FE38-11d0-BECE-00805F7C4268)]
interface IMultiCurve : IGeometryCollection
{
[propget] HRESULT Length ([out, retval] double* length);
[propget] HRESULT IsClosed([out, retval] VARIANT_BOOL * isClosed);
}:

[object, uuid(6A12403F-FE38-11d0-BECE-00805F7C4268)]
interface IMultiSurface : 1GeometryCollection
{
[propget] HRESULT Area ([out, retval] double* area);
HRESULT Centroid ([out, retval] IPoint** result);
HRESULT PointOnSurface ([out, retval] IPoint** result);
}:

// implementors may choose to implement one or both of the Spatial Relation interfaces.

[object, uuid(6A124040-FE38-11d0-BECE-00805F7C4268)]

interface ISpatialRelation : IUnknown

{
HRESULT Equals ([in] 1Geometry* other, [out, retval] VARIANT_BOOL * equals);
HRESULT Touches ([in] IGeometry* other, [out, retval] VARIANT_BOOL * touches);

Page 3-11

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

HRESULT Contains([in] IGeometry* other, [out, retval] VARIANT_BOOL * contains);
HRESULT Within ([in] I1Geometry* other, [out, retval] VARIANT_BOOL * within);
HRESULT Disjoint([in] IGeometry* other, [out, retval] VARIANT_BOOL * disjoint);
HRESULT Crosses ([in] IGeometry* other, [out, retval] VARIANT_BOOL * crosses);
HRESULT Overlaps([in] IGeometry* other, [out, retval] VARIANT_BOOL * overlaps);
HRESULT Intersects([in] 1Geometry* other, [out, retval] VARIANT_BOOL * overlaps);

[object, uuid(6A124041-FE38-11d0-BECE-00805F7C4268) 1]
interface ISpatialRelation2 : IUnknown

{
HRESULT Relate ([in] IGeometry* other,

[in] BSTR patternMatrix, [out, retval] VARIANT_BOOL* isRelated);
}:

// The ISpatialOperator interface groups the commonly used and agreed upon operators
// into a single interface. Operators that are less commonly used can be moved into a
// separate ISpatialOperator2 interface.

// The goal has been to minimize the number of interfaces that clients deal with.

[object, uuid(6A124042-FE38-11d0-BECE-00805F7C4268)]

interface ISpatialOperator : IUnknown

{

// Proximity Operators

HRESULT Distance([in] IGeometry* other, [out, retval] double* distance);

// Topological Operators

HRESULT Boundary([out, retval] 1Geometry ** boundary);

// Analysis - Constructive Operators

HRESULT Buffer([in] double distance, [out, retval] 1Geometry** result);
HRESULT ConvexHull([out, retval] IGeometry ** result);

// Set Theoretic Operators

HRESULT Intersection ([in] IGeometry* other, [out] 1Geometry ** result);
HRESULT Union([in] 1Geometry* other, [out] 1Geometry ** result);

HRESULT Difference([in] 1Geometry* other, [out] IGeometry ** result);

HRESULT SymmetricDifference([in] 1Geometry* other, [out] 1Geometry ** result);

Page 3-12

Chapter 3 Component Specifications

#if defined(_GEOMETRY)

// example of a specific geometry library implementation

[uuid(6A124045-FE38-11d0-BECE-00805F7C4268),

1cid(0x0000),

version(1.0)

library Geometry

{

// COM Classes would be defined here. CoTypes are shown instead :

coType Point

{
[mandatory] interface IGeometry;
[mandatory] interface IPoint;

[mandatory] interface IWks;

[optional] interface ISpatialRelation;
[optional] interface ISpatialRelation2;

[optional] interface ISpatialOperator;

¥

coType LineString

{
[mandatory] interface IGeometry;
[mandatory] interface ICurve;
[mandatory] interface ILineString;

[mandatory] interface IWks;
[optional] interface ISpatialRelation;

[optional] interface ISpatialRelation2;

[optional] interface ISpatialOperator;

¥

coType Polygon

Page 3-13

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

[mandatory] interface IGeometry;
[mandatory] interface ISurface;
[mandatory] interface IPolygon;

[mandatory] interface IWks;

[optional] interface ISpatialRelation;
[optional] interface ISpatialRelation2;

[optional] interface ISpatialOperator;

coType MultiPoint

{
[mandatory] interface 1Geometry;
[mandatory] interface IGeometryCollection;

[mandatory] interface IWks;

[optional] interface ISpatialRelation;
[optional] interface ISpatialRelation2;

[optional] interface ISpatialOperator;

coType MultiLineString

{
[mandatory] interface 1Geometry;
[mandatory] interface IGeometryCollection;
[mandatory] interface IMultiCurve;

[mandatory] interface IWks;

[optional] interface ISpatialRelation;
[optional] interface ISpatialRelation2;

[optional] interface ISpatialOperator;

coType MultiPolygon

{
[mandatory] interface IGeometry;
[mandatory] interface IGeometryCollection;
[mandatory] interface IMultiSurface;

[mandatory] interface IWks;

Page 3-14

Chapter 3 Component Specifications

[optional] interface ISpatialRelation;
[optional] interface ISpatialRelation2;
[optional] interface ISpatialOperator;

¥

coType GeometryCollection

{
[mandatory] interface IGeometry;
[mandatory] interface IGeometryCollection;

[mandatory] interface IWks;
[optional] interface ISpatialRelation;

[optional] interface ISpatialRelation2;

[optional] interface ISpatialOperator;

coType GeometryFactory

{
[mandatory] interface IGeometryFactory;
}
/
}
#endif

3.2.4 Description

This section provides a technical narrative describing the meaning, structure, and behavior of the interfaces
comprising the Geometry proposal.

3.2.4.1 IGeometry Interface

The 1Geometry interface defines the common basic properties and methods for all geometric objects.
3.2.4.1.1 1Geometry::get_Dimension
HRESULT get_Dimension(long * dimension);

Returns the dimension of the geometry, 0 for Points and MultiPoints, 1 for Curves and MultiCurves, 2 for
Surfaces and MultiSurfaces.

Parameters

dimension [out]—The dimension of the geometry.

Page 3-15

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

Return Code

S_OK—The method succeeded

3.2.4.1.2 1Geometry::get_SpatialReference
HRESULT get_SpatialReference(lSpatialReference ** spatialRef);

Returns the spatial reference system associated with the geometry. A geometry may not have had a spatial
reference system defined for it, in which case *spatialRef will be NULL on exit.

Parameters
spatialRef [out]—The spatial reference system associated with the shape.
Return Code

S_OK—The method succeeded

3.2.4.1.3 1Geometry::put_SpatialReference

HRESULT put_SpatialReference(lSpatialReference * spatialRef);

Sets the spatial reference system of the geometry. If no spatial reference is currently assigned to the
geometry, then the effect of this method is trivial. If a spatial reference was already defined, this method
causes the geometry to be projected into the new spatial reference system.

Parameters

spatialRef [in]—The new spatial reference system for the shape. May be NULL.

Return Code

S_OK—The method succeeded

3.24.1.4 1Geometry::IsEmpty
HRESULT IsEmpty(VARIANT_BOOL* isEmpty);

Tests if a geometry is empty.

Parameters

isEmpty [out]-TRUE if the geometry is empty.
Return Code

S_OK—The method succeeded

3.24.1.5 I1Geometry::SetEmpty
HRESULT SetEmpty();

Page 3-16

Chapter 3 Component Specifications

Changes the geometry to be Empty.

Parameters

None

Return Code

S_OK—The method succeeded

3.2.4.1.6 1Geometry::IsSimple

HRESULT IsSimple(VARIANT_BOOL* isEmpty);

Tests if a geometry is simple. The definition of Simple for each type of Geometry is specified as part of its
class description.

Parameters

isSimple [out]-TRUE if the geometry is simple.
Return Code

S_OK—The method succeeded

3.2.4.1.7 1Geometry::get_Envelope

HRESULT get_Envelope(lGeometry ** envelope);

Returns the bounding envelope for the geometry. The sides of the envelope are parallel to the sides of the
coordinate system of the spatial reference for the geometry.

Parameters

envelope [out]-The bounding envelope of the geometry.

Return Code

S_OK—The method succeeded

3.2.4.1.8 1Geometry::Clone

HRESULT Clone(1Geometry ** newGeometry);

Create and return a new geometric object identical to the source geometry object.
Parameters

newGeometry [out]-A reference to a new geometry created by this method.
Return Code

S_OK—The method succeeded

Page 3-17

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

3.24.1.9 1Geometry::Project

HRESULT Project(lSpatialReferenceSystem * newSystem, IGeometry ** result);

Return a new geometry object that is the result of projection applied to the source geometry. If the source is
not in a geographic coordinate system, the inverse projection of its current coordinate system is applied
first. The operation can cause a loss of data. The source geometry may be clipped by some line on the
earth’s surface to insure that all points in result are in the range of the projection.

Projecting a geometry is not a method on a SpatialReferenceSystem because projecting a Geometry to
maximize the correctness of the resulting geometry requires knowledge of the structure of the Geometry
being projected. The SpatialReferenceSystem provides functionality to project individual coordinates, each
Geometry class uses this primitive as appropriate. This design is also extensible with the addition of new
Geometry classes.

Parameters

newSystem[in]-A definition of the coordinate system to which the source geometry will be projected.
result [out]-A new geometry containing the projected version of the source geometry.

Return Code

S_OK—The method succeeded

3.2.4.2 IPoint Interface

The IPoint interface defines methods for accessing the coordinates and measure of a point object.
3.24.2.1 IPoint::get_ X

HRESULT get_X(double * x);

Returns the x-coordinate.

Parameters

x [out]-The x-coordinate.

Return Code

S_OK—The method succeeded

3.2.4.2.2 IPoint::get Y
HRESULT get_Y(double * y);

Returns the y-coordinate.
Parameters
y [out]-The y-coordinate.

Return Code

Page 3-18

Chapter 3

Component Specifications

S_OK—The method succeeded

3.2.4.2.3 IPoint::get_Coords
HRESULT get_Coords (double * x, double * y);

Gets the x, y-coordinates of the point
Parameters

x, y [out]-The X, y-coordinates.
Return Code

S_OK—The method succeeded

3.2.4.3 ICurve Interface

The ICurve interface defines methods for accessing the general properties of curves as defined in the

geometry specification.

3.2.43.1 ICurve::get_Length
HRESULT get_Length(double * value);
Returns the length of the curve.

Parameters

value [out]-The length of the curve.
Return Code

S_OK—The method succeeded

3.2.4.3.2 ICurve:.get_StartPoint

HRESULT get_StartPoint(lPoint ** startPoint);
Returns a copy of the starting point of the curve.
Parameters

startPoint [out]-The starting point of the curve.
Return Code

S_OK—The method succeeded

3.2.4.3.3 ICurve::get_EndPoint
HRESULT get_EndPoint(lPoint ** endPoint);

Page 3-19

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

Returns a copy of the end point of the curve.
Parameters

endPoint [out]-The end point of the curve.
Return Code

S_OK—The method succeeded

3.2.4.3.4 ICurve::IsClosed

HRESULT IsClosed(VARIANT_BOOL* isEmpty);

Tests if a curve is closed. A curve is closed if its start point is equal to its end point.
Parameters

isClosed [out]-TRUE if the curve is closed.

Return Code

S_OK—The method succeeded

3.2.4.3.5 ICurve::get_Value
HRESULT get_Value(double t, IPoint ** p);

Returns the point p at distance t along the curve from the start point. value(0.0) = startPoint,
value(Length) = endPoint.

Parameters

t [in]—The distance along the curve.
p [out]-The point on the curve.
Return Code

S_OK—The method succeeded

3.2.4.4 ILineString Interface

The ILineString interface defines methods for accessing the properties of linestrings as defined in the
geometry specification.

3.24.4.1 ILineString::get_NumPoints
HRESULT get_NumPoints(long * numPoints);
Returns the number of points in the linestring.

Parameters

Page 3-20

Chapter 3 Component Specifications

numPoints [out]-The number of points in the linestring.
Return Code

S_OK—The method succeeded

3.2.4.4.2 ILineString::get_Point

HRESULT get_Point(long index, IPoint ** result);

Returns the point at the specified index. The range of the index is from 0 to NumPoints-1.
Parameters

index [in]-The index of the point to return.

result [out]-An interface on a geometric point object that is a copy of the specified point of the
linestring.

Return Code

S_OK—The method succeeded

3.2.4.5 |Surface interface

This interface describes operations that are available on all surfaces.
3.24.5.1 ISurface::get_Area

HRESULT get_Area(double * area);

Returns the total area of the surface geometry.

Parameters

area [out]-The area of the geometry.

Return Code

S_OK—The method succeeded

3.2.4.5.2 ISurface:.get_Centroid

HRESULT get_Centroid(l1Point ** center);

Returns the centroid of the geometry. The centroid point is not necessarily contained within the geometry.
Parameters

result [out]-The center of the geometry.

Return Code

Page 3-21

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

S_OK—The method succeeded

3.2.4.5.3 ISurface::get_PointOnSurface
HRESULT get_PointOnSurface(lPoint ** label);

Returns a point guaranteed to be on the surface (Within the geometry).
Parameters

result [out]-a point on the surface.

Return Code

S_OK—The method succeeded

3.2.4.6 IPolygon interface

The 1Polygon interface allows a client to obtain information about the rings in a Polygon.

3.2.4.6.1 IPolygon::get_ExteriorRing
HRESULT get_ExteriorRing(lLinearRing **ering);

Returns the exterior ring of the source polygon..
Parameters

ering [out]-The exterior ring for the polygon.
Return Code

S_OK—The method succeeded

3.2.4.6.2 IPolygon::get_NuminteriorRings

HRESULT get_NumlnteriorRings(long* count) ;
Return the number of interior rings in the source polygon..
Parameters

count [out]-The number of interior Rings for the polygon.
Return Code

S_OK—The method succeeded

3.2.4.6.3 IPolygon::get_InteriorRing

HRESULT get_InteriorRing(long index, lILinearRing** interiorRing) ;

Page 3-22

Chapter 3 Component Specifications

Return the specified interior ring for the source polygon. The index order of rings is assigned by the
Polygon and is not guaranteed to have any geometric significance. Index range is O to NumRings-1.

Parameters

index [in]—The position of the ring to retrieve

interiorRing [out]-The specified interiorRing for the source polygon.
Return Code

S_OK—The method succeeded

3.2.4.7 IGeometryCollection Interface

The 1GeometryCollection interface is supported by geometry collection objects. For purposes of
element access it supports a view of the elements of the collection as an indexed set. The order of the
elements in the set may be one that is imposed by the collection and is not guaranteed to have any
geometric significance.

3.2.4.7.1 1GeometryCollection::get NumGeometries

HRESULT get_NumGeometries(long* numGeometries);
Returns the number of element geometries in the geometry collection.
Parameters

numGeometries [out]-The number of elements.

Return Code

S_OK—The method succeeded

3.2.4.7.2 1GeometryCollection::get_Geometry
HRESULT get_Geometry(long index, lGeometry ** geometry);

Returns the geometry at the specified index in the GeometryCollection. The consumer of this interface
receives a direct reference on the specified element of the collection and no copy is made. Index range is O
to NumGeometries-1.

Parameters

index [in]-The index of the element to return.

geometry [out]—the geometry at the specified index.

Return Code

S_OK—The method succeeded

Page 3-23

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

3.2.4.8 IMultiSurface interface

This interface describes operations that are available on all multi surfaces.
3.2.4.8.1 IMultiSurface::get_Area

HRESULT get_Area(double * area);

Returns the total area of the geometry.

Parameters

area [out]-The area of the geometry.

Return Code

S_OK—The method succeeded

3.2.4.8.2 IMultiSurface::get_Centroid

HRESULT get_Centroid(l1Point ** center);

Returns the centroid of the geometry. This point is not necessarily contained within the geometry.
Parameters

result [out]-The center of the geometry.

Return Code

S_OK—The method succeeded

3.2.4.8.3 IMultiSurface::get_PointOnSurface
HRESULT get_PointOnSurface(lPoint ** label);

Returns a point guaranteed to be on the MultiSurface (Within the geometry).
Parameters

result [out]-a point on the surface.

Return Code

S_OK—The method succeeded

3.2.4.9 IMultiCurve Interface

The IMultiCurve interface defines methods common to all MultiCurves.

3.2.4.9.1 [IMultiCurve::get_Length
HRESULT get_Length(double * value);

Page 3-24

Chapter 3 Component Specifications

Returns the length of the MultiCurve.
Parameters

value [out]-The length of the MultiCurve.
Return Code

S_OK—The method succeeded

3.2.4.9.2 |MultiCurve::IsClosed

HRESULT IsClosed(VARIANT_BOOL* isEmpty);
Tests if the multicurve is closed.

Parameters

isClosed [out]-TRUE if the multi curve is closed.
Return Code

S_OK—The method succeeded

3.2.4.10 ISpatialRelation Interface

The I1SpatialRelation interface defines a set of named spatial relationship operators for geometric
shape objects. The behavior of these operators is described in detail in the geometry object model sub-
section of the Architecture section of this specification.

3.2.4.10.1 ISpatialRelation::Equals
HRESULT Equals(1Geometry * otherGeometry, VARIANT_BOOL* result);

Returns TRUE if otherGeometry is of the same type and defines the same point set as the source
geometry.

Parameters

otherGeometry [in]-The comparison geometry.

result [out]-The result of the test.

Return Code

S_OK—The method succeeded

3.2.4.10.2 ISpatialRelation::Touches

HRESULT Touches(lGeometry * otherGeometry, VARIANT_BOOL* result);

Returns TRUE if the only points in common between the two geometries lie in the union of their
boundaries.

Page 3-25

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

Parameters

otherGeometry [in]-The comparison geometry.

result [out]-The result of the test.

Return Code

S_OK—The method succeeded

3.2.4.10.3 ISpatialRelation::Contains

HRESULT Contains(lGeometry * otherGeometry, VARIANT_BOOL* result);

Returns TRUE if otherGeometry is wholly contained within the source geometry. This is the same as
reversing the primary and comparison shapes of the Within operation

Parameters

otherGeometry [in]-The comparison shape.
result [out]-The result of the test.

Return Code

S_OK—The method succeeded

3.2.4.10.4 ISpatialRelation::Within

HRESULT Within(1Geometry * otherGeometry, VARIANT_BOOL* result);
Returns TRUE if the primary geometry is wholly contained within the comparison geometry.
Parameters

otherGeometry [in]-The comparison shape.

result [out]-The result of the test.

Return Code

S_OK—The method succeeded

3.2.4.10.5 ISpatialRelation::Disjoint

HRESULT Disjoint(IGeometry * otherGeometry, VARIANT_BOOL* result);
Returns TRUE if otherGeometry is disjoint from the source geometry.

Parameters

otherGeometry [in]-The comparison geometry.

Page 3-26

Chapter 3 Component Specifications

result [out]-The result of the test.
Return Code

S_OK—The method succeeded

3.2.4.10.6 ISpatialRelation::Crosses
HRESULT Crosses(lGeometry * otherGeometry, VARIANT_BOOL* result);

Returns TRUE if the intersection of the two geometries results in a geometry whose dimension is less than
the maximum dimension of the two geometries and the intersection geometry is not equal to either
geometry.

Parameters

otherGeometry [in]-The comparison shape.

result [out]-The result of the test.

Return Code

S_OK—The method succeeded

3.2.4.10.7 ISpatialRelation::Overlaps
HRESULT Overlaps(l1Geometry * otherGeometry, VARIANT_BOOL* result);

Returns TRUE if the intersection of the two geometries results in an object of the same dimension as the
input geometries and the intersection geometry is not equal to either geometry.

Parameters

otherGeometry [in]-The comparison shape.
result [out]-The result of the test.

Return Code

S_OK—The method succeeded

3.2.4.10.8 ISpatialRelation::Intersects
HRESULT Intersects(lGeometry * otherGeometry, VARIANT_BOOL* result);

Returns TRUE if there is any intersection between the two geometries.
Parameters

otherGeometry [in]-The comparison shape.

result [out]-The result of the test.

Return Code

Page 3-27

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

S_OK—The method succeeded

3.2.4.11 ISpatialRelation2 Interface

The 1SpatialRelation? interface defines a set of lower level building block spatial relationship
operators for geometric objects. These operators are described fully in the accompanying geometry model
specification

3.2.4.11.1 ISpatialRelation2::Relate

HRESULT Relate(1Geometry* anotherGeometry, char* testPatternMatrix,
VARIANT_BOOL* result);

Determines if the spatial relationship specfied by the testPatternMatrix defined over the DE-9IM
holds TRUE. For a definition of the testPatternMatrix see the Geometry Model Document.

Parameters

anotherGeometry [in]-The geometry to test against.
testPatternMatrix [in]—The test pattern matrix.
result [out]-The result of the test..

Return Code

S_OK—The method succeeded

3.2.4.12 ISpatialOperator Interface

The ISpatialOperator interface packages a number of common Proxmity, Constructive, Topological
and Set operators on geometries.

3.2.4.12.1 ISpatialOperator::Boundary
HRESULT Boundary(lGeometry ** outGeometry);

Returns the closure of the combinatorial boundary of the source Geometry in outGeometry. For
definitions see [1]. and section 2.2.

Parameters
oputGeometry [out]-The closure of the combinatorial boundary of the source geometry.
Return Code

S_OK—The method succeeded

3.2.4.12.2 ISpatialOperator::Distance

HRESULT Distance(lGeometry * otherGeometry, double * distance);

Page 3-28

Chapter 3 Component Specifications

Returns the minimum distance between the source geometry and the otherGeometry. The distance units
are in terms of the spatial reference system associated with the source geometry. For example, this method
returns zero when its operands are two intersecting polylines, regardless of the relationships of the
polylines’ vertices.

Parameters

otherGeometry [in]-The comparison geometry.

distance [out]-The distance between the shapes.

Return Code

S_OK—The method succeeded

3.2.4.12.3 ISpatialOperator::Buffer
HRESULT Buffer(double distance, 1Geometry ** result);

Returns a polygon that includes all points within distance units of the source geometry’s boundary.
Parameters

distance [in]-The buffer distance around the shape.

result [out]-The resulting polygon.

Return Code

S_OK—The method succeeded

3.2.4.12.4 |SpatialOperator::Intersection

HRESULT Intersection(1Geometry * otherGeometry, IGeometry ** result);
Returns a geometry that represents the intersection of the source geometry with otherGeometry.
Parameters

otherGeometry [in]-The other operand to the intersection operation.

result [out]-The resulting geometry.

Return Code

S_OK—The method succeeded

3.2.4.12.5 ISpatialOperator::Union

HRESULT Union(l1Geometry * otherGeometry, IGeometry ** result);

Returns a geometry that represents the union of the source geometry with otherGeometry.

Parameters

Page 3-29

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

otherGeometry [in]-The comparison geometry.
result [out]-The resulting geometry.
Return Code

S_OK—The method succeeded

3.2.4.12.6 ISpatialOperator::Difference

HRESULT Difference(1Geometry * otherGeometry, IGeometry ** result);

Returns a geometry that represents the difference between the source geometry and otherGeometry
(<source geometry> - otherGeometry).

Parameters

other [in]-The comparison geometry collections.
result [out]-The resulting geometry.

Return Code

S_OK—The method succeeded

3.2.4.12.7 ISpatialOperator::SymmetricDifference

HRESULT SymmetricDifference(1Geometry * otherGeometry, l1Geometry ** result);

Returns a geometry that represents the symmetric difference between the source geometry and
otherGeometry.

Parameters

other [in]-The comparison geometry.
result [out]-The resulting geometry.
Return Code

S_OK—The method succeeded

3.2.4.12.8 ISpatialOperator::ConvexHull

HRESULT ConvexHull(1Geometry ** result);

Returns the convex hull of the source geometry.

Parameters

result [out]-The resulting geometry. For non-trivial cases this will be a polygon. However, the

convex hull of a Point should be a Point. Similarly, the convex hull of a straight LineString may be a
LineString.

Page 3-30

Chapter 3 Component Specifications

Return Code

S_OK—The method succeeded

3.2.4.13 IWKs Interface

The 1Wks interface defines methods for dealing with Well-known external representations of Geometry.
The external reprentation(s) supported are the Well-known Binary Representation for Geometry
(WKBGeometry) described in this proposal.

3.2.4.13.1 IWks::ExportToWKB
HRESULT ExportToWKB(VARIANT * buffer);

Copies the Well-known binary representation of the geometry. The type of the variant will be an array of
unsigned bytes (VT_ARRAY|VT_UI1).

Parameters
buffer [in, out]-The buffer that will hold the Well-known binary representation for the geometry.
Return Code

S_OK—The method succeeded

3.2.4.13.2 IWKks::ExportToWKT
HRESULT ExportToWKT(BSTR * wkt);

Returns the Well-known text representation of the geometry.

Parameters

wkt [out, retval]-The returned Well-known text representation for the geometry.
Return Code

S_OK—The method succeeded

3.2.4.13.3 IWks::ImportFromWKB

HRESULT ImportFromWKB(VARIANT buffer, ISpatialReference * spatialRef);

Imports the input Well-known Binary Representation into the object. This method may be used to initialize
a geometry object after creating it using the generic COM ClassFactory for its CoClass. The type of
object stored in the input WKBGeometry must match the class of the source object.

Parameters

buffer [in]-The buffer containing the Well-known binary representation for geometry
(WKBGeometry).

spatialRef [in]-The spatial reference system of the Well-known binary.

Page 3-31

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

Return Code

S_OK—The method succeeded

3.2.4.13.4 IWks::ImportFromWKT

HRESULT ImportFromWKT(BSTR buffer, ISpatialReference * spatialRef);

Imports the input Well-known Text Representation into the object. This method may be used to initialize a
geometry object after creating it using the generic COM ClassFactory for its CoClass. The type of
object stored in the input WKBGeometry must match the class of the source object.

Parameters

buffer [in]-The buffer containing the Well-known text representation for geometry.

spatialRef [in]-The spatial reference system of the Well-known text.

Return Code

S_OK—The method succeeded

3.2.4.14 1GeometryFactory Interface

The 1GeometryFactory interface defines methods for creating a geometry given its Well-known
Representation and does not require the client to know the type of geometry represented. It is a convenient
mechanism for creating a set of geometry objects, belonging to different classes, given their Well-known
representations.

3.2.4.14.1 1GeometryFactory::CreateFromWKB

HRESULT CreateFromWKB(VARIANT * buffer, ISpatialReference*
spatialRef, IGeometry** result);

Creates a Geometry object from the input Well-known Binary representation for Geometry
(WKBGeometry).

Parameters

buffer [in]-The buffer that holds the Well-known binary representation for geometry.
spatialRef [in]-The spatial reference of the Well-known binary.

result [out]-The output geometry.

Return Code

S_OK—The method succeeded

3.2.4.14.2 1GeometryFactory::CreateFromWKT

HRESULT CreateFromWKT(BSTR buffer, ISpatialReference* spatialRef, 1Geometry**
result);

Page 3-32

Chapter 3 Component Specifications

Creates a Geometry object from the input Well-known Text representation for Geometry (WKBGeometry).
Parameters

buffer [in]-The buffer that holds the Well-known text representation for geometry.

spatialRef [in]-The spatial reference of the Well-known text.

result [out]-The output geometry.

Return Code

S_OK—The method succeeded

3.2.5 Exceptions, Errors, and Error Codes

The HRESULTSs of the methods of the interfaces are used to indicate errors. A return value of S_OK indicates
successful completion, any other return value implies a provider specific error occurred.

3.3 The Well-known Binary Representation for Geometry (WKBGeometry)

3.3.1 Component Overview

The Well-known Binary Representation for Geometry (WKBGeometry) provides a portable representation
of a Geometry value as a contiguous stream of bytes. It permits Geometry values to be exchanged between
an ODBC client and an SQL database in binary form.

3.3.2 Component Description

The Well-known Binary Representation for Geometry is obtained by serializing a geometry instance as a
sequence of numeric types drawn from the set {Unsigned Integer, Double} and then serializing each
numeric type as a sequence of bytes using one of two well defined, standard, binary representations for
numeric types (NDR, XDR). The specific binary encoding (NDR or XDR) used for a geometry byte stream
is described by a one byte tag that precedes the serialized bytes. The only difference between the two
encodings of geometry is one of byte order, the XDR encoding is Big Endian, the NDR encoding is Little
Endian.

3.3.2.1 Numeric Type Definitions

An Unsigned Integer isa 32-bit (4-byte) data type that encodes a nonnegative integer in the range [0,
4294967295].

A Double is a 64-bit (8-byte) double precision data type that encodes a double precision number using the
IEEE 754 double precision format

The above definitions are common to both XDR and NDR.

3.3.2.2 XDR (Big Endian) Encoding of Numeric Types

The XDR representation of an Unsiigned Integer is Big Endian (most significant byte first).

Page 3-33

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

The XDR representation of a Double is Big Endian (sign bit is first byte).

3.3.2.3 NDR (Little Endian) Encoding of Numeric Types

The NDR representation of an Unsigned Integer is Little Endian (least significant byte first).

The NDR representation of a Double is Little Endian (sign bit is last byte).

3.3.2.4 Conversion between the NDR and XDR representations of
WKBGeometry

Conversion between the NDR and XDR data types for Unsigned Integer and Double numbers is a
simple operation involving reversing the order of bytes within each Unsigned Integer or Double
number in the byte stream.

3.3.2.5 Relationship to other COM and CORBA data transfer protocols

The XDR representation for Unsigned Integer and Double numbers described above is also the
standard representation for Unsigned Integer and for Double number in the CORBA Standard Stream
Format for Externalized Object Data that is described as part of the CORBA Externalization Service
Specification [15].

The NDR representation for Unsigned Integer and Double number described above is also the
standard representation for Unsigned Integer and for Double number in the DCOM protocols that is
based on DCE RPC and NDR [16].

3.3.2.6 Description of WKBGeometry Byte Streams

The Well-known Binary Representation for Geometry is described below. The basic building block is the
byte stream for a Point, which consists of two Double numbers. The byte streams for other geometries
are built using the byte streams for geometries that have already been defined.

// Basic Type definitions

// byte : 1 byte

// uint32 : 32 bit unsigned integer (4 bytes)
// double : double precision number (8 bytes)

// Building Blocks : Point, LinearRing

Point {
double x;
double y;
}:

LinearRing {
uint32 numPoints;
Point points[numPoints];

}

enum wkbGeometryType {
wkbPoint = 1,
wkbLineString = 2,

Page 3-34

Chapter 3

Component Specifications

wkbPolygon = 3,
wkbMultiPoint = 4,
wkbMultiLineString = 5,
wkbMultiPolygon = 6,

wkbGeometryCollection = 7

¥

enum wkbByteOrder {

wkbXDR = O, // Big Endian
wWKbNDR = 1 // Little Endian
}:
WKBPoint {
byte byteOrder;
uint32 wkbType;
Point point;
¥
WKBLineString {
byte byteOrder;
uint32 wkbType;
uint32 numPoints;
Point points[numPoints];
b
WKBPolygon {
byte byteOrder;
uint32 wkbType;
uint32 numRings;
LinearRing rings[numRings];
3
WKBMultiPoint {
byte byteOrder;
uint32 wkbType; // 4
uint32 num_wkbPoints;
WKBPoint WKBPoints[num_wkbPoints];
3
WKBMultiLineString {
byte byteOrder;
uint32 wkbType;
uint32 num_wkbLineStrings;
WKBLineString WKBLineStrings[num_wkbLineStrings];
¥
wkbMultiPolygon {
byte byteOrder;
uint32 wkbType;
uint32 num_wkbPolygons;
WKBPolygon wkbPolygons[num_wkbPolygons] ;
b
WKBGeometry {
union {
WKBPoint point;

/7 1

/7 2

// 3

// 5

// 6

Page 3-35

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

WKBLineString linestring;
WKBPolygon polygon;
WKBGeometryCollection collection;
WKBMultiPoint mpoint;
WKBMultiLineString mlinestring;
WKBMultiPolygon mpolygon;
3
}:
WKBGeometryCollection {
byte byte_order;
uint32 wkbType; /77
uint32 num_wkbGeometries;
WKBGeometry wkbGeometries[num_wkbGeometries];

¥

Figure 3.2 shows a pictorial representation of the Well-known Byte Stream for a Polygon with one outer
ring and one inner ring.

WKB Polygon

Ring 1 Ring 2
/ PN PN \
4 '

Figure 3.2—Well-known Binary Representation for a Geometry value in NDR format (B=1) of type
Polygon (T=3) with 2 linear rings (NR = 2) each ring having 3 points (NP = 3).

3.3.2.7 Assertions for Well-known Binary Representation for Geometry

The Well-known Binary Representation for Geometry is designed to represent instances of the geometry
types described in the Geometry Object Model and in the OpenGIS Abstract Specification. Any
WKBGeometry instance must satisfy the assertions for the type of Geometry that it describes. These
assertions may be found in the section 2.2.

These assertions imply the following for Rings, Polygons and MultiPolygons:

Page 3-36

Chapter 3 Component Specifications

3.3.2.8 Linear Rings

Rings are simple and closed, which means that Linear Rings may not self-touch.

3.3.2.9 Polygons

No two Linear Rings in the boundary of a Polygon may cross each other, the Linear Rings in the boundary
of a polygon may intersect at most at a single point but only as a tangent.

3.3.2.10 MultiPolygons

1. The interiors of 2 Polygons that are elements of a MultiPolygon may not intersect.

2. The Boundaries of any 2 Polygons that are elements of a MultiPolygon may touch at only a finite
number of points.

For more details on the above assertions and for the assertions for each geometry type the reader is referred
to the Geometry Object Model section of this specification.

3.4 Spatial Reference System Components—Interfaces and Classes

3.4.1 Component Overview

The Spatial Reference System component describes interfaces that define and describe the spatial reference
system for geographic features. The Spatial Reference System interfaces allow different spatial reference
systems to be defined and queried. Each geometric object will have a spatial reference system associated
with it. The simplest way to define a new SpatialReference object is to provide a standard identification
code to a Spatial Reference Factory to specify a predefined reference system. A custom SpatialReference
object can also be defined by creating its constituent parts and setting the properties. Almost all of the
spatial reference interfaces consist of access methods for object properties.

3.4.2 Interface(s), Data Structures, Language Constructs

import "ocidl.idl";

typedef struct WKSPoint
{

double Xx;

double y;
} WKSPoint;

[
object, uuid(bcca38a0-felc-11d0-ad87-080009b6f22b)
]
interface ISpatialReferencelnfo : l1Unknown
{

[propget] HRESULT Name([out, retval] BSTR* name);
[propput] HRESULT Name([in] BSTR name);
[propget] HRESULT Authority([out, retval] BSTR* name);

Page 3-37

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

[propput] HRESULT Authority([in] BSTR name);

[propget] HRESULT Code([out, retval] long* code);

[propput] HRESULT Code([in] long code);

[propget] HRESULT Alias([out, retval] BSTR* alias);
[propput] HRESULT Alias([in] BSTR alias);

[propget] HRESULT Abbreviation([out, retval] BSTR* abbrev);
[propput] HRESULT Abbreviation([in] BSTR abbrev);

[propget] HRESULT Remarks([out, retval] BSTR* remarks);
[propput] HRESULT Remarks([in] BSTR remarks);

[propget] HRESULT WellKnownText ([out, retval] BSTR* wkt);

}:

L

object, uuid(221733b0-feld-11d0-ad87-080009b6¥22b)
1

interface IUnit : ISpatialReferencelnfo

{

}:

L

object, uuid(4febc550-feld-11d0-ad87-080009b6F22b)
1

interface lAngularUnit : IUnit

{

[propget] HRESULT RadiansPerUnit([out, retval] double* factor);
[propput] HRESULT RadiansPerUnit([in] double factor);

¥

L

object, uuid(80855df0-feld-11d0-ad87-080009b6¥22b)
1

interface ILinearUnit : IUnit

{

[propget] HRESULT MetersPerUnit([out, retval] double* factor);
[propput] HRESULT MetersPerUnit([in] double factor);

}:
L
object, uuid(ce7266c0-feld-11d0-ad87-080009b6F22b)
1
interface IEllipsoid : ISpatialReferencelnfo
{

[propget] HRESULT SemiMajorAxis([out, retval] double* axis);
[propput] HRESULT SemiMajorAxis([in] double axis);

Page 3-38

Chapter 3

Component Specifications

[propget] HRESULT SemiMinorAxis([out, retval] double* axis);
[propput] HRESULT SemiMinorAxis([in] double axis);

[propget] HRESULT InverseFlattening([out, retval] double* invFlat);

[propput] HRESULT InverseFlattening([in] double invFlat);
[propget] HRESULT AxisUnit([out, retval] ILinearUnit** unit);
[propput] HRESULT AxisUnit([in] ILinearUnit* unit);

}:

L
object, uuid(f699c510-feld-11d0-ad87-080009b6F22b)

-

nterface IHorizontalDatum : ISpatialReferencelnfo

{

[propget] HRESULT Ellipsoid([out, retval] IEllipsoid** ellipsoid);
[propput] HRESULT Ellipsoid([in] I1Ellipsoid* ellipsoid);

L

object, uuid(15129940-fele-11d0-ad87-080009b6T22b)
1

interface IPrimeMeridian : ISpatialReferencelnfo

{

[propget] HRESULT Longitude([out, retval] double* longitude);
[propput] HRESULT Longitude([in] double longitude);
[propget] HRESULT AngularUnit([out, retval] lAngularUnit** unit);
[propput] HRESULT AngularUnit([in] IAngularUnit* unit);

}:

L
object, uuid(4c4c5c00-fele-11d0-ad87-080009b6F22b)

1
i

nterface ISpatialReference : ISpatialReferencelnfo
{
}:
L

object, uuid(7c3c56d0-fele-11d0-ad87-080009b6¥22b)
1

interface IGeodeticSpatialReference : ISpatialReference

{
¥

L
object, uuid(a3fd5390-fele-11d0-ad87-080009b6f22b)

Page 3-39

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

-

nterface IGeographicCoordinateSystem : IGeodeticSpatialReference

{

[propget] HRESULT Usage([out, retval] BSTR* usage);

[propput] HRESULT Usage([in] BSTR usage);

[propget] HRESULT HorizontalDatum([out, retval] IHorizontalDatum** datum);
[propput] HRESULT HorizontalDatum([in] IHorizontalDatum* datum);

[propget] HRESULT AngularUnit([out, retval] lAngularUnit** unit);
[propput] HRESULT AngularUnit([in] IAngularUnit* unit);

[propget] HRESULT PrimeMeridian([out, retval] IPrimeMeridian** prmMerid);
[propput] HRESULT PrimeMeridian([in] IPrimeMeridian* prmMerid);

L
object, uuid(9a5e32d0-felf-11d0-ad87-080009b6F22b)
1
interface IParameter : ISpatialReferencelnfo
{
[propput] HRESULT ValueUnit([in] IUnit* unit);
[propget] HRESULT ValueUnit([out, retval] IUnit** unit);
[propput] HRESULT Value ([in] double value);
[propget] HRESULT Value ([out, retval] double* value);
}:
L
object, uuid(7309b460-felf-11d0-ad87-080009b6¥22b)
1
interface IParameterinfo : IUnknown
{
[propget] HRESULT NumParameters ([out, retval] long* numParameters);
[propget] HRESULT DefaultParameters ([in] long size,
[out, size_is(size)] IParameter* parameters[]);
[propget] HRESULT Parameters ([in] long size,
[out, size_is(size)] IParameter* parameters[]);
[propput] HRESULT Parameters ([in] long size,
[in, size_is(size)] IParameter* parameters[]);
}:

// subclasses of IParameterInfo may provide projection specific methods
// with type safe signatures for getting and setting parameters

// for eg.

// interface ITransverseMercatorParameterinfo : IParameterinfo

/77 {

// [propget] CentralMeridian([out] double* centralMeridian)

Page 3-40

Chapter 3 Component Specifications

// [propput] CentralMeridian([in] double centralMeridian)

/7 };
L
object, uuid(5eb513c0-felf-11d0-ad87-080009b6F22b)
1
interface IGeographicTransform : ISpatialReferencelnfo
{

[propget] HRESULT SourceGCS([out] IGeographicCoordinateSystem** gcs);
[propput] HRESULT SourceGCS([in] IGeographicCoordinateSystem* gcs);

[propget] HRESULT TargetGCS([out] IGeographicCoordinateSystem** gcs);
[propput] HRESULT TargetGCS([in] IGeographicCoordinateSystem* gcs);

[propget] HRESULT Parameterinfo ([out] IParameterinfo** paraminfo);

HRESULT Forward([in] long count, [in, out, size_is(count)] WKSPoint points[]);
HRESULT Inverse([in] long count, [in, out, size_is(count)] WKSPoint points[]);

L

object, uuid(5002f420-felf-11d0-ad87-080009b6F22b)

1

interface IProjection : ISpatialReferencelnfo

{
[propget] HRESULT Usage([out, retval] BSTR* usage);
[propget] HRESULT Classification([out, retval] BSTR* classification);
HRESULT Forward([in] long count, [in, out, size_is(count)] WKSPoint points[]);
HRESULT Inverse([in] long count, [in, out, size_is(count)] WKSPoint points[]);
[propget] HRESULT ParameterInfo([out, retval] IParameterinfo** paraminfo);
[propget] HRESULT AngularUnit([out, retval] lAngularUnit** unit);
[propput] HRESULT AngularUnit([in] IAngularUnit* unit);
[propget] HRESULT LinearUnit([out, retval] ILinearUnit** unit);
[propput] HRESULT LinearUnit([in] ILinearUnit* unit);
[propget] HRESULT Ellipsoid([out, retval] IEllipsoid** ellipsoid);
[propput] HRESULT Ellipsoid([in] IEllipsoid* ellipsoid);

}:

L

object, uuid(3dc39ff0-felf-11d0-ad87-080009b6F22b)

1

interface IProjectedCoordinateSystem : IGeodeticSpatialReference

{

[propget] HRESULT Usage([out, retval] BSTR* usage);
[propput] HRESULT Usage([in] BSTR usage);
[propget] HRESULT GeographicCoordinateSystem

out, retval] IGeographicCoordinateSystem** gcs);
grap Y g

Page 3-41

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

[propput] HRESULT GeographicCoordinateSystem

([in] IGeographicCoordinateSystem* gcs);
[propget] HRESULT LinearUnit([out, retval] ILinearUnit** unit);
[propput] HRESULT LinearUnit([in] ILinearUnit* unit);
[propget] HRESULT Projection ([out, retval] IProjection** projection);
[propput] HRESULT Projection ([in] IProjection* projection);
[propget] HRESULT ParameteriInfo ([out, retval] IParameteriInfo** paraminfo);
HRESULT Forward([in] long count, [in, out, size_is(count)] WKSPoint points[]);
HRESULT Inverse([in] long count, [in, out, size_is(count)] WKSPoint points[]);

}:

L

object, uuid(620600B1-FEA1-11d0-B04B-0080C7F79481)
1

interface ISpatialReferenceFactory : lUnknown

{

HRESULT CreateFromWKT
([in] BSTR wktSpatialReference, [out, retval] ISpatialReference** sref);

L
object, uuid(30aeldf0-felf-11d0-ad87-080009b6F22b)
1
interface ISpatialReferenceAuthorityFactory : lUnknown
{
[propget] HRESULT Authority([out] BSTR* authority);
HRESULT CreateProjectedCoordinateSystem
([in] long code, [out] IProjectedCoordinateSystem** pcs);
HRESULT CreateGeographicCoordinateSystem
([in] long code, [out] 1GeographicCoordinateSystem** gcs);
HRESULT CreateProjection
([in] long code, [out] IProjection** projection);
HRESULT CreateGeographicTransform
([in] long code, [out] 1GeographicTransform** gt);
HRESULT CreateHorizontalDatum
([in] long code, [out] IHorizontalDatum** datum);
HRESULT CreateEllipsoid
([in] long code, [out] I1Ellipsoid** ellipsoid);
HRESULT CreatePrimeMeridian
([in] long code, [out] IPrimeMeridian** prmMerid);
HRESULT CreatelLinearUnit
([in] long code, [out] ILinearUnit** unit);
HRESULT CreateAngularUnit
([in] long code, [out] lAngularUnit** unit);

Page 3-42

Chapter 3

Component Specifications

#if defined (_SPATIALREFERENCE)

// example of a specific SpatialReference library implementation

library SpatialReference

{

// COM Classes would be defined here in an actual library.

// CoTypes are shown instead.

// A CoType is a template for CoClasses.

coType AngularUnit

{
[mandatory] interface
[mandatory] interface
[mandatory] interface

}:

coType LinearUnit

{
[mandatory] interface
[mandatory] interface
[mandatory] interface

¥

coType Ellipsoid
{

[mandatory] interface

[mandatory] interface

¥

coType HorizontalDatum

{

[mandatory] interface
[mandatory] interface

¥

1Unit;
IAngularunit;

ISpatialReferencelnfo;

1unit;
ILinearUnit;

I1SpatialReferencelnfo;

1EIlipsoid;

ISpatialReferencelnfo;

IHorizontalDatum;

I1SpatialReferencelnfo;

Page 3-43

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

coType PrimeMeridian

{
[mandatory] interface IPrimeMeridian;

[mandatory] interface ISpatialReferencelnfo;

¥

coType GeographicCoordinateSystem

{
[mandatory] interface ISpatialReference;
[mandatory] interface lGeodeticSpatialReference;
[mandatory] interface IGeographicCoordinateSystem;
[mandatory] interface ISpatialReferencelnfo;

}:

coType Parameter

{
[mandatory] interface IParameter;

[mandatory] interface ISpatialReferencelnfo;

coType ProjectedCoordinateSystem

{
[mandatory] interface ISpatialReference;
[mandatory] interface IGeodeticSpatialReference;
[mandatory] interface IProjectedCoordinateSystem;
[mandatory] interface ISpatialReferencelnfo;

}:

// Each Projection is its own CoType, SimpleCylindrical is shown as an example

coType SimpleCylindrical
{

[mandatory] interface IProjection;

[mandatory] interface ISpatialReferencelnfo;

¥
#endif

Page 3-44

Chapter 3 Component Specifications

3.4.3 Description

3.4.3.1 ISpatialReferencelnfo Interface

The I1SpatialReferencelnfo interface defines the standard information stored with spatial reference
objects. This interface is reused for many of the spatial reference objects in the system.

3.43.1.1 ISpatialReferencelnfo::get_Name
HRESULT get_Name(BSTR* name);

Returns the name of the object.

Parameters

name [out]-The name of the object.

Return Code

S_OK—The method succeeded.

3.4.3.1.2 ISpatialReferencelnfo::put_Name
HRESULT put_Name(BSTR name);

Sets the name of the object.
Parameters

name [in]-The name of the object.
Return Code

S_OK—The method succeeded.

3.4.3.1.3 ISpatialReferencelnfo::get Authority
HRESULT get_Authority(BSTR* authority);

Returns the authority name for this object, e.g., “POSC”, is this is a standard object with an authority
specific identity code. Returns “CUSTOM” if this is a custom object.

Parameters
authority[out]-The authority for the object.
Return Code

S_OK—The method succeeded.

3.4.3.1.4 ISpatialReferencelnfo::put_Authority
HRESULT put_Authority(BSTR authority);

Page 3-45

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

Sets the authority for the object.

Parameters

authority [in]-The authority for the object.

Return Code

S_OK—The method succeeded.

3.4.3.1.5 ISpatialReferencelnfo::get_Code

HRESULT get_Code(long* code);

Returns the authority specific identification code of the object
Parameters

code [out]-The authority specific identification code of the object.
Return Code

S_OK—The method succeeded.

3.4.3.1.6 ISpatialReferencelnfo::put_Code

HRESULT put_Code(long code);

Sets the authority specific identification code of the object.
Parameters

code [in]-The authority specific identification code of the object.
Return Code

S_OK—The method succeeded.

3.4.3.1.7 ISpatialReferencelnfo::get_Alias

HRESULT get_Alias(BSTR* alias);

Returns the alias of the object.

Parameters

alias [out]-The alias of the object.

Return Code

S_OK—The method succeeded.

3.4.3.1.8 ISpatialReferencelnfo::put_Alias

Page 3-46

Chapter 3 Component Specifications

HRESULT put_Alias(BSTR alias);

Sets the alias of the object.

Parameters

alias [in]-The alias of the object.

Return Code

S_OK—The method succeeded.

3.4.3.1.9 ISpatialReferencelnfo::get_Abbreviation
HRESULT get_Abbreviation(BSTR* abbrev);
Returns the abbreviation of the object.

Parameters

abbrev [out]-The abbreviation of the object.

Return Code

S_OK—The method succeeded.

3.4.3.1.10 ISpatialReferencelnfo::put_Abbreviation
HRESULT put_Abbreviation(BSTR abbrev);

Sets the abbreviation of the object.

Parameters

abbrev [in]-The abbreviation of the object.

Return Code

S_OK—The method succeeded.

3.4.3.1.11 ISpatialReferencelnfo::get_Remarks
HRESULT get_Remarks(BSTR* remarks);

Returns the provider-supplied remarks for the object.
Parameters

remarks [out]-The provider-supplied remarks for the object.
Return Code

S_OK—The method succeeded.

Page 3-47

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

3.4.3.1.12 ISpatialReferencelnfo::put_Remarks
HRESULT put_Remarks(BSTR remarks);

Sets the remarks for the object.

Parameters

remarks [in]-The remarks for the object.
Return Code

S_OK—The method succeeded.

3.4.3.1.13 ISpatialReferencelnfo::get WellKnownText
HRESULT get_WellKnownText(BSTR* wkt);

Returns the Well-known text for this spatial reference object as defined in this proposal.
Parameters

wkt [out]-The Well-known text for this spatial reference object.

Return Code

S_OK—The method succeeded.

3.4.3.2 IUnit Interface

The 1Unit interface abstracts different kinds of units, it has no methods.

3.4.3.3 IAngularUnit Interface

The 1Angularunit interface defines methods on angular units.
3.4.3.3.1 1AngularUnit::get_RadiansPerUnit

HRESULT get_RadiansPerUnit(double* factor);
Returns the number of radians per angular unit.

Parameters

factor [out]-The number of radians per angular unit.
Return Code

S_OK—The method succeeded.

3.4.3.3.2 1AngularUnit::put_RadiansPerUnit

HRESULT put_RadiansPerUnit(double factor);

Page 3-48

Chapter 3 Component Specifications

Sets the number of radians per angular unit
Parameters

factor[in]-The number of radians per angular unit.
Return Code

S_OK—The method succeeded.

3.4.3.4 ILinearUnit Interface

The ILinearUnit interface defines methods on linear units.
3.4.3.4.1 ILinearUnit::get_MetersPerUnit
HRESULT get_MetersPerUnit(double* factor);
Returns the number of meters per linear unit.
Parameters

factor [out]-The number of meters per linear unit.
Return Code

S_OK—The method succeeded.

3.4.3.4.2 ILinearUnit::put_MetersPerUnit
HRESULT put_MetersPerUnit(double factor);
Sets the number of meters per linear unit.

Parameters

factor[in]-The number of meters per linear unit.
Return Code

S_OK—The method succeeded.

3.4.3.5 IEllipsoid Interface

The IE1lipsoid interface defines the standard information stored with ellipsoid objects.
3.4.3.5.1 IEllipsoid::get_SemiMajorAxis

HRESULT get_SemiMajorAxis(double* axis);

Returns the value of the semi-major axis.

Parameters

Page 3-49

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

axis [out]-The value of the semi-major axis.
Return Code

S_OK—The method succeeded.

3.4.3.5.2 IEllipsoid::put_SemiMajorAxis
HRESULT put_SemiMajorAxis(double axis);
Sets the value of the semi-major axis.

Parameters

axis [in]-The value of the semi-major axis.
Return Code

S_OK—The method succeeded.

3.4.3.5.3 IEllipsoid::get_SemiMinorAxis
HRESULT get_SemiMinorAxis(double* axis);
Returns the value of the semi-minor axis.
Parameters

axis [out]-The value of the semi-minor axis.
Return Code

S_OK—The method succeeded.

3.4.3.5.4 IEllipsoid::put_SemiMinorAxis
HRESULT put_SemiMinorAxis(double axis);
Sets the value of the semi-minor axis.

Parameters

axis [in]-The value of the semi-minor axis.
Return Code

S_OK—The method succeeded.

3.4.3.5.5 IEllipsoid:.get_InverseFlattening
HRESULT get_InverseFlattening(double* invFlat);

Returns the value of the inverse of the flattening constant of the ellipsoid.

Page 3-50

Chapter 3 Component Specifications

Parameters
invFlat [out]-The value of the inverse flattening.
Return Code

S_OK—The method succeeded.

3.4.3.5.6 IEllipsoid::put_InverseFlattening

HRESULT put_InverseFlattening(double invFlat);

Sets the value of the inverse of the flattening constant of the ellipsoid.
Parameters

invFlat [in]-The value of the inverse flattening.

Return Code

S_OK—The method succeeded.

3.4.3.5.7 IEllipsoid::get_AxisUnit

HRESULT get_AxisUnit(lLinearUnit** unit);
Returns the value of the axis unit.

Parameters

unit [out]-The value of the axis unit.

Return Code

S_OK—The method succeeded.

3.4.3.5.8 IEllipsoid::put_AxisUnit

HRESULT put_AxisUnit(lLinearUnit* unit);
Sets the value of the axis unit.

Parameters

unit [in]-The value of the axis unit

Return Code

S_OK—The method succeeded.

3.4.3.6 IHorizontalDatum Interface

The IHorizontalDatum interface defines the standard information stored with horizontal datum objects.

Page 3-51

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

3.4.3.6.1 IHorizontalDatum::get_Ellipsoid
HRESULT get_Ellipsoid(1Ellipsoid** ellipsoid);

Returns the ellipsoid of the datum.

Parameters

ellipsoid [out]-The ellipsoid of the datum.
Return Code

S_OK—The method succeeded.

3.4.3.6.2 IHorizontalDatum::put_Ellipsoid
HRESULT put_Ellipsoid(1Ellipsoid* ellipsoid);

Sets the ellipsoid of the datum.

Parameters

ellipsoid [in]-The ellipsoid of the datum.
Return Code

S_OK—The method succeeded.

3.4.3.7 IPrimeMeridian Interface

The IPrimeMeridian interface defines the standard information stored with prime meridian objects. Any
prime meridian object must implement this interface as well as the 1SpatialReference Info interface.

3.4.3.7.1 IPrimeMeridian::get_Longitude

HRESULT get_Longitude(double* longitude);

Returns the longitude of the prime meridian (relative to the Greenwich prime meridian).
Parameters

longitude [out]-The longitude of the prime meridian.

Return Code

S_OK—The method succeeded.

3.4.3.7.2 IPrimeMeridian::put_Longitude

HRESULT put_Longitude(double longitude);

Sets the longitude of the prime meridian (relative to the Greenwich prime meridian).

Page 3-52

Chapter 3 Component Specifications

Parameters
longitude [in]-The longitude of the prime meridian.
Return Code

S_OK—The method succeeded.

3.4.3.7.3 IPrimeMeridian::get_AngularUnit
HRESULT get_AngularUnit(lAngularUnit** unit);

Returns the angular units of the prime meridian.
Parameters

unit [out]-The angular units of the prime meridian.
Return Code

S_OK—The method succeeded.

3.4.3.7.4 IPrimeMeridian::put_AngularUnit
HRESULT put_AngularUnit(lAngularUnit* unit);

Sets the angular units of the prime meridian.
Parameters

unit [in]-The angular units of the prime meridian.
Return Code

S_OK—The method succeeded.

3.4.3.8 ISpatialReference Interface

The I1SpatialReference interface defines a root interface for all types of spatial references.

3.4.3.9 IGeodeticSpatialReference Interface

The I1GeodeticSpatialReference interface defines a root interface for all types of geodetic spatial
references, it is a subclass of I1SpatialReference.

3.4.3.10 IGeographicCoordinateSystem Interface

The 1GeographicCoordinateSystem interface is a subclass of 1GeodeticSpatialReference and
defines the standard information stored with geographic coordinate system objects.

3.4.3.10.1 1GeographicCoordinateSystem::get_Usage

Page 3-53

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

HRESULT get_Usage(BSTR* usage);

Returns an appropriate usage comment on this Geographic Coordinate System.
Parameters

usage [out]-An appropriate usage comment on this geographic coordinate system.
Return Code

S_OK—The method succeeded.

3.4.3.10.2 1GeographicCoordinateSystem::put_Usage

HRESULT put_Usage(BSTR usage);

Sets an appropriate usage comment on this Geographic Coordinate System.
Parameters

usage [in]-The appropriate usage comment for this Geographic Coordinate System.
Return Code

S_OK—The method succeeded..

3.4.3.10.3 I1GeographicCoordinateSystem::get_HorizontalDatum

HRESULT get_HorizontalDatum(lHorizontalDatum** datum);
Returns the horizontal datum of the geographic coordinate system.
Parameters

datum [out]-The horizontal datum of the geographic coordinate system.
Return Code

S_OK—The method succeeded.

3.4.3.10.4 1GeographicCoordinateSystem::put_HorizontalDatum

HRESULT put_HorizontalDatum(lHorizontalDatum* datum);
Sets the horizontal datum of the geographic coordinate system.
Parameters

datum [in]-The horizontal datum of the geographic coordinate system.
Return Code

S_OK—The method succeeded.

Page 3-54

Chapter 3 Component Specifications

3.4.3.10.5 1GeographicCoordinateSystem::get_AngularUnit
HRESULT get_AngularUnit(lAngularUnit** unit);

Returns the angular units of the geographic coordinate system.
Parameters

unit [out]-The angular units of the geographic coordinate system.
Return Code

S_OK—The method succeeded.

3.4.3.10.6 1GeographicCoordinateSystem::put_AngularUnit
HRESULT put_AngularUnit(lAngularUnit* unit);

Sets the angular units of the geographic coordinate system.
Parameters

unit [in]-The angular units of the geographic coordinate system.
Return Code

S_OK—The method succeeded.

3.4.3.10.7 1GeographicCoordinateSystem::get_PrimeMeridian
HRESULT get_PrimeMeridian(IPrimeMeridian** prmMerid);

Returns the prime meridian of the geographic coordinate system.
Parameters

prmMerid [out]-The prime meridian of the geographic coordinate system.
Return Code

S_OK—The method succeeded.

3.4.3.10.8 1GeographicCoordinateSystem::put_PrimeMeridian
HRESULT put_PrimeMeridian(IPrimeMeridian* prmMerid);

Sets the prime meridian of the geographic coordinate system.
Parameters
prmMerid [in]-The prime meridian of the geographic coordinate system.

Return Code

Page 3-55

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

S_OK—The method succeeded.

3.4.3.11 IParameter Interface

The IParameter interface is supported by parameter objects. It inherits from ISpatialReferencelnfo.
A parameter is a named value.

3.4.3.11.1 IParameter::get ValueUnit
HRESULT get_ValueUnit(lUnit** unit);
Returns the units for the parameter value.
Parameters

unit [out]-The units for the parameter value.
Return Code

S_OK—The method succeeded.

3.4.3.11.2 IParameter::put_ValueUnit
HRESULT put_ValueUnit(lUnit* unit);
Sets the units for the parameter value.
Parameters

unit [in]-The units for the parameter value.
Return Code

S_OK—The method succeeded.

3.4.3.11.3 IParameter::get Value
HRESULT get_Value (double* value);
Returns the parameter value.

Parameters

value [out]-The parameter value..

Return Code

S_OK—The method succeeded.

3.4.3.11.4 IParameter::put_Value
HRESULT put_Value (double value);

Page 3-56

Chapter 3 Component Specifications

Sets the parameter value.
Parameters

value [in]-The parameter value.
Return Code

S_OK—The method succeeded.

3.4.3.12 IParameterinfo Interface

The IParameterInfo interface provides an interface through which clients of a Projected Coordinate
System or of a Projection can set the parameters of the projection. It provides a generic interface for
discovering the names and default values of parameters, and for setting and getting parameter values.
Subclasses of this interface may provide projection specific parameter access methods.

3.4.3.12.1 IParameterinfo::get_ NumParameters

HRESULT get_NumParameters(long* numParameters);

Returns the number of parameters expected.

Parameters

numParameters [out]-The number of parameters for this projection.
Return Code

S_OK—The method succeeded.

3.4.3.12.2 IParameterinfo::get_DefaultParameters

HRESULT get_DefaultParameters(long size, IParameter* parameters[]):;
Returns the default parameters for this projection.
Parameters

size [in]-The size of the parameters array passed into this function. Size should be equal to or greater
than the value returned by get_NumParameters.

parameters[out]—An array of default parameters. The array must be dimensioned to hold
get_NumParameters parameters and its size must be passed in as the first argument.

Return Code

S_OK—The method succeeded.

3.4.3.12.3 IParameterinfo::get_Parameters

HRESULT get_Parameters(long size, IParameter* parameters[]);

Page 3-57

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

Returns the parameters set for this projection.
Parameters

size [in]-The size of the parameters array passed into this function. Size should be equal to or greater
than the value returned by get_NumParameters.

parameters[out]—An array of parameters. The array must be dimensioned to hold
get_NumParameters parameters and its size must be passed in as the first argument.

Return Code

S_OK—The method succeeded.

3.4.3.12.4 IParameterInfo::put_Parameters

HRESULT put_Parameters(long size, IParameter* parameters[]);
Set the parameters for this projection.
Parameters

size [in]-The size of the parameters array passed into this function. Size should be equal to or greater
than the value returned by get_NumParameters.

parameters[in]—An array of parameters. The array must be dimensioned to hold
get_NumParameters parameters and its size must be passed in as the first argument.

Return Code

S_OK—The method succeeded.

3.4.3.13 IGeographicTransform Interface

The 1GeographicTransform interface is implemented on geographic transformation objects and
implements datum transformations between geographic coordinate systems.

3.4.3.13.1 1GeographicTransform::get_SourceGCS

HRESULT get_SourceGCS(1GeographicCoordinateSystem** gcs);
Gets the source geographic coordinate system for the transformation.
Parameters

gcs [out]-The source geographic coordinate system for the transformation.
Return Code

S_OK—The method succeeded.

3.4.3.13.2 1GeographicTransform::put_SourceGCS

Page 3-58

Chapter 3 Component Specifications

HRESULT put_SourceGCS(1GeographicCoordinateSystem* gcs);
Sets the source geographic coordinate system for the transformation.
Parameters

gcs [in]-The source geographic coordinate system for the transformation.
Return Code

S_OK—The method succeeded.

3.4.3.13.3 IGeographicTransform::get_TargetGCS

HRESULT get_TargetGCS(1GeographicCoordinateSystem** gcs);
Returns the target geographic coordinate system for the transformation.
Parameters

gcs [out]-The target geographic coordinate system for the transformation.
Return Code

S_OK—The method succeeded.

3.4.3.13.4 1GeographicTransform::put_TargetGCS

HRESULT put_TargetGCS(1GeographicCoordinateSystem* gcs);
Sets the target geographic coordinate system for the transformation.
Parameters

gcs [in]-The target geographic coordinate system for the transformation.
Return Code

S_OK—The method succeeded.

3.4.3.13.5 IGeographicTransform::Forward

HRESULT Forward(long count, WKSPoint* points[]);

Transforms an array of points from the source geographic coordinate system to the target geographic
coordinate system.

Parameters
count [in]—The number of points to be transformed.

points [in/out]—On input points in the source geographic coordinate system, on output points in the
target geographic coordinate system.

Page 3-59

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

Return Code

S_OK—The method succeeded.

3.4.3.13.6 1GeographicTransform::Inverse

HRESULT Inverse(long count, WKSPoint* points[]);

Transforms an array of points from the target geographic coordinate system to the source geographic
coordinate system.

Parameters
count [in]—The number of points to be transformed.

points [in/out]—On input points in the target geographic coordinate system, on output points in the
source geographic coordinate system.

Return Code

S_OK—The method succeeded.

3.4.3.13.7 1GeographicTransform::get_Parameterinfo

HRESULT get_ParameterInfo(lParameterInfo** paraminfo);

Returns an accessor interface to the parameters for this geographic transformation.

Parameters

paraminfo [out]—An accessor interface to the parameters for this geographicc transformation.
Return Code

S_OK—The method succeeded.

3.4.3.14 IProjection Interface

The IProjection interface defines the standard information stored with projection objects. A projection
object implements a coordinate transformation from a geographic coordinate system to a projected
coordinate system, given the ellipsoid for the geographic coordinate system. It is expected that each
coordinate transformation of interest, e.g., Transverse Mercator, Lambert, will be implemented as a COM
class of coType Projection, supporting the 1Projection interface.

3.4.3.14.1 IProjection::get_Usage

HRESULT get_Usage(BSTR* usage);

Returns the appropriate usage comment for the projection.
Parameters

usage [out]-The appropriate usage comment for the projection.

Page 3-60

Chapter 3 Component Specifications

Return Code

S_OK—The method succeeded.

3.4.3.14.2 IProjection::put_Usage

HRESULT put_Usage(BSTR usage);

Sets the appropriate usage comment for the projection.

Parameters

usage [in]—The appropriate usage comment for the projection.
Return Code

S_OK—The method succeeded.

3.4.3.14.3 IProjection::get_Classification

HRESULT get_Classification(BSTR* classification);
Returns the classification comment for the projection.

Parameters

classification [out]-The classification comment for the projection.
Return Code

S_OK—The method succeeded.

3.4.3.14.4 IProjection::put_Classification

HRESULT put_Classification(BSTR classification);

Sets the classification comment for the projection.

Parameters

classification [in]—The classification comment for the projection.
Return Code

S_OK—The method succeeded.

3.4.3.14.5 IProjection::Forward

HRESULT Forward(long count, WKSPoint* points[]);
Transforms an array of points from geographic coordinates to projected coordinates.

Parameters

Page 3-61

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

count [in]—The number of points to be projected.

points [in/out]—On input points in geographic (longitude, latitude) space, on output points in
projected (X, y) space.

Return Code

S_OK—The method succeeded.

3.4.3.14.6 IProjection::Inverse

HRESULT Inverse(long count, WKSPoint* points[]):

Transforms an array of points from projected coordinates to geographic coordinates.
Parameters

count [in]—The number of points to be projected.

point [in/out]—On input a point in projected (X, y) space, on output a point in geographic (longitude,
latitude) space.

Return Code

S_OK—The method succeeded.

3.4.3.14.7 IProjection::get_Parameterinfo

HRESULT get_ParameterInfo(lParameterInfo** paraminfo);

Returns an accessor interface to the parameters for this projection.

Parameters

paraminfo [out]—An accessor interface to the parameters for this projection.
Return Code

S_OK—The method succeeded.

3.4.3.14.8 IProjection::get_AngularUnit

HRESULT get_AngularUnit(lAngularUnit** unit);
Returns the angular units for the projection.

Parameters

unit [out]-The angular unit for the projection.

Return Code

S_OK—The method succeeded.

Page 3-62

Chapter 3 Component Specifications

3.4.3.14.9 IProjection::put_AngularUnit
HRESULT put_AngularUnit(lAngularUnit* unit);

Sets the angular units for the projection.
Parameters

unit [in]-The angular unit for the projection.
Return Code

S_OK—The method succeeded.

3.4.3.14.10 IProjection::get_LinearUnit

HRESULT get_LinearUnit(lLinearUnit** unit);
Returns the linear units for the projection.

Parameters

unit [out]-The linear unit for the projection..

Return Code

S_OK—The method succeeded.

3.4.3.14.11 IProjection::put_LinearUnit

HRESULT put_LinearUnit(lLinearUnit* unit);
Sets the linear units for the projection.

Parameters

unit [in]-The linear unit for the projection.

Return Code

S_OK—The method succeeded.

3.4.3.14.12 IProjection::get_Ellipsoid
HRESULT get_Ellipsoid(1ELllipsoid** ellipsoid);

Returns the ellipsoid for the projection.
Parameters
ellipsoid [out]-The ellipsoid for the projection.

Return Code

Page 3-63

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

S_OK—The method succeeded.

3.4.3.14.13 IProjection::put_Ellipsoid
HRESULT put_Ellipsoid(1ELNlipsoid* ellipsoid);

Sets the ellipsoid for the projection.

Parameters

el lipsoid[in]-The ellipsoid for the projection.
Return Code

S_OK—The method succeeded.

3.4.3.15 IProjectedCoordinateSystem Interface

The IProjectedCoordinateSystem interface defines the standard information stored with projected
coordinate system objects. A projected coordinate system is defined using a geographic coordinate system
object and a projection object that defines the coordinate transformation from the geographic coordinate
system to the projected coordinate systems. The instances of a single ProjectedCoordinateSystem COM
class can be used to model different projected coordinate systems (e.g., UTM Zone 10, Albers) by
associating the ProjectedCoordinateSystem instances with Projection instances belonging to different
Projection COM classes (Transverse Mercator and Albers, respectively).

3.4.3.15.1 IProjectedCoordinateSystem::get_Usage

HRESULT get_Usage(BSTR* usage);

Returns the appropriate usage comment for the Projected Coordinate System.
Parameters

usage [out]-The appropriate usage comment for the Projected Coordinate System.
Return Code

S_OK—The method succeeded.

3.4.3.15.2 IProjectedCoordinateSystem::put_Usage

HRESULT put_Usage(BSTR usage);

Sets the appropriate usage comment for the Projected Coordinate System.
Parameters

usage [in]—The appropriate usage comment for the Projected Coordinate System.
Return Code

S_OK—The method succeeded.

Page 3-64

Chapter 3 Component Specifications

3.4.3.15.3 IProjectedCoordinateSystem::get_GeographicCoordinateSystem

HRESULT get_GeographicCoordinateSystem(l1GeographicCoordinateSystem** gcs);
Returns the geographic coordinate system associated with the projected coordinate system.
Parameters

gcs [out]-The geographic coordinate system associated with the projected coordinate system.
Return Code

S_OK—The method succeeded.

3.4.3.15.4 IProjectedCoordinateSystem::put_GeographicCoordinateSystem

HRESULT put_GeographicCoordinateSystem(1GeographicCoordinateSystem* gcs);

Sets the geographic coordinate system associated with this projected coordinate system. The projected
coordinate system object sets the ellipsoid and angular units of its associated projection object based on
this geographic coordinate system.

Parameters

gcs [in]-The geographic coordinate system associated with the projected coordinate system.

Return Code

S_OK—The method succeeded.

3.4.3.15.5 IProjectedCoordinateSystem::get_LinearUnit
HRESULT get_LinearUnit(lLinearUnit** unit);

Returns the linear (projected) units of the projected coordinate system.
Parameters

unit [out]-The linear (projected) units of the projected coordinate system.
Return Code

S_OK—The method succeeded.

3.4.3.15.6 IProjectedCoordinateSystem::put_LinearUnit
HRESULT put_LinearUnit(ILinearUnit* unit);

Sets the linear (projected) units for the projected coordinate system.
Parameters

unit [in]-The linear (projected) units for the projected coordinate system.

Page 3-65

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

Return Code

S_OK—The method succeeded.

3.4.3.15.7 IProjectedCoordinateSystem::get_Projection

HRESULT get_Projection(IProjection** projection);
Returns the projection for the projected coordinate system.

Parameters

projection [out]-The projection for the projected coordinate system.
Return Code

S_OK—The method succeeded.

3.4.3.15.8 IProjectedCoordinateSystem::put_Projection

HRESULT put_Projection(IProjection* projection);

Sets the projection for the projected coordinate system.

Parameters

projection[in]-The projection for the projected coordinate system.
Return Code

S_OK—The method succeeded.

3.4.3.15.9 IProjectedCoordinateSystem::get_Parameterinfo

HRESULT get_ParameterInfo(lParameterInfo** paraminfo);

Returns an accessor interface to the parameters for this projected coordinate system, this method is
forwarded on to the Projection object associated with this Projected Coordinate System.

Parameters
paraminfo [out]—An accessor interface to the parameters for this projected coordinate system.
Return Code

S_OK—The method succeeded.

3.4.3.15.10 IProjectedCoordinateSystem::Forward

HRESULT Forward(long count, WKSPoint* points[]):

Page 3-66

Chapter 3 Component Specifications

Transforms an array of points from geographic coordinates to projected coordinates. This method is
forwarded to the Projection object that is associated with this ProjectedCoordinateSystem for
implementation.

Parameters

count [in]—The number of points to be projected.

points [in/out]—On input points in geographic (longitude, latitude) space, on output points in
projected (X, y) space.

Return Code

S_OK—The method succeeded.

3.4.3.15.11 IProjectedCoordinateSystem::Inverse

HRESULT Inverse(long count, WKSPoint* points[]):

Transforms an array of points from projected coordinates to geographic coordinates. This method is
forwarded to the Projection object that is associated with this ProjectedCoordinateSystem for
implementation.

Parameters

points [in/out]—On input points in projected (X, y) space, on output points in geographic (longitude,
latitude) space.

Return Code

S_OK—The method succeeded.

3.4.3.16 ISpatialReferenceFactory Interface

A Spatial Reference Factory object supports creation of spatial reference object instances given the Well-
known Text representation of the instance.

3.4.3.16.1 ISpatialReferenceFactory::CreateFromWKT
HRESULT CreateFromWKT (BSTR wktSpatialRef, ISpatialReference** sref);

Creates a spatial reference object given its Well-known text representation. The output object may be either
a geographic coordinate system or a projected coordinate system.

Parameters

wktSpatialRef [in]—The Well-known text representation for the spatial reference
sref [out]—The resulting spatial reference object

Return Code

S_OK—The method succeeded.

Page 3-67

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

3.4.3.17 ISpatialReferenceAuthorityFactory Interface

A SpatialReferenceAuthorityFactory object is associated with a particular authority and creates spatial
reference object instances g iven the authority specific code identifying the instance to be created.

3.4.3.17.1 ISpatialReferenceAuthorityFactory::get Authority
HRESULT get_Authority(BSTR* authority);

Returns the authority name for this factory (e.g., “POSC”).
Parameters

authority [out]—The authority for the factory.

Return Code

S_OK—The method succeeded.

3.4.3.17.2 ISpatialReferenceAuthorityFactory::CreateProjectedCoordinateSystem

HRESULT CreateProjectedCoordinateSystem(long code, IProjectedCoordinateSystem**
pcs);

Returns a projected coordinate system object corresponding to the given code.
Parameters

code [in]—The identification code.

pcs [out]—The projected coordinate system object with the given code.
Return Code

S_OK—The method succeeded.

3.4.3.17.3 ISpatialReferenceAuthorityFactory::CreateGeographicCoordinateSystem

HRESULT CreateGeographicCoordinateSystem(long code,
IGeographicCoordinateSystem** gcs);

Returns a geographic coordinate system object corresponding to the given code.
Parameters

code [in]—The identification code.

gcs [out]—The geographic coordinate system object with the given code.
Return Code

S_OK—The method succeeded.

Page 3-68

Chapter 3 Component Specifications

3.4.3.17.4 |SpatialReferenceAuthorityFactory::CreateProjection

HRESULT CreateProjection(long code, IProjection** projection);
Returns a projection object corresponding to the given code.

Parameters

code [in]—The identification code.

projection [out]—The projection object with the given code.

Return Code

S_OK—The method succeeded.

3.4.3.17.5 ISpatialReferenceAuthorityFactory::CreateGeographicTransform

HRESULT CreateGeographicTransform(long code, IGeographicTransform** gt);
Returns a geographic transformation object corresponding to the given code.

Parameters

code [in]—The identification code.

gt [out]—The geographic transformation object with the given code.

Return Code

S_OK—The method succeeded.

3.4.3.17.6 ISpatialReferenceAuthorityFactory::CreateHorizontalDatum

HRESULT CreateHorizontalDatum(long code, IHorizontalDatum** datum);
Returns a horizontal datum object corresponding to the given code.

Parameters

code [in]—The identification code.

datum [out]—The horizontal datum object with the given code.

Return Code

S_OK—The method succeeded.

3.4.3.17.7 ISpatialReferenceAuthorityFactory::CreateEllipsoid

HRESULT CreateEllipsoid(long code, IEllipsoid** ellipsoid);

Returns an ellipsoid object corresponding to the given code.

Page 3-69

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

Parameters

code [in]—The identification code.

ellipsoid [out]—The ellipsoid object with the given code.

Return Code

S_OK—The method succeeded.

3.4.3.17.8 ISpatialReferenceAuthorityFactory::CreatePrimeMeridian
HRESULT CreatePrimeMeridian(long code, IPrimeMeridian** prmMerid);
Returns a prime meridian object corresponding to the given code.
Parameters

code [in]—The identification code.

prmMerid [out]—The prime meridian object with the given code.
Return Code

S_OK—The method succeeded.

3.4.3.17.9 ISpatialReferenceAuthorityFactory::CreateLinearUnit
HRESULT CreateLinearUnit(long code, lILinearUnit** unit);
Returns a linear unit object corresponding to the given code.

Parameters

code [in]—The identification code.

unit [out]—The linear unit object with the given code.

Return Code

S_OK—The method succeeded.

3.4.3.17.10 ISpatialReferenceAuthorityFactory::CreateAngularUnit
HRESULT CreateAngularUnit(long code, lAngularUnit** unit);
Returns an angular unit object corresponding to the given code.

Parameters

code [in]—The identification code.

unit [out]—The angular unit object with the given code.

Page 3-70

Chapter 3 Component Specifications

Return Code

S_OK—The method succeeded.

3.4.4 Exceptions, Errors, and Error Codes

All of the error codes for spatial reference system objects are returned in the HRESULTS of the methods of
the interfaces. Any return value not equal to S_OK will be interpreted as a provider specific error. These
objects do not throw exceptions.

3.5 Well-known Text Representation of Spatial Reference Systems

3.5.1 Component Overview

The Well-known Text Representation of Spatial Reference Systems provides a standard textual
representation for spatial reference system information.

3.5.2 Component Description

The definitions of the well-known text representation are modeled after the POSC/EPSG coordinate system
data model.

A spatial reference system, also referred to as a coordinate system, is a geographic (latitude-longitude), a
projected (X,Y), or a geocentric (X,Y,Z) coordinate system.

The coordinate system is composed of several objects. Each object has a keyword in upper case (for
example, DATUM or UNIT) followed by the defining, comma-delimited, parameters of the object in brackets.
Some objects are composed of objects so the result is a nested structure. Implementations are free to
substitute standard brackets () for square brackets [] and should be prepared to read both forms of
brackets.

The EBNF (Extended Backus Naur Form) definition for the string representation of a coordinate system is
as follows, using square brackets, see note above:

<coordinate system> = <projected cs> | <geographic cs> | <geocentric cs>

<projected cs> = PROJCS["'<name>", <geographic cs>, <projection>, {<parameter>,}* <linear
unit>]

<projection> = PROJECTION["<name>""]
<parameter> = PARAMETER[''<name>", <value>]

<value> = <number>

A data set's coordinate system is identified by the PROJCS keyword if the data are in projected coordinates,
by GEOGCS if in geographic coordinates, or by GEOCCS if in geocentric coordinates.

The PROJCS keyword is followed by all of the "pieces" which define the projected coordinate system. The
first piece of any object is always the name. Several objects follow the projected coordinate system name:
the geographic coordinate system, the map projection, 1 or more parameters, and the linear unit of
measure. All projected coordinate systems are based upon a geographic coordinate system so we will
describe the pieces specific to a projected coordinate system first. As an example, UTM zone 10N on the
NAD83 datum is defined as:

PROJCS["'NAD_1983_UTM_Zone_10N",
<geographic cs>,

Page 3-71

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

PROJECTION["'Transverse_Mercator'],
PARAMETER["'False_Easting',500000.0],
PARAMETER["'False_Northing',0.0],
PARAMETER["'Central_Meridian',-123.0],
PARAMETER["'Scale_Factor™,0.9996],
PARAMETER["'Latitude_of Origin",0.0],
UNIT["Meter",1.0]]

The name and several objects define the geographic coordinate system object in turn: the datum, the prime
meridian, and the angular unit of measure.

<geographic cs> = GEOGCS[''<name>', <datum>, <prime meridian>, <angular unit>]
<datum> = DATUM["'<name>", <spheroid>]

<spheroid> = SPHEROID[''<name>", <semi-major axis>, <inverse flattening>]
<semi-major axis> = <number> NOTE: semi-major axis is measured in meters and must be > 0.
<inverse flattening> = <number>

<prime meridian> = PRIMEM["<name>", <longitude>]

<longitude> = <number>

The geographic coordinate system string for UTM zone 10 on NADB83 is

GEOGCS['"'GCS_North_American_1983",
DATUM["'D_North_American_1983",
SPHEROID[''GRS_1980"",6378137,298.257222101]1],
PRIMEM["Greenwich",0],
UNIT["Degree',0.0174532925199433]]

The UNIT object can represent angular or linear unit of measures.

<angular unit> = <unit>
<linear unit> = <unit>

<unit> = UNIT["<name>", <conversion factor>]

<conversion factor> = <number>

<conversion factor> specifies number of meters (for a linear unit) or number of radians (for an
angular unit) per unit and must be greater than zero.

So the full string representation of UTM Zone 10N is

PROJCS[''NAD_1983_UTM_Zone_10N",
GEOGCS['"'GCS_North_American_1983",
DATUML "D_North_American_1983",SPHEROID["'GRS_1980",6378137,298.257222101]],
PRIMEM["Greenwich™,0],UNIT[""Degree',0.0174532925199433]],
PROJECTION["Transverse_Mercator'],PARAMETER["'False_Easting',500000.0],
PARAMETER["'False_Northing',0.0],PARAMETER["'Central_Meridian",-123.0],
PARAMETER["'Scale_Factor™,0.9996] , PARAMETER["'Latitude_of_Origin",0.0],
UNIT["Meter',1.0]]

A geocentric coordinate system is quite similar to a geographic coordinate system. It is represented by

|<geocentric cs> = GEOCCS["'<name>", <datum>, <prime meridian>, <linear unit>]

Page 3-72

4 Supported Spatial Reference Data

4.1 Supported Linear Units

Meter 1.0
Foot (International) 0.3048
U.S. Foot 12/39.37
Modified American Foot 12.0004584/39.37
Clarke's Foot 12/39.370432
Indian Foot 12/39.370141
Link 7.92/39.370432
Link (Benoit) 7.92/39.370113
Link (Sears) 7.92/39.370147
Chain (Benoit) 792/39.370113
Chain (Sears) 792/39.370147
Yard (Indian) 36/39.370141
Yard (Sears) 36/39.370147
Fathom 1.8288
Nautical Mile 1852.0
4.2 Supported Angular Units
Radian 1.0
Decimal Degree 7/180
Decimal Minute (n/180)/60
Decimal Second (n/180)/36000
Gon /200
Grad n/200
4.3 Supported Spheroids
Name Semi-major Axis Inverse Flattening
Airy 6377563.396 299.3249646
Modified Airy 6377340.189 299.3249646
Australian 6378160 298.25
Bessel 6377397.155 299.1528128
Modified Bessel 6377492.018 299.1528128
Bessel (Namibia) 6377483.865 299.1528128
Clarke 1866 6378206.4 294.9786982
Clarke 1866 (Michigan) 6378693.704 294.978684677
Clarke 1880 6378249.145 293.465
Clarke 1880 (Arc) 6378249.145 293.466307656

Page 4-1

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

4.4 Supported Geodetic Datums

Page 4-2

Clarke 1880 (Benoit)
Clarke 1880 (IGN)
Clarke 1880 (RGS)
Clarke 1880 (SGA)
Everest 1830

Everest 1975

Everest (Sarawak and Sabah)
Modified Everest 1948
Fischer 1960

Fischer 1968

Modified Fischer (1960)
GEM10C

GRS 1980

Hayford 1909

Helmert 1906

Hough

International 1909
International 1924

New International 1967
Krasovsky

Mercury 1960

Modified Mercury 1968
NWL9D

OSU_86F

OSU _91A

Plessis 1817

South American 1969
Southeast Asia

Sphere (radius = 1.0)
Sphere (radius = 6371000 m)
Sphere (radius = 6370997 m)
Struve 1860

Walbeck

War Office

WGS 1960

WGS 1966

WGS 1972

WGS 1984

Adindan

Afgooye

Agadez

Australian Geodetic Datum 1966
Australian Geodetic Datum 1984
Ainel Abd 1970

Amersfoort

Aratu

Arc 1950

Arc 1960

Ancienne Triangulation Francaise
Barbados

Batavia

Beduaram

Beijing 1954

Reseau National Belge 1950
Reseau National Belge 1972
Bermuda 1957

Bern 1898

Bern 1938

6378300.79 293.466234571
6378249.2 293.46602
6378249.145 293.465
6378249.2 293.46598
6377276.345 300.8017
6377301.243 300.8017
6377298.556 300.8017
6377304.063 300.8017
6378166 298.3
6378150 298.3
6378155 298.3
6378137 298.257222101
6378137 298.257222101
6378388 297.0
6378200 298.3
6378270 297.0
6378388 297.0
6378388 297.0
6378157.5 298.2496
6378245 298.3
6378166 298.3
6378150 298.3
6378145 298.25
6378136.2 298.25722
6378136.3 298.25722
6376523 308.64
6378160 298.25
6378155 298.3
1 0
6371000 0
6370997 0
6378297 294.73
6376896 302.78
6378300.583 296
6378165 298.3
6378145 298.25
6378135 298.26
6378137 298.257223563

Lisbon

Loma Quintana

Lome

Luzon 1911

Mahe 1971

Makassar

Malongo 1987

Manoca

Massawa

Merchich

Militar-Geographische Institute
Mhast

Minna

Monte Mario

M'poraloko

NAD Michigan

North American Datum 1927
North American Datum 1983
Nahrwan 1967

Naparima 1972

Chapter 4 Supported Spatial Reference Data

Bogota

Bukit Rimpah
Camacupa

Campo Inchauspe

Cape

Carthage

Chua

Conakry 1905

Corrego Alegre

Cote d'lvoire

Datum 73

Deir ez Zor

Deutsche Hauptdreiecksnetz
Douala

European Datum 1950
European Datum 1987
Egypt 1907

European Reference System 1989
Fahud

Gandajika 1970
Garoua

Geocentric Datum of Australia 1994
Guyane Francaise
Herat North

Hito XVIII 1963

Hu Tzu Shan
Hungarian Datum 1972
Indian 1954

Indian 1975

Indonesian Datum 1974
Jamaica 1875

Jamaica 1969
Kalianpur

Kandawala

Kertau

Kuwait Oil Company
La Canoa

Lake

Leigon

Liberia 1964

4.5 Supported Prime Meridians

Greenwich
Bern
Bogota
Brussels
Ferro
Jakarta
Lisbon
Madrid
Paris
Rome
Stockholm

4.6 Supported Map Projections

Cylindrical Projections
Behrmann

Cassini

Cylindrical equal area

Nord de Guerre

NGO 1948

Nord Sahara 1959

NSWC 9Z-2

Nouvelle Triangulation Francaise
New Zealand Geodetic Datum 1949
OS (SN) 1980

OSGB 1936

OSGB 1970 (SN)

Padang 1884

Palestine 1923

Pointe Noire

Provisional South American Datum 1956
Pulkovo 1942

Qatar

Qatar 1948

Qornoq

RT38

South American Datum 1969
Sapper Hill 1943

Schwarzeck

Segora

Serindung

Stockholm 1938

Sudan

Tananarive 1925

Timbalai 1948

TM65

TM75

Tokyo

Trinidad 1903

Trucial Coast 1948

Voirol 1875

Voirol Unifie 1960

WGS 1972

WGS 1972 Transit Broadcast Ephemeris
WGS 1984

Yacare

Yoff

Zanderij

0°0'0"
7°26'225"E
74°4'51.3" W
4°22'4.71"E
17°40'0" W
106° 48' 27.79" E
9° 7'54.862" W
3°41'16.58" W
2°20'14.025"E
12°27'8.4"E
18°3'29"E

Pseudocylindrical Projections
Craster parabolic

Eckert |

Eckert I

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

Equirectangular

Gall's stereographic
Gauss-Kruger

Mercator

Miller cylindrical

Oblique Mercator (Hotine)
Plate-Carée

Times

Transverse Mercator

Conic Projections

Albers conic equal-area

Bipolar oblique conformal conic
Bonne

Equidistant conic

Lambert conformal conic
Polyconic

Simple conic

Azimuthal or Planar Projections
Azimuthal equidistant

General vertical near-side perspective
Gnomonic

Lambert Azimuthal equal-area
Orthographic

Polar Stereographic

Stereographic

4.7

central_meridian
scale_factor
standard_parallel_1

standard_parallel_2
longitude_of_center
latitude_of_center
latitude_of_origin
false_easting
false_northing
azimuth

longitude_of_point_1
latitude_of_point_1
longitude_of_point_2
latitude_of_point_2
longitude_of_point_3
latitude_of_point_3
landsat_number
path_number
perspective_point_height
fipszone

zone

Page 4-4

Eckert 111

Eckert IV

Eckert V

Eckert VI

McBryde-Thomas flat polar quartic
Mollweide

Robinson

Sinusoidal (Sansom-Flamsteed)
Winkel |

Modified

Chamberlin trimetric
Two-point equidistant
Hammer-Aitoff equal-area

Miscellaneous

Alaska series E

Alaska Grid (Modified-Stereographic by Snyder)
Van der Grinten |

Map Projection Parameters

the line of longitude chosen as the origin of x-coordinates.
used generally to reduce the amount of distortion in a map projection.

a line of latitude that has no distortion generally. Also used for "latitude of

true scale.”

a line of latitude that has no distortion generally.

the longitude which defines the center point of the map projection.
the latitude which defines the center point of the map projection.
the latitude chosen as the origin of y-coordinates.

added to x-coordinates. Used to give positive values.

added to y-coordinates. Used to give positive values.

the angle east of north which defines the center line of an oblique
projection.

the longitude of the first point needed for a map projection.

the latitude of the first point needed for a map projection.

the longitude of the second point needed for a map projection.

the latitude of the second point needed for a map projection.

the longitude of the third point needed for a map projection.

the latitude of the third point needed for a map projection.

the number of a Landsat satellite.

the orbital path number for a particular satellite.

the height above the earth of the perspective point of the map projection.
State Plane Coordinate System zone number.

UTM zone number.

5 References

10.

11.

The OpenGIS Abstract Specification: An Object Model for Interoperable Geoprocessing, Revision 1,
OpenGIS Consortium, Inc, OpenGIS Project Document Number 96-015R1, 1996.

OpenGIS Project Document 96-025: Geodetic Reference Systems, OpenGIS Consortium, Inc, October
14, 1996.

POSC (Petrotechnical Open Software Consortium) Epicentre Model V2.1,
fttp://posc.org/public/geodetic, July 1995.

Clementini, Eliseo, Di Felice, P., van Oostrom, p., A Small Set of Formal Topological Relationships
Suitable for End-User Interaction, in D. Abel and B. C. Ooi (Ed.), Advances in Spatial Databases—
Third International Symposium. SSD "93. LNCS 692. Pp. 277-295. Springer-Verlag. Singapore
(1993).

Clementini E. and Di Felice P., A Comparison of Methods for Representing Topological
Relationships, Information Sciences 80, 1-34, 1994.

Clementini, Eliseo, Di Felice, P., A Model for Representing Topological Relationships Between
Complex Geometric Features in Spatial Databases, Information Sciences 90 (1-4):121-136 , 1996.

Clementini E., Di Felice P and Califano, G. Composite Regions in Topological Queries, Information
Systems, v 20, no 6, pp 33-48, 1995.

Egenhofer, M.F. and Franzosa, Point Set Topological Spatial Relations, International Journal of
Geographical Information Systems, vol 5, no 2, 161-174, 1991.

Egenhofer, M.J., Clementini, E. and Di Felice, P., Topological relations between regions with holes,
International Journal of Geographical Information Systems, vol 8, no 2, pp 129—142, 1994.

Egenhofer, M.J. and Herring, J., A mathematical framework for the definition of topological
relationships. Proceedings of the Fourth International Symposium on Spatial Data Handling,
Columbus, Ohi, pp. 803-813.

Egenhofer M.J. and Herring, J., Categorizing binary topological relationships between regions, lines
and points in geographic databases, Tech. Report., Department of Surveying Engineering, University
of Maine, Orono, ME 1991.

Page 5-1

OpenGIS Project Document 99-050, OpenGIS Simple Features Specification for OLE/COM Revision 1.1

12. Egenhofer. M.J. and Sharma, J., Topological Relations between regions in %2 and Z?, Advances in
Spatial Databases—Third International Symposium, SSD ’93, vol. 692, Lecture Notes in Computer
Science, pp. 36-52, Springer Verlag, Singapore (1993).

13. Worboys, M.F. and Bofakos, P. A Canonical model for a class of areal spatial objects, Advances in
Spatial Databases—Third International Symposium, SSD ’93, vol. 692, Lecture Notes in Computer
Science, pp. 36-52, Springer Verlag, Singapore (1993).

14. Worboys, M.F. A generic model for planar geographical objects, International Journal of Geographical
Information Systems, 1992, vol 6, no 5, 353-372.

15. http://www.omg.org/corba/sectrans.htm : CORBAservices : Common Object Services Specification,
Ch 8. Externalization Service Specification, OMG.

16. http://www.microsoft.com/oledev : Distributed Component Object Model Protocol Specification—
DCOM 1.0, Microsoft Corporation.

Page 5-2

	0 Preface
	0.1 Submitting Companies
	0.2 Submission Contact Points
	0.3 Document Conventions
	0.4 Revision History
	0.5 Editorial Notes

	1 Overview
	2 Architecture
	2.1 Data Access
	2.1.1 OLE DB Overview
	2.1.2 Data Providers
	2.1.2.1 Data Provider Overview
	2.1.2.2 Requirements for Data Providers

	2.1.3 Data Consumers (ADO)

	2.2 Geometry Object Model
	2.2.1 Geometry
	2.2.1.1 Attributes of Geometry
	2.2.1.2 Basic Methods on Geometry
	2.2.1.3 Methods for testing Spatial Relations between geometric objects :
	2.2.1.4 Methods that support Spatial Analysis

	2.2.2 Geometry Collection
	2.2.2.1 Methods

	2.2.3 Point
	2.2.3.1 Attributes :

	2.2.4 MultiPoint
	2.2.5 Curve
	2.2.5.1 Methods

	2.2.6 LineString, Line, LinearRing
	2.2.6.1 Methods

	2.2.7 MultiCurve
	2.2.7.1 Methods

	2.2.8 MultiLineString
	2.2.9 Surface
	2.2.9.1 Methods

	2.2.10 Polygon
	2.2.10.1 Methods

	2.2.11 MultiSurface
	2.2.11.1 Methods

	2.2.12 MultiPolygon
	2.2.13 Relational Operators
	2.2.13.1 Background
	2.2.13.2 The Dimensionally Extended Nine-Intersection Model
	2.2.13.3 Named Spatial Relationship predicates based on the DE-9IM

	2.3 Spatial Reference System Object Model
	2.4 Summary
	2.4.1 Requirement summary

	3 Component Specifications
	3.1 OLEDB and ADO Components
	3.1.1 OGIS Data Provider Registry Entries
	3.1.2 GIS Metadata
	3.1.3 DBSCHEMA_OGIS_FEATURE_TABLES Rowset
	3.1.4 DBSCHEMA_OGIS_GEOMETRY_COLUMNS Rowset
	3.1.5 DBSCHEMA_OGIS_SPATIAL_REF_SYSTEMS Rowset
	3.1.6 OGIS Property Set
	3.1.7 IColumnsRowset:GetColumnsRowset
	3.1.8 Geometry
	3.1.9 Spatial Reference
	3.1.10 Spatial Filter
	3.1.11 OGIS_Geometry Enumerated Type

	3.2 Geometry Components—Interfaces and Classes
	3.2.1 Component Overview
	3.2.2 A Note on Inheritance
	3.2.3 Interfaces and Classes
	3.2.4 Description
	3.2.4.1 IGeometry Interface
	3.2.4.1.1 IGeometry::get_Dimension
	3.2.4.1.2 IGeometry::get_SpatialReference
	3.2.4.1.3 IGeometry::put_SpatialReference
	3.2.4.1.4 IGeometry::IsEmpty
	3.2.4.1.5 IGeometry::SetEmpty
	3.2.4.1.6 IGeometry::IsSimple
	3.2.4.1.7 IGeometry::get_Envelope
	3.2.4.1.8 IGeometry::Clone
	3.2.4.1.9 IGeometry::Project

	3.2.4.2 IPoint Interface
	3.2.4.2.1 IPoint::get_X
	3.2.4.2.2 IPoint::get_Y
	3.2.4.2.3 IPoint::get_Coords

	3.2.4.3 ICurve Interface
	3.2.4.3.1 ICurve::get_Length
	3.2.4.3.2 ICurve::get_StartPoint
	3.2.4.3.3 ICurve::get_EndPoint
	3.2.4.3.4 ICurve::IsClosed
	3.2.4.3.5 ICurve::get_Value

	3.2.4.4 ILineString Interface
	3.2.4.4.1 ILineString::get_NumPoints
	3.2.4.4.2 ILineString::get_Point

	3.2.4.5 ISurface interface
	3.2.4.5.1 ISurface::get_Area
	3.2.4.5.2 ISurface::get_Centroid
	3.2.4.5.3 ISurface::get_PointOnSurface

	3.2.4.6 IPolygon interface
	3.2.4.6.1 IPolygon::get_ExteriorRing
	3.2.4.6.2 IPolygon::get_NumInteriorRings
	3.2.4.6.3 IPolygon::get_InteriorRing

	3.2.4.7 IGeometryCollection Interface
	3.2.4.7.1 IGeometryCollection::get_NumGeometries
	3.2.4.7.2 IGeometryCollection::get_Geometry

	3.2.4.8 IMultiSurface interface
	3.2.4.8.1 IMultiSurface::get_Area
	3.2.4.8.2 IMultiSurface::get_Centroid
	3.2.4.8.3 IMultiSurface::get_PointOnSurface

	3.2.4.9 IMultiCurve Interface
	3.2.4.9.1 IMultiCurve::get_Length
	3.2.4.9.2 IMultiCurve::IsClosed

	3.2.4.10 ISpatialRelation Interface
	3.2.4.10.1 ISpatialRelation::Equals
	3.2.4.10.2 ISpatialRelation::Touches
	3.2.4.10.3 ISpatialRelation::Contains
	3.2.4.10.4 ISpatialRelation::Within
	3.2.4.10.5 ISpatialRelation::Disjoint
	3.2.4.10.6 ISpatialRelation::Crosses
	3.2.4.10.7 ISpatialRelation::Overlaps
	3.2.4.10.8 ISpatialRelation::Intersects

	3.2.4.11 ISpatialRelation2 Interface
	3.2.4.11.1 ISpatialRelation2::Relate

	3.2.4.12 ISpatialOperator Interface
	3.2.4.12.1 ISpatialOperator::Boundary
	3.2.4.12.2 ISpatialOperator::Distance
	3.2.4.12.3 ISpatialOperator::Buffer
	3.2.4.12.4 ISpatialOperator::Intersection
	3.2.4.12.5 ISpatialOperator::Union
	3.2.4.12.6 ISpatialOperator::Difference
	3.2.4.12.7 ISpatialOperator::SymmetricDifference
	3.2.4.12.8 ISpatialOperator::ConvexHull

	3.2.4.13 IWks Interface
	3.2.4.13.1 IWks::ExportToWKB
	3.2.4.13.2 IWks::ExportToWKT
	3.2.4.13.3 IWks::ImportFromWKB
	3.2.4.13.4 IWks::ImportFromWKT

	3.2.4.14 IGeometryFactory Interface
	3.2.4.14.1 IGeometryFactory::CreateFromWKB
	3.2.4.14.2 IGeometryFactory::CreateFromWKT

	3.2.5 Exceptions, Errors, and Error Codes

	3.3 The Well-known Binary Representation for Geometry (WKBGeometry)
	3.3.1 Component Overview
	3.3.2 Component Description
	3.3.2.1 Numeric Type Definitions
	3.3.2.2 XDR (Big Endian) Encoding of Numeric Types
	3.3.2.3 NDR (Little Endian) Encoding of Numeric Types
	3.3.2.4 Conversion between the NDR and XDR representations of WKBGeometry
	3.3.2.5 Relationship to other COM and CORBA data transfer protocols
	3.3.2.6 Description of WKBGeometry Byte Streams
	3.3.2.7 Assertions for Well-known Binary Representation for Geometry
	3.3.2.8 Linear Rings
	3.3.2.9 Polygons
	3.3.2.10 MultiPolygons

	3.4 Spatial Reference System Components—Interfaces and Classes
	3.4.1 Component Overview
	3.4.2 Interface(s), Data Structures, Language Constructs
	3.4.3 Description
	3.4.3.1 ISpatialReferenceInfo Interface
	3.4.3.1.1 ISpatialReferenceInfo::get_Name
	3.4.3.1.2 ISpatialReferenceInfo::put_Name
	3.4.3.1.3 ISpatialReferenceInfo::get_Authority
	3.4.3.1.4 ISpatialReferenceInfo::put_Authority
	3.4.3.1.5 ISpatialReferenceInfo::get_Code
	3.4.3.1.6 ISpatialReferenceInfo::put_Code
	3.4.3.1.7 ISpatialReferenceInfo::get_Alias
	3.4.3.1.8 ISpatialReferenceInfo::put_Alias
	3.4.3.1.9 ISpatialReferenceInfo::get_Abbreviation
	3.4.3.1.10 ISpatialReferenceInfo::put_Abbreviation
	3.4.3.1.11 ISpatialReferenceInfo::get_Remarks
	3.4.3.1.12 ISpatialReferenceInfo::put_Remarks
	3.4.3.1.13 ISpatialReferenceInfo::get_WellKnownText

	3.4.3.2 IUnit Interface
	3.4.3.3 IAngularUnit Interface
	3.4.3.3.1 IAngularUnit::get_RadiansPerUnit
	3.4.3.3.2 IAngularUnit::put_RadiansPerUnit

	3.4.3.4 ILinearUnit Interface
	3.4.3.4.1 ILinearUnit::get_MetersPerUnit
	3.4.3.4.2 ILinearUnit::put_MetersPerUnit

	3.4.3.5 IEllipsoid Interface
	3.4.3.5.1 IEllipsoid::get_SemiMajorAxis
	3.4.3.5.2 IEllipsoid::put_SemiMajorAxis
	3.4.3.5.3 IEllipsoid::get_SemiMinorAxis
	3.4.3.5.4 IEllipsoid::put_SemiMinorAxis
	3.4.3.5.5 IEllipsoid::get_InverseFlattening
	3.4.3.5.6 IEllipsoid::put_InverseFlattening
	3.4.3.5.7 IEllipsoid::get_AxisUnit
	3.4.3.5.8 IEllipsoid::put_AxisUnit

	3.4.3.6 IHorizontalDatum Interface
	3.4.3.6.1 IHorizontalDatum::get_Ellipsoid
	3.4.3.6.2 IHorizontalDatum::put_Ellipsoid

	3.4.3.7 IPrimeMeridian Interface
	3.4.3.7.1 IPrimeMeridian::get_Longitude
	3.4.3.7.2 IPrimeMeridian::put_Longitude
	3.4.3.7.3 IPrimeMeridian::get_AngularUnit
	3.4.3.7.4 IPrimeMeridian::put_AngularUnit

	3.4.3.8 ISpatialReference Interface
	3.4.3.9 IGeodeticSpatialReference Interface
	3.4.3.10 IGeographicCoordinateSystem Interface
	3.4.3.10.1 IGeographicCoordinateSystem::get_Usage
	3.4.3.10.2 IGeographicCoordinateSystem::put_Usage
	3.4.3.10.3 IGeographicCoordinateSystem::get_HorizontalDatum
	3.4.3.10.4 IGeographicCoordinateSystem::put_HorizontalDatum
	3.4.3.10.5 IGeographicCoordinateSystem::get_AngularUnit
	3.4.3.10.6 IGeographicCoordinateSystem::put_AngularUnit
	3.4.3.10.7 IGeographicCoordinateSystem::get_PrimeMeridian
	3.4.3.10.8 IGeographicCoordinateSystem::put_PrimeMeridian

	3.4.3.11 IParameter Interface
	3.4.3.11.1 IParameter::get_ValueUnit
	3.4.3.11.2 IParameter::put_ValueUnit
	3.4.3.11.3 IParameter::get_Value
	3.4.3.11.4 IParameter::put_Value

	3.4.3.12 IParameterInfo Interface
	3.4.3.12.1 IParameterInfo::get_NumParameters
	3.4.3.12.2 IParameterInfo::get_DefaultParameters
	3.4.3.12.3 IParameterInfo::get_Parameters
	3.4.3.12.4 IParameterInfo::put_Parameters

	3.4.3.13 IGeographicTransform Interface
	3.4.3.13.1 IGeographicTransform::get_SourceGCS
	3.4.3.13.2 IGeographicTransform::put_SourceGCS
	3.4.3.13.3 IGeographicTransform::get_TargetGCS
	3.4.3.13.4 IGeographicTransform::put_TargetGCS
	3.4.3.13.5 IGeographicTransform::Forward
	3.4.3.13.6 IGeographicTransform::Inverse
	3.4.3.13.7 IGeographicTransform::get_ParameterInfo

	3.4.3.14 IProjection Interface
	3.4.3.14.1 IProjection::get_Usage
	3.4.3.14.2 IProjection::put_Usage
	3.4.3.14.3 IProjection::get_Classification
	3.4.3.14.4 IProjection::put_Classification
	3.4.3.14.5 IProjection::Forward
	3.4.3.14.6 IProjection::Inverse
	3.4.3.14.7 IProjection::get_ParameterInfo
	3.4.3.14.8 IProjection::get_AngularUnit
	3.4.3.14.9 IProjection::put_AngularUnit
	3.4.3.14.10 IProjection::get_LinearUnit
	3.4.3.14.11 IProjection::put_LinearUnit
	3.4.3.14.12 IProjection::get_Ellipsoid
	3.4.3.14.13 IProjection::put_Ellipsoid

	3.4.3.15 IProjectedCoordinateSystem Interface
	3.4.3.15.1 IProjectedCoordinateSystem::get_Usage
	3.4.3.15.2 IProjectedCoordinateSystem::put_Usage
	3.4.3.15.3 IProjectedCoordinateSystem::get_GeographicCoordinateSystem
	3.4.3.15.4 IProjectedCoordinateSystem::put_GeographicCoordinateSystem
	3.4.3.15.5 IProjectedCoordinateSystem::get_LinearUnit
	3.4.3.15.6 IProjectedCoordinateSystem::put_LinearUnit
	3.4.3.15.7 IProjectedCoordinateSystem::get_Projection
	3.4.3.15.8 IProjectedCoordinateSystem::put_Projection
	3.4.3.15.9 IProjectedCoordinateSystem::get_ParameterInfo
	3.4.3.15.10 IProjectedCoordinateSystem::Forward
	3.4.3.15.11 IProjectedCoordinateSystem::Inverse

	3.4.3.16 ISpatialReferenceFactory Interface
	3.4.3.16.1 ISpatialReferenceFactory::CreateFromWKT

	3.4.3.17 ISpatialReferenceAuthorityFactory Interface
	3.4.3.17.1 ISpatialReferenceAuthorityFactory::get_Authority
	3.4.3.17.2 ISpatialReferenceAuthorityFactory::CreateProjectedCoordinateSystem
	3.4.3.17.3 ISpatialReferenceAuthorityFactory::CreateGeographicCoordinateSystem
	3.4.3.17.4 ISpatialReferenceAuthorityFactory::CreateProjection
	3.4.3.17.5 ISpatialReferenceAuthorityFactory::CreateGeographicTransform
	3.4.3.17.6 ISpatialReferenceAuthorityFactory::CreateHorizontalDatum
	3.4.3.17.7 ISpatialReferenceAuthorityFactory::CreateEllipsoid
	3.4.3.17.8 ISpatialReferenceAuthorityFactory::CreatePrimeMeridian
	3.4.3.17.9 ISpatialReferenceAuthorityFactory::CreateLinearUnit
	3.4.3.17.10 ISpatialReferenceAuthorityFactory::CreateAngularUnit

	3.4.4 Exceptions, Errors, and Error Codes

	3.5 Well-known Text Representation of Spatial Reference Systems
	3.5.1 Component Overview
	3.5.2 Component Description

	4 Supported Spatial Reference Data
	4.1 Supported Linear Units
	4.2 Supported Angular Units
	4.3 Supported Spheroids
	4.4 Supported Geodetic Datums
	4.5 Supported Prime Meridians
	4.6 Supported Map Projections
	4.7 Map Projection Parameters

	5 References

