
1
Copyright © 2016 Open Geospatial Consortium

Open Geospatial Consortium
Submission Date: 2016-04-04

Approval Date: 2016-09-23

Publication Date: 2017-02-23

External identifier of this OGC® document: http://www.opengis.net/doc/BP/cdb-implementation-
guidance/1.0

Internal reference number of this OGC® document: 16-006r3

Version: 1.0

Category: OGC® Best Practice

Editor: Carl Reed

Volume 10: OGC CDB Implementation Guidance

Copyright notice

Copyright © 2017 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document defines an OGC Best Practices on a particular technology or approach
related to an OGC standard. This document is not an OGC Standard and may not be
referred to as an OGC Standard. It is subject to change without notice. However, this
document is an official position of the OGC membership on this particular technology
topic.

Document type: OGC® Best Practice
Document subtype: Volume 10
Document stage: Approved
Document language: English

2
Copyright © 2016 Open Geospatial Consortium

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications. This Agreement is governed by the laws of the Commonwealth of Massachusetts. The
application to this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly
excluded. In the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

3
Copyright © 2016 Open Geospatial Consortium

Contents	
1.	 Scope ... 9	

2.	 Conformance ... 9	

3.	 References ... 9	

4.	 Terms and Definitions ... 9	

5.	 Platform Recommendations .. 9	

5.1	 File System ... 9	

5.2	 Operating System ... 10	

5.3	 System Hardware Independence .. 10	

6.	 Informative Implementation Guidance ... 11	

6.1	 Clarification: Publisher Considerations ... 11	

6.1.1	 Client-Devices ... 14	

6.1.2	 Typical Functions Performed by a Publisher Implementation 15	

6.1.3	 Publisher Implementation Recommendations .. 16	

6.2	 Use of a CDB conformant database as an Off-line Database Repository 17	

6.3	 Use of a CDB conformant database as a Combined Off-line and Run-time
Database Repository ... 21	

6.4	 Example Implementation of a CDB Structured Database on a Simulator 24	

6.4.1	 Database Generation Facility .. 26	

6.4.2	 Database Generation Flow .. 26	

6.4.3	 Update Manager .. 28	

6.4.4	 CDB Servers ... 29	

6.4.5	 Runtime Publishers ... 29	

6.4.6	 Simulator Client-devices ... 30	

6.4.7	 CDB Database and Model naming Guidance ... 33	

4
Copyright © 2016 Open Geospatial Consortium

6.5	 Primer: Line-of-Sight (LOS) Algorithms Using MinElevation and MaxElevation
Components .. 37	

6.6	 Gamma Tutorial (Was Annex G, Volume 2) ... 39	

6.6.1	 Introduction ... 39	

6.6.2	 Harmonization of Gamma at DBGF with Gamma of Simulator Visual
System 44	

6.7	 Handling of Color ... 45	

6.7.1	 Device-dependent Color ... 46	

6.7.2	 Device-independent color ... 46	

6.7.3	 Calibrated, Device-Dependent Color .. 47	

6.8	 What are chromaticity and luminance? .. 47	

6.9	 How are computer monitor colors described? .. 48	

6.10	 How do I convert from source_RGB to XYZ .. 48	

7.	 ShapeFile dBASE III guidance ... 51	

8.	 TIFF Implementation Guidance .. 52	

FIGURES

Figure 1- 1: Use of CDB Conformant Database as an off-line Database Repository 18	
Figure 1- 2: SE Workflow with CDB as an off-line Database Repository 20	
Figure 1- 3: Use of CDB as an Off-line and On-line Database Repository 22	
Figure 1- 4: SE Workflow with CDB as Combined Off-line/Runtime Database
Repository ... 23	
Figure 1- 5: Typical CDB Implementation on a Suite of Simulators 25	
Figure 1- 6: Typical DB Generation - CDB Used as a DB Repository 26	
Figure 1- 7: Typical DB Generation Flow - CDB Used as DB and Sim Repository 28	
Figure 1- 8: SEM Base Material Properties Table .. 35	

5
Copyright © 2016 Open Geospatial Consortium

i. Abstract
This document provides detailed implementation guidance for developing and
maintaining a CDB compliant data store.

The CDB standard defines a standardized model and structure for a single, versionable,
virtual representation of the earth. A CDB structured data store provides for a geospatial
content and model definition repository that is plug-and-play interoperable between
database authoring workstations. Moreover, a CDB structured data store can be used as a
common online (or runtime) repository from which various simulator client-devices can
simultaneously retrieve and modify, in real-time, relevant information to perform their
respective runtime simulation tasks. In this case, a CDB is plug-and-play interoperable
between CDB-compliant simulators. A CDB can be readily used by existing simulation
client-devices (legacy Image Generators, Radar simulator, Computer Generated Forces,
etc.) through a data publishing process that is performed on-demand in real-time.

The application of CDB to future simulation architectures will significantly reduce
runtime-source level and algorithmic correlation errors, while reducing development,
update and configuration management timelines. With the addition of the High Level
Architecture - -Federation Object Model (HLA/FOM)1 and DIS protocols, the application
of the CDB standard provides a Common Environment to which inter-connected
simulators share a common view of the simulated environment.

The CDB standard defines an open format for the storage, access and modification of a
synthetic environment database. A synthetic environment is a computer simulation that
represents activities at a high level of realism, from simulation of theaters of war to
factories and manufacturing processes. These environments may be created within a
single computer or a vast distributed network connected by local and wide area networks
and augmented by super-realistic special effects and accurate behavioral models. SE
allows visualization of and immersion into the environment being simulated2.

This standard defines the organization and storage structure of a worldwide synthetic
representation of the earth as well as the conventions necessary to support all of the
subsystems of a full-mission simulator. The standard makes use of several commercial
and simulation data formats endorsed by leaders of the database tools industry. A series
of associated OGC Best Practice documents define rules and guidelines for data
representation of real world features.

The CDB synthetic environment is a representation of the natural environment including
external features such as man-made structures and systems. A CDB data store can
include terrain relief, terrain imagery, three-dimensional (3D) models of natural and man-
made cultural features, 3D models of dynamic vehicles, the ocean surface, and the ocean
bottom, including features (both natural and man-made) on the ocean floor. In addition,

1 https://en.wikipedia.org/wiki/High-level_architecture
2 "Department of Defense Modeling and Simulation (M&S) Glossary", DoD 5000.59-M,

6
Copyright © 2016 Open Geospatial Consortium

the data store can includes the specific attributes of the synthetic environment data as
well as their relationships.

The associated CDB Standard Best Practice documents provide a description of a data
schema for Synthetic Environmental information (i.e. it merely describes data) for use in
simulation. The CDB Standard provides a rigorous definition of the semantic meaning
for each dataset, each attribute and establishes the structure/organization of that data as a
schema comprised of a folder hierarchy and files with internal (industry-standard)
formats.

A CDB conformant data store contains datasets organized in layers, tiles and levels-of-
detail. Together, these datasets represent the features of a synthetic environment for the
purposes of distributed simulation applications. The organization of the synthetic
environmental data in a CDB compliant data store is specifically tailored for real-time
applications.

ii. Keywords
The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, cdb, implementation guidance, simulation, synthetic
environment

iii. Preface
Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

iv. Submitting organizations
The following organizations submitted this Document to the Open Geospatial
Consortium (OGC):

CAE Inc.
Carl Reed, OGC Individual Member
Envitia, Ltd
Glen Johnson, OGC Individual Member
KaDSci, LLC
Laval University
Open Site Plan
University of Calgary
UK Met Office

7
Copyright © 2016 Open Geospatial Consortium

The OGC CDB standard is based on and derived from an industry developed and
maintained specification, which has been approved and published as OGC Document 15-
003: OGC Common DataBase Volume 1 Main Body. An extensive listing of
contributors to the legacy industry-led CDB specification is at Chapter 11, pp 475-476 in
that OGC Best Practices Document
(https://portal.opengeospatial.org/files/?artifact_id=61935) .

v. Submitters
All questions regarding this submission should be directed to the editor or the submitters:

Name Affiliation
Carl Reed Carl Reed & Associates
David Graham CAE Inc.

vi. Document Organization
For ease of editing and review, the standard has been separated into 12 Volumes and a
schema repository.

● Volume 0: OGC CDB Companion Primer for the CDB standard. (Best Practice)
● Volume 1: OGC CDB Core Standard: Model and Physical Data Store Structure.

The main body (core) of the CBD standard (Normative).
• Volume 2: OGC CDB Core Model and Physical Structure Annexes (Best

Practice).
● Volume 3: OGC CDB Terms and Definitions (Normative).
● Volume 4: OGC CDB Use of Shapefiles for Vector Data Storage (Best Practice).
● Volume 5: OGC CDB Radar Cross Section (RCS) Models (Best Practice).
● Volume 6: OGC CDB Rules for Encoding Data using OpenFlight (Best Practice).
● Volume 7: OGC CDB Data Model Guidance (Best Practice).
● Volume 8: OGC CDB Spatial Reference System Guidance (Best Practice).
● Volume 9: OGC CDB Schema Package: provides the normative schemas for key

features types required in the synthetic modelling environment. Essentially, these
schemas are designed to enable semantic interoperability within the simulation
context. (Normative)

● Volume 10: OGC CDB Implementation Guidance (Best Practice).
● Volume 11: OGC CDB Core Standard Conceptual Model (Normative)
● Volume 12: OGC CDB Navaids Attribution and Navaids Attribution

Enumeration Values (Best Practice)

8
Copyright © 2016 Open Geospatial Consortium

vii. Future Work
The CDB community anticipates that additional standardization will be required to
prescribe content appropriate to targeted simulation applications. In its current form, the
CDB standard does not mandate synthetic environmental richness, quality and resolution.

The OGC CDB Standards Working Group (SWG) members understand there is a
requirement for eventual alignment of the CDB standard with the OGC/ISO standards
baseline. In Version 1 of the CDB standard, effort was invested to begin aligning
terminology and concepts, specifically in the coordinate reference system discussions and
requirements.

The current version of the CDB standard is fully backwards compatible with version 3.2
of the CDB specification as defined and implemented by the current CDB implementer
and user community. The requirements for a CDB data store are focused on the ability to
store, manage, and access extremely large volumes of geographic content. In this version
of the standard, initial harmonization with the OGC and ISO standards baseline has
begun. For example, where appropriate, the CDB simulation community terms and
definitions have been replaced with OGC/ISO terms and definitions. Further, the
standards documents have been reorganized and structured to be consistent with the OGC
Modular Specification Policy. However, the CDB SWG and community recognize the
need to further harmonize and align this standard with the OGC baseline and other IT
best practices. There has already been considerable discussion in this regard.

Based on such discussions and comments received during the public comment period, the
following future work tasks are envisioned:

1. Describe explicitly how the CDB model may or may not align with the OGC
DGGS standard;

2. Provide best practice details on how to use WMS, WFS, and WCS to access
existing CDB data stores. This work may require Interoperability Experiments to
better understand the implications of these decisions;

3. Extend the supported encodings and formats for a CDB data store to include the
use of the OGC GeoPackage, CityGML, and InDoorGML standards as well as
other broadly used community encoding standards, such as GeoTIFF. This work
may require performing OGC Interoperability Experiments to better understand
the implications of these decisions.

4. Further align CDB terminology to be fully consistent with OGC/ISO terminology.

Making these enhancements will allow the use and implementation of a CDB structured
data store for application areas other than aviation simulators.

9
Copyright © 2016 Open Geospatial Consortium

1. Scope

This document provides detailed implementation guidance for developing and
maintaining a CDB compliant data store.

2. Conformance

Not Applicable

3. References

The following normative documents contain provisions that, through reference in this
text, constitute provisions of this document. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. For undated
references, the latest edition of the normative document referred to applies.

• Volume 1: OGC CDB Core Standard: Model and Physical Data Store
Structure. The main body (core) of the CBD standard (Normative).

• Volume 2: OGC CDB Core Model and Physical Structure Annexes (Best
Practice).

4. Terms and Definitions

For the purposes of this document, the following abbreviations apply. All other terms and
definitions are contained in Volume 3: OGC CDB Terms and Definitions.

RTP: Run-Time Publishers

5. Platform Recommendations

This section provides recommendations for platform minimum capabilities to implement
a CDB Data Store. The platform constraints imposed by the CDB standard are minimal
and are designed to allow its implementation to many of the widely available computer
hardware platforms, operating systems, file systems and transport protocols. Below is the
requirement class for Platform requirements.

5.1 File System
A CDB data store instance is file system independent, (i.e., the use of a specific file
system is not specified). However, implementation of the CDB standard does require
that the file system be able to support a minimal set of capabilities as listed below:

10
Copyright © 2016 Open Geospatial Consortium

1. File name/Directory name structure:
a. Character set: in accordance to with Decimal, Hexadecimal, and Character

codes as given in http://www.utf8-chartable.de/
b. Length of filename (including path to file): 256 characters or more.
c. Length of filename extension: “dot” followed by three characters or more

2. Minimum Directory structure:
a. Number of files or directories in root directory: 256 entries or more.
b. Number of files or directories per directory (except root): 2048 entries or

more
c. Depth of directory hierarchy: 9 or more (assuming at least 256 entries per

directory level).
d. Directory size: 128 KB or more (assuming 64 bytes per directory entry).

3. File Size: 64 MB or more.
4. Number of files per volume: 41,600 files or more (assuming 650 MB CD with

16 KBfiles.
5. Support for removable media.
6. Support for bootable/non-bootable volume.

5.2 Operating System
The CDB standard is Operating System (OS) independent; it does not mandate the use of
a specific OS. However, compliance to this standard does require that the operating
system be able to support a minimal set of capabilities.

Any operating system implementing the CDB standard should support at a minimum the
following basic OS properties:

● Byte-stream random file access
● 32-bit integers, natively
● A 32-bit address space
● Floating point support (per IEEE-754), natively
● 2GB virtual address space per process
● Memory paging
● Network communication

5.3 System Hardware Independence
Implementation of the CDB standard is hardware independent; it does not mandate the
use of particular hardware platforms. Furthermore, any general-purpose hardware
compatible with modern Operating Systems (OS) can be used for a CDB implementation.

Implementation of the CDB standard assumes that the system hardware shall support, as
a minimum, the subsystems described in the following requirement.

Hardware memory for systems implementing the CDB standard should support:

11
Copyright © 2016 Open Geospatial Consortium

● 8-bit, 16-bit, and 32-bit signed and unsigned integers, natively
● A 32-bit address space
● 32-bit and 64-bit double precision floating point values (IEEE-754), natively
● 2 GB virtual address space
● Virtual memory space

Immediate and indirect memory addressing modes

6. Informative Implementation Guidance

6.1 Clarification: Publisher Considerations
The CDB Standard does not provide guidelines regarding its implementation within
specific vendor SE toolsets and vendor simulation architectures. This clearly falls
outside of the scope of the CDB Standard. The CDB Standard is focused a physical and
logical storage structure and guidance on storage formats for information (i.e., it merely
describes data) for use in simulation.

The CDB model lends itself to a real-time implementation within simulation
architectures. This capability requires that the vendor’s client-device be adapted with a
Run-Time publishing (RTP) software function which transforms the CDB structured data
into the client-device’s internal legacy/proprietary format. This is a new concept for the
simulation industry and consequently there is considerable confusion regarding the
implementation of Off-line and Run-Time Publishers (RTPs). While much of the
attention has focused on RTPs, a similar set of considerations apply to the
implementation of an off-line CDB capability (CDB is used as a Refined Source Data
Repository). In this latter case, the capability requires that the vendor develop an off-line
CDB import function which ingests the CDB into their Synthetic Environment Creation
toolset. Once imported, the vendor toolset could produce the vendor’s proprietary data
format through an off-line compilation function.

By definition, the function of an RTP is to bridge the “gap” (or adapt) between CDB data
schema and the client-device’s internal (proprietary) data schema. Since this gap is
unknown, it is impossible in this addendum to provide hard-and-fast rules and detailed
estimates for the implementation of an RTP (or a CDB import function).

Note that there are many alternatives open to a vendor when considering the level of
compliancy he wishes to achieve. The level-of-effort is essentially a function of the level
of compliancy the vendor wishes to achieve, and the size of the intrinsic “gap” between
the CDB data schema and his device’s internal schema.

Nonetheless, this section highlights aspects of the CDB that are particularly significant
when considering such implementations. These aspects dominate the level-of-effort
required to achieve ideal CDB compliancy.

The CDB Standard limits itself to a description of a data schema for Synthetic
Environmental information (i.e. it merely describes data) for use in simulation. The CDB
Best Practices provide rigorous guidance of the semantic meaning for each dataset, each

12
Copyright © 2016 Open Geospatial Consortium

attribute and establishes the structure/organization of that data as a schema comprised of
a folder hierarchy and files with internal (industry-standard) formats. This ensures that
the all CDB data is understood, interpreted and efficiently accessed in the same way by
each client-device. The CDB standard does not include detailed guidelines regarding off-
line database compliers or runtime publisher implementations, since this would be
tantamount to dictating internal vendor formats which are by their very nature
proprietary.

The CDB Standard DOES NOT specify:

• The implementation details of an off-line CDB import function that can then
be used to compile the imported Synthetic Environmental data into one or
more types of proprietary runtime databases (only the client-device vendor has
this knowledge and control)

• The implementation details or algorithms of runtime publishers attached to
specific client-device (only the client-device vendor has this knowledge and
control)

• The implementation details or algorithms of client-devices that use CDB data
(only the client-device vendor has this knowledge and control)

While the CDB standard does not govern the actual implementation of client-devices, it is
expected that the CDB standard will have a “unifying” effect on the implementation of
each vendor’s client-device by virtue of the fact that they will share the exact same
Synthetic Environmental data. It is expected that side-by-side comparisons will be easier
to undertake due to the fact that devices will run off the exact same runtime data. Prior to
the advent of the CDB standard, side-by-side comparisons were considerably more
difficult to undertake due to the fact the entire SE creation chain starting from raw source
was implicated in such evaluations.

If we set aside legacy considerations, the simplest approach to adopting the CDB would
require that client-devices ingest the CDB natively, i.e., client-devices would handle all
of the CDB data schema/semantics without any off-line or run-time intermediary.

In practice however, most vendors have extensive legacy SE assets and cannot afford to
obsolesce these. As a result, most client-devices must continue to support their own
proprietary legacy runtime databases. Given these considerations, two solutions are
possible:

1. No change to the Client-device: In this approach, vendors have chosen to achieve
an off-line CDB capability (CDB is used as a Refined Source Data Repository).
This capability requires that the vendor develops an off-line CDB import function
which ingests the CDB into his Synthetic Environment Creation toolset; once
imported, the toolset produces (as always) the vendor’s proprietary data format
through an off-line compilation function.

2. Level-of-Effort of a Publisher Implementation

13
Copyright © 2016 Open Geospatial Consortium

The following discussion attempts to qualify the level-of-effort to achieve CDB
compliancy. The discussion applies equally to both paradigms, i.e., the CDB Runtime
Publishing paradigm and the CDB import-then-compile paradigm.
In the case where a client-device already supports most of data schema and semantics
concepts of the CDB, then the RTP (or import-then-compile) software is proportionally
less complex. For instance, if an IG already supports the concepts of tiles, of levels-of-
detail, of layers and understands the concepts of datasets such as terrain texture, gridded
terrain elevation, gridded terrain materials, etc. then there is a modest amount of work to
be performed by an RTP.

The level-of-effort in adopting the CDB model is proportional to the difference between

the CDB data schema and client-device’s internal proprietary data schema.

Clearly, the algorithmic complexity of an RTP and the computational load imposed on
the RTP is directly proportional to the above-mentioned “gap”. The larger the “gap”, the
more expensive a RTP is to develop and the more computational resources need to be
allocated to implement it. Conversely, with a smaller “gap”, the RTP development is
straightforward and relatively few computational resources need to be allocated to this
function.

In order to assess the level-of-effort to adopt the CDB model, the vendor must first
evaluate the similarity of data schemas between the CDB and his client-device, in
particular, the vendor must assess whether they espouse the following fundamental CDB
concepts:

❖ Independent Tiles (used for paging of all data)
❖ Independent Levels-of-Detail (for all data)

❖ Independent Layers (Dataset Layering)
❖ Following dataset concepts and semantics:

➢ Semantic understanding of all CDB layers
➢ Geo-gridded data layers consisting of terrain altimetry, terrain texture, terrain

materials/mixtures
➢ Geo-defined vector features (points, lineals, areals)

● With/without modeled 3D representations
● Feature attribution

➢ 3D Modeled representation of features (using a data schema similar to or
equivalent to OpenFlight)

● Instanced geotypical models

● Instanced model geometry

● Instanced model texture

14
Copyright © 2016 Open Geospatial Consortium

● Non-instanced geospecific models

➢ Conforming of features to terrain skin (e.g. height conforming)
➢ Topological networks

➢ JPEG-2K compression
➢ Generation of device-specific NVG/FLIR rendering parameters for light-points

and materials

In the case where a client-device does not intrinsically support one or more of the

above-mentioned CDB concepts, the RTP must perform SE conversions that will
likely fall beyond those of mere format/structure manipulations. Such conversions
may affect the precision of the data, its semantic meaning, etc, and thus can
compromise certain aspects of runtime correlation.

The CDB data model favors modern up-to-date implementations of client-devices. In
effect, the level-of-effort to develop an RTP for an obsolete legacy device is likely to be
greater than for a modern device. This is because early approaches in digital computer
based flight simulation were more severely constrained by severe hardware, software and
data source limitations. Consequently, simulation engineers made important compromises
between a subsystem’s targeted fidelity and its level of generality, scalability, abstraction,
and correlation with other simulator client-devices. In many cases, engineers reverted to
complex support data structures (generated off-line) in order to reduce the computational
load at runtime.
A classic example of this was the use of Binary Separation Planes (BSPs) data structures3
which were required prior to the widespread adoption of Z-buffers by the IG vendors.
The CDB standard does not make provisions for this and as such, the RTP for legacy
BSP-based IG devices would be burdened with the rather difficult task to generate BSPs
in real-time.

Given their tremendous benefit, the concepts of paging (e.g. tiles) and levels-of-details
have steadily been adopted by simulation vendors over the past 15-20 years and have
been applied to most datasets, notably terrain and imagery datasets. (See Appendices G
and F of the Volume 2: OGC CDB Core Model and Physical Structure Annexes for a
rationale for Tiles and Levels-of-detail). As a result, it is not expected that the CDB tiles
and LOD concepts will be a problem for most vendors. Note however that CDB applies
these two concepts to ALL dataset layers including vector features and 3D models.

6.1.1 Client-Devices
Each client-device is matched either to an off-line compiler or to a runtime publisher. In
the runtime case, the runtime publisher transforms this data into the client-device’s
legacy native data format and structures the CDB synthetic environment data as it is

3 Such BSP data structures where required by most IG vendors prior to ~1995 due to the fact that the IGs
did not have sub-pixel level Z-buffer capability.

15
Copyright © 2016 Open Geospatial Consortium

paged-in by its client-device. Regardless of its use as an offline or online repository,
implementing the CDB standard eliminates all client-format dependencies. Alternately,
the client-device may be designed / modified to be CDB-native, in which case a separate
runtime publisher is not required. Note that the CDB standard makes use of data types
commonly available in standard computer platforms (floats, integers, etc.). While it
would be theoretically possible to cater to a client-device that does not support the
“atomic” data types, it would unduly load the attached online publisher. As a result, it is
recommended that all client-devices provide hardware support for the CDB specified
atomic data types.

Since it is the client-devices that initiate access to the CDB conformant data store, they
must each be theoretically “aware” of at least the geodetic earth reference model4.
Otherwise, the contents and the structure of the data store instance can be completely
abstracted from the client-device.

6.1.2 Typical Functions Performed by a Publisher Implementation

The following discussion provides a typical list of software functions that must be
developed in order to achieve CDB compliancy. The discussion applies equally to both
paradigms, i.e. the CDB Runtime Publishing paradigm and the CDB import-then-compile
paradigm.

Virtually all simulation client-devices in existence today natively ingest their own
proprietary native runtime formats. In order to ingest CDB structured data directly,
vendors must adapt the device’s software to natively ingest the currently defined CDB
formats5 (e.g. TIFF, Shape, OpenFlight, etc.) or alternately, they can insert a runtime
publisher function that transforms the CDB data formats into legacy client device’s native
runtime format. The runtime publishing process is performed when the CDB is paged-in
from the CDB storage device.
The runtime publishers are nothing more than well-optimized offline publishers capable
of responding to the on-demand compilation of datasets as they are being paged-in by the
respective client devices. The function of a runtime publisher is no different than that of
a conventional offline database publisher, i.e., it…

a) transforms the assembled data store so that it satisfies the client-device’s internal
data structure and format

b) transforms the assembled data store so that it satisfies the client-device’s internal
naming conventions

c) transforms the assembled data store so that it satisfies the client-device’s number
precision and number representation

4 http://onlinelibrary.wiley.com/doi/10.1029/EO062i007p00065/abstract

5 The number of specified formats will be expanded in future versions of the CDB standard.

16
Copyright © 2016 Open Geospatial Consortium

d) transforms the assembled data store into parameters compatible with the client
device’s internal algorithms (typically light parameters, FLIR/NVG parameters,
etc.

e) transforms the assembled data store so that it satisfies the client-device’s data
fidelity requirements

f) transforms the assembled data store so that it satisfies the client-device’s
performance and internal memory limitations

g) transforms the assembled data store so that it satisfies the client-device’s level of-
detail representation requirements.

Ideally, the scope of an RTP should be purely limited to manipulations of data format

and data structure and internal naming conventions (items a-g above). Under such
circumstances, it is possible to achieve perfect runtime correlation between client-
devices.

6.1.3 Publisher Implementation Recommendations

The use of the CDB data schema “as-is” by a client-device achieves all of the benefits
stated in sections 1.4 and 1.5 of the CDB Standard, namely:

a) Improved SE generation timeline and deployment
b) Interoperable simulation-ready SE

c) Improved client-device robustness/determinism
d) Increase SE longevity

e) Reduced SE storage infrastructure cost
f) Platform independence and scalability

g) SE scalability and adaptability
In the case where a client-device does not adhere to one or more of the above-mentioned
“fundamental CDB concepts”, fewer of the CDB benefits will be realizable.
For instance, a client-device incapable of dealing with levels-of-detail will not have the
same level SE scalability (a benefit explained in section 1.4.7 of the CDB Standard) as
one that fully espouses that concept. While the latter may be acceptable, it is clearly a
less-compliant and an inferior implementation of the CDB than the former.
Changes to the modeled representation of features are generally not advisable since it
invariably affects the accuracy of the modeled representation. Most image generators in
use today can ingest a (one-for-one correspondence) the CDB modeled polygonal
representation of 3D features. However, in the case of terrain, there are two dominant
approaches in industry, either a regular grid with LODs or alternately, the Terrain
Irregular Network (TIN) mesh. The CDB Standard has opted for the former given its
greater scalability, determinism and compatibility with tiling schemes. Clearly,

17
Copyright © 2016 Open Geospatial Consortium

implementations where such conversions are not necessary are advantaged and provide
more of the above-mentioned CDB benefits.

Furthermore, the CDB is designed to provide both the semantic (e.g. vector
data/attribution) and the modeled representation of features. Since the CDB Standard and
associated Best Practices provides both, it is not advisable to ignore or replace the
modeled representation (if provided) nor is it advisable to synthesize a non-CDB modeled
representation if none was supplied within the CDB. While the CDB Standard does not
forbid vendors to interpret CDB feature data for the purpose of procedurally synthesizing
more detailed feature data or synthesizing modeled data from the feature data, this
practice is not recommended as this would severely compromise correlation and inter-
operability. In the context of correlated synthetic environments, such approaches are
viable if and only if all client-devices in a federation are equipped with the exact same
procedural algorithms. Currently, this is not possible because there are no industry-
standard, open-source procedural algorithms endorsed by all simulation vendors.
In the case of the CDB Runtime Publishing paradigm and the CDB import-then-

compile paradigm, it is not advisable to ignore or replace the modeled
representation (if provided) nor is it advisable to synthesize a non-CDB modeled
representation if none was supplied within the CDB.

6.2 Use of a CDB conformant data store as an Off-line Repository
Figure 1-1: Use of a CDB conformant data store as an Off-line Repository, illustrates the
deployment process of a CDB conformant database when it is used solely as an off-line
Master repository. This approach follows the SE deployment paradigm commonly used
today within the simulation community. The use of a CDB conformant data store as an
off-line environmental data repository offers immediate benefits, namely…

● SE Standardization through a public, open, fully-documented schema that is
already supported by several SE authoring tools.

● SE Plug-and-Play Portability and Interoperability across various vendor SE
authoring toolsets

● SE Correlation through the elimination of source correlation errors through
normalization of all data sets (a single representation for each dataset)

● SE Re-use by eliminating dependencies that are specific to the simulation
application, the Data store Generation tool suite, the simulation program, the
technology

● SE Scalability which results in near-infinite SE addressability, spatial
resolution and content density in each of the SE datasets.

● 3D Model Library Management through built-in provisions for the cataloging
of models

● SE Versioning Mechanism allowing instant access to prior versions and
simplified configuration management

18
Copyright © 2016 Open Geospatial Consortium

● Cooperative SE Workflow through an internal SE structure which favors
teamwork. The SE workflow can be allocated by specialty (e.g., altimetry,
satellite imagery, vector data) or by geographic footprint.

● Straightforward SE Archival and Recovery

Note that the use of the use of CDB conformant data store as an offline repository does
not impose any change to the simulation training equipment (i.e., no modifications to
client-devices are required6). However, the deployment of the synthetic environment is
similar to the conventional approaches used in industry requiring the time-consuming,
storage-intensive, off-line compilation of proprietary runtime databases to each client-
device. Furthermore, the computing demands on the data store generation facility are
significantly greater because the entire data store must be published off-line for each
client-device before it can be deployed. These costs rapidly escalate with the complexity
and size of the synthetic environment, the number of supported client-devices and the
number of supported training facilities. For complex data stores, these costs can far
outweigh the costs of the runtime publishers attached to each simulator client-device.

Figure 1- 1: Use of CDB Conformant Database as an off-line Database Repository

6 Or alternately, runtime publishers need not be developed for client-devices

19
Copyright © 2016 Open Geospatial Consortium

In most modern SE tool suites in-use today, the Data Preparation step shown in Figure 1-
2: SE Workflow with a CDB structured data store as an Off-line Repository consists of
many sub-steps usually applied in sequence to each of the datasets (aka layers) of the SE.
In effect, this aspect of the modeler’s responsibilities is virtually identical to that of a
GIS7 specialist. As a result, many of the simulation equipment vendors offer SE
authoring tools that integrate best-of-breed COTS8 GIS tools into their respective tool
suites. The steps include:

● Format conversion: raw source data is provided to modelers in literally
hundreds of formats. Early on in the SE generation process, modelers
typically settle on a single format per SE layer (e.g., terrain altimetry,
imagery, attribution)

● Error handling: raw source often contains errors or anomalies that, if left
undetected, corrupt and propagate through the entire SE data preparation
pipeline. As a minimum, these errors must be detected early on in the
process. More advanced tools can correct many of these automatically,
particularly if there is some redundancy across the layers of data.

● Data geo-referencing: this is the process of assigning a unique location
(latitude, longitude and elevation) to each piece of raw data entering the SE
pipeline.

● Data Registration: each dataset is manipulated so that it coincides with
information contained in the other datasets. These manipulations include
projections, coordinate conversions, ortho-rectification, correction for lens
distortions, etc. For images, this process is also known as rectification.

● Data Harmonization: the raw data of a dataset varies over a geographic
extent if it was obtained under different conditions, such as from two or more
sensors with differing spectral sensitivity characteristics, resolution, in
different seasons, under different conditions of weather, illumination,
vegetation and human activity. The modeler must factor for these variations
when selecting and assembling the datasets into a self-coherent SE.

7 Geographic Information Systems

8 Commercial-Off-The-Shelf

20
Copyright © 2016 Open Geospatial Consortium

Figure 1- 2: SE Workflow with CDB as an off-line Repository

The effort expended during the Data Preparation and Modeling step is mostly
independent of the targeted simulation devices and the targeted applications.
Consequently, the results of the data preparation step can be stored into a Refined Source
Data Store (RSDS) and then re-targeted at modest cost to one or more simulation devices.

The standardization of simulation data stores can greatly enhance their portability and
reusability. The CDB Standard and associated OGC Best Practices offers a standardized
means to capture the effort expended during the Data Preparation and Modeling step. In
effect, a CDB structured database becomes a master repository where refined source can
be “accumulated” and managed under configuration control.

While standardization of format/structure is essential to achieve high portability,
interoperability and reuse, the SE content must be ideally developed so that its content is
truly independent of the training application. Therefore, we strongly recommend that the
SE content of the CDB structured repository be developed to be independent of the
training application.

Historically, SEs were developed for a single, targeted simulation application (e.g.,
tactical fighter, civil and air transport, rotary wing, or ground/urban warfare). In effect,
the intended training application played an important role in determining the RSDB
content because SE developers were constrained by the capabilities of the authoring tools

21
Copyright © 2016 Open Geospatial Consortium

and of the targeted simulation device. Unfortunately, this tailoring of SE was performed
too early during the SE workflow and severely limited the applicability and re-use of the
SE. Application tailoring can require either data intensification9 or data decimation10 .

Once the SE developer has completed his work in creating the various data layers of the
RFDS, he must offline publish (aka “compile”) the SE into one or more device-specific
data publishing steps. As we will discuss in section 6.4, Use of CDB structured data
store as a Combined Off-line and run-time data store Repository, the device-specific off-
line compilation step can be entirely omitted if the targeted training equipment is CDB-
compliant.

While an off-line publishing approach does not offer all of the benefits described in this
section, it nonetheless provides an easy, low-effort, migration path to CDB. Any
equipment vendor can easily publish the data into their proprietary runtime format.
Firstly, the publishing process is facilitated by the fact that the CDB standard provides
guidance on how to use industry standard formats. However, the CDB model goes
much further in that it specifies how to use these formats in a global, standardized data
model suited to high-end real-time simulations. This greatly facilitates the work of SE
developers. Thus, the CDB model provides a far simpler and straightforward means of
interchanging refined source data.

6.3 Use of a CDB conformant data store as a Combined Off-line and Run-time Data
store Repository
A data store conforming to this CDB standard can be both used an offline repository for
authoring tools or as an on-line (or runtime) repository for simulators. When used as a
runtime repository, a CDB conformant data store offers plug-and-play interchangeability
between simulators that conform to the CDB standard. Since a CDB conformant data
store can be used directly by some or all of the simulator client-devices, it is considered a
run-time environment data store.

In addition to the benefits outlined in section 6.3, the use of the CDB conformant data
store as a combined off-line and run-time repository offers many additional benefits:

● SE Plug-and-Play Portability and Interoperability across CDB-compliant
simulators and simulator confederacies (be it tactical air, rotary, urban/ground,
sea).

9 Data Intensification is the process of augmenting or deriving added detail from the information
found in the raw data. For instance, intensification can be used to augment flattened terrain imagery with
3D cultural detail relief. A typical example of this consisting in populating forested areas found in the
terrain imagery with individual three-dimensional trees.

10 Data Decimation is the process of removing or simplifying the informational content found in the
raw data. For instance, decimation can be used to transform individually modeled buildings into simplified
city blocks or to reduce the resolution of terrain imagery. Data decimation is usually undertaken to ensure
that the SE falls within the capabilities of the targeted simulator system.

22
Copyright © 2016 Open Geospatial Consortium

● Reduced Mission Rehearsal Timeline by eliminating SE generation steps (off-
line publishing, database assembly and data automation

● Simplified Deployment, Configuration Control and Management of Training
Facility SE Assets by eliminating the duplication of SE runtime DBs for each
simulator and each client-device of each simulator.

● Single, centralized storage system for the SE runtime repository (can be
extended to a web-enabled CDB)

● Seamless integration of 3D models to the simulator.

● Fair Fight/Runtime Content Correlation through the adjustment of runtime
level-of-detail control limits at each client-device.

Figure 1-3: Use of CDB Model as an Off-line and On-line Data Store Repository,
illustrates the CDB structure as an off-line Master data store repository for the tools and
as an online Master data store repository for the training facilities. Note that the
deployment of the synthetic environment to the training facilities involves a simple copy
operation. The deployment of a CDB conformant data store is further simplified through
an incremental versioning scheme. Since only the differences need be stored within the
data store, new versions can be generated and deployed efficiently.

Figure 1- 3: Use of CDB as an Off-line and On-line Data Store Repository

23
Copyright © 2016 Open Geospatial Consortium

The CDB standard associated Best Practices specify formats and conventions related to
synthetic environments for use in simulation. However, many additional benefits can be
garnered if a CDB structured data store is also used as an online data store repository.
This is particularly true when one considers the effort expended in the deployment of the
synthetic environment to the training and/or mission rehearsal facilities.

When used as an online data store repository, there is no need to store and maintain off-
line published versions of the data store for each client-device (as illustrated in Figure 1-
3). As a result, the storage and computing demands on the data store generation facility
are significantly lowered. This is especially true of data store generation facilities whose
mandate involves the generation of complex synthetic environments for use by several
training facilities.

Figure 1-4: SE Workflow with CDB as Combined Off-line/Runtime Data Store
Repository, illustrates the simplified database generation workflow resulting from a data
store that is used as both an offline and a runtime SE repository.

Figure 1- 4: SE Workflow with CDB as Combined Off-line/Runtime Data Store Repository

24
Copyright © 2016 Open Geospatial Consortium

This approach permits the CDB representation of the synthetic environment to be
“dissociated” from the resolution, fidelity, precision, structure and format imposed by the
internals of client-devices. Compliancy to the CDB standard can be achieved either by
modification of the client-device internal software to make it CDB-native or by inserting
a runtime publishing process that transforms the CDB structured data into the client-
device’s legacy native runtime format. In the later case, this process is done in real-time,
on a demand-basis, as the simulator “flies” within the synthetic environment. Note that
since the simulated own ship11 moves at speeds that are bounded by the capabilities of the
simulated vehicle, it is not necessary to instantly publish the entire synthetic environment
before undertaking a training exercise; the runtime publishers need only respond to the
demands of the client-devices. When the simulated own-ship’s position is static, runtime
publishers go idle. As the own ship starts advancing, client-devices start demanding for
new regions, and runtime publishers resume the publishing process. Publishing workload
peaks at high-speed over highly resolved areas of the synthetic environment.

Note that virtually all simulation client-devices in existence today natively ingest
proprietary native runtime formats. As a result, a runtime publisher is required to
transform the CDB structured data into legacy client device’s native runtime format. The
runtime publishing process is performed when the CDB conformant database is paged-in
from the CDB storage device. Volume 7, OGC CDB Data Model Guidance provides a
set of guidelines regarding the implementation of Runtime Publishers.

6.4 Example Implementation of a CDB Structured Data Store on a Simulator12
This section illustrates a possible implementation architecture of the CDB Standard on a
flight simulator. The standard does not mandate particular simulator architecture or the
use of specific computer platforms. The selected implementation varies with the required
level of fidelity and performance of the simulator and its client-devices.

As shown in Figure 1-5: Typical CDB Implementation on a Suite of Simulators, a typical
implementation of a CDB compliant system consists of the following main components:

1. Data Store Generation Facility (DBGF) and CDB Master Store: A geographically co-
located group of workstation(s), computer platforms, input devices (digitizing tablets,
etc.), output devices (stereo viewers, etc.), modeling software, visualization software,
database server, off-line publishing software and any other associated software and
hardware used for the development/modification of the data store. The CDB Master
Store consists of a mass storage system (typically a storage array) and its associated
network. It is connected to a dedicated DBGF Server.

2. Update Manager (UM): The Update Manager software consists of both client and
server software. The Update Manager Server (UMS) software is located at the
DBGF. It manages the data store updates (versions) and runs in the same platform as
the DBGF Server. The Update Manager Client (UMC) software is located at the

11 Own ship is the object you are on. Target ship is the object you are watching.
12 Legacy simulator client-devices can be readily retrofitted for compatibility with the CDB Standard by
inserting a runtime publisher in their SE paging pipeline.

25
Copyright © 2016 Open Geospatial Consortium

Simulator Facility and runs on the Update Manager Platform shown in Figure 1-5:
Typical CDB Implementation on a Suite of Simulators. The UMC communicates
with the UMS to transfer the data store (partial or complete copy) and its updates.

3. Simulator Facility CDB Data Store Repository: The simulator repository consists of a
mass storage system (typically a storage array) and its associated network
infrastructure. It is connected to the UMC (primarily for update purposes) and the
servers (for simulator client-device runtime access).

4. CDB servers: An optional13 gateway to mass storage and applicable infrastructure.
The CDB servers access, filter and distribute data in response to requests from the
simulator runtime publishers.

5. Runtime publishers: A term used to describe the computer platforms, and the
software that translates and optimizes, at runtime, CDB synthetic environment data
store to a client-device specific legacy runtime format. Data is pulled from the CDB
server and in turn published in response to requests from its attached simulator client-
device.

6. Simulator client-devices: Are simulation subsystems (IGs, radar, weather server,
Computer Generated Forces (CGF) terrain server, etc.) that require a complete or
partial synthetic representation of the world. CDB runtime clients may require a
CDB runtime publisher to convert the CDB into a form they can directly input.

Figure 1- 5: Typical CDB Implementation on a Suite of Simulators

13 Optionally needed for a large-scale CDB repository whose storage system is based on a Storage Area
Network (SAN).

26
Copyright © 2016 Open Geospatial Consortium

6.4.1 Data Store Generation Facility (DBGF)
The DBGF is used for the purpose of CDB structured database creation and updates.
Each workstation is equipped with one or more specialized tools. The tool suite provides
the means to generate and manipulate the synthetic environment.

6.4.2 Database Generation Flow
The CDB Model considerably simplifies the data store generation process, particularly all
aspects of data store generation that deal with data store layering, formatting, structure
and level-of-detail.

Figure 1- 6: Typical DB Generation - CDB Used as a DB Repository

Figure 1-6: Typical DB Generation - CDB Used as DB Repository and Figure 1-7:
Typical DB Generation Flow - CDB Used as DB & Sim Repository illustrate a typical
database generation workflow with the database used as a DB workstation repository and
the database used as a Repository for the DB workstation and the simulator. Both
approaches share the same steps, namely:

1. Source data collection and preparation: This step usually involves the loading of
raw (usually) uncorrected data and the conversion to formats native to the data store
toolset.

2. Source data preparation: This step usually involves the detection/correction of
errors, the harmonization of the data and the correction of errors. In this context,
errors signify all instances where the data fails to meet prescribed criteria. For
instance, errors can be as straightforward as corrupted digital data. More subtle forms

27
Copyright © 2016 Open Geospatial Consortium

of errors could be textures that fail to meet various brightness, contrast, chrominance,
and distortion criteria. Harmonizing data requires that data sources be coherent with
each other. An example of non-harmonized dataset is a terrain imagery mosaic built
from pictures taken in different seasons, with different illumination conditions,
with/without clouds, etc.

3. 3D modeling of features: This step involves the creation of 3D representations for
culture features (buildings, trees, vehicles, etc.), the creation and mapping of texture
patterns/imagery to the geometrical representation, the generation of the model LOD,
and the generation of appropriate attribution data so that the simulator can control the
model and have it respond to the simulated environment.

4. Data Store automation: Modern data processing and validation tools offer an
increasing level-of-automation to the modelers, thereby improving the DB generation
timeline (for example, a forest tool that controls the placement of individual trees
correlated to the underlying terrain imagery). Over the past few years, tool vendors
have introduced a broad set of tools aimed at eliminating highly repetitive modeling
tasks. This includes tools for runway generation (including the positioning of stripes,
lights, signs, markings, etc.), road/railroad generation, cultural feature extraction from
stereo pairs, cultural feature footprint extraction from image classification processes,
terrain grid generation from stereo pairs, terrain surface material classification, etc.

28
Copyright © 2016 Open Geospatial Consortium

Figure 1- 7: Typical DB Generation Flow - CDB Used as DB and Sim Repository

The result of the above steps yields a group of independent, layered and correlated
datasets, (i.e., datasets that are geographically aligned in latitude/longitude (but not
always elevation)), all sharing compatible projections, with all of the necessary
attribution.

Out of the many steps typically required by the off-line compilation, the CDB structured
data store only requires that levels-of-detail be generated for the terrain elevation, raster
imagery, and the grouping of cultural features. These improvements are expected to
yield important savings in man hours, machine hours and storage when compared to the
non-CDB approach.

6.4.3 Update Manager
The creation of the CDB structured data store and subsequent updates are performed at
the DBGF. The Update Manager (UM) keeps track of these updates and synchronizes

29
Copyright © 2016 Open Geospatial Consortium

the Simulator CDB Repository to the DBGF. The CDB Standard permits flexible and
efficient access of the data store and does so with different levels of granularity. Thus, it
is possible to perform modifications to the database on a complete tile, or on individual
datasets of a tile. This permits rapid deployment of the data store, a feature that is
particularly valuable for mission planning and rehearsal. With few exceptions14, there is
no interdependency between datasets and it is possible to modify a dataset (such as the
terrain imagery) without reprocessing the complete tile; only the modified dataset
requires re-processing. The CDB Standard supports the concurrent creation/modification
of the data store with its deployment. Once a tile, a feature set, or a dataset has been
processed, it may be transferred to the simulator facility concurrently with other work
performed at the DBGF.

Updates to the simulator CDB structured repository are performed by the UM. The
simulator CDB repository is configured to provide storage for a (partial or complete)
copy of the Data Store Generation Facility (DBGF) master store. The Update Manager
transfers the data store and its updates by area of interest, allowing for partial updates or
even complete copies of the database. The Update Manager (UM) simulator CDB
structured repository is used by one or more co-located simulators to retrieve the data
store in real-time.

Additionally, the UM manages the facility’s release of the data store. It maintains
versioning information as supplied by the DBGF. Based upon this information, it is
possible to request or approve data updates to the facility from the UM.

6.4.4 CDB Servers
When a CDB structured data store is used as an on-line (or runtime) repository, a set of
CDB servers (i.e., the server complex) is required in order to fetch data in real-time from
the simulator CDB structured repository. Each of the CDB servers responds to the
requests made by the simulator client-device runtime publishers.

6.4.5 Runtime Publishers
When the CDB structured data store is used as an on-line (or runtime) repository, a set of
runtime publishers are required in order to transform the CDB data into legacy client-
devices (simulator subsystems) internal format15. The runtime publishers provide a key
role in further enhancing overall algorithmic correlation within and across simulators.
Each publisher communicates to the CDB data store server complex and the attached
simulator client-device as follows:

14 The only exceptions to this CDB principle are the MinElevation, MaxElevation datasets which are
slaved to the Terrain Elevation dataset and the MaxCulture dataset which is slaved to the
GSFeature/GTFeature dataset.

15 Alternately, client-devices can be designed / modified to natively handle the CDB’s data model,
thereby obviating the need for a separate runtime publishing step.

30
Copyright © 2016 Open Geospatial Consortium

1. Receive update requests for synthetic environment data from their respective
simulator client-devices.

2. Relays the update request to the CDB server complex.
3. Once the update request is acknowledged and the data retrieved by the CDB server

complex, the runtime publisher pulls data from the CDB server complex and converts
and formats this data into a form directly usable by the simulator client-device. This
processing is accomplished in real-time.

4. Transfers the converted data to the simulator client-device.

6.4.6 Simulator Client-devices
The sections below provide a short description of the client-devices found on a typical
simulator and the global types of information required from the CDB.

6.4.6.1 Visual Subsystems
Typical visual subsystems compute and display in real-time, 3D true perspective scenes
depicting rehearsal and training environments for OTW, IR, simulated Night Vision
Goggles (NVG), and 3D stealth IG viewing purposes.

6.4.6.2 Out-The-Window Image Generator (OTW IG)
The IG portion of the visual system provides a wide range of features designed to
replicate real-world environments. High density and high complexity 3D models can be
superimposed onto high-resolution terrain altimetry and raster imagery. Scene
complexity with proper object detail and occulting provide critical speed, height and
distance cueing. Special effects are implemented throughout the data store to enhance the
crew’s experience and overall scene integrity. Typical IGs optimize the density,
distribution and information content of visual features in the scene(s) for all conditions of
operations.

The visual subsystem uses time invariant information held in the CDB such as:

1. Terrain altimetry and raster imagery data
2. Cultural feature data
3. Light point data
4. Airport data
5. Material attribution data

6.4.6.3 Infrared IG
Included in the CDB Standard and associated Best Practices is the material attribution
used by a typical physics-based Infrared Sensor Synthetic environment Model. This
model computes, in real-time, the amount of radiated and propagated energy within the
simulated thermal bands.

A typical thermal model takes into account the following material properties:

1. Solar absorbance

31
Copyright © 2016 Open Geospatial Consortium

2. Surface emissivity: This coefficient reflects the degree of IR radiation
emitted by the surface.

3. Thermal conductivity
4. Thermal inertia: This coefficient describes the material ability to gain/lose

its heat to a still-air environment.

6.4.6.4 Night Vision Goggles Image Generation
Included in the coding is the material attribution (exclusive of any properties) used by
NVG simulation models.

6.4.6.5 Ownship-Centric Mission Functions
Visual subsystems typically provide a set of ownship-centric Mission Functions (MIF)
for use in determining:

1. The Height Above Terrain (HAT), Height Above Culture (HAC), and Height Above
Ocean (HAO). This function may report the material type of the texel or the polygon,
and the normal of the surface immediately beneath the point.

2. Own-ship Collision Detection (CD) with terrain, 3D culture and moving models.
This may include long thin objects such as power lines.

3. Line Of Sight (LOS) and Laser Ranging Function (LRF) originating from the
ownship. This function may return the range, the material type and the normal of the
nearest encountered element in the database. The maximum length of a requested
vector is typically limited to the paged-in database.

The mission functions provided by an IG base their computations on data that has LOD
representations equivalent to those used by OTW IGs. Since the visual subsystem scene
management mechanisms are essentially slaved to the own-ship’s position, the terrain
accuracy (e.g., its LOD), the cultural density/LOD and the texture resolution decrease
with distance from the own-ship. As a result, the IG-based mission functions
computations are best suited for own-ship functions. In cases where the data store needs
to be interrogated randomly anywhere in the gaming area, simulator client-devices such
as Computer Generated Forces (via a terrain server) are best suited because their
architecture is not own-ship-centric.

6.4.6.6 Computer Generated Forces (CGF)
CGF provides a synthetic tactical environment for simulation-based training. A CGF
application simulates behaviors and offers interactions between different entities within
the simulation. It models dynamics, behavior doctrines, weather conditions,
communications, intelligence, weapons and sensor interactions, as well as terrain
interactions. CGF offers modeling of physics-based models in a real-time natural and
electronic warfare environment for air, land and sea simulations.

Typically, CGF is able to create a realistic simulated multi-threat, time-stressed
environment comprising items such as:

32
Copyright © 2016 Open Geospatial Consortium

1. Friendly, enemy and neutral entities operating within the gaming area
2. Interaction with weather conditions currently in the simulation

3. Entities with representative dynamics (velocity, acceleration, etc.),
signatures, vulnerabilities, equipment, communications, sensors, and
weapons

4. CGF uses time invariant information held in CDB such as:

a. Terrain altimetry and raster imagery
b. Cultural features

c. Linear (vector) and areal information
d. Sensor signatures

e. Moving Models

6.4.6.7 Weather Simulation
Weather Simulation (WX) involves computing and analyzing the various weather
components and models around important areas defined in a simulation, in order to
produce realistic real-life scenarios for the sub-systems being affected by weather effects.
As such, a weather data server typically handles the weather simulation; this server
handles requests for weather-related data such as temperature, 3D winds, turbulence
gradients, and complex weather objects such as clouds, frontal systems or storm fronts.

WX uses time invariant information held in data store such as terrain elevation and
(potentially) significant features with 3D modeled representations to compute weather
and wind patterns.

6.4.6.8 Radar
Typical Radar Simulation Models require modeling of all real-life and man-made effects
or objects that can cause significant echo returns from the wavelengths of the simulated
Radar RF main beam and side lobes. Additionally, LOS computations are necessary for
proper target occultation by the Radar.

The Radar subsystem uses time invariant information held in data store such as:

1. Terrain altimetry and Raster materials
2. Cultural features with either 2D and 3D modeled representations
3. Material properties
4. Land/Coastline/Man-Made features
5. Target shapes (RCS polar diagrams, 3D models)

6.4.6.9 Navigation System
The Navigation System provides the navigation information around the areas and routes
as defined in a simulation in order to provide precise NAVAIDs data which will generate
well correlated subsystems being part of such simulation scenarios.

33
Copyright © 2016 Open Geospatial Consortium

As such, the Navigation System Simulation handles navigation aids information requests
from other simulator client-devices such as:

1. Tactical Air Navigation (TACAN)
2. Automatic Direction Finder (ADF)
3. VHF Omni Range (VOR)
4. Instrument Landing System (ILS)
5. Microwave Landing System (MLS)
6. Doppler Navigation System (DNS)
7. Global Positioning System (GPS)
8. Inertial Navigation Unit (INU)
9. Non-Directional Beacons (NDB)

In addition to the NAVAIDs, the navigational data include datasets such as:

1. Communications Stations data
2. Airport/Heliport (including SIDs, STARs, Terminal

Procedure/Approaches, Gates)
3. Runway/Helipad
4. Waypoints
5. Routes
6. Holding Patterns
7. Airways
8. Airspaces

NAV uses time invariant information held in CDB such as:

1. ICAO code and Airport Identifier
2. NAVAIDs frequency, channel, navigational range, power
3. Declination
4. Magnetic variations
5. Communications Stations data
6. Airport/Heliport
7. Runway/Helipad

6.4.7 CDB Data Store and Model naming Guidance

6.4.7.1 Sensor Simulation and Base Materials linkage
Sensor simulation typically requires a simulation of the device itself supplemented by a
complete simulation of the synthetic environment over the portion of the electromagnetic
spectrum that is relevant to this device. The former simulation is referred to as the
Sensor Simulation Model (SSM) while the latter is called the Sensor Environmental
Model (SEM). Most SEMs in existence today rely heavily on environmental database
whose content is designed to match the functionality, fidelity, structure and format
requirements of the SEM. The level of realism possible by the SEM depends heavily on
the quality, quantity and completeness of the data available. This makes the
environmental database highly device-specific.

The association of material properties to features in the CDB requires two distinct steps.

34
Copyright © 2016 Open Geospatial Consortium

1. The first step consists in establishing a correspondence between all of the Base
Materials in the CDB data store and the Base Materials directly supported by the
SEM of the client-device. This is a manual task performed by the SEM
specialist(s). The specialist must ensure that his SEM has a corresponding Base
Material for each of the CDB Base Materials. In cases where the SEM is simple,
it is possible for two or more CDB Base Materials to point to the same SEM Base
Material. Alternately the SEM specialist may choose to create new SEM Base
Materials that correspond more closely to the CDB’s Base Materials. The result
of this process is a SEM look-up.

2. The second step is typically undertaken during the CDB data store initialization
by the client-device running the SEM. During this initialization phase, the SEM
reads the content of the global Base Material Table and the SEM look-up
provided by the SEM specialist. This look-up establishes an indirect link between
the Base Materials in the CDB data store and the material properties of the client-
device’s SEM Base Materials. In fact, the indirect link (i.e., the look-up table)
can be eliminated if the client device internally builds a Materials Properties
Table that uses the CDB material keys directly (as illustrated in Figure 2 11: SEM
Base Material Properties Table).

35
Copyright © 2016 Open Geospatial Consortium

Figure 1- 8: SEM Base Material Properties Table

6.4.7.2 SEM – Materials example
We have a Composite Material consisting of four Base Materials. For the purpose of this
example, we will associate hypothetical keys to these materials:

water (key3 = "BM_WATER-FRESH", BMT's index 0)

vegetation (key21 = " BM_LAND-LOW_MEADOW", BMT's index 2)
soil (key7 = " BM_SOIL ", BMT's index 4)

sand (key4 = " BM_SAND ", BMT's index 9)

The SEM specialist establishes the following correspondence between the CDB Base
Materials and his materials (step 1):

key3 to material 8 ("Lake", SEM list's index 8)
key21 to material 3 ("Uncultivated Land", SEM list's index 3)

key7 to material 7 ("Soil", SEM list's index 7)
key4 to material 12 ("Sand", SEM list's index 12)

During the CDB initialization process (step 2), a look-up table is built as follows:

BMT’s index 0 is associated to SEM list's index 8
BMT’s index 2 is associated to SEM list's index 3

BMT’s index 4 is associated to SEM list's index 7

BMT’s index 9 is associated to SEM list's index 12

6.4.7.3 Geospecific viz Geotypical guidance
In most cases, the decision to invoke a modeled representation of a feature as either
geotypical or geospecific is clear. When it comes to real-world recognizable cultural

36
Copyright © 2016 Open Geospatial Consortium

features, the representation of these features is clearly a geospecific model because it is
encountered once in the entire CDB and it is unique in its shape, texture, etc. At the end
of the spectrum, many simulation applications use a generic modeled representation for
each feature type and then instance that modeled representation throughout the synthetic
environment. For this case, the choice is clearly geotypical.

There are cases however, where the decision to represent features as either geotypical or
geospecific is not as clear-cut. For instance, a modeler may not be satisfied with a single
modeled representation for all the hospital features (FeatureCode-FSC = AL015-006);
accordingly, he may wish to model two or more variants of hospitals in the CDB. While
each of these modeled representation may not be real-world specific, they are nonetheless
variants of hospitals (say by size or by region or country for example). Usually, the
primary motivation for such variations is one of esthetics and realism; it is not necessarily
motivated by the need to accurately reflect real-world features.

In making his decision, the modeler should factor-in the following trade-offs:

a. CDB Storage Size: The size of the CDB is smaller when the cultural features
reference geotypical models rather than geospecific models. This is due to the fact that
the modeled representation of geotypical model is not duplicated within each tile –
instead, the model appears once in the GTModel library dataset directory. Clearly, a
geotypical model is the preferred choice if the modeler wishes to assign and re-use the
same modeled representation for a given feature type.

b. Client-device Memory Footprint: By assigning a geotypical model to a feature,
the modeler provides a valuable “clue” to the client-device that the feature will be
instanced throughout the CDB with the same modeled representation. As a result, client-
device should dedicate physical memory for the storage of the geotypical models for later
use.
c. GTModel Library Management: The CDB’s Feature Data Dictionary (FDD) is
based on the DIGEST, DGIWG, SEDRIS and UHRB geomatics standards. These
standards are commonly used for the attribution of source vector data in a broad range of
simulation applications. The CDB Feature Data Dictionary acts much like what an
English dictionary is to a collection of novels. As a result, it is possible to develop a
universal GTModel Library which is totally independent of the CDB content (just like a
dictionary is independent of books). This universal GTModel Library can be simply
copied into the \CDB\GTModel directory. The structure of the GTModel Library is
organized in accordance to the CDB’s FDD – in other words, the models are indexed
using the CDB Feature Code. The indexing approach greatly simplifies the management
of the model library since every model has a pre-established location in the library.

d. CDB Generation and Update: As mentioned earlier, the size of the CDB is
smaller when the cultural features reference geotypical models rather than geospecific
models. This is due to the fact that the modeled representation of geotypical model is not
duplicated within each tile – instead, the model appears once in the GTModel library
dataset directory. This reduces the amount of time required by the tools to generate and
store the CDB onto the disk storage system. The second benefit of geotypical models
comes in the case where a modeler wishes to change the modeled representation of one or

37
Copyright © 2016 Open Geospatial Consortium

more geotypical features type across the entire CDB. Changes to the modeled
representation of a feature type can easily be performed by simply overwriting the
desired model in model library. From then on, all features of that type now reference the
updated model – no other changes to the CBD are required.

Note that since the size of the GTModel library is likely to exceed the client-device’s
model memory, the client-device must implement a caching scheme which intelligently
discards models or portions of models that are deemed less important, used infrequently
or not used at all. It is up to the client-device to accommodate for the disparity between
the size of client-device’s model memory and the size of the GTModel library. Clearly
when the disparity is large, the caching algorithm is solicited more frequently and there is
more “trashing” of the cache’s content. The key to a successful implementation of a
caching scheme resides in an approach which discards information not actively or
currently used by the client-device. The CDB standards offers a rich repertoire of
attribution information so that client-devices can accomplish this task
optimally. Consequently, the client-devices can smartly discard model data that is not in
use (e.g., models and/or, textures) during the course of a simulation. Note that in more
demanding cases, client-devices may have to resort to a greater level of sophistication
and determine which levels-of-detail of the model geometry and/or model texture are in
use in order to accommodate cache memory constraints. It is clearly in the modeler’s
interest to avoid widespread usage of model variants within the GTModel Library. In
doing so, the modeler overly relies on the client-devices abilities to smartly manage its
model cache. As a result, run-time performance may suffer.

As mentioned earlier, the modeled representation of a geotypical model is not duplicated
within each tile – instead, the model appears once in the GTModel library dataset
directory. As a result, once the model is loaded into memory, it can be referenced without
inducing a paging event to the CDB storage system. Clearly, the paging requirements
associated with geotypical features are negligible. As a result, paging performance is
improved because of the reduced IO requirements on the CDB storage system.

6.5 Primer: Line-of-Sight (LOS) Algorithms Using MinElevation and
MaxElevation Components

Note: Was A.13 in Volume 2 in original submission

The purpose of the MinElevation and MaxElevation components is to provide the CDB
data store with the necessary data and structure to achieve the required level of
determinism in the computation line-of-sight calculations with the terrain. The values of
each component are with respect to mean sea level. Since both the MinElevation and the
MaxElevation values are specified in this standard, any line-of-sight algorithm can
rapidly assess an intersection status of the line-of-sight vector with the terrain.

There are three cases to consider:
CASE 1 – No intersection: If all of the LOS Bounding Boxes are above the MinMax
Bounding Boxes, then there is no intersection between the line-of-sight vector and the
terrain. No further testing is required. (Refer to Figure A-16: Case 1 – No Intersection.)

38
Copyright © 2016 Open Geospatial Consortium

Figure A-16: Case 1 – No Intersection

CASE 2 – Potential intersection: If one or more of the LOS Bounding Boxes overlap
with a MinMax Bounding Box, then there is a potential intersection between the line-of-
sight vector and the terrain. This step must be repeated with progressively finer level-of-
detail versions of the MinElevation and MaxElevation values until Case 1 or Case 3 is
encountered. If the finest level-of-detail is reached and the LOS result still yields a
potential intersection status (Case 2), then the LOS algorithm must perform a LOS
intersection with the finest LOD of the Primary Terrain Elevation component using the
prescribed CDB meshing convention. (Refer to Figure A-17: Case 2 – Potential
Intersection.)

Figure A-17: Case 2 – Potential Intersection

CASE 3 – Intersection: If one or more of the LOS Bounding Boxes are below the
MinMax Bounding Boxes, then there is an intersection between the line-of-sight vector
and the terrain. No further testing is required to determine whether there is intersection
or not. (Refer to Figure A-18: Case 3 – Guaranteed Intersection.) However, to determine
the intersection point, the LOS algorithm must perform the following additional steps. If
(starting with the LOS point-of-origin) one or more of the LOS Bounding Boxes overlap
with a MinMax Bounding Boxes, then there is a potential intersection between the line-

39
Copyright © 2016 Open Geospatial Consortium

of-sight vector and the terrain for that MinMax Bounding Box. This step must be
repeated with progressively finer level-of-detail versions of the MinElevation and
MaxElevation values until Case 1 or Case 3 is encountered. If the finest level-of-detail is
reached and the LOS result still yields a potential intersection status (Case 2), then the
LOS algorithm must perform a LOS intersection with the finest LOD of the Primary
Terrain Elevation component using the prescribed CDB meshing convention.

Figure A-18: Case 3 – Guaranteed Intersection

-

6.6 Gamma Tutorial (Was Annex G, Volume 2)

6.6.1 Introduction
There is nominally no gamma correction done to the stored samples of CDB imagery
files. As a result, a gamma of 1/2.2 should be applied to imagery data when viewing it
through a (sRGB-calibrated) monitor with gamma of 2.2. The CDB Standard
recommends the sRGB IEC 61966-2 standard when performing the calibration of
displays (at DBGF or a simulator). The sRGB standard provides the necessary guidelines
for the handling of gamma, and of color (in a device-independent fashion) under
specified viewing conditions.
It would be convenient for graphics programmers if all of the components of an imaging
system were linear. The voltage coming from an electronic camera would be directly
proportional to the intensity (power) of light in the scene; the light emitted by a CRT
would be directly proportional to its input voltage, and so on. However, real-world
devices do not behave in this way.

Real imaging systems will have several components, and more than one of these can be
nonlinear. If all of the components have transfer characteristics that are power functions,
then the transfer function of the entire system is also a power function. The exponent
(gamma) of the whole system's transfer function is just the product of all of the individual
exponents (gammas) of the separate stages in the system. Also, stages that are linear
pose no problem, since a power function with an exponent of 1.0 is really a linear
function. So a linear transfer function is just a special case of a power function, with a
gamma of 1.0. Thus, as long as our imaging system contains only stages with linear and

40
Copyright © 2016 Open Geospatial Consortium

power-law transfer functions, we can meaningfully talk about the gamma of the entire
system. This is indeed the case with most real imaging systems.

If the overall gamma of an imaging system is 1.0, its output is linearly proportional to its
input. This means that the ratio between the intensities of any two areas in the
reproduced image will be the same as it was in the original scene. It might seem that this
should always be the goal of an imaging system: to accurately reproduce the tones of the
original scene. Alas, that is not the case.
When the reproduced image is to be viewed in “bright surround” conditions, where other
white objects nearby in the room have about the same brightness as white in the image,
then an overall gamma of 1.0 does indeed give real-looking reproduction of a natural
scene. Photographic prints viewed under room light and computer displays in bright
room light are typical “bright surround” viewing conditions.

However, sometimes images are intended to be viewed in “dark surround” conditions,
where the room is substantially black except for the image. This is typical of the way
movies and slides (transparencies) are viewed by projection. Under these circumstances,
an accurate reproduction of the original scene results in an image that human viewers
judge as “flat” and lacking in contrast. It turns out that the projected image needs to have
a gamma of about 1.5 relative to the original scene for viewers to judge it
“natural”. Thus, slide film is designed to have a gamma of about 1.5, not 1.0.
There is also an intermediate condition called “dim surround”, where the rest of the room
is still visible to the viewer, but is noticeably darker than the reproduced image
itself. This is typical of television viewing, at least in the evening, as well as subdued-
light computer work areas. In dim surround conditions, the reproduced image needs to
have a gamma of about 1.25 relative to the original scene in order to look natural.

The requirement for boosted contrast (gamma) in dark surround conditions is due to the
way the human visual system works, and applies equally well to computer
monitors. Thus, a modeler trying to achieve the maximum realism for the images it
displays really needs to know what the room lighting conditions are, and adjust the
gamma of the displayed image accordingly.
If asking the user about room lighting conditions is inappropriate or too difficult, it is
reasonable to assume that the overall gamma (viewing_gamma as defined below) is
somewhere between 1.0 and 1.25. That's all that most systems that implement gamma
correction do.

According to PNG (Portable Network Graphics) Specification Version 1.0, W3C
Recommendation 01-October-1996 Appendix, Gamma Tutorial,

(http://www.w3.org/TR/PNG-GammaAppendix):

“All display systems, almost all photographic film, and many electronic cameras have
nonlinear signal-to-light-intensity or intensity-to-signal characteristics. Fortunately, all of
these nonlinear devices have a transfer function that is approximated fairly well by a

41
Copyright © 2016 Open Geospatial Consortium

single type of mathematical function: a power function. This power function has the
general equation

output = input ^ gamma
where ^ denotes exponentiation, and “gamma” (often printed using the Greek letter
gamma, thus the name) is simply the exponent of the power function.
By convention, “input” and “output” are both scaled to the range [0..1], with 0
representing black and 1 representing maximum white. Normalized in this way, the
power function is completely described by a single number, the exponent “gamma”.

So, given a particular device, we can measure its output as a function of its input, fit a
power function to this measured transfer function, extract the exponent, and call it
gamma. We often say “this device has a gamma of 2.5” as a shorthand for “this device
has a power-law response with an exponent of 2.5”. We can also talk about the gamma
of a mathematical transform, or of a lookup table in a frame buffer, so long as the input
and output of the thing are related by the power-law expression above.

Real imaging systems will have several components, and more than one of these can be
nonlinear. If all of the components have transfer characteristics that are power functions,
then the transfer function of the entire system is also a power function. The exponent
(gamma) of the whole system's transfer function is just the product of all of the individual
exponents (gammas) of the separate stages in the system.
Also, stages that are linear pose no problem, since a power function with an exponent of
1.0 is really a linear function. So a linear transfer function is just a special case of a
power function, with a gamma of 1.0.

Thus, as long as our imaging system contains only stages with linear and power-law
transfer functions, we can meaningfully talk about the gamma of the entire system. This
is indeed the case with most real imaging systems.”
In an ideal world, sample values would be stored in floating point, there would be lots of
precision, and it wouldn't really matter much. But in reality, we're always trying to store
images in as few bits as we can.

If we decide to use samples that are linearly proportional to intensity, and do the gamma
correction in the frame buffer LUT, it turns out that we need to use at least 12-16 bits for
each of red, green, and blue to have enough precision in intensity. With any less than
that, we will sometimes see “contour bands” or “Mach bands” in the darker areas of the
image, where two adjacent sample values are still far enough apart in intensity for the
difference to be visible.

However, through an interesting coincidence, the human eye's subjective perception of
brightness is related to the physical stimulation of light intensity in a manner that is very
much like the power function used for gamma correction. If we apply gamma correction
to measured (or calculated) light intensity before quantizing to an integer for storage in a
frame buffer, we can get away with using many fewer bits to store the image. In fact, 8
bits per color is almost always sufficient to avoid contouring artifacts. This is because,
since gamma correction is so closely related to human perception, we are assigning our
256 available sample codes to intensity values in a manner that approximates how visible

42
Copyright © 2016 Open Geospatial Consortium

those intensity changes are to the eye. Compared to a linear-sample image, we allocate
fewer sample values to brighter parts of the tonal range and more sample values to the
darker portions of the tonal range.
Thus, for the same apparent image quality, images using gamma-encoded sample values
need only about two-thirds as many bits of storage as images using linear samples.
If we consider a pipeline that involves capturing (or calculating) an image, storing it in an
image file, reading the file, and displaying the image on some sort of display screen, there
are at least 5 places in the pipeline that could have nonlinear transfer functions. Let's
give each a specific name for their characteristic gamma:

1. Camera_gamma (cγ): The characteristic of the image sensor.
2. Encoding_gamma (eγ): The gamma of any transformation performed by the

software writing the image file.
3. Decoding_gamma (dγ): The gamma of any transformation performed by

any software reading the image file.
4. LUT_gamma (lutγ): The gamma of the frame buffer LUT, if present.

 In addition, let's add a few other names:

1. File_gamma (fγ): The gamma of the image in the file, relative to the original
scene, i.e. ecf γγγ =

2. DS_gamma (DSγ): The gamma of the “display system” downstream of the
frame buffer. In this context, the term display system encompasses everything
after the frame buffer, that is CRTlutDS γγγ =

3. Viewing_gamma (vγ): The overall gamma that we want to obtain to produce
pleasing images generally 1.0 to 1.25.

When the file_gamma is not 1.0, we know that some form of gamma correction has been
done on the sample values in the file, and we call them “gamma corrected” samples.
However, since there can be so many different values of gamma in the image display
chain, and some of them are not known at the time the image is written, the samples are
not really being “corrected” for a specific display condition. We are really using a power
function in the process of encoding an intensity range into a small integer field, and so it
is more correct to say “gamma encoded” samples instead of “gamma corrected” samples.
The CDB standard does not rely on such gamma encoding in order to achieve smaller
integer number representations. Instead, the CDB standard relies on standard
compression algorithms to achieve an efficient representation of color imagery.16

16 The JPEG-2000 standard is based on the sRGB default color space per the IEC 61966-2-1

Standard which calls for a gamma 2.2 under the specified viewing conditions

43
Copyright © 2016 Open Geospatial Consortium

When displaying an image file on the simulator, the image-decoding software is
responsible for making the overall gamma of the system equal to the desired
viewing_gamma, by selecting the decoding_gamma appropriately. If the viewing
condition is different from the specification, then the decoding process must compensate.
This can be done by modifying the gamma values in equation G-1 below by the
appropriate factor. If one does modify the gamma values in equation G-1 below, extreme
care must be taken to avoid quantization errors when working with 24 bit images. The
display_gamma should be measured (and known) for the display rendering the image
(either at the DB generation workstation or the simulator). The correct viewing_gamma
depends on lighting conditions, and that will generally have to come from the user. In
dimly lit office environments, the generally preferred value for viewing gamma is in the
vicinity of 1.12517. In many digital video systems, camera_gamma is about 0.5.
CRT_gamma is typically 2.2, while encoding_gamma, decoding_gamma, and
LUT_gamma are all 1.0. As a result, viewing_gamma ends up being about 1.125.
Coincidently, this happens to be the optimal viewing gamma for an ambient luminance
level of 64 lux or 5 ft-lbt.

vDSdc γγγγ = (eq. G-1)

vcrtlutdc γγγγγ =

vγ==××× 125.12.20.10.1511.0

In a complex system such as a flight simulator, the system architect must be aware of the
gamma at every stage of the system, starting from the source of the imagery (e.g. camera
or satellite) right through to the simulator’s display device. His objective is to ensure that
product of all gammas match the viewing gamma of the simulator.

Given the above assumptions, and our objective of ensuring that the product of all
gammas in the viewing chain equals the viewing gamma, the modeler will end up
(subjectively) adjusting images to an equivalent file gamma of 1.25.

The bottom portion of the illustration show the path taken by the CDB imagery as it is
ingested first by the real-time publisher, then by the IG, the IG color look-up tables and
finally through to the visual display system. In this example, we will assume the
following:

1. The imagery file in the CDB is unmodified (i.e. those produced by the Adobe
Photoshop at the DBGF). Note that as a result of viewing gamma of 25.1=vγ ,

17 Historically, viewing gammas of 1.5 have been used for viewing projected slides in a dark room

and viewing gammas of 1.25 have been used for viewing monitors in a very dim room. This very dim
room value of 1.25 has been used extensively in television systems and assumes a ambient luminance
level of approximately 15 lux (or 1.4 ft-lb). The current proposal assumes an encoding ambient
luminance level of 64 lux (or 5. ft-lb) which is more representative of a dim room in viewing computer
generated imagery or a FAA level-D approved flight simulator visual system. Such a system assumes a
viewing gamma of 1.125 and is thus consistent with the ITU-R BT.709 standard.

44
Copyright © 2016 Open Geospatial Consortium

the file gamma ended up at 25.1=fγ at the DBGF. As a result, the CDB also has
a file gamma of 25.1=fγ

2. The IG performs all of its internal operations in a linear color space (i.e. the
IG_gamma is 00.1=IGγ)

3. The simulator visual system produces an average scene brightness of
approximately 6 ft-lamberts: under these viewing conditions, the viewing gamma
is 125.1=vγ .

4. The measured gamma of the visual display system is 025.2=crtγ
5. The content of the IG’s color look-up tables is adjusted to compensate for the

gamma of the visual display system, i.e. it is loaded with 025.2
1=lutγ

Given the above assumptions, and our objective of ensuring that the product of all
gammas in the chain equals the viewing gamma of 1.125, the required visual run-time
publisher gamma must account for the difference in viewing gamma at the DBGF and at
the simulator. As a result, the publisher gamma must be (1.125/1.25).

6.6.2 Harmonization of Gamma at DBGF with Gamma of Simulator Visual System
Both the modelers and the visual system architects should be keenly aware of the
handling of gamma at the Data Store Generation Facility and at the simulator. Figure
6-1: Typical Handling of Gamma at DBGF and Simulator, illustrates the typical handling
of gamma in both of these cases.

The top portion of the illustration shows the path taken by source data as a modeler is
viewing it at this workstation via the application software. In this example, we will
assume the following:

1. The DBGF imagery application is Adobe Photoshop. The default color space
profile used by Adobe Photoshop (i.e. the *.icm file) is the sRGB Color Space
Profile which is defined by the sRGB standard to be a gamma of 2.2, therefore the
Photoshop uses a 2.2/1=lutγ

2. The DBGF workstation is running Windows (therefore the O/S does not
gammatize the imagery before sending it to the display, 25.1=dγ)

3. The measure gamma of the DBGF workstation monitor is 2.2=CRTγ
4. The DBGF workstation is located in a dimly lit room, so the viewing gamma is in

effect 25.1=vγ

45
Copyright © 2016 Open Geospatial Consortium

Figure 6-1: Typical Handling of Gamma at DBGF and Simulator

6.7 Handling of Color
The default CDB standard color space follows the same convention as the Windows
sRGB Color Space Profile. sRGB is the default color space in Windows, based on the
IEC 61966-2-1 Standard. A sRGB compliant device does not have to provide a profile or
other support for color management to work well.

Nonetheless, whether calibrated or not to the IEC Standard, all variants of RGB are
typically close enough that undemanding viewers can get by with simply displaying the
data without color correction. By storing calibrated RGB, the CDB standard retains
compatibility with existing database tools and software programs that expect RGB data,
yet provides enough information for conversion to XYZ in applications that need precise
colors. Thus, the CDB standard gets the best of both worlds.

Full compliance to the CDB standard requires adherence to the color space described in
this section. However, in virtually all cases, direct use of un-calibrated RGB is sufficient.
The builders of Synthetic Environment Databases and the users of Visual Systems should
be aware of these color space conventions; significant deviation from the underlying IEC
assumptions may yield significant color differences.

The CDB standard encoded RGB color tri-stimulus values assume the following:

1. Display luminance level: 80 cd/m2
2. Display white point x = 0.3127, y = 0.3291 (D65)

46
Copyright © 2016 Open Geospatial Consortium

3. Display model Offset (R, G and B): 0.055
4. Display Gun/Phosphor Gamma (R, G, and B): 2.2

Table 6-1: CIE Chromaticity for CDB Reference Primaries & CIE Standard
Illuminant

 Red Green Blue D65 (white)

X 0.6400 0.3000 0.1500 0.3127

Y 0.3300 0.6000 0.0600 0.3291

Z 0.0300 0.1000 0.7900 0.3583

According to PNG (Portable Network Graphics) Specification Version 1.0, W3C
Recommendation 01-October-1996 Appendix, Color Tutorial,

(http://www.w3.org/TR/PNG-GammaAppendix):

“The color of an object depends not only on the precise spectrum of light emitted or
reflected from it, but also on the observer, their species, what else they can see at the
same time, even what they have recently looked at. Furthermore, two very different
spectra can produce exactly the same color sensation. Color is not an objective property
of real-world objects; it is a subjective, biological sensation. However, by making some
simplifying assumptions (such as: we are talking about human vision) it is possible to
produce a mathematical model of color and thereby obtain good color accuracy.

6.7.1 Device-dependent Color
Display the same RGB data on three different monitors, side by side, and you will get a
noticeably different color balance on each display. This is because each monitor emits a
slightly different shade and intensity of red, green, and blue light. RGB is an example of
a device-dependent color model; the color you get depends on the device. This also
means that a particular color represented as say RGB 87, 146, 116 on one monitor might
have to be specified as RGB 98, 123, 104 on another to produce the same color.

6.7.2 Device-independent color
A full physical description of a color would require specifying the exact spectral power
distribution of the light source. Fortunately, the human eye and brain are not so sensitive
as to require exact reproduction of a spectrum. Mathematical, device-independent color
models exist that describe fairly well how a particular color will be seen by humans. The
most important device-independent color model, to which all others can be related, was
developed by the International Commission on Illumination in 1931 (CIE-1931, in
French) and is called “CIE XYZ” or simply “XYZ”.

In XYZ, X is the sum of a weighted power distribution over the whole visible spectrum.
So are Y and Z, each with different weights. Thus any arbitrary spectral power
distribution is condensed down to just three floating-point numbers. The weights were

47
Copyright © 2016 Open Geospatial Consortium

derived from color matching experiments done on human subjects in the 1920s. CIE
XYZ has been an International Standard since 1931, and it has a number of useful
properties:

1. Two colors with the same XYZ values will look the same to humans
2. Two colors with different XYZ values will not look the same
3. The Y value represents all the brightness information (luminance)
4. The XYZ color of any object can be objectively measured

Color models based on XYZ have been used for many years by people who need accurate
control of color i.e., lighting engineers for film and TV, paint and dyestuffs
manufacturers, and so on. They are thus proven in industrial use. Accurate, device-
independent color started to spread from high-end, specialized areas into the mainstream
during the late 1980s and early 1990s, and CDB takes notice of that trend.

6.7.3 Calibrated, Device-Dependent Color
Traditionally, image file formats have used uncalibrated, device-dependent color. If the
precise details of the original display device are known, it becomes possible to convert
the device-dependent colors of a particular image to device-independent ones. Making
simplifying assumptions, such as working with CRTs (which are much easier than
printers), all we need to know are the XYZ values of each primary color and the CRT
exponent.

So why does not the CDB standard store images in XYZ instead of RGB? Well, two
reasons. First, storing images in XYZ would require more bits of precision, which would
make the files bigger. Second, all programs would have to convert the image data before
viewing it. But more importantly, whether calibrated or not, all variants of RGB are
close enough that undemanding viewers can get by with simply displaying the data
without color correction. By storing calibrated RGB, the CDB standard retains
compatibility with existing database tools and software programs that expect RGB data,
yet provides enough information for conversion to XYZ in applications that need precise
colors. Thus, we get the best of both worlds.

6.8 What are chromaticity and luminance?
Chromaticity is an objective measurement of the color of an object, leaving aside the
brightness information. Chromaticity uses two parameters x and y, which are readily
calculated from XYZ:

x = X / (X + Y + Z)

y = Y / (X + Y + Z)
(eq. G-3)

48
Copyright © 2016 Open Geospatial Consortium

XYZ colors having the same chromaticity values will appear to have the same hue but
can vary in absolute brightness. Notice that x,y are dimensionless ratios, so they have the
same values no matter what units we've used for X,Y,Z.

The Y value of an XYZ color is directly proportional to its absolute brightness and is
called the luminance of the color. We can describe a color either by XYZ coordinates or
by chromaticity x,y plus luminance Y. The XYZ form has the advantage that it is
linearly related to RGB intensities.

6.9 How are computer monitor colors described?
The “white point” of a display device is the chromaticity x,y of the monitor's nominal
white, that is, the color produced when R = G = B = maximum.

It's customary to specify CRT monitor colors by giving the chromaticities of the
individual phosphors R, G, and B, plus the white point. The white point allows one to
infer the relative brightness of the three phosphors, which isn't determined by their
chromaticities alone.

NOTE: The absolute brightness of the monitor is not specified. For
computer graphics work, we generally don't care very much about
absolute brightness levels. Instead of dealing with absolute XYZ
values (in which X,Y,Z are expressed in physical units of radiated
power, such as candelas per square meter), it is convenient to work
in “relative XYZ” units, where the monitor's nominal white is
taken to have a luminance (Y) of 1.0. Given this assumption, it's
simple to compute XYZ coordinates for the monitor's white, red,
green, and blue from their chromaticity values.

6.10 How do I convert from source_RGB to XYZ
Make a few simplifying assumptions first, like the monitor really is jet black with no
input and the guns don't interfere with one another. Then, given that you know the

CIE XYZ values for each of red, green, and blue for a particular monitor, you put them
into a matrix M:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

ZbZgZr
YbYgYr
XbXgXr

M (eq. G-4)

RGB intensity samples normalized to the range zero to one can be converted to XYZ by
matrix multiplication.

49
Copyright © 2016 Open Geospatial Consortium

NOTE: If you the RGB samples are gamma-encoded, the gamma encoding
must be un-done.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

B
G
R

M
Z
Y
X

 (eq. G-5)

In other words, X = Xr*R + Xg*G + Xb*B, and similarly for Y and Z. You can go the
other way too:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−−

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

Z
Y
X

Z
Y
X

M
B
G
R

0570.12040.00556.0
0416.08760.19692.0
4986.05374.12410.3

1 (eq. G-6)

Where M-1= The inverse of the matrix M used to go from XYZ-1931
color space to the CDB specification RGB color space.

In the RGB encoding process, negative sRGB tri-stimulus values, and sRGB tri-stimulus
values greater than 1,00 are not retained. When encoding software cannot support this
extended range, the luminance dynamic range and color gamut of RGB is limited to the
tri-stimulus values between 0,0 and 1,0 by simple clipping.

According to PNG (Portable Network Graphics) Specification Version 1.0, W3C
Recommendation 01-October-1996 Appendix, Color Tutorial,

(http://www.w3.org/TR/PNG-GammaAppendix):

“The gamut of a device is the subset of visible colors that the device can display. (Note
that this has nothing to do with gamma.) The gamut of an RGB device can be visualized
as a polyhedron in XYZ space; the vertices correspond to the device's black, blue, red,
green, magenta, cyan, yellow, and white.

Different devices have different gamut (e.g. database generation workstation, simulator
display systems). In other words one device may be able to display certain colors
(usually highly saturated ones) that another device cannot. The gamut of a particular
RGB device can be determined from its R, G, and B chromaticities and white point.

Converting image data from one device to another generally results in gamut mismatches
colors that cannot be represented exactly on the destination device. The process of
making the colors fit, which can range from a simple clip to elaborate nonlinear scaling

50
Copyright © 2016 Open Geospatial Consortium

transformations, is termed gamut mapping. The aim is to produce a reasonable visual
representation of the original image.

51
Copyright © 2016 Open Geospatial Consortium

7. ShapeFile dBASE III guidance

Was B.1.3 Annex B Volume 2 of the OGC CDB Best Practice. Now in Volume 4:
OGC CDB Use of Shapefiles for Vector Data Storage (Best Practice).

52
Copyright © 2016 Open Geospatial Consortium

8. TIFF Implementation Guidance

Formerly Annex B in the OGC CDB Best Practices.

The conventions define how TIFF files are interpreted by a CDB-compliant TIFF reader;
the stated conventions supersede or replace related aspects of this annotated
standard. Unless stated otherwise, CDB-compliant TIFF readers shall/will ignore any
data that fails to conform to the stated conventions. Please refer to TIFF 6.0 (1992).

Section 2 TIFF Structure CDB-compliant TIFF readers do not consider TIFF image and DEM data in
big-endian byte order.

Multiple Images per
TIFF File (16)

TIFF/CDB Readers: The CDB Standard does not take advantage of multiple
images per TIFF file.

Section 3: Bi-level
images (17)

CDB-compliant TIFF readers do not consider bi-level image data.

Color (17) CDB-compliant TIFF readers do not consider WhiteIsZero image data

Compression (17) CDB-compliant TIFF readers do not consider compressed TIFF image.

Rows and Columns (18) The CDB standard recommends that the product of ImageLength and
ImageWidth be less than 4,194,304 (2K x 2K).

CDB-compliant TIFF readers require this field to be a power of
2. ImageLength need not be equal to ImageWidth

CDB-compliant TIFF readers require this field to be a power of 2. ImageWidth
need not be equal to ImageLength

ResolutionUnit (18) CDB-compliant TIFF readers do not consider this TIFF tag

XResolution (19) CDB-compliant TIFF readers do not consider this TIFF tag.

YResolution (19) CDB-compliant TIFF readers do not consider this TIFF tag.

Bi-level Compression
(22)

CDB-compliant TIFF readers do not consider compressed TIFF image.

Palette Color Images
(23)

CDB-compliant TIFF readers do not consider palette-color images,
i.e. PhotometricInterpretation = 3 (Palette Color)

ColorMap (23) CDB-compliant TIFF readers do not consider palette-color images; as a result,
this tag is ignored.

General Requirements
(26)

CDB-compliant TIFF readers consider only type ‘II’, (little-endian) byte
ordered data.

The CDB standard does not take advantage of multiple images per file.
Notes on Required
Fields (28)

CDB-compliant TIFF readers require ImageWidth and ImageLength fields to
be a power of 2. ImageWidth need not be the same as ImageLength. CDB-
compliant TIFF readers do not consider data that does not conform to this
requirement.

53
Copyright © 2016 Open Geospatial Consortium

CDB-compliant TIFF readers do not consider the XResolution and
YResolution TIFF tags.

CDB-compliant TIFF readers do not consider the ResolutionUnit TIFF tag.
Artist Tag (29) CDB-compliant TIFF readers do not consider the Artist TIFF tag.

CellLength (29) CDB-compliant TIFF readers do not consider the CellLength TIFF tag.
The length of the dithering or halftoning matrix used to create a dithered or
halftoned bilevel file. Tag = 265 (109.H) Type = SHORT N = 1 This field
should only be present if Threshholding = 2 No default. See also
Threshholding.

CellWidth (29) CDB-compliant TIFF readers do not consider the CellWidth TIFF tag

ColorMap (29) CDB-compliant TIFF readers do not consider the ColorMap TIFF tag

Compression (30) CDB-compliant TIFF readers do not consider compressed TIFF image

Copyright Tag (31 CDB-compliant TIFF readers do not consider the Copyright TIFF tag

DateTime Tag (31) CDB-compliant TIFF readers do not consider the DateTime TIFF tag

Unassociated alpha data
(32)

CDB-compliant TIFF readers do not consider unassociated alpha data.

FreeByteCounts Tag
(33)

CDB-compliant TIFF readers do not consider the FreeByteCounts TIFF tag

FreeOffsetsTag (33) CDB-compliant TIFF readers do not consider the FreeOffsets TIFF tag.

GreyResponseCurve
Tag (33)

The CDB standard assumes that the gray response curve of TIFF image files to
be linear. As a result, CDB-compliant TIFF readers do not consider the
GrayResponseCurve Tag data.

GreyResponseUnit (33) The CDB standard assumes that the gray response curve of TIFF image files to
be linear. As a result, CDB-compliant TIFF readers do not consider the
GrayResponseUnit Tag data.

HostComputer Tag (34) CDB-compliant TIFF readers do not consider the HostComputer TIFF tag

Image Description Tag
(34)

CDB-compliant TIFF readers do not consider the HostComputer TIFF tag

ImageLength (34) CDB-compliant TIFF readers require ImageWidth and ImageLength fields to
be a power of 2. ImageLength need not be the same as ImageWidth. CDB-
compliant TIFF readers do not consider image that does not conform to this
requirement.

Make Tag (35) CDB-compliant Tiff readers do not consider the Make TIFF tag.

MaxSampleValue Tag
(35)

The CDB standard establishes that the MaxSampleValue to be always equal to
the maximum value that can be represented by the number format
representation. As a result, CDB-compliant TIFF readers do not consider the
MaxSample TIFF tag

MinSampleValue (35) The CDB standard establishes that the MinSampleValue to be always equal to
0 for image data and to minimum value that can be represented by the number
format representation. As a result, CDB-compliant TIFF readers do not
consider the MinSample TIFF tag.

54
Copyright © 2016 Open Geospatial Consortium

Model (35) CDB-compliant TIFF readers do not consider the Model TIFF tag.

NewSubfileType (36) The CDB standard assumes that the data is full or reduced resolution only. As
a result, CDB-compliant TIFF readers only consider images and DEMs data
whose PhotometricInterpretation Tag value is 1 or 2.

Orientation (36) The CDB standard assumes that the data is organized such that the 0th row
represents the visual top of the grid data (or image), and the 0th column
represents the visual left-hand side. As a result, CDB-compliant TIFF readers
do not consider image and DEM data whose Orientation Tag value is not 1

Photometric
Interpretation (37)

CDB-compliant TIFF readers only consider images whose
PhotometricInterpretation Tag value is 1 or 2.

CDB-compliant TIFF readers do not consider WhiteIsZero images

CDB-compliant TIFF readers do not consider palette-color images, i.e.
PhotometricInterpretation = 3 (Palette Color).

CDB-compliant simulator TIFF readers do not consider transparency mask
imagery data, i.e. PhotometricInterpretation = 4 (Transparency Mask).

ResolutionUnit Tag (38) The CDB standard establishes a series of conventions that govern the resolution
of TIFF files. As a result, CDB-compliant TIFF readers do not consider the
ResolutionUnit TIFF tag.

Software Tag (39) CDB-compliant TIFF readers do not consider the Software TIFF tag.

SubFileType Tag (41) CDB-compliant TIFF readers do not consider image whose Subfile type = 3.

Thresholding Tag (41) CDB-compliant TIFF readers do not consider image data whose Thresholding
TIFF tag is not equal 1

XResolution Tag (41) The CDB standard establishes a series of conventions that govern the resolution
of TIFF files. As a result, CDB-compliant TIFF readers do not consider this
TIFF tag

YResolution Tag (41) The CDB standard establishes a series of conventions that govern the resolution
of TIFF files. As a result, CDB-compliant TIFF readers do not consider this
TIFF tag.

Section 9: Packbits (42) CDB-compliant TIFF readers do not consider PackBits compressed TIFF
data. As a result, section 9 is not applicable to CDB-compliant TIFF readers.

Section 10: Huffman
Compression (43)

CDB-compliant TIFF readers do not consider Modified Huffman compressed
TIFF data. As a result, section 10 is not applicable to CDB-compliant TIFF
readers.

Section 11 CCIT Bilvel
Encodings (49)

CDB-compliant TIFF readers do not consider CCITT Bi-level encoded TIFF
data. As a result, section 11 is not applicable to CDB-compliant TIFF readers.

Section 12: Document
Storage and Retrieval
(55)

CDB-compliant TIFF readers do not consider all TIFF tags related to document
storage and retrieval. As a result, section 12 is not applicable to CDB-
compliant TIFF readers.

Section 14: Differencing
Predictor (64)

CDB-compliant Tiff readers do not consider Differencing Predictor
compressed TIFF data. As a result, section 14 is not applicable to CDB-
compliant TIFF readers.

Section 16: CMYK
Images (69)

CDB-compliant TIFF readers do not consider CMYK encoded color image
TIFF image data. As a result, section 16 is not applicable to CDB-compliant
TIFF readers.

Section 17: Halftone
hints (72)

CDB-compliant TIFF readers do not consider any of the TIFF tags related to
halftone hints. As a result, section 17 is not applicable to CDB-compliant TIFF
readers.

Unassociated Alpha and CDB-compliant TIFF readers do not consider unassociated alpha image data.

55
Copyright © 2016 Open Geospatial Consortium

Transparency masks
(78)

Section 19: Sample Data
format (80)

The CDB standard establishes the conventions that govern the SampleFormat
of TIFF image and DEM data. As a result, CDB-compliant TIFF readers do
not consider image and DEM data when the value of the SampleFormat tag
does not conform to CDB conventions. While the above-mentioned sample
data formats are possible, CDB clients expect image and DEM data to be in the
format as specified in the CDB conventions and constraints.

SMinSampleValue Tag
(80)

CDB-compliant TIFF readers do not consider the SMinSampleValue TIFF tag.

SMazSampleValue (81) CDB-compliant TIFF readers do not consider the SMaxSampleValue TIFF tag.

Section 20: RGB Image
Colorimetry (82)

CDB-compliant TIFF readers do not consider any of the TIFF tags describes in
this section.

Section 21 YC-C
Images (89)

CDB-compliant TIFF readers do not consider YCbCr color encoded TIFF image
data. As a result, section 21 is not applicable to CDB-compliant TIFF readers.

Section 22: JPEG
Compression (95)

CDB-compliant TIFF readers do not consider JPEG color encoded TIFF image
data. As a result, section 22 is not applicable to CDB-compliant TIFF readers.

Section 23: CIE Lab
Images (110)

CDB-compliant TIFF readers do not consider CIE L*a*b* color encoded TIFF
image data. As a result, section 23 is not applicable to CDB-compliant TIFF
readers.

56
Copyright © 2016 Open Geospatial Consortium

Annex A: Revision history

Date Release Author Paragraph modified Description
4/4/2016 1.0 C. Reed OAB review version

6/25/2016 R2 C. Reed Various Prepare for adoption vote.
Incorporate changes based on public
comment period.

10/5/2016 R3 C. Reed Various Preparation for publication

11/22/2016 1.0 C. Reed Ready for publication

57
Copyright © 2016 Open Geospatial Consortium

