

1

Copyright © 2017 Open Geospatial Consortium

Open Geospatial Consortium
Submission Date: 2016-04-04

Approval Date: 2016-09-23

Publication Date: 2017-02-23

 External identifier of this OGC® document: http://www.opengis.net/doc/BP/CDB-openflight/1.0

Internal reference number of this OGC® document: 16-009r3

Version: 1.0

Category: OGC® Best Practice

Editor: Carl Reed

Volume 6: OGC CDB Rules for Encoding Data using
OpenFlight

Copyright notice

Copyright © 2017 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document defines an OGC Best Practices on a particular technology or approach related to
an OGC standard. This document is not an OGC Standard and may not be referred to as an OGC
Standard. It is subject to change without notice. However, this document is an official position of
the OGC membership on this particular technology topic.

Document type: OGC® Best Practice
Document subtype: Volume 6
Document stage: Approved
Document language: English

2

Copyright © 2017 Open Geospatial Consortium

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below, to any
person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property without restriction
(except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense
copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that all copyright
notices on the intellectual property are retained intact and that each person to whom the Intellectual Property is furnished agrees to the terms of
this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above copyright notice, a
notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT MAY BE
IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR
THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR
ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER
RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE
IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all copies in any
form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-user sublicense to the Intellectual Property which
is in force as of the date of notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a third party, you agree that
LICENSOR, in its sole discretion, may terminate this license without any compensation or liability to you, your licensees or any other party. You
agree upon termination of any kind to destroy or cause to be destroyed the Intellectual Property together with all copies in any form, whether held
by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual Property shall not
be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without prior written authorization of
LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize you or any third party to use
certification marks, trademarks or other special designations to indicate compliance with any LICENSOR standards or specifications. This
Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United Nations Convention
on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this Agreement shall be deemed
unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable, and as so modified the entire Agreement
shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies
available to it.

3

Copyright © 2017 Open Geospatial Consortium

Contents	
1.	 Scope ... 9	

2.	 Conformance ... 10	

3.	 References ... 10	

4.	 Terms and Definitions ... 10	

5.	 Conventions .. 11	

5.1	 Identifiers .. 11	

5.2	 Schemas .. 12	

6.	 CDB OpenFlight Models .. 12	

6.1	 OpenFlight File Header ... 12	

6.2	 OpenFlight Model Tree Structure ... 13	

6.2.1	 CDB Model Tree Structure ... 15	

6.2.2	 T2DModel Tree Structure ... 16	

6.2.3	 The Use of Node Names ... 19	

6.2.4	 Model Master File ... 19	

6.2.5	 Referencing Other OpenFlight Files ... 20	

6.3	 Modeling Conventions .. 22	

6.3.1	 Model Coordinate Systems ... 22	

6.3.2	 Geometry ... 30	

6.3.3	 Roof Tagging .. 31	

6.3.4	 Relative Priority .. 31	

6.4	 Model Identifiers ... 32	

6.4.1	 GSModel and GTModel Identifier .. 32	

6.4.2	 MModel Identifier ... 32	

6.4.3	 2DModel Identifier ... 32	

4

Copyright © 2017 Open Geospatial Consortium

6.5	 Model Zones ... 32	

6.5.1	 Definition .. 34	

6.5.2	 Global Zones ... 35	

6.5.3	 Zone Attributes ... 35	

6.5.4	 Implementation Guidelines ... 37	

6.5.5	 Model Zone Naming ... 40	

6.5.6	 Usages ... 41	

6.6	 Model Points ... 57	

6.6.1	 Definition .. 57	

6.6.2	 Usages ... 58	

6.7	 Model Conforming .. 63	

6.7.1	 Non Conformal (Absolute) Mode ... 64	

6.7.2	 Point Conformal Mode ... 64	

6.7.3	 Vertex Conformal Mode ... 65	

6.7.4	 Line Conformal Mode ... 66	

6.7.5	 Plane Conformal Mode ... 67	

6.7.6	 Surface Conformal Mode .. 69	

6.8	 Model Levels-of-Detail ... 70	

6.8.1	 Exchange LODs .. 72	

6.8.2	 Additive LODs .. 72	

6.8.3	 Significant Size ... 73	

6.8.4	 LOD Node Ordering ... 76	

6.8.5	 LOD Generation Guidelines ... 77	

6.9	 Model Switch Nodes ... 78	

6.9.1	 Definition .. 79	

5

Copyright © 2017 Open Geospatial Consortium

6.9.2	 Usage ... 80	

6.10	 Model Articulations .. 85	

6.10.1	 Definition .. 86	

6.10.2	 Usage ... 88	

6.11	 Model Light Points ... 88	

6.12	 Model Attributes ... 89	

6.12.1	 Definition .. 90	

6.12.2	 Vendor Attributes .. 90	

6.12.3	 Examples ... 91	

6.13	 Model Textures ... 91	

6.13.1	 Handling of Multi-textures ... 93	

6.13.2	 Default Gamma Corrections ... 96	

6.13.3	 Texture Dimension .. 96	

6.13.4	 Texture Palette .. 97	

6.13.5	 Usages ... 99	

6.14	 Model Descriptor (Metadata) Datasets ... 115	

6.14.1	 Model Name .. 116	

6.14.2	 Model Identification .. 116	

6.14.3	 Model Mass ... 117	

6.14.4	 Model Parts ... 117	

6.14.5	 Model Textures ... 118	

6.14.6	 Model Configurations ... 120	

6.14.7	 Model Composite Materials .. 123	

A.1	 Conformance class: CRS .. 124	

A.2	 Conformance Class: Tree Structure .. 124	

6

Copyright © 2017 Open Geospatial Consortium

A.3	 Conformance Class: Modeling Conventions .. 125	

A.4	 Conformance Class: Model Zones .. 127	

A.5	 Conformance Class: Model Points .. 130	

A.6	 Conformance Class: Model Points .. 131	

A.7	 Conformance Class: Model Switch Nodes ... 131	

A.8	 Conformance Class: Damage Status ... 132	

A.9	 Conformance Class: Model Articulations ... 133	

A.10	 Conformance Class: Model Textures .. 134	

Figures

Figure 6- 1: General OpenFlight Tree Structure .. 14
Figure 6- 2: Internal Structure of CDB Models ... 16
Figure 6- 3: Internal Structure of T2DModels ... 17
Figure 6- 4: Typical Structure of Model Master File ... 20
Figure 6- 5: Model Coordinate System .. 23
Figure 6- 6: Coordinate System - Aircraft ... 24
Figure 6- 7: Coordinate System - Helicopter ... 25
Figure 6- 8: Coordinate System - Ship ... 25
Figure 6- 9: Coordinate System - Ground Based Model ... 26
Figure 6- 10: Coordiante System - Lifeform ... 27
Figure 6- 11: Coordinate System - Cultural Feature .. 27
Figure 6- 12: Coordinate System - Power Pylon ... 28
Figure 6- 13: Model Global Zone .. 35
Figure 6- 14: Simple Zone ... 37
Figure 6- 15: Articulated Zone ... 37
Figure 6- 16: Zone Hierarchy ... 38
Figure 6- 17: Simple Zone Graphical Representation ... 38
Figure 6- 18: Additive LOD to Control the Graphical Representation .. 39
Figure 6- 19: Exchange LODs to Select the Graphical Representation ... 39
Figure 6- 20: Switch Node to Select the Graphical Representation .. 40
Figure 6- 21: Footprint Zone Structure .. 43
Figure 6- 22: Cutout Zone Structure .. 45
Figure 6- 23: Model Shell Structure .. 46
Figure 6- 24: Model Interior Structure ... 47
Figure 6- 25: Interior Zone Structure ... 48
Figure 6- 26: Floor Zone Structure .. 51
Figure 6- 27: Room Zone Structure ... 52
Figure 6- 28: Fixture Zone Structure ... 53
Figure 6- 29: Fixture Zone Structure ... 54

7

Copyright © 2017 Open Geospatial Consortium

Figure 6- 30: Partition Zone Structure ... 55
Figure 6- 31: Aperture Structure .. 56
Figure 6- 32: Surface Zone Structure ... 57
Figure 6- 33: Orientation of the Chinook Helicopter ... 59
Figure 6- 34: The Body of the Chinook Helicopter ... 60
Figure 6- 35: The DIS Origon of the Chinook Helicopter ... 61
Figure 6- 36: Conforming Vertices to Terrain ... 63
Figure 6- 37: Origon Conformal Mode .. 65
Figure 6- 38: Vertex Conformal Mode Example ... 66
Figure 6- 39: Line Conformal Mode .. 67
Figure 6- 40: Plane Conformal Mode .. 68
Figure 6- 41: Application of Line and Plane Conformal Modes on 3d Roads .. 69
Figure 6- 42: Surface Conformal Mode ... 70
Figure 6- 43: Echange and Additive LOD Nodes .. 73
Figure 6- 44: Exchange LOD Nodes .. 77
Figure 6- 45: General Damage State Tree Structure ... 81
Figure 6- 46: Damage States Ordering .. 82
Figure 6- 47: Example of a Texture Representing a Rotor .. 84
Figure 6- 48: Multiple Versions of Rotating Parts ... 84
Figure 6- 49: Using Shadow Polygons .. 100
Figure 6- 50: Example of a Shadow Map in the XY Plane .. 101
Figure 6- 51: The M1A2 Abrams with Desert Camouflage .. 102
Figure 6- 52: The M1A2 Abrams with a Forest Camouflage .. 103	

8

Copyright © 2017 Open Geospatial Consortium

i. Abstract
This volume defines the OpenFlight implementation requirements for a CDB conformant data
store. Please also see Volume 1 OGC CDB Core Standard: Model and Physical Structure for a
general description of all of the industry standard formats specified by the CDB standard. Please
read section 1.3.1 of that document for a general overview.

ii. Keywords
The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, cdb, openflight

iii. Preface
Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights. The Open Geospatial Consortium shall not be held responsible for
identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that
might be infringed by any implementation of the standard set forth in this document, and to
provide supporting documentation.

iv. Submitting organizations
The following organizations submitted this Document to the Open Geospatial Consortium
(OGC):

CAE Inc.
Carl Reed, OGC Individual Member
Envitia, Ltd
Glen Johnson, OGC Individual Member
KaDSci, LLC
Laval University
Open Site Plan
University of Calgary
UK Met Office

The OGC CDB standard is based on and derived from an industry developed and maintained
specification, which has been approved and published as OGC Document 15-003: OGC
Common Data Base Volume 1 Main Body. An extensive listing of contributors to the legacy

9

Copyright © 2017 Open Geospatial Consortium

industry-led CDB specification is at Chapter 11, pp 475-476 in that OGC Best Practices
Document (https://portal.opengeospatial.org/files/?artifact_id=61935).

v. Submitters
All questions regarding this submission should be directed to the editor or the submitters:

Name Affiliation
Carl Reed Carl Reed & Associates
David Graham CAE Inc.

1. Scope

This volume of the CDB standard defines a set of conventions to represent 2D and 3D models
based on version 16.0 of the OpenFlight Scene Description Database Specification as annotated
in Appendix C of this document.

For ease of editing and review, the standard has been separated into 12 Volumes and a schema
repository.

● Volume 0: OGC CDB Companion Primer for the CDB standard. (Best Practice)
● Volume 1: OGC CDB Core Standard: Model and Physical Data Store Structure.

The main body (core) of the CBD standard (Normative).
• Volume 2: OGC CDB Core Model and Physical Structure Annexes (Best Practice).
● Volume 3: OGC CDB Terms and Definitions (Normative).
● Volume 4: OGC CDB Use of Shapefiles for Vector Data Storage (Best Practice).
● Volume 5: OGC CDB Radar Cross Section (RCS) Models (Best Practice).
● Volume 6: OGC CDB Rules for Encoding Data using OpenFlight (Best Practice).
● Volume 7: OGC CDB Data Model Guidance (Best Practice).
● Volume 8: OGC CDB Spatial Reference System Guidance (Best Practice).
● Volume 9: OGC CDB Schema Package: provides the normative schemas for key

features types required in the synthetic modelling environment. Essentially, these
schemas are designed to enable semantic interoperability within the simulation context.
(Normative)

● Volume 10: OGC CDB Implementation Guidance (Best Practice).
● Volume 11: OGC CDB Core Standard Conceptual Model (Normative)
● Volume 12: OGC CDB Navaids Attribution and Navaids Attribution Enumeration

Values (Best Practice)

10

Copyright © 2017 Open Geospatial Consortium

2. Conformance

This standard defines requirements for implementing OpenFlight content in a CDB compliant
data store.

Requirements for 1 standardization target types are considered.

Conformance with this standard shall be checked using all the relevant tests specified in Annex
A (normative) of this document. The framework, concepts, and methodology for testing, and the
criteria to be achieved to claim conformance are specified in the OGC Compliance Testing
Policies and Procedures and the OGC Compliance Testing web site1.

In order to conform to this OGC™ interface standard, a software implementation shall choose to
implement:

a) Any one of the conformance levels specified in Annex A (normative).

All requirements-classes and conformance-classes described in this document are owned by the
standard(s) identified.

3. References

The following normative documents contain provisions that, through reference in this text,
constitute provisions of this document. For dated references, subsequent amendments to, or
revisions of, any of these publications do not apply. For undated references, the latest edition of
the normative document referred to applies.

OpenFlight Specification version 16.4

http://www.presagis.com/products_services/standards/openflight/

4. Terms and Definitions

This document uses the terms defined in Sub-clause 5.3 of [OGC 06-121r8], which is based on
the ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this standard.

For the purposes of this document, the additional terms and definitions provided in the OGC
CDB Terms and Definitions document (Volume 3) apply.

1 www.opengeospatial.org/cite

11

Copyright © 2017 Open Geospatial Consortium

4.1 A note on OpenFlight2
OpenFlight (or .flt) is a 3d geometry model file format originally developed by Software
Systems Inc. for its MultiGen[2]real-time 3d modeling package in 1988. Originally called Flight,
the format was designed as a nonproprietary 3d model format for use by real-time 3d visual
simulation image generators. The format was later renamed to OpenFlight to denote its
nonproprietary image generation (IG) usage. The MultiGen modeling package (known now as
Creator[3]) and the OpenFlight format were rapidly adopted by the early commercial flight
simulation industry in the later 80's and early 90's. NASA Ames was the first customer for the
MultiGen modeling package.

The early advantage OpenFlight held over many 3d geometry model file formats (.obj, .dxf, .3ds)
was its specific real-time 3d graphics industry design. This means that the format is polygon
based (rather than NURB surfaces), and provides a real-time tree structure essential for real-time
IG systems. Most early graphics file formats worried more about visual esthetics for non-real-
time based rendering graphics packages such as Wavefront Technologies, or Alias Systems
Corporation

The OpenFlight file format is still widely used today in the high end real-time visual simulation
industry as the standard interchange format between different IG systems, and is currently
administrated by Presagis.

5. Conventions

This sections provides details and examples for any conventions used in the document. Examples
of conventions are symbols, abbreviations, use of XML schema, or special notes regarding how
to read the document.

5.1 Identifiers
The normative provisions in this standard are denoted by the URI

http://www.opengis.net/spec/CDB/openflight/{requirement}	

All requirements and conformance tests that appear in this document are denoted by partial URIs
that are relative to this base.

For the sake of brevity, the use of “req” in a requirement URI denotes the literal:

http://www.opengis.net/spec/cdb/1.0/openflight

An example might be:

req/openflight/crs

2 From Wikipedia.

12

Copyright © 2017 Open Geospatial Consortium

5.2 Schemas
The following XML Schemas can be found in the OGC CDB Standard schema repository:

1. Base_Material_Table.xsd
2. Composite_Material_Table.xsd
3. Configuration.xsd
4. Defaults.xsd
5. Feature_Data_Dictionary.xsd
6. Lights.xsd
7. Lights_Tuning.xsd
8. Model_Components.xsd
9. Model_Metadata.xsd
10. OpenFlight_Model_Extensions.xsd
11. Vector_Attributes.xsd
12. Version.xsd

6. CDB OpenFlight Models

This volume of the CDB standard defines a set of conventions for representing 2D and 3D
models based on version 16.0 of the OpenFlight Scene Description Database Specification as
annotated in Appendix C of this document.

The conventions presented here address the needs of several types of simulation clients including
OTW, FLIR, NVG, CGF, radar, and laser, acoustic, magnetic, visual and thermal sensors.

Requirements Class - Metadata

/req/core/metadata

Target type Operations

Dependency OpenFlight Specification

Dependency File Management system

Requirement 1 /req/core/openflight/crs

6.1 OpenFlight File Header
The OpenFlight Header Record contains descriptive metadata about the manner vertices are
encoded, and how these vertices are applied to an earth model and a projection type. On the other
hand, the CDB standard itself mandates a prescribed set of conventions in this regard.

13

Copyright © 2017 Open Geospatial Consortium

Requirement 1

Req 1 http://www.opengis.net/spec/CDB/1.0/openflight/header-crs

As a result; the following OpenFlight Header records SHALL be set as follows:

• Projection Type:
o Flat Earth, value 0: This is the type of projection used by most CDB

Models, GTModel, GSModel, and MModel.
o Geodetic, value 5: This is the type of projection used by T2DModels.

• Earth Ellipsoid Model:
o WGS-84, value 0: This is the Earth model to use with T2DModels.

The field is ignored with other CDB Models.

6.2 OpenFlight Model Tree Structure
The internal structure of OpenFlight models is a tree structure that consists of nodes having child
nodes as well as sibling nodes3. This type of tree structure is called a directed acyclic graph, or
DAG. The general tree structure of a Model resembles that of Figure 6- 1: General OpenFlight
Tree Structure

.

3 In Appendix C, the section called Database Hierarchy explains in details how OpenFlight organizes its graph.

14

Copyright © 2017 Open Geospatial Consortium

Figure 6- 1: General OpenFlight Tree Structure

The CDB standard uses Group Nodes to arrange Models in a hierarchical manner. This way of
organizing models helps identify components of interest.

The CDB standard refers to a number of OpenFlight nodes to store meaningful data for
simulation client-devices. For a complete list of nodes supported by the CDB standard, see
Appendix C. The nodes listed here are the ones referred to by one or more CDB conventions.

An example of an ancillary record is the OpenFlight comment record. A comment record may
appear once, anywhere after a node’s primary record. The CDB standard relies on comment
records to extend the definition of OpenFlight nodes. Instead of using the Extension Record to
create new primary and ancillary records, the CDB standard uses comments to store the extra
attributes required by the specialization of existing OpenFlight nodes4. Comment records were
chosen over OpenFlight extensions in order to minimize any changes to the Creator tool or the
need to develop a plug-in to Creator. Using this approach, anybody can create CDB-compliant
models using a plain version of Creator. Nevertheless, the development of Creator CDB plug-ins
would improve modeler’s efficiency. Such plug-ins could, for instance, offer a menu-based GUI

4 CDB-compliant readers must ignore all OpenFlight extension records.

Group
node 1

LOD
node 1

LOD
node 2

Header
node

DOF
node 1

Object
node 1

DOF
node 2

Object
node 3

Object
node 4

Object
node 2

Switch
node

Light
Point

15

Copyright © 2017 Open Geospatial Consortium

to allow modelers to enter and edit CDB comments, while ensuring that syntax and conventions
are fully adhered to.

The text contained in the comment record is formatted using the XML notation.

Requirements Class – tree structure

/req/core/tree-structure

Target type Operations

Dependency OpenFlight Specification

Dependency CDB File Management system

Requirement 2 /req/core/openflight/model-global-zone

Requirement 3 /req/openflight/2dmodel

Requirement 4 /req/openflight/2dmodel-rules

Requirement 5 /req/openflight/2dmodels

Requirement 6 /req/openflight/xref

6.2.1 CDB Model Tree Structure
Based on Figure 6- 1: General OpenFlight Tree Structure

 above, the internal structure of CDB Models resemble this one:

16

Copyright © 2017 Open Geospatial Consortium

Global
Zone

Other
nodes

db

...

Figure 6- 2: Internal Structure of CDB Models

Requirement 2

Req 2 req/model-global-zone

All CDB Models SHALL have a global zone as their root node. This node identifies the
model. Global zones are defined in section 6.5.2 below.

6.2.2 T2DModel Tree Structure
A T2DModel being a collection of 2DModels, each individual 2DModel occupies its own
subtree of the graph. The general structure of a T2DModel is as follow:

17

Copyright © 2017 Open Geospatial Consortium

LOD
(Optional)

Global
Zone

... Zone
2DModel #n

Object

Face
(Conformal)

...

Zone
2DModel #1

Mesh
#n

Mesh
#1

Group
Layer #1

...Group
Layer #0

db

Group
Layer #n

Figure 6- 3: Internal Structure of T2DModels

Requirement 3

Req 3 req/openflight/2dmodel

18

Copyright © 2017 Open Geospatial Consortium

Each 2DModel SHALL be implemented as a Model Zone (section 6.5) with its own
subgraph. 2DModels are disjoint and non-overlapping. .

A 2DModel is comprised of multiple layers; the layer number is expressed by the group’s
relative priority (section 6.3.4). Each layer has an optional LOD node followed by a fixed
hierarchy of regular OpenFlight Object, Face, and Mesh nodes.

6.2.2.1 Restrictions
T2DModels being an alternate representation of the terrain and its imagery and materials, a
number of restrictions are necessary to ensure client devices can consume the dataset efficiently.

Requirement 4

Req 4 req/openflight/2dmodel-rules

A 2DModel SHALL have at least two layers, layer 0 and layer 1.

Layer 0 SHALL always empty because it represents the terrain on top of which subsequent
layers are applied.

Each layer SHALL be composed of exactly one OpenFlight Object node.

1. All Face and Mesh nodes share exactly the same set of graphic attributes
(color, textures, material, and other flags). Stated differently, the Face and
Mesh nodes provide the shape of the layer while the Object node controls its
appearance.

2. Subfaces are not permitted because coplanar geometry is implemented
through layers.

6.2.2.2 Node Attributes

Requirement 5

Req 5 req/openflight/2dmodels

For T2DModels, node attributes (section 6.12) SHALL be permitted only at the zone

19

Copyright © 2017 Open Geospatial Consortium

levels; that is, at the global zone or at the individual 2DModel zones. Node attributes are
not permitted at the Group, LOD, Object, Face, and Mesh node levels.

6.2.3 The Use of Node Names
Although the CDB standard defines naming conventions for objects stored in an OpenFlight file,
the standard does not constrain the OpenFlight node names themselves. Instead, the CDB
standard defines names that are assigned via XML tags stored in the comment record.

The following question arises, “Why not establish a set of CDB conventions around node
names?” The answer lies primarily around constraints imposed by tools used to edit/create
OpenFlight files. Tools such as Creator require unique node names throughout the OpenFlight
file. The OpenFlight format specification itself does not state that node names must be unique;
however, a tool such as Creator prevents the modeler from entering the same node name twice.

To circumvent this limitation, the CDB standard provides naming conventions through XML
tags inserted in the comment record following a node’s primary record. This way of doing
things leaves modelers with the needed freedom in naming nodes. The CDB standard defines
how to organize a model; all extra object attributes that do not fit in the current OpenFlight
records are stored in the comment record, including object names.

Here is an example of XML tags stored in the comment record for a Group Node.

Table 6-1: Sample XML Tag Used in a Comment Record

<CDB:Zone
 name = "zone name"
/>

All XML tags defined by the CDB standard belong to a single XML namespace that is
appropriately named CDB5.

6.2.4 Model Master File
A Model Master file is an OpenFlight file that contains only external references to other
OpenFlight files. The purpose of the master file is to ensure a Model is seen as a single “object”
even though its constituents are stored in separate files. The use of a model master file provides
a convenient means for modelers to reference all of the constituent files that make up the model.
There is no other purpose associated to the master file.

The concept of a Model Master file is used in a single case, to regroup all representations (all
LODs) of a geotypical model into a single OpenFlight file. However, the concept applies to all

5 The syntax to specify a XML namespace is <ns:element> where ns is the namespace and element is the XML
element name (or simply tag).

20

Copyright © 2017 Open Geospatial Consortium

types of CDB Models. The concept can also be used to regroup a model’s shell with its interior.
For this reason, expect new usage of the Model master file in future version of the Standard.

The master file is useful in two circumstances: when modelers create or edit Models, and when
client devices want to discover at once all constituents of Models.

For modelers, it is useful (if not required) to edit a model using a single source file to present a
coherent view of the model as a whole. For this reason, a master file with a set of LOD-XRef
nodes is perfect to assemble and present a unified view of the model to edit.

Figure 6- 4: Typical Structure of Model Master File presents the general structure of a master
file.

Group

LOD
(coarsest)

db

XRef

LOD
(finest)

XRef

...

Figure 6- 4: Typical Structure of Model Master File

The value found in the Significant Size field of the above LOD nodes matches the values found
in Error! Reference source not found.. The next section provides details on XRef nodes
themselves.

6.2.5 Referencing Other OpenFlight Files

Requirement 6

21

Copyright © 2017 Open Geospatial Consortium

Req 6 req/openflight/xref

An OpenFlight external reference (XRef) node is used to refer to another OpenFlight file.
The reference is made by specifying the filename and its path (absolute or relative). The
CDB Standard requires that all references SHALL be made using a relative path.

The XRef node (and its External Reference record) supports a number of options: Override flags,
View-As-Bounding-Box flag, and Target Node Name. The CDB standard supports none of
these options.

Here are two cases to illustrate the use of XRef nodes.

6.2.5.1 Models Straddling Multiple Files
In the case of GTModels, GSModels, and MModels, the OpenFlight geometry can straddle
multiple files. It could be seen in a moving model (e.g., a helicopter) whose pilot could be stored
in a separate file. In that case, the file containing the pilot resides in the same directory as the
file containing the helicopter itself. The helicopter would be stored in file 1:

\CDB\MModel\600_MModelGeometry\1_Platform\2_Air
\225_United_States\21_Utility_Helo\1_2_225_21_x_x_x\
D600_S001_T001_1_2_225_21_x_x_x.flt

The pilot would be stored in file 2:

\CDB\MModel\600_MModelGeometry\1_Platform\2_Air
\225_United_States\21_Utility_Helo\1_2_225_21_x_x_x\
D600_S001_T002_1_2_225_21_x_x_x.flt

The XRef node in file 1 would contain the following string:

.\D600_S001_T002_1_2_225_21_x_x_x.flt

where 1_2_225_21_x_x_x is the complete DIS code of the helicopter.

6.2.5.2 Models with Multiple Model-LODs
This is the case of the master file of a geotypical model. The master file (known as the
GTModelGeometry Entry File) refers to all levels of details of the geometry files that reside in
different sub-directories. Assuming a geotypical model representing a gothic church, the master
file itself would reside in a directory such as this one:

\CDB\GTModel\500_GTModelGeometry\A_Culture\L_Misc_Feature
\015_Building\
D500_S001_T001_AL015_050_Church-Gothic.flt

The targets of the XRef nodes would all reside in directories such as these:

22

Copyright © 2017 Open Geospatial Consortium

\CDB\GTModel\500_GTModelGeometry\A_Culture\L_Misc_Feature
\015_Building\Lnn\
D510_S001_T001_Lnn_AL015_050_Church-Gothic.flt

The resulting strings to use in the XRef nodes in the master file would resemble this:

.\Lnn\D510_S001_T001_Lnn_AL015_050_Church-Gothic.flt

where Lnn corresponds to the LOD the XRef file resides in.

6.3 Modeling Conventions

Requirements Class – Modeling Conventions

/req/model-conventions

Target type Operations

Dependency OpenFlight Specification

Requirement 7 /req/openflight/crs-models

Requirement 8 /req/openflight/model-origin

Requirement 9 /req/openflight/t2-model-coordinates

Requirement 10 /req/openflight/roll-pitch-yaw

Requirement 11 /req/openflight/geometry

Requirement 12 /req/openflight/geometry-layer-constraint

6.3.1 Model Coordinate Systems

Requirement 7

Req 7 req/openflight/crs-models

CDB Models SHALL use the same coordinate system convention as OpenFlight6. The X-
axis traverses the model from left to right, the Y-axis goes from the back to the front and
the Z-axis extends from the bottom to the top of the model.

6 The DIS standard defines a different orientation for the axes of its coordinate system. DIS defines the X-axis as
pointing to the front of the entity; the Y-axis pointing to its right and the Z-axis pointing down. Adoption of the DIS

23

Copyright © 2017 Open Geospatial Consortium

Figure 6- 5: Model Coordinate System is a screenshot7 of Creator8 showing a CAD view of a
semi-transparent cube.

Figure 6- 5: Model Coordinate System

6.3.1.1 Origin
The location of the model origin is defined in the following manner:

Requirement 8

Req 8 req/openflight/model-origin

convention for use in the CDB standard has been rejected due to the fact that the majority of models in existence
have been created using tools such as Creator. The CDB standard follows the same convention as the one used by
these commercial tools. Note that if the CDB standard were to follow the DIS convention, modelers would be
required to create and edit their models upside down with respect to the reference plane provided by their tool.

7 Most figures in this chapter are actual screenshots from Creator.

8 Creator or CAD Creator is a Siemans product. Mention of Creator in the CDB standard IS NOT an endorsement of
that product.

24

Copyright © 2017 Open Geospatial Consortium

In the XY plane, the origin SHALL be located at the center of the bounding rectangle.

Along the Z axis, the origin SHALL be selected to allow the model to be correctly
positioned on ground for ground-related models, or on a water plan for surface and
subsurface platforms.

The following examples will illustrate the above two rules.

Fixed wing aircraft – A KC-130 Hercules is illustrated below with its landing gears fully
extended.

Figure 6- 6: Coordinate System - Aircraft

Helicopter – An AH-1W Super Cobra is shown below. Note that no equipment is
mounted on its winglets.

25

Copyright © 2017 Open Geospatial Consortium

Figure 6- 7: Coordinate System - Helicopter

Surface ship – Shown below is the Arleigh Burke DDG-51 guided missile
destroyer. Note how the XY plane defines the waterline.

Figure 6- 8: Coordinate System - Ship

26

Copyright © 2017 Open Geospatial Consortium

Figure 6-1: Coordinate System – Ship

Land Platform – The M1A2 Abrams is a main battle tank shown here with its

desert skin.

Figure 6- 9: Coordinate System - Ground Based Model

Lifeform – A human lifeform (a soldier) is presented here.

27

Copyright © 2017 Open Geospatial Consortium

Figure 6- 10: Coordiante System - Lifeform

Cultural Feature – When a Model represents a cultural feature, the origin is the

point of insertion of the model into the ground. In general, the XY plane
(at Z = 0) delimits the basement from the first floor.

Figure 6- 11: Coordinate System - Cultural Feature

28

Copyright © 2017 Open Geospatial Consortium

Power Pylon – In the case of an electricity pylon, the front (and back) of the

model is aligned with the general direction of the attached wires.

Figure 6- 12: Coordinate System - Power Pylon

6.3.1.2 Local Coordinate Systems
Most OpenFlight nodes can have a local transformation used to create a local coordinate system.
The origin and orientation of this coordinate system are expressed by a single transformation
matrix.

When a transformation is specified for a node’s primary record, only the matrix record (opcode
49) is considered by CDB client-devices. All other transformation records (opcode 76, 78, 79,
80, 81, 82 and 94) are discarded9.

6.3.1.3 Units

6.3.1.3.1 GSModels and GTModels
The MODL attribute of the GSFeature and GTFeature datasets are used to reference GSModels
and GTModels. In turn, the position of GSModels and GTModels are obtained from the
coordinates of each point of the associated vector data set; these coordinates are interpreted as

9 Typically, these transformations are used by modeling editing tools only.

29

Copyright © 2017 Open Geospatial Consortium

the latitude (y), longitude (x), and elevation (z) coordinates that position the model within the
CDB10.

GSModels and GTModels are drawn to real-world dimensions using meters as their unit of
measurement.

6.3.1.3.2 MModels
MModels are usually internally activated and positioned by the client-devices in response to a
running simulation.

In the case of Moving Model location features, the MMDC attribute of the GTFeature dataset is
used to reference a MModel. Otherwise, the MModel behaves exactly as a GTModel as
described in section 6.3.1.3.1 above.

MModels are drawn to real-world dimensions using meters as their unit of measurement.

6.3.1.3.3 T2DModels

Requirement 9

Req 9 req/openflight/t2-model-coordinates

Vertex latitude (y) and longitude (x) coordinates SHALL be expressed in decimal
degrees. The values SHALL be relative to the file’s (implicit) origin which is the
south-west corner of the tile.

Note however, that the file’s origin and size are implicitly defined by the tile position and the tile
level-of-detail. The absolute position of each vertex is obtained by adding the vertex relative
value to the tile origin.

T2DModels are used to model features that have no significant height with respect to the
neighboring terrain; they are generally conformed to the terrain using the “Surface Conformal
Mode” as explained in section 6.7, Model Conforming. Note that the vertices of T2DModels
need not have Z-coordinate values that are always zero. For example, it is permissible to model
a road lineal that is modestly elevated with respect to the neighboring terrain. Client-devices
must be capable of handling T2DModels that are either perfectly surface-conformed to the
terrain (all vertices have Z=0) or modestly elevated (vertices with Z>0) with respect to the

10 The local origin of the model is translated to the (lat, long) coordinates of the point feature. The elevation
component is either obtained from the point feature (AHGT=True) or obtained from the elevation of the terrain at
(lat, long) coordinates of the point-feature (AHGT=False). The model’s XY plane is rotated in accordance to the
feature’s AO1 attribute. The model’s Z-axis is adjusted so that it is tangential to the WGS-84 earth model.

30

Copyright © 2017 Open Geospatial Consortium

terrain. Note that surface-conformed models with vertices with Z-coordinate values less than
zero are, by definition, below the terrain.

6.3.1.4 Roll, Pitch, Yaw

Requirement 10

Req 10 req/openflight/roll-pitch-yaw

Pitch, Roll and Yaw angles refer to rotations around the X, Y, and Z axes, respectively.
Angles SHALL be measured in degrees. The Roll and Yaw angles vary from ±180
degrees while the Pitch angle is limited to the range ±90 degrees.

6.3.2 Geometry

Requirement 11

Req 11 req/openflight/geometry

Implementers of the CDB standard SHALL adhere to the following set of constraints,
rules and guidelines when creating the geometry of Models.

• Create convex polygons. All lines joining any two points in the interior of the
polygon also lie in the interior.

• Create coplanar vertices. All of the vertices defining a polygon should lie in the
same plane (required by virtually all rendering engines).

• A polygon’s front face SHALL be defined by a counter-clockwise ordering of its
vertices.

• Avoid T vertices. T-vertices occur when two or more adjacent polygons share an
edge, and the polygons do not share a common vertex on that edge.

• Avoid coplanar faces. A coplanar face is a polygon that lies directly on top of
another polygon. Z-buffer fighting can occur when a Z-buffer system cannot
resolve which polygon to display on top. The CDB standard strongly
recommends changing one of the coplanar faces to be a subface of the other in the
hierarchy so that the client device such as an Image Generator can draw the faces
in the correct order. An alternative is to use the Relative Priority field to
implement layering (see section 6.3.4 below).

• Favor mesh over individual polygons. The OpenFlight Mesh record allows the
creation of triangle fans, triangle strips, quadrilateral strips, and indexed face sets.
This construct is by far preferable to individual polygons built using the
OpenFlight Face record.

• Make use of instancing. Avoid repeating identical pieces of geometry. Create

31

Copyright © 2017 Open Geospatial Consortium

one object and repeat it by having multiple instances in different locations..

6.3.3 Roof Tagging
OpenFlight has a provision for tagging polygons that are part of a roof. The Roofline flag can be
found in both the Face and Mesh records. This flag is useful to apply a geospecific texture to the
roof. When the flag is set, the client-device can discard the texture referenced by the polygon
and use instead the geospecific texture that appears on the terrain.

More generally, the Roofline flag is used to tag any polygon whose texture can be replaced with
a geospecific texture.

6.3.4 Relative Priority
The Relative Priority field appears in four OpenFlight primary records:

Face Record
Mesh Record
Object Record
Group Record

The field is required to implement layering, a method to handle coplanar geometry. By using the
Relative Priority field, the modeler can construct more complex coplanar geometry than what is
possible with sub-faces.

Here is the definition of the field according to OpenFlight 16.0:

Relative priority specifies a fixed ordering of the node relative to its sibling nodes.
Ordering is from left (lesser values) to right (higher values). Nodes of equal priority may
be arbitrarily ordered. All nodes have an implicit (default) relative priority value of zero.

The CDB standard further restricts the use of the Relative Priority field for complex coplanar
geometry as follows. Using relative priorities, the modeler defines 'n' layers of coplanar
geometry. Layers are numbered from 0 to 'n-1'.

Requirement 12

Req 12 req/openflight/geometry-layer-constraint

Layer 0, the base layer, SHALL contain geometry that completely encompasses the
geometry of subsequent layers. Other layers SHALL be processed in order, one after
the other. A layer is made of one or more nodes; all nodes of a given layer SHALL
have the same relative priority.

32

Copyright © 2017 Open Geospatial Consortium

6.4 Model Identifiers

6.4.1 GSModel and GTModel Identifier
Although the name of the global zone of a GS or GT model is arbitrary, it is strongly suggested
to use the value of their MODL attribute to name the global zone.

For instance, a GTModel stored in a file called

D500_S001_T001_AL015_004_Castle.flt

Would have its global zone identified like this:

<CDB:Zone
 name="Castle"
/>

6.4.2 MModel Identifier
The MModel identifier is the common name of the moving model or the name of its part. The
actual name is not covered by the standard. An example of a MModel identifier is “M1A2” for
the M1 Abrams tank whose DIS Entity Type is 1_1_225_1_1_3_0.

For instance, a moving model stored in a file called

D600_S001_T001_1_1_225_1_1_3_0.flt

Would have its global zone identified like this:

<CDB:Zone
 name="M1A2"
/>

6.4.3 2DModel Identifier
A T2DModel itself does not need to be identified per se. However, it is required to identify
individual 2DModels inside a T2DModel. This is done by assigning a unique zone name to each
2DModel. In addition, a 2DModel must have the same zone name across LODs and across tiles.
Note that when a 2DModel is clipped by tile boundaries, each of the clipped model fragments
will appear in distinct OpenFlight files of the T2DModel Dataset. When clipped, the 2DModel
Identifier must appear once, in each of the T2DModel Tile-LODs. This is necessary to identify
the parts of a 2DModel that straddle multiple Tile-LODs.

6.5 Model Zones

Requirements Class – Model Zones

/req/core/model-zones

33

Copyright © 2017 Open Geospatial Consortium

Target type Operations

Dependency OpenFlight Specification

Requirement 13 /req/openflight/model-zone-bounding-box

Requirement 14 /req/openflight/zone-name

Requirement 15 /req/openflight/global-zone

Requirement 16 /req/openflight/hot-spot-temperature

Requirement 17 /req/openflight/model-footprint-zones

Requirement 18 /req/openflight/model-footprint-hierarchy

Requirement 19 /req/openflight/model-cutout-zones

Requirement 20 /req/openflight/model-cutout-geometry

Requirement 21 /req/openflight/model-pseudo-interior-zone

Requirement 22 /req/openflight/model-interior-zone

The concept of a model zone is of the utmost importance when creating models, particularly
those used in military simulation applications.

A model zone represents a component11 of interest on the Model. A model zone (as well as the
component it represents) occupies a certain volume and is delimited by a bounding box. At least
one simulator subsystem must be interested in a specific component to justify the creation of a
corresponding zone. Examples of zones are a turret on a tank, or an engine on a platform, or an
entrance door on a building, etc.

Since the model itself is of interest to the simulation, it will have at least one zone, the global
zone. That will be the case for most Models used as cultural features; they will have a single
zone. However, Models used as moving models will typically be subdivided into several zones.

To implement the concept of model zones, the CDB standard uses the OpenFlight Group Node.
Firstly, a Group Node can have child nodes to represent its own geometry as well as other zones.
Secondly, a Group Node can have a bounding volume encompassing its child nodes and that can
be used to represent the volume corresponding to the zone.

11 A dictionary of CDB Component Names is provided in Appendix F.

34

Copyright © 2017 Open Geospatial Consortium

6.5.1 Definition
A Model Zone is an OpenFlight Group Node with a mandatory Bounding Box and the following
XML tags in the comment field.

Requirement 13

Req 13 req/openflight/model-zone-bounding-box

To be a OpenFlight Group Node a Model Zone SHALL have mandatory Bounding Box.

Table 6-2: XML Tags for Zones

<CDB:Zone name="name" volume="closed|open">
 ... zone attributes
</CDB:Zone>

Requirement 14

Req 14 req/openflight/zone-name

The Zone Name is mandatory.

Remember that if the zone exists, it is because it has its importance for at least one client device.
In general, all client devices interested in a zone will use its name to identify and control it.

The volume attribute is optional and specifies whether the zone represents a closed or open
volume. By default, a zone represents a closed volume.

The following table lists the OpenFlight records required to represent a zone.

Table 6-3: OpenFlight Records for a Zone

GROUP
MATRIX (optional)
BOUNDING BOX (mandatory)
COMMENT (mandatory)

Note the use of the MATRIX record. It is necessary when the zone has a different position or
orientation than its parent node. A zone can be thought of as a separate Model in itself. A zone
has a natural orientation and its local coordinate system must indicate where their front, right,

35

Copyright © 2017 Open Geospatial Consortium

and back sides are. A zone is subject to the same convention as the model itself regarding the
orientation of its coordinate system.

6.5.2 Global Zones

Requirement 15

Req 15 req/openflight/global-zone

A CDB-compliant Model SHALL have at least one zone that encompasses the whole
model and that is called the model global zone. The global zone is mandatory.

Figure 6- 13: Model Global Zone

 illustrates the location of the global zone in the graph hierarchy.

Figure 6- 13: Model Global Zone

The global zone contains the name of the Model contained in the OpenFlight file.

6.5.3 Zone Attributes
A Model Zone can have any number of attributes using the general mechanism described later in
section 6.12, Model Attributes. However, two specific attributes are described here because of
their particular relevance to the concept of Model Zone.

6.5.3.1 Material
The Material attribute provides an indication of the principal material the zone is made of. Since
the majority of man-made models are made of one principal material as well as several less
important materials, it is strongly suggested to use the Material attribute in the model global zone
to specify what that principal material is.

36

Copyright © 2017 Open Geospatial Consortium

The Material attribute is an index into the Composite Material Table located within the Model
Descriptor file described in section 6.14. The value of the Material attribute is a strictly positive
integer. The syntax of the XML tag is:

<CDB:Zone>
 <Material> index </Material>
</CDB:Zone>

The Material attribute can also be assigned to OpenFlight Object, Face, and Mesh nodes. The
preferred syntax would be the following:

<CDB:Object>
 <Material> index </Material>
</CDB:Object>

<CDB:Face>
 <Material> index </Material>
</CDB:Face>

<CDB:Mesh>
 <Material> index </Material>
</CDB:Mesh>

However, for compatibility with version 3.1 and 3.0 of the CDB standard, a simplified (but
deprecated) syntax is still supported for Object, Face, and Mesh nodes when the Material is the
only attribute.

<CDB:Material>
 index
</CDB:Material>

6.5.3.2 Temperature
When the zone has a heat source, such as an engine, it is known as a Hot Spot. The maximum
temperature the zone can reach is specified using the Temperature attribute as shown here:

Table 6-4: XML Tags for Hot Spots

<CDB:Zone>
 <Temperature> maximum temperature </Temperature>
</CDB:Zone>

Requirement 16

37

Copyright © 2017 Open Geospatial Consortium

Req 16 req/openflight/hot-spot-temperature

The temperature SHALL be expressed in Celsius degrees. Only integer values are
permitted.

\CDB\Metadata\Model_Components.xml	 supplies a comprehensive list of zones that are
candidates for hot spots. Typical hot spot names are Engine and Chimney to name only these
two. Other zones that are of interest for hot spots simulation are wings leading edge and
other surfaces subjected to friction.	

6.5.4 Implementation Guidelines
This section provides a set of guidelines to implement the concept of model zones. The
guidelines provided here are also applicable to Model Points described in section 6.6.

A zone is made of at least one Group Node.

Figure 6- 14: Simple Zone

A zone may have an optional articulation by adding a DOF node.

Figure 6- 15: Articulated Zone

To simplify the following diagrams, we will use a single circle to represent a zone, whether the
zone is a single Group Node, or a pair of group and DOF nodes.

38

Copyright © 2017 Open Geospatial Consortium

In general, a zone has a graphical representation as well as other child zones.

Figure 6- 16: Zone Hierarchy

The graphical representation of a zone is itself subject to several possible implementations using
various OpenFlight nodes.

The simplest way to associate a graphical representation to a zone is to use an Object node with a
combination of graphic primitives available in OpenFlight: polygons, triangles, quads, and
meshes.

Figure 6- 17: Simple Zone Graphical Representation

The modeler is also free to use a combination of LOD and Switch nodes to control the graphical
representation of a zone.

For instance, an LOD node inserted before the object node is useful to inform the client device
on how significant the graphical representation is.

39

Copyright © 2017 Open Geospatial Consortium

Figure 6- 18: Additive LOD to Control the Graphical Representation

If the modeler wants to provide two (or more) graphical representations for a zone, he should use
two (or more) LOD nodes.

Figure 6- 19: Exchange LODs to Select the Graphical Representation

Levels of details are discussed in length in Section 6.8, Model Levels-of-Detail.

40

Copyright © 2017 Open Geospatial Consortium

If the modeler has several distinct graphical representations for the zone, he is also free to use a
switch node to select between these representations.

Figure 6- 20: Switch Node to Select the Graphical Representation

CDB Switches are discussed in depth in Sections 6.9, Model Switch Nodes.

6.5.5 Model Zone Naming
A Model Zone Node is uniquely and unambiguously identified by concatenating with
backslashes (‘\’) the names of all Model Zones traversed to reach it. When sibling CDB nodes
have identical names, their name is appended with a sequence number in square brackets. Nodes
are numbered starting with 1. Siblings are sorted in ascending order according to their X, Y, and
Z coordinates. The leftmost sibling has the smallest XYZ coordinate while the rightmost sibling
node has the largest XYZ coordinate. As a result, identical sibling CDB nodes are sorted from
left to right (X-axis), then back to front (Y-axis), then bottom to top (Z-axis).

The following example provides a sample of Model Zone and Model Point names that would be
used for a tactical fighter aircraft; the fighter has two pylons per wing, each pylon having 3
attach points. The resulting paths to each Model Zones and Model Points are as follow:

\Fighter
\Fighter\Wing[1]
\Fighter\Wing[1]\Pylon[1]
\Fighter\Wing[1]\Pylon[1]\Attach_Point[1]
\Fighter\Wing[1]\Pylon[1]\Attach_Point[2]
\Fighter\Wing[1]\Pylon[1]\Attach_Point[3]
\Fighter\Wing[1]\Pylon[2]
\Fighter\Wing[1]\Pylon[2]\Attach_Point[1]
\Fighter\Wing[1]\Pylon[2]\Attach_Point[2]
\Fighter\Wing[1]\Pylon[2]\Attach_Point[3]
\Fighter\Fuselage
\Fighter\Fuselage\Attach_Point
\Fighter\Wing[2]
\Fighter\Wing[2]\Pylon[1]

41

Copyright © 2017 Open Geospatial Consortium

\Fighter\Wing[2]\Pylon[1]\Attach_Point[1]
\Fighter\Wing[2]\Pylon[1]\Attach_Point[2]
\Fighter\Wing[2]\Pylon[1]\Attach_Point[3]
\Fighter\Wing[2]\Pylon[2]
\Fighter\Wing[2]\Pylon[2]\Attach_Point[1]
\Fighter\Wing[2]\Pylon[2]\Attach_Point[2]
\Fighter\Wing[2]\Pylon[2]\Attach_Point[3]

Here is how to interpret some of these paths:

The global zone is identified as \Fighter
The left wing is \Fighter\Wing[1]
The leftmost attach point is \Fighter\Wing[1]\Pylon[1]\Attach_Point[1]
The rightmost attach point is \Fighter\Wing[2]\Pylon[2]\Attach_Point[3]
There is a single attach point on the fuselage, \Fighter\Fuselage\Attach_Point
The inner pylon on the left wing is \Fighter\Wing[1]\Pylon[2]
The inner pylon on the right wing is \Fighter\Wing[2]\Pylon[1]

6.5.6 Usages

6.5.6.1 Model Landing Zones
Landing zones are used primarily by the Computed Generated Forces (CGF) sub-system of the
simulator. The landing zone information can be used during the set-up of mission scenarios
since it provides CGF the location of known landing zones. Typically, landing zones are used to
specify the location and dimension of helipads, aircraft carrier decks, etc.
\CDB\Metadata\Model_Components.xml lists several CDB Components that can act as landing
zones.

Landing zones must have a bounding box that tightly fits the landing area. If required by the
geometry of the landing zone, the modeler should create a local coordinate system that is axially
oriented with the landing zone. Inserting a MATRIX record after the GROUP record does this.

The width and the length of the landing zone can be extracted by the client-device from the
bounding box associated with the Group Node representing the zone. The landing zone
geometry must be located under the Group Node to obtain meaningful dimensions.

6.5.6.2 Model Footprint Zones
A Model Footprint12 conceptually represents the footprint (i.e., the terrain surface outline) of a
model on the ground. The Model Footprint is modeled as a set of OpenFlight Face or Mesh
records.

Requirement 17

12 The OpenFlight Face and Mesh records both have a flag called Terrain Culture Cutout. This flag is
commonly designated as the Cultural Footprint flag within the simulation industry.

42

Copyright © 2017 Open Geospatial Consortium

Req 17 req/openflight/model-footprint-zones

Client-devices SHALL assume that the geometry that is associated with a Model Footprint
Zone is hidden, regardless of the value of the OpenFlight Hidden flag of associated
geometry. However, CDB content creation tools SHALL set the Hidden flag of the
associated geometry13.

The footprint geometry should be terrain conformed using the “Surface Conformal Mode” as
explained in section 6.7, Model Conforming. This instructs client-devices to conform this
footprint to the underlying terrain altimetry, regardless of its level-of-detail.

The Model Footprint is the set of polygons or meshes that result from the intersection of the
model geometry with its XY plane14.

A polygon that is tagged as Model Footprint can be used by client-devices to identify the portion
of the terrain that is covered by a model. The Cultural Footprint can be used by client-devices
such as:

• Map generators that may not be interested in the full 3D geometry of a Model.
• Procedural SE generation software that may use model footprints to automatically

extrude such footprints into 3D models.
• Simulation of ground-based SAF entities that would use model footprints to avoid

collisions with features such as buildings and trees.

Requirement 18

Req 18 req/openflight/model-footprint-hierarchy

The CDB standard requires that the Model Footprint SHALL be placed under a CDB
Footprint Zone node.

This CDB node facilitates the identification and discovering of footprints by client-devices. The
subgraph representing the Footprint is presented here.

13 This increases compatibility with OpenFlight readers that are not CDB-compliant.

14 The Model Footprint polygon is not an absolute Z-positioned 3D polygon generated by the intersection of
the model with the specific terrain it sits on - that would make the footprint of the model specific to that terrain.
Furthermore, a different 3D polygon would be required for each possible terrain LOD.

43

Copyright © 2017 Open Geospatial Consortium

Footprint
(zone)

Object

Face Mesh

Figure 6- 21: Footprint Zone Structure

The Footprint zone is followed by an OpenFlight Object node with the necessary OpenFlight
Face or Mesh nodes containing the footprint itself. All Face/Mesh nodes must have their Terrain
Culture Cutout flag set. A Footprint zone is defined by the following XML tags.

Table 6-5: Footprint Zone XML Tags

<CDB:Zone name = "Footprint"/>

6.5.6.3 Model Cutout Zones
A Model Cutout Zone conceptually represents clipping geometry that is used to cut out the
terrain from a 2DModel or a 3DModel. Cutouts are typically used in conjunction with model
interiors and tunnels. The Model Cutout geometry defines a simple 3D convex volume (open or
closed). A typical implementation of a Model Cutout Zone for a modeled building would consist
of a simple cube. Similarly, the Model Cutout Zone for a tunnel entrance would consist of a
simple cylinder or a partially-open cube (see Error! Reference source not found.).

Requirement 19

Req 19 req/openflight/model-cutout-zones

The Model Cutout is modeled as a set of OpenFlight Face or Mesh records. Client-
devices SHALL assume that the geometry that is associated with a Model Cut-Out Zone is
hidden and cut-out.

44

Copyright © 2017 Open Geospatial Consortium

The Model Cutout is modeled as a set of OpenFlight Face or Mesh records. Client-devices are
required to assume that the geometry that is associated with a Model Cut-Out Zone is hidden and
cut-out. Client-devices should ignore the value of the OpenFlight Hidden and Terrain Culture
Cutout flags of associated geometry. However, CDB content creation tools are required to set
the Hidden and Terrain Culture CutOut flags of the associated geometry15.

The Model Cutout geometry should be terrain conformed using the “Surface Conformal Mode”
as explained in the 6.7, Model Conforming. This instructs the client-device to conform the
Model Cutout to the underlying terrain altimetry, regardless of its level-of-detail.

It is specified using the following XML syntax:

Table 6-6: XML Tags for Landing Zones

<CDB:Zone name="Cutout">

Polygons or meshes that are tagged as Model Cutout can be used by client-devices to identify the
portion of the terrain that needs to be removed in order to reveal the interior of the model (say a
building interior or a tunnel interior). The Model Cutout is necessary for models straddling the
terrain surface and whose interior is modeled and viewed from within. The reason for this is that
when the model is altitude-conformed onto the terrain, a hole must be cut into the terrain-LOD,
so that the terrain itself does not visually interfere with the modeled building or tunnel interior.

Requirement 20

Req 20 req/openflight/model-cutout-geometry

The CDB standard requires that the Cutout geometry SHALL be placed under a CDB
Model Cutout Zone node.

This CDB node facilitates the identification and discovery of model cutouts by client-devices.
The subgraph representing the cutout is presented here.

15 This increases compatibility with OpenFlight readers that are not CDB-compliant.

45

Copyright © 2017 Open Geospatial Consortium

Cutout
(zone)

Object

Face Mesh

Figure 6- 22: Cutout Zone Structure

6.5.6.4 Model Interior Zones
This section focuses on how to represent the interior of Models for an intelligent use by client-
devices.

A Model is composed of 2 parts: a shell, and an optional interior. The shell contains both the
exterior and the pseudo-interior. Client-devices need only access the shell if they do not need to
penetrate and interact with the interior of the models; otherwise, they require both the shell and
the interior. The shell of a Model is stored in five (5) datasets:

ModelGeometry
ModelTexture
ModelSignature
ModelDescriptor
ModelMaterial

The optional model interior is stored in four (4) datasets:

ModelInteriorGeometry
ModelInteriorTexture
ModelInteriorDescriptor
ModelInteriorMaterial

Refer to CDB Standard Volume 7 OGC CDB Data Model Guidance section 6.5 for guidelines on
Handling of Model Interiors.

6.5.6.4.1 Model Pseudo-Interior Zone
The pseudo-interior is the portion of the shell that contains geometry also represented in the
interior dataset. This geometry represents what is visible from the outside and is necessary to
ensure the integrity and completeness of the shell.

46

Copyright © 2017 Open Geospatial Consortium

Requirement 21

Req 21 req/openflight/model-pseudo-interior-zone

Since the pseudo-interior is a placeholder for the real interior, it SHALL be placed under
its own subgraph and identified by a CDB zone whose name is “Interior”.

Shell
(global zone)

Exterior
(zone)

Interior
(zone)

db

Footprint
(zone)

Figure 6- 23: Model Shell Structure

The name “Interior” is a reserved component name allowing a client-device to identify the node
that is to be replaced by an entire dataset, namely the ModelInteriorGeometry dataset. The
pseudo interior is mutually exclusive with the real interior defined in section 6.5.6.4.2, Model
Interior Zone, below.

Figure 6- 23: Model Shell Structure

 also illustrates how to structure the shell of a Model that has a real interior. The model is
divided in three components: the footprint of its exterior, the geometry of its exterior, and the
geometry of its pseudo-interior. Therefore the names of these three components are “Footprint”,
“Exterior”, and “Interior” as illustrated by the following XML tags.

47

Copyright © 2017 Open Geospatial Consortium

Table 6-7: Shell Zones XML Tags

<CDB:Zone name = "Footprint"/>
<CDB:Zone name = "Exterior"/>
<CDB:Zone name = "Interior"/>

Footprints were discussed earlier in section 6.5.6.2, Model Footprint Zones.

6.5.6.4.2 Model Interior Zone

Requirement 22

Req 22 req/openflight/model-interior-zone

The Model interior itself SHALL have a global zone whose name is “Interior”.

The Model interior itself must have a global zone whose name is “Interior”. Accordingly, the
graph of the interior of the model will present the following structure. Note that real interior
must not include the modeled representation of the shell.

db

Interior
(global zone)

Figure 6- 24: Model Interior Structure

The Interior zone contains one or more floors as well as the partitions separating these floors.
An Interior zone is defined by the following XML tags.

Table 6-8: Interior Zone XML Tags

<CDB:Zone name = "Interior">
 <Ground_Floor> index </Ground_Floor>
</CDB:Zone>

The <Ground_Floor> is optional. It contains the index of the Floor that represents the ground
floor of the model interior. By default, the ground floor is floor number 1.

48

Copyright © 2017 Open Geospatial Consortium

The subgraph representing the Interior zone has the following structure.

Interior

Floor Partition

Figure 6- 25: Interior Zone Structure

The Interior zone has two (2) kinds of child nodes: Floor and Partition. The Interior has at least
one Floor. When the Interior has several Floors, the separating Partitions appear as siblings of
the Floor nodes. These Partitions contain external Apertures that connect two Rooms on
different Floors. These external Apertures are later referenced by Rooms.

6.5.6.4.2.1 Model Interior Topology
To navigate through the interior of Models, simulator client-devices need to know the
connections between the elements composing the interior, such as floors, rooms, doors, or
fixtures. In addition, these elements must be identified and attributed for use by computer
generated forces (CGF) client-devices. For this reason, the CDB Standard has opted for reuse
and adoption of version 2 of the UHRB specification16.

The CDB standard maps the UHRB Object Model to the OpenFlight Scene Graph using the
concept of CDB nodes.

The UHRB object model proposes twelve (12) classes. Of these, four (4) are abstract base
classes and one (1) is a provision for future expansion of the UHRB specification. The
remaining seven (7) concrete classes are mapped to CDB Zone nodes. The UHRB Class Names
and their corresponding CDB Zone Names are:

Table 6-9: UHRB Class Names and corresponding CDB Zone Names

UHRB Class Name CDB Zone Name

UHRB_TEMPLATE Interior

UHRB_FLOOR_LEVEL_COMPONENT Floor

16 OneSAF Ultra High Resolution Building (UHRB) Object Model.

49

Copyright © 2017 Open Geospatial Consortium

UHRB_SURFACE_COMPONENT Surface

UHRB_ROOM_COMPONENT Room

UHRB_FIXTURE_COMPONENT Fixture

UHRB_APERTURE_COMPONENT Aperture

UHRB_FIXED_PARTITION_COMPONENT Partition

The above CDB nodes are treated the same way as any other CDB nodes. In particular, Floor,
Room, Partition, Aperture, Fixture, and Surface nodes are numbered following the conventions
established in section 6.5.5, Model Zone Naming; they also have zone attributes such as the
Material Index.

6.5.6.4.2.2 Model Interior Topology Attributes
This section describes the CDB mechanism that expresses the possible connections between
compartments and apertures. The definition of a CDB Zone is extended with the addition of one
XML tag indicating which other components are connected to this one.

The following table presents the revised syntax of the XML tags defining a CDB Zone. The
addition is highlighted in yellow.

Table 6-10: XML Tags for Zone Connections

<CDB:Zone name="name" volume="closed|open">
 <Material> index </Material>
 <Temperature> value </Temperature>
 <ConnectTo> path </ConnectTo>
 ...
</CDB:Zone>

The	<ConnectTo>	tag may appear zero or more times, allowing for the definition of any
number of connections to other components. The other tags (Material and Temperature) retain
their current definition. In particular, the use of the <Material> tag is encouraged to define the
material the components are made of.	

The presence of the <ConnectTo>	tag is restricted to a set of three (3) components: global
zone, compartments and apertures. A connection is unidirectional; it goes from the zone that
contains the <ConnectTo>	tag to the zone referenced by the path. The path is either relative or
absolute. When a relative path is used, it identifies a sibling of the current zone. Here are some
path examples.

50

Copyright © 2017 Open Geospatial Consortium

Table 6-11: Examples of Absolute and Relative Paths

Example 1:

 <CDB:Zone name="Interior">
 <ConnectTo> \Interior\Section[1]\Level[1]\Aperture[5] </ConnectTo>
 </CDB:Zone>

Example 2:

 <CDB:Zone name="Aperture[5]">
 <ConnectTo> \Interior\Section[1]\Level[2]\Compartment[3] </ConnectTo>
 </CDB:Zone>

Example 3:

 <CDB:Zone name="Compartment[3]">
 <ConnectTo> Aperture[1] </ConnectTo>
 <ConnectTo> \Interior\Section[1]\Level[1]\Aperture[5] </ConnectTo>
 </CDB:Zone>

	

Example 1 is an absolute path, expressed as a directory name, starting with the topmost zone, the
global zone. It tells us that there is one entrance into the model interior through the fifth aperture
(Aperture[5]) on the first level (Level[1]) of the first section (Section[1]) of the model interior
(\Interior).

Example 2 is also an absolute path. It tells us that the fifth aperture (Aperture[5]) has a single
connection to the third compartment (Compartment[3]) of the second level (Level[2]) of the first
section (Section[1]) of the model interior (\Interior).

Example 3 illustrates how to use a relative path. It tells us that the third compartment
(Compartment[3]) has two exits. The first exit is through the first aperture (Aperture[1]) of the
current level. The second exit is through the fifth aperture (Aperture[5]) on the first level
(Level[1]) of the first section (Section[1]) of the model interior (\Interior).

Example 1 tells us to use Aperture 5 to enter into the model interior. Example 2 further informs
us that Aperture 5 brings us into Compartment 3. Example 3 says that we can exit Compartment
3 through either Aperture 1 or 5.

The global zone (the top level node) node provides the list of apertures representing entrances
into the model. If the global zone does not provide at least one aperture to enter the model, then
the model interior is unreachable. To exit a compartment, it must connect to at least one
aperture; if not, you may be able to enter the compartment, but you will not be able to exit.
Finally, an aperture allows entrance into compartments. An aperture without connection is an
exit point; in that case, a compartment must connect to the aperture.

The CDB Stadnard Schema Package provides the XML schema governing the construction of a
valid CDB Zone. The schema includes provision for the <ConnectTo> tag.

6.5.6.4.3 Floor Zone
A Floor zone contains one or more Rooms, and all Partitions shared by these Rooms. A Floor is
defined by the following XML tags.

51

Copyright © 2017 Open Geospatial Consortium

Table 6-12: Floor Zone XML Tags

<CDB:Zone name = "Floor">
 <Label> floor name </Label>
</CDB:Zone>

The <Label> is optional. It can be used to give the Floor a meaningful name such as “Ground
Floor”, “Basement”, “Mezzanine”, or “Penthouse”.

The subgraph representing a Floor has the following structure.

Floor

RoomFootprint Partition

Figure 6- 26: Floor Zone Structure

The Footprint of a Floor is the minimum enclosing polygon containing all of the footprints of all
of the Rooms on the Floor as well as the footprints of all of the Partitions associated with those
Rooms. The Footprint is defined as per section 6.5.6.2, Model Footprint Zones. The Partitions
contain the Apertures that connect two Rooms together. These Apertures are later referenced by
Rooms.

6.5.6.4.4 Room Zone
A Room zone owns all its Surfaces and may contain Fixtures. A Room is defined by the
following XML tags.

Table 6-13: Room Zone XML Tags

<CDB:Zone name = "Room">
 <Label> room name </Label>
 <Aperture> path to aperture 1 </Aperture>
 ... other apertures as needed
 <Partition> path to partition 1 </Partition>
 ... other partitions as needed
</CDB:Zone>

52

Copyright © 2017 Open Geospatial Consortium

The <Label> is optional. It can be used to better identify the Room by its usual name. Examples
are cubicle, toilet, conference room, atrium, office, electrical room, janitor room, etc.

The <Aperture> is optional but is likely to appear at least once, unless the Room is permanently
closed and cannot be accessed. It points to one Aperture that connects this Room with another
Room on this Floor or on another Floor. Two Rooms on the same Floor are connected through
an Aperture in a Partition on the current Floor. Two Rooms on two different Floors are
connected through an external Aperture in a Partition from the Interior zone. The path to an
Aperture is built as specified in section 6.5.5, Model Zone Naming.

The <Partition> is also optional, but again, is likely to appear several times since a typical Room
has a floor, a set of walls, and a ceiling.

The subgraph representing a Room has the following structure.

Room

FixtureFootprint Surfaces
(group)

Side
(group)

Bottom
(group)

Top
(group)

Surface Surface Surface

Figure 6- 27: Room Zone Structure

The footprint is the smallest polygon containing all of the bottom surfaces when projected onto
the XY plane17. There can be zero or more Fixtures in a Room. The Surfaces making up the

17 This definition of a room footprint comes from the UHRB Specification.

53

Copyright © 2017 Open Geospatial Consortium

volume of the Room are separated in three (3) groups (Bottom, Side, and Top) as defined by the
UHRB specification.

6.5.6.4.5 Fixture Zone
A Fixture zone is defined in the same manner as a Room; it is made of a number of Surfaces
defining a closed volume. The Fixture is defined by the following XML tags.

Table 6-14: Fixture Zone XML Tags

<CDB:Zone name = "Fixture">
 <Label> fixture name </Label>
 <Moveable> true/false </Moveable>
</CDB:Zone>

The <Label> is optional. It allows the modeler to describe what this fixture represents.

The <Moveable> flag is optional. It indicates whether or not the Fixture can move or if it is
fixed. By default, the fixture does not move; if it does, the flag is set to true. A piece of
furnitures is an example of moveable fixture while a column is an example of a fixed one.

The subgraph representing a Fixture is similar to that of a Room, except for the need to
differentiate between the kinds of Surfaces. Its structure is presented here.

Fixture

Footprint Surface

Figure 6- 28: Fixture Zone Structure

The Footprint is the smallest polygon containing all of the Surfaces when projected onto the XY
plane. The Surfaces form a closed volume, meaning there is no hole in the Fixture.

Alternately, to permit reuse of common fixtures stored in the GTModel Library, the Fixture may
reference an existing model through the use of an XRef node. In that case, the following
subgraph is to be used.

54

Copyright © 2017 Open Geospatial Consortium

Fixture

XRef

Figure 6- 29: Fixture Zone Structure

6.5.6.4.6 Partition Zone
A Partition zone has Apertures, makes reference to all Surfaces composing it, and refers to its
adjacent Rooms. The Partition is defined by the following XML tags.

Table 6-15: Partition Zone XML Tags

<CDB:Zone name = "Partition">
 <Label> partition name </Label>
 <Room> path to adjacent room 1 </Room>
 <Room> path to adjacent room 2 </Room>
 <Surface> path to surface 1 </Surface>
 ... other surfaces as needed
</CDB:Zone>

The <Label> is optional. It allows the modeler to better identify the type of Partition: wall, floor,
ceiling, etc.

The <Room> tag is mandatory and is used to identify the two Rooms adjacent to the Partition18.
For this reason, there must be exactly two <Room> tags. The path to an adjacent Room is as
specified in section 6.5.5, Model Zone Naming. Note that UHRB defines the concept of an
“outside” room when the partition defines a building outside wall. In CDB, the path of this
outside room is \Shell\Exterior as illustrated in 6.5.6.4.1, Model Pseudo-Interior.

The <Surface> tag appears as many times as necessary to refer to all Surfaces making up this
Partition. A path similar to the one used to refer to a Room is used to refer to a Surface. Note
that a Partition does not refer to the Surfaces that belong to its Aperture; that will be taken care
of by the Apertures themselves.

The subgraph representing a Partition has the following structure.

18 Note that the CDB standard follows established UHRB conventions as it relates to partitions, namely that all
partitions must be clipped so that there are no more than two neighbouring rooms.

55

Copyright © 2017 Open Geospatial Consortium

Partition

ApertureFootprint

Figure 6- 30: Partition Zone Structure

The Footprint is the smallest polygon containing all of the referenced Surfaces when projected
onto the XY plane. A Partition can have zero or more Apertures in it.

6.5.6.4.7 Aperture Zone
An Aperture zone provides a mean by which one can enter or exit a Room. The Aperture zone is
defined by the following XML tags.

Table 6-16: Aperture Zone XML Tags

<CDB:Zone name = "Aperture">
 <Label> aperture name </Label>
 <Is_Open> true/false </Is_Open>
 <Is_Fixed> true/false </Is_Fixed>
 <Damage_Level> percentage of damage </Damage_Level>
 <Room> path to room 1 </Room>
 <Room> path to room 2 </Room>
 <Surface> path to surface 1 </Surface>
 ... other surfaces as needed
</CDB:Zone>

The <Label> is optional. It allows the modeler to better identify the type of Aperture: door,
window, trap, etc.

The <Is_Open> and <Is_Fixed> flags are both optional; they are considered false when not
provided.

The <Damage_Level> tag is also optional and provides a mean to indicate the level of damage of
the Aperture. The value is expressed as a percentage using an integer in the range 0 (no damage)
to 100 (destroyed).

The <Room> tag appears exactly two times and points to the two Rooms connected by this
Aperture. Sometimes one of these two rooms may be an “outside” room - a concept defined in

56

Copyright © 2017 Open Geospatial Consortium

UHRB. In CDB, the path of this outside room is \Shell\Exterior as illustrated in 6.5.6.4.1, Model
Pseudo-Interior.

The <Surface> tag appears as many times as necessary to refer to all Surfaces making up this
Aperture.

The subgraph representing an Aperture has the following structure.

Aperture

Footprint

Figure 6- 31: Aperture Structure

The Footprint is the smallest polygon containing all of the referenced surfaces when projected
onto the XY plane.

6.5.6.4.8 Surface Zone
A Surface zone contains useful geometry. That’s all it does. The Surface zone is a plain CDB
zone. Its subgraph is presented here.

Surface

Object

Face Mesh

57

Copyright © 2017 Open Geospatial Consortium

Figure 6- 32: Surface Zone Structure

A Surface is composed of one or more OpenFlight Object nodes holding the geometry defining
the surface: face or mesh records.

6.6 Model Points
A model point is similar to a model zone; it identifies a location on the model that is of interest to
at least one simulation client device. A point defines a local coordinate system on the model.
Hence, a point has a position and an orientation.

In some respect, a point and a zone are similar and can be used interchangeably. A zone is used
when the component of interest is physically modeled and has a graphical representation. When
the zone is not modeled but still represents a component of interest, a point is used to indicate its
presence.

Again, the OpenFlight Group Node mechanism provides a convenient means of implementing
the concept of a point because a transformation can be added to the node.

Requirements Class – Model Points

/req/openflight/model-points

Target type Operations

Dependency Openflight Specification

Requirement 23 /req/openflight/model-point-damage=states

Requirement 24 /req/openflight/model-dis-origin

Requirement 25 /req/openflight/model-viewpoint

6.6.1 Definition
The table below presents the syntax of the XML tags stored in the node’s comment record.

Table 6-17: XML Tags for Points

<CDB:Point name = "name">
 ... point attributes
</CDB:Point>

The point name is mandatory while the point attributes are optional. In general, a point can have
the same name as a zone. The following table lists the OpenFlight records required to represent
a point.

58

Copyright © 2017 Open Geospatial Consortium

Table 6-18: OpenFlight Records for a Point

GROUP
MATRIX (mandatory)
COMMENT (mandatory)

A model point is used in several occasions such as defining the attach point where another Model
can anchor itself.

6.6.2 Usages

6.6.2.1 Model DIS Origin
A Model that is intended as a DIS entity requires a point that defines the origin of the entity’s
coordinate system. This point is the center of the entity’s bounding volume excluding its
articulated and attached parts19. On a DIS network, the location of an entity is expressed relative
to this point.

Requirement 23

Req 23 req/openflight/model-point-damage=states

There SHALL be a single definition of this point for all damage states and all levels of
details for a given model. If the DIS origin is not defined, it SHALL defaults to the model
origin.

The following XML tag identifies the point.

Table 6-19: XML Tags for the DIS Origin

<CDB:Point
 name = "DIS_Origin"
/>

Requirement 24

Req 24 req/openflight/model-dis-origin

The CDB Point representing the DIS Origin SHALL be positioned and oriented according
the definition provided by the DIS Standard. This definition says that the DIS Origin is at
the center of the bounding box of the entity, without articulated and attached parts. The

19 This definition can be found on page 3 of reference [4].

59

Copyright © 2017 Open Geospatial Consortium

standard also says what the orientation must be. The X-axis points forward, the Y-axis
points to the right, and the Z-axis points down. All axes are aligned with the bounding
box defined above.

The intent of the DIS Standard is to have its axis system aligned with the body of the entity.
When it comes to air platform, the body is associated with the fuselage of the entity. To
illustrate the difference in orientation between the DIS entity’s bounding box and the CDB
Model’s bounding box, consider the Chinook helicopter shown below.

Figure 6- 33: Orientation of the Chinook Helicopter

The fuselage of this helicopter has a pitch angle of approximately 1.6 degrees when resting on its
wheels. Below is a snapshot of its fuselage, without rotors and landing wheels.

60

Copyright © 2017 Open Geospatial Consortium

Figure 6- 34: The Body of the Chinook Helicopter

From the snapshots above, it is clear that the orientation of the DIS origin must be such that its
XY plane makes an angle of 1.6 degrees with respect to the XY plane of the CDB axis system.

Here is a recommended way of defining the DIS Origin:

1. Create the Group Node and tag it as a CDB Point whose name is DIS_Origin.
2. Make the CDB Point a child of the zone that best represents the entity’s bounding volume

without any articulated and attached parts.
3. Ensure the zone is properly oriented with respect to the CDB axis system.
4. Add a translation to position the origin at the center of the above bounding volume.
5. Add a rotation to align the X-axis to the front of this bounding volume.
6. Add another rotation to align the Z-axis with the bottom of the bounding volume.
7. By doing so, the Y-axis should already point correctly to the right side of the box.

6.6.2.1.1 Example
The snapshot below shows the proper location and orientation of the DIS origin on the Chinook.
The DIS origin is represented by a set of 3 orthogonal Blue-Red-Green arrows. The blue arrow
indicates the X axis; the green arrow points down and represents the Z axis.

61

Copyright © 2017 Open Geospatial Consortium

Figure 6- 35: The DIS Origon of the Chinook Helicopter

If you watch carefully, you will notice that the DIS axis system is aligned with the fuselage and
makes an angle with the CDB XY plane.

6.6.2.2 Model Viewpoint
To generate the correct view of the outside world from a model’s viewpoint, a client device
needs an indication of where is the viewpoint located with respect to the model’s origin. The
viewpoint corresponds to the pilot’s seat in an aircraft, the driver’s seat in a ground vehicle, the
navigation post on a ship bridge, the periscope on a submarine, or the eyes of a soldier.

Requirement 25

Req 25 req/openflight/model-viewpoint

The viewpoint’s local coordinate system SHALL be oriented such that the Y-axis
indicates the viewing direction and the Z-axis points up.

The viewpoint has optional attributes to define the field of view available from this position.
The field of view is defined by a frustum aligned along the local Y-axis. The horizontal field of
view lies in the local XY plane while the vertical field of view is in the YZ plane.

62

Copyright © 2017 Open Geospatial Consortium

Table 6-20: XML Tags for a Viewpoint

<CDB:Point name="Viewpoint">
 <FOV>
 <Horizontal>min max</Horizontal>
 <Vertical>min max</Vertical>
 </FOV>
</CDB:Point>

All values are expressed in degrees using decimal numbers. The default values are ±30.0° in
both directions for a total of 60.0° of horizontal and vertical fields of view.

6.6.2.3 Model Attach Point
A Model can be attached to another Model by mean of an attach point.

An attach point defines the position to which other (subordinate) models can attach themselves.
For instance, a fighter has a number of attach points defined to receive missiles or external fuel
tanks.

Table 6-21: XML Tags for Attach Point

<CDB:Point
 name = "Attach_Point"
/>

The orientation of the attach point is used to indicate how the two models connect together. A
connection occurs by superimposing the coordinate system of the subordinate model with the
coordinate of the attach point.

6.6.2.4 Model Anchor Point
The anchor point defines the location where a subordinate Model attaches to a parent Model.
The anchor point is the counterpart to the attach point. Both can be seen as the male/female part
of a connector and its receptacle.

Table 6-22: XML Tags for Anchor Point

<CDB:Point
 name = "Anchor_Point"
/>

The orientation of the anchor point is used to indicate how the subordinate model connects to the
parent model. A connection occurs by superimposing the anchor point (of the subordinate
model) with the attach point (of the parent model).

The default anchor point of a subordinate model is its origin.

6.6.2.5 Model Center of Mass
The Center of Mass (CM) of a Model is a specific point where, for many purposes, the Model
behaves as if its mass was concentrated there.

63

Copyright © 2017 Open Geospatial Consortium

Table 6-23: XML Tags for Center of Mass

<CDB:Point
 name = "Center_Of_Mass"
/>

6.7 Model Conforming
Historically, the integration of models onto the terrain has been performed during the database
compilation process. These offline approaches varied considerably from vendor to vendor
because there were no standardized approaches related to terrain meshing structures, varying
visual priority and hidden-surface removal mechanisms, runtime LOD mechanisms, number of
LODs, etc.

This section describes a series of model conformal modes that instruct client-devices on how
they should conform models to the underlying terrain.

All of the conformal modes rely on the conforming of the model origin and/or model vertices
onto the terrain mesh directly beneath the model. Note that the Z-component of the model’s
vertices is with respect to model’s XY plane (as shown in Figure 6- 36: Conforming Vertices to
Terrain).

Figure 6- 36: Conforming Vertices to Terrain

 Terrain	profile

Conform	vertices	to	terrain

V2

Elevv2

V1

Vn

Elevv1 Elevvn

z

z
2 zn

z1
z2

zn

z3

V3

z
3

Elevv3

z

y

x

64

Copyright © 2017 Open Geospatial Consortium

Note that by definition, all portions of the model below its XY plane represent some form of
under ground basement. The conforming of models on steep or rough terrain may yield unusual
results because portions of the basement may be visible. This may require the modelers to level
the terrain in the immediate vicinity or adjust the model.

A modeler can specify a model’s conformal mode by adding the following XML tags to the zone
representing the model.

<CDB:Zone>
 <Conformal mode="..."/>
</CDB:Zone>

The conformal modes are listed in Table 6-24 below.

Table 6-24: Conformal Modes

Conformal Mode
Absolute

Point
Vertex
Line
Plane

Surface

6.7.1 Non Conformal (Absolute) Mode
When attributed as a Non Conformal model, none of the model vertices are conformed to the
underlying terrain. Instead the model’s Z-values are used as-is, as elevation values. As a result
the model is absolutely positioned and behaves independently of the terrain. The shape and
orientation of the model is preserved. This conformal mode is typically used for the modeled
representation of point-features. Typical use-cases include buildings, trees, and poles.

6.7.2 Point Conformal Mode
The Point Conformal mode conforms a single point of the model (its origin) onto the underlying
terrain. All of the other model vertices are translated along the Z-axis; as a result, the shape of
the model is preserved by this conformal operation. In effect, the Point Conformal mode
dynamically positions a model on the underlying terrain so as to preserve the model’s relative
altitude over the terrain. Point-conforming is the default conformal mode for the modeled
representation of point-features. Typical use-cases include buildings, trees, and poles.

65

Copyright © 2017 Open Geospatial Consortium

	

Figure 6- 37: Origon Conformal Mode

6.7.3 Vertex Conformal Mode
The Vertex Conformal mode conforms each of the vertices of a model on the underlying terrain.
The shape of the model is not preserved by this conformal operation. The model’s XY plane
defines a reference plane used by client-devices to adjust the elevation of each of the model’s
vertices. This conformal mode is used for 3D models that represent typically long 3D lineal
features or large 3D areal features that need to follow the terrain profile. Typical uses include
fences, walls, trenches, and forest canopies.

Terrain	
profile

Model	origin

H

Omod

E

x

y

z

z

y

x

66

Copyright © 2017 Open Geospatial Consortium

Figure 6- 38: Vertex Conformal Mode Example

6.7.4 Line Conformal Mode
The Line Conformal mode conforms each of the two reference vertices of the “linear” model on
the underlying terrain. All of the other model vertices are sheared along this axis; as a result, the
shape of the model is not preserved by this conformal operation. The model’s XY plane defines
a reference plane used by client-devices to adjust the elevation of the two reference vertices.
This conformal mode is used for models that represent lineal features such as powerlines and
monorails.

Terrain	profile

Conform	vertices	to	terrain

Hv

Et

Ev

67

Copyright © 2017 Open Geospatial Consortium

Figure 6- 39: Line Conformal Mode

The line that is used to specify the conforming is defined by a Face node with the following
XML tags:

<CDB:Face>
 <Conformal_Line/>
</CDB:Face>

This Face node defines a single line with two vertices, the first one, Vs, being the start and the
second, Ve, the end of the line.

6.7.5 Plane Conformal Mode
The Plane Conformal mode conforms each of the three reference vertices of the

“planar” model on the underlying terrain. The resulting three vertices define a model
transformation matrix that can then be applied to the vertices of the model. As a

result, the shape of the model is preserved by this conformal operation, but the model

Terrain	profile

Elevvs

Elevve

x

y

zInto	Terrain	
coordinates

z

y

x

Vs Ve

z

68

Copyright © 2017 Open Geospatial Consortium

undergoes a change in pitch and roll angles. Given this property, there are relatively
few cases where this conformal mode can be used20. However, as shown in

Figure 6- 41: Application of Line and Plane Conformal Modes on 3d Roads

, this conformal mode is required when conforming the curved segments of 3D (raised profiled)
modeled road features.

Figure 6- 40: Plane Conformal Mode

20 Man-made structures and tree vegetation do not tilt regardless of the terrain they are on.

69

Copyright © 2017 Open Geospatial Consortium

Figure 6- 41: Application of Line and Plane Conformal Modes on 3d Roads

The plane that is used to specify the conforming is defined by a Face node with the following
XML tags:

<CDB:Face>
 <Conformal_Face/>
</CDB:Face>

The Face node has exactly 3 vertices defining the plane used for the conforming. The only
restriction on these 3 vertices is that they must not be collinear.

6.7.6 Surface Conformal Mode
This conformal mode is used for models whose points, edges and surfaces must all conform
exactly to the underlying terrain. The Surface Conformal mode requires that the model’s edges
and surfaces be clipped to the underlying terrain. The original vertices and the added vertices
resulting from the clipping operation are conformed to the underlying terrain. As a result, the
shape of the model is not preserved by this conformal operation. This conformal mode is
primarily used for the modeled representation of 2D surface-feature such as paint markings and
other terrain overlays. In addition, it can be used for 3D models that represent typically long or
large 3D lineal and 3D areal features that need to perfectly follow the terrain profile. Note that

Line	Conformal	
T2DModels

Plane	Conformal	
T2DModels

Vp1
Vp2	=	Vs

Vs Ve	=	Vp2

70

Copyright © 2017 Open Geospatial Consortium

in most cases, the vertex conformal mode provides an adequate solution for 3D models and is
more economical to use than the surface conformal mode.

Figure 6- 42: Surface Conformal Mode

6.8 Model Levels-of-Detail

Requirements Class – Model Levels of Detail

/req/openflight/model-lod

Target type Operations

Dependency Openflight Specification

Requirement 26 /req/openflight/significant-sizes

A levels-of-detail model structure is essential when the intent is to use a model in a real-time
application such as flight simulation. The level-of-detail mechanism provides client-devices
with the essential structure for deterministic operation. Deterministic operation can be achieved
only if a client-device can:

control the paging bandwidth from the CDB main storage device
control client-device processing load

 Terrain	profile

Clip	and	conform	triangles	to	terrain

Clipped	vertices

z3 z4

z3
z4

Elevv1
Elevv2

Elevv4

Elevv4 Elevc1 Elevc2

V1 V2

V3
V4

 C1

 C1

71

Copyright © 2017 Open Geospatial Consortium

control client-device memory footprint
control run-time publishing processing load and
control run-time publishing memory footprint

For this reason, it is recommended to create LODs, especially for complex Models, and for
models that are used extensively, in great density in the CDB data store. This is most critical for
geospecific cultural models (especially in densely modeled geospecific areas of the synthetic
environment) since they can consume a significant portion of the paging bandwidth and memory
footprint of the client-devices. As a corollary, simple Models should not be made more complex
by adding unnecessary level of details. The CDB standard provides rules for determining model
complexity, and selecting the appropriate LOD, as defined in Chapter 3 of Volume 1: OGC CDB
Core Standard:Model and Physical Database Structure.

OpenFlight LOD nodes now support two methods of specifying the criteria to determine if a
level of detail is active, that is if the user application should traverse the node and its children.
The first method, the classic one, is to specify the switch in and switch out distances in real
world units. Using this method, a level of detail is active when the distance from the viewpoint
to the center of the LOD is within the switch-in and switch-out distances. The second method
uses the Significant Size associated with the LOD node to determine when to activate the node.

Requirement 26

Req 26 req/openflight/significant-size

The CDB Standard SHALL:

• Use the Significant Size associated with the LOD node to determine when to
activate the node

• The Significant Size of LOD node 2 SHALL be less than the Significant Size of
LOD node 1.

• Features whose Significant Size is larger than 110 km (the dimension of a
geocell) SHALL be clipped (if a continuous surface) or ungrouped (if multiple
discontinuous surfaces) until the maximum size criteria is met.

• LOD nodes SHALL be sorted in decreasing order of their Significant Size
attribute.

• Sibling LOD nodes SHALL be mutually exclusive.

There are several problems associated with the classic, range-based method. In a visual system
for instance, the switching distance should be based on both range and the system resolution of
the entire visual system; a database designed to rely solely on a range-based switching criteria is
not truly portable, especially if the intent is to use it on systems with wildly different visual
resolution. Furthermore, the blending or morphing of models solely based on range criteria can

72

Copyright © 2017 Open Geospatial Consortium

lead to undesirable effects. When the viewpoint moves quickly, the distance over which the
model is LOD-transitioning should be large enough to avoid the “popping-in” of the higher LOD
version. On the other hand, if the viewpoint is moving very slowly, the distance over which the
model is LOD-transitioning should be reduced to avoid the “LOD-ghosting” of the higher LOD
version. These two constraints make implicit assumptions on the model’s speed. In applications
where the aircraft’s flight regime varies considerably (V22 for example), it is impossible to find
a single set of LOD start and end points that simultaneously cater to all flight modes (hover
versus cruise). Here again, a database design that directly encodes the start and end points of a
model’s LOD transition is not truly portable, because it makes implicit assumptions on the speed
it will be used for. Thus, in a tactical fighter application, the start and end points of a model’s
LOD transition need to be widely spaced apart to prevent a popping effect at the onset of the
LOD transition. Conversely, in a tank application, the start and end points of a model’s LOD
transition need to be much more closely spaced to prevent a ghosting effect as the higher LOD
model is blended-in. If the client device wants to implement some form of transition between
LODs, the criteria should be based on a user-defined duration. Transitions between LODs can
involve fading in the next LOD while fading out the current one. That fading operation should
not last forever. It should be accomplished in a relative short period of time. The second method
to transition from one LOD to the next is to use morphing. In the case of morphing, the
transition period is less critical because the client-device (typically an Image Generator) does not
blend-in two models together.

The consequences of such implicit assumptions result in a database that is highly client-device,
and application-specific.

For all these reasons, the CDB standard has selected the second method to control the LOD
mechanism.

Two methods exist to implement LODs, exchange or addition. The two methods can be used
simultaneously and are not mutually exclusive.

In the first method, details are progressively added to the model, as the viewpoint gets closer.
With the second method, different representations of the same model are substituted for one
another based on the viewing distance. Figure 6- 43: Echange and Additive LOD Nodes

, illustrates the general organization of Models with both types of LOD nodes.

6.8.1 Exchange LODs
In the exchange LOD method, different representations of the same model are substituted for one
another based on the model’s Significant Size. It is up to the client-devices to derive appropriate
LOD transition viewing distance from the model’s Significant Size and the client-device’s field-
of-view and resolution parameters.

6.8.2 Additive LODs
Additive LOD is just a special case of the more general Exchange LOD paradigm. When a LOD
node has no sibling LOD, it becomes an Additive LOD node. That does not change the fact that
at most one LOD node gets selected when its Significant Size justifies it.

73

Copyright © 2017 Open Geospatial Consortium

Figure 6- 43: Echange and Additive LOD Nodes

The LOD nodes in light brown represent Exchange LODs and are mutually exclusive. The two
dark brown shaded LOD nodes are considered Additive LODs because they do not have another
sibling node of type LOD.

Note that to make sense, the Significant Size of LOD node 2 must be less than the Significant
Size of LOD node 1 (Requirement 26). The same is true for the Significant Size of LOD node 3
with respect to LOD node 2. Also, LOD node 3 has an additional constraint, its Significant Size
must be greater than the one assigned to LOD node 4. If these constraints are not followed, LOD
node 4 will be selected before LOD nodes 2 or 3 have a chance of being displayed.

6.8.3 Significant Size
The concept of a Significant Size is a recent improvement of the OpenFlight Specification.
When a finer model LOD is created, the modeler typically adds additional geometric detail,
additional features (such as markings), or refines the shape of curved surfaces (such as engines,
wheels), etc. When assigning a Significant Size to a model LOD, the modeler needs to answer
the following question: When I created a new model LOD, I did so to create additional detail in
my model. What is the largest dimensional change in geometry for this new model LOD? In
other words, what is the largest dimensional difference of a surface between this LOD and the
next coarser LOD? In effect, the value of Significant Size corresponds to the “modeling
difference” between the LOD and the next coarser LOD. At runtime, a client-device converts
this modeling difference value from its real-world dimensional value into a viewing error value
(typically measured in pixels or degrees). The client-device can then activate the appropriate
model LOD because it knows that the modeler’s intent in creating the LOD was to show
features, eliminate all modeling discrepancies whose dimension equaled that of the Significant
Size dimension associated with that model’s LOD. This contribution of the LOD to the scene is

74

Copyright © 2017 Open Geospatial Consortium

based on the LOD’s Significant Size as well as other parameters (such as system resolution)
relevant to the simulation model used by the client device. Note, that in the case of the coarsest
LOD, the Significant Size should be set to the bounding sphere dimension of the model (because
the “error” introduced by the coarsest LOD amounts to the entire model).

Version 16.0 of the OpenFlight Specification introduces the concept of Visual Significance that
is different from the concept of Significant Size. The concept of Visual Significance
translates in two fields called Significance and they are found in the Group Record
and Object Records21. Here is the definition of this field as found in reference [11]:

“Significance can be used to assist real-time culling and load balancing
 mechanisms, by defining the visual significance of this group with respect to other
groups in the database. Normally the value of this attribute is zero”.

The CDB standard mandates a value of zero for Visual Significance; the value zero indicates

the object or the group has no particular significance and is not more or less
important than any other objects or groups. Any other values, whether negative or
positive, are reserved for future use by this Specification.

6.8.3.1 Significant Size – Coarsest LOD
Special consideration is required when generating a value for the Significant Size of the coarsest
LOD of a model, SSc. Ideally, the Significant Size is proportional to the “error” caused by the
fact the model’s coarsest LOD is blended-out and discarded. As a result, the nominal value for
SSc is simply the Size of the feature.

More specifically, we define the Significant Size of Models corresponding to Features:

Models of 2D Lineal Features: The Significant Size of the modeled representation of 2D lineal
feature is defined as the width of the lineal feature. The Size of the feature is independent of its
modeled LOD representation; it does not vary with each level-of-detail representation. As a
convention, it should be set to the largest width of the feature’s finest level-of-detail
representation.

𝑆𝑆!"# = 𝑆𝑖𝑧𝑒 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 =𝑊𝑖𝑑𝑡ℎ(2𝐷𝐿𝑖𝑛𝑒𝑎𝑙)

Models of 2D Areal Features: The Significant Size of the modeled representation of a 2D areal
feature is defined as the square root of the area occupied by the areal feature. The Size of the
feature is independent of its modeled LOD representation; it does not vary with each level-of-
detail representation. As a convention, it should be set to the worst-case width of the feature’s
finest level-of-detail representation. Note that the areal does not need to model a single surface,
i.e., an areal feature may consist of multiple discontinuous surfaces.

𝑆𝑆!"# = 𝑆𝑖𝑧𝑒 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 = 𝐴𝑟𝑒𝑎(2𝐷𝐴𝑟𝑒𝑎𝑙)

21 Users of Creator 3.0 will find the exact same definition for Significance in both the Group and Object Attributes
Help pages.

75

Copyright © 2017 Open Geospatial Consortium

Models of 3D Point Features: The Significant Size of the modeled representation of a 3D point
feature can be derived (through automation) from its bounding box dimensions. The Size of the
feature is independent of its modeled LOD representation; it does not vary with each level-of-
detail representation. The Feature is usually inserted into the scene near the horizon by most
client devices. As a result, the optimal value
for its Size is one that approximates a disk
whose area is the same as that of a cube of
dimensions (H,W,L) viewed near the horizon
(with a downward angle of 15 degrees) as
follows:

𝑆𝑆!"# = 𝑆𝑖𝑧𝑒(𝐹𝑒𝑎𝑡𝑢𝑟𝑒)

=
𝐴𝑟𝑒𝑎𝑠𝑖𝑑𝑒 + 𝐴𝑟𝑒𝑎𝑡𝑜𝑝

𝜋

𝑆𝑆!"# = 𝑆𝑖𝑧𝑒(𝐹𝑒𝑎𝑡𝑢𝑟𝑒) =
𝐻×cos (15𝑜)×𝑀𝑎𝑥 𝑊, 𝐿 + 𝑊×𝐿×sin (150)

𝜋

Note that the Feature’s Size is based on the Feature’s bounding box dimensions. In the case
where the Feature occupies a relatively small portion of its bounding box, then the Significant
Size should be reduced by a factor proportional to the square root of the cross-sectional
coverage; Fcs varies in the range of (0..1).

Finally, the value of 𝑆𝑆!"# can be adjusted (increased or decreased by as much as 2X from its
nominal value) to produce an “effective Significant Size” 𝑆𝑆! through a function that uses the
modeler-provided Relative Tactical Importance (RTAI) attribute. Note that the function ensures
that…

• 𝑆𝑆!= 𝑆𝑆!"# when RTAI = 50,
• 𝑆𝑆!= 2𝑆𝑆!"# when RTAI = 100 and
• 𝑆𝑆!= 𝑆𝑆!"#/2 when RTAI = 0.In summary, the Significant Size is as per the

equations below…

()

)50,(

2
2

),(
SS

)(

nom

nomc

nomc
nom

featurenomc

csnom

nom

SSfSS

SSSSSS

RTAISSfSS
FSS

FeatureSizeSS

=

×≤≤⎟
⎠

⎞
⎜
⎝

⎛

=

×=

=

76

Copyright © 2017 Open Geospatial Consortium

Moving Models: The Significant Size of a Moving Model can be derived (through automation)
from its bounding sphere dimensions. The Size of the feature is independent of its modeled
LOD representation; it does not vary with each level-of-detail representation. Unlike features,
moving models can be rendered in any orientation; as a result, the value of Significant Size is its
Bounding Sphere Diameter:

𝑆𝑆!"# = 𝑆𝑖𝑧𝑒 𝑀𝑜𝑑𝑒𝑙 = 2 𝑥 𝐵𝑆𝑅

6.8.3.2 Significant Size – Other LODs
All 2D and 3D Features can have multiple modeled representations (aka 2DModel-LODs and
3DModel-LODs). Each 2DModel-LOD and 3DModel-LOD is assigned a Significant Size value,
SSLOD that is representative of the dimension of the “modeling difference” between the LOD and
the next coarser LOD.

This value can be derived through automation or explicitly provided by the modeler. In the
event it is not provided by the modeler, a default value is automatically generated as follows:

1. Compute the value of 𝑆𝑆! for the coarsest Model-LOD as described above.
2. Get the number of vertices (Vcoarsest) corresponding to LODcoarsest
3. Get the number of vertices (VLOD) corresponding to the Model-LOD.
4. Compute the ratio of vertices 𝑅 = 𝑉!"# 𝑉!"#$%&%'

5. The Significant Size of the model’s current LOD is 𝑆𝑆′!"# =
!!!
!

6.8.4 LOD Node Ordering
OpenFlight does not impose any constraint on the ordering of sibling LOD nodes. For this
reason, all nodes would have to be tested because the runtime system is searching for the LOD
node with the smallest Significant Size that still contributes to the resulting image.

Consequently, the CDB Standard requires that LOD nodes be ordered. This ordering improves
client device performance without being specific to any client-device (since it can be costly to
test all nodes to select just one).

To illustrate the need for ordering LOD nodes, consider the case where a modeler needs to create
a realistic representation of a small town with several hundred buildings. The level of details of
the town must accommodate low altitude flight with a helicopter. After a few tests, the modeler
decides to model each building with three levels of details as shown in

Figure 6- 44: Exchange LOD Nodes

.

77

Copyright © 2017 Open Geospatial Consortium

Figure 6- 44: Exchange LOD Nodes

Now, consider the case where the simulated ownship has an entire city visible (thousands of
Models) within the field of view of the visual system. This situation forces the IG client device
to test all of the LOD nodes of all Models if these nodes are not sorted. However, if the nodes
are sorted, it is possible to test only a subset of all nodes to find out which ones to display.
Which order is best? Ascending or descending order?

If all buildings are visible, the majority will be located far from the viewpoint while only a few
will be near the viewpoint. In general, only few models fit near the viewpoint, and that number
increases with the distance.

If LOD nodes are sorted in ascending order of their Significant Size, the client device quickly
selects the finest LOD of Models located near the viewpoint. Indeed, only one test is necessary
to select the correct LOD node in these models. However, for Models located farther, the client
device has to perform two or three tests to select the correct nodes. If LOD nodes are sorted in
ascending order, a single test is done on a small number of LOD nodes while two or three tests
are performed on the majority.

On the other hand, if nodes are sorted in decreasing order of their Significant Size, the client
device performs three tests to select the finest LOD only on a limited number of models near the
viewpoint. For a larger number of models, two tests are required. Moreover, for an even larger
number of models, the ones located far away from the viewpoint, a single test is enough to select
the coarsest LOD, if it gets selected at all.

The second approach allows for a smaller number of tests to select the correct LODs, and is the
method selected by the CDB Standard.

6.8.5 LOD Generation Guidelines
While the CDB standard does not enforce the use of LODs for modeled OpenFlight culture, it is
strongly recommended. Without LODs, client-devices are heavily hampered in their effort to
assure an acceptable level of determinism. Given its mandate, the CDB standard cannot enforce
guidelines that would favor some particular client-device types at the expense of others.
Nonetheless, it is clear that models built without LODs will be problematic to ALL client-
devices. Likewise, models built to wildly varying content (as opposed to content organized in a
geometric progression) will also be problematic to ALL client-devices.

78

Copyright © 2017 Open Geospatial Consortium

As a result, the CDB standard provides the following guidelines to help modelers decide on the
number of LODs needed, their geometric complexity, their Significant Size, etc.

• The coarsest LOD should be the simplest possible geometric representation of the object;
it can be as simple as a colored (or textured) box.

• A model LOD is created by removing details from the next finer LOD (or alternately by
adding details to the next coarser LOD). The model component details to be included in
a LOD must be consistent with the Significant Size associated with the model LOD.

• The geometric complexity of model LODs should follow a regular progression with
increasing LODs. Large increases in geometric complexity for adjacent models LODs
are discouraged because they reduce the determinism of client-devices22. The number of
polygons in a model LOD provides a reasonable (first-order) measure of geometric
complexity and of computational load incurred by client-devices sensitive to geometric
complexity.

NOTE: For a visual system, the subtended angle of a model on screen decreases by 2 when its
distance from the viewpoint increases by a factor 2. The human eye has an angular resolution of
about 1/60 of a degree or 1 minute of an arc. This means a 1-meter tall object appears as a single
point at distance of approximately 3.5 kilometers. At the other end, if the same object is 2
meters from your eyes, you could distinguish details that are as small as 0.5 millimeter.
Likewise, the angular surface area occupied by a model on screen decreases by 4 when its
distance from the viewpoint increases by a factor 2.

Refer to section 6.8.3, Significant Size for a description of the relationship between Significant
Size, Model LOD, and the number of vertices used to represent a model.

6.9 Model Switch Nodes
A Switch Node allows the selection of zero or more children by invoking a selector mask. Any
combination of children can be selected per masks and the number of definable masks is
unlimited. The CDB standard makes use of OpenFlight Switch Nodes to control the state of
Model Components (zones and points).

Requirements Class – Model Switch Nodes

/req/openflight/model-switch-nodes

Target type Operations

Dependency Openflight Specification

22 Consider the case where a tank is modeled with only two levels of detail. The coarser LOD is a simple box. The
finer LOD is an extremely detailed representation of the tank complete with individual links on its tank treads; the
model has 100,000 polygons. Clearly a switch to the finer LOD representation produces a large step change in a
visual system client-device memory footprint and in its computation load. The size of the step change will likely
exceed any built-in margins (memory footprint or processing time) in the client-device and will lead to a non-
graceful overload situation.

79

Copyright © 2017 Open Geospatial Consortium

Requirement 27 /req/openflight/switch-mask

Requirement 28 req/openflight/switch-mask-name

6.9.1 Definition
XML tags in the comment record are added to the switch’s primary record to identity it as a CDB
Switch.

Table 6-25: XML Tags to Create a CDB Switch

<CDB:Switch name = "switch name">
 ... switch attributes
</CDB:Switch>

Requirement 27

Req 27 req/openflight/switch-mask

The switch SHALL contain one mask per state. Note that the first mask, mask index 0, is
the default mask. This means that the value of the Current Mask field in the Switch
record SHALL be 0.

As an example, if the switch has 3 children, each representing a separate state of the parent zone,
then the switch needs 3 masks, each selecting one child.

Requirement 28

Req 28 req/openflight/switch-mask-name

In addition to defining a mask for each switch state, each mask SHALL be named. The
name of the mask SHALL be representative of the state selected by that mask.

The actual name is at the discretion of the modeler.

The corresponding OpenFlight records are as follow:

80

Copyright © 2017 Open Geospatial Consortium

Table 6-26: OpenFlight Records to Create a CDB Switch

SWITCH
COMMENT (mandatory)
INDEXED STRING

6.9.2 Usage

6.9.2.1 Articulations
Switch nodes provide an alternative to DOF nodes when an articulated part is implemented for
only a few positions. An example of this use of switches is the control of undercarriage or
control surfaces on aircraft. Suppose the modeler wants to represent the flaps in two distinct
positions: flaps up and flaps down. A switch is the simplest way to implement these two flaps
positions. In this example, the switch name could be “Flap Control” and the two mask names
could be “Flap Up” and “Flap Down”.

Suppose the modeler wants to provide two positions for the door on a hangar: open and close. In
addition, when the door is open, the modeler provides a representation for the interior of the
hangar, which is not the case when the door is closed. Again, the use of a switch is appropriate
to provide the control over the door position. A proper name for the switch would be “Door
Position” and the appropriate names for the two masks would be “Door Closed” and “Door
Open”.

6.9.2.2 Damage States
Switch nodes can be used to select one of many modeled representations of damages. A zone has
at least a normal (usually undamaged) state. When other states exist, an OpenFlight switch node
is used to select which state is active. A single damage state can be active at any time.

Requirements Class – Damage Status

/req/openflight/damage-status

Target type Operations

Dependency Openflight Specification

Requirement 29 /req/openflight/damage-transition

Requirement 30 req/openflight/damage-order

Figure 6- 45: General Damage State Tree Structure

 shows the general organization of a zone with several states.

81

Copyright © 2017 Open Geospatial Consortium

Figure 6- 45: General Damage State Tree Structure

Each damage state represents the zone with a certain level of damage. This level of damage is
expressed as a percentage from 0 to 100%. A level of damage of 0 % means the zone is not
damaged at all. At the opposite end, a percentage of damage of 100 % indicates the zone is
completely destroyed.

To identify a damage state switch, use the following XML tags in the switch comment record.

Table 6-27: XML Tags for Damage State Switch

<CDB:Switch name = "Damage_State">
 <Damage_Level>...</Damage_Level>
</CDB:Switch>

The XML element <Damage_Level> is a list of percentages representing the transitions between
child nodes of the switch. The list counts ‘n-1’ entries where ‘n’ is the number of states.

Requirement 29

Req 29 req/openflight/damage-transition

The percentages representing the transitions SHALL be limited to the range [0, 99]. The
value 100 is not allowed because the level of damage SHALL exceed the transition value
in order to select the correct state.

To illustrate the concept of level of damage, assume a damage state switch has 3 child nodes
representing the zone in normal, damaged, and destroyed states. Also, assume that the modeler’s
intent is to switch to the damaged state when the level of damage exceeds 25 %, and to switch to

82

Copyright © 2017 Open Geospatial Consortium

the destroyed state when the level of damage exceeds 75 %. Here, the XML tag associated with
the switch should look like this.

Table 6-28: Example of a Damage State Switch with Two Transitions

<CDB:Switch name = "Damage_State">
 <Damage_Level>25 75</Damage_Level>
</CDB:Switch>

Requirement 30

Req 30 req/openflight/damage-order

The ordering of damage states SHALL be from left (normal state) to right (destroyed
state). All intermediate states must represent increasingly damaged states from a slightly
damaged state to an almost destroyed state. The number of states is left to the discretion
of the modeler.

Figure 6- 46: Damage States Ordering

While the number of damage states is left to the discretion of the modeler, some choices are
better than others. Since a Model is meant to be used in a simulator and since many simulators
are DIS-compliant, it is suggested to create the same number of CDB damage states as there are
DIS damage states for the corresponding entity.

For instance, if the Model represents a DIS land platform such as the M1A2 tank, the modeler
could create four damage states to match the four corresponding DIS damage states labeled No
Damage, Slight Damage, Moderate Damage and Destroyed.

83

Copyright © 2017 Open Geospatial Consortium

The DIS and the HLA standards are relatively vague regarding the definition of damage states.
In the case of the DIS standard, the damage state is a field that belongs to a structure called the
Entity Appearance. The field has only 2 bits and, accordingly, accommodates four different
values. For HLA, version 2 of the RPR-FOM defines the damaged appearance as a 32-bit
enumeration for which only 4 values have been defined so far – the same values as the one
defined by DIS, that is No Damage, Slight Damage, Moderate Damage and Destroyed.

For both DIS and HLA, it is obvious that the damage state is meant to be a visual damage state.

The question to answer is the following: “What should the universally accepted visual
appearance be for a slightly (or moderately) damaged state?”

In the DIS world, a platform is often qualified in terms of Mobility and Fire Power23. Using
these two criteria, it is possible to define the following guidelines.

• A slightly damaged model should represent a platform with limited mobility. However,
its firepower is intact and it should be apparent that the entity is still capable of firing its
weapons.

• A moderately damaged model should represent a platform for which both mobility and
firepower are reduced without being completely out of service.

As a corollary, here are the definitions of normal and destroyed states.

• An undamaged model should represent a platform for which both mobility and fire power
are completely operational.

A destroyed model should represent a platform for which both mobility and firepower are
completely out of service.

6.9.2.3 Temporal Anti-aliasing
Temporal anti-aliasing may be achieved with the use of special textures. These textures are often
required to aid IG client-devices to eliminate strobing effects on model rotating objects such as
helicopter rotors, aircraft propellers, or vehicle wheels.

Figure 6- 47: Example of a Texture Representing a Rotor

, is an example of a semi-transparent texture used to simulate a rotating helicopter rotor.

23 Note that, on top of the Damage State field, the DIS Entity Appearance structure has two flags to describe the
Mobility and Fire Power of the entity. This is also true for HLA and version 2 of the RPR-FOM which provides for
two flags to describe the fire power and mobility of a physical entity on top of the field used to describe the damage
state.

84

Copyright © 2017 Open Geospatial Consortium

Figure 6- 47: Example of a Texture Representing a Rotor

Motion blur textures are general base textures with a Texture Kind of S001. The Texture Index
(Tnn) is used to sequentially number several motion blur textures representing the same object.

The use of motion blur textures can be combined with DOF and Switch nodes to produce
efficient switching between several versions of a single rotating part.

The following subtree illustrates how four versions of the above rotor could be modeled using
one solid version and three blurred versions.

Figure 6- 48: Multiple Versions of Rotating Parts

In this example, three textures are used to represent an increasingly blurred rotor.

85

Copyright © 2017 Open Geospatial Consortium

In order to detect the presence of the above construct, the following XML comment must be
added to the switch node.

Table 6-29: XML Tags for Motion Blur Switch

<CDB:Switch name = "Motion_Blur">
 <Blurriness>...</Blurriness>
</CDB:Switch>

The children of the switch node could be any OpenFlight nodes. Most likely, the nodes that
contain the geometry will be OpenFlight Object nodes.

When modeling solid and blurred objects in this manner, the CDB Standard requires that the
leftmost child node contains the solid version of the object while the sibling nodes to the right
contain increasingly blurred version of the same object.

The XML element <Blurriness> is a list of percentages representing the transitions between child
nodes of the switch. The list counts ‘n-1’ entries where ‘n’ is the number of child nodes.

Requirement 31

Req 31 req/openflight/blurring-transition

The percentages representing the transitions SHALL be limited to the range [0, 99]. The
value 100 is not allowed because the level of blurriness SHALL exceed the transition
value in order to select the correct child node.

To illustrate the concept of level of blurriness, assume a motion blur switch has two child nodes.
Also, assume that the modeler’s intent is to switch to the second node when the level of
blurriness exceeds 10 %. Here, the XML tag associated with the switch should look like this.

Table 6-30: Example of a Motion Blur Switch with One Transition

<CDB:Switch name = "Motion_Blur">
 <Blurriness>10</Blurriness>
</CDB:Switch>

6.10 Model Articulations

Requirements Class – Model Articulations

/req/openflight/model-articulations

Target type Operations

86

Copyright © 2017 Open Geospatial Consortium

Dependency Openflight Specification

Requirement 32 req/openflight/articulation-node-rotation

Requirement 33 /req/openflight/gimbal-limits

Requirement 34 req/openflight/articulation-flags

6.10.1 Definition
An OpenFlight DOF node is used to implement the concept of a CDB Articulation. The node
gives the modeler controls over all 9 degrees of freedom, translation, rotation and scaling on all 3
axes. Generally, only one degree of freedom is allowed at a time and most often, that single
degree of freedom is a rotation about a single axis. However, the modeler is free to allow any
translation, rotation and, even scaling; even though stretching an articulation does not usually
produce a realistic effect.

Since only one articulation is allowed per zone, the zone name is sufficient to identify and
control the DOF node.

A CDB Articulation node is an OpenFlight DOF node with attributes in the form of XML tags.
The table below presents the syntax of the XML tags stored in the DOF node’s comment record.

Table 6-31: XML Tags for DOF

<CDB:Articulation name="name" id="id">

 <Translation>
 <X rate="value" />
 <Y rate="value" />
 <Z rate="value" />
 </Translation>

 <Rotation>
 <X rate="value" />
 <Y rate="value" />
 <Z rate="value" />
 </Rotation>

 <Scaling>
 <X rate="value" />
 <Y rate="value" />
 <Z rate="value" />
 </Scaling>

</CDB:Articulation>

The above XML tag is necessary in two circumstances:

1. The articulation represents a DIS Articulated Part.
2. The articulation is to be animated automatically.

87

Copyright © 2017 Open Geospatial Consortium

A CDB Articulation node has an optional name that is used to self-document the articulation.
The optional identifier provides the corresponding DIS Articulated Part. It is suggested to use a
name inspired from the DIS Articulated Part ID, when the identifier is supplied. For instance,
DIS identifies as Primary Gun 1 the articulated part whose ID is 4416. That example would
generate the following XML tags:

<CDB:Articulation name="Primary Gun 1" id="4416" />

Section 4.7.3 in reference [4] provides a list of DIS Articulated Part IDs.

It is possible to specify an optional Rate-of-Change for each Degree of Freedom along their X,
Y, and Z axes for Translation, Rotation, and Scaling. The translation rate is expressed in meters
per second. The rotation rate is expressed in degrees per second. Finally, the scaling rate is in
units per second. When not specified, a default rate of zero is assumed.

Requirement 32

Req 32 req/openflight/articulation-node-rotation

The translation rate SHALL be expressed in meters per second. The rotation rate SHALL
be expressed in degrees per second. Finally, the scaling rate SHALL be expressesd in
units per second. When not specified, a default rate of zero SHALL be used.

For instance, a primary radar antenna that rotates at a rate of 10 degrees per second about its Z-
axis would require the following XML tags:

<CDB:Articulation name="Primary Radar 1" id="5376">
 <Rotation>
 <Z rate="10"/>
 </Rotation>
</CDB:Articulation>

Another example, to illustrate how to attribute a rotating wind mill; assuming the mill rotates
about the Y-axis at a rate of 5 degrees per second:

<CDB:Articulation>
 <Rotation>
 <Y rate="5"/>
 </Rotation>
</CDB:Articulation>

Requirement 33

Req 33 req/openflight/gimbal-limits

88

Copyright © 2017 Open Geospatial Consortium

Gimbal limits are mandatory on DOF nodes and the appropriate flags SHALL be set to
specify which degrees of freedom are controlled by a particular articulation.

Requirement 34

Req 34 req/openflight/articulation-flags

The Flags field is located at offset 376 in the OpenFlight DOF record and its value cannot
be zero because the articulation SHALL control at least one degree of freedom.

6.10.2 Usage

6.10.2.1 Rotating Parts
A common problem in simulation is to correlate the linear speed of a model with the angular
speed of its wheels. More generally, the client device simulation models often require the
dimension of rotating parts. This information can be obtained from the zone extent; the
bounding box surrounding a zone provides the dimension of rotating parts.

6.11 Model Light Points
The CDB standard does not make a distinction between light points and light sources. Both
represent real lights that emit light and that can illuminate neighboring objects. In most current
visual systems, a light point is a simple representation of a point source of light when viewed
from a distance; it has no observable lighting effect on its immediate surroundings. In real-life
however, as an observer moves closer to the light, its lighting or illuminating effect on the
surrounding objects becomes increasingly observable; furthermore, the actual shape of the light
also becomes more distinct.

In a typical simulator, client-devices may choose to limit the representation of the light to a
single point and neglect the illuminating effect of the light on neighboring objects and terrain.
For this reason, it is up to the client (and its RTP) to determine whether a light can illuminate its
surroundings or not; the decision is based on the type of light and the inherent
capabilities/capacity of the client.

Another point to consider is the fact that a light may have a very different representation
depending on the client device. For instance, consider the visual representation of a light by an
IG compared with the representation required by a radar system, NVG device or a FLIR device.

For all of these considerations, the CDB standard has adopted the following approach in defining
lights. The OpenFlight file defines only the position, direction and the name of the light type; no
other attributes are specified. The CDB standard provides a very elaborate light type naming

89

Copyright © 2017 Open Geospatial Consortium

convention. This convention permits clients to internally derive all of the properties and
parameters needed to render the light. The approach is entirely device-independent. Modelers
need not concern themselves with hundreds of parameters, many of which are often specific to
underlying algorithms within the client. The naming convention ensures that the client has all of
the information needed to capture the modeler’s intent. Because the approach is device-
independent, the rendering is limited only by the client’s capabilities, not by the database itself.

As a result, lights in OpenFlight are defined by inserting an Indexed Light Point record into the
OpenFlight scene graph. A vertex and a normal are stored in a Vertex List record that defines
the position and direction of the light. The name of the light type is stored in the Light Point
Appearance Palette record.

The light type’s name fully defines the appearance, animation and other characteristic relevant to
the field of simulation. It is the responsibility of the client to supply the internal parameters that
correspond to each of the light types supported by the CDB standard.

Light type naming conventions are defined in Section 2.3 of the Volume 1: OGC CDB Core
Standard:Model and Physical Database Structure, CDB Core Model, Light Naming, and the list
of names is presented in Annex J, Volume 2: OGC CDB Core: Model and Physical Structure:
Annexes (formerly CDB Best Practice Volume 2 Appendix E).

Requirement 35

Req 35 req/openflight/light-vertex-list

A Vertex List record SHALL follow the OpenFlight Indexed Light Point record. .

The list of vertices contains one vertex if a single light point is defined. The list contains several
vertices when multiple independent light points are defined. An optional matrix and replication
count permits the definition of a light string.

Table 6-32: OpenFlight Records for a Light Point

INDEXED LIGHT POINT
MATRIX (optional)
REPLICATE (optional)
PUSH LEVEL
VERTEX LIST
POP LEVEL

6.12 Model Attributes
This section defines a general attribution mechanism to add CDB and Vendor-specific attributes
to any OpenFlight nodes. These attributes follows the rules of inheritance; they are
automatically propagated from higher levels through lower levels of the OpenFlight graph. A
child node inherits the attribution of its parent node.

90

Copyright © 2017 Open Geospatial Consortium

6.12.1 Definition
Model attributes are added to OpenFlight nodes through a Comment record containing XML
tags. The general format is as follow:

<CDB:node name="...">
 <ns:Attribute name="..." value="..."/>
 ... other attributes
</CDB:node>

<CDB:node> identifies the node to which the attributes are added. The node token can take the
following values:

• Zone
• Point
• Group
• Object
• Switch
• Face
• Mesh
• Articulation
• Light
• XRef
• LOD

The XML namespace (ns) of the attribute is optional; when present it identifies the owner of the
attribute. When not specified, the default namespace is CDB.

Any Error! Reference source not found. that are listed in section Error! Reference source
not found. can be used as node attributes. The name of the attribute is the key to search for the
matching symbol into the metadata file named CDB_Attributes.xml; this file is described in
section Error! Reference source not found. and provides the means to interpret the value of the
attribute.

6.12.2 Vendor Attributes
A vendor attribute is identified by its XML namespace. The standard uses the CDB namespace;
a vendor may use any other string to identify itself.

Requirement 36

Req 36 req/openflight/model-vendor-attributes

The definition of vendor attributes SHALL be stored in Vendor_Attributes.xml

91

Copyright © 2017 Open Geospatial Consortium

It is understood that vendor attributes are not interpreted by any other client-devices other than
those supported by the vendor. Reliance by a vendor on Vendor Attributes can reduce the
interoperability of the CDB with other vendors.

6.12.3 Examples
To add the LPH attribute to a CDB Light node, use the following comment:

<CDB:Light>
 <Attribute name="LPH" value="300"/>
</CDB:Light>

Assume a T2DModel contains the Los Angeles International Airport as one of its 2DModels; the
zone associated with the airport could use the APID attribute in the following manner:

<CDB:Zone name="Los Angeles International Airport">
 <Attribute name="APID" value="KLAX"/>
</CDB:Zone>

A company named “Acme Inc.” uses the string “Acme” as the namespace qualifying its vendor-
specific attributes. If the company wants to add the MyAttr attribute to a CDB Articulation, it
could do so by using the following XML tags:

<CDB:Articulation name="Primary Gun 1" id="4416">
 <Acme:Attribute name="MyAttr" value="-1.23"/>
</CDB:Articulation>

To interpret the attribute, a client application searches the file Vendor_Attributes.xml for an
attribute whose symbol is MyAttr. When found, the application knows how to parse and
interpret the attribute’s value. Furthermore, if the client application recognizes the identification
of the vendor (Acme:), it knows what to do with MyAttr.

6.13 Model Textures

Requirements Class – Model Textures

/req/openflight/model-textures

Target type Operations

92

Copyright © 2017 Open Geospatial Consortium

Dependency Openflight Specification

Requirement 37 req/openflight/texture-file-loading

Requirement 38 /req/openflight/quarterly-textures

Requirement 39 req/openflight/monthly-textures

Requirement 40 req/openflight/texture-mipmap

Requirement 41 req/openflight/texture-palette-path

Requirement 42 req/openflight/texture-shadow-geometry

Requirement 43 req/openflight/model-skin-textures

Requirement 44 req/openflight/model-night-maps

Requirement 45 req/openflight/night-map-generation

To achieve a certain degree of realism, models require the use of textures. Furthermore, textures
add details to a model without increasing its polygon count. This is excellent to reduce the
complexity of the geometry but at the same time, it creates a load management issue for client
devices that are interested in these textures.

Requirement 37

Req 37 req/openflight/texture-file-loading

In the case of GTModels and MModels, textures are separate files that SHALL be loaded
after the model geometry files are read and loaded by client devices; in the case of
GSModels and T2DModels, the textures can be loaded concurrently with the model
geometry files.

A client device discovers the existence of textures while loading the model.

One of the goals of the CDB standard is to allow client devices to implement efficient load
management mechanisms. For this reason, the Specification decouples as much as possible the
texture aspect of a model from its geometry aspect. This is done by storing all textures related to
Models in separate directories.

Recall that the texture filenames itself are constructed from the dataset number, the texture type
(selectors 1 and 2), and the texture LOD and these are then concatenated to a modeler-specific

93

Copyright © 2017 Open Geospatial Consortium

texture name. Section 6.13, Model Textures, provides a description and usage of all of the CDB
texture types for Models. The values of component selectors 1 and 2 convey a semantic meaning
to the texture (time-of-year, paint scheme, night map, light map, normal map, etc) and determine
whether the texture is to be used as base texture or as a subordinate texture and whether the
texture is switchable (described in the next section).

6.13.1 Handling of Multi-textures
In OpenFlight, several types of textures can be applied in various combinations. Textures fall in
two broad categories: Base and Subordinate.

6.13.1.1 Base Texture Layer
Base textures24 are set of mutually exclusive model textures that provide texture color/intensity
modulation for the model. While a model can have many base textures, only one base texture
can be referenced and applied to model geometry at a time.

The CDB standard supports the following type of Base Textures:

(1) Year-Round Texture: A year-round texture used with GTModels, MModels,
GSModels, T2DModels . In the case of MModels, base-textures are often
replaced with an appropriate Paint Scheme texture (Uniform, Camouflage or
Airline).

(2) Quarterly Textures: A set of 4 textures, each representative of a quarter within
the calendar year used with GTModels, GSModels, T2DModels .

Requirement 38

Req 38 req/openflight/quarterly-textures

The textures SHALL be provided as a complete set, i.e., it is assumed that all 4 textures of
the same kind (i.e., all four textures have their component selector 1 set to 003) and are all
present in the model’s texture directory.

The presence of a quarterly texture reference in model geometry tells the client-
device that a quarterly texture set is available. This allows the client-device to
select any one of the available 4 textures at rendering time. Only one of the
textures need be referenced by the OpenFlight scenegraph geometry, preferably
the third quarter texture. It is also assumed that all 4 textures share the same UV
mapping.

(3) Monthly Textures: A set of 12 textures, each representative of a month within
the calendar year used with GTModels, GSModels, T2DModels .

24 The CDB Standard uses the term “base texture” the same way as OpenFlight and Creator do.

94

Copyright © 2017 Open Geospatial Consortium

Requirement 39

Req 39 req/openflight/monthly-textures

The textures SHALL be provided as a complete set, i.e., it is assumed that all the 12
textures are of the same kind (i.e., all twelve textures have their component selector CS1
= 002) and are all present in the model’s texture directory.

The presence of a monthly texture reference in model geometry tells the client-
device that a monthly texture set is available. This allows the client-device to
select any one of the available 12 textures at rendering time. Only one of the
textures need be referenced by the OpenFlight scenegraph geometry, preferably
the June texture. It is also assumed that all 12 textures share the same
UVmapping.

(4) Uniform Paint Scheme Textures: Used on MModels with relatively uniform
paint schemes should make use of this texture kind. Colors are listed in Appendix
O. It is also assumed that all textures share the same UVmapping.

(5) Camouflage Paint Scheme Textures: Used on MModels with camouflage paint
schemes should make use of this texture kind. Camouflages are listed in Annex O
(Volume 2: OGC CDB Core: Model and Physical Structure Annexes). It is also
assumed that all textures share the same UVmapping.

(6) Airline Paint Scheme Textures: Used on MModels that represent commercial
aviation airliners should make use of this texture kind to implement the airlines
paint scheme and logos. This base texture addresses the need for multiple skins
painted on identical aircraft type. For instance, the B767-300ER is operated by
more than 60 airlines throughout the world. Annex O Volume 2: OGC CDB
Core: Model and Physical Structure Annexes provides a complete list of Airliners.
It is also assumed that all textures share the same UVmapping.

(7) Shadow Map Textures: Used on MModels as pre-computed orthographic
projections of the MModel. These textures are base textures used to accelerate
the rendering of MModel shadows. Shadow map usage conventions are described
in section 6.13.5.1, Model Shadow Textures.

(8) Motion Blur: Used on MModels as pre-computed motion blurred textures of
rotating parts (e.g., rotor disks). These textures are base textures used to aid
client-devices in eliminating temporal aliasing artifacts. Motion blur textures
conventions are described in section 6.9.2.3, Temporal Anti-aliasing.

95

Copyright © 2017 Open Geospatial Consortium

6.13.1.2 Subordinate Texture Layer
Base textures can be supplemented with one or more25 subordinate textures. Subordinate
textures form a set of model textures that can be used to provide additional color/intensity
modulation or illumination modulation detail to the Base texture.

The CDB standard supports the following types of subordinate textures:

(1) Night Map: This subordinate texture is used to represent changes to models in
their night configuration, typically as a result of lighting effects emanating from
inside the model through windows. Night map textures conventions are
described in greater detail in section 6.13.5.3, Model Night Maps.

(2) Detail Texture (Micro/Macro): This subordinate texture is used to add details
to a base texture that lacks the necessary resolution to provide the correct depth
perception. Detail textures conventions are described in greater detail in section
6.13.5.6, Model Detail Texture Maps.

(3) Contaminants: These textures are used to simulate thin layers of matter that
accumulate on surface top. Contaminant textures conventions are described in
greater detail in section 6.13.5.7, Model Contaminant and Skid Mark Textures.

(4) Normal Map: Normal mapping is a technique used for faking the lighting of
bumps and dents; when used in conjunction with a render’s light sources, it can
add surface detail without using more polygons. This subordinate texture is a 3-
component texture that encodes the normals at each texel. Tangent-space
normal maps conventions are described in greater detail in section 6.13.5.5,
Model Tangent-space Normal Maps.

(5) Reflection Map: Conventions are described in detail in section 6.13.5.8, Model
Cubic Reflection Maps.

(6) Light Map: This subordinate texture is used to represent the effect of external
light sources onto a model. Light map textures conventions are described in
greater detail in section 6.13.5.4, Model Light Maps.

(7) Gloss Map: A texture that describes whether a surface is matte or gloss;
described in section 6.13.5.9, Model Gloss Maps.

(8) Material Texture: To specify the composite materials at the level of a single
texel; described in section 6.13.5.10, Model Material Textures.

Client-devices are required to use the modeler supplied layer number to determine the order in
which the subordinate textures are to be rendered. The base layer is always rendered first,
followed by subordinate layer 1, 2, 3, etc. Gaps within the layer sequence are permitted.

Note that layer numbers are not assigned nor reserved to specific subordinate textures.

25 OpenFlight natively permits up to seven subordinate textures for a total of eight textures including the base
texture.

96

Copyright © 2017 Open Geospatial Consortium

6.13.1.3 Texture Mapping Conventions
The following table provides the texture mapping for use with each kind of textures.

Base
Texture

 Subordinate
Texture

Kind Mapping Kind Mapping
001 Modulate 051 Decal
002 Modulate 052 N/A
004 Modulate 053 Modulate
005 Modulate 054 Modulate
006 Modulate 055 Modulate
007 Modulate 056 Add
008 Modulate 057 N/A
009 Modulate 058 N/A

6.13.2 Default Gamma Corrections
The default gamma corrections of 3D model texture datasets are defined by the following set of
parameters found in the Defaults.xml metadata file.

• Default_GSModelTexture_Gamma
• Default_GSModelInteriorTexture_Gamma
• Default_GTModelTexture_Gamma
• Default_GTModelInteriorTexture_Gamma
• Default_MModelTexture_Gamma

If a parameter is not found in Defaults.xml, or if Defaults.xml is not found in the metadata
directory, assume a default gamma correction of 1.0.

See Annex S Volume 2: OGC CDB Core: Model and Physical Structure Annexesfor the
complete list of default parameters.

6.13.3 Texture Dimension
It is generally accepted by the modeling community to limit texture dimensions to a power of 2.
The CDB standard goes a step further and enforces this practice.

To preserve the original texture resolution as much as possible, it is suggested to resize the
source texture to the nearest26 power of 2. For instance, if a source texture measures 72 pixels
wide by 13 pixels high, it is recommended to resize it to 64 by 16 pixels.

𝑇𝑒𝑥𝑡𝑢𝑟𝑒 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = 2! × 2!

Where n and m are positive integers (n, m ≥ 1).

26 Note here that we do not recommend resizing to the next power of 2; instead, resize to the nearest power of 2.

97

Copyright © 2017 Open Geospatial Consortium

6.13.3.1 Texture Mipmap

Requirement 40

Req 40 req/openflight/texture-mipmap

mipmaps associated with a given texture SHALL be present in the texture directory.
Furthermore, the standard requires that mipmaps SHALL be stored in individual files.

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑝𝑚𝑎𝑝𝑠 = max 𝑛,𝑚 + 1

For instance, a texture whose dimension is 23 × 24 has a total of 5 mipmaps.

6.13.3.2 Texture Size
The naming conventions of all model textures are described in Chapter 3 Volume 1: OGC CDB
Core Standard: Model and Physical Data Store Structure. For texture file whose name uses the
W field, the value of the field is a power of 2 representing the largest dimension of a (possibly
rectangular) texture.

𝑇𝑒𝑥𝑡𝑢𝑟𝑒 𝑆𝑖𝑧𝑒 = 2!

Where W is a non-negative integer (W ≥ 0).

6.13.3.3 Texel Size
For texture file whose name uses the L field, the value of the field is related to the size of the
texels in accordance to Section 3.3.6 Error! Reference source not found. (Volume 1: OGC
CDB Core Standard: Model and Physical Data Store Structure).

6.13.4 Texture Palette
The OpenFlight Texture Palette record stores the names of all textures that are possibly
referenced by the model; that includes all base and subordinate textures (i.e., all skins and all
interchangeable textures). Each palette entry contains the path and filename of one texture.

Requirement 41

Req 41 req/openflight/texture-palette-path

The path SHALL be relative to the OpenFlight file.

Below are examples of entries in the texture palette.

98

Copyright © 2017 Open Geospatial Consortium

6.13.4.1 MModel Example
In the case of a moving model, the OpenFlight file resides in the MModelGeometry directory;
for instance, the M1A2 resides in

\CDB\MModel\600_MModelGeometry\1_Platform\1_Land
\225_United_States\1_Tank\1_1_225_1_1_3_0\

Its main texture is called M1A2 and resides in

\CDB\MModel\601_MModelTexture\M\1\M1A2\

The corresponding palette entry would be

..\..\..\..\..\..\601_MModelTexture\M\1\M1A2\
D601_S005_T001_W11_M1A2.rgb

6.13.4.2 GTModel Example
In the case of a geotypical power pylon model, the OpenFlight file resides in the GTModel
directory

\CDB\GTModel\510_GTModelGeometry\A_Culture\T_Comm
\040_Power_Pylon\Lxx\

Assuming its texture is called Pylon, it resides in

\CDB\GTModel\511_GTModelTexture\P\Y\Pylon\

The corresponding palette entry would be

..\..\..\..\..\..\511_GTModelTexture\P\Y\Pylon\
D511_Sxxx_Txxx_Lxx_Pylon.rgb

6.13.4.3 GSModel Example
In the case of a geospecific model, its OpenFlight file resides in the GSModelGeometry
directory. An example is

\CDB\Tiles\lat\lon\300_GSModelGeometry\Lxx\Ux\

If the model refers to a geospecific texture, it resides in

\CDB\Tiles\lat\lon\301_GSModelTexture\Lxx\Ux\

The corresponding palette entry would be

..\..\..\..\301_GSModelTexture\Lxx\Ux\
latlon_D301_Sxxx_Txxx_Lxx_Ux_Rx_TNAM.rgb

If the model refers to a geotypical texture, it resides in

\CDB\GTModel\511_GTModelTexture\T\N\TNAM

And the corresponding palette entry would be

..\..\..\..\..\..\..\GTModel\511_GTModelTexture\T\N\TNAM\
D511_Sxxx_Txxx_Lxx_TNAM.rgb

99

Copyright © 2017 Open Geospatial Consortium

6.13.4.4 T2DModel Example
In the case of a tiled 2D model, its OpenFlight file resides in the T2DModelGeometry directory.
An example is

\CDB\Tiles\lat\lon\310_T2DModelGeometry\Lxx\Ux\

If the model refers to a geospecific texture, it resides in

\CDB\Tiles\lat\lon\301_GSModelTexture\Lxx\Ux\

The corresponding palette entry would be

..\..\..\..\301_GSModelTexture\Lxx\Ux\
latlon_D301_Sxxx_Txxx_Lxx_Ux_Rx_TNAM.rgb

If the model refers to a geotypical texture, it resides in

\CDB\GTModel\501_GTModelTexture\T\N\TNAM

And the corresponding palette entry would be

..\..\..\..\..\..\..\GTModel\501_GTModelTexture\T\N\TNAM\
D511_Sxxx_Txxx_Lxx_TNAM.rgb

6.13.5 Usages

6.13.5.1 Model Shadow Textures
Ideally, Model shadows should be generated at runtime by the client-device from the model’s
actual geometry. However, depending on the technique used by the client device, special
textures called projected shadow maps may be used to cast shadows from Models.

When the projected shadow map technique is used, special object nodes are used to store the
shadow polygons.

6.13.5.1.1 Shadow Geometry

Requirement 42

Req 42 req/openflight/texture-shadow-geometry

When geometry exists for the purpose of casting shadows, it SHALL be located under an
object node whose Shadow flag is set.

100

Copyright © 2017 Open Geospatial Consortium

Figure 6- 49: Using Shadow Polygons

Several object nodes can be used to store several polygons all textured with projected shadow
maps. It may be desirable to also create separate shadow maps for major articulated parts and
locate these shadow objects just under their corresponding DOF nodes.

6.13.5.1.2 Shadow Maps
Projected shadow maps are created by applying one, two or three orthographic projections on the
model (or optionally on major articulated parts of the model).

Figure 6- 50: Example of a Shadow Map in the XY Plane shows one example of a shadow map
of an aircraft in the XY plane. Similar maps can also be produced for the YZ and ZX planes.

101

Copyright © 2017 Open Geospatial Consortium

Figure 6- 50: Example of a Shadow Map in the XY Plane

A projected shadow map is a monochrome (single-component) texture without transparency. It
represents the mask to cut out the contour of the model. In theory, a black and white texture
would be enough; however, shades of gray are permitted to represent semi-transparent surfaces
that could be present on the model. In any case, a value of 0 (black) means the model does not
block the passage of lights. The opposite value, 1 (white), indicates the model completely
obstruct the light.

Because the shape of the model may change with damage states, each model state should have its
own set of projected shadow maps. Section 6.9.2.2 describes damage states.

Shadow maps are general base textures. Their Texture Kind is 007 and their Texture Index is a
sequence number when several shadow maps exist for the same Model.

To illustrate the naming convention, assume the shadow map from

Figure 6- 50: Example of a Shadow Map in the XY Plane, is called “aircraft”. According to
Section Error! Reference source not found., Error! Reference source not found., and Section
Error! Reference source not found., Error! Reference source not found., the resulting file
name would be:

D601_S007_T001_Wnn_aircraft.rgb

The value Wnn represents the texture size, 2nn, and is explained in Section 6.13.3.2, Texture
Size.

Note that if a client-device generates shadows on its own, without the support of pre-computed
projected shadow maps, it can ignore all OpenFlight object nodes whose Shadow flags are set as
well as all textures associated with these nodes.

102

Copyright © 2017 Open Geospatial Consortium

6.13.5.2 Model Skin Textures
Models skins are base textures that correspond to one or more moving models paint schemes or
one or more time-of-year representations of the cultural feature.

For instance, the same tank can be painted with several different colors to match various areas of
operation. Below are two examples of the same tank, the M1A2 Abrams, painted for operation
in a desert area (

Figure 6- 51: The M1A2 Abrams with Desert Camouflage

) or in a forest area (Figure 6- 52: The M1A2 Abrams with a Forest Camouflage

).

Figure 6- 51: The M1A2 Abrams with Desert Camouflage

103

Copyright © 2017 Open Geospatial Consortium

Figure 6- 52: The M1A2 Abrams with a Forest Camouflage

The two different textures for this tank qualify for use as skins since they have been designed in
such a way that they can be exchanged for one another without affecting their mapping on the
affected polygons.

Requirement 43

Req 43 req/openflight/model-skin-textures

The mapping of textures for a given model or cultural features SHALL be identical since
only the texture is changed, not the UV mapping.

OpenFlight itself does not provide an explicit mechanism to change the base texture assigned to
faces. In fact, OpenFlight supports a single base texture per face record. The other textures that
can be added to a face are called layers and none of them is a replacement for the base texture.

In order to have several skins for a single model, the CDB standard provides the mechanism
defined in 6.14.5.2, Texture Switch. The enumeration values for each skin can be found in
Annex O, Volume 2: OGC CDB Core: Model and Physical Structure Annexes.

The M1A2 used in the above examples has two skins. Each skin is made of a single texture that
happens to be a mosaic of all the individual textures used by the model. Figure 6-2: M1A2
Desert Skin Mosaic below shows one of the M1A2 skins.

104

Copyright © 2017 Open Geospatial Consortium

Figure 6-2: M1A2 Desert Skin Mosaic

The following texture kinds implement the concept of model skins:

Kind 002 – Monthly Representation
Kind 009 – Quarterly Representation

Kind 004 – Uniform Paint Scheme
Kind 005 – Camouflage Paint Scheme
Kind 006 – Airline Paint Scheme

Paint schemes apply to moving models only. Annex O lists available paint schemes (Volume 2:
OGC CDB Core: Model and Physical Structure Annexes).

Time-Of-Year representations are appropriate for cultural features. A good example is the case
of leafy trees. Depending on the hemisphere and the latitude, several textures represent leafy
trees at different stages during the year.

All texture kinds listed above are mutually exclusive; also, all instances of textures of a kind are
mutually exclusive. Since all texture kinds above are base textures, and because only one base
texture can be active at any one time on a face of a model, it follows that only one skin can be
active at a time.

105

Copyright © 2017 Open Geospatial Consortium

6.13.5.3 Model Night Maps
Night maps fall under the category of subordinate textures. Night and light maps (see next
section) are both used at night to represent how interior and exterior light sources change the
appearance of a Model. It is possible for a Model to have both a night and a light map, or just a
light map. However, it is not possible to have a night map alone.

Simulator client-devices invoke a night map when the (simulated) light sources located inside the
model need to change its appearance at night. This is the case when the interior light sources
shine through openings like windows and portholes. To simulate the effect of lights emitted
through these openings, a night map is created; it adds these bright window details normally
missing from the base day texture.

The creation of a night map for models is left to the discretion of the modeler. Creating
additional geometry for the windows and changing the material associated with the polygons to
incorporate an emissive component can also produce a lighting effect similar to night maps.
However, this approach requires additional (unnecessary) model geometry that adds additional
computational load in the client-devices. For this reason, the use of night maps is recommended.

Light maps differ from night maps in that they combine the effect of exterior lighting with
interior lights. A light map acts as a (colored) filter to mask portions of the model that are no
longer visible at night when no ambient light exists.

A Model may have a relatively different aspect at night. This difference comes from two
changes in the environment. The ambient illumination provided by sunlight is totally absent at
night; only the moon and man-made light sources affect the appearance of objects. When
present, the moon provides only a modest level of illumination when compared to the sun. In
addition, the model itself might have internal lights turned on that are not modeled in day version
of the texture but that do affect its appearance at night.

To illustrate these differences, imagine a building as seen during the day. No light seems to
come out of its windows because the average daytime sunlight overwhelms any man-made
lighting (internal to the building and coming out of the windows). At night, the outside walls of
the building have not changed but light is now emanating from the windows. This is an
important change that requires a modification to the texture used to represent the walls.

Another example of the use of a night map is the case of an aircraft flying at night. During
daytime, the aircraft windows look dark while at night, light comes from the inside and the
windows appear white.

Night maps are used to add details to base textures; details that are not visible during the day and
that become visible at night. Therefore, a night map is not a replacement for the base texture. It
is used in conjunction with the base texture.

The next figures illustrate the purpose of night maps.

Figure 6-3: Base Texture is the base texture used in modeling a commercial aircraft, the Airbus
330, during the day. Notice that portholes are represented by dark rounded rectangles because

106

Copyright © 2017 Open Geospatial Consortium

the lights in the cabin are off. The same is true for the cockpit windows located in the bottom
right of the texture.

Figure 6-3: Base Texture

Figure 6-4: Night Map, is the model’s corresponding night map and shows the same portholes
but this time brighter to reflect the fact that cabin lights are on. This time, notice the appearance
of the cockpit windows as well as the presence of colors in them. Remember that this texture is
used to add details that may be missing from the base texture.

Figure 6-4: Night Map

Requirement 44

Req 44 req/openflight/model-night-maps

There are constraints imposed on night maps:

A night map SHALL have the same size as its base texture.
A night map SHALL use the same UV mapping as its base texture.
A night map has a similar format as its base texture (RGB or Intensity)

plus an alpha channel.

107

Copyright © 2017 Open Geospatial Consortium

6.13.5.3.1 Night Map Generation
A night map is mapped on top of its base texture using a Decal texture environment. Since a
night map is a subordinate texture, it is mapped on polygons using an OpenFlight multitexture
record.

Requirement 45

Req 45 req/openflight/night-map-generation

The Effect field of this multitexture record SHALL contain the value 0 indicating to use
the Texture Environment mapping defined in the Texture Attribute file. The
Environment Type field found in the Texture Attribute file SHALL contain the value 2
indicating a Decal environment mapping.

The night map alpha channel is in fact a mask identifying which portions of the base texture are
replaced by the night map. Accordingly, the alpha channel contains a value of 0 when the
corresponding texel of the base texture is left intact. However, the alpha channel will contain the
value 1 when the corresponding texel of the base texture is replaced by the equivalent night map
texel. Overall, the Decal environment mapping applies the following transformation to the base
texture.

where…

is the color component (or intensity) of the base texture

 is the color component (or intensity) of the night map

 is the alpha component of the night map

Since the values found in the night map alpha channel are limited to 0 and 1, the resulting color
will either be the one found in the base texture when is 0 or the one found in the night map
when is 1.

6.13.5.4 Model Light Maps
Light maps also fall under the category of subordinate textures. Night maps and light maps are
both used at night to represent how interior and exterior light sources change the appearance of a
Model. It is possible for a Model to have both a night map and a light map, or just a light map.
However, it is not possible to have a night map alone.

nnnb ACACC ⋅+−⋅=)1(

bC

nC

nA

nA

nA

108

Copyright © 2017 Open Geospatial Consortium

Light maps differ from night maps in that they combine the effect of exterior lighting with
interior lights. A light map acts as a (colored) filter to mask portions of the model that are no
longer visible at night when no ambient light exists.

A light map is used when active light sources are located on the outside of the model. This
technique is used to simulate the appearance of a model when lit by local spotlights. For
instance, spotlights may be used to illuminate a building at night. The light map provides the
illumination pattern that represents the spotlight illumination on the building. The technique
provides a convenient mean to produce interesting and entirely predictable lighting effects
without resorting to computationally intensive local light sources. Their effects are already
incorporated into special textures called light maps.

A light map also contains a mask related to the night map when present. Remember that a light
map is a filter (a mask) to retain the detail associated with the base texture and its optional night
map.

As opposed to a night map, a light map does not have constraints. More specifically:

A light map does not need to be of the same size as its base texture.
A light map has its own UV mapping.
A light map can be an intensity map or an RGB image.

Note that when light sources are modeled with light maps, they only affect the model onto which
they are applied.

The next set of figures illustrates how light maps contribute to the lighting of a model. Note that
a light map is not applied directly to the model base texture. The light map is first modified to
take into account the ambient lighting, and then the resulting lighting is applied to the model.

Figure 6-5: Light Map, is the light map matching the base texture in Figure 6-3: Base Texture.
Notice that it combines light lobes representing external light spots with the mask associated
with internal light sources from the night map. This mask is used to key in details that stay
visible at night.

Figure 6-5: Light Map

109

Copyright © 2017 Open Geospatial Consortium

Figure 6-6: Combined Effect of Base Textures and Light Maps, shows on the actual aircraft the
result of applying the light map from Figure 6-5: Light Map to the base texture from Figure 6-3:
Base Texture. Notice that portholes and cockpit windows are still dark since the base texture has
not been modified by the night map yet.

Figure 6-6: Combined Effect of Base Textures and Light Maps

Figure 6-7: Combined Effect of Night and Light Maps, shows the result of adding the night map
to the base texture and then applying the light map. This time, we can clearly see the lights
coming through portholes and cockpit windows.

Figure 6-7: Combined Effect of Night and Light Maps

6.13.5.4.1 How and When to Use Night Maps and Light Maps
The CDB standard recommends the use of night maps to represent lights that are internal to the
model; this permits the client device to control the appearance of the model with internal lights
on or off. This condition is usually true at night, hence the name of the texture.

Similarly, the CDB standard recommends the use of light maps to represent the effect of lights
that are external to the model; this permits the client-device to control the appearance of the
model with external spotlights on or off.

Note that night and light maps can be applied to any of the skins since skins are base textures.

6.13.5.4.2 How and When Not to Use Light Maps
A client device may discard light maps if the effect of external lights is internally generated by
its GPU. It can be envisioned that future development of specialized hardware – such as
graphics processor unit – will allow more of the lighting effects to be generated in real-time.

110

Copyright © 2017 Open Geospatial Consortium

When this time comes, artificial textures generated off-line such as light maps will become
obsolete.

6.13.5.5 Model Tangent-space Normal Maps
A normal map is an RGB texture (without an alpha channel) where the normal to the surface is
encoded in the Red, Green, and Blue channels. The normal (i, j, k) values are encoded in the
following manner into the 8-bit value of each channel:

R [0, 255] = i [-1.0, +1.0]
G [0, 255] = j [-1.0, +1.0]
B [0, 255] = k [-1.0, +1.0]

The mapping is identical on all channels; the range of all possible 8-bit values (0, 255) is mapped
linearly to the range of floating point values -1.0 to +1.0. This mapping provides a resolution of
2/255 or 0.0078.

In addition, the reader should note that the floating-point value 0.0 has no exact integer
equivalent27. Here, the closest value to 0.0 is approximately ±0.0039 and is obtained when the
channel contains 127 or 128.

Besides this particular encoding of the normal into the RGB channels, a normal map has all the
other attributes of a standard RGB texture whose format is defined in in the SGI Image File
Format28.

In the industry, there are at least two types of Normal Map: object-space normal map, and
tangent-space normal map. Both types have their pros and cons. The CDB standard opts for
tangent-space normal map. A sample is shown here.

27 The conventional OpenGL mapping specifies that -1 and 1 can be represented exactly, but 0 can not.

28 ftp://ftp.sgi.com/sgi/graphics/grafica/sgiimage.html

111

Copyright © 2017 Open Geospatial Consortium

Figure 6-8: Normal Map Sample

Typically, the normal points away from the surface, and not toward the underlying surface. For
this reason, the value of the k-component of the normal is positive, most of the time, resulting in
a bluish tint of the map. A negative k-component could indicate the presence of a cliff with an
overhang, for instance.

6.13.5.6 Model Detail Texture Maps
A detail texture map is 1- or 3-component (aka channel) texture where each texel is represented
as an 8-bit unsigned integer. A detail texture exhibits two important properties; it has a neutral
luminance (intensity) and chrominance (color). This is achieved by applying the following
constraints:

The 8-bit unsigned value of each texel is scaled to a floating point value in the
range -1.0 to 1.0

The average value of an individual component is always 0.0
The Detail texture is mapped on the underlying surface through a simple addition

operation
The net effect of applying a Detail Texture Map is to highlight (> 0) or darken (< 0) fragment
details on the underlying surface. When using a single component detail texture map, only the
intensity of the resulting image is affected; when using a 3-component detail texture map, the
color is also varied.

112

Copyright © 2017 Open Geospatial Consortium

Figure 6-9: Detail Texture Map Sample

Recall that a detail texture map is a mean of adding high-frequency (spatial) details to a rather
low-frequency image.

6.13.5.7 Model Contaminant and Skid Mark Textures
Historically, Image Generators of civil aviation simulators provided the means for flight
instructors to control the appearance of airport runways, taxiways, and roads with various surface
contaminants. To this end, the CDB provides a set of standardized Model Contaminant and Skid
Mark Textures that are commonly used in flight simulators and listed in Annex O, Volume 1.1:
OGC CDB Core: Model and Physical Structure: Informative Annexes. These textures are
typically four-component (R, G, B, alpha) textures that act as an overlay to airport surfaces.

6.13.5.8 Model Cubic Reflection Maps
Reflection mapping (aka environment mapping) is an efficient image-based lighting technique
for approximating the appearance of a reflective surface by means of a precomputed texture
image. The texture is used to store the image of the distant environment surrounding the
rendered object.

113

Copyright © 2017 Open Geospatial Consortium

Figure 6-10: Environment Used to Produce Reflection Map

Figure 6-11: Resulting Reflection Map

114

Copyright © 2017 Open Geospatial Consortium

Figure 6-12: Rendered Reflection Map onto Reflecting Cube

The CDB standard assumes that the surrounding environment is stored using a cubic mapping
approach. In this technique, the environment is projected onto the six faces of a cube and stored
as six square textures or unfolded into six square regions of a single texture. The reflection
mapping approach is more efficient than the classical ray tracing approach of computing the
exact reflection by tracing a ray and following its optical path. The reflection color used in the
shading computation at a pixel is determined by calculating the reflection vector at the point on
the object and mapping it to the texel in the environment map. This technique often produces
results that are superficially similar to those generated by raytracing, but is less computationally
expensive since the radiance value of the reflection comes from calculating the angles of
incidence and reflection, followed by a texture lookup, rather than followed by tracing a ray
against the scene geometry and computing the radiance of the ray, simplifying the GPU
workload.

Note however that in most circumstances, a mapped reflection is only an approximation of the
real reflection. Environment mapping relies on four assumptions:

• All radiance incident upon the statically-positioned object being shaded comes from an
infinite distance. When this is not the case, then a) the reflection of nearby geometry
appears in the wrong place on the reflected object, and b) no parallax is seen in the
reflection.

• The object being shaded is convex, such that it contains no self-interreflections. When
this is not the case the object does not appear in the reflection; only the environment
does.

115

Copyright © 2017 Open Geospatial Consortium

• The environment map is valid for the location for which it was generated.
• The environment is static.

6.13.5.9 Model Gloss Maps
A gloss map is a texture that describes whether a surface is matte or gloss. The texture is used to
modulate specular highlights in the same way the material shininess does. A gloss map is stored
as an 8-bit single channel texture (a grey-scale image) where texels are mapped to the range 0.0
(matte) to 1.0 (glossy). The values in the gloss map play the same role as the single shininess
value found in the OpenFlight material assigned to a polygon. In this way, the gloss map can
effectively modulate the specularity on a per-pixel basis. Note that if the material applied to the
surface has no specular component, then the gloss map has no effect.

6.13.5.10 Model Material Textures
Material textures fall under the category of subordinate textures. They are mapped to Models the
same way as any other textures. As such, the surfaces these textures are mapped to possess their
own set of UV mapping.

A material texture tells the interested client devices (e.g., FLIR, CGF) what the underlying
surface is made of. For this reason, a material texture is not at all related to a base texture. The
two are completely independent and exist separately. A material texture does not require that a
base texture be applied to the model. In fact, it is perfectly possible to create a Model that does
not use texture except for a single material texture describing its various materials.

The <Material> tag presented in section 6.5.3 is a high level mean of providing material
information about the geometry of a model. With the use of a material texture, the modeler can
provide highly detailed material information about the same model.

In short, the <Material> tag supports a polygon-based approach of sensor client devices such as
FLIR, NVG, and RADAR. A Material texture is a texel-based approach supporting an
implementation of such client devices with a much higher resolution.

In the case of the Raster Material dataset (dataset code 005) applied onto the terrain, it is
conceivable that multiple layers and mixtures of materials are required to represent the rich
variety of materials found on the earth surface. However, for Models, a single material layer is
probably adequate for the vast majority of man-made objects.

6.14 Model Descriptor (Metadata) Datasets
Each type of 3D Models has its set of ModelDescriptor datasets; they are:

1. GSModelDescriptor
2. GSModelInteriorDescriptor
3. GTModelDescriptor
4. GTModelInteriorDescriptor
5. MModelDescriptor

116

Copyright © 2017 Open Geospatial Consortium

Each file is needed to summarize and regroup the information concerning one portion of a
model, its shell or its interior. The information are collected and stored in an XML file to help
client devices implement efficient load management mechanism.

The format of the model descriptor file is as follows:

<Model_Metadata>
 <Name>...</Name>
 <Identification>...</Identification>
 <Mass>...</Mass>
 <Parts>...</Parts>
 <Textures>...</Textures>
 <Configurations>...</Configurations>
 <Composite_Material_Table>...</Composite_Material_Table>
</Model_Metadata>

6.14.1 Model Name
The <Name> is an arbitrary string from the character set presented in section 2.2. This name is
the human readable version of the model identification code that follows.

6.14.2 Model Identification
Models are either modeled representation of cultural features or moving models. In both cases,
the CDB standard has a unique way to identify them. For moving models, the identification
scheme corresponds to their DIS entity type. For cultural features, their feature code is used.

6.14.2.1 Moving Model Identification
The DIS entity type is a list of up to seven integers and can be specified in two different
manners. All fields have a default value of zero.

First, you can use a list of one to seven integers as illustrated here:

<Identification>
 <DIS_Entity_Type>
 <List>...</List>
 </DIS_Entity_Type>
</Identification>

Or you can use this more verbose syntax to specify the value of individual fields:

<Identification>
 <DIS_Entity_Type>
 <Kind>...</Kind>
 <Domain>...</Domain>
 <Country>...</Country>
 <Category>...</Category>
 <Subcategory>...</Subcategory>
 <Specific>...</Specific>
 <Extra>...</Extra>
 </DIS_Entity_Type>
</Identification>

All fields are limited to the range [0, 255] except the country code that can go up to 65535.

6.14.2.2 Cultural Feature Identification
For cultural features, their feature code is specified in the following manner:

117

Copyright © 2017 Open Geospatial Consortium

<Identfication>
 <Feature_Attribute_Catalog_Code>
 <Code>...</Code>
 <Subcode>...</Subcode>
 </Feature_Attribute_Catalog_Code>
</Identification>

The feature code has a fixed format of two letters followed by three digits; it is the same as the
feature attribute described in section Error! Reference source not found. of the CDB Standard,
Volume 1: OGC CDB Core Standard:Model and Physical Database Structure. The subcode is an
optional integer in the range [0, 999].

6.14.3 Model Mass
The model mass is optional. It makes sense only when the Model represents a moving model.

<Mass>
 <Total>...</Total>
 <Metal>...</Metal>
</Mass>

The total mass of the model is expressed in kilograms. The portion of the model that is made of
a metallic alloy is expressed as a percentage of the total mass. The value of <Metal> lies in the
range [0.0, 1.0].

When the model mass is specified, the total mass is mandatory while the metallic portion is
optional. The total mass must be larger than zero. The metallic portion defaults to zero.

6.14.4 Model Parts
A Model may be separated into several parts. If the complexity of a part justifies it, each part
may be split into multiple files.

The whole section is optional. It is required only if more than one part exists or if a part has
more than one file.

If present, the section is a list of at least one part formatted like this.

<Parts>
 <Part no="no" numFiles="numFiles" name="partName" />
 ...
</Parts>

The part number is mandatory. It starts at 1 and increases by 1 for each subsequent part. The
first part is also referred to as the body of the model.

The number of files is optional and defaults to 1.

The part name29 is optional and is used only to improve the readability of the file.

29 As a guideline, it is suggested to set the part name the same as the global zone name of that part. For instance, if
the part represents an external fuel tank, a good name for both the part and its global zone would be “External Fuel
Tank”.

118

Copyright © 2017 Open Geospatial Consortium

6.14.5 Model Textures
This section lists all textures that could be possibly used by the model. In the event the model
does not use texture, the whole section is omitted. The section contains a list of textures and
optional texture switches.

<Textures>
 <Texture .../>
 <Texture .../>
 ...
 <Switch .../>
 <Switch .../>
 ...
</Textures>

6.14.5.1 Texture Metadata
For each texture, the section provides the client device with the necessary information to decide
when and which texture mipmap should be loaded.

The section is formatted like this.

<Texture no="number" name="name">
 <Dataset>...</Dataset>
 <Kind>...</Kind>
 <Index>...</Index>
 <Mipmap>min max</Mipmap>
 <Resolution>...</Resolution>
 <Coverage>
 <U>min max</U>
 <V>min max</V>
 </Coverage>
</Texture>

The texture number is a strictly positive integer to uniquely identify the texture. The texture
name corresponds to the TNAM field in the texture filename as defined in Section Error!
Reference source not found., Error! Reference source not found..

The <Dataset>, <Kind>, and <Index> fields correspond respectively to the dataset number and
component selectors 1 and 2; they match the D, S and T fields in the texture filename.

The mipmap field defines the smallest and largest mipmap available for this texture. The value
of this field is used to compose the W field in the texture filename of moving models (see
examples in section Error! Reference source not found.).

The texture resolution is expressed in texels per meter30. It is the same for both the U and V axes
even though it is recognized that it can differ between the two dimensions. The intent is to
provide an indication of how precise the texture is when mapped to the model geometry. It helps
client device decide which mipmap is more appropriate to use.

30 This unit of measurement (texels per meter) is akin to DPI (dot per inch) used to quantify the resolution of printers
and displays.

119

Copyright © 2017 Open Geospatial Consortium

The texture coverage is optional and defines the minimum and maximum values for the U and V
texture coordinates. This information indicates if the texture is repeated along one or both axes.
If the coverage is in the interval [0, 1], the texture is clamped; otherwise, it is repeated.

6.14.5.2 Texture Switch
A Texture Switch is defined when switchable textures appear in the list of textures. Switchable
textures are textures that can be exchanged for one another because they share the same UV
mapping, as explained in section 6.13.5.2, Model Skin Textures.

The section is formatted like this.

<Switch no="number" name="name">
 <State no="number" name="name" textures="list"/>
 ...
</Switch>

The switch number is a unique positive integer identifying the switch. The switch name is a
unique string limited to 32 characters; all switches are uniquely identified by a number and a
name.

A switch has two or more states; each state selecting a list of one or more textures. State
numbers are consecutive and start at 1. The state name is a unique string also limited to 32
characters. The list of textures associated with a state contains the texture numbers of the
selected textures. Note that a state (e.g., a skin) may require more than one texture, hence the
need to specify a list of textures associated with a state.

6.14.5.2.1 Example
Assume that the following two textures are stored in the M1A2 texture folder:

\CDB\MModel\601_MModelTexture\M\1\M1A2\
D601_S004_T005_Wxx_M1A2.rgb
D601_S005_T001_Wxx_M1A2.rgb

Here is an excerpt of the model metadata presenting the two textures, the switch, and the two
corresponding states.

120

Copyright © 2017 Open Geospatial Consortium

<Textures>
 <Texture no="3" name="M1A2">
 <Dataset>601</Dataset>
 <Kind>4</Kind>
 <Index>5</Index>
 ...
 </Texture>
 <Texture no="10" name="M1A2">
 <Dataset>601</Dataset>
 <Kind>5</Kind>
 <Index>1</Index>
 ...
 </Texture>
 ...
 <Switch no="1" name="Paint Scheme">
 <State no="1" name="Uniform Beige Paint" textures="3"/>
 <State no="2" name="Desert Camouflage" textures="10"/>
 </Switch>
</Textures>

The texture switch is named “Paint Scheme” because it controls the selection of the paint scheme
to apply to the M1A2. The first state selects texture 3 which corresponds to a beige uniform
paint; the second state selects texture 10 corresponding to a desert camouflage.

Note that the texture switch mechanism is not limited to base textures; it can be used to switch
light maps for example.

6.14.6 Model Configurations
Often, a single Model – especially a moving model – comes with a variety of possible equipment
and/or ordnance. This can be as diversified as fuel tanks, missiles, radio emitters, etc. To
configure a model with its ordnance, the CBD Specification defines the concept of model
configuration. A configuration defines the set of equipment and ordnance attached to the various
stations found on the model.

The configuration section is optional. It is a list of one or more configurations defined like this.

<Configurations>
 <Configuration>...</Configuration>
 ...
</Configurations>

6.14.6.1 Defining Stations in a Configuration
A configuration is a sequence of one or more stations, each defining one piece of equipment in
one location.

<Configuration name="ConfigName">
 <Station name="StationName">
 <Location>...</Location>
 <Equipment>...</Equipment>
 </Station>
 ... other stations as needed
</Configuration>

The configuration and station names are both optional and are used for documentation purposes
only.

121

Copyright © 2017 Open Geospatial Consortium

The location of a station is defined by its fully qualified name as specified in section 6.5.5,
Model Zone Naming.

6.14.6.2 Defining Equipment in a Station
The equipment is defined by either its DIS identification or a reference to an external part, and an
optional anchor point.

<Equipment name="EquipmentName">
 <Identification>...</Identification>
 <External_Part>...</External_Part>
 <Anchor>...</Anchor>
</Equipment>

The equipment name is optional and is used for documentation purposes only.

The anchor point is specified in the same manner as the location of a station, by providing its
path (on the subordinate model) as specified in section 6.5.5, Model Zone Naming.

6.14.6.3 Defining Equipment Names
Either a DIS emitter name or a DIS entity type identifies the equipment. When the equipment is
an emitter, the syntax is as follow.

<Identification>
 <DIS_Emitter_Name>...</DIS_Emitter_Name>
</Identification>

Emitter names are defined by the DIS standard. For DIS, refer to Section 8.1.1 of reference [4]
for a list of DIS Emitter Names. For the HLA standard, the RPR-FOM lists all emitter names.
To avoid confusion, both DIS and HLA refer to emitter names using numbers. For instance, the
NATO emitter AS 15 KENT altimeter is referred to as emitter 8735.

When the equipment is another entity (e.g., a missile), its DIS entity type is supplied in the
following manner.

<Identification>
 <DIS_Entity_Type>...</DIS_Entity_Type>
</Identification>

Recall that the DIS entity type is a list of up to 7 numbers as defined by reference [4]. For
example, the AGM-114K-SAL Hellfire missile would be referred to as:

<DIS_Entity_Type>
 <List>2 2 225 1 3 5 1</List>
</DIS_Entity_Type>

or

122

Copyright © 2017 Open Geospatial Consortium

<DIS_Entity_Type>
 <Kind>2</Kind>
 <Domain>2</Domain>
 <Country>225</Country>
 <Category>1</Category>
 <Subcategory>3</Subcategory>
 <Specific>5</Specific>
 <Extra>1</Extra>
</DIS_Entity_Type>

Equipment can also be defined by a reference to an external part if need be. A good example of
such equipment is a fuel tank.

<External_Part>
 <Part_Number>...</Part_Number>
 <Configuration>...<Configuration>
</External_Part>

The external part is identified by its part number as defined previously in the <Parts> section.

The external part may also require it own configuration. Take the example of a Hellfire missile
rack attached to an attack helicopter like the Apache. The rack can hold up to 4 missiles. Each
missile attaches to one of four separate weapon stations located on the rack. For this more
complex example, assume the rack has only two missiles out of four. This configuration can be
specified with the following piece of XML.

<External_Part>
 <Part_Number>1</Part_Number>
 <Configuration>
 <Station name="Missile 1">
 <Location>\Missile_Rack\Attach_Point[1]</Location>
 <Equipment>
 <Identification>
 <DIS_Entity_Type>
 <List>2 2 225 3 5 1</List>
 </DIS_Entity_Type>
 </Identification>
 </Equipment>
 </Station>
 <Station name="Missile 2">
 <Location>\Missile_Rack\Attach_Point[2]</Location>
 <Equipment>
 <Identification>
 <DIS_Entity_Type>
 <List>2 2 225 3 5 1</List>
 </DIS_Entity_Type>
 </Identification>
 </Equipment>
 </Station>
 <Configuration>
</External_Part>

With the help of model configurations, it is possible to create several variants of a single Model,
each variant defined by its own configuration.

This way, one Apache can have two configurations, one when equipped with Hellfire missiles
and one when equipped with rocket launchers.

123

Copyright © 2017 Open Geospatial Consortium

6.14.7 Model Composite Materials
The composite material table is the last component of the Model Metadata and is defined in
section Error! Reference source not found., Error! Reference source not found. in the CDB
Standard, Volume 1: OGC CDB Core Standard: Model and Physical Database Structure.

124

Copyright © 2017 Open Geospatial Consortium

Annex A: Conformance Class Abstract Test Suite (Normative)

A.1 Conformance class: CRS

This test is to validate that the Coordinate Reference System (CRS) metadata is properly
structured in the Openflight header record.

Conformance Class /conf/openflight/header-crs

Requirements Class /req/openflight/ crs

Dependency Openflight Specification

Test 1 /conf/header-crs/crs

Requirement /req/openflight/model-global-zone

Test purpose Verify that the CRS codes are properly set

Test method Pass if the values are set to the default of “0”

Test type Conformance

A.2 Conformance Class: Tree Structure

Conformance Class /conf/openflight/tree-structure

Requirements Class /req/openflight/tree-structure

Dependency Openflight Specification

Test 2 /conf/tree-structure/model-global-zone

Requirement /req/core/openflight/model-global-zone

Test purpose Verify that a CDB OpenFlight Model has a global zone as its root
node. This node identifies the model.

Test method Visual. Pass if the model has a global zone as its root node. Check
file system structure.

Test type Conformance

Test 3 /conf/tree-structure/2dmodel

Requirement /req/openflight/2dmodel

Test purpose Verify that each 2DModel is implemented as a Model Zone with its
own subgraph.

125

Copyright © 2017 Open Geospatial Consortium

Test method Visual. Pass if the a model zone has its own sub-graph

Test type Conformance

Test 4 /conf/tree-structure/2dmodel-rules

Requirement /req/openflight/2dmodel-rules

Test purpose Verify the A 2DModel has at least two layers: layer 0 and layer 1.
Verify that Layer 0 is empty because it represents the terrain on
top of which subsequent layers are applied. Verify that each layer
is composed of exactly one OpenFlight Object node.

Test method Pass if there are at least two layers. Visual inspection

Test type Conformance

Test 5 /conf/tree-structure/2dmodels

Requirement req/openflight/2dmodels

Test purpose Verify that for T2DModels, node attributes are defined only at the
zone level; that is, at the global zone or at the individual 2DModel
zones. Node attributes are not permitted at the Group, LOD,
Object, Face, and Mesh node levels.

Test method Visual, Pass if node attributes are defined only at the zone level

Test type Conformance

Test 6 /conf/tree-structure/xref

Requirement req/openflight/xref

Test purpose Verify that all external OpenFlight references are made using a
relative path.

Test method Visual. Pass if external references use relative paths.

Test type Conformance

A.3 Conformance Class: Modeling Conventions

The following are the conformance tests for the OpenFlight modelling conventions.

Conformance Class /conf/openflight/model-conventions

Requirements Class /req/openflight/model-conventions

126

Copyright © 2017 Open Geospatial Consortium

Dependency Openflight Specification

Test 7 /conf/model-conventions/crs-models

Requirement /req/openflight/crs-models

Test purpose Verifythat CDB Models use the same coordinate system
convention as OpenFlight

Test method Visual. Pass if the CRS definitions are the same.

Test type Conformance

Test 8 /conf/model-conventions/model-origin

Requirement /req/openflight/model-origin

Test purpose Verify that the model origin is located at the center of the bounding
rectangle and that along the Z axis, the origin as selected allows
the model to be correctly positioned on the ground for ground
related models on or a water plane for surface and subsurface
platforms.

Test method Visual. Pass if the model is correctly positioned in the display.

Test type Conformance

Test 9 /conf/model-conventions/t2-model-coordinates

Requirement /req/openflight/ t2-model-coordinates

Test purpose Verify that the latitude (y) and longitude (x) coordinates are
expressed in decimal degrees and that the values are relative to
the file’s (implicit) origin which is the south-west corner of the tile.

Test method Visual. Pass if coordinates are expressed in decimal degrees..

Test type Conformance

Test 10 /conf/model-conventions/roll-pitch-yaw

Requirement req/openflight/roll-pitch-yaw

Test purpose Verify that the Pitch, Roll and Yaw angles refer to rotations around
the X, Y, and Z axes and Angles are measured in degrees. The
Roll and Yaw angles vary from ±180 degrees while the Pitch angle
is limited to the range ±90 degrees.

Test method Visual. Pass if all angles are degrees

Test type Conformance

Test 11 /conf/model-conventions/geometry

127

Copyright © 2017 Open Geospatial Consortium

Requirement req/openflight/geometry

Test purpose Verify the implementers of the CDB OpenFlight standard adhere to
set of constraints, rules and guidelines as defined in OpenFlight
Requirement 11 when creating the geometry of Models.

Test method Visual. Pass if all polygons are convex, all vertices of a polygon
are in the same place, and that all polygon vertices (coordinates)
have a counter-clockwise ordering.

Test type Conformance

Test 12 /conf/model-conventions/ geometry-layer-constraint

Requirement req/openflight/ geometry-layer-constraint

Test purpose Verify that Layer 0, the base layer, contains geometry that
completely encompasses the geometry of subsequent layers.
Other layers areprocessed in order, one after the other. A layer is
made of one or more nodes; all nodes of a given layer have the
same relative priority.

Test method Visual and software. Software can check processing order. Pass if
the base layer contains a geometry that encompasses the
geometry of sub-layers.

Test type Conformance

A.4 Conformance Class: Model Zones

This conformance class tests requirements related to OpenFlight model zones.

A model zone represents a component of interest on the Model. A model zone (as well as the
component it represents) occupies a certain volume and is delimited by a bounding box. At least
one simulator subsystem must be interested in a specific component to justify the creation of a
corresponding zone. Examples of zones are a turret on a tank, or an engine on a platform, or an
entrance door on a building, etc

Conformance Class /conf/openflight/model-zones

Requirements Class /req/openflight/model-zones

Dependency Openflight Specification

Test 13 /conf/model-zones/model-zone-bounding-box

Requirement /req/openflight/model-zone-bounding-box

128

Copyright © 2017 Open Geospatial Consortium

Test purpose Verify that a model zone has a Bounding Box.

Test method Visual. Pass if there is a bounding box.

Test type Conformance

Test 14 /conf/model-zones/zone-name

Requirement /req/openflight/zone-name

Test purpose Verify that there is a zone name.

Test method Visual. Pass if there is a zone name.

Test type Conformance

Test 15 /conf/model-zone/global-zone

Requirement /req/openflight/ global-zone

Test purpose Verify that the model has at least one zone that encompasses the
whole model and that is called the model global zone.

Test method Visual. Pass if of there is one zone encompassing the whole
model.

Test type Conformance

Test 16 /conf/ model-zone /hot-spot-temperature

Requirement req/openflight/hot-spot-temperature

Test purpose Verify that temperatures are expressed as integer Celsius.

Test method Visual. Pass if temperatures are integer Censius

Test type Conformance

Test 17 /conf/ model-zone /model-footprint-zones

Requirement req/openflight/ model-footprint-zones

Test purpose Verify that Client-devices assume that the geometry that is
associated with a Model Footprint Zone is hidden.

Test method Visual. Check Client code.

Test type Conformance

129

Copyright © 2017 Open Geospatial Consortium

Test 18 /conf/ model-zone /model-footprint-hierarchy

Requirement req/openflight/model-footprint-hierarchy

Test purpose Verify that the Model Footprint is placed under a CDB Footprint
Zone node.

Test method Visual. Pass if model footprint is correctly placed in hierarchy.

Test type Conformance

Test 19 /conf/ model-zone /model-cutout-zones

Requirement req/openflight/model-cutout-zones

Test purpose Verify that the Model Cutout is modeled as a set of OpenFlight
Face or Mesh records. Verify that client-devices assume that the
geometry that is associated with a Model Cut-Out Zone is hidden
and cut-out...

Test method Visual.

Test type Conformance

Test 20 /conf/ model-zone /model-cutout-geometry

Requirement req/openflight/model-cutout-geometry

Test purpose Verify that the Cutout geometry is placed under a CDB Model
Cutout Zone node.

Test method Visual.

Test type Conformance

Test 21 /conf/ model-zone /model-pseudo-interior-zone

Requirement req/openflight/model-pseudo-interior-zone

Test purpose Verify that since the pseudo-interior is a placeholder for the real
interior that it is placed under its own subgraph and identified by a
CDB zone whose name is “Interior”.

Test method Visual.

130

Copyright © 2017 Open Geospatial Consortium

Test type Conformance

Test 22 /conf/ model-zone /model- interior-zone

Requirement req/openflight/model- interior-zone

Test purpose Verify that The Model interior itself has a global zone whose name
is “Interior”.

Test method Visual.

Test type Conformance

A.5 Conformance Class: Model Points

A model point is similar to a model zone; it identifies a location on the model that is of interest to
at least one simulation client device. A point defines a local coordinate system on the model.
Hence, a point has a position and an orientation. The following tests ensure that model points are
correctly modeled and comply with the model points requirements class.

Conformance Class /conf/openflight/model-points

Requirements Class /req/openflight/model-points

Dependency Openflight Specification

Test 23 /conf/model-points/model-point-damage-states

Requirement /req/core/openflight/model-point-damage-states

Test purpose Verify that there is a single definition of this point for all damage
states and all levels of details for a given model.

Test method Visual. Pass if there is a single definition.

Test type Conformance

Test 24 /conf/ model-points/model-dis-origin

Requirement /req/openflight/model-dis-origin

Test purpose Verify that the CDB Point representing the DIS Origin is positioned
and oriented according the definition provided by the DIS
Standard. This definition says that the DIS Origin is at the center
of the bounding box of the entity, without articulated and attached
parts. The standard also says what the orientation SHALL be.
The X-axis points forward, the Y-axis points to the right, and the Z-
axis points down. All axes are aligned with the bounding box
defined above.

131

Copyright © 2017 Open Geospatial Consortium

Test method Visual. Pass if the dis origin is correctly encoded.

Test type Conformance

Test 25 /conf/ model-points /model-viewpoint

Requirement /req/openflight/model-viewpoint

Test purpose Verify the viewpoint’s local coordinate system is oriented such that
the Y-axis indicates the viewing direction and the Z-axis points up.

Test method Visual inspection. Pass if orientation is correct.

Test type Conformance

A.6 Conformance Class: Model Points

A levels-of-detail model structure is essential when the intent is to use a model in a real-time
application such as flight simulation. The level-of-detail mechanism provides client-devices
with the essential structure for deterministic operation. The following test determines whether
the OpenFlight model and CDB data store use the proper method to determine if a level of detail
is still active.

Conformance Class /conf/openflight/model-level-of-detail

Requirements Class /req/openflight/significant-sizes

Dependency Openflight Specification

Test 26 /conf/model-level-of-detail/significant-sizes

Requirement /req/openflight/significant-sizes

Test purpose Verify that the implementation method uses the Significant Size
associated with the LOD node to determine when to activate the
node

Test method Visual.

Test type Conformance

A.7 Conformance Class: Model Switch Nodes

Conformance Class /conf/openflight/model-switch-nodes

Requirements Class /req/openflight/switch-mask

Dependency Openflight Specification

Test 27 /conf/model-switch-nodes/switch-mask

132

Copyright © 2017 Open Geospatial Consortium

Requirement /req/core/openflight/switch-mask

Test purpose Verify that the switch contains one mask per state. Note that the
first mask, mask index 0, is the default mask. This means that the
value of the Current Mask field in the Switch record is 0.

Test method Visual. Pass if values are correct.

Test type Conformance

Test 28 /conf/ model-switch-nodes/switch-mask-name

Requirement /req/openflight/ switch-mask-name

Test purpose Verify that each mask has a name. The name of the mask SHALL
be representative of the state selected by that mask.

Test method Visual. Pass if each mask has a name

Test type Conformance

A.8 Conformance Class: Damage Status

Conformance Class /conf/openflight/model-switch-nodes

Requirements Class /req/openflight/damage-status

Dependency Openflight Specification

Test 29 /conf/ damage-status /switch-mask

Requirement /req/core/openflight/damage-transition

Test purpose Verify that the percentages representing the transitions are limited
to the range [0, 99]. The value 100 is not allowed because the
level of damage cannot exceed the transition value in order to
select the correct state.

Test method Visual. Pass if values are in valid range.

Test type Conformance

Test 30 /conf/ damage-status /switch-mask-name

Requirement /req/openflight/ damage-order

Test purpose Verify that the ordering of damage states is from left (normal state)
to right (destroyed state). All intermediate states must represent
increasingly damaged states from a slightly damaged state to an
almost destroyed state.

Test method Visual. Pass if ordering is correct.

Test type Conformance

133

Copyright © 2017 Open Geospatial Consortium

A.9 Conformance Class: Model Articulations

Conformance Class /conf/openflight/model-points

Requirements Class /req/openflight/model-articulations

Dependency Openflight Specification

Test 32 /conf/model-articulations/articulation-node-rotation

Requirement /req/core/openflight/model-point-damage-states

Test purpose Verify that the translation rate is expressed in meters per second.
Verify that the rotation rate is expressed in degrees per second.
Finally, verify that the scaling rate is expressesd in units per
second. When not specified, verify that a default rate of zero is
used.

Test method Visual. Pass if units of measure are correct.

Test type Conformance

Test 33 /conf/model-articulations /gimbal-limits

Requirement /req/openflight/global-limits

Test purpose Verify that the appropriate flags are set to specify which degrees of
freedom are controlled by a particular articulation.

Test method Visual. Pass if flags are correctly set.

Test type Conformance

Test 34 /conf/ model-articulations /articulation-flags

Requirement /req/openflight/articulation-flags

Test purpose Verify the Flags field, located at offset 376 in the OpenFlight DOF
record, has a non-zero value because the articulation control has
at least one degree of freedom.

Test method Visual inspection. Pass if orientation is correct.

Test type Conformance

134

Copyright © 2017 Open Geospatial Consortium

A.10 Conformance Class: Model Textures

Conformance Class /conf/openflight/model-textures

Requirements Class /req/openflight/model-textures

Dependency Openflight Specification

Test 37 /conf/model-textures/texture-file-loading

Requirement /req/core/openflight/ texture-file-loading

Test purpose Verify thatforn the case of GTModels and MModels, textures are
separate files that are loaded after the model geometry files are
read and loaded by client devices; in the case of GSModels and
T2DModels, the textures can be loaded concurrently with the
model geometry files.

Test method Visual. Pass if units of measure are correct.

Test type Conformance

Test 38 /conf/model- textures/qualterly-textures

Requirement /req/openflight/quarterly-textures

Test purpose Verify that the quarterly textures are provided as a complete set,
i.e., it is assumed that all 4 textures of the same kind (i.e., all four
textures have their component selector 1 set to 003) and are all
present in the model’s texture directory

Test method Visual. Pass if flags are correctly set.

Test type Conformance

Test 39 /conf/ model- textures/monthly-textures

Requirement /req/openflight/monthly-textures

Test purpose Verify the monthly textures are provided as a complete set, i.e., it
is assumed that all the 12 textures are of the same kind (i.e., all
twelve textures have their component selector CS1 = 002) and are
all present in the model’s texture directory.

Test method Visual inspection. Pass if orientation is correct.

Test type Conformance

Test 40 /conf/ model- textures/texture-mipmap

Requirement /req/openflight/texture-mipmap

Test purpose Verify that the mipmaps associated with a given texture are
present in the texture directory. Furthermore, verify that the
mipmaps are stored in individual files..

135

Copyright © 2017 Open Geospatial Consortium

Test method Visual inspection. Pass if orientation is correct.

Test type Conformance

Test 41 /conf/ model- textures/texture-palette-path

Requirement /req/openflight/texture-palette-path

Test purpose Verify that the palette path is relative to the OpenFlight file

Test method Visual inspection. Pass if orientation is correct.

Test type Conformance

Test 42 /conf/ model- textures/texture-shadow-geometry

Requirement /req/openflight/texture-shadow-geometry

Test purpose Verify that when a geometry exists for the purpose of casting
shadows that the geometry is located under an OpenFlight object
node whose Shadow flag is set

Test method Visual inspection. Pass if orientation is correct.

Test type Conformance

Test 43 /conf/ model- textures/model-skin-textures

Requirement /req/openflight/model-skin-textures

Test purpose Verify that the mapping of textures for a given model or cultural
features is identical since only the texture is changed, not the UV
mapping

Test method Visual inspection. Pass if orientation is correct.

Test type Conformance

Test 44 /conf/ model- textures/model-night-maps

Requirement /req/openflight/model-night-maps

Test purpose Verify that a night map has the same size as its base texture, that
a night map uses the same UV mapping as its base texture and
that a night map has a similar format as its base texture (RGB or
Intensity) plus an alpha channel

Test method Visual inspection. Pass if orientation is correct.

Test type Conformance

Test 45 /conf/ model- textures/model-night-generation

Requirement /req/openflight/model-night-generation

Test purpose Verify that the Effect field of the multitexture record contains the
value 0 indicating using the Texture Environment mapping defined
in the Texture Attribute file. Verify that the Environment Type field
found in the Texture Attribute file contains the value 2 indicating a
Decal environment mapping

136

Copyright © 2017 Open Geospatial Consortium

Test method Visual inspection. Pass if orientation is correct.

Test type Conformance

137

Copyright © 2017 Open Geospatial Consortium

Annex B: Revision history

Date Release Author Paragraph modified Description
2/12/2016 1.0 C. Reed Many Many edits, added requirements,

requirements classes, and Annex A

2/26/2016 1.0 C. Reed Annex A Finish ATS

138

Copyright © 2017 Open Geospatial Consortium

Annex C: OpenFlight v16.0 Technical Description – Annotated

This document has been annotated to reflect the conventions established by the CDB standard.
Collectively, these conventions are referred to as OpenFlight/CDB. The conventions define how
OpenFlight files are interpreted by a CDB-compliant OpenFlight reader; the stated conventions
supersede or replace related aspects of this annotated specification. Unless stated otherwise,
CDB-compliant OpenFlight readers will ignore any data that fails to conform to the stated
conventions.

OpenFlight®
Scene Description
Database Specification

Annotated with CDB conventions

Version 16.0

Document Revision A

139

Copyright © 2017 Open Geospatial Consortium

November 2004

140

Copyright © 2017 Open Geospatial Consortium

OpenFlight Scene Description Database Specification, version 16.0. November, 2004

Contents

OpenFlight Concepts .. 9
Database Hierarchy ... 9
Node Attributes ... 12
Palettes .. 12
Instancing .. 13
Replication. ... 14
Bounding Volumes ... 14
Multitexture ... 14
OpenFlight Record Types ... 15
Control Records .. 16
Hierarchy Level Change Records ... 16

Push Level Record .. 17
Pop Level Record .. 17
Push Subface Record .. 17
Pop Subface Record .. 17
Push Extension Record .. 17
Pop Extension Record. .. 17
Push Attribute Record. ... 18
Pop Attribute Record. ... 18
Hierarchy Instancing Records. .. 18
Instance Definition Record ... 18
Instance Reference Record. .. 19

Node Primary Records .. 19
Header Record19
Group Record..22
Object Record.25
Face Record. .. .26
Mesh Nodes .. 28

Mesh Record. .. . 29
Local Vertex Pool Record. .. 30
Mesh Primitive Record. .. 32

Light Point Nodes ... 34
Indexed Light Point Record. .. 34
Light Point Record. .. 34

Light Point System Record. .. 37
Degree of Freedom Record ... 37
Vertex List Record .. 39
Morph Vertex List Record. ... 39
Binary Separating Plane Record ... 40
External Reference Record. .. 41
Level of Detail Record .. 41
Sound Record .. 43
Light Source Record ... 44
Road Segment Record. .. 44
Road Construction Record. ... 45
Clip Region Record .. .47
Text Record ... 47
Switch Record. .. 49
CAT Record .. 50
Extension Record. .. .51
Curve Record .. 51

Ancillary Records .. .52
Comment Record .. 53
Lond ID Record .. 53
Indexed String Record .. 53
Multitexture ... 54

141

Copyright © 2017 Open Geospatial Consortium

Multitexture Record ... 54
UV List Record .. 55

Replicate Record ... 57
Road Zone Record .. 58
Transformation Records .. 58

Matrix Record .. 59
Rotate About Edge Record .. 59
Translate Record .. 59
Scale Record .. 59
Rotate and/or Scale to Point Record ... 60
Put Record .. 60
General Matrix Record .. 60
Rotate About Point Record .. 60

Vector Record ... 61
Bounding Volume Records ... 61

Bounding Box Record ... 62
Bounding Sphere Record .. 62
Bounding Cylinder Record ... 62
Bounding Convex Hull Record .. 62
Bounding Histogram Record ... 62
Bounding Volume Center Record .. 63
Bounding Volume Orientation Record .. 63

CAT Data Record ... 63
Extension Attribute Record ... 64
Continuation Record ... 65

Palette Records .. 66
Vertex Palette Records .. 66

Vertex Palette Record .. 67
Vertex with Color Record ... 68
Vertex with Color and Normal Record .. 68
Vertex with Color and UV Record .. 69
Vertex with Color, Normal and UV Record .. 69

Color Palette Record ... 70
Name Table Record .. 71
Material Palette Record ... 71
Texture Palette Record .. 73
Eyepoint and Trackplane Palette Record .. 73
Key Table Records .. 76
Linkage Palette Record ... 77
Sound Palette Record .. 80
Light Source Palette Record ... 81
Light Point Appearance Palette Record .. 82
Light Point Animation Palette Record .. 85
Line Style Palette Record .. 85
Texture Mapping Palette Record .. 86

Texture Pattern Files ... 93
Texture Attribute Files .. 93
Vertex Node Parameters ... 103
Face Node Parameters ... 103
Object Node Parameters ... 104
LOD Node Parameters .. 104
Group Node Parameters .. 104
DOF Node Parameters .. 105
Sound Node Parameters .. 106
Switch Node Parameters ... 106
Text Node Parameters ... 107
Light Source Node Parameters ... 107
Clip Node Parameters ... 107
Valid Opcodes ... 109
Obsolete Opcodes...................................111

 Overview .. 113

142

Copyright © 2017 Open Geospatial Consortium

Format Changes .. 113
Continuation Record ... 113
Header Record .. 114
Mesh Nodes .. 114
Mesh Record .. 115
Local Vertex Pool Record .. 116
Mesh Primitive Record .. 118
Multitexture ... 120
Multitexture Record ... 120
UV List Record .. 122
Texture Attribute File ... 123
Subtexture .. 123

 Overview .. 125
Document Corrections .. 125
Text Record ... 126
CAT Record .. 126

Header Record .. 127
Group Record .. 128
Level of Detail Record .. 129
External Reference Record ... 130
Indexed String Record .. 130
Face Record .. 131
Mesh Record ... 131
Local Vertex Pool Record ... 132
Vertex Palette Records .. 133
Light Points ... 136
Light Point Appearance Palette Record ... 136
Light Point Animation Record ... 139
Indexed Light Point Record ... 140
Light Point System Record .. 140
Texture Mapping Palette Record .. 141
Parameters for 3 Point Put Texture Mapping (Type 1 ... 141
Parameters for 4 Point Put Texture Mapping (Type 2 ... 141

 Overview .. 143
Document Corrections .. 143
Header Record .. 143
Face Record .. 144
Mesh Record ... 144
Switch Record ... 145
Texture Mapping Palette Record .. 145
Indexed String Record .. 147
Bounding Convex Hull Record ... 147
Bounding Histogram Record .. 147
Format Changes .. 147
External Reference Record ... 147
Face Record .. 148
Mesh Record ... 148
Light Point Appearance Palette Record .. 148
Shader Palette Record ... 149
Texture Attribute File ... 149
Texture Mapping Palette Record .. 150
Parameters for 3 Point Put Texture Mapping (Type 1 ... 150

143

Copyright © 2017 Open Geospatial Consortium

OpenFlight® Scene Description

The following symbols have been used throughout the document to specify the
conventions established by OpenFlight/CDB.

ü = The record, field or value is supported by OpenFlight/CDB readers and follows
the same conventions and usage as the OpenFlight Standard

� = The record, field is not considered by OpenFlight/CDB readers (e.g. ignored)

� = The record, field or value is specific to MultiGen-Paradigm and therefore is not
considered by OpenFlight/CDB readers (e.g. ignored)

� = The value for the specified field is not supported by OpenFlight/CDB readers.
OpenFlight/CDB readers ignore any fields with values that are not supported.

� = The record, field or value is specific to MultiGen’s Creator tool and therefore is
not considered by OpenFlight/CDB readers (e.g. ignored)

This document describes the OpenFlight Scene Description Database Specification, commonly
referred to as simply “OpenFlight”. OpenFlight is a 3D scene description file format that was
created and is maintained by MultiGen-Paradigm, Inc. While OpenFlight databases are typically
created and edited using MultiGen-Paradigm software tools, the format is widely adopted and as
a result, many tools exist to read and write OpenFlight database files.

The primary audience for this document includes software developers whose applications are
intended to read and/or write OpenFlight database files. To this end, this document discusses
concepts incorporated in OpenFlight and contains a detailed description of the physical layout of
OpenFlight files as represented on disk.

144

Copyright © 2017 Open Geospatial Consortium

OpenFlight Concepts

The OpenFlight database format supports both simple and relatively sophisticated real-time
software applications. The full implementation of OpenFlight supports variable levels of detail,
degrees of freedom, sound, instancing (both within a file and to external files), replication, an-
imation sequences, bounding volumes for real-time culling, scene lighting features, light points
and light point strings, transparency, texture mapping, material properties, and many other fea-
tures.

A simple application that interprets an OpenFlight database can implement a subset of the
database specification and use databases that contain that subset. Such an application could sim-
ply scan for the color palette, faces, and vertices, and ignores groups, objects, and other more
sophisticated features.

Database Hierarchy

The OpenFlight database hierarchy organizes the visual database into logical groupings and
facilitates real-time functions such as field-of-view culling, level-of-detail switching, and in-
stancing. Each OpenFlight database is organized in a tree structure.

The database tree structure consists of nodes (historically called beads). Most nodes can have
child nodes as well as sibling nodes. In general, nodes can be thought of in three hierarchical
classes. Starting from the top of the hierarchy, these three node classes include container nodes,
geometry nodes and vertex nodes.

Container nodes are nodes that impose some logical grouping or behavior on the set of nodes it
contains. The group node, for example allows you to “collect” similar nodes under one common
parent for whatever reason your application needs. You might choose to group your nodes spa-
tially or by some other criteria important to your application. Another common container node,
the level of detail node, imposes a particular visual behavior on the nodes it contains. It defines a
range of distances inside which the nodes it contains are visible.

Geometry nodes are nodes that actually represent some physical (renderable) geometry. The at-
tributes of geometry nodes typically include visual attributes such as color, material, texture, etc.
The two main geometry nodes in OpenFlight are the face and mesh nodes. Other geometry nodes
include the light point and text node. Though OpenFlight allows it, there are very few cases in
which at least one geometry node is not contained somewhere below a container node.

Vertex nodes are the building blocks of geometry nodes. Individually, a vertex node represents a
discrete point in space. Collected together under a geometry node such as a face node, a set of
vertex nodes define a closed (or unclosed) loop. A closed loop of vertex nodes defines a face (or
polygon). The “front” side of the face is determined by the ordering in which the vertex nodes
appear under the face node. An unclosed loop of vertex nodes defines a set of line segments,
again oriented according to the order in which the vertex nodes appear.

Each node type has data attributes specific to its function in the database. The principal node
types in OpenFlight are described here:

Header: There is one header node per database file. It is always the first node in the file and
represents the top of the database hierarchy and tree structure. For more information, see “Header
Record” on page 19.

145

Copyright © 2017 Open Geospatial Consortium

Group: A group node distinguishes a logical subset of the database. Group nodes can be trans-
formed (translated, rotated, scaled, etc.). The transformation applies to itself and to all its chil-
dren. Groups can have child nodes and sibling nodes of any type, except a header node. For more
information, see “Group Record” on page 22.

Object: An object node contains a logical collection of geometry. It is effectively a low-level
group node that offers some attributes distinct from the group node. For more information, see
“Object Record” on page 25.

Face: A face node represents geometry. Its children are limited to a set of vertices that describe a
polygon, line, or point. For a polygon, the front side of the face is viewed from an in-order
traversal of the vertices. Face attributes include color, texture, material, and transparency. For
more information, see “Face Record” on page 26.

Mesh: A mesh node defines geometric primitives that share attributes and vertices. See For more
information, see “Mesh Nodes” on page 28.

Light point: A light point node represents a collection of light point vertices or a replicated string
of a single light point vertex. A light point is visible as one or more self-illuminated small points
that do not illuminate surrounding objects. For more information, see “Light Point Nodes” on
page 34.

Light point system: A light point system enables you to collect a set of light points and
enable/disable or brighten/dim them as a group. For more information, see “Light Point System
Record” on page 37.

Subface: A subface node is a face node that is assumed to be coplanar to, and drawn on top of, its
superface. Subfaces can themselves be superfaces to allow multiple levels of “nesting”. This
construct resolves the display of coplanar faces. A subface is introduced, after a face node, by a
push subface control record and concluded by a pop subface control record. Note that the
OpenFlight format does not enforce a subface to be coplanar with its superface but this is rec-
ommended.

Light source: A light source node serves as the location and orientation of a light source. The
light source position and direction are transformed by the transformations above it in the tree (if
any). For more information, see “Light Source Record” on page 44.

Sound: A sound node serves as the location for a sound emitter. The emitter position is the sound
offset transformed by the transformations above it in the tree (if any). For more information, see
“Sound Record” on page 43.

Text: A text node draws text in a string with a specified font, without injecting the actual geom-
etry into the database as face nodes. This is a leaf node and therefore cannot have any children.
For more information, see “Text Record” on page 47.

Vertex: A vertex node represents a point in space, expressed as a double precision 3D coordi-
nates. Each vertex is stored in the vertex palette record. Vertex attributes include x, y, z and
optionally include color, normal and texture mapping information. Vertex nodes are the children
of face nodes and light point nodes. For more information, see “Vertex List Record” on page 39,
“Morph Vertex List Record” on page 39 and “Vertex Palette Records” on page 66.

Morph vertex: A morph vertex node is a second vertex node. The vertex and morph vertex rep-
resent the two endpoints of a path between which the actual vertex may be interpolated. One
endpoint represents the minimum (non morphed) weighting and the other represents the maxi-
mum (fully morphed) weighting. Each endpoint (or weight) is a reference into the vertex palette
record. All vertex attributes may be morphed. Morph vertex nodes are the children of face nodes.

146

Copyright © 2017 Open Geospatial Consortium

For more information, see For more information, see “Morph Vertex List Record” on page 39.

Clip region: A clip node defines a set of clipping planes. Any geometry, of the clip node’s chil-
dren, that falls outside the specified clipping planes is not displayed. For more information, see
“Clip Region Record” on page 47.

Degree of freedom: A degree of freedom (DOF) node serves as a local coordinate system with a
predefined set of internal transformations. It specifies the articulation of parts in the database and
set limits on the motion of those parts. For more information, see “Degree of Freedom Record”
on page 37.

Level of detail: A level of detail (LOD) node serves as a switch to turn the display of everything
below it on or off based on its range from the viewer, according to its switch-in, switch-out dis-
tance and center location. For more information, see “Level of Detail Record” on page 41.

Switch: A switch node is a more general case of an LOD node. It allows the selection of zero or
more children by invoking a selector mask. Any combination of children can be selected per
mask and the number of definable masks is unlimited. For more information, see “Switch
Record” on page 49.

External reference: An external reference node serves to reference a node in another database
file, or an entire database file. The referenced (child) node or database is considered an external
part of the referencing (parent) database. For more information, see “External Reference Record”
on page 41.

Node Attributes

Nodes in the OpenFlight scene contain attributes whose values describe different properties or
characteristics of the node. Most attributes are represented directly on the node itself and are
geared toward describing the specific characteristics of that type of node. The level of detail
(LOD) node, for example, defines a switch in and switch out distance. Used together, these dis-
tances define a range within which the geometry contained in the LOD is visible.

Other attributes are represented indirectly on a node, using a lookup index into a table (palette) of
attributes to describe the characteristics of a node. The face node, for example, defines several
indirect attributes, including color index, material index and texture index. The values of these
index attributes are used to map specific colors, materials and textures to the face node. The
definitions of the colors, materials and textures referenced by these index attributes are stored in
palettes in the database rather than directly on the nodes themselves.

This mechanism of indirect attribute mapping via palettes has some advantages. It can both save
space in the OpenFlight file and can simplify the task of making global changes to nodes in the
database.

To see how this indirection saves space, consider the material index attribute on the face node. A
material is defined by over 15 separate color and other visual attributes. If each of these attributes
were maintained per face in the database, the size of the database would get large quickly. Since
it is common to map a single material to hundreds (or even thousands) of faces in the database, it
is much more efficient to store a single material index attribute per face rather than storing the
entire material definition.

Also, in terms of changing the appearance of a particular material in your database, when you do
change the material definition in the palette, the faces that reference that material get updated

147

Copyright © 2017 Open Geospatial Consortium

automatically. This can make global changes much more simple to accomplish.

Palettes

In the previous section, indirect attribute mapping was introduced. As part of that discussion, the
notion of database palettes was also mentioned briefly. In fact, indirect attribute mapping is not
possible without a robust implementation of database palettes. A database palette is a collection
(or set) of attribute definitions. As mentioned in the previous section, the material palette defines
a set of materials, each material being composed of several different color and visual attributes.

The OpenFlight database supports many different palettes. The most obvious palettes are the
color, material and texture palettes. Most palettes support variable numbers of elements while
others enforce fixed size constraints. The material and texture palettes are both variable sized
palettes that can contain zero or more entries. The color palette, in contrast, is a fixed size palette
that contains exactly 1024 entries.

Database palettes are not limited to supporting indirect attribute mapping. The vertex palette for
example, defines a set of “shared” vertex nodes that can be indirectly referenced by multiple faces
and/or light point nodes in the database. Similar to the space savings achieved by attribute
palettes, the vertex palette also saves much disk space in the OpenFlight file when many geom-
etry nodes share references to the same exact point in space (vertex).

All the database palettes supported by OpenFlight are described in “Palette Records” on page 66.
Specific palettes in OpenFlight include:

•”Color Palette Record” on page 70
•”Material Palette Record” on page 71
•”Texture Palette Record” on page 73
•”Texture Mapping Palette Record” on page 86
•”Sound Palette Record” on page 80
•”Line Style Palette Record” on page 85
•”Light Source Palette Record” on page 81
•”Light Point Appearance Palette Record” on page 82
•”Light Point Animation Palette Record” on page 85
•”Vertex Palette Records” on page 66
•”Name Table Record” on page 71
•”Eyepoint and Trackplane Palette Record” on page 73
•”Linkage Palette Record” on page 77

Instancing

Instancing is the ability to define all or part of a database once, then reference it one or more
times while applying various transformations. This allows you to define a piece of geometry once
and place it multiple times in the scene. OpenFlight supports internal and external instancing with
operations such as Rotate, Translate, Scale, and Put.

An internal instance is a subtree of the database that has been declared as an instance definition.
An instance definition represents the root of a stand-alone subtree within the database. It is in-
troduced by an instance definition record that contains a unique instance definition number. An
instance definition is invoked by an instance reference record in a subsequent part of the database

148

Copyright © 2017 Open Geospatial Consortium

tree.

An external instance refers to an entire database file. It is introduced by an external reference
node. An external reference node contains the name of the (child) database file to attach to that
point in the referencing (parent) database tree. It also includes attributes that determine whether
the child uses its own color, material, and texture palettes, or those of its parent.

Instance definitions can themselves contain instance definitions and references. Internal instances
cannot reference themselves. External instances should not reference themselves directly or
indirectly. The result of such use is undefined.

Instance definition and instance reference records are described in “Hierarchy Instancing
Records” on page 18. External reference records are described in “External Reference Record” on
page 41.

Replication

Replication instances a subtree of the database several times, applying a transformation each
time. For example, a string of trees can be represented by a single group node that is instantiated
and translated to a new position several times.

Replication is legal for group, face, and light point nodes. Therefore a replication record is an
ancillary record of a group, face, or light point node. In conjunction with a replication record
there will be one or more ancillary transformation records.

Bounding Volumes

Bounding volumes can be used by the application to determine if a particular subtree of the da-
tabase is in view. A bounding volume can be a box, a sphere, or a cylinder. Each group node can
have only one bounding volume. The volume normally encompasses the full geometric extent of
the group node’s children, including any instances and replications. A bounding volume record is
an ancillary record of a group node.

Multitexture

OpenFlight supports eight textures per polygon or mesh as well as eight uv values per vertex. The
texture information stored directly on the face, mesh and vertex record is referred to as “the base
texture” or “texture layer 0”. Each additional texture layer is stored in ancillary records to the
face, mesh and vertex list records and is referred to as “texture layer N” (for N=1..7). See
“Multitexture” on page 54 for more information.

6-149

Copyright © 2017 Open Geospatial Consortium

2 OpenFlight File Format

The hierarchical structure of an OpenFlight database is stored on disk as a file. The file
consists of a linear stream of binary records. Byte ordering in the file is big endian. All
OpenFlight records begin with a 4 byte sequence. The first two bytes of this sequence
identifies the record type (opcode) and the second two bytes specify the length of the
record. Note that the length includes this 4 byte sequence so the minimum length of any
record (that does not contain any additional data) will be 4. Given this very regular
structure, OpenFlight records can be read from disk and parsed easily.

•All OpenFlight records are a multiple of 4 bytes in length. When a record contains less
than an full multiple of 4 bytes of data, the record is padded up (bytes added to the end of
the record) to be a multiple of 4 bytes in length. In some cases, OpenFlight records are
padded up to be multiples of 8 bytes in length.
•The length of all records (and fields in all records) as well as the offset of all fields are
expressed in bytes.
•Unless explicitly stated otherwise, bit fields and masks are counted starting at 0 (i.e., the
first bit is bit number 0).

•Unless explicitly stated otherwise, the elements of matrix records stored in OpenFlight
appear in row major order. That is, the elements of the matrix appear in the following
order:
row0col0, row0col1, row0col2, row0col3,
row1col0, row1col1, row1col2, row1col3,
row2col0, row2col1, row2col2, row2col3,
row3col0, row3col1, row3col2, row3col3

•The length of all OpenFlight records is limited to the largest value that can be encoded
with 2 bytes or 16 bits (65535). For fixed-size records, this maximum size is sufficient.
For variable-size records, this limitation is addressed with the Continuation Record. For
more information, see “Continuation Record” on page 65.

OpenFlight Record Types

There are four major categories of records: control records, node primary records,
ancillary records and continuation records.

Control records mark the hierarchy of the tree. A push control record (a record containing
the push opcode) indicates an increase in the depth of the tree. A push control record
drops you down one level in the tree. A pop control record (a record containing a pop
opcode) returns you to the previous level of hierarchy. All records between a push and a
pop represent sibling nodes at the same level of hierarchy. Other control records include:
instance definition, instance reference, push subface, pop subface, push attribute, and pop
attribute.

Each node is represented on disk by one primary record and zero or more ancillary
records. The primary record identifies a node type and includes most of the node attribute
data. Additional node attributes, such as comments, long ID, and transformations, are
stored in subsequent ancillary records. Ancillary records follow the primary record, but
precede any control records. Child nodes are introduced by a push control record and are

6-150

Copyright © 2017 Open Geospatial Consortium

concluded by a pop control record.

Palette records are ancillary records of the header node. Palette records generally follow
the header node’s primary record, with the exception of behavior (linkage) palette
records. Behavior palette records, if present, are the last (non-control) records in the file.

Continuation records are used to “continue” a record in the OpenFlight Scene Description
file stream, when the original record is larger than 65535 bytes. The continuation record
appears in the stream immediately following the record that it “continues”. The data
contained in the continuation record is defined by the original record and is assumed to
be directly appended onto the content of the original record. Multiple continuation
records may follow a record, in which case all continuation records would be appended
(in sequence) to the original record

Many records include an eight character ASCII ID consisting of the first seven characters
of the node name plus a terminating <nil> character. If the node ID is longer than seven
characters, an ancillary long ID record containing the complete ID follows the node
primary record.

For example, a record with an object opcode is followed by a push control record. Next
comes a record with a face opcode, also followed by a push control record. After that
comes the vertex list record(s) that describe the vertices of the face, and then a pop
control record. This, in turn, may be followed by another face record for the next face in
the same object, or by a pop record to return to object level.

The fields within each OpenFlight record are stored in big-endian byte order. OpenFlight
database files have the extension “.flt” by convention.

Control Records

Control records indicate a change in the level of the database hierarchy. The three basic
types of control records are: level changes, instance definition, and instance reference.
Level changes are indicated by push and pop control records. Instance definitions and
references are indicated by instance definition and instance reference control records.

Hierarchy Level Change Records

A database contains three distinct types of hierarchy: generic, subface, and attribute.
Hierarchy may be skipped by scanning past the push control record for the corresponding
pop control record.

Generic A push level control record introduces a generic subtree of the
database hierarchy. A pop level control record concludes that
subtree.

Subface A push subface control record introduces a subtree of coplanar faces.
A pop subface control record concludes that subtree.

Extension A push extension control record introduces a subtree of user defined
records. A pop extension control records concludes that subtree.

Attribute A push attribute control record introduces a subtree of records
reserved for internal use by MultiGen-Paradigm, Inc.. A pop

6-151

Copyright © 2017 Open Geospatial Consortium

attribute control record concludes that subtree.

Push Level Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Push Level Opcode 10 ü
Unsigned
Int

2 2 Length - length of the record ü

Pop Level Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Pop Level Opcode 11 ü
Unsigned
Int

2 2 Length - length of the record ü

Push Subface Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Push Subface Opcode 19 ü
Unsigned
Int

2 2 Length - length of the record ü

Pop Subface Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Pop Subface Opcode 20 ü
Unsigned
Int

2 2 Length - length of the record ü

Push Extension Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Push Extension Opcode 21 ü
Unsigned
Int

2 2 Length - length of the record ü

Char 4 18 Reserved �
Unsigned
Int

22 2 Vertex reference index; -1 if
not vertex extension

�

6-152

Copyright © 2017 Open Geospatial Consortium

Pop Extension Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Pop Extension Opcode 22 ü
Unsigned
Int

2 2 Length - length of the record ü

Char 4 18 Reserved �
Unsigned
Int

22 2 Vertex reference index; -1 if
not vertex extension

�

Push Attribute Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Push Attribute Opcode 122 ü
Unsigned
Int

2 2 Length - length of the record ü

Int 4 4 Vertex reference index; -1 if
not vertex attribute

�

Pop Attribute Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Pop Attribute Opcode 123 ü
Unsigned
Int

2 2 Length - length of the record ü

Hierarchy Instancing Records

An instance definition record introduces a stand-alone subtree of the database. The
subtree is referenced one or more times from different branches in the database by
instance reference records. At the point of reference, the subtree is copied (or possibly
shared) as a child of the current parent node.

The instance definition record must appear in the file stream prior to the first instance
reference record that references it. A typical usage of these records might look like:

INSTANCE DEFINITION 1
PUSH
The records between this PUSH and POP define the
stand-alone subtree that is INSTANCE DEFINITION 1
POP
...
GROUP
MATRIX
PUSH
INSTANCE REFERENCE 1
POP
GROUP
MATRIX

6-153

Copyright © 2017 Open Geospatial Consortium

PUSH
INSTANCE REFERENCE 1
POP

In this example, both groups reference instance definition number 1, each presumably
applying a different matrix to place the instance in different locations in the scene.

Instance Definition Record

Data Type Offset Length Description CDB OpenFlight
Reader

Int 0 2 Instance Definition Opcode
62

ü

Unsigned
Int

2 2 Length - length of the record ü

Int 4 2 Reserved �
Int 6 2 Instance definition number ü

Instance Reference Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Instance Reference Opcode

61
ü

Unsigned
Int

2 2 Length - length of the record ü

Int 4 2 Reserved �
Int 6 2 Instance definition number ü

Node Primary Records

Header Record

The header record is the primary record of the header node and is always the first record
in the database file. Attributes within the header record provide important information
about the database file as a whole.

Format revision level indicates the OpenFlight version of the file. Correctly interpreting
the attributes of other records, such as the face and vertex records, depends upon the
format revision. The format revision encompasses both Flight and OpenFlight versions.

6-154

Copyright © 2017 Open Geospatial Consortium

Some representative values for format revision are:

Format Revision Value Flight/OpenFlight Version CDB OpenFlight Reader
11 Flight V11 �
12 Flight V12 �
14 OpenFlight v14.0 and v14.1 �
1420 OpenFlight v14.2 �
1510 OpenFlight v15.1 �
1540 OpenFlight v15.4 �
1550 OpenFlight v15.5 �
1560 OpenFlight v15.6 �
1570 OpenFlight v15.7 �
1580 OpenFlight v15.8 �
1600 OpenFlight v16.0 ü

This document describes OpenFlight version 16.0, therefore the attribute descriptions are
based upon a format revision level of 1600.

Geographic attributes such as projection type, latitude, and longitude may be stored in the
header record. The MultiGen Series II and Creator Terrain options set the value of these
attributes when creating terrain databases. Positive latitudes reference the northern
hemisphere and negative longitudes reference the western hemisphere.

Delta x, y and z attributes indicate the placement of the database when several separate
databases, each with a local origin of zero, are used to represent an area.

6-155

Copyright © 2017 Open Geospatial Consortium

Header Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Header Opcode 1 ü
Unsigned Int 2 2 Length - length of the record ü
Char 4 8 7 char ASCII ID; 0 terminates

(usually set to “db”)
ü

Int 12 4 Format revision level ü
Int 16 4 Edit revision level �
Char 20 32 Date and time of last revision �
Int 52 2 Next Group node ID number �
Int 54 2 Next LOD node ID number �
Int 56 2 Next Object node ID number �
Int 58 2 Next Face node ID number �
Int 60 2 Unit multiplier (always 1) �
Int 62 1 Vertex coordinate units ü
 0 = Meters ü
 1 = Kilometers �
 4 = Feet �
 5 = Inches �
 8 = Nautical miles �
Int 63 1 if TRUE set texwhite on new faces �
Int 64 4 Flags (bits, from left to right) �
 0 = Save vertex normals �
 1 = Packed Color mode �
 2 = CAD View mode �
 3-31 = Spare �
Int 68 4*6 Reserved �
Int 92 4 Projection type ü
 0 = Flat earth ü
 1 = Trapezoidal �
 2 = Round earth �
 3 = Lambert �
 4 = UTM �
 5 = Geodetic ü
 6 = Geocentric �
Int 96 4*7 Reserved �
Int 124 2 Next DOF node ID number �
Int 126 2 Vertex storage type �
 1 = Double precision float - should

always be 1
�

6-156

Copyright © 2017 Open Geospatial Consortium

Header Record (Continued)
Data Type Offset Length Description CDB OpenFlight

Reader
Int 128 4 Database origin �
 100 = OpenFlight �
 200 = DIG I/DIG II �
 300 = Evans and Sutherland

CT5A/CT6
�

 400 = PSP DIG �
 600 = General Electric

CIV/CV/PT2000
�

 700 = Evans and Sutherland GDF �
Double 132 8 Southwest database coordinate x �
Double 140 8 Southwest database coordinate y �
Double 148 8 Delta x to place database �
Double 156 8 Delta y to place database �
Int 164 2 Next sound node ID number �
Int 166 2 Next path node ID number �
Int 168 4*2 Reserved �
Int 176 2 Next Clip node ID number �
Int 178 2 Next Text node ID number �
Int 180 2 Next BSP node ID number �
Int 182 2 Next Switch node ID number �
Int 184 4 Reserved �
Double 188 8 Southwest corner latitude �
Double 196 8 Southwest corner longitude �
Double 204 8 Northeast corner latitude �
Double 212 8 Northeast corner longitude �
Double 220 8 Origin latitude �
Double 228 8 Origin longitude �
Double 236 8 Lambert upper latitude �
Double 244 8 Lambert lower latitude �
Int 252 2 Next Light source node ID number �
Int 254 2 Next Light point node ID number �
Int 256 2 Next Road node ID number �
Int 258 2 Next CAT node ID number �
Int 260 2 Reserved �
Int 262 2 Reserved �
Int 264 2 Reserved �
Int 266 2 Reserved �
Int 268 4 Earth ellipsoid model �
 0 = WGS 1984 �
 1 = WGS 1972 �

6-157

Copyright © 2017 Open Geospatial Consortium

 2 = Bessel �
 3 = Clarke 1866 �
 4 = NAD 1927 �
 -1 = User defined ellipsoid �
Int 272 2 Next Adaptive node ID number �
Int 274 2 Next Curve node ID number �
Int 276 2 UTM zone (for UTM projections -

negative value means Southern
hemisphere)

�

Char 278 6 Reserved �

6-158

Copyright © 2017 Open Geospatial Consortium

Header Record (Continued)
Data Type Offset Length Description CDB OpenFlight

Reader
Double 284 8 Delta z to place database

(used in conjunction with
existing Delta x and Delta y
values)

�

Double 292 8 Radius (distance from
database origin to farthest
corner)

�

Unsigned
int

300 2 Next Mesh node ID number �

Unsigned
int

302 2 Next Light Point System ID
number

�

Int 304 4 Reserved �
Double 308 8 Earth major axis (for user

defined ellipsoid) in meters
�

Double 316 8 Earth minor axis (for user
defined ellipsoid) in meters

�

Group Record

The group record is the primary record of the group node. Groups are the most generic
hierarchical node present in the database tree. Attributes within the group record provide
bounding volumes that encompass the group’s children and real-time control flags.

Relative priority specifies a fixed ordering of the group relative to its sibling nodes.
Ordering is from left (lesser values) to right (higher values). Nodes of equal priority may
be arbitrarily ordered. All nodes have an implicit (default) relative priority value of zero.

A group can represent an animation sequence in which case each immediate child of the
group represents one frame of the sequence. An animation sequence is made of one or
more loops.

For a group with N children, both forward and backward loops consist of N frames. The
frames of forward and backward loops are:
Direction Frame 1 Frame 2 Frame 3 ... Frame N

Forward Child 1 Child 2 Child 3 ... Child N
Backward Child N Child N-1 Child N-2 ... Child 1

Independent of the direction of the loop, a loop can optionally swing. A swing loop is one
that plays its children in the primary direction and then plays them in the opposite
direction. Note that as the loop swings from the current direction to the opposite
direction, the last frame in the current direction is not repeated. Therefore, for a group
with N children, the first loop of both forward swing and backward swing animations

6-159

Copyright © 2017 Open Geospatial Consortium

consist of M frames where M equals ((2*N)-1) frames. Subsequent loops of swing
animations consist of M-1 frames. The frames of the first loop of forward and backward
swing animations are:
Direction Frame 1 Frame 2 ... Frame N Frame N+1 Frame N+2 ... Frame M

Forward Child 1 Child 2 ... Child
N

Child N-
1

Child N-
2

... Child 1

Backward Child N Child
N-1

... Child
1

Child 2 Child 3 ... Child N

The frames of subsequent loops of forward and backward swing animations are:
Direction Frame 1 Frame 2 ... Frame N Frame N+1 Frame N+2 ... Frame M-

1
Forward Child 2 Child 3 ... Child

N
Child N-
1

Child N-
2

... Child 1

Backward Child
N-1

Child
N-2

... Child
1

Child 2 Child 3 ... Child N

The number of times an animation loop repeats within the sequence is specified by the
loop count attribute. A loop count of 0 indicates that the loop is to repeat forever.

The duration of one loop within the sequence is specified by the loop duration attribute
and is measured in seconds. A loop duration of 0 indicates that the loop is to play as fast
as possible.

For finite animation sequences (those with positive, non-zero loop count values), the
duration that the last frame of the last loop is extended after the sequence has finish is
specified by the last frame duration attribute and is measured in seconds. A last frame
duration of 0 indicates that the last frame is not displayed any longer after the sequence
finishes.

Special effect ID1 and ID2 are application-defined attributes. Their values can be used to
enhance the meaning of existing attributes, such as the animation flags, or extend the
interpretation of the group node. Normally, the value of these attributes is zero.

Significance can be used to assist real-time culling and load balancing mechanisms, by
defining the visual significance of this group with respect to other groups in the database.
Normally the value of this attribute is zero.

Layer ID is used by the Instrumentation Tools in the modeling products to identify (for
display) a collection of groups, independent of their locations in the hierarchy. Normally
the value of this attribute is zero.

6-160

Copyright © 2017 Open Geospatial Consortium

Group Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Group Opcode 2 ü
Unsigned
Int

2 2 Length - length of the record ü

Char 4 8 7 char ASCII ID; 0
terminates

ü

Int 12 2 Relative priority ü
Int 14 2 Reserved �
Int 16 4 Flags (bits, from left to

right)
ü

 0 = Reserved �
 1 = Forward animation ü
 2 = Swing animation ü
 3 = Bounding box follows �
 4 = Freeze bounding box �
 5 = Default parent �
 6 = Backward animation ü
 7-31 = Spare �
Int 20 2 Special effect ID1 -

application defined
�

Int 22 2 Special effect ID2 -
application defined

�

Int 24 2 Significance üper CDB
convention

Int 26 1 Layer code �
Int 27 1 Reserved �
Int 28 4 Reserved �
Int 32 4 Loop count ü
Float 36 4 Loop duration in seconds ü
Float 40 4 Last frame duration in

seconds
ü

6-161

Copyright © 2017 Open Geospatial Consortium

Here are some examples that show how the values of the animation flags (forward
animation, backward animation and swing animation) affect the animation. Note that
these flags define how one “loop” of the animation sequence behaves.

Group Animation Flags Examples
Forward

Animation
Backward
Animation

Swing
Animation

Result

0 0 0 Group is not animated
1 0 0 Animation loop is forward, no swing.
0 1 0 Animation loop is backward, no swing.
1 0 1 Animation loop is forward with swing.
0 1 1 Animation loop is backward with swing.
1 1 Any Undefined, must be either forward or backward

(not both).

Here are some examples that show how the loop duration, loop count and last frame
duration attributes affect the animation. Note that these values are independent of the
animation flags from above.

Group Animation Count Examples

Loop
Duration

Loop
Count

Last Frame
Duration

Result

0 0 Any Each loop plays as fast as possible.
Loops are played forever.
Last Frame Duration not applicable.

T 0 Any Each loop lasts T seconds.
Loops are played forever.
Last Frame Duration not applicable.

0 N 0 Each loop plays as fast as possible.
N loops are played.
Last frame displayed as long as any other frame.

0 N T Each loop plays as fast as possible.
N loops are played.
Last frame of last (Nth) loop displayed T seconds
longer than any other frame.

T1 N 0 Each loop lasts T1 seconds.
N loops are played.
Last frame of last (Nth) loop displayed as long as any
other frame.

T1 N T2 Each loop lasts T1 seconds.
N loops are played.
Last frame of last (Nth) loop displayed T2 seconds
longer than any other frame.

Object Record

The object record is the primary record of the object node. Objects are low-level
grouping nodes that contain attributes pertaining to the state of it child geometry. Only
face and light point nodes may be the children of object nodes.

6-162

Copyright © 2017 Open Geospatial Consortium

The time-of-day object flags can be used to inhibit the display of certain objects,
depending on the current time of day.

The illumination flag, when set, makes an object self-illuminating, and is not subject to
lighting calculations. In practice, geometric normals should be ignored.

The flat shading flag, when set, indicates that lighting calculations should produce a
faceted appearance to the object’s geometry. In practice, geometric normals should be
constrained to face normals.

The shadow flag indicates the object represents the shadow of the rest of the group. When
used as part of a moving model (e.g., an aircraft), the application can apply appropriate
distortions, creating a realistic shadow on the terrain or runway.

Relative priority specifies a fixed ordering of the object relative to its sibling nodes.
Ordering is from left (lesser values) to right (higher values). Nodes of equal priority may
be arbitrarily ordered. All nodes have an implicit (default) value of zero.

When used, transparency applies to all an object’s children (geometry). The value should
be modulated with the transparency of the geometry and material alpha calculation, as
described in the Face Record, Mesh Record and Material Record sections.

Note: The MultiGen-Paradigm, Inc. modeling environment does not use the object
transparency value for rendering as described above.

However, when an object’s transparency value is set in Creator, that value is set on all
children faces of the object. Runtime applications may choose to use the transparency
value at the object level at their discretion.

Object Record
Data Type Offset Length Description OpenFlight CDB

Reader
Int 0 2 Object Opcode 4 ü
Unsigned
Int

2 2 Length - length of the record ü

Char 4 8 7 char ASCII ID; 0
terminates

ü

Int 12 4 Flags (bits from to right) ü
 0 = Don't display in daylight ü
 1 = Don't display at dusk ü
 2 = Don't display at night ü
 3 = Don't illuminate ü
 4 = Flat shaded ü
 5 = Group's shadow object ü
 6-31 = Spare �
Int 16 2 Relative priority ü

Unsigned
Int

18 2 Transparency ü

 0 = Opaque

6-163

Copyright © 2017 Open Geospatial Consortium

 65535 = Totally clear
Int 20 2 Special effect ID1 -

application defined
�

Int 22 2 Special effect ID2 -
application defined

�

Int 24 2 Significance ü
Per CDB conventions

Int 26 2 Reserved �

Face Record

The face record is the primary record of the face node. A face contains attributes
describing the visual state of its child vertices. Only vertex and morph vertex nodes may
be children of faces. This should not be confused with the fact that faces may have
subfaces.

If a face contains a non-negative material index, its apparent color is a combination of the
face color and material color, as described in “Material Palette Record” on page 71. If a
face contains a nonaddictive material with an alpha component and the transparency field
is set, the total transparency is the product of the material alpha and face transparency.

Note: As mentioned in “Object Record” on page 25, the object transparency is not used
in the MultiGen-Paradigm, Inc. modeling environment to determine the actual
transparency value of a face.

If a face is a unidirectional or bidirectional light point, the face record is followed by a
vector record (Vector Opcode 50) that contains the unit vector indicating the direction in
which the primary color is displayed. For bidirectional light points, the alternate color is
displayed in the opposite direction (180 degrees opposed).

Note: This method of defining light points is obsolete after OpenFlight version 15.2.
Such light point faces will be turned into the new light point record when it is read
into MultiGen II v1.4 or later.

Relative priority specifies a fixed ordering of the face relative to its sibling nodes.
Ordering is from left (lesser values) to right (higher values). Nodes of equal priority may
be arbitrarily ordered. All nodes have an implicit (default) value of zero.

6-164

Copyright © 2017 Open Geospatial Consortium

Face Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Face Opcode 5 ü
Unsigned Int 2 2 Length - length of the record ü
Char 4 8 7 char ASCII ID; 0 terminates ü
Int 12 4 IR color code �
Int 16 2 Relative priority ü
Int 18 1 Draw type ü
 0 = Draw solid with backface culling

(front side only)
ü

 1 = Draw solid, no backface culling
(both sides visible)

ü

 2 = Draw wireframe and close �
 3 = Draw wireframe �
 4 = Surround with wireframe in alternate

color
�

 8 = Omnidirectional light �
 9 = Unidirectional light �
 10 = Bidirectional light �
Int 19 1 Texture white = if TRUE, draw textured

face white
�

Unsigned Int 20 2 Color name index ü
Unsigned Int 22 2 Alternate color name index ü
Int 24 1 Reserved �
Int 25 1 Template (billboard) ü
 0 = Fixed, no alpha blending ü
 1 = Fixed, alpha blending ü
 2 = Axial rotate with alpha blending ü
 4 = Point rotate with alpha blending ü
Int 26 2 Detail texture pattern index, -1 if none �

Note: Detail
textures are IRIS

GL specific
Int 28 2 Texture pattern index, -1 if none ü
Int 30 2 Material index, -1 if none ü
Int 32 2 Surface material code (for DFAD) ü

(tentative)
Int 34 2 Feature ID (for DFAD) �
Int 36 4 IR material code �
Unsigned Int 40 2 Transparency ü
 0 = Opaque
 65535 = Totally clear

6-165

Copyright © 2017 Open Geospatial Consortium

Unsigned Int 42 1 LOD generation control �

Unsigned Int 43 1 Line style index �
Int 44 4 Flags (bits from left to right) ü
 0 = Terrain ü
 1 = No color ü
 2 = No alternate color ü
 3 = Packed color ü
 4 = Terrain culture cutout (footprint) ü
 5 = Hidden, not drawn ü
 6 = Roofline ü
 7-31 = Spare �
Unsigned Int 48 1 Light mode ü
 0 = Use face color, not illuminated ü
 1 = Use vertex colors, not illuminated ü
 2 = Use face color and vertex normals ü
 3 = Use vertex colors and vertex normals ü
Char 49 7 Reserved �
Unsigned Int 56 4 Packed color, primary (a, b, g, r) - only b,

g, r used
ü

Unsigned Int 60 4 Packed color, alternate (a, b, g, r) - only
b, g, r used

ü

Int 64 2 Texture mapping index �
Int 66 2 Reserved �
Unsigned Int 68 4 Primary color index ü
Unsigned Int 72 4 Alternate color index ü
Int 76 2 Reserved �
Int 78 2 Shader index, -1 if none �

6-166

Copyright © 2017 Open Geospatial Consortium

Mesh Nodes

A mesh node defines a set of geometric primitives that share attributes and vertices. Prior
to OpenFlight version 15.7, the fundamental geometric construct was the face (polygon)
which was represented by a unique set of attributes and vertices. Meshes, by contrast,
represent “sets” of related polygons, each sharing common attributes and vertices. Using
a mesh, related polygons can be represented in a much more compact format. Each mesh
consists of one set of “polygon” attributes (color, material, texture, etc.), a common
“vertex pool” and one or more geometric primitives that use the shared attributes and
vertices. Using a mesh, you can represent triangle strips, triangle fans, quadrilateral strips
and indexed face sets.

A mesh node is defined by three distinct record types:

•Mesh Record - defines the “polygon” attributes associated to all geometric
primitives of the mesh.
•Local Vertex Pool Record - defines the set of vertices that are referenced by the
geometric primitives of the mesh.
•Mesh Primitive Record - defines a geometric primitive (triangle-strip, triangle-fan,
quadrilateral-strip or indexed face set) for the mesh.

A mesh node consists of one mesh record, one local vertex pool record, and one or more
mesh primitive records. The mesh primitive records are delimited by push and pop
control records as shown in the following example:

MESH
LOCAL VERTEX POOL
PUSH
MESH PRIMITIVE
MESH PRIMITIVE
...
MESH PRIMITIVE
POP

6-167

Copyright © 2017 Open Geospatial Consortium

Mesh Record

The mesh record is the primary record of a mesh node and defines the common “face-
like” attributes associated to all geometric primitives of the mesh. These attributes are
identical to those of the face record. See “Face Record” on page 26.

Mesh Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Mesh Opcode 84 ü
Unsigned
Int

2 2 Length - length of the record ü

Char 4 8 7 char ASCII ID; 0 terminates ü
Int 4 4 Reserved �
Int 16 4 IR color code �
Int 20 2 Relative priority ü
Int 22 1 Draw type ü
 0 = Draw solid with backface culling

(front side only)
ü

 1 = Draw solid, no backface culling
(both sides visible)

ü

 2 = Draw wireframe and close �
 3 = Draw wireframe �
 4 = Surround with wireframe in

alternate color
�

 8 = Omnidirectional light �
 9 = Unidirectional light �
 10 = Bidirectional light �
Int 23 1 Texture white = if TRUE, draw

textured face white
�

Unsigned
Int

24 2 Color name index ü

Unsigned
Int

26 2 Alternate color name index ü

Int 28 1 Reserved �
Int 29 1 Template (billboard) ü
 0 = Fixed, no alpha blending ü
 1 = Fixed, alpha blending ü
 2 = Axial rotate with alpha blending ü
 4 = Point rotate with alpha blending ü
Int 30 2 Detail texture pattern index, -1 if

none
�

Note: Detail textures
are IRIS GL specific

Int 32 2 Texture pattern index, -1 if none ü
Int 34 2 Material index, -1 if none ü

6-168

Copyright © 2017 Open Geospatial Consortium

Int 36 2 Surface material code (for DFAD) ü
(tentative)

Int 38 2 Feature ID (for DFAD) �
Int 40 4 IR material code �
Unsigned
Int

44 2 Transparency ü

 0 = Opaque
 65535 = Totally clear
Unsigned
Int

46 1 LOD generation control �

Unsigned
Int

47 1 Line style index �

Int 48 4 Flags (bits from left to right) ü
 0 = Terrain ü
 1 = No color ü
 2 = No alternate color ü
 3 = Packed color ü
 4 = Terrain culture cutout (footprint) ü
 5 = Hidden, not drawn ü
 6 = Roofline ü
 7-31 = Spare �
Unsigned
Int

52 1 Light mode ü

 0 = Use mesh color, not illuminated ü
 1 = Use vertex colors, not

illuminated
ü

 2 = Use mesh color and vertex
normals

ü

 3 = Use vertex colors and vertex
normals

ü

Char 53 7 Reserved �
Unsigned
Int

60 4 Packed color, primary (a, b, g, r) -
only b, g, r used

ü

Unsigned
Int

64 4 Packed color, alternate (a, b, g, r) -
only b, g, r used

ü

Int 68 2 Texture mapping index �
Int 70 2 Reserved �
Unsigned
Int

72 4 Primary color index ü

Unsigned
Int

76 4 Alternate color index ü

Int 80 2 Reserved �
Int 82 2 Shader index, -1 if none �

6-169

Copyright © 2017 Open Geospatial Consortium

Local Vertex Pool Record
This record defines a set of vertices that is referenced by the geometry (primitives) of the
mesh.

Note: Currently the Local Vertex Pool is used exclusively in the context of mesh nodes,
but it is designed in a general way so that it may appear in other contexts in
future versions of the OpenFlight Scene Description.

Local Vertex Pool Record
Data
Type

Offset Length Description CDB OpenFlight
Reader

Int 0 2 Local Vertex Pool Opcode 85 ü
Unsigned
Int

2 2 Length - length of the record
Note: Since the length of this record
is represented by an unsigned short,
the maximum length of the vertex
pool is 216- 1 (or 65535 bytes). If the
entire vertex pool cannot fit into this
size, one or more continuation records
will follow. (See “Continuation
Record” on page 65.)

ü

Unsigned
Int

4 4 Number of vertices - number of
vertices in the local vertex pool

ü

Unsigned
Int

8 4 Attribute mask - Bit mask indicating
what kind of vertex information is
specified for each vertex in the local
vertex pool. Bits are ordered from left
to right as follows:

ü

 Bit #Description
 0 Has Position - if set, data for

each vertex in will include x, y, and z
coordinates (3 doubles)

ü

 1 Has Color Index - if set, data
for each vertex will include a color
value that specifies a color table index
as well as an alpha value

ü

 2 Has RGBA Color - if set, data
for each vertex will include a color
value that is a packed RGBA color
value

ü

 Note: Bits 1and 2 are mutually
exclusive - a vertex can have either
color index or RGB color value or
neither, but not both.

ü

 3 Has Normal - if set, data for
each vertex will include a normal (3
floats)

ü

6-170

Copyright © 2017 Open Geospatial Consortium

 4 Has Base UV - if set, data for
each vertex will include uv texture
coordinates for the base texture (2
floats)

ü

 5 Has UV Layer 1 - if set, data
for each vertex will include uv texture
coordinates for layer 1 (2 floats)

ü

 6 Has UV Layer 2 - if set, data
for each vertex will include uv texture
coordinates for layer 2 (2 floats)

ü

 7 Has UV Layer 3 - if set, data
for each vertex will include uv texture
coordinates for layer 3 (2 floats)

ü

 8 Has UV Layer 4 - if set, data
for each vertex will include uv texture
coordinates for layer 4 (2 floats)

ü

 9 Has UV Layer 5 - if set, data
for each vertex will include uv texture
coordinates for layer 5 (2 floats)

ü

 10 Has UV Layer 6 - if set, data
for each vertex will include uv texture
coordinates for layer 6 (2 floats)

ü

 11 Has UV Layer 7 - if set, data
for each vertex will include uv texture
coordinates for layer 7 (2 floats)

ü

 12-31 Spare �

6-171

Copyright © 2017 Open Geospatial Consortium

Local Vertex Pool Record (Continued)
Then beginning at offset 12, the following fields are repeated for each
vertex in the local vertex pool, depending on the bits set in the Attribute
mask field above.
In the fields listed below, N ranges from 0 to Number of vertices - 1.

CDB OpenFlight
Reader

Double Varies 8*3 CoordinateN - Coordinate of vertex N
(x, y, z) - present if Attribute mask
includes Has Position.

ü

Unsigned Int Varies 4 colorN - Color for vertex N - present
if Attribute mask includes Has Color
Index or Has RGBA Color.
If Has Color Index, lower 3 bytes
specify color table index, upper 1
byte is Alpha.
If Has RGBA Color, 4 bytes specify
(a, b, g, r) values.

ü

Float Varies 4*3 normalN - Normal for vertex N (i, j, k)
- present if Attribute mask includes
Has Normal.

ü

Float Varies 4*2 uvBaseN - Texture coordinates (u, v)
for base texture layer of vertex N -
present if Attribute mask includes
Has Base UV.

ü

Float Varies 4*2 uv1N - Texture coordinates (u, v) for
layer 1 of vertex N - present if
Attribute mask includes Has UV
Layer 1.

ü

Float Varies 4*2 uv2N - Texture coordinates (u, v) for
layer 2 of vertex N - present if
Attribute mask includes Has UV
Layer 2.

ü

Float Varies 4*2 uv3N - Texture coordinates (u, v) for
layer 3 of vertex N - present if
Attribute mask includes Has UV
Layer 3.

ü

Float Varies 4*2 uv4N - Texture coordinates (u, v) for
layer 4 of vertex N - present if
Attribute mask includes Has UV
Layer 4.

ü

Float Varies 4*2 uv5N - Texture coordinates (u, v) for
layer 5 of vertex N - present if
Attribute mask includes Has UV
Layer 5.

ü

Float Varies 4*2 uv6N - Texture coordinates (u, v) for
layer 6 of vertex N - present if
Attribute mask includes Has UV
Layer 6.

ü

Float Varies 4*2 uv7N - Texture coordinates (u, v) for
layer 7 of vertex N - present if

ü

6-172

Copyright © 2017 Open Geospatial Consortium

Attribute mask includes Has UV
Layer 7.

Mesh Primitive Record

This record defines a geometric primitive (triangle strip, triangle fan, quadrilateral strip,
or indexed polygon) for a mesh.

Mesh Primitive Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Mesh Primitive Opcode 86 ü
Unsigned
Int

2 2 Length - length of the
record

ü

Int 4 2 Primitive Type - specifies
how the vertices of the
primitive are interpreted

ü

 1 = Triangle Strip ü
 2 = Triangle Fan ü
 3 = Quadrilateral Strip ü
 4 = Indexed Polygon ü
Unsigned
Int

6 2 Index Size - specifies the
length (in bytes) of each of
the vertex indices that
follow - will be either 1, 2,
or 4

ü

Unsigned
Int

8 4 Vertex Count- number of
vertices contained in this
primitive.

ü

The following field is repeated for each vertex referenced by the
mesh primitive. These vertices are interpreted according to
Primitive Type. In the field below, N ranges from 0 to Vertex
Count - 1.

ü

Int 12+(N*Index
Size)

Index
Size

IndexN - Index of vertex N
of the mesh primitive.

ü

6-173

Copyright © 2017 Open Geospatial Consortium

Each mesh primitive is represented using the Mesh Primitive record above. The
following descriptions explain how the vertices of each primitive type are interpreted as
geometry:
• Triangle Strip - This mesh primitive defines a connected group of triangles in the

context of the enclosing mesh. Each triangle shares the “polygon” attributes defined
by the enclosing mesh. This primitive contains a sequence of indices that reference
vertices from the local vertex pool. One triangle is defined for each vertex presented
after the first two vertices. For odd n, vertices n, n+1, and n+2 define triangle n. For
even n, vertices n+1, n, and n+2 define triangle n. The first triangle is n=1. The first
vertex in the vertex pool is n=1. N vertices represent N-2 triangles.

• Triangle Fan - Like the Triangle Strip, this mesh primitive also defines a connected
group of triangles in the context of the enclosing mesh. Each triangle shares the
“polygon” attributes defined by the enclosing mesh. This primitive contains a
sequence of indices that reference vertices from the local vertex pool. One triangle is
defined for each vertex presented after the first two vertices. Vertices 1, n+1, and n+2
define triangle n. The first triangle is n=1. The first vertex in the vertex pool is n=1.
N vertices represent N-2 triangles.

• Quadrilateral Strip - This mesh primitive defines a connected group of
quadrilaterals in the context of the enclosing mesh. Each quadrilateral shares the
“polygon” attributes defined by the enclosing mesh. This primitive contains a
sequence of indices that reference vertices from the local vertex pool. One
quadrilateral is defined for each pair of vertices presented after the first pair. Vertices
2n-1, 2n, 2n+2, and 2n+1 define quadrilateral n. The first quadrilateral is n=1. The
first vertex in the vertex pool is n=1. N vertices represent (N/2)-1 quadrilaterals.

• Indexed Polygon -This mesh primitive defines a single polygon in the context of the
enclosing mesh. This primitive is similar to the other mesh primitives in that it also
shares the polygon attributes of the enclosing mesh. It is different from the other
mesh primitive types in that while triangle strips/fans and quadrilateral strips describe
a set of connected triangles/quadrilaterals, the indexed polygon defines a single
polygon. This primitive contains a sequence of indices that reference vertices from
the local vertex pool. One polygon is defined by the sequence of vertices in this
record. N vertices represent 1 N-sided closed polygon or 1 (N-1)-sided unclosed
polygon.

Light Point Nodes

The OpenFlight format supports two kinds of light point records, indexed and inline. In
indexed light point records, the attributes are stored in two palettes; the light point
appearance palette and the light point animation palette. The indexed light point record
simply stores indices into these two palettes. In inline light point records, all the attributes
are stored directly in the light point record itself. This section describes both of these
records.

6-174

Copyright © 2017 Open Geospatial Consortium

Indexed Light Point Record

The indexed light point record is one of the records that can represent a light point node.

The appearance index specifies an entry in the light point appearance palette that contains
the visual attributes of the light point.

The animation index specifies an entry in the light point animation palette that contains
the behavioral attributes of the light point.

The palette entries referenced by the indexed light point record describe the visual state
of the light point’s child vertices. Only vertex nodes may be children of light point nodes.

Indexed Light Point Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Indexed Light Point Record

Opcode 130
ü

Unsigned
Int

2 2 Length - length of the record ü

Char 4 8 7 char ASCII ID; 0
terminates

ü

Int 12 4 Appearance index ü
Int 16 20 Animation index �
Int 24 4 Draw order (for calligraphic

lights)
�

Int 28 4 Reserved �

Light Point Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider Light
Point Records.

The light point record is one of the records that can represent a light point node. The light
point record contains attributes describing the visual state of its child vertices. Only
vertex nodes may be children of light point nodes.

Light points are geometric points that represent real world light sources such as runway
lights, vehicle lights, street lights, and rotating beacons. Light points differ from light
sources in that they do not illuminate the scene around them. They are primarily used to
model important visual cues without incurring the tremendous rendering overhead
associated with light sources.

Most light point attributes are specific to these unique requirements. Light points can be
displayed on special purpose calligraphic imaging systems, the more familiar raster
variety, or even hybrid raster/calligraphic (RASCAL) systems.

6-175

Copyright © 2017 Open Geospatial Consortium

Light Point Record
Data Type Offset Length Description
Int 0 2 Light Point Record Opcode 111
Unsigned Int 2 2 Length - length of the record
Char 4 8 7 char ASCII ID; 0 terminates
Int 12 2 Surface material code
Int 14 2 Feature ID
Unsigned Int 16 4 Back color for bidirectional points
Int 20 4 Display mode
 0 = RASTER
 1 = CALLIGRAPHIC
 2 = EITHER
Float 24 4 Intensity - scalar for front colors
Float 28 4 Back intensity - scalar for back color
Float 32 4 Minimum defocus - (0.0 - 1.0) for calligraphic points
Float 36 4 Maximum defocus - (0.0 - 1.0) for calligraphic points
Int 40 4 Fading mode
 0 = Enable perspective fading calculations
 1 = Disable calculations
Int 44 4 Fog Punch mode
 0 = Enable fog punch through calculations
 1 = Disable calculations
Int 48 4 Directional mode
 0 = Enable directional calculations
 1 = Disable calculations
Int 52 4 Range mode
 0 = Use depth (Z) buffer calculation
 1 = Use slant range calculation
Float 56 4 Min pixel size - minimum diameter of points in pixels
Float 60 4 Max pixel size - maximum diameter of points in pixels
Float 64 4 Actual size - actual diameter of points in database units
Float 68 4 Transparent falloff pixel size - diameter in pixels when

points become transparent
Float 72 4 Transparent falloff exponent
 >= 0 - falloff multiplier exponent
 1.0 - linear falloff
Float 76 4 Transparent falloff scalar
 > 0 - falloff multiplier scale factor
Float 80 4 Transparent falloff clamp - minimum permissible falloff

multiplier result
Float 84 4 Fog scalar
 >= 0 - adjusts range of points for punch threw

effect.
Float 88 4 Reserved
Float 92 4 Size difference threshold - point size transition hint to

renderer

6-176

Copyright © 2017 Open Geospatial Consortium

Light Point Record (Continued)
Data Type Offset Length Description
Int 96 4 Directionality
 0 = OMNIDIRECTIONAL
 1 = UNIDIRECTIONAL
 2 = BIDIRECTIONAL
Float 100 4 Horizontal lobe angle - total angle in degrees
Float 104 4 Vertical lobe angle - total angle in degrees
Float 108 4 Lobe roll angle - rotation of lobe about local Y axis in de-

grees
Float 112 4 Directional falloff exponent
 >= 0 - falloff multiplier exponent
 1.0 - linear falloff
Float 116 4 Directional ambient intensity - of points viewed off axis
Float 120 4 Animation period in seconds
Float 124 4 Animation phase delay in seconds - from start of period
Float 128 4 Animation enabled period in seconds
Float 132 4 Significance - drop out priority for RASCAL lights (0.0 -

1.0)
Int 136 4 Calligraphic draw order - for rendering consistency
Int 140 4 Flags (bits, from left to right)
 0 = reserved
 1 = No back color
 TRUE = don’t use back color for bidirectional

points
 FALSE = use back color for bidirectional points
 2 = reserved
 3 = Calligraphic proximity occulting (Debunching)
 4 = Reflective, non-emissive point
 5-7 = Randomize intensity
 0 = never
 1 = low
 2 = medium
 3 = high
 8 = Perspective mode
 9 = Flashing
 10 = Rotating
 11 = Rotate Counter Clockwise
 Direction of rotation about local Z axis
 12 = reserved
 13-14 = Quality
 0 = Low
 1 = Medium
 2 = High
 3 = Undefined
 15 = Visible during day
 16 = Visible during dusk
 17 = Visible during night
 18-31 = Spare
Float 144 4*3 Axis of rotation for rotating animation (i, j, k)

6-177

Copyright © 2017 Open Geospatial Consortium

Light Point System Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider
Light Point System Records.
The light point system record enables you to collect a set of light points and
enable/disable or brighten/dim them as a group.

Light Point System Record
Data Type Offset Length Description
Int 0 2 Light Point System Record Opcode 130
Unsigned Int 2 2 Length - length of the record
Char 4 8 7 char ASCII ID; 0 terminates
Float 12 4 Intensity
Int 16 4 Animation state
 0 = On
 1 = Off
 2 = Random
Int 20 4 Flags (bits, from left to right)
 0 = Enabled
 1-31 = Spare

Degree of Freedom Record

The degree of freedom (DOF) record is the primary record of the DOF node. The DOF
node specifies a local coordinate system and the range allowed for translation, rotation,
and scale with respect to that coordinate system.

The DOF record can be viewed as a series of applied transformations consisting of the
following elements:

[PTTTRRRSSSP]

where “P” denotes “put,” “T” denotes “translate,” “R” denotes “rotate,” and “S” denotes
“scale.”

It is important to understand the order in which these transformations are applied to the
geometry. A pre-multiplication is assumed, so the sequence of transformations must be
read from right to left, in order to describe its effect on the geometry contained below the
DOF. In this manner, a DOF is interpreted as a Put followed by three Scales, three
Rotates, three Translates, and a Put.

Taking the transformations in right to left order, they represent:

1. A Put (3 point to 3 point transformation). This matrix brings the DOF coordinate
system to the world origin, with its x-axis aligned along the world x-axis and its y-
axis in the world x-y plane. Testing against the DOF's constraints is performed in this
standard position. This matrix is therefore the inverse of the last (see step 11 below).

2. Scale in x.
3. Scale in y.
4. Scale in z.

6-178

Copyright © 2017 Open Geospatial Consortium

5. Rotation about z (yaw).
6. Rotation about y (roll).
7. Rotation about x (pitch).
8. Translation in x.
9. Translation in y.
10. Translation in z.
11. A final Put. This matrix moves the DOF coordinate system back to its original

position in the scene.
The DOF record specifies the minimum, maximum, and current values for each
transformation. Only the current value affects the actual transformation applied to the
geometry. The increment value specifies discrete allowable values within the range
of legal values represented by the DOF.

6-179

Copyright © 2017 Open Geospatial Consortium

Degree of Freedom Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Degree-of-Freedom Opcode 14 ü
Unsigned
Int

2 2 Length - length of the record ü

Char 4 8 7 char ASCII ID; 0 terminates ü
Int 12 4 Reserved �
Double 16 8*3 Origin of DOF's local coordinate

system (x, y, z)
ü

Double 40 8*3 Point on x axis of DOF's local
coordinate system (x, y, z)

ü

Double 64 8*3 Point in xy plane of DOF's local
coordinate system (x, y, z)

ü

Double 88 8 Min z value with respect to local
coordinate system

ü

Double 96 8 Max z value with respect to local
coordinate system

ü

Double 104 8 Current z value with respect to
local coordinate system

ü

Double 112 8 Increment in z ü
Double 120 8 Min y value with respect to local

coordinate system
ü

Double 128 8 Max y value with respect to the
local coordinate system

ü

Double 136 8 Current y value with respect to
local coordinate system

ü

Double 144 8 Increment in y ü
Double 152 8 Min x value with respect to local

coordinate system
ü

Double 160 8 Max x value with respect to local
coordinate system

ü

Double 168 8 Current x value with respect to
local coordinate system

ü

Double 176 8 Increment in x ü
Double 184 8 Min pitch (rotation about the x

axis)
ü

Double 192 8 Max pitch ü
Double 200 8 Current pitch ü
Double 208 8 Increment in pitch ü
Double 216 8 Min roll (rotation about the y

axis)
ü

Double 224 8 Max roll ü
Double 232 8 Current roll ü
Double 240 8 Increment in roll ü
Double 248 8 Min yaw (rotation about the z

axis)
ü

6-180

Copyright © 2017 Open Geospatial Consortium

Double 256 8 Max yaw ü
Double 264 8 Current yaw ü
Double 272 8 Increment in yaw ü
Double 280 8 Min z scale (about local origin) ü
Double 288 8 Max z scale (about local origin) ü

6-181

Copyright © 2017 Open Geospatial Consortium

Degree of Freedom Record (Continued)
Data Type Offset Length Description CDB OpenFlight

Reader
Double 296 8 Current z scale (about

local origin)
ü

Double 304 8 Increment for scale in z ü
Double 312 8 Min y scale (about local

origin)
ü

Double 320 8 Max y scale (about local
origin)

ü

Double 328 8 Current y scale (about
local origin)

ü

Double 336 8 Increment for scale in y ü
Double 344 8 Min x scale (about local

origin)
ü

Double 352 8 Max x scale (about local
origin)

ü

Double 360 8 Current x scale (about
local origin)

ü

Double 368 8 Increment for scale in x ü
Int 376 4 Flags (bits, from left to

right)
ü

 0 = x translation is
limited

ü

 1 = y translation is
limited

ü

 2 = z translation is
limited

ü

 3 = Pitch rotation is
limited

ü

 4 = Roll rotation is
limited

ü

 5 = Yaw rotation is
limited

ü

 6 = x scale is limited ü
 7 = y scale is limited ü
 8 = z scale is limited ü
 9 = Reserved �
 10 = Reserved �
 11-31 = Spare �
Int 380 4 Reserved �

6-182

Copyright © 2017 Open Geospatial Consortium

Vertex List Record

A vertex list record is the primary record of a vertex node. Each record references one or
more vertices in the vertex palette. See “Vertex Palette Records” on page 66. A vertex
node is a leaf node in the database and therefore cannot have any children.

Vertex List Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Vertex List Opcode 72 ü
Unsigned
Int

2 2 Length - length of the record ü

The following field is repeated for each vertex contained in the vertex list record.
In the field below, N ranges from 0 to Number of vertices - 1, where Number of vertices =
(Length - 4) / 4
Int 4+(N*4) 4 OffsetN - Byte offset into

vertex palette of the actual
vertex for vertex N.

ü

Morph Vertex List Record

A morph vertex list record is the primary record of a morph vertex node. Like the vertex
list record, each morph vertex list record references one or more vertices in the vertex
palette. See: “Vertex Palette Records” on page 66. A morph vertex node is a leaf node in
the database and therefore cannot have any children.

Each record references one or more pairs of vertices (weights) in the vertex palette. One
weight is the 0 percent morph attributes and the other weight is the 100 percent morph
attributes. Since each weight references a vertex, all vertex attributes including color,
normal, and texture coordinates may be morphed.

When the eyepoint approaches the switch-in distance, the vertex attributes displayed are
100 percent morphed. When the eyepoint reaches the distance computed by LOD switch-
in distance minus LOD transition range, the vertex attributes displayed are 0 percent
morphed. Within the LOD transition range, the vertex attributes displayed are
interpolated between the two known vertex attributes.

Geometric morphing is controlled by the parent LOD node. Only morph vertex nodes are
affected. Both morphing and static geometry (vertices) may exist within the same branch
of the database hierarchy.

Morph Vertex List Record
Data
Type

Offset Lengt
h

Description CDB OpenFlight
Reader

Int 0 2 Morph Vertex List Opcode 89 ü
Unsigned
Int

2 2 Length - length of the record ü

6-183

Copyright © 2017 Open Geospatial Consortium

The following fields are repeated for each vertex contained
in the morph vertex list record.
In the fields below, N ranges from 0 to Number of vertices -
1, where
Number of vertices = (Length - 4) / 8

ü

Int 4+(N*
8)

4 Offset 0N - Offset into vertex
palette of Nth 0% vertex.

ü

Int 8+(N*
8)

4 Offset 100N - Offset into
vertex palette of Nth 100%
vertex.

ü

Binary Separating Plane Record

The binary separating plane (BSP) record is the primary record of the BSP node. A BSP
allows you to model 3D databases without depth (Z) buffer support.

An application uses this information to cull portions of the database according to which
side of the plane the subtree is situated on with regard to eyepoint position and viewing
direction.

This record contains an equation ax + by + cz + d = 0 that describes the separating plane.

Binary Separating Plane Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Binary Separating Plane

(BSP) Opcode 55
ü

Unsigned
Int

2 2 Length - length of the
record

ü

Char 4 8 7 char ASCII ID; 0
terminates

ü

Int 12 4 Reserved �
Double 16 8*4 Plane equation coefficients

(a, b, c, d)
ü

6-184

Copyright © 2017 Open Geospatial Consortium

External Reference Record

The external reference record is the primary record of the external reference node.
External references allow one database to reference, or instance, a node in another
database (or an entire database). At the point of reference, the referenced node/database is
copied (or possibly shared) as a child of the current parent node.

The override flags allow the referencing (parent) database to control use of the referenced
(child) node/database palettes. If an override flag (e.g., material) is set, the child
node/database uses its own (material) palette. Otherwise, the child node/database uses the
current (parent’s) palette. The override flags are hierarchical and may affect references
made by the child node/database.

The view as bounding box field is used by the MultiGen-Paradigm, Inc. modeling
environment and is not expected to be used by runtime applications.

External Reference Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 External Reference Opcode

63
ü

Unsigned
Int

2 2 Length - length of the record ü

Char 4 200 199-char ASCII path; 0
terminates
Format of this string is:
filename<node name>
if <node name> absent,
references entire file

ü

Int 204 4 Reserved �
Int 208 4 Flags (bits, from left to right) �
 0 = Color palette override �
 1 = Material palette override �
 2 = Texture and texture

mapping palette override
�

 3 = Line style palette
override

�

 4 = Sound palette override �
 5 = Light source palette

override
�

 6 = Light point palette
override

�

 7 = Shader palette override �
 8-31 = Spare �
Int 212 2 View as bounding box �
 0 = View external reference

normally
�

 1 = View external reference
as bounding box

�

6-185

Copyright © 2017 Open Geospatial Consortium

Int 214 2 Reserved �

Level of Detail Record

The level of detail (LOD) record is the primary record of the LOD node. LOD’s are
perhaps the most important hierarchical node present in the database tree. Proper use of
level-of-detail modeling concepts can vastly improve real-time playback of large
databases. Attributes within the LOD record provide switching and transition distances
for real-time culling and load management mechanisms.

The center coordinate can be used by a real-time application to calculate the slant range
distance from the eyepoint to the LOD. Based upon the result of this calculation, a real-
time application can choose not to display the LOD’s children and thus reduce system
load. The center of the LOD is generally the transformed center of the geometry of the
LOD’s children. This should include the effects of instancing and (parent) group
replication as well.

The use previous slant range flag indicates that the slant range for this LOD is the same
as the previous (sibling) LOD, implying the center coordinate is also the same. The real-
time application can reuse the previous slant range calculation when evaluating this LOD,
thereby improving performance.

If the freeze center flag is not set, the MultiGen-Paradigm, Inc. modeling environment as
well as OpenFlight API based applications will recalculate the center point of the LOD
when the OpenFlight file is saved.

Transition range specifies the range over which real-time smoothing effects should be
employed while switching from one LOD to another. Smoothing effects include
geometric morphing and image blending. The smoothing effect is active between: switch-
in distance minus transition range (near), and switch-in distance (far). The center distance
of the effect is therefore switch-in distance minus one half the transition range.

Significant size is a value used to calculate switch in and out distances based on viewing
parameters of your simulation display system. This value is used internally by MultiGen-
Paradigm and will be enhanced in future versions of OpenFlight.

6-186

Copyright © 2017 Open Geospatial Consortium

Level of Detail Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Level-of-Detail Opcode 73 ü
Unsigned
Int

2 2 Length - length of the record ü

Char 4 8 7 char ASCII ID; 0
terminates

ü

Int 12 4 Reserved �
Double 16 8 Switch-in distance ü
Double 24 8 Switch-out distance ü
Int 32 2 Special effect ID1 -

application defined
�

Int 34 2 Special effect ID2 -
application defined

�

Int 36 4 Flags (bits, from left to
right)

ü

 0 = Use previous slant range ü
 1 = Reserved �
 2 = Freeze center (don't

recalculate)
�

 3-31 = Spare �
Double 40 8 Center coordinate x of LOD ü
Double 48 8 Center coordinate y of LOD ü
Double 56 8 Center coordinate z of LOD ü
Double 64 8 Transition range ü
Double 72 8 Significant size ü

6-187

Copyright © 2017 Open Geospatial Consortium

Sound Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider
Sound Records.

The sound record is the primary record of the sound node. A sound node represents the
position and orientation of a sound emitter in the database.

Amplitude and pitch blend are relative to the amplitude in the waveform file. Falloff
defines how amplitude falls off when approaching the edge of the sound lobe, with
maximum amplitude at the center of the lobe.

Priority determines which sounds are played when more emitters populate a scene than
the sound system can play simultaneously.

Width defines the half angle of the sound lobe. Direction sets the type of sound lobe.

Doppler, absorption, and delay flags enable or disable the modeling of Doppler,
atmospheric absorption, and propagation delay in the sound environment.

Active indicates a sound is to be activated when read in to the modeling environment.

Sound Record
Data Type Offset Length Description
Int 0 2 Sound Node Opcode 91
Unsigned Int 2 2 Length - length of the record
Char 4 8 7 char ASCII ID; 0 terminates
Int 12 4 Reserved
Int 16 4 Index into sound palette
Int 20 4 Reserved
Double 24 8*3 Coordinate of offset from local origin (x, y, z)
Float 48 4*3 Sound direction (vector) wrt local coordinate

axes (i, j, k)
Float 60 4 Amplitude of sound
Float 64 4 Pitch bend of sound
Float 68 4 Priority of sound
Float 72 4 Falloff of sound
Float 76 4 Width of sound lobe
Int 80 4 Flags (bits, from left to right)
 0 = Doppler
 1 = Atmospheric absorption
 2 = Delay
 3-4 = Direction:
 0 = Omnidirectional
 1 = Unidirectional
 2 = Bidirectional
 5 = Active
 6-31 = Spare
Int 84 4 Reserved

6-188

Copyright © 2017 Open Geospatial Consortium

Light Source Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider
Light Source Records.

The light source record is the primary record of the light source node. Light sources
illuminate the database. They contain position and rotation data (overriding any
information stored in the light palette), an index into the light palette, and information on
how the light behaves within the hierarchy.

The enabled flag indicates whether the light is turned on and, therefore, a factor of the
lighting (rendering) model.

The global flag specifies whether the light shines on the entire database or only on its
children (for example, the cabin light in a car).

Light Source Record
Data Type Offset Length Description
Int 0 2 Light Source Record Opcode 101
Unsigned Int 2 2 Length - length of the record
Char 4 8 7 char ASCII ID; 0 terminates
Int 12 4 Reserved
Int 16 4 Index into light palette
Int 20 4 Reserved
Int 24 4 Flags (bits, from left to right)
 0 = Enabled
 1 = Global
 2 = Reserved
 3 = Export
 4 = Reserved
 5-31 = Spare
Int 28 4 Reserved
Double 32 8*3 Position (for Local or Spot lights only) (x, y,

z)
Float 56 4 Yaw (azimuth for Infinite or Spot lights only)
Float 60 4 Pitch (elevation for Infinite or Spot lights

only)

6-189

Copyright © 2017 Open Geospatial Consortium

Road Segment Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider
Road Segment Records.

A road segment record is the primary record of a road segment node. It stores the
attributes used to create and modify a road segment. The children of the road node
represent the geometry and paths of the road and should not be manually edited. Any
modification invalidates the road segment.

Road Segment Record
Data Type Offset Length Description
Int 0 2 Road Segment Opcode 87
Unsigned Int 2 2 Length of record
Char 4 8 7 char ASCII ID; 0 terminates

Road Construction Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider
Road Construction Records.

A road construction record is the primary record of a road construction node. It
supersedes the Road Segment Record described previously. It is created by the Pathfinder
option of MultiGen II Pro v1.5 as well as the Road Tool option beginning with Creator
v2.1. It stores the parameters defining the road path construction for one road section. In
practice, the children of the road construction node usually represent the geometry and
paths of the road section. Although every field in the road construction record may be
modified, this data makes the most sense when it is kept in sync with the geometry that is
created from it. Therefore, typical usage will be read-only access from applications able
to analyze the road surface from this given data.

The Road type field dictates how the following fields define the current road section. For
all road types, the Entry and Exit control points lie on the boundaries of the road section.
The Alignment control point is only necessary for the Curve type as it defines a
horizontal tangent with the other control points.

Other fields particular to the Curve type are the horizontal curve parameters. The
horizontal components of the Curve type start and end with spiral transitions of specified
lengths. An Arc Radius length is used to define the constant curve area. The
Superelevation is specified in a rise over run slope measured laterally across the road for
the maximum banking which is used throughout the constant curve component. The
banking transitions along the spiral sections in one of three ways defined by the Spiral
type field.

Both the Curve and Hill types may have a vertical curve component defined by the
remaining fields. Slopes are given at both the entry and exit of the section. If the given
slopes don't intersect within the road segment then two vertical parabolas are constructed
instead of one, and the Additional vertical parabola flag is set. Note that this flag’s value
is only valid when the Road Tools version field is 3 or later. This flag may also be set

6-190

Copyright © 2017 Open Geospatial Consortium

when convergence of the slopes creates a vertical curve length less than Minimum curve
length. Otherwise, Vertical curve length is used to define the horizontal distance covered
by the single parabola vertical curve.

 Road Construction Record
 Data Type Offset Length Description
Int 0 2 Road Construction Opcode 127
Unsigned Int 2 2 Length of record
Char 4 8 7 char ASCII ID; 0 terminates
Char 12 4 Reserved
Int 16 4 Road type
 0 = Curve
 1 = Hill
 2 = Straight
Int 20 4 Road Tools version
Double 24 8*3 Entry control point (x, y, z)
Double 48 8*3 Alignment control point (x, y, z)
Double 72 8*3 Exit control point (x, y, z)
Double 96 8 Arc radius
Double 104 8 Entry spiral length
Double 112 8 Exit spiral length

6-191

Copyright © 2017 Open Geospatial Consortium

 Road Construction Record (Continued)
 Data Type Offset Length Description
Double 120 8 Superelevation
Int 128 4 Spiral type
 0 = Linear with length
 1 = Linear with angle
 2 = Cosine with length
Int 132 4 Additional vertical parabola flag
Double 136 8 Vertical curve length
Double 144 8 Minimum curve length
Double 152 8 Entry slope
Double 160 8 Exit slope

Road Path Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider
Road Path Records.

A road path record is the primary record of a road path node. A road path node is a child
of a road segment node. It describes a lane of the parent road segment. The child of a
road path node is a face node whose vertices provide the coordinates of the center of the
lane.

Road path record attributes may also be written to an ASCII file for easy access by the
application. The format of the file is described in “Road Path Files,” page 99.

Road Path Record
Data Type Offset Length Description
Int 0 2 Road Path Opcode 92
Unsigned Int 2 2 Length of record
Char 4 8 7 char ASCII ID; 0 terminates
Int 12 4 Reserved
Char 16 120 Path name; 0 terminates
Double 136 8 Speed limit
Boolean 144 4 No passing
Int 148 4 Vertex normal type
 0 = Up-vector
 1 = Heading, Pitch, Roll
Int 152 480 Reserved

6-192

Copyright © 2017 Open Geospatial Consortium

Clip Region Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider
Clip Region Records.

A clip region record is the primary record of a clip node. It defines those regions in 3D
space in which drawing occurs. Clip regions only clip the geometry below the clip node
in the hierarchy.

The coordinates create a four-sided face that defines the clip region in space. Planes are
formed along the edges of the four-sided face normal to the face; a fifth plane clips the
back side of the face.

Clip Region Record
Data Type Offset Length Description
Int 0 2 Clip Region Opcode 98
Unsigned Int 2 2 Length of record
Char 4 8 7 char ASCII ID; 0 terminates
Int 12 4 Reserved
Int 16 2 Reserved
Char 18 5 Flags for enabling the individual clip planes
 Char 0 is flag for edge defined by coordinate 0

and 1
Char 1 is flag for edge defined by coordinate 1
and 2
Char 2 is flag for edge defined by coordinate 2
and 3
Char 3 is flag for edge defined by coordinate 3
and 0
Char 5 is flag for plane that clips the half space
behind the clip region

Char 23 1 Reserved
Double 24 8*3 1st coordinate defining the clip region (x, y, z)
Double 48 8*3 2nd coordinate defining the clip region (x, y, z)
Double 72 8*3 3rd coordinate defining the clip region (x, y, z)
Double 96 8*3 4th coordinate defining the clip region (x, y, z)
Double 120 8*20 Five plane equation coefficients (ax + by +cz + d)
 Coefficients are ordered:
 a0, a1, a2, a3, a4

 b0, b1, b2, b3, b4

 c0, c1, c2, c3, c4

 d0, d1, d2, d3, d4

6-193

Copyright © 2017 Open Geospatial Consortium

Text Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider
Text Records.

The text record is the primary record of the text node. Text draws a string of data using a
specified font. The record specifies the visual characteristics of the text and formatting
information.

The actual string for the text is stored in the comment record immediately following. The
format of the text record is:

Text Record

Data Type Offset Length Description
Int 0 2 Text Opcode 95
Unsigned Int 2 2 Length of record
Char 4 8 7 char ASCII ID; 0 terminates
Int 12 4 Reserved
Int 16 4 Reserved
Int 20 4 Type
 -1 = Static
 0 = Text String
 1 = Float
 2 = Integer
Int 24 4 Draw type
 0 = Solid
 1 = Wireframe and close
 2 = Wireframe
 3 = Surround with wireframe in alternate color
Int 28 4 Justification
 0 = Left
 1 = Right
 2 = Center
Double 32 8 Floating point value
Int 40 4 Integer value
Int 44 4*5 Reserved
Int 64 4 Flags (bits, from left to right)
 0 = Boxable (Unused)
 1-31 = Spare
Int 68 4 Color
Int 72 4 Color 2 (Unused)
Int 76 4 Material
Int 80 4 Reserved
Int 84 4 Maximum number of lines (Unused)
Int 88 4 Maximum number of characters
Int 92 4 Current length of text (Unused)
Int 96 4 Next line number available (Unused)

6-194

Copyright © 2017 Open Geospatial Consortium

Int 100 4 Line number at top of display (Unused)
Int 104 4*2 Low/high values for integers
Double 112 8*2 Low/high values for floats
Double 128 8*3 Lower-left corner of rectangle around text (x, y, z)
Double 152 8*3 Upper-right corner of rectangle around text (x, y, z)
Char 176 120 Font name
Int 296 4 Draw vertical
Int 300 4 Draw italic
Int 304 4 Draw bold
Int 308 4 Draw underline
Int 312 4 Line style
Int 316 4 Reserved

Switch Record

A switch record is the primary record of a switch node. A switch represents a set of
masks that control the display of the switch’s children.

Each mask contains one bit for each child of the switch. Each mask bit indicates that the
corresponding child is selected (1) or deselected (0). Each mask selects some, none, or all
of the children for display according to the state of the mask bits.

Both the switch children and mask bits begin counting from 0. Therefore the selection
state, for a particular switch child is derived from a given mask with the following
calculation:

mask_bit = 1 << (child_num % 32)

mask_word = mask_words [mask_num * num_words + child_num / 32]

child_selected = mask_word & mask_bit

The current mask value is an index into the set of masks and indicates the selected mask.

The masks of a switch node can be named. These names are stored in the ancillary
record, indexed string record. See “Indexed String Record” on page 53.

Switch Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Switch Opcode 96 ü
Unsigned
Int

2 2 Length of record ü

Char 4 8 7 char ASCII ID; 0
terminates

ü

Int 12 4 Reserved �
Int 16 4 Current mask ü
Int 20 4 Number of masks ü

6-195

Copyright © 2017 Open Geospatial Consortium

Int 24 4 Number of words per mask
- the number of 32 bit words
required for each mask,
calculated as follows:
(number of children / 32) +
X
where X equals:
0 if (number of children
modulo 32) is zero
1 if (number of children
modulo 32) is nonzero

ü

Unsigned
Int

28 Variable Mask words.
The length (in bytes) can be
calculated as follows:
Number of words per mask
* Number of masks * 4
bytes

ü

6-196

Copyright © 2017 Open Geospatial Consortium

CAT Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider CAT
Records.

A continuously adaptive terrain (CAT)
record is the primary record of a CAT
node. A continuously adaptive terrain
skin is a hierarchical triangle mesh
designed for high fidelity, real-time
viewing. A CAT skin is represented in
OpenFlight by a record stream consisting
of: a CAT record, a set of CAT data
records, a push record, the CAT
hierarchy and geometry, and a pop
record. CAT hierarchy and geometry is
represented by standard OpenFlight
constructs of LOD’s, groups, external
references, faces, and vertices.

6-197

Copyright © 2017 Open Geospatial Consortium

CAT Record
Data Type Offset Length Description
Int 0 2 CAT Opcode 115
Unsigned Int 2 2 Length - length of the record
Char 4 8 7 char ASCII ID; 0 terminates
Int 12 4 Reserved
Int 16 4 IR color code
Int 20 1 Draw type
 0 = Hidden, don’t draw
 1 = Draw solid, no backface
 2 = Draw wireframe
Int 21 1 Texture white = if TRUE, draw textured face

white
Int 22 2 Reserved
Unsigned Int 24 2 Color name index
Unsigned Int 26 2 Alternate color name index
Int 28 2 Detail texture pattern index, -1 if none
Int 30 2 Texture pattern index, -1 if none
Int 32 2 Material index, -1 if none
Int 34 2 Surface material code (for DFAD)
Int 36 4 IR material code
Int 40 4*2 Reserved
Int 48 2 Texture mapping index
Int 50 2 Reserved
Unsigned Int 52 4 Primary color index
Unsigned Int 56 4 Alternate color index

6-198

Copyright © 2017 Open Geospatial Consortium

CAT Record (Continued)
Data Type Offset Length Description
Int 60 4 Reserved
Double 64 8 Reserved
Int 72 4 Flags (bits, from left to right)
 0 = No color
 1 = No alternate color
 2-31 = Spare
Int 76 4 Reserved

Extension Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider
Extension Records.

An extension node record is the primary record of an extension node. It introduces a user
defined node type that is defined by an extension site that utilizes the extensibility of the
OpenFlight format. It specifies the site information for a third party record which
contains additional data that is not represented by the standard OpenFlight records. The
content of the data itself is transparent to users other than the extension site. The data can
be accessed by the combination of the OpenFlight API and the data dictionary defined by
the extension site.

The relationship of an extension node relative to other hierarchical nodes is defined by
the standard push and pop control records. For more information about extensions, please
refer to the “OpenFlight API User’s Guide, Level 3: Extensions”.

The extension record (Opcode 100) may also introduce new attributes to existing nodes
(See “Extension Attribute Record” on page 64.)

Extension Record
Data Type Offset Length Description
Int 0 2 Extension Opcode 100
Unsigned Int 2 2 Length of the total extension record
Char 4 8 7 char ASCII ID; 0 terminates
Char 12 8 Site ID - Unique site name. 7 char ASCII ID;

0 terminates
Int 20 1 Reserved
Int 21 1 Revision - site specific
Unsigned Int 22 2 Record code - site specific
Char 24 Varies Extended data - site specific

6-199

Copyright © 2017 Open Geospatial Consortium

Curve Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider Curve
Records.

A curve record is the primary record of a curve node. A curve node represents one or
more curve segments joined together with at least G0 continuity. Let a curve segment be
defined by 4 geometric constraints. We will call these geometric constraints control
points in the curve record. The way the control points are grouped and used will be
discussed below.

Let each control point be a double precision 3D coordinate, P = (x, y, z).

Let the group of control points be (P0, P1,..., Pk).

The currently defined curve types are B-spline, Cardinal, and Bezier.

If the curve type is Bezier, P0, P1, P2, and P3 form the first curve segment. P3, P4, P5, and
P6 form the next segment, and so on. Notice that the last control point in the first segment
becomes the first control point in the second segment.

If the curve type is either B-spline or Cardinal, P0, P1, P2, and P3 form the first curve
segment. P1, P2, P3, and P4 from the next segment, and so on. Notice that the second
control point in the first segment becomes the first control point in the second segment.

Note that the smoothness of the curve depends on how many times your renderer samples
the curve equation into piece-wise linear elements. In the MultiGen-Paradigm, Inc.
modeling environment, each curve segment is evenly sampled 11 times to produce 10
lines per curve segment.

Curve Record
Data Type Offset Length Description
Int 0 2 Curve Opcode 126
Unsigned Int 2 2 Length of the total curve record
Char 4 8 7 char ASCII ID; 0 terminates
Int 12 4 Reserved
Int 16 4 Curve type
 4 = B-spline
 5 = Cardinal
 6 = Bezier
Int 20 4 Number of control points
Char 24 8 Reserved
Double 32 Variable Coordinates of control points. Each

coordinate is (x, y, z)
 Coordinates are ordered:

cp0x, cp0y, cp0z,
cp1x, cp1y, cp1z,
...
cpNx, cpNy, cpNz
where N is Number of control points - 1

 (Length = Number of control points * 3 * 8
bytes.)

6-200

Copyright © 2017 Open Geospatial Consortium

Ancillary Records

Ancillary records follow node primary records. They contain supplementary attribute data for the
node they follow. Ancillary records are optional but must precede any control record, following
the node primary record, when present, as shown in this example:
GROUP
COMMENT
LONG ID
PUSH
...
POP

In this example, the comment and long ID ancillary records apply to the group record. There is no
order dependency between ancillary records. The comment could appear before or after the long
ID record in the example above, but must appear before any control record.

Comment Record

A comment record is an ancillary record that contains text data that belongs to the preceding node
primary record. The text description is a variable length ASCII string terminated by a <nil>
character.

Comment Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Comment Opcode 31 ü
Unsigned
Int

2 2 Length - length of the
record

ü

Char 4 Length -
4

Text description of node; 0
terminates

ü

6-201

Copyright © 2017 Open Geospatial Consortium

Long ID Record

A long ID record is an ancillary record that contains the full name of the preceding node. It is
present only when the name exceeds eight characters (seven characters plus a terminating <nil>
character).

Note that the ID field found in third field of every primary OpenField record must
be unique. The ID itself can be in Short or Long form. In Short form, the ID is
limited to a 7 char ASCII string. In Long form, the ID can be of up to (64K – 5)
characters in length. The Long ID record, when present, replaces the 7 char string
found in the third of the primary record.

Long ID Record

Data Type Offset Length Description CDB OpenFlight
Reader

Int 0 2 Long ID Opcode 33 ü
Unsigned
Int

2 2 Length - length of the record ü

Char 4 Length -
4

ASCII ID of node; 0
terminates

ü

Indexed String Record

An indexed string record is an ancillary record that contains an integer index followed by a
variable length character string. In this way, arbitrary strings can be associated to indices in a gen-
eral way.
Currently, indexed string records are only used in the context of switch nodes, for which they
represent the names of the masks contained in the switch node. The index specifies the mask
number for which the string specifies the name. Mask numbers start at 0. Not all masks are re-
quired to have names.

Indexed String Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Indexed string Opcode 132 ü
Unsigned
Int

2 2 Length - length of the record ü

Unsigned
Int

4 4 Index ü

Char 8 Length -
8

ASCII string; 0 terminates ü

6-202

Copyright © 2017 Open Geospatial Consortium

Multitexture

OpenFlight supports eight textures per polygon or mesh as well as eight uv values per vertex. The
current texture information stored on the polygon is referred to as “the base texture” or “texture
layer 0”. Each additional texture is referred to as “texture layer N”. Therefore, to support eight
textures per polygon, a base texture is required as well as seven additional texture layers. Not all
layers are required. Nor is any mandate set forth requiring that layers be contiguous after the base
layer. The additional texture layers for each polygon, mesh, and vertex are represented in ancillary
records at the face, mesh and vertex primary node level as shown in the following example:
FACE
MULTITEXTURE
PUSH
VERTEX LIST
UV LIST
POP

The records that are used to represent multitexture in the OpenFlight file are described in the
following sections.

Multitexture Record

The multitexture record is an ancillary record of face and mesh nodes. It specifies the texture layer
information for the face or mesh.

Multitexture Record

Data Type Offset Length Description CDB OpenFlight
Reader

Unsigned Int 0 2 Multitexture Opcode 52 ü
Unsigned Int 2 2 Length - length of the record ü
Int 4 4 Attribute mask - Bit mask indicating

what kind of multitexture information
is present in this record. Bits are or-
dered from left to right and have the
following definitions:

ü

 Bit # Description
 0 Has

Layer 1 - if set, multitexture
information for texture layer 1 is
present.

ü

 1 Has Layer 2 - if set,
multitexture information for texture
layer 2 is present.

ü

 2 Has Layer 3 - if set,
multitexture information for texture
layer 3 is present.

ü

 3 Has Layer 4 - if set,
multitexture information for texture
layer 4 is present.

ü

6-203

Copyright © 2017 Open Geospatial Consortium

 4 Has Layer 5 - if set,
multitexture information for texture
layer 5 is present.

ü

 5 Has Layer 6 - if set,
multitexture information for texture
layer 6 is present.

ü

 6 Has Layer 7 - if set,
multitexture information for texture
layer 7 is present.

ü

 7-31 Spare �
The following fields are repeated for each multitexture layer that is
specified as present by the bits set in the Attribute mask field above. This
mechanism allows for “sparse” multitexture layer information to be present
and does not require that the information present be contiguous.

Unsigned Int Varies 2 textureN - Texture index for texture
layer N

ü

Unsigned Int Varies 2 effectN - Multitexture effect for
texture layer N

ü

 0 = Texture environment ü

 1 = Bump map ü
 2-100 = Reserved by MultiGen-

Paradigm, Inc.
�

 >100 = user (runtime) defined �
Unsigned Int Varies 2 mappingN - Texture mapping index

for texture layer N
ü

Unsigned Int Varies 2 dataN - Texture data for layer N. This
is user defined.
For example, it may be used as a
blend percentage or color or any other
data needed by the runtime to
describe texture layer N

ü

6-204

Copyright © 2017 Open Geospatial Consortium

UV List Record

The uv list record is an ancillary record of vertex nodes. This record (if present) always
follows the vertex list or morph vertex list record and contains texture layer information
for the vertices represented in the vertex list record it follows.

UV List Record
Data Type Offset Length Description CDB OpenFlight

Reader
Unsigned Int 0 2 UV List Opcode 53 ü
Unsigned Int 2 2 Length - length of the record ü
Int 4 4 Attribute mask - Bit mask

indicating what kind of multi-
texture information is present in
this record. Bits are ordered
from left to right as follows:

ü

 Bit # Description
 0 Has Layer 1 - if set, uvs

for layer 1 are present
ü

 1 Has Layer 2 - if set,
uvs for layer 2 are present

ü

 2 Has Layer 3 - if set,
uvs for layer 3 are present

ü

 3 Has Layer 4 - if set,
uvs for layer 4 are present

ü

 4 Has Layer 5 - if set,
uvs for layer 5 are present

ü

 5 Has Layer 6 - if set,
uvs for layer 6 are present

ü

 6 Has Layer 7 - if set,
uvs for layer 7 are present

ü

 7-31 Spare �

The following fields are repeated for each vertex contained in the corresponding vertex
list or morph vertex list record.

If this uv list record follows a vertex list record, the following fields are repeated for each
layer present (as specified by the bits set in Attribute mask).

Data Type Offset Length
Float 4 ui, N - Texture coordinate U for vertex i, layer N
Float 4 vi, N - Texture coordinate V for vertex i, layer N
The number of vertices represented in the uv list record that follows a vertex list record
must be identical to the number of vertices contained in that vertex list record. This
number can also be calculated as follows:

Number of vertices = (Length - 8) / (8 * X), where X is the number of bits set in Attribute
mask.

If this uv list record follows a morph vertex list record, the following fields are repeated
for each layer present (as specified by the bits set in Attribute mask).

6-205

Copyright © 2017 Open Geospatial Consortium

Data Type Offset Length
Float 4 u0i, N - Texture U for the 0% vertex i, layer N
Float 4 v0i, N - Texture V for the 0% vertex i, layer N
Float 4 u100i, N - Texture U for the 100% vertex i, layer N
Float 4 v100i, N - Texture V for the 100% vertex i, layer N

Again, the number of vertices represented in the uv list record that follows a morph
vertex list record must be identical to the number of vertices contained in that morph
vertex list record. This number can also be calculated as follows:

Number of vertices = (Length - 8) / (16 * X), where X is the number of bits set in
Attribute mask.

Example

Consider a triangular face (3 vertices) that contains morph vertex information and has
texture layers 1 and 3 defined. The following example shows the contents of the uv list
record corresponding to the morph vertex list record representing this triangle:

Data Type Offset Length Description
opcode Unsigned Int 2 53 (UV List opcode).
length Unsigned Int 2 200 (Length of the record)
uvmask Unsigned Int 4 1010 0000 0000 0000 (layers 1and 3 ON,

others OFF)
u0 1,1 Float 8 Texture U for the 0% vertex 1, layer 1.
v0 1,1 Float 8 Texture V for the 0% vertex 1, layer 1.
u100 1,1 Float 8 Texture U for the 100% vertex 1, layer 1.
v100 1,1 Float 8 Texture V for the 100% vertex 1, layer 1.
u0 1,3 Float 8 Texture U for the 0% vertex 1, layer 3.
v0 1,3 Float 8 Texture V for the 0% vertex 1, layer 3.
u100 1,3 Float 8 Texture U for the 100% vertex 1, layer 3.
v100 1,3 Float 8 Texture V for the 100% vertex 1, layer 3.
u0 2,1 Float 8 Texture U for the 0% vertex 2, layer 1.
v0 2,1 Float 8 Texture V for the 0% vertex 2, layer 1.
u100 2,1 Float 8 Texture U for the 100% vertex 2, layer 1.
v100 2,1 Float 8 Texture V for the 100% vertex 2, layer 1.
u0 2,3 Float 8 Texture U for the 0% vertex 2, layer 3.
v0 2,3 Float 8 Texture V for the 0% vertex 2, layer 3.
u100 2,3 Float 8 Texture U for the 100% vertex 2, layer 3.
v100 2,3 Float 8 Texture V for the 100% vertex 2, layer 3.
u0 3,1 Float 8 Texture U for the 0% vertex 3, layer 1.
v0 3,1 Float 8 Texture V for the 0% vertex 3, layer 1.
u100 3,1 Float 8 Texture U for the 100% vertex 3, layer 1.
v100 3,1 Float 8 Texture V for the 100% vertex 3, layer 1.
u0 3,3 Float 8 Texture U for the 0% vertex 3, layer 3.
v0 3,3 Float 8 Texture V for the 0% vertex 3, layer 3.
u100 3,3 Float 8 Texture U for the 100% vertex 3, layer 3.
v100 3,3 Float 8 Texture V for the 100% vertex 3, layer 3

6-206

Copyright © 2017 Open Geospatial Consortium

Replicate Record

A replicate record is an ancillary record of group, face, and light (string) point nodes. It
indicates the number of times the group, face, or light (string) point is instantiated. An
ancillary transformation record must also be present. The transformation is iteratively
applied to each instance to uniquely place it in the database.

Replicate Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Replicate Opcode 60 ü
Unsigned
Int

2 2 Length - length of the
record

ü

Int 4 2 Number of replications ü
Int 6 2 Reserved �

Road Zone Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider Road Zone
Records.

The road zone record is an ancillary record of the header node. It references a road zone
file that contains gridded elevation data. The format of the file is described in “Road
Zone Files,” page 101.

Road Zone Record
Data Type Offset Length Description
Int 0 2 Road Path Opcode 88
Unsigned Int 2 2 Length - length of the record
Char 4 120 Zone file name; 0 terminates
Int 124 4 Reserved
Double 128 8 Lower-left x coordinate
Double 136 8 Lower-left y coordinate
Double 144 8 Upper-right x coordinate
Double 152 8 Upper-right y coordinate
Double 160 8 Grid interval
Int 168 4 Number of posts along x axis
Int 172 4 Number of posts along y axis

Transformation Records

CDB OpenFlight Readers: CDB-compliant OpenFlight readers consider only the Matrix
Transformation Records. The Rotate About Edge Record, Translate Record, Scale Record, Rotate
About Point Record, Rotate and/or Scale to Point Record, Put Record and General Matrix Record
are specific to the MultiGen Creator tool; as a result, CDB OpenFlight readers do not consider
them.

6-207

Copyright © 2017 Open Geospatial Consortium

Transformation records may be ancillary records of most nodes. All hierarchical nodes
may be transformed except the header node. Some nodes may only be transformed
implicitly, as part of some other operation, such as point replication within a light point
string.

There are several distinct types of transformation records. For a transformation applied to
any node, a matrix record is always present and represents the final (composite)
transformation. When present, the transformation records that follow a matrix record
represent the individual transformations applied to the node. If an application only needs
the final transformation, the matrix record is sufficient and the transformation records
that follow the matrix record can be ignored. The records following the matrix record are
only needed by the application if it needs to decompose the transformation. The
MultiGen-Paradigm, Inc. modeling environment uses these records in order to allow the
modeler to modify any of the discrete transformations applied to a node.

Again, each record that follows the matrix record represents a discrete transformation that
has been concatenated to form the composite matrix. Concatenation is done in the order
that the records are encountered, using pre-multiplication.

Note: The final and general matrices are only single-precision, while the discrete
transformations are double-precision.

Matrix Record
Data Type Offset Length Description
Int 0 2 Matrix Opcode 49
Unsigned Int 2 2 Length - length of the record
Float 4 4*16 4x4 matrix, row major order

Rotate About Edge Record
Data Type Offset Length Description
Int 0 2 Rotate About Edge Opcode 76
Unsigned Int 2 2 Length - length of the record
Int 4 4 Reserved
Double 8 8*3 First point on edge (x, y, z)
Double 32 8*3 Second point on edge (x, y, z)
Float 56 4 Angle by which to rotate
Int 60 4 Reserved

Translate Record
Data Type Offset Length Description
Int 0 2 Translate Opcode 78
Unsigned Int 2 2 Length - length of the record
Int 4 4 Reserved
Double 8 8*3 From point (x, y, z)
Double 32 8*3 Delta to translate (x, y, z)

6-208

Copyright © 2017 Open Geospatial Consortium

Scale Record
Data Type Offset Length Description
Int 0 2 Scale Opcode 79
Unsigned Int 2 2 Length - length of the record
Int 4 4 Reserved
Double 8 8*3 Scale center (x, y, z)
Float 32 4 x scale factor
Float 36 4 y scale factor
Float 40 4 z scale factor
Int 44 4 Reserved

Rotate About Point Record

Data Type Offset Length Description
Int 0 2 Rotate About Point Opcode 80
Unsigned Int 2 2 Length - length of the record
Int 4 4 Reserved
Double 8 8*3 Rotation center point (x, y, z)
Float 32 4 i, axis of rotation
Float 36 4 j, axis of rotation
Float 40 4 k, axis of rotation
Float 44 4 Angle by which to rotate

Rotate and/or Scale to Point Record
Data Type Offset Length Description
Int 0 2 Rotate and/or Scale Opcode 81
Unsigned Int 2 2 Length - length of the record
Int 4 4 Reserved
Double 8 8*3 Scale center (x, y, z)
Double 32 8*3 Reference point (x, y, z)
Double 56 8*3 To point (x, y, z)
Float 80 4 Overall scale factor
Float 84 4 Scale factor in direction of axis
Float 88 4 Angle by which to rotate
Int 92 4 Reserved

Put Record
Data Type Offset Length Description
Int 0 2 Put Opcode 82
Unsigned Int 2 2 Length - length of the record
Int 4 4 Reserved
Double 8 8*3 From point origin (x, y, z)
Double 32 8*3 From point align (x, y, z)
Double 56 8*3 From point track (x, y, z)
Double 80 8*3 To point origin (x, y, z)
Double 104 8*3 To point align (x, y, z)
Double 128 8*3 To point track (x, y, z)

6-209

Copyright © 2017 Open Geospatial Consortium

General Matrix Record
Data Type Offset Length Description
Int 0 2 General Matrix Opcode 82
Unsigned Int 2 2 Length - length of the record
Float 4 4*16 4x4 matrix, row major order

Vector Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider Vector
Records.

A vector record is an ancillary record of the (pre v15.4) face node. Its only use is to
provide the direction vector for old-style unidirectional and bidirectional light point faces.

Vector Record
Data Type Offset Length Description
Int 0 2 Vector Opcode 50
Unsigned Int 2 2 Length - length of the record
Float 4 4 i component
Float 8 4 j component
Float 12 4 k component

Bounding Volume Records

Bounding volumes are ancillary records for group nodes only. They generally encompass
all the geometry of a group’s children. A bounding volume may describe a box, sphere,
cylinder, convex hull or histogram.

The center coordinate of a bounding volume is stored as a separate record. The
orientation of a bounding volume is also stored as a separate record. The convex hull data
is represented by a sequence of triangles forming the convex hull around the group
geometry.

Applications may use the bounding volume information with culling and collision
detection algorithms.

6-210

Copyright © 2017 Open Geospatial Consortium

Bounding Box Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Bounding Box Opcode 74 ü
Unsigned
Int

2 2 Length - length of the record ü

Int 4 4 Reserved �
Double 8 8 x coordinate of lowest

corner
ü

Double 16 8 y coordinate of lowest
corner

ü

Double 24 8 z coordinate of lowest
corner

ü

Double 32 8 x coordinate of highest
corner

ü

Double 40 8 y coordinate of highest
corner

ü

Double 48 8 z coordinate of highest
corner

ü

Bounding Sphere Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Bounding Sphere Opcode

105
ü

Unsigned
Int

2 2 Length - length of the record ü

Int 4 4 Reserved �
Double 8 8 Radius of the sphere ü

Bounding Cylinder Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Bounding Cylinder Opcode

106
ü

Unsigned
Int

2 2 Length - length of the record ü

Int 4 4 Reserved �
Double 8 8 Radius of the cylinder base ü
Double 16 8 Height of the cylinder ü

6-211

Copyright © 2017 Open Geospatial Consortium

Bounding Convex Hull Record
Data
Type

Offset Length Description CDB OpenFlight
Reader

Int 0 2 Bounding Convex Hull
Opcode 107

ü

Unsigned
Int

2 2 Length - length of the
record

ü

Int 4 4 Number of triangles ü
The following fields are repeated for each triangle represented
in the convex hull data.
In the fields listed below, N ranges from 0 to Number of
triangles-1.

ü

Double 8+(N*72) 8 x coordinate of vertex 1 of
triangleN

ü

Double 16+(N*72) 8 y coordinate of vertex 1 of
triangleN

ü

Double 24+(N*72) 8 z coordinate of vertex 1 of
triangleN

ü

Double 32+(N*72) 8 x coordinate of vertex 2 of
triangleN

ü

Double 40+(N*72) 8 y coordinate of vertex 2 of
triangleN

ü

Double 48+(N*72) 8 z coordinate of vertex 2 of
triangleN

ü

Double 56+(N*72) 8 x coordinate of vertex 3 of
triangleN

ü

Double 64+(N*72) 8 y coordinate of vertex 3 of
triangleN

ü

Double 72+(N*72) 8 z coordinate of vertex 3 of
triangleN

ü

6-212

Copyright © 2017 Open Geospatial Consortium

Bounding Histogram Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Bounding Histogram

Opcode 119
�

Unsigned
Int

2 2 Length - length of the
record

�

Char 4 Variable The contents of this record
is reserved for use by Multi-
Gen-Paradigm.

�

Bounding Volume Center Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Bounding Volume Center

Opcode 108
ü

Unsigned
Int

2 2 Length - length of the record ü

Int 4 4 Reserved �
Double 8 8 x coordinate of center ü
Double 16 8 y coordinate of center ü
Double 24 8 z coordinate of center ü

Bounding Volume Orientation Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Bounding Volume

Orientation Opcode 109
ü

Unsigned
Int

2 2 Length - length of the record ü

Int 4 4 Reserved �
Double 8 8 Yaw angle ü
Double 16 8 Pitch angle ü
Double 24 8 Roll angle ü

CAT Data Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider CAT
Records.

The CAT data records contain the information needed to reconstruct a Continuously
Adaptive Terrain skin from its OpenFlight representation. They provide the information
which links faces between levels of detail within a CAT skin. CAT data is stored as a key
table with an opcode of 116. For specific detail please refer to “Key Table Records” on
page 76.

6-213

Copyright © 2017 Open Geospatial Consortium

Each CAT data record describes how a face within a CAT skin is related to faces at the
next finer level of detail. The coarsest level of detail is level zero. The next finer level of
detail is one, and so forth. Each data record is stored in the key table using an ordinal key,
counting up from zero. The face node ID is stored in the data record, thereby providing
the cross reference to the OpenFlight face node that represents it.

In OpenFlight, each CAT level of detail is parented by a LOD node. Each CAT triangle
strip is parented by a group node.

CAT Data Header Record
Data Type Offset Length Description
Int 0 2 CAT Data Opcode 116
Unsigned Int 2 2 Length - length of the record
Int 4 4 Subtype
 1 = indicates this record is a key table header
Int 8 4 Max number - maximum number of face keys
Int 12 4 Actual number - actual number of face keys

CAT Data Header Record (Continued)

Data Type Offset Length Description
Int 16 4 Total length of packed face data
Int 20 4 Reserved
Int 24 4 Reserved
Int 28 4 Reserved
The following fields are repeated for each face record represented in the CAT data.
In the fields listed below, N ranges from 0 to Actual number - 1.
Int 32+(N*12) 4 Face indexN - index of face N
Int 36+(N*12) 4 ReservedN - reserved space for face N
Int 40+(N*12) 4 Face data offsetN - offset for face data record N in the

CAT data.
Note: This offset is measured relative to the Packed
face data field in the CAT data face record described
below.

6-214

Copyright © 2017 Open Geospatial Consortium

CAT Data Face Record
Data Type Offset Length Description
Int 0 2 CAT Data Opcode 116
Unsigned Int 2 2 Length - length of the record
Int 4 4 Subtype
 2 = indicates this record is a key data record
Int 8 4 Total length of all packed face records
The following fields constitute one face record and are repeated for each face record represented
in the CAT data. In the fields listed below, N ranges from 0 to Actual number - 1. Actual
number is from the CAT data header record.
Int Varies 4 LODN - Level of detail to which this face N belongs.
Int Varies 4 Child index 1N - The 1st child (within this table) of face

N, or -1 for no face.
Int Varies 4 Child index 2N - The 2nd child (within this table) of

face N, or -1 for no face.
Int Varies 4 Child index 3N - The 3rd child index (within this table)

of face N, or -1 for no face.
Int Varies 4 Child index 4N - The 4th child index (within this table)

of face N, or -1 for no face.
Int Varies 4 ID LengthN - length of face node ID string which

follows
Char Varies Varies IDN - ASCII ID of the face to which this record applies.

6-215

Copyright © 2017 Open Geospatial Consortium

Extension Attribute Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider Extension
Attribute Records.

The extension attribute record is an ancillary record defined by an extension site that
utilizes the extensibility of the OpenFlight format. It specifies the site information of a
third party extended record which describes additional data that is not represented by the
standard OpenFlight records. The data itself is transparent to users other than the
extension site. The data can be accessed by the combination of the OpenFlight API and
the data dictionary defined by the extension site.

Any hierarchical node can contain extension attribute records. Extension attributes are
introduced by an push extension control record and concluded by a pop extension control
record.

The extension record (Opcode 100) may also introduce a new node type (See “Extension
Record” on page 51.)

Extension Attribute Record
Data Type Offset Length Description
Int 0 2 Extension Opcode 100
Unsigned Int 2 2 Length of the total extension record
Char 4 8 7 char ASCII ID; 0 terminates
Char 12 8 Site ID - Unique site name
Int 20 1 Reserved
Int 21 1 Revision - site specific
Unsigned Int 22 2 Record code - site specific
Char 24 Variable Extended data - site specific

Continuation Record

All OpenFlight records begin with a 4 byte sequence. The first two bytes identify the
record (opcode) and the second two bytes specify the length of the record. Given this
regular record structure, the length of all OpenFlight records is limited to the largest
value that can be encoded with 2 bytes or 16 bits (65535). For fixed-size records, this
maximum size is sufficient. For variable-size records, this limitation is addressed with the
continuation record which is described in this section.

The continuation record accommodates variable size records in the OpenFlight Scene
Description. The continuation record is used to “continue” a record in the OpenFlight file
stream. It appears in the stream immediately following the record that it “continues” (the
record that is being continued will be referred to as the “original” record). In this way, the
continuation record is an ancillary record to any other record type. The data contained in
the continuation record is defined by the original record and is assumed to be directly
appended onto the content of the original record.

Note: Multiple continuation records may follow a record, in which case all
continuation records would be appended (in sequence) to the original record.

6-216

Copyright © 2017 Open Geospatial Consortium

Continuation Record

Data Type Offset Length Description CDB OpenFlight
Reader

Unsigned
Int

0 2 Continuation Record
Opcode 23

ü

Unsigned
Int

2 2 Length - length of the
record

ü

Varies 4 Length-
4

Depends on the original
record. The contents of this
field are to be appended
directly to the end of the
original record contents
(before the original record
contents are parsed)

ü

In theory, any OpenFlight record may be “continued”, but in practice only variable length
records, whose length is likely to exceed 65535 bytes, are. Following is a list of the
variable length OpenFlight record types to which the continuation record is likely to
apply:

• “Extension Record” on page 51

• “Name Table Record” on page 71
• “Local Vertex Pool Record” on page 30

• “Mesh Primitive Record” on page 32
Example: In the following example, the color name table is “too” big to fit in 65535
bytes so the primary palette record, NAME TABLE, is followed by one (or more)
CONTINUATION records. The contents of each of the continuation records is appended
to the contents of the name table record before the name table data is parsed.
NAME TABLE
CONTINUATION
CONTINUATION

6-217

Copyright © 2017 Open Geospatial Consortium

Palette Records

Palette records are ancillary records of the header node. They contain attribute data
globally shared by other nodes in the database. Other nodes, such as face nodes, reference
the palette data by index.

Individual palettes contain resources such as vertex, material, light source, texture
pattern, and line style definitions.

Vertex Palette Records

Double precision vertex records are stored in a vertex palette for the entire database.
Vertices shared by one or more geometric entities are written only one time in the vertex
palette. This reduces the overall size of the OpenFlight file by writing only “unique”
vertices. Vertex palette records are referenced by faces and light points via vertex list and
morph vertex list records. See “Vertex List Record” on page 39 and “Morph Vertex List
Record” on page 39 for more information.

Note: The vertices referenced by mesh nodes are not contained in vertex palette
records. Instead, they are contained in local vertex pool records. See “Local Vertex Pool
Record” on page 30. The vertex palette record signifies the start of the vertex palette. It
contains a one word entry specifying the total length of the vertex palette, which is equal
to the length of this header record plus the length of the following vertex records. The
individual vertex records follow this header, each starting with its own opcode. The
length field in the vertex palette record makes it possible to skip over vertex records until
the data is actually needed.

As stated above, vertices may be shared, and are accessed through the vertex and morph
vertex list records following each face record. A face may contain all morph vertices, all
non-morph vertices, or a mixture of both. Thus there can be one or more list records
following each face. Consecutive vertices with the same type are grouped together within
a list record. The length of each list record is determined by the number of consecutive
vertices of each type. For each vertex, there is a one word field pointing to its vertex
record in the vertex palette. Since this offset includes the length of the vertex palette
record, the value of the first pointer is 8.

Vertex Palette Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Vertex Palette Opcode

67
ü

Unsigned Int 2 2 Length - length of the
record

ü

Int 4 4 Length of this record
plus length of the vertex
palette

ü

The vertex palette record is immediately followed by vertex records. Each vertex record
contains all the attributes of a vertex that has been referenced one or more times in the
database.

The Color name index references a name in the color name palette.

6-218

Copyright © 2017 Open Geospatial Consortium

The Hard edge flag indicates this vertex starts an edge that is to be preserved by polygon
reduction or decimation algorithms.

The Normal frozen flag indicates the normal is not to be updated by shading or lighting
algorithms.

The No color flag indicates the vertex does not have a color. If set, neither the Packed
color or Vertex color index fields are defined.

When a vertex has a color (the No color flag is not set), the Packed color field is always
specified (regardless of the value of the Packed color flag) and contains the red, green,
blue and alpha color components. For alpha, 0 represents fully transparent, 255 fully
opaque. If the Packed color flag is set, the Vertex color index field will be undefined.

Here are some examples that show how vertex palette records can represent vertex
colors:
PackedColor

Flag
PackedColor VertexColorIndex Result

0 a, g, b, r N Vertex color index and Packed color attributes
are both specified.
a, b, g, r specify the vertex color components.
g, b, r components match those of color index N
in palette.

1 a, g, b, r Not defined Vertex color index attribute is not specified,
only packed color.
a, b, g, r specify the vertex color components.

Vertex with Color Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Vertex with Color Opcode

68
ü

Unsigned
Int

2 2 Length - length of the
record

ü

Unsigned
Int

4 2 Color name index ü

Int 6 2 Flags (bits, from left to
right)

ü

 0 = Start hard edge ü
 1 = Normal frozen �
 2 = No color ü
 3 = Packed color ü
 4-15 = Spare �
Double 8 8*3 Vertex coordinate (x, y, z) ü
Int 32 4 Packed color (a, b, g, r) -

always specified when the
vertex has color

ü

Unsigned
Int

36 4 Vertex color index - valid
only if vertex has color and

ü

6-219

Copyright © 2017 Open Geospatial Consortium

Packed color flag is not set

Vertex with Color and Normal Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Vertex with Color and

Normal Opcode 69
ü

Unsigned
Int

2 2 Length - length of the
record

ü

Unsigned
Int

4 2 Color name index ü

Int 6 2 Flags (bits, from left to
right)

ü

 0 = Start hard edge ü
 1 = Normal frozen �
 2 = No color ü
 3 = Packed color ü
 4-15 = Spare �
Double 8 8*3 Vertex coordinate (x, y, z) ü
Float 32 4*3 Vertex normal (i, j, k) ü
Int 44 4 Packed color (a, b, g, r) -

always specified when the
vertex has color

ü

Unsigned
Int

48 4 Vertex color index - valid
only if vertex has color and
Packed color flag is not set

ü

Int 52 4 Reserved �

Vertex with Color and UV Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Vertex with Color and UV

Opcode 71
ü

Unsigned
Int

2 2 Length - length of the
record

ü

Unsigned
Int

4 2 Color name index ü

Int 6 2 Flags (bits, from left to
right)

ü

 0 = Start hard edge ü
 1 = Normal frozen �
 2 = No color ü
 3 = Packed color ü
 4-15 = Spare �
Double 8 8*3 Vertex coordinate (x, y, z) ü

6-220

Copyright © 2017 Open Geospatial Consortium

Float 32 4*2 Texture coordinate (u, v) ü
Int 40 4 Packed color (a, b, g, r) -

always specified when the
vertex has color

ü

Unsigned
Int

44 4 Vertex color index - valid
only if vertex has color and
Packed color flag is not set

ü

Vertex with Color, Normal and UV Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Vertex with Color, Normal

and UV Opcode 70
ü

Unsigned
Int

2 2 Length - length of the
record

ü

Unsigned
Int

4 2 Color name index ü

Int 6 2 Flags (bits, from left to
right)

ü

 0 = Start hard edge ü
 1 = Normal frozen �
 2 = No color ü
 3 = Packed color ü
 4-15 = Spare �
Double 8 8*3 Vertex coordinate (x, y, z) ü
Float 32 4*3 Vertex normal (i, j, k) ü
Float 44 4*2 Texture coordinate (u, v) ü
Int 52 4 Packed color (a, b, g, r) -

always specified when the
vertex has color

ü

Unsigned
Int

56 4 Vertex color index - valid
only if vertex has color and
Packed color flag is not set

ü

Int 60 4 Reserved �

6-221

Copyright © 2017 Open Geospatial Consortium

Color Palette Record

The color palette record contains all colors indexed by face and vertex nodes in the
database.

The color record is divided into two sections: one for color entries and one for color
names. All color entries are in 32-bit packed format (a, b, g, r). Each color consists of red,
green, and blue components of 8 bits each, plus 8 bits reserved for alpha (future).
Currently alpha is always 0xff (fully opaque). The color entry section consists of 1024
ramped colors of 128 intensities each.

The color name section may or may not be included. If the length of the color palette
record is greater than 4228, then you can assume that the color name section is included.
When it is present, the color name section consists of a header followed by 0 or more
color name entries. The header contains the number of names in the palette. If this value
is 0, there are no names following in the palette. Each color name entry contains the name
string, pointer to the associated color entry, and other reserved information. The name
field is a variable-length, null-terminated ASCII string, with a maximum of 80 bytes.

Color Palette Record
Data Type Offset Length Description CDB

OpenFlight
Reader

Int 0 2 Color Palette Opcode 32 ü
Unsigned
Int

2 2 Length - length of the record ü

Char 4 128 Reserved �
Int 132 4 Brightest RGB of color 0,

intensity 127 (a, b, g, r)
ü

Int 136 4 Brightest RGB of color 1,
intensity 127 (a, b, g, r)

ü

etc. ü
Int 4224 4 Brightest RGB of color 1023,

intensity 127 (a, b, g, r)
ü

As stated above, if the length of the color palette record is greater
than 4228, then it also contains a color name section as shown below:

ü

Int 4228 4 Number of color names ü
The following fields are repeated for each color name entry present in
the color palette record.
In the fields listed below, N ranges from 0 to Number of color names
- 1.

Unsigned
Int

Varies 2 LengthN - length of color name
subrecord N. This length is the
total length of this field plus
the length of the next 3 fields
plus the length of the Color
nameN field.

ü

Int Varies 2 ReservedN - reserved space for �

6-222

Copyright © 2017 Open Geospatial Consortium

color name N
Int Varies 2 Color indexN - index of color

in palette corresponding to
color name N

ü

Int Varies 2 ReservedN - reserved space for
color name N

�

Char Varies LengthN-
8

Color nameN - color name N; 0
terminates, max 80 bytes

ü

Name Table Record

The name table contains a lookup table of names referenced within the database. These
names are typically used as attributes (e.g., color name index in the face record). The
primary benefit of the name table is to allow name referencing, so each name string is
only stored once. Each name entry in the name table contains fields for the its length,
index, and string. The name index is used by the database to reference names within the
table. The name string is a variable-length, null-terminated ASCII string, with a
maximum of 80 bytes.

Name Table Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Name Table Opcode 114 ü
Unsigned
Int

2 2 Length - length of the
record

ü

Int 4 4 Number of names ü
Unsigned
Int

8 2 Next available name index �

Name Table Entry 0
Int 10 4 Length0 - length of entry 0 ü
Unsigned
Int

14 2 Name index0 - index
corresponding to entry 0

ü

Char 16 Varies Name string0 - name for
entry 0; 0 terminates.
Variable length, maximum
of 80 chars

ü

Name Table Entry 1
Int Varies 4 Length1 - length of entry 1 ü
Unsigned
Int

Varies 2 Name index1 - index
corresponding to entry 1

ü

Char Varies Varies Name string1 - name for
entry 1; 0 terminates.
Variable length, maximum
of 80 chars

ü

...
Name Table Entry N, where N is Number of names - 1

6-223

Copyright © 2017 Open Geospatial Consortium

Int Varies 4 LengthN - length of entry N ü
Unsigned
Int

Varies 2 Name indexN - index
corresponding to entry N

ü

Char Varies Varies Name stringN - name for
entry N; 0 terminates.
Variable length, maximum
of 80 chars

ü

Material Palette Record

The material palette contains descriptions of materials used while drawing geometry. It is
composed of an arbitrary number of material palette records. The material palette records
must follow the header record and precede the first push.

The appearance of a face or mesh in OpenFlight is a combination of the geometry (face
or mesh) color and the material properties. The geometry color is factored into the
material properties as follows:

Ambient:
The displayed material's ambient component is the product of the ambient component of
the material and the geometry color:

Displayed ambient (red) = Material ambient (red)* geometry color (red)
Displayed ambient (green) = Material ambient (green)* geometry color (green)
Displayed ambient (blue) = Material ambient (blue)* geometry color (blue)

For example, suppose the material has an ambient component of {1.0,.5,.5} and the
geometry color is {100, 100, 100}. The displayed material has as its ambient color {100,
50, 50}.

Diffuse:
As with the ambient component, the diffuse component is the product of the diffuse
component of the material and the geometry color:

Displayed diffuse (red) = Material diffuse (red)* geometry color (red)
Displayed diffuse (green) = Material diffuse (green)* geometry color (green)
Displayed diffuse (blue) = Material diffuse (blue)* geometry color (blue)

Specular:
Unlike ambient and diffuse components, the displayed specular component is taken
directly from the material:

Displayed specular (red) = Material specular (red)
Displayed specular (green) = Material specular (green)
Displayed specular (blue) = Material specular (blue)

6-224

Copyright © 2017 Open Geospatial Consortium

Emissive:
The displayed emissive component is taken directly from the material:

Displayed emissive (red) = Material emissive (red)
Displayed emissive (green) = Material emissive (green)
Displayed emissive (blue) = Material emissive (blue)

Shininess:
The MultiGen-Paradigm, Inc. modeling environment uses the shininess directly from the
material. Specular highlights are tighter, with higher shininess values.

Alpha:
An alpha of 1.0 is fully opaque, while 0.0 is fully transparent. The final alpha applied is a
combination of the transparency value of the geometry (face or mesh) with the alpha
value of the material record. The final alpha value is a floating point number between 0.0
(transparent) and 1.0 (opaque), and is computed as follows:

Final alpha = material alpha * (1.0 - (geometry transparency / 65535))

Material Palette Record

Data
Type

Offset Length Description CDB OpenFlight
Reader

Int 0 2 Material Palette Opcode 113 ü
Int 2 2 Length - length of the record ü
Int 4 4 Material index ü

Char 8 12 Material name ü
Int 20 4 Flags ü

 0 = Material is used ü
 1-31 = Spare �

Float 24 4*3 Ambient component of
material (r, g, b) *

ü

Float 36 4*3 Diffuse component of
material (r, g, b) *

ü

Float 48 4*3 Specular component of
material (r, g, b) *

ü

Float 60 4*3 Emissive component of
material (r, g, b) *

ü

Float 72 4 Shininess - (0.0-128.0) ü
Float 76 4 Alpha - (0.0-1.0) where 1.0

is opaque
ü

Int 80 4 Reserved �
* normalized values between 0.0 and 1.0, inclusive.

Texture Palette Record

There is one record for each texture pattern referenced in the database. These records
must follow the header record and precede the first push.

A palette and pattern system can be used to reference the texture patterns. A texture
palette is made up of 256 patterns. The pattern index for the first palette is 0 - 255, for the

6-225

Copyright © 2017 Open Geospatial Consortium

second palette 256 - 511, etc. Note: If less than 256 patterns exist on a palette, several
pattern indices are unused. The x and y palette locations are used to store offset locations
in the palette for display.

Texture Palette Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Texture Palette Opcode 64 ü
Unsigned
Int

2 2 Length - length of the record ü

Char 4 200 File name of texture pattern ü
Int 204 4 Texture pattern index ü
Int 208 4*2 Location in the texture

palette (x, y)
�

6-226

Copyright © 2017 Open Geospatial Consortium

Eyepoint and Trackplane Palette Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider the
Eyepoint and Trackplane Palette Records.

OpenFlight files can contain up to ten eyepoint and trackplane positions. The first
eyepoint and trackplane in the file is reserved as the “last” one set during the modeling
session. The other nine are user-defined. Both the eyepoints and trackplanes are
combined in the Eyepoint and Trackplane palette record which is described in this
section.

Eyepoint and Trackplane Palette Record

Data Type Offset Length Description
Int 0 2 Eyepoint and Trackplane Palette Opcode 83
Unsigned Int 2 2 Length - length of the record
Int 4 4 Reserved
The following fields are repeated for 10 eyepoints

Eyepoint 0 - 272 bytes
Double 8 8*3 Rotation center (x, y, z)
Float 32 4*3 Yaw, pitch, and roll angles
Float 44 16*4 4x4 rotation matrix, row major order
Float 108 4 Field of view
Float 112 4 Scale
Float 116 4 Near clipping plane
Float 120 4 Far clipping plane
Float 124 16*4 4x4 fly-through matrix, row major order
Float 188 3*4 Eyepoint position (x, y, z)
Float 200 4 Yaw of fly-through
Float 204 4 Pitch of fly-through
Float 208 3*4 Eyepoint direction vector (i, j, k)
Int 220 4 No fly through - 1 if no fly-through
Int 224 4 Ortho view - 1 if ortho drawing mode
Int 228 4 Valid eyepoint - 1 if this is a valid eyepoint
Int 232 4 Image offset x
Int 236 4 Image offset y
Int 240 4 Image zoom
Int 244 4*8 Reserved
Int 276 4 Reserved
Eyepoint 1 280 272 Eyepoint 1 - the fields listed above are

repeated here.
Eyepoint 2 552 272 Eyepoint 2 - the fields listed above are

repeated here.
Eyepoint 3 824 272 Eyepoint 3 - the fields listed above are

repeated here.
Eyepoint 4 1096 272 Eyepoint 4 - the fields listed above are

repeated here.
Eyepoint 5 1368 272 Eyepoint 5 - the fields listed above are

repeated here.

6-227

Copyright © 2017 Open Geospatial Consortium

Eyepoint 6 1640 272 Eyepoint 6 - the fields listed above are
repeated here.

Eyepoint 7 1912 272 Eyepoint 7 - the fields listed above are
repeated here.

Eyepoint 8 2184 272 Eyepoint 8 - the fields listed above are
repeated here.

Eyepoint 9 2456 272 Eyepoint 9 - the fields listed above are
repeated here.

Eyepoint and Trackplane Palette Record (Continued)

Data Type Offset Length Description
The following fields are repeated for 10 trackplanes

Trackplane 0 - 128 bytes
Int 2728 4 Valid trackplane - 1 if this is a valid trackplane
Int 2732 4 Reserved
Double 2736 8*3 Trackplane origin coordinate (x, y, z)
Double 2760 8*3 Trackplane alignment coordinate (x, y, z)
Double 2784 8*3 Trackplane plane coordinate (x, y, z)
Boolean 2808 1 Grid visible - 1 if grid is visible
Int 2809 1 Grid type flag
 0 = rectangular grid
 1 = radial grid
Int 2810 1 Grid under flag
 0 = draw grid over scene
 1 = draw grid under scene
 2 = draw grid depth buffered
Int 2811 1 Reserved
Float 2812 4 Grid angle for radial grid
Double 2816 8 Grid spacing in X. Radius if radial grid.
Double 2824 8 Grid spacing in Y
Int 2832 1 Radial grid spacing direction control
Int 2833 1 Rectangular grid spacing direction control
Boolean 2834 1 Snap cursor to grid - 1 if snap cursor to grid is

on
Int 2835 1 Reserved
Int 2836 4 Reserved
Double 2840 8 Grid size (a power of 2)
Boolean 2848 4 Mask of visible grid quadrants
Int 2852 4 Reserved
Trackplane 1 2856 128 Trackplane 1 - the fields listed above are

repeated here.
Trackplane 2 2984 128 Trackplane 2 - the fields listed above are

repeated here.
Trackplane 3 3112 128 Trackplane 3 - the fields listed above are

repeated here.
Trackplane 4 3240 128 Trackplane 4 - the fields listed above are

repeated here.

6-228

Copyright © 2017 Open Geospatial Consortium

Trackplane 5 3368 128 Trackplane 5 - the fields listed above are
repeated here.

Trackplane 6 3496 128 Trackplane 6 - the fields listed above are
repeated here.

Trackplane 7 3624 128 Trackplane 7 - the fields listed above are
repeated here.

Trackplane 8 3752 128 Trackplane 8 - the fields listed above are
repeated here.

Trackplane 9 3880 128 Trackplane 9 - the fields listed above are
repeated here.

Key Table Records

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider the Key
Table Records.

Key table records store variable length data records and their identifiers. The linkage
editor, sound palette, and CAT Data are stored as key table records. The first key table
record contains the key table header and a set of keys. If all the keys cannot fit into the
first record, additional key records are written. This is followed by one or more key table
data records.

A key table consists of: For an example of the use of key table records, see “Sound
Palette Record” on page 108.

Key Table Header Record
Data Type Offset Length Description
Int 0 2 Opcode - opcode of record using key table

for storage
Unsigned Int 2 2 Length - length of the record
Int 4 4 Subtype
 1 = indicates this record is a key table

header
Int 8 4 Max number - maximum number of entries
Int 12 4 Actual number - actual number of entries
Int 16 4 Total length of packed data
Int 20 4*3 Reserved

6-229

Copyright © 2017 Open Geospatial Consortium

The following fields are repeated for each key in the key table.
In the fields listed below, N ranges from 0 to Actual number - 1.
Int 32+(N*12) 4 Key valueN - key value N
Int 36+(N*12) 4 ReservedN - reserved space for key N,

defined by record using key table for storage
Int 40+(N*12) 4 Data offsetN - offset for data corresponding

to key N.
Note: This offset is measured relative to the
Packed data field in the key table data record
described below.

6-230

Copyright © 2017 Open Geospatial Consortium

Key Table Data
Data Type Offset Length Description
Int 0 2 Opcode - opcode of record using key table for storage
Unsigned Int 2 2 Length - length of the record
Int 4 4 Subtype
 2 = indicates this record is a key table data

record
Int 8 4 Data length
Char 12 Data

length
Packed data
Data is always 4 byte aligned, with unused bytes set to
0.
Data length can be calculated as follows: Length - 12

Linkage Palette Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider the Linkage
Palette Records.

Database linkages use key table records. Linkage data consists of two different
constructs: nodes and arcs. Nodes usually contain data pertaining to database entities
such as DOFs. In addition, the nodes may represent modeling driver functions and code
nodes. The arcs contain information on how all the nodes are connected to each other.
For most nodes, the value of the node is contained in the following Entity name
subrecord. For example, this node value can be a node name, when the node represents a
database entity, or a math formula as a string, in the case of a formula node. Names are
stored as null-terminated ASCII strings.

See “Linkage Editor Parameter IDs” on page 103 for parameter ID values and
descriptions.

Linkage Palette Header Record
Data Type Offset Length Description
Int 0 2 Linkage Palette Opcode 90
Unsigned Int 2 2 Length - length of the record
Int 4 4 Subtype
 1 = indicates this record is a key table header
Int 8 4 Max number - maximum number of entries. Each

entry is either a node, arc, or entity name.
Int 12 4 Actual number - actual number of entries. Each entry

is either a node, arc, or entity name.
Int 16 4 Total length of data
Int 20 4*3 Reserved
The following fields are repeated for each key in the key table.
In the fields listed below, N ranges from 0 to Actual number - 1.
Int 32+(N*12) 4 Key valueN - key value N
Int 36+(N*12) 4 Data typeN - data type for key N
 0x12120001 = Node data
 0x12120002 = Arc data
 0x12120004 = Database entity name

6-231

Copyright © 2017 Open Geospatial Consortium

Int 40+(N*12) 4 Data offsetN - offset for data corresponding to key N.
Note: This offset is measured relative to the Packed
data field in the linkage palette data record described
below.

Linkage Palette Data Record

Data Type Offset Length Description
Int 0 2 Linkage Palette Opcode 90
Unsigned Int 2 2 Length - length of the record
Int 4 4 Subtype
 2 = indicates this record is a key data record
Int 8 4 Data length
Char 12 Data

length
Packed data. Each packed data item is either a
node data subrecord, arc data subrecord or entity
name subrecord. Node data subrecords can be
either general nodes, formula nodes, or driver
nodes. All these subrecords are described in the
following sections.
Data length can be calculated as follows: Length
- 12

The offsets listed in the following subrecords are measured from the start of the subrecord, not
from the start of the linkage palette data record that contains this packed data.

General Node Data Subrecord
Data Type Offset Length Description
Int 0 4 Identifier
Int 4 4 Reserved
Int 8 4 Node type
 0x12120003 = Header node
 0x12120005 = Database entity node
Int 12 4*4 Reserved
Int 28 4 Sinks
Int 32 4 Sources
Int 36 4 Next node identifier
Int 40 4 Previous node identifier
Int 44 4 Arc source identifier
Int 48 4 Arc sink identifier

6-232

Copyright © 2017 Open Geospatial Consortium

Formula Node Data Subrecord
Data Type Offset Length Description
Int 0 4 Identifier
Int 4 4 Reserved
Int 8 4 Data type
 0x12150000 = Formula node
Int 12 4 Reserved
Int 16 4 Reserved
Int 20 4 Reserved
Int 24 4 Reserved
Int 28 4 Sinks
Int 32 4 Sources
Int 36 4 Next node identifier
Int 40 4 Previous node identifier
Int 44 4 Arc source identifier
Int 48 4 Arc sink identifier
Int 52 4 Reserved

6-233

Copyright © 2017 Open Geospatial Consortium

Formula Node Data Subrecord (Continued)
Data Type Offset Length Description
Int 56 4 Reserved
Int 60 4 Reserved
Int 64 4 Reserved
Int 68 4 Reserved
Int 72 4 Reserved
Int 76 4 Reserved
Int 80 4 Reserved

Driver Node Data Subrecord

Data Type Offset Length Description
Int 0 4 Identifier
Int 4 4 Reserved
Int 8 4 Node type
 0x12140001 = Ramp driver node
 0x12140004 = Variable driver node
 0x12140005 = External file driver node
Int 12 4 Reserved
Int 16 4 Reserved
Int 20 4 Reserved
Int 24 4 Reserved
Int 28 4 Sinks
Int 32 4 Sources
Int 36 4 Next node identifier
Int 40 4 Previous node identifier
Int 44 4 Arc source identifier
Int 48 4 Arc sink identifier
Float 52 4 Current value
Float 56 4 Min amplitude
Float 60 4 Max amplitude
Float 64 4 Wave offset
Float 68 4 Min time
Float 72 4 Max time
Float 76 4 Time steps
Int 80 4 Reserved
Int 84 4 Reserved
Int 88 4 Reserved
Int 92 4 Reserved

6-234

Copyright © 2017 Open Geospatial Consortium

Arc Data Subrecord
Data Type Offset Length Description
Int 0 4 Identifier
Int 4 4 Reserved
Int 8 4 Data type
 0x12120002 = Arc data subrecord
Int 12 4 Reserved
Int 16 4 Reserved
Int 20 4 Priority

6-235

Copyright © 2017 Open Geospatial Consortium

Arc Data Subrecord (Continued)
Data Type Offset Length Description
Int 24 4 Source parameter - parameter ID if source node

is a node
Int 28 4 Sink parameter - parameter ID if sink node is a

node
 number (0...7) for variables (x1...x8)

Only valid if sink node is a formula
Int 32 4 Reserved
Int 36 4 Next source identifier
Int 40 4 Next sink identifier
Int 44 4 Node source identifier
Int 48 4 Node sink identifier

Entity Name Subrecord

Data Type Offset Length Description
Char 0 Variable ASCII string; 0 terminates

Sound Palette Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider the Sound
Palette Records.

The sound palette uses key table records to store the sound index and file name. The
index is the key value, and the file name is the data record, formatted as a null-terminated
ASCII string. The sound palette header record indicates the number of sounds associated
with the database.

Sound Palette Header Record
Data Type Offset Length Description
Int 0 2 Sound Palette Opcode 93
Unsigned Int 2 2 Length - length of the record
Int 4 4 Subtype
 1 = indicates this record is a key table

header
Int 8 4 Max number - the maximum number of sounds

in palette
Int 12 4 Actual number - the actual number of sounds

in palette
Int 16 4 Total length - total length of the sound file

names contained in the sound palette key data
record, which follows this record and is
described below

Int 20 4*3 Reserved
The following fields are repeated for each sound represented in the palette.

6-236

Copyright © 2017 Open Geospatial Consortium

In the fields listed below, N ranges from 0 to Actual number - 1.

Int 32+(N*12) 4 Sound indexN - index of sound N in the palette
Int 36+(N+12) 4 ReservedN - reserved space for sound N in the

palette
Int 40+(N*12) 4 File name offsetN - starting offset for file name

of sound N in the palette. This offset is
measured relative to the Packed file names
field in the sound palette data record described
below.

6-237

Copyright © 2017 Open Geospatial Consortium

Sound Palette Data Record
Data Type Offset Length Description
Int 0 2 Sound Palette Opcode 93
Unsigned
Int

2 2 Length - length of the record

Int 4 4 Subtype
 2 = indicates this record is a key data record
Int 8 4 Total length of all packed sound file names
Char 12 Data length Packed file names.

Use File name offsets contained in sound palette key
table header to locate individual names in this data
blocks.
Data length can be calculated as follows: Length - 12

Light Source Palette Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider the Light
Source Records.

These records represent entries in the light source palette. Entries are referenced by light
source nodes using the palette index. Lights can be flagged as modeling lights, which
illuminate a scene without being stored as part of the hierarchy. A modeling light is
always positioned at the eye; its direction is stored in the palette. A light referenced by a
node obtains its position and direction from the node. In this case, the palette yaw and
pitch components are ignored.

Light Source Palette Record
Data Type Offset Length Description
Int 0 2 Light Source Palette Opcode 102
Unsigned
Int

2 2 Length - length of the record

Int 4 4 Light source index
Int 8 2*4 Reserved
Char 16 20 Light source name; 0 terminates
Int 36 4 Reserved
Float 40 4*4 Ambient component of light source (r, g, b, a) - alpha

unused
Float 56 4*4 Diffuse component of light source (r, g, b, a) - alpha

unused
Float 72 4*4 Specular component of light source (r, g, b, a) - alpha

unused
Int 88 4 Light type
 0 = Infinite
 1 = Local
 2 = Spot
Int 92 4*10 Reserved
Float 132 4 Spot exponential drop-off term
Float 136 4 Spot cutoff angle (in degrees)
Float 140 4 Yaw
Float 144 4 Pitch

6-238

Copyright © 2017 Open Geospatial Consortium

Float 148 4 Constant attenuation coefficient
Float 152 4 Linear attenuation coefficient
Float 156 4 Quadratic attenuation coefficient
Int 160 4 Modeling light
 0 = Light source is not active during modeling
 1 = Light source is active during modeling
Int 164 4*19 Reserved

Light Point Appearance Palette Record

The light point appearance palette record defines the visual attributes of light points.

Light Point Appearance Palette Record
Data Type Offset Length Description CDB

OpenFlight
Reader

Int 0 2 Light Point Appearance Palette
Opcode 128

ü

Unsigned Int 2 2 Length - length of the record ü
Int 4 4 Reserved �
Char 8 256 Light Point Type Name

 0 terminates
ü

Int 264 4 Appearance ü
Int 268 2 Surface material code �
Int 270 2 Feature ID �
Unsigned Int 272 4 Back color for bidirectional points �
Int 276 4 Display mode �
 0 = RASTER �
 1 = CALLIGRAPHIC �
 2 = EITHER �
Float 280 4 Intensity - scalar for front colors �
Float 284 4 Back intensity - scalar for back color �
Float 288 4 Minimum defocus - (0.0 - 1.0) for

calligraphic points
�

Float 292 4 Maximum defocus - (0.0 - 1.0) for
calligraphic points

�

Int 296 4 Fading mode �
 0 = Enable perspective fading

calculations
�

 1 = Disable calculations �
Int 300 4 Fog Punch mode �
 0 = Enable fog punch through

calculations
�

 1 = Disable calculations �
Int 304 4 Directional mode �
 0 = Enable directional calculations �

6-239

Copyright © 2017 Open Geospatial Consortium

 1 = Disable calculations �
Int 308 4 Range mode �
 0 = Use depth (Z) buffer calculation �
 1 = Use slant range calculation �
Float 312 4 Min pixel size - minimum diameter

of points in pixels
�

Float 316 4 Max pixel size - maximum diameter
of points in pixels

�

Float 320 4 Actual size - actual diameter of
points in database units

�

Float 324 4 Transparent falloff pixel size -
diameter in pixels when points
become transparent

�

Float 328 4 Transparent falloff exponent �
 >= 0 - falloff multiplier exponent �
 1.0 - linear falloff �
Float 332 4 Transparent falloff scalar �
 > 0 - falloff multiplier scale factor �
Float 336 4 Transparent falloff clamp - minimum

permissible falloff multiplier result
�

Float 340 4 Fog scalar �
 >= 0 - adjusts range of points for

punch threw effect.
�

Float 344 4 Fog intensity �
Float 348 4 Size difference threshold - point size

transition hint to renderer
�

Int 352 4 Directionality �
 0 = OMNIDIRECTIONAL �
 1 = UNIDIRECTIONAL �
 2 = BIDIRECTIONAL �
Float 356 4 Horizontal lobe angle - total angle in

degrees
�

Float 360 4 Vertical lobe angle - total angle in
degrees

�

Float 364 4 Lobe roll angle - rotation of lobe
about local Y axis in degrees

�

Float 368 4 Directional falloff exponent �
 >= 0 - falloff multiplier exponent �
 1.0 - linear falloff �
Float 372 4 Directional ambient intensity - of

points viewed off axis
�

Float 376 4 Significance - drop out priority for
RASCAL lights (0.0 - 1.0)

�

Int 380 4 Flags (bits, from left to right) �
 0 = reserved �
 1 = No back color �
 TRUE = don’t use back color for

bidirectional points
�

 FALSE = use back color for �

6-240

Copyright © 2017 Open Geospatial Consortium

bidirectional points
 2 = reserved �
 3 = Calligraphic proximity occulting

(Debunching)
�

 4 = Reflective, non-emissive point �
 5-7 = Randomize intensity �
 0 = never �
 1 = low �
 2 = medium �
 3 = high �
 8 = Perspective mode �
 9 = Flashing �
 10 = Rotating �
 11 = Rotate Counter Clockwise �
 Direction of rotation about local Z

axis
�

 12 = reserved �
 13-14 = Quality �
 0 = Low �
 1 = Medium �
 2 = High �
 3 = Undefined �
 15 = Visible during day �
 16 = Visible during dusk �
 17 = Visible during night �
 18-31 = Spare �
Float 384 4 Visibility range (> 0.0) �
Float 388 4 Fade range ratio - percentage of total

range at which light points start to
fade (0.0 - 1.0)

�

Float 392 4 Fade in duration - time it takes
(seconds) light point to fade in when
turned on

�

Float 396 4 Fade out duration - time it takes
(seconds) light point to fade out
when turned off

�

Float 400 4 LOD range ratio - percentage of total
range at which light points LODs are
active (0.0 - 1.0)

�

Float 404 4 LOD scale - size of light point LOD
polygon relative to light point
diameter

�

Int 408 2 Texture pattern index, -1 if none �
Int 410 2 Reserved �

6-241

Copyright © 2017 Open Geospatial Consortium

Light Point Animation Palette Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider the Light
Point Animation Palette Records.

The light point animation palette record defines the behavioral attributes of light points.

Light Point Animation Palette Record
Data Type Offset Length Description
Int 0 2 Light Point Animation Opcode 129
Unsigned Int 2 2 Length - length of the record
Int 4 4 Reserved
char 8 256 Animation name; 0 terminates
Int 264 4 Animation index
Float 268 4 Animation period in seconds. Note: Rate = 1/Period
Float 272 4 Animation phase delay in seconds - from start of period
Float 276 4 Animation enabled period (time on) in seconds
Float 280 4*3 Axis of rotation for rotating animation (i, j, k)
Int 292 4 Flags (bits, from left to right)
 0 = Flashing
 1 = Rotating
 2 = Rotate counter clockwise
 3-31 = Spare
Int 296 4 Animation type
 0 = Flashing sequence
 1 = Rotating
 2 = Strobe
 3 = Morse code
Int 300 4 Morse code timing
 0 = Standard timing
 1 = Farnsworth timing
Int 304 4 Word rate (for Farnsworth timing)
Int 308 4 Character rate (for Farnsworth timing)
char 312 1024 Morse code string
Int 1336 4 Number of sequences (for Flashing sequence)
The following fields are repeated for each sequence represented in the light point animation
palette entry.
In the fields listed below, N ranges from 0 to Number of sequences - 1.
Unsigned Int 1340+(N*12) 4 Sequence StateN - state of sequence N
 0 = On
 1 = Off
 2 = Color change
Float 1344+(N*12) 4 Sequence DurationN - duration of sequence N in

seconds
Unsigned Int 1348+(N*12) 4 Sequence ColorN - color for sequence N.

Defined if Sequence state is On or Color change

6-242

Copyright © 2017 Open Geospatial Consortium

Line Style Palette Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider the Line
Style Palette Records.

Line style records define the outline displayed around faces in wireframe or wireframe-
over-solid mode. The Pattern field defines a mask to control the display of segments of
the line. For example, if all the bits of the mask are set, the line is drawn as a solid line. If
every other bit is on, the line is displayed as a dashed line. The Line Width field controls
the width of the line in pixels. Line style 0 is the default. Faces are assigned line styles in
the Line Style field of the face record. One of these records appears for each line style
defined in the OpenFlight file.

Line Style Palette Record
Data Type Offset Length Description
Int 0 2 Line Style Palette Record Opcode 97
Int 2 2 Length of record
Int 4 2 Line style index
Int 6 2 Pattern mask
Int 8 4 Line width

Texture Mapping Palette Record

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider any of
the Texture Mapping Palette Records.

The texture mapping palette record defines methods and parameters used to map textures
onto geometry. One record is created for each texture mapping reference in the palette.
These records must follow the header record and precede the first push.

Texture Mapping Palette Record
Data Type Offset Length Description
Int 0 2 Texture Mapping Palette Opcode 112
Int 2 2 Length - length of the record
Int 4 4 Reserved
Int 8 4 Texture mapping index
Char 12 20 Texture mapping name
Int 32 4 Texture mapping type
 0 = None
 1 = Put
 2 = 4 Point Put
 3 = Reserved
 4 = Spherical Project
 5 = Radial Project
 6 = Reserved
Int 36 4 Warped flag; if TRUE, 8 point warp applied
Double 40 8*16 4x4 Transformation matrix (for types 1, 2, 4 & 5),

row major

The parameters for put texture mapping will appear immediately following the texture

6-243

Copyright © 2017 Open Geospatial Consortium

mapping palette record if Texture mapping type is 1.

Parameters for Put Texture Mapping (Type 1)
Data Type Offset Length Description
Int 168 4 State of Put Texture tool
 0 = Start state - no points entered
 1 = One point entered
 2 = Two points entered
 3 = Three points entered
Int 172 4 Active geometry point
 1 = Origin point
 2 = Alignment point
 3 = Shear point
Double 176 8*3 Lower-left corner of bounding box for

geometry using this mapping when mapping
was created (x, y, z)

Double 200 8*3 Upper-right corner of bounding box for
geometry using this mapping when mapping
was created (x, y, z)

Int 224 4*3 Use real world size flags for each of the put
points

Int 236 4 Reserved
Double 240 8*3 Texture origin point (x, y, z)
Double 264 8*3 Texture alignment point (x, y, z)
Double 288 8*3 Texture shear point (x, y, z)
Double 312 8*3 Geometry origin point (x, y, z)
Double 336 8*3 Geometry alignment point (x, y, z)
Double 360 8*3 Geometry shear point (x, y, z)
Int 384 4 Active texture point
 1 = Origin point
 2 = Alignment point
 3 = Shear point
Int 388 4 UV display type
 1 = XY
 2 = UV
Float 392 4 U Repetition
Float 396 4 V Repetition

6-244

Copyright © 2017 Open Geospatial Consortium

The parameters for 4 point put texture mapping will appear immediately following the
texture mapping palette record if Texture mapping type is 2

Parameters for 4 Point Put Texture Mapping (Type 2)

Data Type Offset Length Description
Int 168 4 State of 4 Point Put Texture tool
 0 = Start state - no points entered
 1 = One point entered
 2 = Two points entered
 3 = Three points entered
 4 = Four points entered
Int 172 4 Active geometry point
 1 = Origin point
 2 = Alignment point
 3 = Shear point
 4 = Perspective point
Double 176 8*3 Lower-left corner of bounding box for

geometry using this mapping when mapping
was created (x, y, z)

Double 200 8*3 Upper-right corner of bounding box for
geometry using this mapping when mapping
was created (x, y, z)

Int 224 3*4 Use real world size flags for each of the put
points

Int 236 4 Reserved
Double 240 8*3 Texture origin point (x, y, z)
Double 264 8*3 Texture alignment point (x, y, z)
Double 288 8*3 Texture shear point (x, y, z)
Double 312 8*3 Texture perspective point (x, y, z)
Double 336 8*3 Geometry origin point (x, y, z)
Double 360 8*3 Geometry alignment point (x, y, z)
Double 384 8*3 Geometry shear point (x, y, z)
Double 408 8*3 Geometry perspective point (x, y, z)
Int 432 4 Active texture point
 1 = Origin point
 2 = Alignment point
 3 = Shear point
 4 = Perspective point
Int 436 4 UV display type
 1 = XY
 2 = UV
Float 440 4 Depth scale factor
Int 444 4 Reserved
Double 448 8*16 4x4 Transformation matrix for the 4 point

projection plane, row major order
Float 576 4 U Repetition
Float 580 4 V Repetition
 The parameters for spherical project mapping will appear immediately following

6-245

Copyright © 2017 Open Geospatial Consortium

the texture mapping palette record if Texture mapping type is 4.
Parameters for Spherical Project Mapping (Type 4)

Data Type Offset Length Description
Float 168 4 Scale
Double 172 8*3 Center of the projection sphere (x, y, z)
Float 196 4 Scale / (maximum dimension of the mapped

geometry bounding box
Float 200 4 Maximum dimension of the mapped geometry

bounding box when mapping was created

The parameters for radial project mapping will appear immediately following the
texture map- ping palette record if Texture mapping type is 5.

Parameters for Radial Project Mapping (Type 5)
Data Type Offset Length Description
Int 168 4 Active geometry point
 1 = End point 1 of cylinder center line
 2 = End point 2 of cylinder center line
Int 172 4 Reserved
Float 176 4 Radial scale
Float 180 4 Scale along length of cylinder
Double 184 8*16 4x4 Trackplane to XY plane transformation

matrix,
row major order

Double 312 8*3 End point 1 of cylinder center line (x, y, z)
Double 336 8*3 End point 2 of cylinder center line (x, y, z)

6-246

Copyright © 2017 Open Geospatial Consortium

The parameters for warped mapping will be included if the Warped flag is set in
the texture mapping palette record. This parameter block will appear immediately
following the texture mapping parameter block to which the warp applies. In the
offset fields below, X is equal to the size of the texture mapping palette record
plus the size of the texture mapping parameter block to which the warp applies.

Parameters for Warped Mapping (Warped Flag Set)
Data Type Offset Length Description
Int X+0 4 Active geometry point
 0 = First warp FROM point
 1 = Second warp FROM point
 2 = Third warp FROM point
 3 = Fourth warp FROM point
 4 = Fifth warp FROM point
 5 = Sixth warp FROM point
 6 = Seventh warp FROM point
 7 = Eighth warp FROM point
 8 = First warp TO point
 9 = Second warp TO point
 10 = Third warp TO point
 11 = Fourth warp TO point
 12 = Fifth warp TO point
 13 = Sixth warp TO point
 14 = Seventh warp TO point
 15 = Eighth warp TO point
Int X+4 4 Warp tool state
 0 = Start state - no points entered
 1 = One FROM point entered
 2 = Two FROM point entered
 3 = Three FROM point entered
 4 = Four FROM point entered
 5 = Five FROM point entered
 6 = Six FROM point entered
 7 = Seven FROM point entered
 8 = All FROM point entered
Int X+8 8 Reserved
Double X+16 8*8*2 FROM points transformed to XY plane by

above matrix.
8 FROM points are ordered 1, 2, ... 8. Each
point is (x, y)

Double X+144 8*8*2 TO points transformed to XY plane by above
matrix.
8 TO points are ordered 1, 2, ... 8. Each point
is (x, y)

6-247

Copyright © 2017 Open Geospatial Consortium

Shader Palette Record

The shader palette contains descriptions of shaders used while drawing geometry. It is
composed of an arbitrary number of shader palette records. The shader palette records
must follow the header record and precede the first push.

Shader Palette Record
Data Type Offset Length Description CDB OpenFlight

Reader
Int 0 2 Shader Opcode 133 �
Unsigned
Int

2 2 Length - length of the record �

Int 4 4 Shader index �
Int 8 4 Shader type �
 0 = Cg �
 1 = CgFX �
 2 = OpenGL Shading

Language
�

char 12 1024 Shader name; 0 terminates �
char 1036 1024 Vertex program file name; 0

terminates
(Cg Shader type specific)

�

char 2060 1024 Fragment program file
name; 0 terminates
(Cg Shader type specific)

�

Int 3084 4 Vertex program profile (Cg
Shader type specific)

�

Int 3088 4 Fragment program profile
(Cg Shader type specific)

�

char 3092 256 Vertex program entry point
(Cg Shader type specific)

�

char 3348 256 Fragment program entry
point (Cg Shader type
specific)

�

Texture Files

Texture Pattern Files

OpenFlight does not have its own texture pattern format, but rather uses existing texture
formats and references patterns by file name. See “Texture Palette Record” on page 73.

File formats currently supported include:

•AT&T® image 8 format (8-bit color lookup) CDB OpenFlight

6-248

Copyright © 2017 Open Geospatial Consortium

Readers
•AT&T image 8 template format �
•SGI intensity modulation (*.int) ü31
•SGI intensity modulation with alpha (*.inta) ü31
•SGI RGB (*.rgb) ü
•SGI RGB with alpha (*.rgba) ü31
•GIF �
•JPEG/JFIF (*.jpg) �
•TIFF (*.tif) �
•IFF/ILBM �
•BMP/DIB �
•PCX �
•PNG �
•PPM �
•Sun™ Raster �
•Direct Draw Surface (DDS) �
•Targa™ �
•Alias™ Pix �
•SGI clip texture �

The format of the file is determined by the file name extension, the magic numbers within
the file, or the texture attribute file, as described in the following section.

31 The SGI format is fully supported by the CDB standard but a single file extension used, *.rgb.
Consequently, all image formats (int, inta, rgb, and rgba) are stored in .rgb files regardless of the number of
channels in the image.

6-249

Copyright © 2017 Open Geospatial Consortium

Texture Attribute Files

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider
texture attribute (*.attr) files.

A corresponding attribute file is created for each texture pattern, with the name of the
attribute file the same as the texture file, followed by the extension “.attr”. These attribute
files are used by the modeling software, and may not be necessary for the application
using the database.

The attribute file contains information specifying how to parse the texture pattern file, set
the texture hardware and software environment for the texture pattern, or position the
image in a database.

The format of the texture attribute file is described in this section.

Texture Attribute File Format

Data
Type

Offset Length Description

Int 0 4 Number of texels in u direction
Int 4 4 Number of texels in v direction
Int 8 4 Real world size u direction (obsolete - not used)
Int 12 4 Real world size v direction (obsolete - not used)
Int 16 4 x component of up vector
Int 20 4 y component of up vector
Int 24 4 File format type
 0 = AT&T image 8 pattern
 1 = AT&T image 8 template
 2 = SGI intensity modulation
 3 = SGI intensity w/alpha
 4 = SGI RGB
 5 = SGI RGB w/alpha
Int 28 4 Minification filter type
 0 = Point
 1 = Bilinear
 2 = Mipmap (obsolete)
 3 = Mipmap Point
 4 = Mipmap linear
 5 = Mipmap bilinear
 6 = Mipmap trilinear
 7 = None
 8 = Bicubic
 9 = Bilinear greater/equal
 10 = Bilinear less/equal
 11 = Bicubic greater/equal
 12 = Bicubic less/equal
Int 32 4 Magnification filter type
 0 = Point

6-250

Copyright © 2017 Open Geospatial Consortium

 1 = Bilinear
 2 = None
 3 = Bicubic
 4 = Sharpen
 5 = Add Detail
 6 = Modulate Detail
 7 = Bilinear greater/equal
 8 = Bilinear less/equal
 9 = Bicubic greater/equal
 10 = Bicubic less/equal
Int 36 4 Wrap method u,v - only used when either Wrap

method u or Wrap method v is set to None
 0 = Repeat
 1 = Clamp
 4 = Mirrored Repeat
Int 40 4 Wrap method u
 0 = Repeat
 1 = Clamp
 3 = None - use Wrap method u,v
 4 = Mirrored Repeat
Int 44 4 Wrap method v
 0 = Repeat
 1 = Clamp
 3 = None - use Wrap method u,v
 4 = Mirrored Repeat
Int 48 4 Modified flag - for internal use only
Int 52 4 x pivot point for rotating textures
Int 56 4 y pivot point for rotating textures
Int 60 4 Environment type
 0 = Modulate
 1 = Blend
 2 = Decal
 3 = Replace
 4 = Add
Int 64 4 TRUE if intensity pattern to be loaded in alpha with

white in color
Int 68 4*8 Reserved
Double 100 8 Real world size u direction
Double 108 8 Real world size v direction
Int 116 4 Code for origin of imported texture
Int 120 4 Kernel version number
Int 124 4 Internal format type
 0 = Default
 1 = TX_I_12A_4
 2 = TX_IA_8
 3 = TX_RGB_5
 4 = TX_RGBA_4
 5 = TX_IA_12

6-251

Copyright © 2017 Open Geospatial Consortium

 6 = TX_RGBA_8
 7 = TX_RGBA_12
 8 = TX_I_16 (shadow mode only)
 9 = TX_RGB_12
Int 128 4 External format type
 0 = Default
 1 = TX_PACK_8
 2 = TX_PACK_16
Int 132 4 TRUE if using following 8 floats for MIPMAP kernel
Float 136 4*8 8 floats for kernel of separable symmetric filter
Int 168 4 if TRUE send:
Float 172 4 LOD0 for TX_CONTROL_POINT
Float 176 4 SCALE0 for TX_CONTROL_POINT
Float 180 4 LOD1 for TX_CONTROL_POINT
Float 184 4 SCALE1 for TX_CONTROL_POINT
Float 188 4 LOD2 for TX_CONTROL_POINT
Float 192 4 SCALE2 for TX_CONTROL_POINT
Float 196 4 LOD3 for TX_CONTROL_POINT
Float 200 4 SCALE3 for TX_CONTROL_POINT
Float 204 4 LOD4 for TX_CONTROL_POINT
Float 208 4 SCALE4 for TX_CONTROL_POINT
Float 212 4 LOD5 for TX_CONTROL_POINT
Float 216 4 SCALE5 for TX_CONTROL_POINT
Float 220 4 LOD6 for TX_CONTROL_POINT
Float 224 4 SCALE6 for TX_CONTROL_POINT
Float 228 4 LOD7 for TX_CONTROL_POINT
Float 232 4 SCALE7 for TX_CONTROL_POINT
Float 236 4 Control Clamp
Int 240 4 Magnification filter type for alpha
 0 = Point
 1 = Bilinear
 2 = None
 3 = Bicubic
 4 = Sharpen
 5 = Add Detail
 6 = Modulate Detail
 7 = Bilinear greater/equal
 8 = Bilinear less/equal
 9 = Bicubic greater/equal
 10 = Bicubic less/equal
Int 244 4 Magnification filter type for color
 0 = Point
 1 = Bilinear
 2 = None
 3 = Bicubic
 4 = Sharpen
 5 = Add Detail
 6 = Modulate Detail
 7 = Bilinear greater/equal
 8 = Bilinear less/equal
 9 = Bicubic greater/equal
 10 = Bicubic less/equal

6-252

Copyright © 2017 Open Geospatial Consortium

Float 248 4 Reserved
Float 252 4*8 Reserved
Double 284 8 Lambert conic projection central meridian
Double 292 8 Lambert conic projection upper latitude
Double 300 8 Lambert conic projection lower latitude
Double 308 8 Reserved
Float 316 4*5 Reserved
Int 336 4 TRUE if using next 5 integers for TX_DETAIL
Int 340 4 J argument for TX_DETAIL
Int 344 4 K argument for TX_DETAIL
Int 348 4 M argument for TX_DETAIL
Int 352 4 N argument for TX_DETAIL
Int 356 4 Scramble argument for TX_DETAIL
Int 360 4 TRUE if using next 4 floats for TX_TILE
Float 364 4 Lower-left u value for TX_TILE
Float 368 4 Lower-left v value for TX_TILE
Float 372 4 Upper-right u value for TX_TILE
Float 376 4 Upper-right v value for TX_TILE
Int 380 4 Projection
 0 = Flat earth
 3 = Lambert conic
 4 = UTM
 7 = Undefined projection
Int 384 4 Earth model
 0 = WGS84
 1 = WGS72
 2 = Bessel
 3 = Clark 1866
 4 = NAD27
Int 388 4 Reserved
Int 392 4 UTM zone
Int 396 4 Image origin
 0 = Lower left
 1 = Upper left
Int 400 4 Geospecific points units
 0 = Degrees
 1 = Meters
 2 = Pixels
Int 404 4 Reserved
Int 408 4 Reserved
Int 412 4 Hemisphere for geospecific points units
 0 = Southern
 1 = Northern
Int 416 4 Reserved
Int 420 4 Reserved
Int 424 149*4 Reserved
Char 1020 512 Comments; 0 terminates
Int 1538 13*4 Reserved

6-253

Copyright © 2017 Open Geospatial Consortium

Int 1584 4 Attribute file version number
Int 1588 4 Number of geospecific control points

If the value of the Number of geospecific control points field is greater than 0, the
following fields are also contained in the attribute file:

Geospecific Control Point subrecord
Data Type Offset Length
Int 4 Reserved
The following fields are repeated for each geospecific control point in the texture
attribute file.
Note: In the fields below, N ranges from 0 to Number of geospecific control points – 1.
The earth coordinates depend on the projection, earth model, and geospecific points
units.

Double 8 Texel uN - texel u of control point
Double 8 Texel vN - texel v of control point
Double 8 Earth coordinate xN - earth x coordinate of control point.
Double 8 Earth coordinate yN - earth y coordinate of control point.

If the value of the Number of geospecific control points field is greater than 0, the
following fields are also contained in the attribute file:

Data
Type

Offset Length

Int 4 Number of subtextures

If the value of the Number of subtextures field is greater than 0, the following fields are
repeated for each subtexture in the texture attribute file.

In the fields below, N ranges from 0 to Number of subtextures - 1.

The Left, Bottom, Right and Top fields are all measured in texels.

Subtexture subrecord

Data
Type

Offset Length

Char 32 NameN - name of subtexture N; 0 terminates
Int 4 LeftN - Coordinate of left edge of subtexture N
Int 4 BottomN - Coordinate of bottom edge of subtexture N
Int 4 RightN - Coordinate of right edge of subtexture N
Int 4 TopN - Coordinate of top edge of subtexture N

6-254

Copyright © 2017 Open Geospatial Consortium

4 Road Path Files

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider the Road
Path Files.

A road path file contains the attributes of a road path node in ASCII format. The name of
the file is user defined. Each attribute is denoted by a keyword, a literal colon, a space,
and the value(s). Boolean values are denoted by the string literals “TRUE” and
“FALSE”. For the “POINT” keyword its values consist of an XYZ coordinate and an
orientation vector, separated by spaces. The orientation vector is specified as either a
normal up-vector, or in degrees of heading, pitch, and roll. The “STORE_HPR”
keyword specifies which method is used. For path nodes that define the road’s centerline
path, construction information for the correlated road section is also stored with
additional keywords. Here’s an example:

5 Road Zone Files

6-255

Copyright © 2017 Open Geospatial Consortium

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider the Road
Zone Files.

Zone files are gridded posts files containing elevation and attribute data for a road. The
zone data is followed immediately by a series of:

(Number of data points in x) * (Number of data points in y) elevation data points.

The elevation data points are followed immediately by a series of:

(Number of data points in x) * (Number of data points in y) surface types corresponding
to each of the elevation data points above.

The elevation data points as well as the surface types begin at the lower-left corner.
Values are ordered from bottom to top, then in columns from left to right.

Road Zone File Format
Data Type Offset Length Data Type
Int 0 4 Version - road tools format version
Int 4 4 Reserved
Double 8 8*3 Lower left corner (x, y, z)
Double 32 8*3 Upper right corner (x, y, z)
Double 56 8 Grid interval - spacing between data points
Int 64 4 Number of data points in x
Int 68 4 Number of data points in y
Float 72 4 Low z elevation data point
Float 76 4 High z elevation data point
Char 80 440 Reserved

The following field is repeated for each data point in the road zone file.
In this field, N ranges from 0 to Number of data points - 1, where
Number of data points = Number of data points in x * Number of data points in y.

Elevation Data Point subrecord
Data Type Offset Length Data Type
Float 520+(N*4) 4 ZN - elevation value for data point N

The following field is repeated for each data point in the road zone file.
In this field, N ranges from 0 to Number of data points - 1, where
Number of data points = Number of data points in x * Number of data points in y and M
is equal to Number of data points.

Surface Type subrecord
Data Type Offset Length Data Type
Char 520+(M*4)+N 1 Surface typeN - user defined surface type for

data point N

6 Linkage Editor Parameter IDs
CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider Linkage
Editor Parameter IDs.

6-256

Copyright © 2017 Open Geospatial Consortium

Vertex Node Parameters

ID Description
258 X coordinate
259 Y coordinate
260 Z coordinate
261 Texture U coordinate
262 Texture V coordinate
265 Color
266 Hard edge flag
267 Freeze normal flag
269 Normal I component
270 Normal J component
271 Normal K component

Face Node Parameters

ID Description
514 Color
515 Polygon drawing
516 Lighting mode
518 Relative priority
519 Draw both sides flag
520 Texture index
521 Template
522 Infrared
523 Terrain flag
525 Material index
526 Feature ID
527 Surface material code
529 Draw textured faces white
530 IR material
534 Detail texture index
535 Transparency
536 Alternate color
537 LOD control
538 Line style index
539 Light point directional mode
540 Texture mapping

6-257

Copyright © 2017 Open Geospatial Consortium

Object Node Parameters

 ID Description
770 Relative priority
771 Inhibit during day flag
772 Inhibit during dusk flag
773 Inhibit during night flag
774 No illumination flag
775 Flat shading flag
776 Shadow flag
777 Transparency
778 Special #1
779 Special #2
782 Significance

LOD Node Parameters

ID Description
1026 Switch-in distance
1027 Switch-out distance
1028 Special #1
1029 Special #2
1030 Use previous range flag
1031 Center X coordinate
1032 Center Y coordinate
1033 Freeze center flag
1034 Center Z coordinate
1036 Additive LOD’s below flag
1037 Transition distance

Group Node Parameters

ID Description
1282 Relative priority
1284 Animation type
1286 Bounding volume type
1287 Special #1
1288 Special #2
1289 Replication count
1290 Significance
1291 Layer

6-258

Copyright © 2017 Open Geospatial Consortium

DOF Node Parameters

ID Description
1538 Current Z
1539 Minimum Z
1540 Maximum Z
1542 Current Y
1543 Minimum Y
1544 Maximum Y
1546 Current X
1547 Minimum X
1548 Maximum X
1550 Current pitch
1551 Minimum pitch
1552 Maximum pitch
1554 Current roll
1555 Minimum roll
1556 Maximum roll
1558 Current yaw
1559 Minimum yaw
1560 Maximum yaw
1562 Current Z scale
1563 Minimum Z scale
1564 Maximum Z scale
1566 Current Y scale
1567 Minimum Y scale
1568 Maximum Y scale
1570 Current X scale
1571 Minimum X scale
1572 Maximum X scale
1574 X constrained motion flag
1575 Y constrained motion flag
1576 Z constrained motion flag
1577 Pitch constrained motion flag
1578 Roll constrained motion flag
1579 Yaw constrained motion flag
1580 X scale constrained motion flag
1581 Y scale constrained motion flag
1582 Z scale constrained motion flag
1583 Repeating texture flag
1584 Membrane mode flag

6-259

Copyright © 2017 Open Geospatial Consortium

Sound Node Parameters

ID Description
1796 Amplitude
1797 Pitch bend
1798 Priority
1799 Falloff
1800 Width
1801 Doppler
1802 Absorption
1803 Delay
1804 Directivity
1805 X coordinate
1806 Y coordinate
1807 Z coordinate
1808 Direction vector I component
1809 Direction vector J component
1810 Direction vector K component
1812 Active flag

Switch Node Parameters

ID Description
2050 Current mask index

6-260

Copyright © 2017 Open Geospatial Consortium

Text Node Parameters

ID Description
2307 Text type
2308 Draw type
2310 Color
2311 Alternate color
2312 Material index
2315 Integer value minimum
2316 Integer value maximum
2317 Float value minimum
2318 Float value maximum
2325 Current integer value
2326 Current float value
2327 Decimal places for float value
2329 Line style index
2330 Justification type
2331 Vertical flag
2332 Bold flag
2333 Italic flag
2334 Underline flag

Light Source Node Parameters

ID Description
2819 Enabled flag
2820 Global flag
2821 X coordinate
2822 Y coordinate
2823 Z coordinate
2824 Yaw
2825 Pitch

Clip Node Parameters

ID Description
3074 Plane 0 enable
3075 Plane 1 enable
3076 Plane 2 enable
3077 Plane 3 enable
3078 Plane 4 enable

7 OpenFlight Opcodes

6-261

Copyright © 2017 Open Geospatial Consortium

Valid Opcodes

Opcode Record Type For more information, see… CDB OpenFlight

Reader
1 Header “Header Record” on page 19 ü
2 Group “Group Record” on page 22 ü
4 Object “Object Record” on page 25 ü
5 Face “Face Record” on page 26 ü
10 Push Level “Push Level Record” on

page 17
ü

11 Pop Level “Pop Level Record” on
page 17

ü

14 Degree of Freedom “Degree of Freedom Record”
on page 37

ü

19 Push Subface “Push Subface Record” on
page 17

ü

20 Pop Subface “Pop Subface Record” on
page 17

ü

21 Push Extension “Push Extension Record” on
page 17

�

22 Pop Extension “Pop Extension Record” on
page 17

�

23 Continuation “Continuation Record” on
page 65

ü

31 Comment “Comment Record” on
page 53

ü

32 Color Palette “Color Palette Record” on
page 70

ü

33 Long ID “Long ID Record” on page 53 ü
49 Matrix “Matrix Record” on page 59 ü
50 Vector “Vector Record” on page 61 �
52 Multitexture “Multitexture Record” on

page 54
ü

53 UV List “UV List Record” on page 55 ü
55 Binary Separating Plane “Binary Separating Plane

Record” on page 40
ü

60 Replicate “Replicate Record” on page 57 ü
61 Instance Reference “Instance Reference Record”

on page 19
ü

62 Instance Definition “Instance Definition Record”
on page 19

ü

63 External Reference “External Reference Record”
on page 41

ü

64 Texture Palette “Texture Palette Record” on
page 73

ü

67 Vertex Palette “Vertex Palette Record” on ü

6-262

Copyright © 2017 Open Geospatial Consortium

page 67
68 Vertex with Color “Vertex with Color Record”

on page 68
ü

69 Vertex with Color and
Normal

“Vertex with Color and
Normal Record” on page 68

ü

70 Vertex with Color,
Normal and UV

“Vertex with Color, Normal
and UV Record” on page 69

ü

71 Vertex with Color and
UV

“Vertex with Color and UV
Record” on page 69

ü

72 Vertex List “Vertex List Record” on
page 39

ü

73 Level of Detail “Level of Detail Record” on
page 41

ü

74 Bounding Box “Bounding Box Record” on
page 62

ü

76 Rotate About Edge “Rotate About Edge Record”
on page 59

�

78 Translate “Translate Record” on page 59 �
79 Scale “Scale Record” on page 59 �
80 Rotate About Point “Rotate About Point Record”

on page 60
�

81 Rotate and/or Scale to
Point

“Rotate and/or Scale to Point
Record” on page 60

�

82 Put “Put Record” on page 60 �
83 Eyepoint and Trackplane

Palette
“Eyepoint and Trackplane
Palette Record” on page 73

�

84 Mesh “Mesh Record” on page 29 ü
85 Local Vertex Pool “Local Vertex Pool Record”

on page 30
ü

86 Mesh Primitive “Mesh Primitive Record” on
page 32

ü

87 Road Segment “Road Segment Record” on
page 44

�

88 Road Zone “Road Zone Record” on
page 58

�

89 Morph Vertex List “Morph Vertex List Record”
on page 39

ü

90 Linkage Palette “Linkage Palette Record” on
page 77

�

91 Sound “Sound Record” on page 43 �
92 Road Path “Road Path Record” on

page 46
�

93 Sound Palette “Sound Palette Record” on
page 80

�

94 General Matrix “General Matrix Record” on
page 60

�

95 Text “Text Record” on page 47 �
96 Switch “Switch Record” on page 49 ü

6-263

Copyright © 2017 Open Geospatial Consortium

97 Line Style Palette “Line Style Palette Record” on
page 85

�

98 Clip Region “Clip Region Record” on
page 47

�

100 Extension “Extension Record” on
page 51

�

101 Light Source “Light Source Record” on
page 44

�

102 Light Source Palette “Light Source Palette Record”
on page 81

�

103 Reserved �
104 Reserved �
105 Bounding Sphere “Bounding Sphere Record” on

page 62
ü

106 Bounding Cylinder “Bounding Cylinder Record”
on page 62

ü

107 Bounding Convex Hull “Bounding Convex Hull
Record” on page 62

ü

108 Bounding Volume
Center

“Bounding Volume Center
Record” on page 63

ü

109 Bounding Volume
Orientation

“Bounding Volume
Orientation Record” on
page 63

ü

110 Reserved �
111 Light Point “Light Point Record” on

page 34
�

112 Texture Mapping Palette “Texture Mapping Palette
Record” on page 86

�

113 Material Palette “Material Palette Record” on
page 71

ü

114 Name Table “Name Table Record” on
page 71

ü

115 Continuously Adaptive
Terrain (CAT)

“CAT Record” on page 50 �

116 CAT Data “CAT Data Record” on
page 63

�

117 Reserved �
118 Reserved �
119 Bounding Histogram “Bounding Histogram Record”

on page 62
�

120 Reserved �
121 Reserved �
122 Push Attribute “Push Attribute Record” on

page 18
�

123 Pop Attribute “Pop Attribute Record” on
page 18

�

124 Reserved �

6-264

Copyright © 2017 Open Geospatial Consortium

125 Reserved �
126 Curve “Curve Record” on page 51 �
127 Road Construction “Road Construction Record”

on page 45
�

128 Light Point Appearance
Palette

“Light Point Appearance
Palette Record” on page 82

ü

129 Light Point Animation
Palette

“Light Point Animation Palette
Record” on page 85

�

130 Indexed Light Point “Indexed Light Point Record”
on page 34

ü

131 Light Point System “Light Point System Record”
on page 37

�

132 Indexed String “Indexed String Record” on
page 53

ü

133 Shader Palette “Shader Palette Record” on
page 91

�

6-265

Copyright © 2017 Open Geospatial Consortium

Obsolete Opcodes

CDB OpenFlight Readers: CDB-compliant OpenFlight readers do not consider the
following obsolete OpenFlight opcodes.

Opcode Record Type
3 Level of Detail (single precision floating point, replaced by Opcode 73)
6 Vertex with ID (scaled integer coordinates, replaced by Opcodes 68-71)
7 Short Vertex w/o ID (scaled integer coordinates, replaced by Opcodes 68-71)
8 Vertex with Color (scaled integer coordinates, replaced by Opcodes 68-71)
9 Vertex with Color and Normal (scaled integer coordinates, replaced by Opcodes 68-

71)
12 Translate (replaced by Opcode 78)
13 Degree of Freedom (scaled integer coordinates, replaced by Opcode 14)
16 Instance Reference (replaced by Opcode 61)
17 Instance Definition (replaced by Opcode 62)
40 Translate (replaced by Opcode 78)
41 Rotate about Point (replaced by Opcode 80)
42 Rotate about Edge (replaced by Opcode 76)
43 Scale (replaced by Opcode 79)
44 Translate (replaced by Opcode 78)
45 Scale nonuniform (replaced by Opcode 79)
46 Rotate about Point (replaced by Opcode 80)
47 Rotate and/or Scale to Point (replaced by Opcode 81)
48 Put (replaced by Opcode 82)
51 Bounding Box (replaced by Opcode 74)
65 Eyepoint Palette (only eyepoints, replaced by Opcode 83)
66 Material Palette (fixed size 64 entries, replaced by Opcode 80)
77 Scale (replaced by Opcode 79)

6-266

Copyright © 2017 Open Geospatial Consortium

A Summary of Changes Version 15.7

CDB OpenFlight Readers: This section is not applicable to CDB-compliant OpenFlight
readers. The first version of the CDB standard is based on OpenFlight v16.0.

Overview

This section describes the changes in the OpenFlight Scene Description between versions
15.6 and 15.7. OpenFlight version 15.7 coincides with MultiGen Creator versions 2.4
through 2.5.1 and the OpenFlight API versions 2.4 through 2.5.1. The changes made for
this version are:

•”Continuation Record “ on this page.
•”Header Record” on page 114
•”Mesh Record” on page 115
•”Local Vertex Pool Record” on page 116
•”Mesh Primitive Record” on page 118
•”Multitexture Record” on page 120
•”UV List Record” on page 122
•”Texture Attribute File” on page 123

Format Changes

Continuation Record

All OpenFlight records begin with a 4 byte sequence. The first two bytes identify the
record (opcode) and the second two bytes specify the length of the record. Given this
regular record structure, the length of all OpenFlight records is limited to the largest
value that can be encoded with 2 bytes or 16 bits (65535). In most cases, this maximum
size is sufficient but there are cases where it is not. For fixed size records, this is not a
problem. For variable size records, this limitation is being addressed with this version.

A new record, called the continuation record is introduced in this version to
accommodate variable size records in the OpenFlight Scene Description. The
continuation record is used to “continue” a record in the OpenFlight Scene Description
file stream. It would appear in the stream immediately following the record that it
“continues” (the record that is being continued will be referred to as the “original”
record). The data contained in the continuation record is defined by the original record
and is assumed to be directly appended onto the content of the original record.

6-267

Copyright © 2017 Open Geospatial Consortium

Note: Multiple continuation records may follow a record, in which case all continuation
records would be appended (in sequence) to the original record.

Continuation Record
New record for OpenFlight 15.7

Data Type Offset Length Description
Unsigned Int 0 2 Continuation Record Opcode 23
Unsigned Int 2 2 Length - length of the record
Varies 4 Length-4 Depends on the original record. The contents

of this field are to be appended directly to the
end of the original record contents (before the
original record contents are parsed)

Header Record

New attributes have been appended to the end of the existing header record (see “Header
Record” on page 19). The following fields were added at the specified offsets in the
header record.

Header Record changes for OpenFlight15.7
New Fields

Data Type Offset Length Description
Double 284 8 Delta z to place database (used in conjunction

with existing Delta x and Delta y values)
Double 292 8 Radius (distance from database origin to

farthest corner)
Unsigned Int 300 2 Next Mesh node ID number
Unsigned Int 302 2 Reserved

Mesh Nodes

A mesh node defines a set of geometric primitives that share attributes and vertices. In
previous versions of OpenFlight, the fundamental geometric construct was the polygon.
Each polygon has a unique set of attributes and vertices. Meshes are used to represent
“sets” of related polygons, each sharing common attributes and vertices. Using a mesh,
related polygons can be represented in a much more compact format. Each mesh will
share one set of “polygon” attributes (color, material, texture, etc.), a common “vertex
pool” and one or more geometric primitives that use the shared attributes and vertices.
Using a mesh you can represent triangle strips, triangle fans, quadrilateral strips and
indexed face sets.

A mesh node is defined by three distinct record types:

•Mesh Record - defines the “polygon” attributes associated to all geometric primitives of
the mesh.

6-268

Copyright © 2017 Open Geospatial Consortium

•Local Vertex Pool Record - defines the set of vertices that are referenced by the
geometric primitives of the mesh.
•Mesh Primitive Record - defines a geometric primitive (triangle-strip, triangle-fan,
quadrilateral-strip or indexed face set) for the mesh.
A mesh node consists of one mesh record, one local vertex pool record, and one or more
mesh primitive records. The mesh primitive records are delimited by push and pop
control records as shown in the following example:
MESH
LOCAL VERTEX POOL
PUSH MESH
PRIMITIVE
MESH PRIMITIVE
 ...
MESH PRIMITIVE
POP

Mesh Record

The mesh record is the primary record of a mesh node and defines the common “face-
like” attributes associated to all geometric primitives of the mesh. These attributes are
identical to those of the face record. See “Face Record” on page 26.

Mesh Record
New record for OpenFlight 15.7

Data Type Offset Length Description
Int 0 2 Mesh Opcode 84
Unsigned Int 2 2 Length - length of the record
Char 4 8 7 char ASCII ID; 0 terminates
Int 12 4 IR color code
Int 16 2 Relative priority
Int 18 1 Draw type
 0 = Draw solid with backface culling
 1 = Draw solid, no backface culling
 2 = Draw wireframe
 3 = Draw wireframe and close
 4 = Surround with wireframe in alternate

color
 8 = Omnidirectional light
 9 = Unidirectional light
 10 = Bidirectional light
Int 19 1 Texture white = if TRUE, draw textured face

white
Unsigned Int 20 2 Color name index
Unsigned Int 22 2 Alternate color name index
Int 24 1 Reserved

6-269

Copyright © 2017 Open Geospatial Consortium

Mesh Record
New record for OpenFlight 15.7 (Continued)

Data Type Offset Length Description
Int 25 1 Template (billboard)
 0 = Fixed, no alpha blending
 1 = Fixed, alpha blending
 2 = Axial rotate with alpha blending
 4 = Point rotate with alpha blending
Int 26 2 Detail texture pattern index, -1 if none
Int 28 2 Texture pattern index, -1 if none
Int 30 2 Material index, -1 if none
Int 32 2 Surface material code (for DFAD)
Int 34 2 Feature ID (for DFAD)
Int 36 4 IR material code
Unsigned Int 40 2 Transparency
 0 = Opaque
 65535 = Totally clear
Unsigned Int 42 1 LOD generation control
Unsigned Int 43 1 Line style index
Int 44 4 Flags (bits from left to right)
 0 = Terrain
 1 = No color
 2 = No alternate color
 3 = Packed color
 4 = Terrain culture cutout (footprint)
 5 = Hidden, not drawn
 6-31 = Spare
Unsigned Int 48 1 Light mode
 0 = Use mesh color, not illuminated
 1 = Use vertex colors, not illuminated
 2 = Use mesh color and vertex normals
 3 = Use vertex colors and vertex normals
Char 49 7 Reserved
Unsigned Int 56 4 Packed color, primary (a, b, g, r)
Unsigned Int 60 4 Packed color, alternate (a, b, g, r)
Int 64 2 Texture mapping index
Int 66 2 Reserved
Unsigned Int 68 4 Primary color index
Unsigned Int 72 4 Alternate color index
Int 76 4 Reserved

Local Vertex Pool Record

This record defines a set of vertices that is referenced by the geometry (primitives) of the
mesh.

6-270

Copyright © 2017 Open Geospatial Consortium

Note: Currently the Local Vertex Pool is used exclusively in the context of mesh nodes,
but it is designed in a general way so that it may appear in other contexts in future
versions of the OpenFlight Scene Description.

Local Vertex Pool Record
New record for OpenFlight 15.7

Data Type Offset Length Description
Int 0 2 Local Vertex Pool Opcode 85
Unsigned
Int

2 2 Length - length of the record
Note: Since the length of this record is represented by an unsigned
short, the maximum length of the vertex pool is 216- 1 (or 65535
bytes). If the entire vertex pool cannot fit into this size, one or more
continuation records will follow. (See “Continuation Record” on
page 65.)

Unsigned
Int

4 4 Number of vertices - number of vertices in the local vertex pool

Unsigned
Int

8 4 Attribute mask - Bit mask indicating what kind of vertex infor-
mation is specified for each vertex in the local vertex pool. Bits are
ordered from left to right as follows:

 Bit # Description
 0 Has Position - if set, data for each vertex in will include x,

y, and z coordinates (3 doubles)
 1 Has Color Index - if set, data for each vertex will include a

color value that is a color table index (1 int)
 2 Has RGB Color - if set, data for each vertex will include a

color value that is a packed RGB color (1 int)
 Note: Bits 1and 2 are mutually exclusive - a vertex can have either

color index or RGB color value or neither, but not both.
 3 Has Normal - if set, data for each vertex will include a

normal (3 floats)
 4 Has Base UV - if set, data for each vertex will include uv

texture coordinates for the base texture (2 floats)
 5 Has UV Layer 1 - if set, data for each vertex will include

uv texture coordinates for layer 1 (2 floats)
 6 Has UV Layer 2 - if set, data for each vertex will include

uv texture coordinates for layer 2 (2 floats)
 7 Has UV Layer 3 - if set, data for each vertex will include

uv texture coordinates for layer 3 (2 floats)
 8 Has UV Layer 4 - if set, data for each vertex will include

uv texture coordinates for layer 4 (2 floats)
 9 Has UV Layer 5 - if set, data for each vertex will include

uv texture coordinates for layer 5 (2 floats)
 10 Has UV Layer 6 - if set, data for each vertex will include

uv texture coordinates for layer 6 (2 floats)
 11 Has UV Layer 7 - if set, data for each vertex will include

uv texture coordinates for layer 7 (2 floats)
 12-31 Spare

6-271

Copyright © 2017 Open Geospatial Consortium

Local Vertex Pool Record
New record for OpenFlight 15.7 (Continued)

Then beginning at offset 12, the following fields are repeated for each vertex in the local
vertex pool, depending on the bits set in the Attribute mask field above:
In the fields listed below, N ranges from 0 to Number of vertices - 1.
Double Varies 8*3 CoordinateN - Coordinate of vertex N (x, y, z) - present

if Attribute mask includes Has Position.
Unsigned
Int

Varies 4 colorN - Color for vertex N - present if Attribute mask
includes Has Color Index or Has RGB Color.
If Has Color Index, specifies color table index.
If Has RGB Color, 4 bytes specify (a, b, g, r) values
(alpha ignored).

Float Varies 4*3 normalN - Normal for vertex N (i, j, k) - present if
Attribute mask includes Has Normal.

Float Varies 4*2 uvBaseN - Texture coordinates (u, v) for base texture
layer of vertex N - present if Attribute mask includes
Has Base UV.

Float Varies 4*2 uv1N - Texture coordinates (u, v) for layer 1 of vertex
N - present if Attribute mask includes Has UV Layer
1.

Float Varies 4*2 uv2N - Texture coordinates (u, v) for layer 2 of vertex
N - present if Attribute mask includes Has UV Layer
2.

Float Varies 4*2 uv3N - Texture coordinates (u, v) for layer 3 of vertex
N - present if Attribute mask includes Has UV Layer
3.

Float Varies 4*2 uv4N - Texture coordinates (u, v) for layer 4 of vertex
N - present if Attribute mask includes Has UV Layer
4.

Float Varies 4*2 uv5N - Texture coordinates (u, v) for layer 5 of vertex
N - present if Attribute mask includes Has UV Layer
5.

Float Varies 4*2 uv6N - Texture coordinates (u, v) for layer 6 of vertex
N - present if Attribute mask includes Has UV Layer
6.

Float Varies 4*2 uv7N - Texture coordinates (u, v) for layer 7 of vertex
N - present if Attribute mask includes Has UV Layer
7.

Mesh Primitive Record

This record defines a geometric primitive (triangle strip, triangle fan, quadrilateral strip,
or indexed polygon) for a mesh.

6-272

Copyright © 2017 Open Geospatial Consortium

Mesh Primitive Record
New record for OpenFlight 15.7

Data Type Offset Length Description
Int 0 2 Mesh Primitive Opcode 86
Unsigned Int 2 2 Length - length of the record
Int 4 2 Primitive Type - specifies how the vertices

of the primitive are interpreted
 1 = Triangle Strip
 2 = Triangle Fan
 3 = Quadrilateral Strip
 4 = Indexed Polygon
Unsigned Int 6 2 Index Size - specifies the length (in bytes) of

each of the vertex indices that follow - will
be either 1, 2, or 4

Unsigned Int 8 4 Vertex Count - number of vertices in this
primitive.

The following field is repeated for each vertex referenced by the mesh primitive. These
vertices are interpreted according to Primitive Type. In the field below, N ranges from 0
to Vertex Count - 1.
Int 12+(N*Index Size) Index

Size
IndexN - Index of vertex N of the mesh
primitive.

Each mesh primitive is represented using the Mesh Primitive record above. The
following descriptions explain how the vertices of each primitive type are interpreted as
geometry:

•Triangle Strip - This mesh primitive defines a connected group of triangles in the
context of the enclosing mesh. Each triangle shares the “polygon” attributes defined by
the enclosing mesh. This primitive contains a sequence of indices that reference vertices
from the local vertex pool. One triangle is defined for each vertex presented after the first
two vertices. For odd n, vertices n, n+1, and n+2 define triangle n. For even n, vertices
n+1, n, and n+2 define triangle n. The first triangle is n=1. The first vertex in the vertex
pool is n=1. N vertices represent N-2 triangles.

•Triangle Fan - Like the Triangle Strip, this mesh primitive also defines a connected
group of triangles in the context of the enclosing mesh. Each triangle shares the
“polygon” attributes defined by the enclosing mesh. This primitive contains a sequence
of indices that reference vertices from the local vertex pool. One triangle is defined for
each vertex presented after the first two vertices. Vertices 1, n+1, and n+2 define triangle
n. The first triangle is n=1. The first vertex in the vertex pool is n=1. N vertices represent
N-2 triangles.

•Quadrilateral Strip - This mesh primitive defines a connected group of quadrilaterals
in the context of the enclosing mesh. Each quadrilateral shares the “polygon” attributes
defined by the enclosing mesh. This primitive contains a sequence of indices that
reference vertices from the local vertex pool. One quadrilateral is defined for each pair of
vertices presented after the first pair. Vertices 2n-1, 2n, 2n+2, and 2n+1 define
quadrilateral n. The first quadrilateral is n=1. The first vertex in the vertex pool is n=1. N
vertices represent (N/2)-1 quadrilaterals.
•Indexed Polygon -This mesh primitive defines a single polygon in the context of the
enclosing mesh. This primitive is similar to the other mesh primitives in that it also shares

6-273

Copyright © 2017 Open Geospatial Consortium

the polygon attributes of the enclosing mesh. It is different from the other mesh primitive
types in that while triangle strips/fans and quadrilateral strips describe a set of connected
triangles/quadrilaterals, the indexed polygon defines a single polygon. This primitive
contains a sequence of indices that reference vertices from the local vertex pool. One
polygon is defined by the sequence of vertices in this record. N vertices represent 1 N-
sided closed polygon or 1 (N-1)-sided unclosed polygon.

Multitexture

OpenFlight supports 8 textures per polygon or mesh as well as 8 uv's per vertex. The
current texture information stored on the polygon is referred to as “the base texture” or
“texture layer 0”. Each additional texture is referred to as “texture layer N”. Therefore, to
support 8 textures per polygon, a base texture is required as well as 7 additional texture
layers. The additional texture layers for each polygon, mesh, and vertex will be
represented in ancillary records at the Face, Mesh, and Vertex primary node levels as
shown in the following example:
FACE
MULTITEXTURE
PUSH
VERTEX LIST
UV LIST
POP

The records that are used to represent multitexture in the OpenFlight file are described in
the following sections.

Multitexture Record

The multitexture record is an ancillary record of face and mesh nodes. It specifies the
texture layer information for the face or mesh.

6-274

Copyright © 2017 Open Geospatial Consortium

Multitexture Record
New record for OpenFlight 15.7

Multitexture Record
New record for OpenFlight 15.7

Data Type Offset Length Description
Unsigned Int 0 2 Multitexture Opcode 52
Unsigned Int 2 2 Length - length of the record
Int 4 4 Attribute mask - Bit mask indicating what kind

of multitexture information is present in this
record. Bits are ordered from left to right as
follows:

 Bit # Description
 0 Has Layer 1 - if this bit is set,

multitexture information for texture
layer 1 is present.

 1 Has Layer 2 - if this bit is set,
multitexture information for texture
layer 2 is present.

 2 Has Layer 3 - if this bit is set,
multitexture information for texture
layer 3 is present.

 3 Has Layer 4 - if this bit is set,
multitexture information for texture
layer 4 is present.

 4 Has Layer 5 - if this bit is set,
multitexture information for texture
layer 5 is present.

 5 Has Layer 6 - if this bit is set,
multitexture information for texture
layer 6 is present.

 6 Has Layer 7 - if this bit is set,
multitexture information for texture
layer 7 is present.

 7-31 Spare
The following fields are repeated for each multitexture layer that is specified as present
by the bits set in the Attribute mask field above. This mechanism allows for “sparse”
multitexture layer information to be present and does not require that the information
present be contiguous.
Unsigned Int Varies 2 textureN - Texture index for texture layer N
Unsigned Int Varies 2 effectN - Multitexture effect for texture layer N
 0 = Texture environment
 1 = Bump map
 2-100 = Reserved by MultiGen-

Paradigm
 >100 = user (runtime) defined
Unsigned Int Varies 2 mappingN - Texture mapping index for texture

layer N

6-275

Copyright © 2017 Open Geospatial Consortium

Unsigned Int Varies 2 dataN - Texture data for layer N. This is user
defined.
For example, it may be used as a blend
percentage or color or any other data needed by
the runtime to describe texture layer N

6-276

Copyright © 2017 Open Geospatial Consortium

UV List Record

The uv list record is an ancillary record of vertex nodes. This record (if present) always
follows the vertex list or morph vertex list record and contains texture layer information
for the vertices represented in the vertex list record it follows.

UV List Record
New record for OpenFlight 15.7

Data Type Offset Length Description
Unsigned Int 0 2 UV List Opcode 53
Unsigned Int 2 2 Length - length of the record
Int 4 4 Attribute mask - Bit mask indicating what kind

of multitexture information is present in this
record. Bits are ordered from left to right as
follows:

 Bit # Description
 0 Has Layer 1 - if set, uvs for layer 1

are present
 1 Has Layer 2 - if set, uvs for layer 2

are present
 2 Has Layer 3 - if set, uvs for layer 3

are present
 3 Has Layer 4 - if set, uvs for layer 4

are present
 4 Has Layer 5 - if set, uvs for layer 5

are present
 5 Has Layer 6 - if set, uvs for layer 6

are present
 6 Has Layer 7 - if set, uvs for layer 7

are present
 7-31 Spare

The following fields are repeated for each vertex contained in the corresponding vertex
list or morph vertex list record.

If this uv list record follows a vertex list record, the following fields are repeated for each
layer present (as specified by the bits set in the Attribute mask field).

Data Type Offset Description
Float 4 ui, N - Texture U for vertex i, layer N
Float 4 vi, N - Texture V for vertex i, layer N

If this uv list record follows a morph vertex list record, the following fields are repeated
for each layer present (as specified by the bits set in the Attribute mask field).

Data Type Offset Description
Float 4 u0i, N - Texture U for the 0% vertex i, layer N

6-277

Copyright © 2017 Open Geospatial Consortium

Float 4 v0i, N - Texture V for the 0% vertex i, layer N
Float 4 u100i, N - Texture U for the 100% vertex i, layer N

Float 4 v100i, N - Texture V for the 100% vertex i, layer N

6-278

Copyright © 2017 Open Geospatial Consortium

Texture Attribute File

Subtexture

Subtexture definitions have been added to the end of the Texture Attribute File (see
“Texture Attribute Files” on page 93). After all the geospecific control points are listed,
the following subtexture information now appears:

Texture Attribute File Format changes for OpenFlight 15.7
New Fields

Data Type Length Description
Int 4 Number of subtextures

If the value of the Number of subtextures field is greater than 0-, the following fields are
repeated for each subtexture in the texture attribute file.

The Left, Bottom, Right and Top fields are all measured in texels.

Data Type Length Description
Char 32 NameN - name of subtexture N; 0 terminates
Int 4 LeftN - Coordinate of left edge of subtexture N
Int 4 BottomN - Coordinate of bottom edge of subtexture N
Int 4 RightN - Coordinate of right edge of subtexture N
Int 4 TopN - Coordinate of top edge of subtexture N

6-279

Copyright © 2017 Open Geospatial Consortium

B Summary of Changes Version 15.8

Overview

This section describes the changes in the OpenFlight Scene Description between versions
15.7 and 15.8 as well as the errors contained in previous versions of this document that
have been corrected in this version.

OpenFlight version 15.8 coincides with MultiGen Creator version 2.6 and the OpenFlight
API version 2.6. The changes made for this version are:

• “Header Record” on page 127
• “Group Record” on page 128
• “Level of Detail Record” on page 129
• “External Reference Record” on page 130
• “Indexed String Record” on page 130 (for Switch nodes)
• “Face Record” on page 131
• “Mesh Record” on page 131
• “Local Vertex Pool Record” on page 132
• “Vertex Palette Records” on page 133
• “Light Point Appearance Palette Record” on page 136
• “Light Point Animation Record” on page 139
• “Indexed Light Point Record” on page 140
• “Light Point System Record” on page 140
• “Texture Mapping Palette Record” on page 141

Also new in this version of the document is the addition of the “offset” column in the
record format tables.

Document Corrections

The errors corrected in this version of the document are described in the sections that
follow.

6-280

Copyright © 2017 Open Geospatial Consortium

Text Record

The Reserved field, previously omitted in prior versions of this document, has been
documented in the specification for OpenFlight 15.8. The offsets of fields following this
field have been adjusted accordingly.

Text Record error corrected in OpenFlight 15.8 specification
Reserved field (documented)

Data Type Offset Length Description
Int 16 4 Reserved

The Draw bold field, previously omitted in prior versions of this document, has been
documented in the specification for OpenFlight 15.8. The offsets of fields following this
field have been adjusted accordingly.

Text Record error corrected in OpenFlight 15.8 specification
Draw bold field (documented)

Data Type Offset Length Description
Int 304 4 Draw bold

For a complete description of the text record, see “Text record” on page 47.

CAT Record

The Relative priority field, included erroneously in the previous version of this document,
has been removed from the specification for OpenFlight 15.8. The offsets of fields
following this field have been adjusted accordingly.

CAT Record error corrected in OpenFlight 15.8 specification

Relative priority field (removed)
Data Type Offset Length Description
Int 20 2 Relative priority

The Feature ID field, included erroneously in the previous version of this document, has
been removed from the specification for OpenFlight 15.8. The offsets of fields following
this field have been adjusted accordingly.

CAT Record error corrected in OpenFlight 15.8 specification

Feature ID field (removed)
Data Type Offset Length Description
Int 38 2 Relative priority

6-281

Copyright © 2017 Open Geospatial Consortium

The Reserved field, previously omitted in prior version of this document, has been
documented in the specification for OpenFlight 15.8. The offsets of fields following this
field have been adjusted accordingly.

CAT Record error corrected in OpenFlight 15.8 specification
Reserved field (documented)

Data Type Offset Length Description
Int 60 4 Reserved

Format Changes

Header Record

The header record has been modified to include additional projection attributes. New
attributes have been appended to the end of the existing header record and some of the
existing fields have new values possible.

The following fields were added to the end (at the specified offsets) of the header record.

Header Record changes for OpenFlight15.8
New Fields

Data Type Offset Length Description
Unsigned Int 302 2 Next Light Point System ID number
Int 304 4 Reserved
Double 308 8 Earth major axis (for user defined ellipsoid) in

meters
Double 316 8 Earth minor axis (for user defined ellipsoid) in

meters

The Projection type field has been changed to include two new possible values,
Geocentric and Geodetic as shown here. New values are shown in bold font:

Header Record changes for OpenFlight15.8
Projection type field

Data Type Offset Length Description
Int 92 4 Projection type
 0 = Flat earth
 1 = Trapezoidal
 2 = Round earth
 3 = Lambert
 4 = UTM
 5 = Geocentric
 6 = Geodetic

6-282

Copyright © 2017 Open Geospatial Consortium

The Earth ellipsoid model field has been changed to include one new possible value, User
defined ellipsoid as shown here. This new value is shown in bold font.

Header Record changes for OpenFlight15.8
Earth ellipsoid field

Data Type Offset Length Description
Int 268 4 Earth ellipsoid model
 0 = WGS 1984
 1 = WGS 1972
 2 = Bessel
 3 = Clarke 1866
 4 = NAD 1927
 5 = User defined ellipsoid

A field, previously labeled “Reserved” in prior versions of this document, has been
described. It is the UTM zone for UTM projections and is shown here.

Header Record changes for OpenFlight15.8
UTM zone field

Data Type Offset Length Description
Int 276 2 UTM zone (for UTM projections - negative

value means Southern hemisphere)

For a complete description of the header record, see “Header Record” on page 22.

Group Record

The group record has been modified to include additional animation attributes. New
attributes have been appended to the end of the existing group record and some of the
existing fields have new values possible.

The following fields were added to the end (at the specified offsets) of the group record.

Group Record changes for OpenFlight15.8
New Fields

Data Type Offset Length Description
Int 32 4 Loop count
Float 36 4 Loop duration in seconds
Float 40 4 Last frame duration in seconds

6-283

Copyright © 2017 Open Geospatial Consortium

The Flags field has been changed to include a new bit which can be used to specify
backwards animations as shown here. The new bit is shown in bold font.

Group Record changes for OpenFlight15.8
Flags field

Data Type Offset Length Description
Int 16 4 Flags (bits, from left to right)
 0 = Reserved
 1 = Forward animation
 2 = Swing animation
 3 = Bounding box follows
 4 = Freeze bounding box
 5 = Default parent
 6 = Backward animation
 7-31 = Spare

For a complete description of the group record, see “Group Record” on page 22.

Level of Detail Record

The level of detail record has been modified to include an additional attribute, Significant
size. This new value helps an application to calculate switch ranges for the geometry
more effectively for different display settings (field of view, screen size and resolution).

The following field was added to the end (at the specified offset) of the level of detail
record.

LOD Record changes for OpenFlight15.8
New Field

Data Type Offset Length Description
Double 72 8 Significant size

For a complete description of the level of detail record, see “Level of Detail Record” on
page 41.

6-284

Copyright © 2017 Open Geospatial Consortium

External Reference Record

The Flags field of the external reference record has been modified to include a new bit,
Light point palette override, which is used to specify that the light point appearance and
animation palettes override those contained in the master file. The new bit is shown in
bold font.

External Reference Record changes for OpenFlight15.8
Flags field

Data Type Offset Length Description
Int 208 4 Flags (bits, from left to right)
 0 = Color palette override
 1 = Material palette override
 2 = Texture and texture mapping palette

override
 3 = Line style palette override
 4 = Sound palette override
 5 = Light source palette override
 6 = Light point palette override
 7-31 = Spare

For a complete description of the external reference record, see “External Reference
Record” on page 41.

Indexed String Record

Switch nodes now allow individual masks to be named. These names are stored in a new
ancillary record called the Indexed String record. While these new ancillary records are
currently only applicable to Switch records, they are not limited to Switch records and
may be useful in future versions of OpenFlight in other contexts.

The new Indexed String Record is an ancillary record that contains an integer index
followed by a variable length character string. In this way, arbitrary strings can be
associated to indices in a general way.

With respect to Switch mask names, the index specifies the mask number for which the
string specifies a name. Mask numbers start at 0. Not all masks are required to have
names.

Indexed String Record
New record for OpenFlight 15.8

Data Type Offset Length Description
Int 0 2 Indexed string Opcode 132
Unsigned Int 2 2 Length - length of the record
Unsigned Int 4 2 Index
Char 8 Length - 8 ASCII string; 0 terminates

For a completed description of the indexed string record, see “Indexed String Record” on
page 53.

6-285

Copyright © 2017 Open Geospatial Consortium

Face Record

The Flags field of the face record has been modified to include a new bit, Roofline, which
is used to specify that a face is part of a building’s roof as viewed from above. The new
specification of the Flags field is shown here. The new bit is shown in bold font.

Face Record changes for OpenFlight15.8
Flags field

Data Type Offset Length Description
Int 44 4 Flags (bits from left to right)
 0 = Terrain
 1 = No color
 2 = No alternate color
 3 = Packed color
 4 = Terrain culture cutout (footprint)
 5 = Hidden, not drawn
 6 = Roofline
 7-31 = Spare

Mesh Record

Similar to the Face record described above, the Flags field of the mesh record has been
modified to include a new bit, Roofline, which is used to specify that a mesh is part of a
building’s roof as viewed from above. The new specification of the Flags field is shown
here. The new bit is shown in bold font.

Mesh Record changes for OpenFlight15.8
Flags field

Data Type Offset Length Description
Int 44 4 Flags (bits from left to right)
 0 = Terrain
 1 = No color
 2 = No alternate color
 3 = Packed color
 4 = Terrain culture cutout (footprint)
 5 = Hidden, not drawn
 6 = Roofline
 7-31 = Spare

6-286

Copyright © 2017 Open Geospatial Consortium

Local Vertex Pool Record

The Local Vertex Pool record has been modified to include an alpha color component for
those vertices in the pool that have color. The alpha color component is represented as a 1
byte integer value whose range is 0 (fully transparent) to 255 (fully opaque).

The definition of the Attribute mask field has been changed as shown here.

Note: The physical layout of this field has not changed, only its definition. The bits for
which new definitions apply are shown in bold font:

Local Vertex Pool Record changes for OpenFlight15.8
Attribute mask field

Data Type Offset Length Description

Unsigned Int 8 4 Attribute mask - Bit mask indicating what kind of
vertex information is specified for each vertex in
the local vertex pool. Bits are ordered from left to
right as follows:

 Bit

Description

 0 Has Position - if set, data for each vertex in
will include x, y, and z coordinates (3
doubles)

 1 Has Color Index - if set, data for each
vertex will include a color value that
specifies a color table index as well as an
alpha value

 2 Has RGBA Color - if set, data for each
vertex will include a color value that is a
packed RGBA color value

 Note: Bits 1and 2 are mutually exclusive - a vertex
can have either color index or RGB color value or
neither, but not both.

 3 Has Normal - if set, data for each vertex will
include a normal (3 floats)

 4 Has Base UV - if set, data for each vertex
will include uv texture coordinates for the
base texture (2 floats)

 5 Has UV Layer 1 - if set, data for each vertex
will include uv texture coordinates for layer
1 (2 floats)

 6 Has UV Layer 2 - if set, data for each vertex
will include uv texture coordinates for layer
2 (2 floats)

 7 Has UV Layer 3 - if set, data for each vertex
will include uv texture coordinates for layer
3 (2 floats)

6-287

Copyright © 2017 Open Geospatial Consortium

 8 Has UV Layer 4 - if set, data for each vertex
will include uv texture coordinates for layer
4 (2 floats)

 9 Has UV Layer 5 - if set, data for each vertex
will include uv texture coordinates for layer
5 (2 floats)

 10 Has UV Layer 6 - if set, data for each vertex
will include uv texture coordinates for layer
6 (2 floats)

 11 Has UV Layer 7 - if set, data for each vertex
will include uv texture coordinates for layer
7 (2 floats)

 12-
31

Spare

6-288

Copyright © 2017 Open Geospatial Consortium

The color field of the vertex pool data (data for each vertex) has been modified to include
an alpha color component as shown here. The affected field is shown in bold font.

Local Vertex Pool Record changes for OpenFlight15.8
Color field

Data Type Offset Description
Unsigned Int 4 colorN - Color for vertex N - present if Attribute mask

includes Has Color Index or Has RGBA Color.
If Has Color Index, lower 3 bytes specify color table
index, upper 1 byte is Alpha.
If Has RGBA Color, 4 bytes specify (a, b, g, r) values.

For a complete description of the local vertex pool record, see “Local Vertex Pool
Record” on page 30.

Vertex Palette Records

Vertex Palette Records have been modified to include an alpha color component. The
alpha color component is represented as a 1 byte integer value whose range is 0 (fully
transparent) to 255 (opaque).

Prior to OpenFlight version 15.8, vertex colors were represented in vertex palette records
in one of two ways: Packed Color or Color Index. Depending on the value of the Packed
color flag, either the Packed color (a, b, g, r) attribute or the Vertex color index attribute
was valid, but not both. For example, if the Packed color flag was TRUE, then the Packed
color attribute contained the RGB components of the vertex color and the Vertex color
index attribute was not specified. Conversely, if the Packed color flag was FALSE, then
the Vertex color index attribute contained the index (in the Color Palette) of the vertex
color and the Packed color attribute was not specified. Furthermore, the A (alpha)
component of the Packed color attribute was not valid and was ignored.

In OpenFlight version 15.8, the A (alpha) component of the Packed color attribute is
valid and all vertex records include the Packed color (a, b, g, r) attribute, even those that
also include the Vertex color index attribute. For those vertices that include the Vertex
color index attribute, the RGB components of the Packed color attribute will match those
of the color specified by the Vertex color index attribute if it was looked up in the color
palette. This implies that an application concerned only with the RGB components of a
vertex color can simply reference the Packed color attribute and ignore the Vertex color
index attribute in all cases.

All the updated vertex palette records are shown here. The Packed color is shown in bold
font to emphasize that it is always specified (for both color index and packed color
specifications).

6-289

Copyright © 2017 Open Geospatial Consortium

Vertex with Color Record changes for OpenFlight 15.8
Packed color field

Data type Offset Length Description
Int 0 2 Vertex with Color Opcode 68
Unsigned Int 2 2 Length - length of the record
Unsigned Int 4 2 Color name index
Int 6 2 Flags (bits, from left to right)
 0 = Start hard edge
 1 = Normal frozen
 2 = No color
 3 = Packed color
 4-15 = Spare
Double 8 8*3 Vertex coordinate (x, y, z)
Int 32 4 Packed color (a, b, g, r) - always specified

when the vertex has color
Unsigned Int 36 4 Vertex color index - valid only if vertex has

color and Packed color flag is not set

Vertex with Color and Normal Record changes for OpenFlight 15.8
Packed color field

Data type Offset Length Description
Int 0 2 Vertex with Color and Normal Opcode 69
Unsigned Int 2 2 Length - length of the record
Unsigned Int 4 2 Color name index
Int 6 2 Flags (bits, from left to right)
 0 = Start hard edge
 1 = Normal frozen
 2 = No color
 3 = Packed color
 4-15 = Spare
Double 8 8*3 Vertex coordinate (x, y, z)
Float 32 4*3 Vertex normal (i, j, k)
Int 44 4 Packed color (a, b, g, r) - always specified

when the vertex has color
Unsigned Int 48 4 Vertex color index - valid only if vertex has

color and Packed color flag is not set
Int 52 4 Reserved

6-290

Copyright © 2017 Open Geospatial Consortium

Vertex with Color and UV Record changes for OpenFlight 15.8
Packed color field

Data type Offset Length Description
Int 0 2 Vertex with Color and UV Opcode 71
Unsigned Int 2 2 Length - length of the record
Unsigned Int 4 2 Color name index
Int 6 2 Flags (bits, from left to right)
 0 = Start hard edge
 1 = Normal frozen
 2 = No color
 3 = Packed color
 4-15 = Spare
Double 8 8*3 Vertex coordinate (x, y, z)
Float 32 4*2 Texture coordinate (u, v)
Int 40 4 Packed color (a, b, g, r) - always specified

when the vertex has color
Unsigned Int 44 4 Vertex color index - valid only if vertex has

color and Packed color flag is not set

Vertex with Color, Normal and UV Record changes for OpenFlight 15.8
Packed color field

Data type Offset Length Description
Int 0 2 Vertex with Color, Normal and UV Opcode

70
Unsigned Int 2 2 Length - length of the record
Unsigned Int 4 2 Color name index
Int 6 2 Flags (bits, from left to right)
 0 = Start hard edge
 1 = Normal frozen
 2 = No color
 3 = Packed color
 4-15 = Spare
Double 8 8*3 Vertex coordinate (x, y, z)
Float 36 4*3 Vertex normal (i, j, k)
Float 44 4*2 Texture coordinate (u, v)
Int 52 4 Packed color (a, b, g, r) - always specified

when the vertex has color
Unsigned Int 56 4 Vertex color index - valid only if vertex has

color and Packed color flag is not set
Int 60 4 Reserved

For a complete description of the vertex palette records, see “Vertex Palette Records” on
page 66.

6-291

Copyright © 2017 Open Geospatial Consortium

Light Points
The representation of Light Points in OpenFlight version 15.8 is significantly different
from prior versions. Previously, all light point attributes were described completely
within the primary record of the light point node.

In OpenFlight version 15.8, light point attributes have been divided into two categories,
appearance and behavioral. To accommodate this, two new palettes have been created,
the Light Point Appearance Palette and the Light Point Animation palette. A new Indexed
Light Point node record has been added that references entries from the Light Point
Appearance and Animation palettes. In effect, this moves the light point attributes out of
the node record itself into entries of the two palettes and makes it much easier to share
common attributes between multiple light points.

Note that the Light Point Record (Opcode 111) used in previous versions of OpenFlight
remains valid for applications that require the data in this other format. Creator and the
OpenFlight API versions 2.6 support both light point formats.

Following is a description of the new records in OpenFlight version 15.8 used to describe
Light Point Palettes and Indexed Light Points.

Light Point Appearance Palette Record
The light point appearance palette record defines the visual attributes of light points.

Light Point Appearance Palette Record
New record for OpenFlight 15.8

Data Type Offset Length Description
Int 0 2 Light Point Appearance Palette Opcode 128
Unsigned Int 2 2 Length - length of the record
Int 4 4 Reserved
Char 8 256 Appearance name; 0 terminates
Int 264 4 Appearance index
Int 268 2 Surface material code
Int 270 2 Feature ID
Unsigned Int 272 4 Back color for bidirectional points
Int 276 4 Display mode
 0 = RASTER
 1 = CALLIGRAPHIC
 2 = EITHER
Float 280 4 Intensity - scalar for front colors
Float 284 4 Back intensity - scalar for back color
Float 288 4 Minimum defocus - (0.0 - 1.0) for calligraphic

points
Float 292 4 Maximum defocus - (0.0 - 1.0) for

calligraphic points
Int 296 4 Fading mode
 0 = Enable perspective fading calculations
 1 = Disable calculations

6-292

Copyright © 2017 Open Geospatial Consortium

Light Point Appearance Palette Record
New record for OpenFlight 15.8 (Continued)

Data Type Offset Length Description
Int 300 4 Fog Punch mode
 0 = Enable fog punch through calculations
 1 = Disable calculations
Int 304 4 Directional mode
 0 = Enable directional calculations
 1 = Disable calculations
Int 308 4 Range mode
 0 = Use depth (Z) buffer calculation
 1 = Use slant range calculation
Float 312 4 Min pixel size - minimum diameter of points in pixels
Float 316 4 Max pixel size - maximum diameter of points in pixels
Float 320 4 Actual size - actual diameter of points in database units
Float 324 4 Transparent falloff pixel size - diameter in pixels when points

become transparent
Float 328 4 Transparent falloff exponent
 >= 0 - falloff multiplier exponent
 1.0 - linear falloff
Float 332 4 Transparent falloff scalar
 > 0 - falloff multiplier scale factor
Float 336 4 Transparent falloff clamp - minimum permissible falloff

multiplier result
Float 340 4 Fog scalar
 >= 0 - adjusts range of points for punch threw effect.
Float 344 4 Fog intensity
Float 348 4 Size difference threshold - point size transition hint to

renderer
Int 352 4 Directionality
 0 = OMNIDIRECTIONAL
 1 = UNIDIRECTIONAL
 2 = BIDIRECTIONAL
Float 356 4 Horizontal lobe angle - total angle in degrees
Float 360 4 Vertical lobe angle - total angle in degrees
Float 364 4 Lobe roll angle - rotation of lobe about local Y axis in de-

grees
Float 368 4 Directional falloff exponent
 >= 0 - falloff multiplier exponent
 1.0 - linear falloff
Float 372 4 Directional ambient intensity - of points viewed off axis
Float 376 4 Significance - drop out priority for RASCAL lights (0.0 - 1.0)

6-293

Copyright © 2017 Open Geospatial Consortium

Light Point Appearance Palette Record
New record for OpenFlight 15.8 (Continued)

Data Type Offset Length Description
Int 380 4 Flags (bits, from left to right)
 0 = reserved
 1 = No back color
 TRUE = don’t use back color for

bidirectional points
 FALSE = use back color for

bidirectional points
 2 = reserved
 3 = Calligraphic proximity occulting

(Debunching)
 4 = Reflective, non-emissive point
 5-7 = Randomize intensity
 0 = never
 1 = low
 2 = medium
 3 = high
 8 = Perspective mode
 9 = Flashing
 10 = Rotating
 11 = Rotate Counter Clockwise
 Direction of rotation about local Z axis
 12 = reserved
 13-14 = Quality
 0 = Low
 1 = Medium
 2 = High
 3 = Undefined
 15 = Visible during day
 16 = Visible during dusk
 17 = Visible during night
 18-31 = Spare
Float 384 4 Visibility range (> 0.0)
Float 388 4 Fade range ratio - percentage of total range at

which light points start to fade (0.0 - 1.0)
Float 392 4 Fade in duration - time it takes (seconds) light

point to fade in when turned on
Float 396 4 Fade out duration - time it takes (seconds)

light point to fade out when turned off
Float 400 4 LOD range ratio - percentage of total range at

which light points LODs are active (0.0 - 1.0)
Float 404 4 LOD scale - size of light point LOD polygon

relative to light point diameter

6-294

Copyright © 2017 Open Geospatial Consortium

Light Point Animation Record
The light point animation palette record defines the behavioral attributes of light points

Light Point Animation Palette Record
New record for OpenFlight 15.8

Data Type Offset Length Description
Int 0 2 Light Point Animation Opcode 129
Unsigned Int 2 2 Length - length of the record
Int 4 4 Reserved
char 8 256 Animation name; 0 terminates
Int 264 4 Animation index
Float 268 4 Animation period in seconds. Note: Rate = 1/Period
Float 272 4 Animation phase delay in seconds - from start of period
Float 276 4 Animation enabled period (time on) in seconds
Float 280 4 Axis of rotation for rotating animation, I
Float 284 4 Axis of rotation for rotating animation, J
Float 288 4 Axis of rotation for rotating animation, K
Int 292 4 Flags (bits, from left to right)
 0 = Flashing
 1 = Rotating
 2 = Rotate counter clockwise
 3-31 = Spare
Int 296 4 Animation type
 0 = Flashing sequence
 1 = Rotating
 2 = Strobe
 3 = Morse code
Int 300 4 Morse code timing
 0 = Standard timing
 1 = Farnsworth timing
Int 304 4 Word rate (for Farnsworth timing)
Int 308 4 Character rate (for Farnsworth timing)
char 312 1024 Morse code string
Int 1336 4 Number of sequences (for Flashing sequence)
The following fields are repeated for each sequence represented in the light point animation palette entry.
In the fields listed below, N ranges from 0 to Number of sequences - 1.
Unsigned Int 1340+(N*12) 4 Sequence StateN - state of sequence N
 0 = On
 1 = Off
 2 = Color change
Float 1344+(N*12) 4 Sequence DurationN - duration of sequence N in seconds
Unsigned Int 1348+(N*12) 4 Sequence ColorN - color for sequence N.

Defined if Sequence state is On or Color change

For a complete description of the light point animation palette record, see “Light Point Animation
Palette Record” on page 85.

6-295

Copyright © 2017 Open Geospatial Consortium

Indexed Light Point Record

The indexed light point record is one of the records that can represent a light point node.

The appearance index specifies an entry in the light point appearance palette that contains
the visual attributes of the light point.

The animation index specifies an entry in the light point animation palette that contains
the behavioral attributes of the light point.

The palette entries referenced by the indexed light point record describe the visual state
of the light point’s child vertices. Only vertex nodes may be children of light point nodes.

Indexed Light Point Record
New record for OpenFlight 15.8

Data Type Offset Length Description
Int 0 2 Indexed Light Point Record Opcode 130
Unsigned Int 2 2 Length - length of the record
Char 4 8 7 char ASCII ID; 0 terminates
Int 12 4 Appearance index
Int 16 4 Animation index
Int 20 4 Draw order (for calligraphic lights)
Int 24 4 Reserved

For a complete description of the light point records, see “Indexed Light Point Record”
on page 34.

Light Point System Record

The light point system record enables you to collect a set of light points and
enable/disable or brighten/dim them as a group.

Light Point System Record
New record for OpenFlight 15.8

Data Type Offset Length Description
Int 0 2 Light Point System Record Opcode 130
Unsigned Int 2 2 Length - length of the record
Char 4 8 7 char ASCII ID; 0 terminates
Float 12 4 Intensity
Int 16 4 Animation state
 0 = On
 1 = Off
 2 = Random
Int 20 4 Flags (bits, from left to right)
 0 = Enabled
 1-31 = Spare

For a complete description of the light point system record, see “Light Point System
Record” on page 37.

6-296

Copyright © 2017 Open Geospatial Consortium

Texture Mapping Palette Record

Parameters for 3 Point Put Texture Mapping (Type 1)

The UV display type field, previously labeled Reserved in prior versions of this
document, has been re-labeled in the specification for OpenFlight 15.8. The physical
layout of the record was not changed.

Parameters for 3 Point Put Texture Mapping (Type 2)
changes for OpenFlight15.8

UV display type field (re-labeled)
Data Type Offset Length Description
Int 388 4 UV display type
 1 = XY
 2 = UV

Parameters for 4 Point Put Texture Mapping (Type 2)

The following fields were added to the end (at the specified offsets) of the parameter
subrecord.

Parameters for 4 Point Put Texture Mapping (Type 2)
changes for OpenFlight15.8

New Fields
Data Type Offset Length Description
Float 576 4 U Repetition
Float 580 4 V Repetition

The UV display type field, previously labeled Reserved in prior versions of the
document, has been re-labeled in the specification for Open Flight 15.8. The physical
layout of the record was not changed.

Parameters for 4 Point Put Texture Mapping (Type 2)
changes for OpenFlight15.8

UV display type field (re-labeled)
Data Type Offset Length Description
Int 436 4 UV display type
 1 = XY
 2 = UV

6-297

Copyright © 2017 Open Geospatial Consortium

C Summary of Changes Version 16.0

Overview

This section describes the changes in the OpenFlight Scene Description between versions
15.8 and 16.0 as well as the errors contained in previous versions of this document that
have been corrected in this version.

OpenFlight version 16.0 coincides with MultiGen Creator version 3.0 and the OpenFlight
API version 3.0. The changes made for this version are:

• “External Reference Record” on page 147
• “Face Record” on page 148
• “Mesh Record” on page 148
• “Light Point Appearance Palette Record” on page 148
• “Shader Palette Record” on page 149
• “Texture Attribute File” on page 149
• “Texture Mapping Palette Record” on page 150

Document Corrections

The errors corrected in this version of the document are described in the sections that
follow.

Header Record

The value corresponding to User defined ellipsoid for the Earth ellipsoid model field has
been corrected. It was previously listed as having a value of 5. The correct value is -1.
The corrected value is shown in bold font.

Header Record error corrected in OpenFlight 16.0 specification
Earth ellipsoid model field (corrected)

Data Type Offset Length Description
Int 268 4 Earth ellipsoid model
 0 = WGS 1984
 1 = WGS 1972
 2 = Bessel
 3 = Clarke 1866
 4 = NAD 1927
 -1 = User defined ellipsoid

6-298

Copyright © 2017 Open Geospatial Consortium

Face Record

The possible values listed for the Draw type field have been corrected. The affected
values are shown in bold font.

Face Record error corrected in OpenFlight 16.0 specification
Draw type field (corrected)

Data Type Offset Length Description
Int 18 1 Draw type
 0 = Draw solid with backface culling
 1 = Draw solid, no backface culling
 2 = Draw wireframe and close
 3 = Draw wireframe
 4 = Surround with wireframe in alternate

color
 8 = Omnidirectional light
 9 = Unidirectional light
 10 = Bidirectional light

For a complete description of the face record, see “Face Record” on page 26.

Mesh Record

The Reserved field at offset 12, previously omitted in prior versions of this document, has
been documented in the specification for OpenFlight 16.0. The offsets of fields following
this field have been adjusted accordingly.

Mesh Record error corrected in OpenFlight 16.0 specification
Reserved field (documented)

 Data Type Offset Length Description
Int 12 4 Reserved

The possible values listed for the Draw type field have been corrected. The affected
values are shown in bold font.

Mesh Record error corrected in OpenFlight 16.0 specification
Draw type field (corrected)

Data Type Offset Length Description
Int 18 1 Draw type
 0 = Draw solid with backface culling
 1 = Draw solid, no backface culling
 2 = Draw wireframe and close
 3 = Draw wireframe
 4 = Surround with wireframe in alternate

color
 8 = Omnidirectional light
 9 = Unidirectional light
 10 = Bidirectional light

6-299

Copyright © 2017 Open Geospatial Consortium

For a complete description of the mesh record, see “Mesh Record” on page 29.

Switch Record

The order of the fields were corrected. The affected fields are shown here.

Switch Record error corrected in OpenFlight 16.0 specification
field order (corrected)

Data Type Offset Length Description
Int 20 4 Number of masks
Int 24 4 Number of words per mask - the number of 32

bit words required for each mask, calculated
as follows:
(number of children / 32) + X
where X equals:
0 if (number of children modulo 32) is zero
1 if (number of children modulo 32) is
nonzero

For a complete description of the switch record, see “Switch Record” on page 49.

Texture Mapping Palette Record

The parameters for warped mapping in the texture mapping palette record were corrected.
The 128 byte 4x4 Trackplane to XY plane transformation matrix was erroneously listed
where an 8 byte reserved field was located. The entire record is shown here. The
corrected field and offsets are shown in bold font:

6-300

Copyright © 2017 Open Geospatial Consortium

Parameters for Warped Mapping error corrected in OpenFlight 16.0
specification

Reserved field (corrected)
Data Type Offset Length Description
Int X+0 4 Active geometry point
 0 = First warp FROM point
 1 = Second warp FROM point
 2 = Third warp FROM point
 3 = Fourth warp FROM point
 4 = Fifth warp FROM point
 5 = Sixth warp FROM point
 6 = Seventh warp FROM point
 7 = Eighth warp FROM point
 8 = First warp TO point
 9 = Second warp TO point
 10 = Third warp TO point
 11 = Fourth warp TO point
 12 = Fifth warp TO point
 13 = Sixth warp TO point
 14 = Seventh warp TO point
 15 = Eighth warp TO point
Int X+4 4 Warp tool state
 0 = Start state - no points entered
 1 = One FROM point entered
 2 = Two FROM point entered
 3 = Three FROM point entered
 4 = Four FROM point entered
 5 = Five FROM point entered
 6 = Six FROM point entered
 7 = Seven FROM point entered
 8 = All FROM point entered
Int X+8 8 Reserved
Double X+16 8*8*2 FROM points transformed to XY plane by

above matrix.
8 FROM points are ordered 1, 2, ... 8. Each
point is (x, y)

Double X+144 8*8*2 TO points transformed to XY plane by above
matrix.
8 TO points are ordered 1, 2, ... 8. Each point
is (x, y)

For a complete description of the texture mapping palette record, see “Texture Mapping
Palette Record” on page 86.

6-301

Copyright © 2017 Open Geospatial Consortium

Indexed String Record

The length of the Index field has been corrected. It was previously listed as 2 bytes. The
correct length is 4 bytes. The corrected field and length are shown in bold font:

Indexed String Record
Data Type Offset Length Description
Int 0 2 Indexed string Opcode 132
Unsigned Int 2 2 Length - length of the record
Unsigned Int 4 4 Index
Char 8 Length - 8 ASCII string; 0 terminates

Bounding Convex Hull Record

The description of this previously undocumented record has been added to the
specification. For a complete description of this record, see “Bounding Convex Hull
Record” on page 62.

Bounding Histogram Record

The description of this previously undocumented record has been added to the
specification. For a complete description of this record, see “Bounding Histogram
Record” on page 62.

Format Changes

External Reference Record

The Flags field of the external reference record has been modified to include a new bit,
Shader palette override, which is used to specify that the shader palette override those
contained in the master file. The new bit is shown in bold font.

External Reference Record changes for OpenFlight15.8
Flags field

Data Type Offset Length Description
Int 208 4 Flags (bits, from left to right)
 0 = Color palette override
 1 = Material palette override
 2 = Texture and texture mapping palette

override
 3 = Line style palette override
 4 = Sound palette override
 5 = Light source palette override
 6 = Light point palette override
 7 = Shader palette override
 8-31 = Spare
For a complete description of the external reference record, see “External Reference
Record” on page 41.

6-302

Copyright © 2017 Open Geospatial Consortium

Face Record

The face record has been modified to include a new attribute, Shader index, which is used
to specify the shader (if any) that is applied to the face.

Face Record changes for OpenFlight 16.0
Flags field

Data Type Offset Length Description
Int 78 2 Shader index, -1 if none

For a complete description of the face record, see “Face Record” on page 26.

Mesh Record

Similar to the Face record described above, the mesh record has been modified to include
a new attribute, Shader index, which is used to specify the shader (if any) that is applied
to the mesh.

Mesh Record changes for OpenFlight 16.0
Flags field

Data Type Offset Length Description
Int 78 2 Shader index, -1 if none

For a complete description of the mesh record, see “Mesh Record” on page 29.

Light Point Appearance Palette Record

The light point appearance palette record has been modified to include a new attribute,
Texture pattern index, which is used to specify the texture (if any) that is applied to the
light point appearance.

Light Point Appearance Record changes for OpenFlight 16.0
Texture pattern index field

Data Type Offset Length Description
Int 408 2 Texture pattern index, -1 if none
Int 410 2 Reserved

For a complete description of the light point appearance palette record, see “Light Point
Appearance Palette Record” on page 82.

6-303

Copyright © 2017 Open Geospatial Consortium

Shader Palette Record

The shader palette contains descriptions of shaders used while drawing geometry. It is
composed of an arbitrary number of shader palette records. The shader palette records
must follow the header record and precede the first push.

Shader Palette Record
New record for OpenFlight 16.0

Data Type Offset Length Description
Int 0 2 Shader Opcode 133
Unsigned Int 2 2 Length - length of the record
Int 4 4 Shader index
Int 8 4 Shader type
 0 = Cg
 1 = CgFX
 2 = OpenGL Shading Language
char 12 1024 Shader name; 0 terminates
char 1036 1024 Vertex program file name; 0 terminates

(Cg Shader type specific)
char 2060 1024 Fragment program file name; 0 terminates

(Cg Shader type specific)
Int 3084 4 Vertex program profile (Cg Shader type specific)
Int 3088 4 Fragment program profile (Cg Shader type specific)
char 3092 256 Vertex program entry point (Cg Shader type specific)
Char 3348 256 Fragment program entry point (Cg Shader type

specific)

Texture Attribute File

The Wrap method fields (Wrap method u,v, Wrap method u and Wrap method v) have
been changed to include a new possible value, Mirrored repeat as shown here. This new
value is shown in bold font:.

Texture Attribute File Format changes for OpenFlight 16.0Wrap method
fields

Data Type Offset Length Description
Int 36 4 Wrap method u,v - only used when either

Wrap method u or Wrap method v is set to
None

 0 = Repeat
 1 = Clamp
 4 = Mirrored Repeat
Int 40 4 Wrap method u
 0 = Repeat
 1 = Clamp
 3 = None - use Wrap method u,v
 4 = Mirrored Repeat

6-304

Copyright © 2017 Open Geospatial Consortium

Texture Attribute File Format changes for OpenFlight 16.0Wrap method
fields

Data Type Offset Length Description
Int 44 4 Wrap method v
 0 = Repeat
 1 = Clamp
 3 = None - use Wrap method u,v
 4 = Mirrored Repeat

The Environment type field has been changed to include a new possible value, Add as
shown here. This new value is shown in bold font.

Texture Attribute File Format changes for OpenFlight 16.0Environment
type field

Data Type Offset Length Description
Int 60 4 Environment type
 0 = Modulate
 1 = Blend
 2 = Decal
 3 = Replace
 4 = Add

Texture Mapping Palette Record

Parameters for 3 Point Put Texture Mapping (Type 1)

The following fields were added to the end (at the specified offsets) of the parameter
subrecord.

Parameters for 3 Point Put Texture Mapping (Type 1)
changes for OpenFlight 16.0

New Fields
Data Type Offset Length Description
Float 392 4 U Repetition
Float 396 4 V Repetition

6-305

Copyright © 2017 Open Geospatial Consortium

Index

306
Copyright © <year> Open Geospatial Consortium

B
Binary separating plane record 40
Bounding volumes 61

overview 14
bounding box record 62
bounding convex hull record 62
bounding cylinder record 62
bounding histogram record 62
bounding sphere record 62
bounding volume center record 63
bounding volume orientation record 63

C
CAT data

key data record 64
key header record 63

CAT record 50
Clip region

overview 11
clip region record 47

Color palette record 70
Comment record 53
Continuation record 66
Control records

overview 16
push level record 17
pop level record 17
push subface record 17
pop subface record 17
push extension record 17
pop extension record 17
push attribute record 18
pop attribute record 18

Curve record 52

D
Database hierarchy 9
Degree of freedom

overview 11
degree of freedom record 38

E
Extension attribute record 65
Extension record 51
External reference

overview 12
external reference record 41

Eyepoint palette record 74

F
Face

overview 10
face record 27

307
Copyright © <year> Open Geospatial Consortium

G
General matrix record 60

see also Transformations
Geospecific control points 98

see also Texture attribute file
Group

overview 10
group record 24

H
Header

overview 10
header record 20

I
Indexed string record 54, 147
Instancing 18

overview 13

K
Key table data record 77
Key table header record 76

L
Level of detail

overview 11
level of detail record 41

Light point
overview 10
indexed light point record 34
light point record 35

Light point animation palette record 85
Light point appearance palette record 82
Light point system

overview 10
light point system record 37

Light source
overview 11
light source record 44

Light source palette record 81
Line style palette record 86
Linkage palette data

arc data subrecord 79
driver node data subrecord 79
entity name data subrecord 80
formula node data subrecord 78
general node data subrecord 78

Linkage palette data record 78
Linkage palette header record 77
Local vertex pool record 31
Long ID record 53

M
Material palette record 73

308
Copyright © <year> Open Geospatial Consortium

Matrix record 59
see also Transformations

Mesh
overview 10
local vertex pool record 31
mesh primitive record 33
mesh record 29

Mesh primitive record 33
Morph vertex 11
Morph vertex list record 40
Multitexture

overview 14
multitexture record 55
UV list record 56

N
Name table record 71

O
Object

overview 10
object record 26

Opcodes
list of obsolete 111
list of valid 109

P
Palette records 66
Pop attribute record 18

309
Copyright © <year> Open Geospatial Consortium

Pop extension record 17
Pop level record 17
Pop subface record 17
Push attribute record 18
Push extension record 17
Push level record 17
Push subface record 17
Put record 60

see also Transformations
R

Replicate record 58
Replication

overview 14
Road construction record 45
Road path record 46
Road segment record 44
Road zone file

elevation data point subrecord 101
surface type subrecord 101

Road zone record 58
Rotate about edge record 59

see also Transformations
Rotate about point record 60

see also Transformations
Rotate and/or scale to point record 60

see also Transformations

S
Scale record 59

see also Transformations
Shader palette record 91
Sound

overview 11
sound record 43

Sound palette data record 81
Sound palette header record 80
Subface 11
Subtexture 98

see also Texture attribute file
Switch

overview 11
switch record 49

T
Text

overview 11

310
Copyright © <year> Open Geospatial Consortium

text Record 48
Texture

supported formats 93
Texture attribute file

overview 93
format 94
geospecific control point subrecord 98
subtexture subrecord 98

Texture mapping palette
parameters for 4 put texture mapping 88
parameters for put texture mapping 87
parameters for radial project mapping 89
parameters for spherical project mapping 89
parameters for warped mapping 90, 146
texture mapping palette record 86

Texture palette record 73
Texture pattern file 93
Trackplane palette record 74
Transformations 58

general matrix record 60
matrix record 59
put record 60
rotate about edge record 59
rotate about point record 60
rotate and/or scale to point record 60
scale record 59
translate record 59

Translate record 59
see also Transformations

U
UV list record 56

V
Vector record 61
Vertex

overview 11
morph vertex list record 40
vertex palette header record 67
vertex with color and normal record 68
vertex with color and uv record 69
vertex with color record 68
vertex with color, normal and uv record 69

Vertex

311
Copyright © <year> Open Geospatial Consortium

312
Copyright © <year> Open Geospatial Consortium

