

Open Geospatial Consortium Inc.

OpenGIS® Web Map Server Cookbook

November 4, 2004

Editor: Kris Kolodziej

OGC Document Number: 03-050r1

Version: 1.0.2

Stage: Draft

Language: English

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

Copyright Notice
Copyright 2003, 2004 M.I.T.
Copyright 2003, 2004 ESRI
Copyright 2003, 2004 Bonn University
Copyright 2003, 2004 lat/lon
Copyright 2003, 2004 DM Solutions Group, Inc
Copyright 2003, 2004 CSC Ploenzke AG
Copyright 2003, 2004 Wupperverband
Copyright 2003, 2004 WirelessInfo
Copyright 2003, 2004 Intergraph
Copyright 2003, 2004 Harvard University
Copyright 2003, 2004 International Interfaces (See full text of copyright notice in Appendix 2.)
Copyright 2003, 2004 York University
Copyright 2003, 2004 NASA/Ocean ESIP, JPL
Copyright 2003 University of Canterbury

The companies and organizations listed above have granted the Open Geospatial Consortium, Inc. (OGC) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies
of the modified version.

This document does not represent a commitment to implement any portion of this specification in any company’s products.

OGC’s Legal, IPR and Copyright Statements are found at http://www.opengeospatial.org/about/?page=ipr&view=ipr_policy

NOTICE

Permission to use, copy, and distribute this document in any medium for any purpose and without fee or royalty is hereby
granted, provided that you include the above list of copyright holders and the entire text of this NOTICE.

We request that authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of OGC documents is granted pursuant to this license. However, if additional
requirements (as documented in the Copyright FAQ at http://www.opengeospatial.org/about/?page=ipr&view=ipr_faq) are
satisfied, the right to create modifications or derivatives is sometimes granted by the OGC to individuals complying with those
requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE
CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF
SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF
THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to this document or its
contents without specific, written prior permission. Title to copyright in this document will at all times remain with copyright
holders.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c)(1)(ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013

OpenGIS®, OGC™ OpenGeospatial™ and OpenLS ® are trademarks or registered trademarks of Open Geospatial
Consortium, Inc. in the United States and in other countries.or registered trademark of Open Geospatial Consortium,
Inc. in the United States and in other countries.

Note: This document is not an OGC Standard. Internal and external documents cannot refer to it as such.
Drafts are distributed for review and comment and are subject to change without notice.

Version: 1.0.2 ii http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

Document Contact Information
If you have questions or comments regarding this document, you can contact:

Name Organization Contact Information
WMS Cookbook Editor OGC editor@opengeospatial.org +1 (812) 334-

0601

Future Work

Version: 1.0.2 iii http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

Table of Contents

Preface ... 1

Submitting Organizations (The Contributors)... 1
Organization of the Cookbook ... 2
Acknowledgments .. 3
Revision History ... 3

1. WMS Implementation: Overview ... 4
1.1. Introduction: Web Mapping & Interoperability ... 4
1.2. Web Mapping Compliance: The WMS Service Interface.. 7

1.2.1. The WMS Interface Implementation Specification as an API ... 8
1.2.2. The WMS Interface Operations .. 9
1.2.3. WMS SLD Enabled Operations... 10
1.2.4. Supported Distributed Computing Platform (DCP) ... 11
1.2.5. Relation of WMS to other OGC Web Services ... 12
1.2.6. Relation of OGC Web Services to the ISO Reference Model... 13

1.3. Describing Your WMS Server: The GetCapabilities Request... 16
1.3.1. Purpose of GetCapabilities: Allows a Map Server to Describe Itself .. 16
1.3.2. Implementing GetCapabilities: Request Parameters .. 17
1.3.3. GetCapabilities Response: Capabilities XML Document.. 18

1.4. Serving a Map: The GetMap Request .. 20
1.4.1. Purpose of GetMap ... 20
1.4.2. Implementing GetMap: Required Parameters .. 20
1.4.3. GetMap Response .. 23
1.4.4. Exception Handling ... 24
1.4.5. Cascading WMS Servers .. 24

1.5. Optional Operation: The GetFeatureInfo Request.. 25
1.5.1. Purpose of GetFeatureInfo.. 25
1.5.2. Implementing GetFeatureInfo: Required Parameters ... 26
1.5.3. GetFeatureInfo Response... 26

1.6. Connecting drivers to OGC WMS Services .. 27
1.7. On What Technologies Does the WMS Specification Depend?... 27

1.7.1. Extensible Markup Language (XML)... 27
1.7.2. Validate XML - DTD (Document Type Definition) & XML Schema ... 28
1.7.3. Transform and Format XML:XSL (Transforming the Web)... 29
1.7.4. Navigate in XML: XPointer, Xlink .. 31
1.7.5. Managing XML-Extensibility: Namespaces... 31
1.7.6. Parse XML: DOM and SAX... 32

1.8. Implementing WMS Compliance... 33
1.8.1. Writing a WMS-Compliant Translator for a Map Server.. 33
1.8.2. Making a Map Server WMS-Compliant... 33
1.8.3. Making a Web Client WMS Compliant.. 33

1.9. WMS Web Applications Development Technologies.. 33
1.9.1. CGI and Servlets... 34
1.9.2. ASP versus JSP.. 34

1.10. Performance Criteria... 36
1.11. Additional Information ... 37

1.11.1. OpenGIS Web Map Context Implementation Specification .. 37
1.11.2. OGC Compliance Testing ... 37
1.11.3. Conformance and Interoperability Test and Evaluation (CITE) Initiative .. 38

Version: 1.0.2 iv http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

Preface

This OGC Cookbook is for the OpenGIS® Web Map Server (WMS) Interface Implementation
Specification. This "Cookbook" is conceived as a means to share the current experiences in using the
WMS interface for developing interoperable Web mapping applications. Developers around the world are
implementing this specification in interfaces on a wide variety of commercial-off-the-shelf, government-off-
the-shelf, open source, custom and legacy geoprocessing software products. We encourage these
developers to share what they have learned by submitting implementation "recipes" to include in this
cookbook. Providing a recipe is a community-spirited thing to do, but it also brings the submitter good
publicity and, just as every telephone on the planet adds to the value of every other telephone, so every
Web Map Server (and client) adds to the value of all the others.

Overall, this Cookbook provides the basic understanding and steps needed for implementing and
exploiting the WMS interface and related technologies. In addition, the Cookbook includes examples of
implementations, applications, and related helpful information for beginners and more advanced users.
The Cookbook includes "recipes" or step-by-step instructions and recommendations on developing
OpenGIS infrastructures using the WMS interface. It is an implementation guide.

It is assumed that the reader has reviewed the OpenGIS Web Map Server (WMS) Interface
Implementation Specification2. Where appropriate, specific references to the WMS Specification are
outlined within this Cookbook.

Other OpenGIS Cookbooks to follow this cookbook are the Web Feature Server (WFS), Web Coverage
Server (WCS), and Geography Markup Language (GML) Cookbooks. These cookbooks are intended to
be living documents, updated from time to time. Please email your suggested changes to t WMS
Cookbook Editor at email@opengeospatial.org.

Many geoprocessing software vendors offer products that implement the OpenGIS Web Map Server
Implementation Specification and other OpenGIS Specifications. Many of the vendors list these on OGC's
"Implementing Products" page: http://www.opengeospatial.org/testing/product/index.php .

Submitting Organizations (The Contributors)
Contributions to this OGC Cookbook are from a wide variety of OGC members, including software
vendors, integrators, universities, local and national government agencies, and non-governmental
organizations who are users of the WMS interface. The cookbook is intended to draw from many sources
and satisfy readers working in a wide variety of application settings.

This OGC Cookbook was made possible through the contributions of those listed below. All questions,
remarks, and updates regarding these submission should be directed to the Cookbook editor or to the
specific submitter of a particular section:

Submission Contact Points

CONTACT COMPANY CONTRIBUTIONS PHONE/FAX EMAIL
Kris
Kolodziej

OGC Chapter 1
Chapter 2: Preface,

+1-646-244-2731 KKolodziej@opengeospatial.org

2 WMS 1.1.1 Adopted OpenGIS Specification http://www.opengeospatial.org/docs/01-068r3.pdf

Version: 1.0.2 1 http://www.opengeospatial.org

mailto:email@opengis.org
mailto:email@opengis.org
mailto:email@opengeospatial.org
mailto:KKolodziej@opengeospatial.org
mailto:Kwk@mit.edu
http://www.opengeospatial.org/docs/01-068r3.pdf

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

[Editor] System Architecture
Example, XSL/XSLT
Example

David Danko ESRI Chapter 3: ArcIMS
WMS Adapter Recipe

+1-703-506-9515

Ddanko@esri.com

Markus
Muller

Bonn University
&
lat/lon

Chapter 2: DTD &
XML Examples
Chapter 3: lat/lon
WMS Recipe

+49-228-732098 Markus_Muller@bug.hamburg.de

Jeff
McKenna

DM Solutions
Group, Inc

Chapter 3: UMN
MapServer WMS
Recipe (Client &
Server)

+1-613-565-5056

Roland Stahl CSC Ploenzke
AG
&
Wupperverband

Chapter 2: WMS User
Experience

 rstahl2@cscploenzke.de

Karel
Charvat

WirelessInfo Chapter 2: WMS User
Experience &
Software Architecture

 kch@volny.cz

Roger
Harwell

Intergraph Chapter 3: GeoMedia
WebMap WMS
Adapter Kit Recipe

 rdharwel@ingr.com

Lucia
Lovison

Harvard
University

Chapter 2: WMS User
Experience

 lovison@seismology.harvard.edu

Allan Doyle International
Interfaces

Chapter 3: Making a
WMS of out Free
Parts

adoyle@intl-interfaces.com

Vincent Tao York University Chapter 3: GSN 3D
OGC Client Recipe

+1-416-736-5221 Tao@yorku.ca

Rob Raskin NASA/Ocean
ESIP, JPL

Chapter 2:
GetCapabilties &
GetMap Request
Examples

Richard
Pascoe, Hao
Ding, Neville
Churcher

University of
Canterbury

Chapter 2:
Implementing OGC
Web Map Service
Client Applications
Using JSP, JSTL and
XMLC

 richard@cosc.canterbury.ac.nz

mckenna@dmsolutions.ca

Organization of the Cookbook
The Cookbook is organized into three chapters that correspond to levels of detail and application:

Chapter 1: WMS Implementation: Overview establishes the background and context of the WMS
interface implementation specification. In addition, WMS client and server development technologies
(XML, XSL/XSLT, ASP/JSP, etc.) and approaches are reviewed. The chapter is a general orientation for
all readers, including technical managers and developers.

Chapter 2: WMS Examples addresses the design architecture of software systems that implement the
WMS interface. In addition, user experiences provide an explanation of the practical use of the WMS
Implementation Specification. Also included are WMS request examples as well as DTD/XML and
XSL/XSLT stylesheet examples that show how these technologies/tools are used as part of WMS client
and server implementation. The chapter is aimed at technical managers and developers, but suitable for
all readers (especially the User Experience section).

Version: 1.0.2 2 http://www.opengeospatial.org

mailto:Ddanko@esri.com
mailto:Markus_Muller@bug.hamburg.de
mailto:rstahl2@cscploenzke.de
mailto:kch@volny.cz
mailto:rdharwel@ingr.com
mailto:lovison@seismology.harvard.edu
mailto:adoyle@intl-interfaces.com
mailto:Tao@yorku.ca
mailto:richard@cosc.canterbury.ac.nz

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

Chapter 3: WMS Implementation Recipes addresses the implementation of existing WMS interface
compliant software (Web clients and map servers) and includes step-by-step instructions (recipes) for
deploying them. The chapter is for technical personnel who want to deploy these systems for end-users,
or for developers who want to implement similar systems.

Acknowledgments
In addition to each of the contributors, special thanks go to the following people:

• Professor Stephan Winter of the Technical University of Vienna for thorough feedback, and to
Prof. Winter's students at Carinthia Tech Institute (Villach, Austria) in his Geoinformation
class (5th semester) for doing a hands-on testing of this Cookbook by implementing one of
the recipes.

• Lucia Levison of Harvard University for general feedback on the Cookbook (in addition, to
their User Experience contribution).

Revision History

Version Date Author/Editor Comments
1.0.0 April 14, 2003 Kris Kolodziej

1.0.1 June 4, 2003 Kris Kolodziej Emphasize that others are invited to submit examples,
experiences, and recipes.

1.0.2 November 4, 2004 Kris Kolodziej Editorial fixes.

Version: 1.0.2 3 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

1. WMS Implementation: Overview

This chapter establishes the background information of Web mapping, system interoperability, and the
OpenGIS® WMS Specification implementation.

This chapter also presents the technologies and tools for WMS client and server development. WMS
Specification version 1.1.1 is directly referenced to the corresponding "WMS requests" sections
(GetCapabilities, GetMap, GetFeatureInfo) of the specification for the information needed when
implementing the WMS interface.

1.1. Introduction: Web Mapping & Interoperability
Organizations and companies have been providing online mapping services for years. These Web
mapping systems3 have been implemented as a set of proprietary systems. As a result of this isolated
development, online mapping services from different vendors cannot interoperate. The current status of
the lack of geographic information standardizations is shown in Figure 1 which depicts non-interoperable
web mapping systems.

Figure 1: Current Status of Non-Interoperable Web Mapping Systems

This diagram is actually overoptimistic considering that the map views (top of diagram) are identical. In
reality, they are different because the majority of today's technology does not provide common map views
across GIS platforms. The lack of interoperability of either data or services is indicated by the red x's. In

Version: 1.0.2 4 http://www.opengeospatial.org

3 Web mapping is the set of products, standards and technologies that enable access to geographic information,
usually portrayed as maps, via the Web.

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

practice, it means that many technology islands are created and preserved, and that many users are
locked into single-vendor solutions. This situation (lack of interoperability) is slowly improving but,
unfortunately, most Web mapping applications today are still inseparably tied to a specific server
implementation. In other words, the Web client is hard-coded to interact with a particular vendor's
proprietary map server implementation.

Figure 2 below shows a scenario where the user must run three different Web applications in order to
access the data and functionality provided by three different server implementations. In this situation,
there is very little interoperability or reuse of the Web client and server implementations.

Figure 2: Client/Server Lack of Interoperability

Since data are often accessible only through one particular server, there is also very limited ability for a
user to transparently access data of interest from other Map servers. In this diagram, only Web client 3
enables access to more than one database. Unfortunately, Web client 3 may not provide all the
functionality that Web client 1 and Web client 2 offer. Even with Web client 3's ability to access data of
interest from multiple databases, the user must still run three different applications from the different Web
clients to perform a given task.

With Web mapping, as with many application types on the Web, there is a large set of servers from
multiple vendors and organizations. The opportunity the Web provides for broad access is not realized if
each server has a different proprietary implementation with no published interface specification. Even if
an implementation is publicly documented, it may not be standard to the extent that it is in common use
by multiple commercial implementations.

To address this problem, the Open Geospatial Consortium, Inc. (OGC) developed a non-proprietary Web
mapping approach based on open interfaces, encodings and schemas. The OGC Specification Program
and Interoperability Program provide an industry consensus process to plan, develop, review and officially
adopt OpenGIS Specifications for interfaces, encodings and schemas that enable interoperable
geoprocessing services, data, and applications.

Interoperability, at a technical level, refers to the ability for a system or components of a system to provide
information portability and interapplication as well as cooperative process control. Interoperability
comprises intercommunication at communication level protocol, hardware, software, and data
compatibility layers. The aforementioned might be called syntactic interoperability, in the sense of

Version: 1.0.2 5 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

parameter passing. Semantic interoperability, in contrast, deals with the domain knowledge necessary for
informatics services to "understand" each other's intentions and capabilities.

Interoperability, in the context of the OpenGIS Specification Program, is software components operating
reciprocally (working with each other) to overcome tedious batch conversion tasks, import/export
obstacles, and distributed resource access barriers imposed by heterogeneous processing environments
and heterogeneous data. Interoperability, with respect to geoprocessing, refers to the ability of digital
systems to 1) freely exchange all kinds of spatial information and 2) cooperatively, over networks, run
software capable of manipulating such information.

Vendors working together in the OGC's Web Mapping Testbed, and more recently, the OGC Web
Services (OWS) Initiative, have created ways for vendors to write Web-based software that is
interoperable. (Note that OGC also addresses, in some of its initiatives, distributed computing platforms
other than the Web.) Their achievement enables users to immediately overlay and operate on views of
digital thematic map data from different online sources offered though different vendor software.
Moreover, map and imagery suppliers are beginning to make their data available over the Web through
these vendors' OpenGIS-conformant servers.

The conceptual picture of how map overlay works in an interoperable way is portrayed in Figure 2 below.

Figure 2: Interoperable Map Overlay

The interoperability that enables this automatic map overlay comes from a set of common interfaces for
communicating a few basic commands/parameters. This set of interfaces is known as the OpenGIS
Implementation Specification 4, and includes the Web Map Server (WMS) interface implementation
specification. These specifications address basic Web computing, image access, display, manipulation
and coordinate transformation capabilities. That is, they specify the request and response protocols for
open Web-based client/map server interactions.

Version: 1.0.2 6 http://www.opengeospatial.org

4 For a full listing of OpenGIS Implementation Specifications see: http://www.opengeospatial.org/specs/?page=specs.

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

Overall, OGC interfaces provide a high level of abstraction that hides the "heavy lifting" in the Web
Mapping environment. The heavy lifting includes finding remote data store servers, requesting data from
them in specifically defined/standardized structures, attaching symbols intelligently, changing coordinate
systems, and returning information ready to be displayed at the client - all in a matter of seconds.

With standards-based interoperable Web mapping, each map server implements a common interface, a
messaging protocol such as the WMS interface for accepting requests and returning responses. Now, the
same client has Web access to potentially all available map servers and multiple data sources, where
each map server is accessed by a client through the common interface. This concept of interoperable,
distributed mapping systems is portrayed below in Figure 4 below.

Figure 4: Client/Server Interoperability

This approach allows, among other things, the user to run a single client that accesses all the capabilities
of each server. This enables a more open application environment where the best features of available
Web services can be flexibly combined in innovative and previously unimagined ways to solve novel and
increasingly complex problems.

The work associated with OGC's Interoperability Program of fast paced testbeds and pilot projects has
led to many accomplishments. It led to a foundation of web-based interoperability involving not only map
display, but also more sophisticated geoprocessing functions, as well as location based services, sensor
and camera geolocation, Web catalogs of spatial data and spatial Web services, and other capabilities.

As this trend of accessing GIS data via OpenGIS standards continues, the "spatial Web" will become as
open as the Web itself. Web users will easily find, view, overlay, and combine different thematic maps for
a given region. One important effect is a great increase in the utility and commercial value of location-
aware, Internet-connected cell phones, PDAs, laptops, and car computers.

1.2. Web Mapping Compliance: The WMS Service Interface
The OpenGIS Web Map Service Interface Implementation Specification offers a way to enable the visual
overlay of complex and distributed geographic information maps simultaneously, over the Internet. In the
context of WMS a "map" is a raster graphic "picture" of the data rather than the actual data itself.

The WMS Specification is a remarkable technical and commercial breakthrough. Software conforming to
the WMS Specification, using ordinary Web browsers, is able to automatically overlay map images
obtained from multiple dissimilar map servers, regardless of map scale, projection, earth coordinate
system or digital format. Hundreds of billions of dollars worth of digital maps and earth images, which until

Version: 1.0.2 7 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

now could not be accessed and used without special skills and software, can now become an integrated
part of the broader information infrastructure. See Figure 3 for a conceptual view of the situation.

In essence, the WMS Specification enables the creation of a network of interoperable map servers from
which WMS clients can overlay and build customized maps. The WMS client can be either an HTML page
returned by a WMS server (cascading) or a specialized browser plug-in built with Java or ActiveX that
connects to different WMS servers.

WMS clients can specify requested layers, layer styles, the geographic area of interest or bounding box,
the projected or geographic coordinate reference systems (called the Spatial Reference System by OGC),
image file format including width and height size, and also background transparency.

When the WMS client makes requests from multiple WMS services using the same bounding box, Spatial
Reference System, and output size, the returned image files can then be overlaid to create an infused or
composite map. It is important that the map requests specify transparency in order to see lower map
images.

This functionality allows organizations to create WMS data networks that enable users to combine GIS
data from different sources based upon their individual needs. It also allows individual WMS providers to
focus on data particular to their applications and not translate "backdrop" datasets.

Figure 5, below, illustrates how WMS servers serve their information directly to a WMS client (Web
browser) where the maps are "fused" and overlaid from WMS servers.

GIS DB 1 GIS DB 2 GIS DB 3

User 1 User 2

IMS 1
WMS
IMS 1
WMS

IMS 2
WMS
IMS 2
WMS

IMS 3
WMS
IMS 3
WMS

Internet

Figure 5: WMS Communication (courtesy of CSC PloenzkeAG).

There are many special cases that must be handled, making the official WMS Specification document a
bit complex, but at its most basic level, the application developer only needs to know how to populate the
correct values for parameters associated with each WMS request. In other words, the developer doesn't
need to know the internal implementation of the application, just the formation of the request to be
interpreted by the application. See Chapter 2 for some examples of WMS requests and responses.

While the WMS Specification provides a simple, interdependent framework to set up Web map server - it
does have its limitations. A major WMS limitation is the users' inability to modify the map view, by zoom or
pan functions, on the client without making a new request to the WMS servers. The other major limitation
is the lack of rich functionality such as geometry editing or network tracing.

1.2.1. The WMS Interface Implementation Specification as an API
An API (Application Programming Protocol) is a set of software templates that gives software developers
a unified way of addressing functionality on dissimilar systems. Typically, an API is a library of functions

Version: 1.0.2 8 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

or subroutines that give application programmers access to the functionality available in a resource such
as an operating system, imaging system, graphics device, etc.

With respect to the OpenGIS Specifications, an API is an interface definition that permits writing OpenGIS
services for application programs without knowing details of their internal implementation.

The WMS Specification is essentially an API that enables programmers to add an interoperability
interface to different geoprocessing systems from different vendors and of different types (GIS, imaging,
navigation, desktop mapping, etc.).

There are three main components to any online API:

• A vocabulary for the request of information.

• A vocabulary for the response to requests.

• A protocol for the exchange of requests and responses.

The World Wide Web is arguably the first online service API. There is a client – the Web browser; a
server that understands requests and how to fulfill them – the Web server; and a communication protocol
– HTTP. The Web browser sends commands in a format the server understands to a Web server using
the HTTP protocol (over TCP/IP). If a request is sent to a Web server using vocabulary it doesn't
understand, it will respond with an error. In essence, the WMS Specification defines the vocabulary and
the syntax of the commands/operations that enable Web servers and clients to communicate over the
HTTP protocol.

That is the extent of the Web API. It is elegant in its simplicity, in that it enables many highly functional
applications to be built on the Web. Its simple hyperlinking scheme for embedding URLs from multiple
Web servers makes it an example of content integration from multiple sources, and it has been able to
support orders of magnitude more users than it was intended to.

1.2.2. The WMS Interface Operations
The WMS 1.1.1 specification standardizes three operations (two required and one optional) by which
maps are requested by clients, and it standardizes the way that servers describe their data holdings. In
addition, the WMS Specification defines a set of query parameters and associated behaviors.

The three operations (requests) are listed below and shown in Figure 6:

1. GetCapabilities (required)

2. GetMap (required)

3. GetFeatureInfo (optional)

Version: 1.0.2 9 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

Figure 6: The OpenGIS Web Map Service Interface

Each operation is described in detail in its individual section of this chapter. Beyond these basic WMS
operations, additional operations are defined by the OpenGIS Styled Layer Descriptor (SLD)
Specification. See Section 1.2.3. "WMS SLD Enabled Operations" for more on this.

The WMS Specification standardizes or "defines a syntax for WWW Uniform Resource Locators (URLs)
that invoke each of these operations. Also, an Extensible Markup Language (XML) encoding is defined
for service-level metadata" (WMS 1.1.1) for the GetCapabilities operation.

In essence, a WMS server can do three things:

1. Produce a map (as a picture, as a series of graphical elements, or as a packaged set of geographic
feature data),

2. Answer basic queries about the content of the map, and

3. Tell other programs what maps it can produce and which of those can be queried further.

A WMS client (e.g. a standard Web browser) can ask a WMS server to do these things just by submitting
requests in the form URLs. The content of such URLs depends on which of the three tasks is requested.
All URLs include the WMS Specification version number and a request type parameter. In addition,

1. To produce a map, the URL parameters indicate which area of the Earth is to be mapped, the
coordinate system to be used, the type(s) of information to be shown, the desired output format, and
perhaps the output size, rendering style, or other parameters.

2. To query the content of the map, the URL parameters indicate what map is being queried and which
location on the map is of interest.

3. To ask a map server about its holdings, the URL parameters include the "capabilities" request type.

1.2.3. WMS SLD Enabled Operations
The WMS Specification applies to a Web Map Service that publishes its ability to produce maps rather
than its ability to access specific data holdings. A basic WMS classifies its georeferenced information
holdings into "Layers" and offers a finite number of predefined "Styles" in which to display those layers.

The behavior of a WMS service can be extended to allow user-defined symbolization of feature data
instead of named Layers and Styles. While a WMS currently can provide the user with a choice of style
options, the WMS can only tell the user the name of each style. It cannot tell the user what each portrayal
will look like on the map. More importantly, the user has no way of defining unique styling rules. The
capability for a human or machine client to define these rules requires an extension - a styling language
that the WMS client and WMS server can both understand.

Version: 1.0.2 10 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

The OpenGIS Styled Layer Descriptor (SLD) Specification5 describes this extension. In brief, an SLD-
enabled WMS retrieves features from a Web Feature Service and applies explicit styling information
provided by the user in order to render a map. A WMS client retrieves capabilities from a WMS server. If
the WMS server supports SLD, the WMS client allows the user to create custom styles on traditional
WMS layers (in SLD terminology, UserStyles for NamedLayers), which then makes an SLD-enabled
GetMap request to retrieve a map.

SLD is robust enough to fulfill a wide range of cartographic needs and is terse enough to be useful even
using only HTTP GET as a transport method. However, some of the current SLD limitations are: (1) there
is no elegant way to specify a thematic or chloropleth map. For example, the user can not encode data in
four colors starting with gray and ending with black without specifying the exact data ranges for each color
and the exact color value for each range: (2) the ability to create styles lacks a style library service.

An SLD WMS adds the following additional operations that are not available on a basic WMS:

1. DescribeLayer – asks for an XML description of a map layer. The result is the URL of the Web
Feature Server (WFS) containing the data and the feature type names included in the layer.

2. GetLegendGraphic – provides a general mechanism for acquiring legend symbols, beyond the
LegendURL reference of WMS Capabilities.

3. GetStyles – used to retrieve user-defined styles from a WMS.

4. PutStyles – used to store user-defined styles into a WMS

1.2.4. Supported Distributed Computing Platform (DCP)
At present, the only distributed computing platform (DCP) explicitly supported by OGC Web Services is
the World Wide Web itself, or more specifically Internet hosts implementing the HTTP. (Note that CORBA,
SQL, and COM are supported by some OpenGIS Specifications, enabling interoperability across other
networks and between diverse software systems running simultaneously on a single computer. See also
the proposed DCP-independent specification work proposed in the Geographics Objects Feasibility
Study.)

The Web, in general, requires that requests and responses be sent over the Internet using the HTTP
protocol. HTTP supports two request methods: GET and POST. One or both of these methods may be
defined for a particular OGC Web Service type and offered by a service instance, and the use of the
Online Resource URL differs in each case. The basic WMS Specification only defines HTTP GET for
invoking operations.

Basic GET encodings are directly usable by standard World Wide Web user agents, and may be
bookmarked, sent in email, pasted into HTML documents, and so forth. The ease of use of the GET
encoding is its primary benefit. However, it does have some disadvantages. Additional semantics must be
defined to, for example, associate a list of layers with a list of styles. SLD WMS requests described in
Section Error! Reference source not found., below, which include an XML description of the styling, are
difficult to encode directly and require that the request URL make reference to a separate SLD URL.

However, a candidate WMS Implementation Specification Part 2: XML for Requests using HTTP POST5 6
defines optional HTTP POST encodings meant to provide additional structure in the request message and

5 SLD specification: https://portal.opengeospatial.org/files/?artifact_id=1188
6 WMS Implementation Specification Part 2: XML for Requests using HTTP POST. See URL
http://www.opengeospatial.org/docs/02-017r1.pdf. This document is a discussion paper for a new Part 2 of the WMS
Implementation Specification.

Version: 1.0.2 11 http://www.opengeospatial.org

http://www.opengeospatial.org/techno/discussions/02-017rl.pdf
http://www.opengeospatial.org/techno/discussions/02-017rl.pdf

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

thereby to allow additional functionality. The greatest benefit is felt in the GetMap operation, where the
comma-separated list of Layer names in HTTP GET can be replaced by a sequence of XML elements,
each of which is either a named or a user-defined Layer, and directly associating Style and Filter
information within each Layer. The GetFeatureInfo operation, which includes most of a GetMap
request, benefits in a similar way.

An Online Resource URL intended for HTTP GET requests is in fact only a URL prefix to which additional
parameters must be appended in order to construct a valid Operation request. A URL prefix is defined as
an opaque string including the protocol, hostname, optional port number, path, a question mark '?', and,
optionally, one or more server-specific parameters ending in an ampersand '&'. The prefix uniquely
identifies the particular service instance. For HTTP GET, the URL prefix must end in either a '?' (in the
absence of additional server-specific parameters) or a '&'. In practice, however, Web clients should be
prepared to add a necessary trailing '?' or '&' before appending the Operation parameters defined in this
specification in order to construct a valid request URL. An Online Resource URL intended for HTTP
POST requests is a complete and valid URL to which Web clients transmit encoded requests in the body
of the POST document.

There were many architectural decisions made that now seem obvious for selecting the Web (HTTP) as
the DCP. The most important feature is that the HTTP communication protocol, which is used for sending
requests (e.g. get me a map of a particular place) and responses (e.g. an HTML text or image) is a
stateless, one-time transaction, meaning that one request gets exactly one response. Nothing about the
requesting WMS client is known before or after the lifetime of the request.

The simplicity of the stateless HTTP protocol for requesting information over the Web can pose some
limitation when developing Web client application. Programmers get around this limitation with cookies,
Java applets, and other means, but these are all extensions. In order to build Web applications that allow
for customized content based on the user's input, the CGI (Common Gateway Interface) is used. This is a
standardized way to send initialization parameters to any program running on a Web server. These
services, commonly called CGI engines (e.g., Microsoft ASP pages, Java servlet engines, or Allaire
ColdFusion) make Web pages more like true user interfaces to powerful, customizable, distributed
programming resources.

OGC's WMS Implementation Specification is a standard vocabulary for basic Web mapping services that
is based on CGI. The CGI request is still a URL, but at some point in the URL, there is a question mark,
and everything after the question mark is a list of key/value pairs.

1.2.5. Relation of WMS to other OGC Web Services
Recognizing that GIS users require functionality exceeding that possible within WMS (i.e., image files),
OGC developed a number of other specifications that extend the functionality of OpenGIS WMS
compliant systems.

The OGC Web Services (OWS) 7suite includes three principal types of georeferenced information access
services. Besides WMS, it also includes the Web Coverage Server (WCS)8 and the Web Feature Server
(WFS)9. Other standards include the Simple Feature Specification (SFS), the Geography Markup
Language (GML), and others. While these standards are independent of each other, they are
complementary to each other.

7 OpenGIS Web Services (OWS): http://www.opengeospatial.org/initiatives/?iid=78
8 WCS – Web Coverage Service—Interoperability Program Report: http://www.opengeospatial.org/docs/03-065r6.pdf

9 WFS 0.0.14 specification: https://portal.opengeospatial.org/files/?artifact_id=7176

Version: 1.0.2 12 http://www.opengeospatial.org

http://www.opengis.org/techno/discussions/02-024.pdf
http://www.opengis.org/techno/RFC13.pdf

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

Figure 7 is an architecture diagram showing conceptually how some of the OGC Web Services are
related, and naming some of the operations they define.

Figure 7: OGC Web Service Architecture Diagram.

The architecture of Web-based geospatial services specifies the scope, objectives and behavior of a Web
services system and its functional components. The reference architecture is independent of particular
technology choices and will evolve in response to implementation experiences.

A reference architecture model, in general, brings together standards at two different levels of abstraction,
and under two different architectural viewpoints:

• Abstract models specify what information or requests are valid in principle (independent of
individual computing environments). They define essential concepts, vocabulary, and
structure of geospatial services and information transfer. These models set the stage for
creating implementable specifications, and for extending existing ones to new environments.

• Implementation specifications tell software developers how to express information or
requests within a particular distributed computing environment (e.g., World Wide Web,
CORBA, J2EE, .NET). Implementation specifications generally include access protocols,
object models, and naming conventions. Such specifications are specific to a targeted
computing environment.

1.2.6. Relation of OGC Web Services to the ISO Reference Model
The ISO Reference Model10 provides additional background on conceptual models and their role in
specification design and organizes standards along a generic "stack" of interoperability layers, depicted in

Version: 1.0.2 13 http://www.opengeospatial.org

10 ISO Reference Model, http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26002. (ISO
19101:2002).

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

Figure 8. OGC's Abstract Specification11 Topic 0 (Overview, Section 2) explains the roles of abstract and
implementation models, and the interdependence of service invocation and information transfer.

In essence, there are two types of standards:

• Service invocation standards: define the interfaces that allow different systems to work
together, or the expected behavior of software systems.

• Information transfer standards: define the content of geospatial information or its encoding for
transfer between different processing systems.

For distributed computing, the service and information viewpoints are crucial and intertwined. For
instance, information content isn't useful without services to transmit and use it. On the other hand,
invoking a service effectively requires that its underlying information be available and its meaning is clear.
However, the two viewpoints are also separable: one may define how to represent information regardless
of what services carry it; or how to invoke a service regardless of how it packages its information.

The "interoperability stack" presented in Figure 8 describes a layered architecture of technology and
standards on which services can be implemented and deployed. The lowest levels of the stack enable
connectivity of software components by enabling them to bind, send and receive messages. Higher levels
in the stack enable interoperability and, via publish-find-bind mechanisms, allow software components to
transparently work together in more integrated and dynamic ways.

Figure 8: Services Interoperability "Stack" (ISO Reference Model)

At the foundation of the stack are communication protocols such as TCP/IP, HTTP, SMTP, IIOP and FTP.
With the exception of pure binary data, structured data will typically be encoded as XML. Formats for data
encoding are described in a schema language such as DTD, XML Schema, RDF or XMI. OGC has
defined a family of schemas for encoding simple features as "well-known" binary (WKB) and plain text

Version: 1.0.2 14 http://www.opengeospatial.org

11 OGC Abstract Specification Overview, http://www.opengeospatial.org/docs/99-100r1.pdf.

http://www.opengeospatial.org/docs/99-100r1.pdf

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

(WKT) as well as GML for encoding features as XML. The distributed computing platform (DCP) layer is
focused primarily on the infrastructure for enabling distributed services.

A DCP is a standardized software environment enabling distributed computing by supporting cooperation
between software executing on multiple computers that converse over a communications network. To the
extent services are constructed from reusable software components, standard (or at least widely used)
DCPs such as COM, CORBA, J2EE and SQL reside in this layer. Similarly, HTTP and SOAP are
infrastructure technologies specifically enabling binding to services deployed across the Web.

For the services layer, OGC has defined implementation specifications for accessing and manipulating
"simple features" via bindings for the COM, CORBA and SQL platforms. Additional implementation
specifications from OGC include Gridded Coverages and Coordinate Transformations. New
implementation specifications are emerging from the OGC specification process for Feature and
Coverage access, Portrayal, Gazetteer, Geocoder and Geoparser services for the Web.

The Service Description layer is used to provide fundamental information required for services to
discover, bind and interoperate. These include:

• Types of messages being exchanged between a service provider and a service requestor.

• Operations supported by a service provider.

• Rules for binding to a service provider

• The network address of a service provider.

The Service Discovery layer is the set of standards and technologies for publishing and finding service
providers. Service descriptions tell where and how to access Web services. Service discovery enables
web service descriptions to be found and utilized by service requestors. The UDDI12 is an emerging
technology for defining mechanisms for discovery of Web Services. The OGC Catalog Service
implementation specification defines a service for supporting the discovery of geospatial content and
services.

The top-level Integration and Workflow layer is focused on standards and technologies for enabling
integration of services to support decision-making, modeling, workflow and business process integration
within organizations and among Information Communities.

The OGC Web Services (OWS) reference architecture is consistent with ISO 19119 (Geographic
Information - Services)13 and ISO 10746 (Reference Model for Open Distributed Processing, RM-ODP)14.
Even though the OWS reference architecture does not mandate particular implementation choices, it is
presumed that, for the purposes of the OGC testbeds and initiatives, XML and XML Schema are used as
the type definition language. Developers can assume that most OGC technology implementations will
depend on the Internet and Web as the distributed computing platform, but many of the OpenGIS
Specifications support other distributed computing platforms and some of OGC's initiatives focus on other
platforms.

High-level objectives of OWS include:

• Support many independently-developed implementations of a given service type.

• Support many independently-provided instantiations of different of services.

12 UDDI: http://www.uddi.org
13 ISO 19119 (Geographic Information – Service: http://www.fig.net/figtree/pub/fig2002/JS4/JS4percivall.pdf
14 ISO 10746 (Reference Model for Open Distributed Processing, RM-ODP): http://community-ml.org/RM-ODP/

Version: 1.0.2 15 http://www.opengeospatial.org

http://www.uddi.org/
http://www.fig.net/figtrree/pub/fig

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

• Find at runtime specific instantiations of services based on service characteristics such as
service type, service content, or service quality.

• Provide access to metadata about the description of services, their location on the Internet,
and the means of accessing and using these services.

• Discover what services can be used to access specific data holdings.

• Invoke services at runtime to perform useful tasks using discovered metadata.

• Enable ad-hoc chaining of services to satisfy aggregated workflow processes.

• Develop a common model for publishing, discovering, binding and chaining Web services.

The architecture presented in the OGC Basic Service Model15 encapsulates the design requirements for
enabling interoperation between instances of "Web Services" deployed using OGC Web Services
specifications.

Based on these requirements, the reference architecture specifies mechanisms and rules for:

• Publishing web service descriptions.

• Publishing interfaces.

• Identifying operators (processing method).

• Publishing shared information objects.

• Organizing entities into hierarchical relationships.

1.3. Describing Your WMS Server: The GetCapabilities
Request

1.3.1. Purpose of GetCapabilities: Allows a Map Server to
Describe Itself
The GetCapabilities request returns the WMS server's service-level metadata, which is a machine-
readable (and human-readable), description of the WMS service's information content and acceptable
request parameters. The response to a GetCapabilities request is general information about the
service itself and specific information about the available maps. This response is the "capabilities"
document, which is an XML configuration file that is provided to requesting WMS clients. This XML file is
the metadata about a WMS server indicating its data holdings and abilities. A server sends this
information upon request as an XML document formatted according to well-defined Document Type
Definition (DTD). The most critical part of the WMS Capabilities XML is the Layers and Styles it defines.
This file is required by the WMS Specification and must conform to the OGC's WMS Document Type
Definition.

15 OGC Basic Service Model, URL: http://www.opengeospatial.org/docs/01-022r1.pdf

Version: 1.0.2 16 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

When requesting a map, a WMS client may specify the layer(s) information and associated styles, as well
as the desired output format. First, however, a WMS client needs to find out what it can request from a
particular WMS server (find out the WMS server's service capabilities). In order to find out what layers a
WMS server supplies and what projections it supports, a WMS client makes a "Capabilities Request."
Another purpose of the GetCapabilities request is to declare the GetMap services that are provided.
You must be able to deliver an XML metadata file via HTTP upon receiving a request such as:

http://www.opengeospatial.org/wms/process.cgi?
REQUEST=GetCapabilities&VERSION=1.1.0&SERVICE=WMS

This request can be broken up into URL components, as shown below:

URL Component Description
http://www.opengeospatial.org/wms/proces
s.cgi?

URL Prefix of server

VERSION=1.1.1& Request Version
REQUEST=GetCapabilities& Request Name

The URL need not be the same as that for GetMap. Therefore, you could arrange for another server to
provide this functionality. You must be able to provide any GetMap service that you declare in the XML
file. This file is to be returned with mime type set to "text/xml".

Because each WMS server is independent and is likely to have different kinds of information for which it
can produce maps, a WMS server must be able to provide a machine-readable (machine-parseable)
description of its capabilities. This "Service Metadata" Capabilities.xml file enables WMS clients to
formulate valid requests and enables the construction of searchable catalogs that can direct WMS clients
to particular WMS servers.

The GetCapabilities operation needs to retrieve a complete listing of which interfaces a map server
supports and what map layers it can serve in response to the invocation of the map interface. The
GetCapabilities operation provides WMS clients of WMS servers with the following functionality:

• All interfaces a WMS server can support.

• Image formats it can serve (e.g., GIF, JPG, PNG).

• List of spatial reference systems available for delivery of map data from the WMS server.

• List of all exception formats for return of exception that are available from the WMS server.
Inclusion of a value for this attribute is optional.

• List of all the vendor specific capabilities (or properties) that are available for modifying or
controlling actions of a particular WMS server, with the current value of each capability.
Inclusion of a value for this attribute is optional.

• List of one or more map layers available from a particular WMS server. Inclusion of a value
for this attribute is optional.

• Whether a WMS server supports the optional FeatureInfo interface.

1.3.2. Implementing GetCapabilities: Request Parameters
Note: See also Chapter 3, which includes specific recipes on WMS server configuration utilizing the
Capabilities XML and DTD documents.

Version: 1.0.2 17 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

GetCapabilities is invoked by a WMS client to get a complete listing of what interfaces a WMS server
supports and what map layers it can serve in response to invocations of the GetMap request. The listing
also contains information about whether a WMS server supports the optional FeatureInfo operation. The
listing is returned as an XML document which conforms to the Capabilities DTD. See WMS 1.1.1 Annex
A.1 for WMS Capabilities DTD and Annex A.2 for a sample WMS Capabilities XML.

Review WMS 1.1.1 specification, section 7.1 on the GetCapabilities request, especially 7.1.3 for the
overview of the GetCapabilities request parameters. In essence, Table 1 below shows the required
and optional request parameters for implementing the GetCapabilities functionality.

Request Parameter Required/
Optional

Description

VERSION=version
SERVICE=WMS
REQUEST=GetCapabilites
UPDATESEQUENCE=string

O
R
R
O

Request version
Service Type
Request name
Sequence number or string for cache control

Table 1: Getcapabilities Request Parameters

The following links can be used to access tools for compiling WMS server metadata:

• Web Mapping Testbed XML Validator16. Check your XML via HTTP. Type URL[*] of your XML
document for manual validation

• Brown University's XML Validator17. Brown University's validator allows file uploads.

1.3.3. GetCapabilities Response: Capabilities XML Document
The response to a GetCapabilities request is a Capabilities XML document (XML file as per
Capabilities DTD or MIME type in case of HTTP) conforming to the Schema given in the OWS Service
Metadata XML IPR, composed of four main sections depicted in Figure 9, below.

16 Web Mapping Testbed XML Validator http://www.digitalearth.gov/wmt/xml/validator.html
17 Brown University’s XML Validator: http://www.stg.brown.edu/service/xmlvalid/) to check a local or firewalled XML
file.

Version: 1.0.2 18 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

Figure 9: OGC_Capabilities Top-level Element

Review WMS 1.1.1 Specification section 7.1.4 on the GetCapabilities response and section 7.1.5 on
the output formats.

The GetCapabilities request output (the Capabilities XML file) can be relatively large if the WMS
server has a lot of map layers. This is especially true if the layers are unrelated. However, the nesting and
inheritance rules can usually be used to minimize duplication of information. Also, it is possible to
parameterize the layers and use the Dimension and Extent elements to reduce the size (version WMS 1.1
and up allow for this).

For instance, if the layers represent multiband data, a new layer for each band is not needed, but instead
one layer with a DIMENSION=band declaration. Then, a BAND=1 can be included as part of the request
for that layer. This is not limited to bands, but to any other dimensions (e.g. time, elevation, etc.).

Note that a WMS server does not need to dynamically generate the capabilities response. Also, the Web
server, in addition to the WMS server, can provide the capabilities response on a WMS server's behalf. In
addition, the WMS Specification defines only a limited set of parameters for requesting maps. In order to
be able to generate more sophisticated maps adapted to location, context or user interest, the WMS
Specification must be extended by a range of parameters. These enhancements include the possibility
not only to specify predefined styles for each feature type, but to specify a whole XML sub tree.

Version: 1.0.2 19 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

1.4. Serving a Map: The GetMap Request

1.4.1. Purpose of GetMap
The GetMap request returns a map image whose geospatial and dimensional parameters are well
defined. The map operation of the GetMap request is invoked by a client to get a rectangular set of pixels.
These pixels contain a picture of a map covering a geographic area or a set of graphic elements that lie in
a geographic area. The GetMap request allows the WMS client to specify distinct layers, the spatial
reference system (SRS), the geographic area, and other parameters describing the returned map format.
Upon receiving the GetMap request, a WMS server will either satisfy the request or throw an exception in
accordance with the exception instructions contained in the GetMap request.

The WMS server must be able to deliver a map via HTTP upon receiving a WMS client request such as
the following:

http://www.airesip.org/wms/process.cgi?REQUEST=GetMap&
FORMAT=image/gif&WIDTH=640&HEIGHT=480&LAYERS=temperature
&SRS=EPSG:4326&BBOX=-110.,40.,-80.,30.&&VERSION=1.1.0

In this hypothetical example, www.airesip.org is the server hostname, wms/ is its directory path, and
process.cgi is the name of the CGI script processing the WMS client requests. This CGI script knows
how to respond to the WMS request. You can choose the directory path and file names. A question mark
is appended after the script name to separate it from the parameter list. The parameter list consists of
parameter name=value assignments separated by an ampersand (&).

Parameters may appear in any order. Parameter names are not case-sensitive; therefore, height=480
and HEIGHT=480 are identical requests. However, you may choose to interpret parameter values as
case-sensitive. No spaces appear anywhere in the request string.

The GetMap request enables the creation of a network of distributed map servers from which WMS
clients can build customized maps. When two or more maps are produced with the same Bounding Box,
Spatial Reference System, and output size, the results can be accurately layered to produce a composite
map.

The use of image formats that support transparent backgrounds allows the lower layers to be visible.
Furthermore, individual map layers can be requested from different WMS Servers.

1.4.2. Implementing GetMap: Required Parameters
When invoking a GetMap request, a WMS client can specify the information to be shown on the map: one
or more "Layers", possibly the "Styles" of those Layers, what portion of the Earth is to be mapped (a
"Bounding Box"), the projected or geographic coordinate reference system to be used (SRS), the desired
output format, the output size (Width and Height), and background transparency and color.

The required fields as well as the optional fields of a GetMap request are presented in Table 2, below.

Version: 1.0.2 20 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

Request Parameter Required/
Optional

Description

VERSION=version

REQUEST=GetMap

LAYERS=layer_list

STYLES=style_list

SRS=namespace:identifier

BBOX=minx,miny,maxx,maxy

WIDTH=output_width

HEIGHT=output_height

FORMAT=output_format

TRANSPARENT=TRUE/FALSE

BGCOLOR=color_value

EXCEPTIONS=exception_format

TIME=time

ELEVATION=elevation

Other sample dimension(s)

Vendor-specific parameters

R

R

R

R

R

R

R

R

R

O

O

O

O

O

O

O

Request version

Request name

Comma-separated list of one or more map layers Optional is SLD
parameter is present

Comma-separated list of one rendering style per requested layer.
Optional if SLD parameter is present

Spatial Reference System

Bounding box corners (lower left, upper right) in SRS units

Width in pixels of map picture

Height in pixels of map picture

Output format of map

Background transparency of map

(default-FALSE)

Hexadecimal red-green-blue color value for the background color
(default=0xFFFFFF).

The format in which exceptions are to be reported by the WMS
(default=SE_XML)

Time value of layer desired

Elevation of layer desired

Value of other dimensions as appropriate

Optional experimental parameters

The following parameters are used only with Web Map Services that support the Styled Layer Descriptor specification [3].

SLD=styled-
layer_descriptor_URL

WFS=web_feature_service_URL

O

O

URL of Styled Layer Descriptor (as defined in SLD Specification).

URL of Web Feature Service providing features to be symbolized using
SLD

Table 2: GetMap Request Parameters

In addition to the information in the WMS Specification, below are some issues and their workarounds,
encountered when implementing some of the GetMap parameters.

Version: 1.0.2 21 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

1.4.2.1. SRS and BBOX
When developing a WMS client where it makes a GetCapabilities request to allow the user to select
layers for mapping, a problem might be encountered when the WMS client will have to deal with WMS
servers that specify multiple projections in their SRS.

The SRS parameter is a multiple list of spatial reference systems. The list for a named layer is an additive
list is inherited from an ancestor layer. Note that WMS Specification version 1.1.1 allows (and prefers)
multiple SRS values to be enclosed in separate <SRS> elements. That is, instead of:

<SRS>EPGS:4267
EPSG:4326 EPSG:32747
EPSG:32748
EPSG:32749</SRS>

it is preferred to have:

<SRS>EPGS:4267</SRS>
<SRS>EPSG:4326</SRS>
<SRS>EPSG:32747</SRS>
<SRS>EPSG:32748</SRS>
<SRS>EPSG:32749</SRS>

It is important to realize that the WMS Specification does not require (but only recommends) each named
layer to have a "BoundingBox" for every SRS - "Layers may have zero or more <BoundingBox>
elements" (WMS 1.1.1 section 7.1.4.5.7 BoundingBox). Some WMS servers are able to transform on
demand to a large number of SRSes. Instead of requiring such WMS servers to compute and advertise a
bounding box for every layer in every SRS, the WMS Specification lets them advertise as few as one
SRS.). Only LatLonBoundingBox (EPSG:4326) is required on each Layer, either stated or inherited
from an ancestor layer. It is recommended that if the data are stored in some other SRS then the
BoundingBox for that native SRS also be given.

According to the above explanation of the WMS Specification on "BoundingBox," the following is valid. A
WMS server may define each layer as a child to one parent coverage. This coverage specifies multiple
projections (within the one SRS) which are then inherited by the child layers. This can be done without
having anywhere in the structure a "BoundingBox" defined for any of the specific projections. This way,
it is possible to specific map areas of layers by using the "LatLonBoundingBox".

To further explain and minimize the confusion that might arise when reading the WMS Specification on
"BoundingBox" (WMS 1.1.1 section 7.1.4.5.7) where it states that WMS servers may advertise fewer
BoundingBoxes than SRSes and should advertise at least the native SRS, consider the following. It may
seem that with a thin WMS client the only image it can receive from that WMS server is one that is in
lat/lon, since the domain of coordinates for various projections can vary widely. Trying to make a wild
guess in this case, is unpractical.

The following points clarify this situation:

• If the WMS client wants maps in EPSG:4326 and the WMS server supports that SRS, there
is no problem.

• If the WMS client wants a map in an SRS for which the WMS server has advertised a
BoundingBox, there is no problem.

• If the WMS client is already displaying a map from some other WMS server in an arbitrary
SRS, with a bounding box valid in that SRS, and adds a map from another WMS server that

Version: 1.0.2 22 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

supports that SRS but does not give a bounding box, then the WMS client will use the BBOX
of its current map in order to overlay the two maps. The overlay result will depend on the area
covered by each dataset, but the WMS server should not give out error messages if the
requested BBOX does not overlap the data - the WMS server should simply send a blank
map. The WMS client can estimate the likelihood of overlap between the two servers by
inspecting LatLonBoundingBox. Hence, there is no problem.

• If the WMS client wants to request a new map in an arbitrary SRS without any advance
knowledge of valid bounding box values in that SRS, then a wild guess is its only option.
However, it's very unlikely that such a WMS client will ever have to make an unreasonable
"wild guess" as to what coordinates to put into a BBOX request. Rather, its BBOX requests are
very likely to be sensible numbers (e.g., for UTM meters, on the order of x=500,000,
y=4,000,000 for northern US). This is because these requests are based upon the WMS
client's current UTM viewpoint, which is based on the previous one. In addition, WMS clients
usually have a starting viewpoint that gets set by either of the following: (a) some pre-loaded
local data; (b) a default startup setting (*.ini file); (c) the URL that invoked the (HTML or Java
applet) WMS client; or (d) some user "context" or "configuration" file.

1.4.2.2. BBOX and Projections
A problem may arise when a bounding box that produces a rectangular image in one projection system
produces a differently shaped polygon in another projection system.

An appropriate interoperable solution is to require that all WMS servers draw their data into the BBOX and
SRS of the map request. Any areas that don't have data within the specified BBOX get transparent pixels.
WMS server developers can declare it to be invalid for a WMS server to return an error of the sort "BBOX
is out of range". Some WMS servers generate "out of range" errors when they really shouldn't have to.
This way, a WMS client can handle the different-SRS bounding box by either way of including it, or
ignoring it all together - both ways will make the results valid.

Note that the WMS Specification states that a map image be stretched so that the requested bounding
box fits into the requested image. (WMS 1.1.1 section 7.2.3.8). It is expected that without having a smart
WMS client, a client request to the WMS server for converted coordinates followed by a subsequent
request for an image would necessarily result in a distorted image.

Furthermore, WMS 1.1.1 section 7.2.3.8 contains the note: "Map distortions will be introduced if the
aspect ratio WIDTH/HEIGHT is not commensurate with X, Y and the pixel aspect. WMS client developers
are cautioned to minimize the possibility that users will inadvertently request or unknowingly receive
distorted maps."

Handling this situation depends on what kind of WMS client is being utilized. With a WMS client that can
only overlay one image on top of another, this is a non-issue. Presumably the WMS client will have
specific values for its viewing window and it just passes these values to the WMS server. No image-
parameter conversions are necessary. On the other hand, for a WMS client that can reproject the images
it receives back from a WMS server (for example, the CubeWerx cascading map server where it acts as a
WMS client), it can avoid requesting non-stretched images by adjusting its request to use square pixels.
This is a matter of computing: resX = resY = sqrt(resX * resY) to get the adjusted square-pixel resolution
(with equal-area pixels), and then adjust the bounding box to align with it. It is also important to remember
that the WMS Specification also requires WMS servers to support non-square pixels.

1.4.3. GetMap Response
Review WMS 1.1.1 specification, section 7.2.5 on the GetMap response.

Version: 1.0.2 23 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

The output of a GetMap request is a single map whose type corresponds to the FORMAT parameter in the
request. In the case of HTTP, for example, if the request included FORMAT=JPEG, then the returned
object must be a JPEG image with a MIME type of image/jpeg. In the case of non-picture requests (i.e.,
graphic elements or feature data), the parameters WIDTH, HEIGHT, TRANSPARENT and BGCOLOR are not
relevant and may be omitted. WIDTH and HEIGHT are mandatory when the output format is an image.

GetMap returns an image as specified in the format parameter of the request (GIF, JPEG, PNG). A
GetMap request returns nothing with invalid HTTP requests or by access violations. A GetMap response
returns an XML structure containing error information if the WMS server detected an error and the
EXCEPTIONS parameter was set to XML. In the case of HTTP, the MIME type of the returned XML will
have the following format:

<WMTException version= "1.1.1>
error information
</WMTException>

1.4.4. Exception Handling
If the EXCEPTIONS parameter is set to BLANK, the WMS server returns an object of the type specified in
FORMAT, whose content is uniformly off. In the case of an image format such as GIF or JPEG, the
returned object contains only pixels of color specified in the background color. When
TRANSPARENT=true, pixels with the background color are transparent. In other formats, such as vector
based formats, no vectors are returned.

1.4.5. Cascading WMS Servers
When two or more maps are produced with the same Bounding Box, Spatial Reference System, and
output size, the results can be accurately layered to produce a composite map. The use of image formats
that support transparent backgrounds allows the lower Layers to be visible. Furthermore, individual map
Layers can be requested from different Servers. The WMS GetMap operation thus enables the creation of
a network of distributed map servers from which WMS clients can build customized maps.

A particular WMS provider in a distributed WMS network need only be the steward of its own data
collection. This stands in contrast to vertically-integrated web mapping sites that gather all of the data in
one place that is to be made accessible by their own private interface.

A "Cascading Map Server" is a WMS server that behaves like a client of other WMS servers, and like a
WMS server to other WMS clients. A cascading map server reports the capabilities of other WMS
server(s) as its own and aggregates the contents of several distinct WMS servers into one service. In
most cases, the cascading map server can work on different WMS servers that cannot serve particular
projections and formats themselves.

See Chapter 2 to read how participants of WirelessInfo Project see the importance of WMS servers to
establish cascading WMS servers. For projects such as the WirelessInfo Project, cascade servers play
the role of hubs of WMS networks and offer possibility to create gateways for clients (mobile devices in
the case of WirelessInfo Project), which use different sources of geographic information.

Cascading means that one WMS server can compose visualized layers from various WMS servers and
play the role of a gateway to the distributed geodata sources for clients. The above-mentioned ability is
demonstrated in the following picture:

Version: 1.0.2 24 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

Figure 10: WMS Cascading Servers (courtesy of WirelessInfo)

Figure 10 shows Server 2 playing the role of the front-end for users. Server 2 only maintains the database
named Forests, but it offers visualization of all accessible datasets, even the ones located on the other
two servers (Server 1 and Server 2). This way, Server 2 plays the role of a gateway among the other
WMS servers, which means that it does not have to maintain the other dataset locally. Being a cascading
WMS server, Server 2 is able to ask the other servers in the network for the appropriate dataset when
needed.

1.5. Optional Operation: The GetFeatureInfo Request

1.5.1. Purpose of GetFeatureInfo
The GetFeatureInfo request returns information about particular features shown on a map. If a WMS
server supports this operation, its maps are said to be "queryable," and a WMS client can request
information about features on a map by adding to the map URL additional parameters specifying a
location (as an X, Y offset from the upper left corner) and the number of nearby features about which to
return information.

The GetFeatureInfo operation is designed to provide WMS clients with information about a feature in
a map image returned by a previous GetMap request. In other words, the map is identified by including all
the information contained in the GetMap request. If a previous GetMap request is not repeated correctly
in the GetFeatureInfo request, the results are undefined and will cause an exception.

GetFeatureInfo request embeds the bulk of GetMap request, adding parameters to define which layer
to query. The WMS server can return a text/HTML/xml page, an Image or even a Word document in
response to GetFeatureInfo request. The response may even contain attribute information, or the
selected feature(s) in GML format.

The use case for GetFeatureInfo is that a user sees the response of a GetMap request and chooses a
point on that map for which to obtain more information. The basic operation provides the ability for a client
to specify which pixel is being asked about, which layer(s) should be investigated, and what format the

Version: 1.0.2 25 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

information should be returned in. The actual semantics of how a WMS server decides what to return
more information about, or what exactly to return, is left up to the WMS provider.

1.5.2. Implementing GetFeatureInfo: Required Parameters
Review WMS 1.1.1 specification, section 7.3 to learn about the GetFeatureInfo request, especially
section 7.3.3 on the required and optional request parameters. Table 3, below, shows the required and
optional parameters for GetFeatureInfo request.

Request Parameter Required/
Optional

Description

VERSION=version

REQUEST=GetFeatureInfo

<map_request_copy>

QUERY_LAYERS=layer_list

INFO_FORMAT=output_format

FEATURE_COUNT=number

X=pixel_column

Y=pixel_row

EXCEPTIONS=exception_format

Vendor-Specific Parameters

R

R

R

R

O

O

R

R

O

O

Request Version.

Request name.

Partial copy of the Map request parameters that
generated the map for which information is
desired.

Comma-separated list of one or more layers to be
queried.

Return format of feature information (MIME type).

Number of features about which to return
information (default=1).

X coordinate in pixels of feature (measured from
upper left corner=0).

Y coordinate in pixels of feature (measured from
upper left corner=0).

The format in which exceptions are to be reported
by the WMS (default-application/vnd.ogc.se_xml).

Optional experimental parameters.

Table 3: GetFeatureInfo Request Parameters

1.5.3. GetFeatureInfo Response
The WMS server returns a response according to the requested INFO_FORMAT (if the request is valid,
or issues an exception otherwise). The actual response is at the discretion of the WMS provider, but it
pertains to the feature(s) nearest the (X,Y) specified.

In general, the GetFeatureInfo outputs an HTML page or an image. However, the use of MIME as the
return format tells the WMS server to package the result in any way it wants, but the return object must be
properly accompanied with a MIME type describing the content.

Version: 1.0.2 26 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

1.6. Connecting drivers to OGC WMS Services
(Acknowledgment: Lars Bernard, Institute for Geoinformatics (IfGI), Muenster)

'Connecting,' in the context of WMS, means that just implementing the WMS Specification will hardly
realize a network of interoperating WMS. Issues with things such as the following need to be resolved first
-- which of the following are supported: SRS, spatial extents, appointment on scaling hints, and metadata
(to describe the service in a registry).

Chapter 2, Example 3 under User Experience, reflects the experience of the computer science GIS group
at the Harvard Division of Continuing Education (DCE) in setting up and testing distributed WMS servers.
Their distributed geospatial Web environment considers the deployment of map services powered by
different spatial engines, some from vendors and others from open source.

1.7. On What Technologies Does the WMS Specification
Depend?

1.7.1. Extensible Markup Language (XML)
The WMS Specification is based on W3C's XML specification18. Understanding it requires understanding
the basics of XML. Overall, you should familiarize yourself with the following:

• Creating an XML document instance

• Rules for XML well-formalness

• Distinction between well-formed and valid documents

• Internal and external subsets

• Elements and attributes

• Entities (parameter, general, internal and external, parsed and unparsed)

• Notations

• Parsing/Validating a DTD and XML document

XML is best thought of as a language or encoding for data description. More correctly, XML is a language
for expressing data description languages. XML however, is not a programming language. There are no
mechanisms in XML to express behavior or to perform computations. That is left for other languages such
as Java and C++. XML provides a means of describing (marking up) data using user defined tags. Each
segment of an XML document is bounded by starting-tags and end-tags.

Almost every data model that can be expressed in an XML document can be represented as a tree,
where the root is the top element and the branches are the other elements nested in it. Elements have
relationships with each other that will be familiar to anyone who has worked with object-oriented

18 W3C XML Specification: URL: http://www.w3.org/TR/2000/REC-xml

Version: 1.0.2 27 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

programming. In terms of the tree, as the three branches out, the leaves and twigs become children of the
branches. Elements that are on the same level in the documents are called siblings.

Each element has an element type name and zero or more attributes, and each attribute consists of a
name and a value. Each element consists of two tags: a start tag and an end tag. An element can have
attributes, which are written inside the start tag. Each attribute has a name and a value.

There can be multiple attributes of one element, and the content of the element and the values of the
attributes are to a very large degree interchangeable, as follows:

<Feature>
.... more XML descriptions ...
....
</Feature>

The following sections describe technologies and tools that are parts of the XML family that are relevant
to Web mapping:

1.7.2 DTD & XML Schema

1.7.3 XSL (XSLT, XPath, etc)

1.7.4 XPointer, Llink

1.7.5 XMLNS (Namespaces)

1.7.6 DOM and SAX

1.7.2. Validate XML - DTD (Document Type Definition) & XML
Schema
You should familiarize yourself with the following through online tutorials19 .

• Read and use a DTD

• Write a DTD:

• Internal and external subsets

• Elements and attributes

• Exceptions

• Entities (parameter, general, internal, and in attributes)

• Data content types (PCDATA, RCDATA, and CDATA)

• Notations

• Markup minimization

19 XML DTD Tutorial: http://www.xmlfiles.com/dtd/, XML Schema Tutorial Part 1 – Structures:
http://www.w3.org/TR/xmlschema-1/, XML Schema Tutorial Part 2 – Datatypes: http://www.w3.org/TR/xmlschema-2/

Version: 1.0.2 28 http://www.opengeospatial.org

http://www.xmlfiles.com/dtd/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

• Marked sections

• Understand the differences between XML DTDs and the XML Schemas

The valid tag names and the XML markup in general are determined or defined by the DTD. Which tags
can appear enclosed within an opening and closing tag pair is also determined by the DTD. The names of
the elements and the attributes are also constrained by the DTD in name, and in some cases, in terms of
the values that the attributes can assume; and, what data types they can contain, and the structure into
which they can be combined are together called a document type and are defined in DTD. The DTD is
either contained in a <!DOCTYPE> tag, contained in an external file and referenced from a <!DOCTYPE>
tag, or both.

Example snippet from Capabilities DTD:

<!ELEMENT GetCapabilities (Format+, DCPType+)>
<!ELEMENT GetMap (Format+, DCPType+)>
<!ELEMENT GetFeatureInfo (Format+, DCPType+)>

XML is typically read by an XML parser. All XML parsers check to ensure the data is well formed so that
data corruption (e.g., a missing closing tag) cannot pass undetected. Many XML parsers are also
validating, meaning that they check that the document conforms to the associated DTD. Using XML it is
comparatively easy to generate and validate complex hierarchical data structures. Such structures are
common in geographic information applications.

DTD drawbacks and limitations:

• Another syntax to learn (not supported by XML tools).

• No object-oriented extensibility (inheritance).

• Limited constraints for validity-check: databases, value-ranges.

1.7.3. Transform and Format XML:XSL (Transforming the Web)
You should familiarize yourself with the following through online tutorials20.

• Use XSLT engines to transform XML to other data formats, including HTML, other user-
designed XML, and other tagged or labeled data formats.

• Draw the logical tree represented by sequential XML data and understand how to navigate
that tree using Xpath.

• Use expressions, location paths, and patterns to select parts of XML documents and control
their transformation.

• Use XSLT to create complex Web pages.

• Create multi-file XSLT stylesheets.

• Do basic calculations in XSLT for selection of content to output and to create output data.

20 XSLT http://www.xml.com/pub/a/2000/08/holman/index.html.

Version: 1.0.2 29 http://www.opengeospatial.org

http://www.xml.com/pub/a/2000/08/holman/index.html

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

The original focus of XML was to provide a means of describing data separate from its presentation,
especially in the context of the Web. The biggest change to the computing industry that XML brings is that
it enables the programmer (or even system designer or Web site designer) to declare the rules for how
information should be processed and handled. The XML application itself describes the rules for how
information should be structured and how the markup should be constructed. The representation of the
information is shaped by the use of a markup vocabulary language determined by the designer, which
also declares the data types of the markup vocabulary. This situation enables tools to constrain the
creation of an instance of information and enable users to validate a properly created instance of
information against a set of constraints.

XSL is a language for expressing stylesheets. It consists of:

• XSL Transformations (XSLT): a language (rules declarations) for transforming XML
documents into other data formats.

• The XML Path Language (XPath): defines the structure, content, and semantics of XML
documents. It identifying parts of XML documents.

Note that since many tools (e.g. MS IE 5.0) were developed before the XSLT label had stuck, XSL is still
often used when only XSLT is intended. For discussion presented here, XSLT is of concern.

XSL is a fairly simple language. It provides a powerful syntax for expressing pattern matching and
replacement. It is declarative. It is easy to read what the XSLT says to do. The user does not get to see
how it is accomplished. Using XSLT's companion specifications (XPath and XQL), the developer can
specify some very powerful queries on an XML document. Furthermore, XSLT provides the ability to call
functions in another programming language, such as VBScript or Java, through the use of Extension
Functions. This means that XSL can be used to do the querying and selection, and then call out to Java
or another language to perform needed computation or string manipulation. For simple tasks, XSLT
provides built in string handling and arithmetic capabilities.

XSLT is similar to other forms of content transformation in that it deals with the documents as trees of
abstract nodes. XSLT, or rather Xpath, enables you to identify structures and to make as many passes as
required over them, modifying the structures in the source information (or rather, the markup of the
information). The information being transformed can be traversed in any order needed and as many times
as required to produce the desired result. The algorithms are declared in the XSLT code and are handled
by the XSLT processor. It only works with the markup as abstract nodes, not with the source data or with
the semantics on the markup.

The generic XML processor has no idea what is meant by the XML, and the XML markup does not
usually include formatting information. The information in an XML document might not be in the form
desired to present it, but this information has to be described somewhere else.

The XSLT processor handles the mechanics of the operations. High-level functions such as sorting and
counting are available when required as functions in the language. The XSLT processor handles low-level
functions such as memory-management, node manipulation, how nodes are node traversed and created,
and garbage collection. In other words, the XSLT programmer does not have to think about the
mechanics of the operations. This also applies when considering the mechanics of the presentation,
which can be left to the browser and the stylesheet processor.

XSLT does not actually transform the original document. It works with a copy of the source tree, which is
transformed into the result tree. In other words, the XSLT transformation sheet is an instruction for how to
turn the source document into the result document. It only affects the parts that are to be transformed.

Version: 1.0.2 30 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

An XSLT transformation sheet consists of a set of templates (the instructions to the processor) that are
matched to the source document (by addressing them by using Xpath). When a match is found, the
matching part of the source document will be transformed to the resulting document.

Because an XSLT stylesheet is an XML document, it is no harder to produce than creating any other XML
document. Any text editor will suffice, although it is easier to use an XML editor (to help you with
formatting).

1.7.4. Navigate in XML: XPointer, Xlink
XML Pointer Language (XPointer)21: the language to be used as the basis for a fragment identifier for for
any URI reference that locates a resource. XML Pointer Language:

• Is a generalization of Xpath

• Can refer to any part of the document (XPath refers only to logical parts such as Elements

• Allows for String-Matching

XML Linking Language (XLink)22: a language that allows elements to be inserted into XML documents in
order to create and describe links between resources. XML Linking Language:

• Is a generalization of HTML-Links

• Provides Multidirectional Links

• Enables links be created outside of locator and resource documents

1.7.5. Managing XML-Extensibility: Namespaces
Since there is no central authority that controls the birth of new XML applications, there is a risk that two
or more applications will use the same element name to mean different things. If this situation happens,
the XSLT processor cannot tell the difference between the names. Moreover, applications use the
element type name to determine how to process the element. In a distributed environment like the Web,
names must be globally unique, otherwise one name might accidentally be used for different purpose. To
avoid naming conflicts, XML supports a simple namespace mechanism. In an XSLT stylesheet, every
element and attribute belongs to an XML namespace.

Namespaces are defined in the W3C recommendation Namespaces in XML23. In a document, they are
given by using the colon-delimited prefixes. The prefix is significant when comparing element names
within a document. Therefore, xsl:template and template are different. However, the prefix can vary
between documents. The significant part is the association of a prefix string with a URI. That is the
function of the xmlns: attribute in the style sheets. For instance, the namespace declaration:

"xmlns: xsl=http://www.w3.org/TR/WD-xsl"

associates the namespace prefix xsl with the URI that follows it: "http://www.w3.org/TR/WD-xsl".

Because the prefix is arbitrary, instead, it could be:

21 Xpointer: http://www.w3.org/TR/xptr/
22 XLink: http://www.w3.org/TR/xptr/
23 W3C recommendation Namespaces in XML: http://www.w3.org/TR/WD-xml-names.

Version: 1.0.2 31 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

"xmlns:anyname=http://www.w3.org/TR/WD-xsl"

The names in an XML document can be associated with a URI that is globally unique. The name that is
used inside the document is called a local name, and the name plus the associated URI is called a
qualified name. That URIs are unique, by virtue of their association with the DNS, means that the qualified
name and the XML elements will both be globally unique. However, the URIs are actually only used to
identify the elements names. There is no requirement that there should be a description, schema, DTD, or
aything else behind it.

1.7.6. Parse XML: DOM and SAX
XML documents do not have to be structured in the order that they should be displayed or processed.
The order and rendering can be manipulated by programs or scripts via the Document Object Model
(DOM) of the W3C or via SAX.

Document Object Model (DOM)24 is an object-oriented, platform- and language-neutral interface that
allows programs and scripts to dynamically access and update the content, structure and style of
documents.

• Tree of objects is created completely in memory

• No incremental processing of documents

• The Simple API for XML Parsing (SAX) is an event-based interface for (Java) XML parsers.

• Memory-efficient stream-based parsing, (almost) no document-size limit

• No W3C-Standard, very popular for Java-parsers

Most XSLT processors accept SAX events generated by some XML processors as input, and some
accept DOM objects that might be generated by other XML parsers or created from scratch. The SAX
events or DOM objects are used as the basis for the node trees that follow the Xpath/XSLT data model.

The XSLT processing can be done in the browser, but also in the server. It has turned out to be done
more efficiently in the server, especially for formats that are to be displayed in devices that are less
capable in terms of display and processor.

Conceptually, the XSL processor begins at the root node in the source tree and processes it by finding
the template in the stylesheet that describes how that element should be displayed. Each node is then
processed in turn until there are no more nodes left to be processed. This situation can get more
complicated when you have each template specifying which nodes to process - some nodes might be
processed more than once and some might not be processed at all.

MSXML, for example, provides both an XML parser and an XSL processor in one Windows DLL. Internet
Explorer (version 5 or higher) is an application that utilizes MSXML to handle the processing of XML
documents that have been associated with a stylesheet by means of processing instructions in the XML.

The XML processor reads the XML input. The XSLT processor performs the actual XSL transformations.
It will have to use an XML processor to read the source XML and the XSLT. An XML processor
(sometimes called a parser) reads a source XML file and identifies the syntactic units (elements,
attributes, and text content).

24 DOM parser: http://www.w3.org/DOM/

Version: 1.0.2 32 http://www.opengeospatial.org

http://www.w3.org/DOM/

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

An XSLT processor takes a stylesheet and applies it to the tree representation of a source XML document
(produced by an XML parser) and generates a tree representation of an output XML document. The
product of the XSLT processing can be composed not only of XML but also HTML, or text.

1.8. Implementing WMS Compliance

1.8.1. Writing a WMS-Compliant Translator for a Map Server
A translator, or a wrapper script, can be build that takes WMS requests and translates them into map
requests for a non-WMS compliant map server.

Look into Chapter 2, in the XSL/XSLT stylesheet example section to see a XSL script that takes in a
WMS GetMap request and transforms it into another XML dialect understood by the map server.

1.8.2. Making a Map Server WMS-Compliant
Making a map server WMS (the server instance) compliant is mostly about implementing the Capabilities
XML file. See Chapter 3 for recipes on how to do this. The lat/lon deegree and UMN MapServer recipes
are good examples of this.

Usually a map server needs to be compiled so that the various WMS parameters are set (described
earlier and/or referenced to the WMS 1.1.1 specificaiton). Knowing that the server can produce a valid
XML GetCapabilities response, the GetMap request can be utilized. Simply adding
"VERSION=1.1.0&REQUEST=GetMap" to your server's URL should generate a map with the default
map size.

For example, in the case of the UMN Mapserver, a mapfile - regular MapServer mapfile - was made in
which some parameters and some metadata entries are mandatory (some parameters are the map level
and others at the layer level). Most of the metadata is required in order to produce a valid
GetCapabilities output for the WMS client.

1.8.3. Making a Web Client WMS Compliant
Making a Web client WMS compliant is mostly about implementing the GetMap request and its
parameters. See Chapter 3, for the WMS client setup with UMN MapServer, which is a good example of
this.

Harvard University user experience in Chapter 2 discusses the use of the Proj4 Cartographic Projection
Library, necessary for WMS Clients.

1.9. WMS Web Applications Development Technologies
In developing Web applications, in order to build customized content based on the user's input and to
enhance the simplicity of using HTTP to request information, there are many technologies that can be
used. These are described below.

Version: 1.0.2 33 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

1.9.1. CGI and Servlets

1.9.1.1. CGI
The Common Gateway Interface (CGI) is a standard for interfacing external applications with information
servers, such as HTTP or Web servers. A plain HTML document that the Web client retrieves is static,
which means it exists in a constant state: a text/html file that doesn't change. A CGI program, on the other
hand, is executed in real-time, so that it can output dynamic information.

OGC's WMS Implementation Specification is a standard vocabulary for basic Web mapping services that
is based on CGI. The CGI request is still a URL, but at some point in the URL, there is a question mark,
and everything after the question mark is a list of key/value pairs. A CGI program can be written in any
language (C/C++, PERL, VB, etc.) that allows it to be executed on the system.

One of the problems of CGI is the fact that each incoming HTTP request gets a new process, creating a
burden on the server.

With MapServer, it is the "mapserv" CGI program that knows how to handle WMS requests. So setting up
a WMS server with MapServer involves installing the mapserv CGI program and setting up a mapfile (files
which defines map object) with appropriate metadata in it. This is covered in Chapter 3, under Recipe 3.

1.9.1.2. Servlets
Servlets are generic extensions to Java-enabled servers. Their most common use is to extend Web
servers, providing a very secure, portable, and easy-to-use replacement for CGI. A servlet is a
dynamically loaded module that services requests from a Web server. It runs entirely inside the Java
Virtual Machine (JVM). Because the servlet is running on the server side, it does not depend on Web
browser compatibility.

1.9.2. ASP versus JSP
Technologies such as Active Server Pages (ASP)25 and JavaServer Pages (JSP), make Web pages more
like true user interfaces to powerful, customizable, distributed programming resources.

Both the ASP and JSP technologies follow the same model of separating programming logic from page
design through the use of components (scripting blocks) that are called from the page itself. HTTP
requests and responses are available as well-established objects you can get to easily from within the
script blocks. Both also provide developers an easier and faster alternative to creating Web applications
using CGI scripts.

The biggest difference between JSP and ASP technologies lies in the approach to the software design.
ASP is based on ISAPI whereas JSP is implemented as a part of J2EE. JSP technology is designed to be
both platform and server independent, created with input from a broader community of tool, server, and
database vendors. In contrast, ASP is a Microsoft technology that relies primarily on Microsoft
technologies.

ASP consists of a single DLL (asp.dll) which generates dynamic content when an ASP page with server-
side script combined with HTML is parsed through it. Similarly, the JSP-enabled engine on the Web
server will process the JSP page, which may include technology-specific tags, declarations, and possibly
Scriptlets in JAVA, along with HTML or XML tags.

25 ASP Tutorial: http://www.w3schools.com/asp/default.asp

Version: 1.0.2 34 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

JSP and ASP have some basic concepts in common:

1. They both make use of simple sever-side scripting to provide access to Web server information and
functionality.

2. They both have similar styles of delimiting this scripting from a page's content. In fact, Microsoft has
recently come up with ASP+, which is much more similar to JSP than ASP.

Yet while ASP primarily supports two scripting languages, JScript and VBScript, JSP actually supports
real Java code, not a new scripting language. The difference is that the Java code inside a JSP page is
more script-like because it doesn't require Java class and package definitions. JScript, VBScript, and
Java (in JSP) are all object oriented to some degree as they are all provided with a set of pre-established
objects by the Web server that they use to generate a dynamic Web page.

1.9.2.1. ASP.NET
ASP.NET brings with it a whole new programming model incorporating Web forms, server-side controls,
data binding, and Web services. Web forms and server-side controls work by tailoring the markup
language they spit out to match the client browser attached. Data binding formalizes exchanging data
between controls at runtime (such as edit boxes and combo boxes) and data variables within the Web site
program. Finally, Web services formalize the process of getting multiple computers talking to each other
automatically using XML and HTTP (SOAP). ASP.NET is ripe for creating Web services in which a
machine's software can reveal itself to the rest of the world as a SOAP server.

1.9.2.2. JSP, JSTL and XMLC
Three technologies or approaches to developing Java-based Web applications that utilize Web services
are JavaServer Pages (JSP), JSP with the use of tags from the JSP Standard Tag Library (JSTL), and
the eXtensible Markup Language Compiler (XMLC).

See the SIRC paper, “Implementing OGC Web Map Service Client Applications Using JSP, JSTL and
XMLC,” under User Experiences on the OGC Cookbook website.

Figure 11 below shows a process diagram where a XML request is being transformed so that it is
understood by the map server, and returned according to the desired outcome. First, the user (Web
client) sends the XML request, which is first being handled by 'Main.JSP' controller, which is an HTML
page with inline Java code that manipulates dynamic content and specific tags of the XML request.
Second, the XML request is processed by the XML request handler that works with the SAX parser to
scan the XML request for the necessary information (specific tags needed by the map server to complete
the request). The parsed XML request is then sent by the broker to the map server that produces the
response. Before the actual XML response gets sent back to the Web client, it is processed (again) now
by the XML response handler that performs the XSLT transformation. This is essential for producing the
desired content outcome (i.e., map with specific user styles).

Version: 1.0.2 35 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

Figure 11: XML Request Transformation Process Diagram

See Chapter 2 for an example of a XSL/XSLT stylesheet for transforming one XML dialect into one that is
understood by the specific map server.

1.10. Performance Criteria
[Acknowledgement: This section is from the SIRC paper, “Implementing OGC Web Map Service Client
Applications Using JSP, JSTL and XMLC.” See the full paepr under User Experiences on the OGC
Cookbook website.]

The following set of criteria can be used as a baseline for evaluating the performance of the many
approaches and technologies outlined above for implementing WMS client applications:

• Ease of parsing XML/GML: Parsing XML/GML documents is an important task to be
achieved by the Web clients, since WMS (and more significantly WFS), will utilize XML/GML
to transfer information. The ease with which Web clients that process XML/GML can be
implemented will be influential in determining which approach is adopted for Web client
development. For example, JSTL's XML tags enable XML documents to be parsed within a
Web page to simply display XML-based data, but manipulation of those data still needs to be
performed in back-end Java programs to prevent page complexity. When using traditional
JSP and XMLC, all XML documents parsing tasks are performed in back-end Java programs.

• Multiple-server interaction: In a distributed system, a Web client may wish to allow
information from different servers to be retrieved and then merged into a single cohesive
response for display to the user. The issue to be addressed here is the extent to which the
implementation of such processing within a Web client is supported by the implementation
approaches.

• Map handling: Retrieving and organizing image maps is another key issue that needs to be
addressed in a WMS client application. The maps could be retrieved from one map server or
multiple map servers, could present a common area or different extents on the earth, or may
be overlapped for display to the user. In addition, changing the order of overlapping maps
may result in different effects (the order of the layers displayed in the map is determined by

Version: 1.0.2 36 http://www.opengeospatial.org

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

the order of the layer names in the list that appeared in the request). Requesting such an
image map and placing it into a Web page are very simple tasks using any of the approaches
described. Zooming in/out or scrolling through a map is realized by changing the Bounding
Box values and submitting a new request, which are done in the back-end (Java) program.
The map can then be inserted into the page using the query URL as the image resource.

• Interface layout: WMS client applications use the Web browser as the user interface. How
easily a Web client can generate dynamic Web pages using the different implementation
approaches is an important issue and needs to be considered. For example, compared with
JSP's mix of Java and HTML, JSTL makes the Web page cleaner by using standard tags
instead of Java code to control dynamical content. However, some functions such as method
calling with arguments, which can easily be achieved using Java codes, are not supported in
JSTL expression language. XMLC separates all data control from the page; the
disadvantages of JSP and JSTL have mostly disappeared in XMLC.

• Execution speed: Speed is a factor that always has been used to measure the efficiency of
an application or a program. The speed issues to be addressed with WMS clients include the
speed of compiling, the speed of request handling, and the speed of pages loading. For
example, a slight delay is encountered when a user requests a JSP page for the first time,
because JSP and JSTL have to compile the JSP page before processing the request. In
contrast, XMLC parses and interprets the page prior to run-time.

• Ease of revision: It is normal to modify an established page and application by adding or
cutting some components and functions during the development. The issue here is to critique
how easily the client can make changes or upgrades based on the previous work with the
different implementation approaches.

1.11. Additional Information

1.11.1. OpenGIS Web Map Context Implementation Specification
This OpenGIS Specification26 describes a standardized approach to enable the capture and maintenance
of the context - or state information - of a Web Map Server (WMS) request so that this information can be
reused easily in a future user session.

1.11.2. OGC Compliance Testing
Compliance Testing determines that a product implementation of a particular OpenGIS Implementation
Specification fulfills all mandatory elements as specified and that these elements are operable. The
compliance testing for the WMS Specification is currently in development.

The primary purpose of the testing program27, of which this conformance testing program is the first
phase, is to permit vendors and users to take full advantage of the valuable standards that OGC has
created. The Compliance Testing Program provides a process whereby compliance and interoperability
can be tested and certification can be supported. When compliance has been confirmed, participants who
agree to the terms of the trademark license which accompanies this program document may affix the

26 The OpenGIS Web Map Context Documents Implementation Specification is available to the public at
https://portal.opengeospatial.org/files/?artifact_id=3841.
27 OGC Compliance Testing: URL http://www.opengeospatial.org/resources/?page=testing Testing Program
Documentation: URL http://www.opengeospatial.org/resources/?page=testing&view=testdocs

Version: 1.0.2 37 http://www.opengeospatial.org

http://www.opengeospatial.org/resources/?page=testing

OpenGIS® Web Map Server Cookbook Open Geospatial Consortium Inc.

Version: 1.0.2 38 http://www.opengeospatial.org

"OpenGIS" or "OPENGIS" mark to their products, thus indicating to their customers that complies with
OpenGIS Implementation Specifications has been achieved, and providing incentives for potential
customers to preferentially purchase such products.

1.11.3. Conformance and Interoperability Test and Evaluation
(CITE) Initiative
CITE28 is focused specifically on the development of tools and processes for validating the conformance
of Standards-based Commercial Off the Shelf (SCOTS) products to OpenGIS specifications. The CITE-1
Initiative is developing a conformance test engine to test capabilities for WMS (and also WFS and GML).
CITE is also developing open source "reference implementations" of WMS (and WFS).

28 Conformance and Interoperability Test and Evaluation (CITE) Initiative:
http://www.opengeospatial.org/initiatives/?iid=65

http://ip.opengis.org/cite/
http://ip.opengis.org/cite/

	Preface
	Submitting Organizations (The Contributors)
	Organization of the Cookbook
	Acknowledgments
	Revision History

	WMS Implementation: Overview
	Introduction: Web Mapping & Interoperability
	Web Mapping Compliance: The WMS Service Interface
	The WMS Interface Implementation Specification as an API
	The WMS Interface Operations
	WMS SLD Enabled Operations
	Supported Distributed Computing Platform (DCP)
	Relation of WMS to other OGC Web Services
	Relation of OGC Web Services to the ISO Reference Model

	Describing Your WMS Server: The GetCapabilities Request
	Purpose of GetCapabilities: Allows a Map Server to Describe Itself
	Implementing GetCapabilities: Request Parameters
	GetCapabilities Response: Capabilities XML Document

	Serving a Map: The GetMap Request
	Purpose of GetMap
	Implementing GetMap: Required Parameters
	SRS and BBOX
	BBOX and Projections

	GetMap Response
	Exception Handling
	Cascading WMS Servers

	Optional Operation: The GetFeatureInfo Request
	Purpose of GetFeatureInfo
	Implementing GetFeatureInfo: Required Parameters
	GetFeatureInfo Response

	Connecting drivers to OGC WMS Services
	On What Technologies Does the WMS Specification Depend?
	Extensible Markup Language (XML)
	Validate XML - DTD (Document Type Definition) & XML Schema
	Transform and Format XML:XSL (Transforming the Web)
	Navigate in XML: XPointer, Xlink
	Managing XML-Extensibility: Namespaces
	Parse XML: DOM and SAX

	Implementing WMS Compliance
	Writing a WMS-Compliant Translator for a Map Server
	Making a Map Server WMS-Compliant
	Making a Web Client WMS Compliant

	WMS Web Applications Development Technologies
	CGI and Servlets
	CGI
	Servlets

	ASP versus JSP
	ASP.NET
	JSP, JSTL and XMLC

	Performance Criteria
	Additional Information
	OpenGIS Web Map Context Implementation Specification
	OGC Compliance Testing
	Conformance and Interoperability Test and Evaluation (CITE) Initiative

