
Geography Markup Language (GML) v1.0
OGC Document Number: 00-029

Date: 12-May-2000

Abstract

The Geography Markup Language (GML) is an XML encoding for the transport
and storage of geographic information, including both the geometry and
properties of geographic features. This specification defines the mechanisms and
syntax that GML uses to encode geographic information in XML. It is anticipated
that GML will make a significant impact on the ability of organizations to share
geographic information with one another, and to enable linked geographic
datasets. The initial release of this specification is concerned with the XML
encoding of what the OpenGIS® Consortium (OCG) calls 'Simple Features'.

Status of this document

This document is an OpenGIS® Consortium Recommendation Paper. It is similar
to a proposed recommendation in other organizations. While it reflects a public
statement of the official view of the OGC, it does not have the status of a OGC

This version: 1.0
Latest version: 1.0
Previous version: this is the first public release

Editors: Ron Lake, Galdos Systems Inc. <rlake@galdosinc.com>
Adrian Cuthbert, Laser-Scan Ltd. <adrian@lsl.co.uk>

Authors: Adrian Cuthbert, Laser-Scan Ltd. <adrian@lsl.co.uk>

Barry O'Rourke, Compusult Ltd. <barry@compusult.nf.ca>
Edric Keighan, Cubewerx Inc. <ekeighan@cubewerx.com>
Serge Margoulies, IONIC Software
s.a. <serge.margoulies@ionicsoft.com>

Jayant Sharma, Oracle Corporation <jsharma@us.oracle.com>
Paul Daisey, U.S. Census Bureau <pdaisey@geo.census.gov>
Ron Lake, Galdos Systems Inc. <rlake@galdosinc.com>
Sandra Johnson, MapInfo Ltd. <sandra_johnson@mapinfo.com>

Page 1 of 85Geography Markup Language (GML) v1.0

Technology Specification. It is anticipated that the position stated in this
document will develop in response to changes in the underlying technology.
Although changes to this document are governed by a comprehensive review
procedure, it is expected that some of these changes may be significant.

The OGC explicitly invites comments on this document. Please send them to
gml.rfc@opengis.org

Available formats

This GML specification is available in the following formats.

on-line (HTML)
as a zip file
as a PDF file

In case of a discrepancy between the various forms of the specification, the on-
line version is considered the definitive version.
These links will be made live once the document is adopted and being placed
on the OGC site.

Available languages

The English version of this specification is the only normative version.

Copyright Notice

Copyright 2000 Compusult Ltd.
Copyright 2000 Cubewerx Inc.
Copyright 2000 Galdos Systems Inc.
Copyright 2000 IONIC Software s.a.
Copyright 2000 Laser-Scan Ltd.
Copyright 2000 MapInfo Ltd
Copyright 2000 Oracle Corporation
Copyright 2000 U.S. Census Bureau

The companies listed above have granted the Open Geospatial Consortium, Inc.
(OGC) a nonexclusive, royalty-free, paid up, worldwide license to copy and
distribute this document and to modify this document and distribute copies of the
modified version.

This document does not represent a commitment to implement any portion of this
specification in any company’s products.

Page 2 of 85Geography Markup Language (GML) v1.0

OGC’s Legal, IPR and Copyright Statements are found at
http://www.opengeospatial.org/about/?page=ipr&view=ipr

NOTICE

Permission to use, copy, and distribute this document in any medium for any
purpose and without fee or royalty is hereby granted, provided that you include
the above list of copyright holders and the entire text of this NOTICE.

We request that authorship attribution be provided in any software, documents, or
other items or products that you create pursuant to the implementation of the
contents of this document, or any portion thereof.

No right to create modifications or derivatives of OGC documents is granted
pursuant to this license. However, if additional requirements (as documented in
the Copyright FAQ at http://www.opengeospatial.org/about/?
page=ipr&view=ipr_faq) are satisfied, the right to create modifications or
derivatives is sometimes granted by the OGC to individuals complying with those
requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS
MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT
ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
ANY USE OF THE DOCUMENT OR THE PERFORMANCE OR
IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising
or publicity pertaining to this document or its contents without specific, written
prior permission. Title to copyright in this document will at all times remain with
copyright holders.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by
government is subject to restrictions as set forth in subdivision (c)(1)(ii) of the
Right in Technical Data and Computer Software Clause at DFARS 252.227.7013

OpenGIS®, OGC™, OpenGeospatial™, OpenLS™ are trademarks or registered

Page 3 of 85Geography Markup Language (GML) v1.0

trademarks of Open Geospatial Consortium, Inc. in the United States and in other
countries.

Table of Contents

1. An Introduction to Geographic Features
2. GML Overview
3. Geometry
4. Profile 1 - Fixed Feature DTD
5. Profile 2 - User Defined Feature DTD
6. Profile 3 - RDF Foundations of GML
7. Spatial Reference Systems (informative)
Appendix A: Geometry DTD
Appendix B: Spatial Reference Systems DTD's (informative)
Appendix C: RDF Schema Definition of GML
Appendix D: References

Copyright © 2000 OGC All Rights Reserved.

1. An Introduction to Geographic Features

1.1. Overview

This section provides an introduction to the key concepts required to understand
how Geography Markup Language (GML) models the world. It is based on the
OpenGIS® Abstract Specification (go to http://www.opengis.org/ and then follow
the link to OpenGIS Specifications and look for OpenGIS Abstract Specification)
which defines a geographic feature as:

"A feature is an abstraction of a real world phenomenon; it is a
geographic feature if it is associated with a location relative to the
Earth."

Thus a digital representation of the real world can be thought of as a set of
features. The state of a feature is defined by a set of properties, where each
property can be thought of as a {name, type, value} triple. The number of
properties a feature may have, together with their names and types, are
determined by its feature type. Geographic features are those with properties
whose values may be a geometry. A feature collection is a collection of features
that can itself be regarded as a feature. Consequently a feature collection has a
feature type and thus may have properties of its own, in addition to the features it
contains.

This definition of GML is concerned with what the OpenGIS Consortium (OGC)

Page 4 of 85Geography Markup Language (GML) v1.0

calls 'simple features'. These are features whose geometry properties are restricted
to holding 'simple geometry' (for example, coordinates are defined in two
dimensions and the path of a curve between coordinates is assumed to be
interpolated linearly). The term 'simple features' was originally coined to describe
the functionality defined in a set of OpenGIS® Implementation Specifications (go
to http://www.opengis.org/ and then follow the link to OpenGIS Specifications
and look for OpenGIS Implementation Specifications).

GML follows the geometry model defined in those specifications. For example,
the traditional 0, 1 and 2-dimensional geometries defined in a two-dimensional
spatial reference system (SRS) are represented by points, line strings and
polygons. In addition the geometry model for simple features also allows
geometries that are collections of other geometries (either homogeneous, multi
point, multi line string and multi polygon, or heterogeneous, geometry
collection). In all cases the 'top-most' geometry is responsible for indicating in
which SRS the measurements have been made.

Consider the example of somebody wishing to build a digital representation of the
city of Cambridge in England. This could be represented as a feature collection
where the individual features represent such things as rivers, roads and colleges.
This classification of real world phenomena determines the feature types that need
to be defined. The choice of classification is related to the task to which the digital
representation will ultimately be put.

The 'River' feature type might have a property called 'name' whose value should
be of the type 'string'. It is common to refer to the typed property. Thus, in the
previous example, the 'River' feature type is said to have a string property called
'name'. Similarly the 'Road' feature type might have a string property called
'classification' and an integer property called 'number'. Properties with simple
types (integers, strings, reals, booleans) are collectively referred to as simple
properties.

The features required to model Cambridge might have geometry properties as
well as simple properties. Just like other properties, geometry properties must be
named. So the 'River' feature type might have a geometry property called
'centerLineOf' and the 'Road' feature type might have a geometry property called
'linearGeometry'. It is possible to be more precise about the type of geometry that
can be used as a property value. Thus in the 'River' and 'Road' examples the
geometry property could be specialised to be a line string property. Just as it is
common to have multiple simple properties defined on a single feature type (for
example, the 'College' feature type might have integer properties
'numberOfUndergraduates' and 'numberOfPostgraduates'), so too a feature type
may have multiple geometry properties.

Finally the entire model of Cambridge can be expressed as a single feature

Page 5 of 85Geography Markup Language (GML) v1.0

collection. This feature collection might have a feature type of 'CityModel' which
is interpreted ro mean it has a string property called 'modelDate', giving the date
when it was constructed, and a geometry property called 'boundedBy' giving the
extent over which the model is valid.

1.2 Examples

This document makes use of a simple example to demonstrate how GML can be
used to encode information about the real world. This example is based on the
Cambridge model described above, and shall be referred to as the 'Cambridge
example'. A more precise definition is given below:

In the example the first feature uses only 'standard' property names defined by
GML, whereas the second feature uses application specific property names. Thus
this example will demonstrate how GML is capable of being used by any
application specific model. The example is not designed to provide examples of
how the various types of geometry are encoded.

We introduce a second example to illustrate how GML can be used to encode a
hierarchy of feature collections. This will be referred to as the 'Schools example'.

The Cambridge example has a single feature collection of type
'CityModel' and contains two features using a containment relationship
called 'modelMember'. The feature collection has a string property
called 'modelDate' with the value 'Feb 2000' and a geometry property
called 'boundedBy' with a Box value. The Box geometry is expressed in
the SRS identified by the name 'EPSG:4326'. It represents the
'bounding box' of the feature collection.

The first of the features is of type 'River' with the name 'Cam' and
description 'The river that runs through Cambridge'. It has a geometric
property called 'centerLineOf' with a LineString value. This LineString
geometry is expressed in the same SRS as used by the bounding box.

The second of the features is of type 'Road' with description 'M11'. It
has a string property called 'classification' with value 'motorway' and
an integer property called 'number' with value '11'. It has a geometric
property called 'linearGeometry' with a LineString value. This
LineString geometry is also expressed in the same SRS as used by the
bounding box.

The Schools example has a root feature collection of type 'State' that
contains two features collections of type 'SchoolDistrict' using the

Page 6 of 85Geography Markup Language (GML) v1.0

1.3. Object Models

The Feature Model used by the OpenGIS Consortium is shown in Figure 1.

Figure 1. The OGC Feature Model

It is common practice in the Geospatial Information (GI) community to
refer to the properties of a feature as attributes. However, for the
purposes of avoiding confusion with attributes in XML, this document
refers to them as properties.

The 'Simple Features' model represents a simplification of the more general model
described in the OpenGIS Abstract Specification. This simplification was the
result of developing a number of implementation specifications. There are two

containment relationship 'featureMember'. Each of the 'SchoolDistrict'
feature collections contains two features from the type 'School' or
'College' using the containment relationship 'districtMember'.

The 'District' feature type has a string property called 'districtName'
and a polygon property called 'extentOf'.

The 'School' feature type has a string property called 'principalName'
and a point property called 'location'.

The 'College' feature type has a string property called 'prinicpalName'
and a point property called 'pointProperty'.

Page 7 of 85Geography Markup Language (GML) v1.0

major simplifications:

Features are assumed to have either simple properties (booleans, integers,
reals, strings) or geometric properties.
Geometries are assumed to be defined in a two-dimensional SRS and use
linear interopolation between coordinates.

There are a number of consequences that follow from these simplifications; for
example simple features only provide support for 'vector' data, nor are simple
features sufficiently expressive to model topology explicitly. It is intended to
redress some of these limitations in future versions of GML.

The 'simplified' geometry model is central to a number of specifications and
documents. Consequently it is available as a separate document at
http://www.opengis.org/geometry.html. The 'simplified' geometry document
should be read in conjunction with this document.

The 'Simple Features Geometry' document is being worked on in parallel
and the link will be fixed for final release (probably after adoption).

Copyright © 2000 OGC All Rights Reserved.

2. GML Overview
2.1. GML Profiles

This section discusses the approach to the encoding of OGC Simple Features in
XML. While this version of GML is concerned only with the XML encoding of
OGC Simple Features, future versions of the GML Specification will deal with
more elaborate OGC geometry models.

It is anticipated that GML will appeal to a broad class of users who will in turn
wish to employ a variety of XML technologies. GML is thus presented in the
form of three profiles as follows:

Profile 1: for those who wish to use a pure DTD based solution and are not
prepared to develop application specific DTD's, or wish data to be returned
against a fixed set of DTD's. This profile requires the use of GML Feature,
and GML Geometry DTD's.
Profile 2: for those who wish to use a pure DTD based solution but are
prepared to develop their own application specific DTD's, or are prepared to
accept data encoded with a referenced DTD. This profile requires the user
to create an application specific Feature DTD that uses the GML Geometry
DTD.

Page 8 of 85Geography Markup Language (GML) v1.0

Profile 3: for those who are prepared to make use of RDF and RDF Schema.
These users will typically require stronger control of the geospatial typing
framework (e.g. they must be able to relate a type name to an actual schema
definition). This profile requires the user to create an application specific
RDF Schema definition that uses the GML RDF Schema definition.
Alternatively Profile 3 users may employ DTD's which are derived in some
fashion from an RDF Schema or which can trace their elements to types
defined in an associated RDF Schema.

The three profiles are summarized in Figure 2.

Figure 2. The three profiles of GML

The arrows indicate a reference; the dotted arrows indicate an optional reference.
The light green boxes are pre-defined GML definitions. The light brown boxes
represent application specific definitions built according to the appropriate GML
profile rules. Finally the light purple boxes represent geospatial information
encoded using the appropriate GML profile.

GML is currently XML V1.0 compliant and for this reason uses

Page 9 of 85Geography Markup Language (GML) v1.0

Document Type Definitions (DTD's) rather than XML Schemas. When
the W3C's XML Schema Structures [XML SCHEMA] and Data Types
[XML DATATYPE] specifications have reached Recommendation
status, it is expected that this specification will be modified to include
use of XML Schemas.

GML has also been developed so as to be consistent with the W3C Resource
Description Format (RDF) Model and Syntax. GML geometry encoding can be
used to describe the geometric properties of any RDF resource such as its extent,
coverage or location. This enables GML to be used in a wide variety of
applications that are not inherently spatial in nature.

GML has also been developed to be consistent with the XML Namespaces
Recommendation ([XMLNAME]) . In GML Profile 2 and 3, XML Namespaces
can be used to distinguish the definitions of geographic features and properties
defined in application-specific domains from one another and from those defined
by OGC GML.

2.2 Properties and Classes in GML

GML is an XML encoding for geographic features. In order to correctly interpret
a GML data file it is necessary to understand the conceptual model that underlies
GML. A geographic feature in the OGC Abstract Specification is essentially a
named list of properties. Thus we can consider a property as a function that maps
a feature onto a property value. A property is characterised by the input feature
type and the type of the value that is returned.

For example, if the feature type House has a String property called address then
we might write:

address(House) --> String

If, in addition, the House feature type has a Polygon property called extentOf
then we could write:

extentOf(House) --> Polygon

More generally we might regard all the possible types of feature, together with all
types of property value (Strings, Integers, Polygons etc), as a set of classes. Then
we can characterise a property as a function with a domain (input) class and a
range (output) class.

We are not restricted to talking about features and their properties, we can also
talk about the properties of a geometry, since geometry defines a class. Consider a
geometry as a named list of properties, then the Polygon class might have an

Page 10 of 85Geography Markup Language (GML) v1.0

outerBoundaryIs property so that one could write:

outerBoundaryIs(Polygon) --> LinearRing

We are then able to compose two functions to obtain:

outerBoundaryIs(extentOf(House)) --> LinearRing

This approach can also be applied to items bigger than features. For example, a
FeatureCollection can be considered to have multiple named properties (albeit
all with the same name) that have as their values the Features in the collection.
Thus we can write:

featureMember(FeatureCollection) --> Feature

This forms the theoretical basis for GML. These ideas are stated more formally in
the W3C's Resource Description Format Schema (RDF Schema), which GML
Profile 3 uses directly. However GML Profiles 1 and 2 can be used without any
further consideration of RDF.

When we write GML tags we will distinguish between properties and classes.
Tags that represent instances of GML classes will start with an uppercase letter
(e.g. Polygon) while tags that represent properties will start with a lowercase letter
which subsequent embedded words starting with uppercase letters (e.g. extentOf).

2.3. Geography and Graphics

Simple Features are intended to describe the geography of entities in the real
world. As such, the encoding is not concerned with the visualization of
geographic features as in the drawing of maps. To draw a map with GML it is
necessary to transform the GML into a graphic format, either by direct rendering,
or preferably by transforming the XML encoded Simple Features into XML
encoded graphics elements such as SVG (Scalable Vector Graphics) [SVG], VML
(Vector Markup Language) [VML], or Virtual Reality Markup Language
[VRML]. Such a transformation can be done anywhere in the processing chain
between the data store and the visualization device.

GML can be considered in relation to POIX [POIX] GML is intended to model
the structure and relationships for real world geography. Although not connected
to GML, POIX is a much simplified model for position and direction information.
POIX data such as might be required in a Portable Digital Assistant (PDA) can be
generated from GML data.

GML encoding is intended to support both data storage and data transport.
Implementors may decide to store geographic information in GML, or they may

Page 11 of 85Geography Markup Language (GML) v1.0

decide to convert from some other storage format on demand and use GML only
for data transport.

GML is distinct from, and not dependent on any other graphical specification.
GML contains no information about how the features it encodes might appear.
Yet the visual rendering of a GML structure is dependent on the use of one of
several possible vector graphics formats. Transforming GML into SVG (Scalable
Vector Graphics), VML (Vector Graphics Markup Language), or VRML (Virtual
Reality Markup Language) is strongly recommended for data visualization.

Many different graphical symbolic representations might be generated from a
single GML file. These different representations could include both different
graphical formats and different symbolizations. A single GML file might thus
give rise to multiple types of maps.

In some applications there will be no graphical data display at all. Geographic
data might be simply be routed to a numerical model (e.g. a flood prediction
model) for processing. The output of this numerical model may also be
expressed in GML.

Coordinates of points in a GML-encoded structure are specified relative to a
named Spatial Reference System whose description can also encoded in GML. A
data server can supply data encoded in GML but not supply the description of the
Spatial Reference System, provided that a named reference to such a description
is included. Spatial Reference System descriptions are thus always connected to
the geographic data by means of a named reference.

Copyright © 2000 OGC All Rights Reserved.

3. Geometry

3.1. Overview

This section describes how GML encodes Geometry into XML. It also introduces
the GML Geometry DTD that supports this encoding. This is used explicitly by
GML Profiles 1 and 2 (the complete GML Geometry DTD is given in Appendix
A). However the XML encoding is also consistent with the RDF Schema
definition of Geometry used by GML Profile 3. Consequently the material in
this section should be read by all prospective GML users.

Conforming to the OGC Simple Features model, GML provides geometry
elements corresponding to the following Geometry Classes.

Point

Page 12 of 85Geography Markup Language (GML) v1.0

LineString
LinearRing
Polygon
MultiPoint
MultiLineString
MultiPolygon
GeometryCollection

In addition it provides a coordinates element for encoding coordinates, and a Box
element for defining extents. The following sections describe in detail the
encoding of each of these types of geometries.

3.2. coordinates Element

A coordinate list is a simple list of coordinate tuples. The separators used to parse
the coordinate list are encoded as attributes of the <coordinates> tag. In the
example below, the coordinates in a tuple are separated by commas, and the
successive tuples in the <coordinates> are separated by whitespace. A coordinate
list is not a geometry in the Simple Features sense, merely the coordinate content.
All tuples in the string must have the same dimension. A coordinate list is given
by the following grammar.

To find the coordinates of any Geometry class instance we introduce the
coordinate property. We think of this as a function on the Geometry class instance
that returns the coordinates as a coordinate list. The coordinate property has the
associated DTD fragment:

<decimal>::='.'

<D>:=[0-9]

<cs>::=","
<ts>::=whitespace (see XML 1.0 [XML]
<coordinate>::='-'<D>+(<decimal><D>+)?
<ctuple>::=<ctuple>|<coordinate><cs><ctuple>
<coordinatelist>::=<coordinatelist>|<ctuple><ts><coordinatelist>

Note that the value of decimal, cs, and ts are
determined by the GML encoding of <coordinates>.
The grammar is illustrated for default values
of decimal, cs and ts.

<!ELEMENT coordinates (#PCDATA) >
<!ATTLIST coordinates
 decimal CDATA #IMPLIED
 cs CDATA #IMPLIED
 ts CDATA #IMPLIED>

Page 13 of 85Geography Markup Language (GML) v1.0

Note that the coordinate value is given by <coordinate>='-'<D>+
(<decimal><D>+)?, hence we can encode coordinates as 1.45 or 1,45 etc.
depending on the values assigned to the <coordinates> attributes. Note that the
default for decimal is '.', for cs is ',' and for ts is whitespace.

Example

3.3. Point Element

The Point Element is used to encode instances of the Point geometry class. Each
Point Element encloses a single coordinates element, the latter containing one and
only one coordinate tuple. A Point geometry must specify a SRS in which its
coordinates are measured. This is referenced by name. Thus the Point element has
an srsName attribute. However this is defined to be optional. This is to allow the
Point element to be contained in other elements which might have already
specified a SRS. Similar considerations apply to the other geometry elements. The
Point element also has an optional ID attribute. The DTD fragment for the Point
element is as follows:

Example

3.4. Box Element

The Box Element is used to encode extents. Each Box Element encloses a single
coordinates element, the latter containing precisely two coordinate tuples. The
first of these is constructued from the minimum values measured along for all the
axes, and the second is constructed from the maximum values measured along all
the axes. The Box element also has a mandatory srsName, since it cannot be
contained by other Geometry classes. It has an optional ID attribute. The DTD
fragment for the Box element is as follows:

<coordinates decimal="." cs="," ts="whitespace">
 1.03,2.167 4.167,2.34 4.87,3.0 1.06,2.3
</coordinates>

<!ELEMENT Point (coordinates) >
<!ATTLIST Point
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED>

<Point srsName="EPSG:4326">
 <coordinates>
 56.1,0.45
 </coordinates>
</Point>

<!ELEMENT Box (coordinates) >
<!ATTLIST Box
 ID CDATA #IMPLIED

Page 14 of 85Geography Markup Language (GML) v1.0

Example

3.5. LineString Element

A Line String is a piece-wise linear path. The path is defined by a list of
coordinates that are then assumed to be connected by straight line segments. A
closed path is indicated by having coincident first and last coordinates. At least
two coordinates are required. The DTD fragment is as follows:

Example

3.6. LinearRing Element

A Linear Ring is a closed, simple piece-wise linear path. The path is defined by a
list of coordinates that are then assumed to be connected by straight line
segments. The last coordinate must be coincident with the first coordinate. At
least four coordinates are required (the three to define a ring and the fourth
duplicated one). Since a LinearRing is used in the construction of Polygons,
which define their own SRS, it has no need to define a SRS. The DTD fragment is
as follows:

Example

 srsName CDATA #REQUIRED>

<Box srsName="EPSG:4326">
 <coordinates>
 0.0,0.0 100.0,100.0
 </coordinates>
</Box>

<!ELEMENT LineString (coordinates) >
<!ATTLIST LineString
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >

<LineString srsName="EPSG:4326">
 <coordinates>
 0.0,0.0
 100.0,100.0
 </coordinates>
</LineString>

<!ELEMENT LinearRing (coordinates) >
<!ATTLIST LinearRing
 ID CDATA #IMPLIED >

<LinearRing>
 <coordinates>
 0.0,0.0

Page 15 of 85Geography Markup Language (GML) v1.0

3.7. Polygon Element

A Polygon is a connected surface. Any pair of points in the polygon can be
connected to one another by a path. The boundary of the Polygon is a set of
Linear Rings. We distinguish the outer (exterior) boundary and the inner (interior)
boundaries. The Linear Rings of the interior boundary cannot cross one another
and cannot be contained within one another. There must be at most one exterior
boundary and zero or more interior boundary elements. The ordering of Linear
Rings, whether they form clockwise or anti-clockwise paths, is not important. A
Polygon is encoded via the DTD fragment:

Example

 100.0,0.0
 50.0,100.0
 0.0,0.0
 </coordinates>
</LinearRing>

<!ELEMENT Polygon (outerBoundaryIs, innerBoundaryIs*) >
<!ATTLIST Polygon
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >

<!ELEMENT outerBoundaryIs (LinearRing) >

<!ELEMENT innerBoundaryIs (LinearRing) >

<Polygon srsName="EPSG:4326">
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>
 0.0,0.0 100.0,0.0 100.0,100.0 0.0,100.0
0.0,0.0
 </coordinates>
 </LinearRing>
 </outerBoundaryIs>
 <innerBoundaryIs>
 <LinearRing>
 <coordinates>
 10.0,10.0 10.0,40.0 40.0,40.0 40.0,10.0
10.0,10.0
 </coordinates>
 </LinearRing>
 </innerBoundaryIs>
 <innerBoundaryIs>
 <LinearRing>
 <coordinates>
 60.0,60.0 60.0,90.0 90.0,90.0 90.0,60.0
60.0,60.0

Page 16 of 85Geography Markup Language (GML) v1.0

3.8. GeometryCollection Element

The GeometryCollection element can be used as a container for arbitrary
geometry elements. A GeometryCollection might contain any of the geometry
elements such as Points, LineStrings, Polygons, MultiPoints, MultiLineStrings,
MultiPolygons and even other GeometryCollections. The GeometryCollection
Element has the property geometryMember which returns the next Geometry
element in the collection. The geometryMember element can contain any of the
GML geometry elements. It should be noted that the srsName attribute can ONLY
occur on the outermost GeometryCollection and must not appear as an attribute of
any of the enclosed geometry elements. The DTD fragment for the
GeometryCollection element is as follows:

Example

 </coordinates>
 </LinearRing>
 </innerBoundaryIs>
</Polygon>

<!ENTITY % GeometryClasses "(
 Point | LineString | Polygon |
 MultiPoint | MultiLineString | MultiPolygon |
 GeometryCollection)">

<!ELEMENT GeometryCollection (geometryMember)+>
<!ATTLIST GeometryCollection
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED>

<!ELEMENT geometryMember (%GeometryClasses;)>

<GeometryCollection srsName="EPSG:4326">
 <geometryMember>
 <Point>
 <coordinates>
 50.0,50.0
 </coordinates>
 </Point>
 </geometryMember>
 <geometryMember>
 <LineString>
 <coordinates>
 0.0,0.0 0.0,50.0 100.0,50.0 100.0,100.0
 </coordinates>
 </LineString>
 </geometryMember>
 <geometryMember>
 <Polygon>
 <outerBoundaryIs>

Page 17 of 85Geography Markup Language (GML) v1.0

3.9. MultiPointElement

A MultiPoint is a collection of Points. It should be noted that the srsName
attribute can ONLY occur on the enclosing MultiPoint and must not appear as an
attribute of any of the enclosed Points. The DTD fragment for encoding a
MultiPoint is as follows:

Example

3.10. MultiLineString

A MultiLineString is a collection of Line Strings. It should be noted that the
srsName attribute can ONLY occur on the enclosing MultiLineString and must
not appear as an attribute of any of the enclosed LineStrings. The DTD fragment
for MultiLineString is as follows:

 <LinearRing>
 <coordinates>
 0.0,0.0 100.0,0.0 50.0,100.0 0.0,0.0
 </coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </geometryMember>
</GeometryCollection>

<!ELEMENT MultiPoint (pointMember*) >
<!ATTLIST MultiPoint
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >

<!ELEMENT pointMember (Point) >

<MultiPoint srsName="EPSG:4326">
 <pointMember>
 <Point>
<coordinates>56.1,0.45</coordinates>
 </Point>
 </pointMember>
 <pointMember>
 <Point>
<coordinates>46.71,9.25</coordinates>
 </Point>
 </pointMember>
 <pointMember>
 <Point>
<coordinates>56.88,10.44</coordinates>
 </Point>
 </pointMember>
</MultiPoint >

Page 18 of 85Geography Markup Language (GML) v1.0

Example

3.11. MultiPolygon Element

A MultiPolygon is an OGC geometry. It should be noted that the srsName
attribute can ONLY occur on the enclosing MultiPolygon and must not appear as
an attribute of any of the enclosed Polygons. The GML MultiPolygon is encoded
using the following DTD fragment:

Example

<!ELEMENT MultiLineString (lineStringMember*) >
<!ATTLIST MultiLineString
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >

<!ELEMENT lineStringMember (LineString) >

<MultiLineString srsName="EPSG:4326">
 <lineStringMember>
 <LineString>
 <coordinates>56.1,0.45 67.23,0.67</coordinates>
 </LineString>
 </lineStringMember>
 <lineStringMember>
 <LineString>
 <coordinates>46.71,9.25
56.88,10.44</coordinates>
 </LineString>
 </lineStringMember>
 <lineStringMember>
 <LineString>
 <coordinates>324.1,219.7 0.45,0.56</coordinates>
 </LineString>
 </lineStringMember>
</MultiLineString>

<!ELEMENT MultiPolygon (polygonMember*) >
<!ATTLIST MultiPolygon
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >

<!ELEMENT polygonMember (Polygon) >

<MultiPolygon srsName="EPSG:4326">
 <polygonMember>
 <Polygon>
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>

Page 19 of 85Geography Markup Language (GML) v1.0

Copyright © 2000 OGC All Rights Reserved.

4. Profile 1 - Fixed Feature DTD
4.1 Overview

This section describes the simplest GML Profile. This is defined by three main
DTD's, namely:

GML Feature DTD (gmlfeature.dtd)
GML Geometry DTD (gmlgeometry.dtd)
GML Spatial Reference System DTD (ebcsdictionary.dtd)

Using these DTD's one can encode a wide variety of geospatial information. Note
that the Geometry DTD (gmlgeometry.dtd) and the Spatial Reference System
DTD are shared in common with Profile 2.

This profile is directed at users who do not wish to define their own feature DTD's
and who are not going to use RDF (Resource Description Format). For these
users, profile 1 provides a standard feature DTD.

4.2. Encoding Geometry

Geometry values are encoded using the GML Geometry DTD introduced in
Section 3.

 0.0,0.0 10.0,0.0 10.0,10.0 0.0,10.0
0.0,0.0
 </coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </polygonMember>
 <polygonMember>
 <Polygon>
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>
 40.0,40.0 50.0,40.0 50.0,50.0 40.0,50.0
40.0,40.0
 </coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </polygonMember>
</MultiPolygon>

Page 20 of 85Geography Markup Language (GML) v1.0

4.3. Encoding Geometry Properties

The GML Geometry DTD not only provides the definition to allow the encoding
of Geometry values, it also provides the defintions to encode geometry properties.
The encoding of a geographic feature (see next section) relies on these to 'tie'
geometry values to a feature. The GML Geometry DTD introduces two geometry
properties; boundedBy and geometryProperty.

The boundedBy element is used to indicate the extent of a geographic feature and
maps the Feature class onto the Box class. This is 'standard' name in GML and is
used by other profiles. The DTD fragment that defines boundedBy is given below
and comes from the GML Geometry DTD:

The geometricProperty element is used to give a geometric property to a feature.
It includes a mandatory typeName attribute to 'name' the geometricProperty.
There are no restrictions on the name of the property, nor does GML Profile 1
endorse any specific names for geometryProperties other than boundedBy. This
use of an attribute to name a property is peculiar to GML Profile 1 and substitutes
for more generic methods used in other profiles (for example providing the name
as an element in an application specific DTD in GML Profile 2). The
geometricProperty can contain any geometry class, and a feature can contain any
number of geometryProperties. The DTD fragment that defines
geometricProperty is given below and comes from the GML Feature DTD:

4.4. Encoding Geographic Features

This section describes the encoding of geographic features using GML Profile 1.
The material in this section is unique to Profile 1 and can be omitted by readers
who employ Profiles 2 or 3.

A geographic feature in the OGC Abstract Specification is a named list of
properties. In GML Profile 1 such a geographic feature is represented by a
<Feature> tag that encloses zero or more simple or geometry properties. A
simple property is any property that can be encoded using parsed character dta.
Currently GML Profile 1 restricts simple properties to booleans, integers, reals
and strings. More complex data types need to be encoded using a XML encoding
of their own and required an appropriately typed property element. Currently
GML Profile 1 only provides support for one type of complex data type, namely
Geometry, with the geometricProperty element.

<!ELEMENT boundedBy (Box) >

<!ELEMENT geometricProperty (%GeometryClasses;) >
<!ATTLIST geometricProperty
 typeName CDATA #REQUIRED >

Page 21 of 85Geography Markup Language (GML) v1.0

GML encourages the use of 'standard' user-friendly names by pre-defining them
(see boundedBy above). GML defines name and description elements as pre-
defined elements to hold string properties. These are used across all profiles and
are defined in the GML Geometry DTD by the following fragment:

Including these 'feature metadata' elements in the GML Geometry DTD
is a matter of convenience, since GML Profiles 1 and 2 are required to
include it.

These concepts are best explained using the Cambridge example we introduced in
Section 1. First consider how the two individual features are encoded.

River example

Road example

<!ELEMENT name (#PCDATA) >

<!ELEMENT description (#PCDATA) >

<Feature typeName="River">
 <name>
 Cam
 </name>
 <description>
 The river that runs through Cambridge.
 </description>
 <geometricProperty typeName="centerLineOf">
 <LineString srsName="EPSG:4326">
 <coordinates>
 0.0,50.0 100.0,50.0
 </coordinates>
 </LineString>
 </geometricProperty>
</Feature>

<Feature typeName="Road">
 <description>
 M11
 </description>
 <property typeName="classification">
 motorway
 </property>
 <property typeName="number" type="integer">
 11
 </property>
 <geometricProperty typeName="linearGeometry">
 <LineString srsName="EPSG:4326">
 <coordinates>

Page 22 of 85Geography Markup Language (GML) v1.0

In these examples we have geographic features with the type names 'River' and
'Road'. In the road example we have a geometry property called 'linearGeometry'
and a couple of simple properties that can be encoded as parsed character data; a
string property called 'classification' and an integer property called 'number'. Note
that GML Profile 1 does not provide a means to describe the feature type, instead
it relies on the name of the feature type. Similarly GML Profile 1 cannot describe
the type of simple properties, other than to specify its name and state its value
type. Currently GML Profile 1 only supports the value types:

boolean
integer
real
string

In these examples the values of the geometricProperty is a LineString. However
GML Profile 1 cannot provide an explicit connection between the typeName of
the geometricProperty and the type of the enclosed geometry element.

In GML Profile 1, GML data is stored or exchanged using feature collection
documents. A FeatureCollection is a collection of GML Profile 1 Features, as
described in the above example fragments. Elements in the FeatureCollection are
selected using the featureMember property which is interpreted as returning the
next Feature in the collection. A FeatureCollection thus consists of a set of
featureMember tags each enclosing Feature elements similar to the above
example.

The name of the containment relationship between FeatureCollection and Feature
is specified by the typeName attribute on the featureMember tag. It should be
noted that, in many ways, the featureMember and FeatureCollection tags should
be considered as different parts of the definition of a feature collection. Thus the
typeName attribute for all the featureMember tags in a FeatureCollection
should be the same. If a number of different typeNames are used, then each
would correspond to a different interpretation of the feature collection. This
would move the definition of the feature collection down from the
FeatureCollection class to the featureMember property. This not only defies the
intended distinction of class and property, it makes the interpretation of the
boundedBy property of the FeatureCollection ambiguous.

The full GML Feature DTD is:

 0.0,100.0 100.0,0.0
 </coordinates>
 </LineString>
 </geometricProperty>
</Feature>

Page 23 of 85Geography Markup Language (GML) v1.0

<?xml version="1.0" encoding="UTF-8"?>

<!--
==-
->
<!-- G e o g r a p h
y -->
<!-- M a r k u p -->
<!-- L a n g u a g
e -->
<!-- -->
<!-- (G M L) -->
<!-- -->
<!-- F E A T U R E D T
D -->
<!-- -->
<!-- Copyright (c) 2000 OGC All Rights
Reserved. -->
<!--
==
-->

<!-- The GML Feature DTD includes the GML Geometry DTD as an
external entity reference. --->

<!ENTITY % GMLGEOMETRYDTD SYSTEM "gmlgeometry.dtd">
%GMLGEOMETRYDTD;

<!-- A feature contains a set of properties (simple and/or
geometric). In addition a feature can optionally contain a
description. A feature must specify its feature type by name
(typeName). It may optionally provide an identifier for use
within its containing feature collection (identifier) -->

<!ELEMENT Feature (
 description?, name?, boundedBy?,
 property*, geometricProperty*)>

<!ATTLIST Feature
 typeName CDATA #REQUIRED
 identifier CDATA #IMPLIED >

<!-- A feature collection has the same definition as a feature,
but in addition a feature collection may contain
featureMembers. The boundedBy element is mandatory for feature
collections. -->

<!ELEMENT FeatureCollection (
 description?, name?, boundedBy,
 property*, geometricProperty*,
 featureMember*)>

Page 24 of 85Geography Markup Language (GML) v1.0

Download this GML Feature DTD (gmlfeature.dtd)

Note that the GML Feature DTD references the GML Geometry DTD. Note
further that, as written, the GML Geometry DTD (gmlgeometry.dtd) must reside
in the same directory as the GML Feature DTD (gmlfeature.dtd).

Note that a FeatureCollection element contains optional name and description
elements, a mandatory boundedBy element, zero or more property elements, zero
or more geometry elements and zero or more featureMembers. The property and
geometry property elements refer to the FeatureCollection as a whole. The Box
geometry element enclosed by the boundedBy element defines a maximum
bounding rectangle in the specified spatial reference system (srsName attribute of
the Box element) for all of the features in the feature collection.

Note that a Feature element contains optional name and description elements, an
optional boundedBy element defining a minimum bounding rectangle for the

<!ATTLIST FeatureCollection
 typeName CDATA #REQUIRED
 identifier CDATA #IMPLIED >

<!-- A featureMember can be a Feature or a FeatureCollection.
The name of the containment relationship between the containing
FeatureCollection and contained Features is specified by the
typeName attribute. -->

<!ELEMENT featureMember (Feature | FeatureCollection)>

<!ATTLIST featureMember
 typeName CDATA #REQUIRED >

<!-- Simple properties hold the property value as parsed
character data. The type of the value is specified by the type
attribute, which defaults to the 'string' type. The name of the
property is specified by the typeName attribute. -->

<!ELEMENT property (#PCDATA)>
<!ATTLIST property
 typeName CDATA #REQUIRED
 type (boolean | integer | real | string) "string" >

<!-- Geometric properties hold the property value as a
contained geometry element. The name of the property is
specified by the typeName attribute. -->

<!ELEMENT geometricProperty (%GeometryClasses;)>
<!ATTLIST geometricProperty
 typeName CDATA #REQUIRED >

Page 25 of 85Geography Markup Language (GML) v1.0

Feature, zero or more properties and zero or more geometry properties. The
properties (non-geometry properties) can have any type name but must have a
value type which is one of boolean, integer, real or string. The interpretation of
these value types is up to the application reading the GML Profile 1 data file. It is
anticipated that these will be mapped to XML Schema type definitions in a
subsequent revision of this specification.

The XML document below provides a complete encoding of the Cambridge
example using GML Profile 1. Note that the sections marked in light blue
represent the encoding of the feature collection itself. The encoding of the
individual features (light green) is the same as described earlier in this section.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE FeatureCollection SYSTEM "gmlfeature.dtd" >

<FeatureCollection typeName="CityModel">
 <boundedBy>
 <Box srsName="EPSG:4326">
 <coordinates>
 0.0,0.0 100.0,100.0
 </coordinates>
 </Box>
 </boundedBy>
 <property typeName="modelDate">
 Feb 2000.
 </property>
 <featureMember typeName="modelMember">
 <Feature typeName="River">
 <name>
 Cam
 </name>
 <description>
 The river that runs through Cambridge.
 </description>
 <geometricProperty typeName="centerLineOf">
 <LineString srsName="EPSG:4326">
 <coordinates>
 0.0,50.0 100.0,50.0
 </coordinates>
 </LineString>
 </geometricProperty>
 </Feature>
 </featureMember>
 <featureMember typeName="modelMember">

 <Feature typeName="Road">
 <description>
 M11
 </description>

Page 26 of 85Geography Markup Language (GML) v1.0

Download this example XML (example_profile1.xml)

The names in blue bold are those taken from the example and are 'extending' the
standard set of names defined by GML.

The XML document below provides a complete encoding of the Schools example
using GML Profile 1.

 <property typeName="classification">
 motorway
 </property>
 <property typeName="number" type="integer">
 11
 </property>
 <geometricProperty typeName="linearGeometry">
 <LineString srsName="EPSG:4326">
 <coordinates>
 0.0,100.0 100.0,0.0
 </coordinates>
 </LineString>
 </geometricProperty>
 </Feature>
 </featureMember>
</FeatureCollection>

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE FeatureCollection SYSTEM "gmlfeature.dtd" >

<FeatureCollection typeName="State">
 <boundedBy>
 <Box srsName="EPSG:4326">
 <coordinates>0.0,0.0 50.0,50.0</coordinates>
 </Box>
 </boundedBy>
 <featureMember typeName="featureMember">
 <FeatureCollection typeName="SchoolDistrict">
 <property
typeName="districtName">111</property>
 <boundedBy>
 <Box srsName="EPSG:4326">
 <coordinates>0.0,0.0
50.0,40.0</coordinates>
 </Box>
 </boundedBy>
 <geometricProperty typeName="extentOf">
 <Polygon srsName="EPSG:4326">
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>0.0,0.0 50.0,0.0

Page 27 of 85Geography Markup Language (GML) v1.0

50.0,40.0, 0.0,0.0</coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </geometricProperty>
 <featureMember typeName="districtMember">
 <Feature typeName="School">
 <property typeName="principalName">111-
1</property>
 <geometricProperty typeName="location">
 <Point srsName="EPSG:4326">
<coordinates>20.0,5.0</coordinates>
 </Point>
 </geometricProperty>
 </Feature>
 </featureMember>
 <featureMember typeName="districtMember">
 <Feature typeName="School">
 <property typeName="principalName">111-
2</property>
 <geometricProperty typeName="location">
 <Point srsName="EPSG:4326">
<coordinates>40.0,5.0</coordinates>
 </Point>
 </geometricProperty>
 </Feature>
 </featureMember>
 </FeatureCollection>
 </featureMember>
 <featureMember typeName="featureMember">
 <FeatureCollection typeName="SchoolDistrict">
 <property
typeName="districtName">222</property>
 <boundedBy>
 <Box srsName="EPSG:4326">
 <coordinates>0.0,0.0
40.0,50.0</coordinates>
 </Box>
 </boundedBy>
 <geometricProperty typeName="extentOf">
 <Polygon srsName="EPSG:4326">
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>0.0,0.0 40.0,50.0
0.0,50.0 0.0,0.0</coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </geometricProperty>
 <featureMember typeName="districtMember">
 <Feature typeName="School">

Page 28 of 85Geography Markup Language (GML) v1.0

4.5. Encoding Spatial Reference Systems (informative)

This section describes the encoding of Spatial Reference Systems, sometimes
referred to by the more general phrase 'Coordinate Systems', for the Profile 1
User.

The GML Profile 1 user should note that the optional srsName attribute on each
of the Geometry elements takes simply a string value. In GML Profile 1 the value
of this attribute is treated as a name only, and it is not required that this attribute
point to a spatial reference system dictionary entry. The GML Profile 1 user can
thus decide to ignore the encoding of Spatial Reference Systems altogether.

For the reader interested in building spatial reference system dictionaries please
see Section 7.0.

Copyright © 2000 OGC All Rights Reserved.

5. Profile 2 - User Defined Feature DTD
5.1. Overview

GML Profile 2 uses the same Geometry DTD (gmlgeometry.dtd) and Spatial

 <property typeName="principalName">222-
1</property>
 <geometricProperty typeName="location">
 <Point srsName="EPSG:4326">
<coordinates>5.0,20.0</coordinates>
 </Point>
 </geometricProperty>
 </Feature>
 </featureMember>
 <featureMember typeName="districtMember">
 <Feature typeName="College">
 <property typeName="principalName">222-
2</property>
 <geometryPropety
typeName="pointProperty">
 <Point srsName="EPSG:4326">
<coordinates>5.0,40.0</coordinates>
 </Point>
 </geometricProperty>
 </Feature>
 </featureMember>
 </FeatureCollection>
 </featureMember>
</FeatureCollection>

Page 29 of 85Geography Markup Language (GML) v1.0

Reference System DTD's as GML Profile 1. These are augmented with an
application specific Feature DTD:

Application Specific Feature DTD (e.g. example_profile2_schema.dtd)
GML Geometry DTD (gmlgeometry.dtd)
GML Spatial Reference System DTD (ebcsdictionary.dtd)

Unlike GML Profile 1, GML Profile 2 does not have a fixed GML Feature DTD.
Instead the user can construct their own application specific feature DTD
following normative rules of the GML specification.

The GML Geometry DTD provides the user with a predefined set of geometry
properties that they can use to describe geographic features by including them in
their application specific Feature DTD. These geometry properties include
common properties of geographic entities such as location and extent.

In addition GML Profile 2 also provides the user with some basic metadata for
describing geographic features including name and description.

5.2. Encoding Geometry

Geometry values are encoded using the GML Geometry DTD introduced in
Section 3.

5.3. Encoding Geometry Properties

This section describes the geometry properties that are provided as part of the
GML Geometry DTD. These properties are used by the GML Profile 2 users
when they construct their own application specific Feature DTD. The GML
Geometry DTD provides a number of 'descriptive names' for geometry properties.
These are encoded in the English language currently. Subsequent translations of
this specification into other languages will provide these geometry properties in
other languages as well using the xmllang attribute.

There are three levels of naming geometry properties in GML:

1. Formal names: these name geometry properties in a formal manner based
on the type of geometry allowed as a property value.

2. Descriptive names: these provide a set of GML endorsed synonyms for the
formal names. Although these offer no additional functionality, they
represent a more user-fiendly set of names. Later releases of GML will
provide more information on their use.

3. User-defined names: there is always a need to allow users their own choice
of names.

Page 30 of 85Geography Markup Language (GML) v1.0

GML Profile 2 introduces a number of formal names. These can be described
using the notation from Section 2.2:

Note that GML Profile 2 can make use of geometryProperty which is defined in
the GML Geometry DTD. This is different from the geometricProperty defined as
part of GML Feature DTD in GML Profile 1, although the role they play is
similar. Different names were required to avoid a name clash.

GML Profile 2 also introduces descriptive names for these properties dependent
on the type of geometry they map onto:

pointProperty: location, position, centerOf
lineStringProperty: centerLineOf, edgeOf
polygonProperty: extentOf, coverage
multiPointProperty: multiLocation, multiPosition, multiCenterOf
multiLineStringProperty: multiCenterLineOf, multiEdgeOf
multiPolygonProperty: multiExtentOf, multiCoverage

The precise semantics of these geometry properties (e.g. "What does position of
an object mean?" or "Are location and position synonymous?") is not currently
part of the GML specification, however, it is anticipated that these will be defined
in a subsequent release.

It should be noted that there are no inherent restrictions in the type of geometry
property a feature type may have. For example, the 'Radio Tower' feature type
could have a geometry property called 'location' that returns a Point geometry to
identify its location, and have another geometry property called 'extentOf' that
returns a Polygon geometry describing its physical structure. There is no
requirement or all these geometry return types to be the same.

5.3.1. Point Properties

geometryProperty(Feature) --> Geometry

boundedBy(Feature) --> Box

pointProperty(Feature) --> Point
lineStringProperty(Feature) --> LineString
polygonProperty(Feature) --> Polygon

muliPointProperty(Feature) --> MultiPoint
multiLineStringProperty(Feature) --> MultiLineString
multiPolygonProperty(Feature) --> MultiPolygon

geometryCollectionProperty(Feature) -->
GeometryCollection

Page 31 of 85Geography Markup Language (GML) v1.0

A point property is a geometry property that takes values in the class of Points. It
might be used for example to express the location of a feature. In GML Profile 2
the domain of point property is Feature.

GML defines the following explicit point properties which are sub-properties of
pointProperty:

centerOf
location
position

Example using descriptive name 'centerOf'

5.3.2. Line String Properties

A line string property is a geometry property that takes values in the class of
LineStrings. It might be used for example to express the centerline or edges of a
feature. In GML the domain of line string property is Feature.

GML defines the following explicit line string properties which are sub-properties
of lineStringProperty:

centerLineOf
edgeOf

Example using formal name 'lineStringProperty'

5.3.3. Polygon Properties

A polygon property is a geometry property that takes values in the class of
Polygons. It might be used for example to express the extent or coverage of a

<centerOf>
 <Point srsName="EPSG:4326">
 <coordinates>
 0.0,0.0
 </coordinates>
 </Point>
</centerOf>

<lineStringProperty>
 <LineString srsName="EPSG:4326">
 <coordinates>
 0.0,0.0 100.0,100.0
 </coordinates>
 </LineString>
</lineStringProperty>

Page 32 of 85Geography Markup Language (GML) v1.0

feature. In GML the domain of polygon property is Feature

GML defines the following explicit polygon properties which are sub-properties
of polygonProperty:

extentOf
coverage

Example using descriptive name 'extentOf'

5.3.4. Multi Geometry Properties

There are corresponding geometry properties defined for the 'multi-geometries'. A
complete definition of the GML Geometry DTD, which includes the geometry
property definitions, can be found in Appendix A.

5.4. Encoding Geographic Features

GML Profile 2 allows the user to construct an application specific Feature DTD.
Before looking at the rules that govern this DTD, it is illustrative to note how it
significantly improves the readability of the resulting feature encoding. Consider
the XML fragments from encoding our standard River and Road examples
(compare with Section 4.4):

River example

<extentOf>
 <Polygon srsName="ESPG:4326">
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>
 0.0,0.0 100.0,0.0 50.0,100.0 0.0,10.0
 </coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
</extentOf>

<River>
 <name>
 Cam
 </name>
 <description>
 The river that runs through Cambridge.
 </description>
<centerLineOf>
 <LineString srsName="EPSG:4326">
 <coordinates>

Page 33 of 85Geography Markup Language (GML) v1.0

Road example

The parts marked in blue bold indicate changes from the GML Profile 1
encoding. Note that this approach is more consistent with the XML Namespace
Specification [XMLNS] as we can more clearly write the road example fragment
with namespaces gml and camb (for Cambridge) as:

 0.0,50.0 100.0,50.0
 </coordinates>
 </LineString>
</centerLineOf>
</River>

<Road>
 <description>
 M11
 </description>
 <classification>
 motorway
 </classification>
<number>
 11
 </number>
<linearGeometry>
 <LineString srsName="EPSG:4326">
 <coordinates>
 0.0,100.0 100.0,0.0
 </coordinates>
 </LineString>
 </linearGeometry>
</Road>

<camb:Road>
 <gml:description>
 M11
 </gml:description>
 <camb:classification>
 motorway
 </camb:classification>
<camb:number>
 11
 </camb:number>
<camb:linearGeometry>
 <gml:LineString srsName="EPSG:4326">
 <gml:coordinates>
 0.0,100.0 100.0,0.0
 </gml:coordinates>
 </gml:LineString>
 </camb:linearGeometry>
</camb:Road>

Page 34 of 85Geography Markup Language (GML) v1.0

Addition of the namespace references makes it clear that description, LineString
etc. are defined in the gml namespace, while Road and number are defined in the
camb namespace.

The fragment from the application specific Feature DTD that defines the Road
and River feature types is given below:

(where the names in bold are those that come from the example and are not
defined by GML.)

The rules governing the defintion of application specific feature types are:

For each application specific feature type define a new element with the
appropriate name (in this example River and Road). These elements should
allow for the optional containment of name, description and boundedBy
elements (all of these are defined in the GML Geometry DTD).
For each application specific property define a new element with the
appropriate name (in this example classification, number and
linearGeometry). These elements should each be defined to contain the
appropriate data type. In this example the simple data types (string and
integer) are held as parsed character data. The geometry data type is held as
a geometry element of the correct type (in this example LineString) which
are defined in the GML Geometry DTD.
The application specific feature type elements should allow the containment
of the relevant property elements. These can be either GML defined
properties (for example centerLineOf) or application specific properties (for
example classification, linearGeometry). In this example the River element
can contain a centerLineOf element.

In addition it is necessary to define a featue collection that can contain the roads
and rivers. This is done with the DTD fragment:

<!ELEMENT River (
 description?, name?, boundedBy?,
 centerLineOf) >

<!ELEMENT Road (
 description?, name?, boundedBy?,
 classification, number, linearGeometry) >

<!ELEMENT classification (#PCDATA) >
<!ELEMENT number (#PCDATA) >

<!ELEMENT linearGeometry (LineString) >

<!ELEMENT CityModel (
 description?, name?, boundedBy,

Page 35 of 85Geography Markup Language (GML) v1.0

(where the names in bold are those that come from the example and are not
defined by GML.)

Since a feature collection is a type of feature, all the previous rules apply.
However there are additional rules governing the definition of the feature type
representing the feature collection:

The feature collection element (in this example CityModel) must contain a
boundedBy element. The Box contained by the boundedBy property defines
the spatial extent of all of the features in the feature collection.
The feature collection element references the contained features through an
appropriate 'member' property, which is defined as an element (in this
example modelMember). It is possible to enforce some cardinality
constraints on the number of features in the feature collection, since the
feature collection element must contain the member property element. In this
example a CityModel can contain zero or more modelMembers.
The member property element is defined to contain one of the application
specific feature types (in this example either a Road or a River).
There should only be one member property defined per feature collection.

The final rule reflects the fact that the feature collection and member property
elements define the FeatureCollection together. If more than one member
property element were allowed per feature collection element, the definition of the
collection effectively moves from the feature collection class to the member
property. This breaks the unified concept of a FeatureCollection which requires
both. For example a FeatureCollection has a boundedBy property. It should be
stressed that FeatureCollections are not designed to solve the general problem of
relationships between features. Clearly this level of encoding in XML can, at best,
describe a simple hierarchy of FeatureCollections and does not allow a Feature to
participate in more than one FeatureCollection. Perhaps more surprisingly, it does
not allow the description of 'structures' whereby a FeatureCollection like a 'State'
might be expected to refer to a single 'Capital' Feature and a set of 'County'
Features. In this example the set of 'County' Features is itself a FeatureCollection.

It is important to note that this level of flexibility poses some technical
problems. For example it is very difficult for an application to
mechanically determine the set of allowable feature types for features
in a feature collection. In those circumstances where there is no
requirement for a hierarchy of feature collections, the problem can be

 modelDate,
 modelMember*) >

<!ELEMENT modelDate (#PCDATA) >

<!ELEMENT modelMember (Road | River) >

Page 36 of 85Geography Markup Language (GML) v1.0

reduced by requiring a fixed name member property (for example
featureMember) and inspecting its definition.

Finally the application specific feature DTD must reference the GML Geometry
DTD, typically through an external entity reference. The full application specific
feature DTD for the Cambridge example is given below:

Download this example schema (example_profile2_schema.dtd)

Note that in this example it is assumed that the application specific Feature DTD
and the GML Geometry DTD are in the same directory. It also explains why it
was convenient to place the feature metadata elements (name and description) in
the GML Geometry DTD.

The following XML document encodes the Cambridge example using the
application specific Feature DTD defined above. The sections in light blue
represent the encoding of the feature collection, while those in light green
represent the individual feature encodings given earlier in this section. The parts
in blue bold represent differences with the GML Profile 1 encoding.

<?xml version="1.0" encoding="UTF-8"?>

<!ENTITY % GMLGEOMETRYDTD SYSTEM "gmlgeometry.dtd">
%GMLGEOMETRYDTD;

<!ELEMENT CityModel (
 description?, name?, boundedBy,
 modelDate,
 modelMember*) >

<!ELEMENT modelDate (#PCDATA) >

<!ELEMENT modelMember (Road | River) >

<!ELEMENT River (
 description?, name?, boundedBy?,
 centerLineOf) >

<!ELEMENT Road (
 description?, name?, boundedBy?,
 classification, number, linearGeometry) >

<!ELEMENT classification (#PCDATA) >
<!ELEMENT number (#PCDATA) >

<!ELEMENT linearGeometry (LineString) >

<?xml version="1.0" encoding="UTF-8"?>

Page 37 of 85Geography Markup Language (GML) v1.0

<!DOCTYPE CityModel SYSTEM "example_profile2_schema.dtd">

<CityModel>
 <boundedBy>
 <Box srsName="EPSG:4326">
 <coordinates>
 0.0,0.0 100.0,100.0
 </coordinates>
 </Box>
 </boundedBy>
<modelDate>
 Feb 2000.
</modelDate>
 <modelMember>
<River>
 <name>
 Cam
 </name>
 <description>
 The river that runs through Cambridge.
 </description>
 <centerLineOf>
 <LineString srsName="EPSG:4326">
 <coordinates>
 0.0,50.0 100.0,50.0
 </coordinates>
 </LineString>
 </centerLineOf>
</River>
 </modelMember>
 <modelMember>
<Road>
 <description>
 M11
 </description>
 <classification>
 motorway
 </classification>
<number>
 11
 </number>
<linearGeometry>
 <LineString srsName="EPSG:4326">
 <coordinates>
 0.0,100.0 100.0,0.0
 </coordinates>
 </LineString>
 </linearGeometry>
</Road>
 </modelMember>
</CityModel>

Page 38 of 85Geography Markup Language (GML) v1.0

Download this example XML (example_profile2_external_schema.xml)

Note that the application specific Feature DTD does not have to be external. The
following example uses an internal application specific Feature DTD and
references the GML geometry DTD through an external entity reference:

<?xml version="1.0" standalone="yes"?>

<!DOCTYPE FeatureCollection [

<!ENTITY % GMLGEOMETRYDTD SYSTEM "gmlgeometry.dtd">
%GMLGEOMETRYDTD;

<!ELEMENT FeatureCollection (
 description?, boundedBy,featureMember*)>

<!ELEMENT featureMember (Road)>

<!ELEMENT Road (description?,centerLineOf)>

]>

<FeatureCollection>
 <description>
 A couple of roads around Cambridge.
 </description>
 <boundedBy>
 <Box srsName="EPSG:4326">
 <coordinates>
 0.0,0.0 100.0,100.0
 </coordinates>
 </Box>
 </boundedBy>
 <featureMember>
 <Road>
 <description>
 M11
 </description>
 <centerLineOf>
 <LineString srsName="EPSG:4326">
 <coordinates>
 0.0,100.0 100.0,0.0
 </coordinates>
 </LineString>
 </centerLineOf>
 </Road>
 </featureMember>
 <featureMember>
 <Road>

Page 39 of 85Geography Markup Language (GML) v1.0

Download this example XML (example_profile2_internal_schema.xml)

The XML document below provides a complete encoding of the Schools example
using GML Profile 2 with an internal schema. Note that it is necessary to define
two member properties (featureMember and districtMember) to support the
feature collections classes (State and District). Furthermore note that it is possible
to require a SchoolDistrict to have at least one School or College within it. Names
in bold in the schema defintion are specific to the Schools example.

 <description>
 A14
 </description>
 <centerLineOf>
 <LineString srsName="EPSG:4326">
 <coordinates>
 0.0,50.0 0.0,100.0
 </coordinates>
 </LineString>
 </centerLineOf>
 </Road>
 </featureMember>
</FeatureCollection>

<?xml version="1.0" standalone="yes"?>

<!DOCTYPE State [

<!ENTITY % GMLGEOMETRYDTD SYSTEM "gmlgeometry.dtd">
%GMLGEOMETRYDTD;

<!ELEMENT State (name?, description?, boundedBy,
 featureMember*)>
<!ELEMENT featureMember(SchoolDistrict)>
<!ELEMENT SchoolDistrict (name?, description?,
boundedBy,
 districtName, extentOf, districtMember+)>
<!ELEMENT districtName (#PCDATA)>
<!ELEMENT districtMember (College | School)>
<!ELEMENT School (name?, description?, boundedBy?,
 principalName, location)>
<!ELEMENT College (name?, description?, boundedBy?,
 principalName, pointProperty)>
<!ELEMENT principalName (#PCDATA)>

]>

<State>
 <boundedBy>
 <Box srsName="EPSG:4326">

Page 40 of 85Geography Markup Language (GML) v1.0

 <coordinates>0.0,0.0 50.0,50.0</coordinates>
 </Box>
 </boundedBy>
 <featureMember>
 <SchoolDistrict>
<districtName>111</districtName>
 <boundedBy>
 <Box srsName="EPSG:4326">
 <coordinates>0.0,0.0
50.0,40.0</coordinates>
 </Box>
 </boundedBy>
 <extentOf>
 <Polygon srsName="EPSG:4326">
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>0.0,0.0 50.0,0.0
50.0,40.0, 0.0,0.0</coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </extentOf>
 <districtMember>
 <School>
<principalName>111-1</principalName>
 <location>
 <Point srsName="EPSG:4326">
<coordinates>20.0,5.0</coordinates>
 </Point>
 </location>
 </School>
 </districtMember>
 <districtMember>
 <School>
<principalName>111-2</principalName>
 <location>
 <Point srsName="EPSG:4326">
<coordinates>40.0,5.0</coordinates>
 </Point>
 </location>
 </School>
 </districtMember>
 </SchoolDistrict>
 </featureMember>
 <featureMember>
 <SchoolDistrict>
<districtName>222</districtName>
 <boundedBy>
 <Box srsName="EPSG:4326">
 <coordinates>0.0,0.0
40.0,50.0</coordinates>

Page 41 of 85Geography Markup Language (GML) v1.0

5.5. Encoding Spatial Reference Systems (informative)

This section describes the encoding of Spatial Reference Systems, sometimes
referred to by the more general phrase 'Coordinate Systems', for the Profile 2
User.

The GML Profile 2 user should note that the optional srsName attribute on each
of the Geometry elements takes simply a string value. In GML Profile 2 the value
of this attribute is treated as a name only, and it is not required that this attribute
point to a spatial reference system dictionary entry. The GML Profile 2 user can
thus decide to ignore the encoding of Spatial Reference Systems altogether.

For the reader interested in building spatial reference system dictionaries please

 </Box>
 </boundedBy>
 <extentOf>
 <Polygon srsName="EPSG:4326">
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>0.0,0.0 40.0,50.0
0.0,50.0 0.0,0.0</coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </extentOf>
 <districtMember>
 <School>
<principalName>222-1</principalName>
 <location>
 <Point srsName="EPSG:4326">
<coordinates>5.0,20.0</coordinates>
 </Point>
 </location>
 </School>
 </districtMember>
 <districtMember>
 <College>
<principalName>222-2</principalName>
 <pointProperty>
 <Point srsName="EPSG:4326">
<coordinates>5.0,40.0</coordinates>
 </Point>
 </pointProperty>
 </College>
 </districtMember>
 </SchoolDistrict>
 </featureMember>
</State>

Page 42 of 85Geography Markup Language (GML) v1.0

see Section 7.0.

Copyright © 2000 OGC All Rights Reserved.

6. Profile 3 - RDF Foundations of GML

6.1. Overview

One of the most important challenges facing the users of geospatial information is
to understand the meaning of the data. Much of this meaning was captured in
legacy systems by encoding it in non-standard ways within the structure of the
data records. A particular data layer, for example, might within a particular GIS
environment be used "most of the time" to represent roads and highways. In
another system the same roads might be represented by particular numeric feature
codes. Translating between such systems is often problematic because the
inherent meaning of the data is not captured as part of the data itself but rather in
terms of a set of conventions or rules of practice. The result is that data
translation, when it happens, must then be accompanied by a painstaking manual
process to restore the meaning in the new environment. Knowledge of these and
similar problems has been a major motivating factor in the development of GML.

One of the objectives of GML has been to provide a means of encoding geospatial
information (e.g. feature types) in such a way that the types employed can be
referenced to an external typing framework. Given a GML class instance such as
a <Road> (as in GML Profile 2) it should be possible to look up the definition of
the class Road in a suitable namespace. Furthermore it should be possible to build
feature type definitions from other feature and geometry type definitions.

In the spatial world there is of course no possibility of universal agreement on a
set of feature types. The notion of road, for example, typically differs from one
geographic region to another. Even within the same geographic region the notion
of road required by an ambulance driver may be radically different than that of an
insurance investigator, even when they are referring to the same road in the real
world. We thus require a means not only to relate different spatial concepts to
one another, but also to be able to distribute the description of these concepts in
an organized manner.

GML Profile 1 provides an easy to learn XML based encoding for geospatial
information. It does not, however, provide a means to relate feature type names
to the actual type definitions. This same shortcoming applies also to GML Profile
2. While the use of namespaces in Profile 2 can clearly discriminate what might
be ambiguous typeName values in Profile 1, (we can for example write
<gc:Road> and <usgs:Road> to discriminate two different road definitions) there

Page 43 of 85Geography Markup Language (GML) v1.0

is no requirement even with Profile 2 that there is a type definition at the
referenced namespace "location".

To resolve these problems GML has been built on the W3C Resource Description
Format (RDF). Doing so provides the developer with both a third Profile (GML
Profile 3) for encoding geospatial information using RDF, and a formal set of
definitions (using RDF Schema) for GML itself.

To make this clearer we refer the reader to Figure 2. With the exception of the
GML Feature DTD in GML Profile 1, all of the DTD's used in Profile 2 can be
mechanically generated from the GML RDF Schema definitions.

6.2. Encoding Geometry

This section discusses the RDF Schema definitions for the GML Geometry
Classes. Note that these definitions are entirely consistent with the GML
Geometry DTD of GML Profiles 1 and 2. Consequently this Section does not
include examples of geometry class encodings. For these the reader is referred
back to Section 3. This Section provides an alternative basis for the encodings
using RDF Schema rather than a DTD. It might be noted that sections of the GML
Geometry DTD can be mechanically generated from the RDF Schema definitions
for the GML Geometry Classes.

6.2.1. Geometry Class

We define an abstract class from which all geometry classes can sub-class. All
geometries have a Spatial Reference System, identified by name. The RDF
Schema definition for the Geometry class is as follows:

<rdfs:Class rdf:ID = "Geometry" >
 <rdfs:comment>

Geometry is the root class of the hierarchy. Geometry is an
abstract (non-instantiable) class. All instantiable
geometry classes referenced in this specification are
defined so that valid instances of a geometry class are
topologically closed (i.e. all defined geometries include
their boundary).

 </rdfs:comment>
</rdfs:Class>
<rdf:Property ID = "srsName" >
 <rdfs:domain rdf:resource = "#Geometry" />
 <rdfs:range rdf:resource =
"http://www.w3.org/TR/1999/PR-rdf-schema-
19990303#Literal" />
</rdf:Property>

Page 44 of 85Geography Markup Language (GML) v1.0

6.2.2. Point Class

The Point class is defined in RDF Schema as:

The Point class is capable of referencing coordinate data using the coordinates
property defined below.

6.2.2. Box Class

The Box class is defined in RDF Schema as:

The Box class is capable of referencing coordinate data using the coordinates
property defined below.

6.2.4. Curve Class

The Curve class is defined in RDF Schema as:

The Curve class is capable of referencing coordinate data using the coordinates
property defined below.

6.2.5. Line String Class

The LineString class is defined in RDF Schema as:

<rdfs:Class rdf:ID = "Point" >
 <rdfs:subClassOf rdf:resource = "#Geometry" />
</rdfs:Class>

<rdfs:Class rdf:ID = "Box" >
 <rdfs:subClassOf rdf:resource = "#Geometry" />
</rdfs:Class>

<rdfs:Class rdf:ID = "Curve" >
 <rdfs:subClassOf rdf:resource = "#Geometry" />
 <rdfs:comment>

A Curve is a one-dimensional geometric object usually
stored as a sequence of points, with the subtype of Curve
specifying the form of the interpolation between points.
This specification defines only one subclass of Curve,
LineString, which uses linear interpolation between
points. This is the only 1-D Geometry class which appears
in the GML DTD.

 </rdfs:comment>
</rdfs:Class>

<rdfs:Class rdf:ID = "LineString" >

Page 45 of 85Geography Markup Language (GML) v1.0

The LineString class is capable of referencing coordinate data using the
coordinates property (defined below) since it sub-classes the Curve class.

6.2.6. Linear Ring Class

The LinearRing class is defined in RDF Schema as:

The LinearRing class is capable of referencing coordinate data using the
coordinates property (defined below) since it sub-classes the Curve class.

6.2.7. Polygon Class

The Polygon class is defined as a subclass of GML Geometry on which are
defined two properties, namely outerBoundaryIs and innerBoundaryIs. These
two properties return respectively elements of the inner and outer boundary of the
polygon. These are, in trun, represented by LinearRings. The outer boundary
property can appear only once as a property of a polygon class instance. The
inner boundary property can appear zero or more times on a given polygon class
instance. The RDF Schema definition for the Polygon class is thus:

 <rdfs:subClassOf rdf:resource = "#Curve" />
 <rdfs:comment>

Lines, LineStrings and LinearRings are all Curves. A Line
String is a Curve with linear interpolation between points.
Each consecutive pair of points defines a line segment. A
Line is a LineString with exactly 2 points. In GML the
points of a LineString are defined by a coordinate list and
are not defined by GML Points.

 </rdfs:comment>
</rdfs:Class>

<rdfs:Class rdf:ID = "LinearRing" >
 <rdfs:subClassOf rdf:resource = "#Curve" />
 <rdfs:comment>

A LinearRing is a LineString that is both closed and
simple. In GML, the points of a LinearRing are defined by
a coordinate list and are not defined by GML Points.

 </rdfs:comment>
</rdfs:Class>

<rdfs:Class rdf:ID = "Surface" >
 <rdfs:subClassOf rdf:resource = "#Geometry" />
</rdfs:Class>

Page 46 of 85Geography Markup Language (GML) v1.0

6.2.8. Geometry Collection Class

The GeometryCollection class has a geometryMember property that returns the
next Geometry in the GeometryCollection. The GeometryCollection class is
defined in RDF Schema as:

<rdfs:Class rdf:ID = "Polygon" >
 <rdfs:subClassOf rdf:resource = "#Surface" />
</rdfs:Class>

<rdf:Property ID = "outerBoundaryIs" >
 <rdfs:range resource = "#LinearRing" />
 <rdfs:domain resource = "#Polygon" />
</rdf:Property>

<rdf:Property ID = "innerBoundaryIs" >
 <rdfs:range resource = "#LinearRing" />
 <rdfs:domain resource = "#Polygon" />
</rdf:Property>

<rdfs:Class rdf:ID="GeometryCollection">
 <rdfs:subClassOf rdf:resource="#Geometry"/>
 <rdfs:subClassOf rdf:resource =
"http://www.w3.org/TR/1999/PR-rdf-schema-
19990303#Container" />
 <rdfs:comment>

A GeometryCollection is a geometry that is a collection of
1 or more geometries. All the elements in a
GeometryCollection must be in the same Spatial Reference
System. This is also the Spatial Reference System for the
GeometryCollection. GeometryCollection places no other
constraints on its elements. Subclasses of
GeometryCollection may restrict membership based on
dimension and may also place other constraints on the
degree of spatial overlap between elements.

 </rdfs:comment>
</rdfs:Class>
<rdf:Property ID = "geometryMember">
 <rdfs:range rdf:resource = "#Geometry" />
 <rdfs:domain rdf:resource = "#GeometryCollection" />
 <rdfs:comment>

Selects next member, a Geometry, in the
GeometryCollection.
(Plays same role as the li tag in rdf).

 </rdfs:comment>

Page 47 of 85Geography Markup Language (GML) v1.0

6.2.9. MultiPoint Class

The MultiPoint class is defined in RDF Schema as:

6.2.10. MultiLineString Class

The MultiLineString class is defined in RDF Schema as:

</rdf:Property

<rdfs:Class rdf:ID = "MultiPoint">
 <rdfs:subClassOf rdf:resource = "#GeometryCollection" />
 <rdfs:comment>

A MultiPoint is a 0 dimensional geometric collection. The
elements of a MultiPoint are restricted to Points. The
points are not connected or ordered. A MultiPoint is
simple if no two Points in the MultiPoint are equal (have
identical coordinate values). The boundary of a MultiPoint
is the empty set.

 </rdfs:comment>
</rdfs:Class>
<rdf:Property ID="pointMember">
 <rdfs:range rdf:resource="#Point"/>
 <rdfs:domain rdf:resource="#MultiPoint"/>
 <rdfs:comment>

Returns the next Point in a MultiPoint.

 </rdfs:comment>
</rdf:Property>

<rdfs:Class rdf:ID = "MultiCurve">
 <rdfs:subClassOf rdf:resource = "#GeometryCollection" />
 <rdfs:comment>

A MultiCurve is a sub-class of GeometryCollection.

 </rdfs:comment>
</rdfs:Class>

<rdfs:Class rdf:ID = "MultiLineString">
 <rdfs:subClassOf rdf:resource = "#MultiCurve" />
 <rdfs:comment>

A MultiLineString is a MultiCurve whose elements are
LineStrings.

Page 48 of 85Geography Markup Language (GML) v1.0

6.2.11. MultiPolygon Class

The MultiPolygon class is defined in RDF Schema as:

6.2.12. coordinates Property

In order to assign coordinates to geometry class instances GML provides the

 </rdfs:comment>
</rdfs:Class>

<rdf:Property ID = "lineStringMember">
 <rdfs:range rdf:resource = "#LineString" />
 <rdfs:domain rdf:resource = "#MultiLineString" />
 <rdfs:comment>

Returns the next LineString in a MultiLineString.

 </rdfs:comment>
</rdf:Property>

<rdfs:Class rdf:ID = "MultiSurface">
 <rdfs:subClassOf rdf:resource = "#GeometryCollection" />
 <rdfs:comment>

A MultiSurface is a sub-class of GeometryCollection.

 </rdfs:comment>
</rdfs:Class>
<rdfs:Class rdf:ID = "MultiPolygon">
 <rdfs:subClassOf rdf:resource = "#MultiSurface" />
 <rdfs:comment>

A MultiPolygon is a MultiSurface whose elements are
Polygons.

 </rdfs:comment>
</rdfs:Class>
<rdf:Property ID = "polygonMember">
 <rdfs:range rdf:resource = "#Polygon" />
 <rdfs:domain rdf:resource = "#MultiPolygon" />
 <rdfs:comment>

Returns the next Polygon in a multiPolygon.

 </rdfs:comment>
</rdf:Property>

Page 49 of 85Geography Markup Language (GML) v1.0

coordinates property. In this release the coordinates property has a range of
Literal. In a subsequent revision this is expected to be an XML Schema
representation of coordinate array. The coordinates property is defined in RDF
Schema as:

Note that this definition also permits the Point, Box, LineString and LinearRing
classes to have a coordinates property.

6.3. Encoding Geometry Properties

This section discusses the RDF Schema definitions for the GML Geometry
Properties. Note that these definitions are entirely consistent with the GML
Geometry DTD of GML Profile 2. Consequently this Section does not include
examples of geometry class encodings. For these the reader is referred back to
Section 5.3. This Section provides an alternative basis for the encodings using
RDF Schema rather than a DTD. It might be noted that sections of the GML
Geometry DTD can be mechanically generated from the RDF Schema definitions
for the GML Geometry Properties.

6.3.1 Geometry Properties

We distinguish geometry properties from geometry classes. A geometry property
is a function on a Feature that takes it values in a corresponding geometry class.
The domain of all of the geometry properties is Feature (see the next Section for a
more complete definition of Feature using RDF Schema).

The relationships between the Feature and Geometry classes and the
geometryProperty property are defined using RDF Schema as:

<rdf:Property ID = "coordinates" >
 <rdfs:domain rdf:resource = "#Curve" />
 <rdfs:domain rdf:resource = "#Box" />
 <rdfs:domain rdf:resource = "#Point" />
 <rdfs:range rdf:resource =
"http://www.w3.org/TR/1999/PR-rdf-schema-
19990303#Literal" />
</rdf:Property>

<rdfs:Class rdf:ID = "Feature">
 <rdfs:comment>

Abstract feature class. Features can take zero or more
geometry properties

 </rdfs:comment>
</rdfs:Class>

Page 50 of 85Geography Markup Language (GML) v1.0

This says that any Feature can have a geometryProperty whose value is a
Geometry. However if one wishes to be more specific about either the type of
geometry that can be held as a property or the naming of the property then one
can create sub-properties of geometryProperty.

6.3.2 Point Properties

A Point property is a special case of a Geometry property where the range of the
property is restricted to a sub-class of Geometry, namely a Point. When defining
this using RDF Schema it is not necessary to respecify the domain since that is
inherited from geometryProperty. Thus the pointProperty is defined in GML
using RDF Schema as:

This just says that pointProperty is a geometryProperty (via subPropertyOf)
whose range is Point and whose domain is Feature.

GML defines three additional sub-properties of pointProperty, namely:

position
location
centerOf

These just represent additional descriptive names that mean the same as

<rdf:Property ID = "geometryProperty">
 <rdfs:range resource = "#Geometry" />
 <rdfs:domain resource = "#Feature" />
 <rdfs:comment>

Abstract geometry property of a feature.

 </rdfs:comment>
</rdf:Property>

<rdf:Property ID = "pointProperty">
 <rdfs:range rdf:resource= "#Point" />
 <rdfs:subPropertyOf rdf:resource =
"#geometryProperty" />
 <rdfs:comment>

Abstract property function that returns a point of the
selected feature. The coordinate values of the point if
present are to be interpreted in the coordinate system
associated with the pointproperty.

 </rdfs:comment>
</rdf:Property>

Page 51 of 85Geography Markup Language (GML) v1.0

pointProperty. These names might be considered more suitable for everyday
usage. This is achieved in RDF Schema by creating a sub-property with the
relevant name, no other details are required since they are inherited. The complete
set of definitions is given in Appendix C, but the basic RDF Schema definition of
the sub-properties of pointProperty are given below:

6.3.3. LineString Properties

A linestring property is a geometryProperty that takes values in the class of
LineStrings. It might be used for example to express the centerline or edges of a
feature. The definition of the lineStringProperty in GML is as follows:

GML provides two additional lineStringProperties:

centerLineOf
edgeOf

6.3.4. Polygon Properties

A polygon property is a geometryProperty that takes values in the class of
Polygons. It might be used for example to express the extent or coverage of a
feature. The definition of the polygonProperty in GML is as follows:

<rdf:Property ID = "position">
 <rdfs:subPropertyOf rdf:resource = "#pointProperty" />
</rdf:Property>

<rdf:Property ID = "location">
 <rdfs:subPropertyOf rdf:resource = "#pointProperty" />
</rdf:Property>

<rdf:Property ID = "centerOf">
 <rdfs:subPropertyOf rdf:resource = "#pointProperty" />
</rdf:Property>

<rdf:Property ID = "lineStringProperty">
 <rdfs:range rdf:resource = "#LineString" />
 <rdfs:subPropertyOf rdf:resource =
"#geometryProperty" />
 <rdfs:comment>

Abstract property function that returns a linestring of the
selected feature. The coordinate values of the linestring
if present are to be interpreted in the coordinate system
associated with the linestringproperty.

 </rdfs:comment>
</rdf:Property>

Page 52 of 85Geography Markup Language (GML) v1.0

GML provides two additional polygonProperties:

extentOf
coverage

6.3.5. MultiPoint Properties

A MultiPoint property is a geometryProperty which takes values in the class of
MultiPoints. It might be used for example to express the extent or coverage of a
discrete point feature. The definition of multiPointProperty in GML is as
follows:

Several multiPoint properties are provided in GML. Note that these are like the
pointProperties with the prefix multi. This is required in GML since RDF does
not support polymorphism. This may be revised in a future release. The currently
supported multiPointProperties are:

multiLocation
multiCenterOf
multiPosition

<rdf:Property ID = "polygonProperty">
 <rdfs:range rdf:resource = "#Polygon" />
 <rdfs:subPropertyOf rdf:resource =
"#geometryProperty" />
 <rdfs:comment>

Abstract property function that returns a polygon of the
selected feature. The coordinate values of the polygon if
present are to be interpreted in the coordinate system
associated with the polygonproperty.

 </rdfs:comment>
</rdf:Property>

<rdf:Property ID = "multiPointProperty">
 <rdfs:range rdf:resource = "#MultiPoint" />
 <rdfs:subPropertyOf rdf:resource =
"#geometryProperty" />
 <rdfs:comment>

Abstract property function that returns a multipoint of the
selected feature.

 </rdfs:comment>
</rdf:Property>

Page 53 of 85Geography Markup Language (GML) v1.0

6.3.6. MultiLineString Properties

A MultiLineString property is a geometryProperty which takes values in the class
of MultiLines. It might be used for example to express the edges of a complex
feature. The definition of multiLineStringProperty in GML is as follows:

GML provides two additional multiLineStringProperties:

multiCenterLineOf
multiEdgeOf.

6.3.7. MultiPolygon Properties

A multiPolygonProperty is a geometryProperty which takes values in the class
of MultiPolygons. It might be used for example to express the extent of a
complex feature. The definition of multiPolygonProperty in GML is as follows:

GML provides two additional multiPolygonProperties:

multiExtentOf
multiCoverage

6.4. Encoding Geographic Features

<rdf:Property ID = "multiLineStringProperty">
 <rdfs:range rdf:resource = "#MultiLineString" />
 <rdfs:subPropertyOf rdf:resource =
"#geometryProperty" />
 <rdfs:comment>

Abstract property function that returns a multilinestring
of the selected feature.

 </rdfs:comment>
</rdf:Property>

<rdf:Property ID = "multiPolygonProperty">
 <rdfs:range rdf:resource = "#MultiPolygon" />
 <rdfs:subPropertyOf rdf:resource =
"#geometryProperty" />
 <rdfs:comment>

Abstract property function that returns a MultiPolygon of
the selected feature.

 </rdfs:comment>
</rdf:Property>

Page 54 of 85Geography Markup Language (GML) v1.0

This section describes the RDF Schema classes for GML Features and
FeaturCollections. We note that the Profile 3 developer can use these classes to
derive additional feature types or geometry classes in their application namespace.

The Feature class is defined in RDF Schema as:

This says a that a Feature may have name and description simple properties
whose range are Literal. In addition a Feature may have a boundedBy geometry
property whose range is a Box.

In GML Features are typically grouped into FeatureCollections. While there is no
set construct in RDF Schema we introduce the FeatureCollection class in GML
using the following RDF Schema.

<rdfs:Class rdf:ID = "Feature">
</rdfs:Class>

<rdf:Property ID = "name" >
 <rdfs:range rdf:resource =
"http://www.w3.org/TR/1999/PR-rdf-schema-
19990303#Literal" />
 <rdfs:domain rdf:resource = "#Feature" />
</rdf:Property>

<rdf:Property ID = "description" >
 <rdfs:range rdf:resource =
"http://www.w3.org/TR/1999/PR-rdf-schema-
19990303#Literal" />
 <rdfs:domain rdf:resource = "#Feature" />
</rdf:Property>

<rdf:Property ID = "boundedBy" >
 <rdfs:range rdf:resource = "#Box"/ >
 <rdfs:domain rdf:resource = "#Feature" />
</rdf:Property>

<rdfs:Class rdf:ID="FeatureCollection">
 <rdfs:subClassOf rdf:resource="#Feature"/>
 <rdfs:comment>

A collection (set) of Features.

 </rdfs:comment>
</rdfs:Class>
<rdf:Property ID = "featureMember" >
 <rdfs:range rdf:resource = "#Feature" />
 <rdfs:domain rdf:resource = "#FeatureCollection" />
 <rdfs:comment>

Page 55 of 85Geography Markup Language (GML) v1.0

This says that a FeatureCollection is a sub-class of Feature and thus inherits name,
description and boundedBy properties. In addition it has a featureMember
property which is to used to select Features from the FeatureCollection.

Note that we do NOT define a Property Class to encode simple properties since
this is already part of RDF. Using RDF we can define any number of properties
for any RDF Class. We have merely added a geometryProperty with the domain
Feature (see previous Section on 'Encoding Geometry properties'). Application
specific RDF Schema defintions are then expected to subclass from Feature
(using RDF Schema subClassOf) to create application specific feature types such
as Road, Building or River. Such derived subclasses can then automatically use
the geometryProperty since it is inherited from Feature.

GML Profile 3 provides the ability to add new feature and geometry types in a
clearer and more formal manner than is possible with GML Profile 1 or Profile 2.
This is illustrated by considering the Cambridge example. The application
specific RDF Schema for the Cambridge example is as follows:

Function which returns next Feature in a FeatureCollection.

 </rdfs:comment>
</rdf:Property>

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF xml:lang="en"
 xmlns:gml = "http://www.opengis.org/gml#"
 xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-
ns#"
 xmlns:rdfs = "http://www.w3.org/TR/1999/PR-rdf-schema-
19990303#">

 <rdfs:Class rdf:ID = "CityModel" >
 <rdfs:subClassOf rdf:resource =
"http://www.opengis.org/gml#FeatureCollection" />
 </rdfs:Class>

 <rdfs:Class rdf:ID = "River" >
 <rdfs:subClassOf rdf:resource =
"http://www.opengis.org/gml#Feature" />
 </rdfs:Class>

 <rdfs:Class rdf:ID = "Road" >
 <rdfs:subClassOf rdf:resource =
"http://www.opengis.org/gml#Feature" />

Page 56 of 85Geography Markup Language (GML) v1.0

Download this example schema (example_profile3_schema.rdfs)

where the names in blue bold are specific to the example and not already defined
by GML. Using this RDF Schema definition it is possible to encode the
Cambridge example as a set of RDF records, as show below:

 </rdfs:Class>

 <rdf:Property ID = "modelDate" >
 <rdfs:domain rdf:resource = "#CityModel" />
 <rdfs:range rdf:resource =
"http://www.w3.org/TR/1999/PR-rdf-schema-
19990303#Literal" />
 </rdf:Property>

 <rdf:Property ID = "classification" >
 <rdfs:domain rdf:resource = "#Road" />
 <rdfs:range rdf:resource =
"http://www.w3.org/TR/1999/PR-rdf-schema-
19990303#Literal" />
 </rdf:Property>

 <rdf:Property ID = "number" >
 <rdfs:domain rdf:resource = "#Road" />
 <rdfs:range rdf:resource =
"http://www.w3.org/TR/1999/PR-rdf-schema-
19990303#Literal" />
 </rdf:Property>

 <rdf:Property ID = "linearGeometry" >
 <rdfs:domain rdf:resource = "#Road" />
 <rdfs:subPropertyOf rdf:resource =
"http://www.opengis.org/gml#lineStringProperty" />
 </rdf:Property>

 <rdf:Property ID = "modelMember" >
 <rdfs:domain rdf:resource = "#CityModel" />
 <rdfs:range rdf:resource = "#Road" />
 <rdfs:range rdf:resource = "#River" />
 <rdfs:subPropertyOf rdf:resource =
"http://www.opengis.org/gml#featureMember" />
 </rdf:Property>

</rdf:RDF>

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF xml:lang="en"

Page 57 of 85Geography Markup Language (GML) v1.0

xmlns:camb="http://www.xyzcorp.com/camb/example_profile3_schema.rdf#
xmlns:gml="http://www.opengis.org/gml/gml.rdf#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#">

 <camb:CityModel>
 <gml:boundedBy>
 <gml:Box srsName="EPSG:4326">
 <gml:coordinates>
 0.0,0.0 100.0,100.0
 </gml:coordinates>
 </gml:Box>
 </gml:boundedBy>
 <camb:modelDate>
 Feb 2000.
 </camb:modelDate>
 <camb:modelMember>
 <camb:River>
 <gml:name>
 Cam
 </gml:name>
 <gml:description>
 The river that runs through Cambridge.
 </gml:description>
 <gml:centerLineOf>
 <gml:LineString srsName="EPSG:4326">
 <gml:coordinates>
 0.0,50.0 100.0,50.0
 </gml:coordinates>
 </gml:LineString>
 </gml:centerLineOf>
 </camb:River>
 </camb:modelMember>
 <camb:modelMember>
 <camb:Road>
 <gml:description>
 M11
 </gml:description>
 <camb:classification>
 motorway
 </camb:classification>
 <camb:number>
 11
 </camb:number>
 <camb:linearGeometry>
 <gml:LineString srsName="EPSG:4326">
 <gml:coordinates>
 0.0,100.0 100.0,0.0
 </gml:coordinates>
 </gml:LineString>

Page 58 of 85Geography Markup Language (GML) v1.0

Download this example RDF (example_profile3.rdf)

To make use of this example it will be necessary to alter the URLs for
the gml and camb namespaces. The RDF Schema files that are
referred to are the GML definition (see Appendix C) and the example
schema defined previously.

It might be noted that, if one ignores the <rdf:RDF> tag and the namespace
prefixes, the encoding of the FeatureCollection is identical to that for GML
Profile 2 (see Section 5.4). The above example uses four namespaces:

1. rdf: Resource Description Format from W3C
2. rdfs: RDF Schema from W3C
3. gml: Geography Markup Language RDF Schema definition from OGC
4. camb: application specific Cambridge RDF Schema definition from the

fictitious company xyzcorp.

In might be noted that GML Profile 3 can be used in writing conventional RDF
meta-data descriptions as shown in the following example:

 </camb:linearGeometry>
 </camb:Road>
 </camb:modelMember>
 </camb:CityModel>
</rdf:RDF>

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF xml:lang = "en"
 xmlns:st=""
 xmlns:gml="http://www.opengis.org/gml/gml.rdf"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-
19990303#">

 <rdf:Description about =
"http://www.nasa.gov/shuttleradarmap.html" >

 <st:MappedBy>
 Shuttle SST-99
 </st:MappedBy>
 <st:vehicle>
 Endeavour
 </st:vehicle>
 <st:launchedOn>
 Februrary 11 2000

Page 59 of 85Geography Markup Language (GML) v1.0

The application specific RDF Schema for the Schools example is shown below,
the names in blue bold are specific to the Schools example. The application
specific classes (State, SchoolDistrict and School) inherit basic simple and
geomtery properties from the base GML classes. Note that the member property
between State and SchoolDistrict (namely featureMember) is also inherited from
the standard GML Feature and FeatureCollection classes.

 </st:launchedOn>

 <gml:coverage>
 <Polygon srsName = "LtLong" >
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>
 -180,-54 -180,60 180,60 180,-54
 </coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </gml:coverage>

 </rdf:Description>
</rdf:RDF>

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF xml:lang="en"
 xmlns:gml = "http://www.opengis.org/gml#"
 xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-
ns#"
 xmlns:rdfs = "http://www.w3.org/TR/1999/PR-rdf-schema-
19990303#">

 <rdfs:Class rdf:ID = "State" >
 <rdfs:subClassOf rdf:resource =
"http://www.opengis.org/gml#FeatureCollection" />
 </rdfs:Class>

 <rdfs:Class rdf:ID = "SchoolDistrict" >
 <rdfs:subClassOf rdf:resource =
"http://www.opengis.org/gml#FeatureCollection" />
 </rdfs:Class>

 <rdfs:Class rdf:ID = "School" >
 <rdfs:subClassOf rdf:resource =
"http://www.opengis.org/gml#Feature" />
 </rdfs:Class>

Page 60 of 85Geography Markup Language (GML) v1.0

6.6. Using Profile 3 in conjunction with Profile 2

The fact that the encodings generated by GML Profiles 2 and 3 are more or less
identical is no accident. We anticipate that many users will want to use RDF
Schema to define their initial feature types (and possibly new geometry classes
and properties as well) and then mechanically generate a DTD to be used as in
GML Profile 2. This enables them to have formal definitions for their feature
types and at the same time employ widely available XML 1.0 validating parsers.
This approach can be summarized as:

Write application specific schema in RDF Schema building on the GML
RDF Schema definition (the gml namespace of the previous Section). A
user might define schemas for roads, rivers, buildings, railways, mountain
peaks, valleys etc. These RDF Schema would then live in the users

 <rdfs:Class rdf:ID = "College" >
 <rdfs:subClassOf rdf:resource =
"http://www.opengis.org/gml#Feature" />
 </rdfs:Class>

 <rdf:Property ID = "districtName" >
 <rdfs:domain rdf:resource = "#SchoolDistrict" />
 <rdfs:range rdf:resource =
"http://www.w3.org/TR/1999/PR-rdf-schema-
19990303#Literal" />
 </rdf:Property>

 <rdf:Property ID = "principalName" >
 <rdfs:domain rdf:resource = "#School" />
 <rdfs:domain rdf:resource = "#College" />
 <rdfs:range rdf:resource =
"http://www.w3.org/TR/1999/PR-rdf-schema-
19990303#Literal" />
 </rdf:Property>

 <rdf:Property ID = "districtMember" >
 <rdfs:domain rdf:resource =
"#SchoolDistrict" />
 <rdfs:range rdf:resource = "#School" />
 <rdfs:range rdf:resource = "#College" />
 <rdfs:subPropertyOf rdf:resource =
"http://www.opengis.org/gml#featureMember" />
 </rdf:Property>

</rdf:RDF>

Page 61 of 85Geography Markup Language (GML) v1.0

application namespace (for example the camb namespace in the previous
Section).
Generate an application specific Feature DTD from the above RDF Schemas
following the rules of GML Profile 2 (See Section 5.4). This can be done
mechanically, for example using an XSLT script [XSLT].
Write your GML data as for GML Profile 2.

6.7. Spatial Reference Systems (informative)

This section describes the encoding of Spatial Reference Systems, sometimes
referred to by the more general phrase 'Coordinate Systems', for the Profile 3
User.

The GML Profile 3 user should note that the optional srsName attribute on each
of the Geometry elements takes simply a string value. In GML Profile 3 the value
of this attribute is treated as a name only, and it is not required that this attribute
point to a spatial reference system dictionary entry. The GML Profile 3 user can
thus decide to ignore the encoding of Spatial Reference Systems altogether.

For the reader interested in building spatial reference system dictionaries please
see Section 7.0.

6.8. Feature Identity (informative)

All GML Geometry Classes have an optional ID attribute. Its value must be an
RDF IDRef as described in the RDF Model and Syntax Specification [RDFMS].

If a Geometry in a file with URI = "http://www.xyzcorp.com/mydata.xml"
has the ID = "p143", then any reference to this geometry external to the file would
be = "http://www.xyzcorp.com/mydata.xml#p143". If a FeatureCollection is
requested from a FeatureCollection server database and copied to a client side
file, the Geometry ID's are not altered. The geometry with ID = "p143" in
"http://www.xyzcorp.com/mydata.xml" remains "p143" when copied to the
client, unless the client wishes to refer to the geometry which resides on the
server. This also applies to Features defined through application DTD's. All RDF
Schema class instances can have an optional ID attribute that is resolved as a URI
in this manner.

6.9. Feature and Geometry References: (informative)

In RDF the resource attribute can be used to refer to a resource. This same
mechanism is used in GML as shown by the following example:

<Feature resource =

Page 62 of 85Geography Markup Language (GML) v1.0

"http://www.xyzcorp.com/mydata#house23" />

This is equivalent to including the referenced feature in-line in the document. The
same mechanism can be applied to geometry class instances. The following
example encodes the fact that "yourhouse" and "myhouse" have the same
location.

Copyright © 2000 OGC All Rights Reserved.

7. Spatial Reference Systems (informative)
7.1. Overview

The material in this section is still under review and is expected to change
substantially over the next several revisions. Both RDF Schema definitions and
DTD's are presented in this section. These are not wholly consistent with one
another at the present time.

Spatial Reference Systems (SRS) are encoded using a separate DTD. This DTD is
based on the OGC SQL V1.1 Simple Features Specification (OGC 99-036) that is
in turn partly based on the EPSG (European Petroleum Standard Group) web site
and tables for spatial reference systems.

The encoding of Spatial Reference Systems is intended to support:

Client validation of a server specified Spatial Reference System. The client
can request the SRS description (an XML document) and compare it to its
own specifications or show it to a user for verification.
Client display of a server specified Spatial Reference System.

<Building ID = "yourhouse" .. >
 <location>
 <Point ID = "134">
 <coordinates>
 2455.12, 3443.78
 </coordinates>
 </Point>
 </location>
</Building>

<Building ID = "myhouse" .. >
 <location>
 <Point resource = "#134" />
 </location>
</Building>

Page 63 of 85Geography Markup Language (GML) v1.0

Use by a Coordinate Transformation Service to validate an input data
source's Spatial Reference System. A Coordinate Transformation Service
can compare the SRS description with its own specifications to see if the
SRS is consistent with the selected transformation.
To control automated coordinate transformation by supplying input and
output reference system names and argument values.

In this model, Spatial Reference Systems (Earth Based Coordinate Systems) are
divided into three types namely:

Projected (2D)
Geographic (2D)
Geocentric

Since a change order to alter these naming conventions has not been drafted, we
will continue to use the term Spatial Reference System. Except where explicitly
noted we mean an EarthBasedCoordinateSystem.

All of these Spatial Reference Systems refer only to locations on the earth relative
to the earth itself.

Projected (2D) systems are based on a Projection and a (2D) Geographic spatial

Editor's Note:

Terminology for reference systems in the geospatial community is
inconsistent. The OGC has been using Spatial Reference System for
what is really a subset of possible coordinate systems. All OGC Spatial
Reference Systems in the Implementation Specifications (e.g. OGC SQL
V1.1) are really Earth-Based Coordinate Systems. To change
terminology will require change orders to multiple specifications !!

This document will use the following terms that conflict with the
current OGC usage.

Spatial Reference System - any means of providing a relative or
absolute location, direction or extent. This includes ordinal as
well as cardinal measures.
Coordinate System - a mapping from the points of a spatial
region to a Euclidean vector space. Multiple Coordinate systems
are required to cover planetary bodies.
EarthBasedCoordinate System - A Coordinate System that
provides coordinates for a point on the Earth relative to the Earth
itself. This is accomplished using some model for the figure of the
Earth.

Page 64 of 85Geography Markup Language (GML) v1.0

reference system.

Geographic Systems (2D) provide a means of assigning angular coordinates to
locations on the surface of the earth and depends in turn on a geodetic datum and
ellipsoid for the earth model.

Geocentric Systems provide a means of assigning rectangular coordinates
(relative to the earth's center) to points on the earth's surface (or above) based on
model of the earth based on a datum and spheroid.

Mixed angular and rectangular coordinate systems are not currently supported.

XML DTD's are not well suited to maintenance of a complex structure like a
spatial reference system dictionary. To assist in this process we have broken the
logical DTD into several DTD's each of which are used to define a number of
sub-dictionaries, including:

Earth Based Coordinate System Dictionary (ebcsdictionary.dtd)
Geodetic Datum Dictionary (geodeticdatumdictionary.dtd)
Ellipsoid Dictionary (ellipsoiddictionary.dtd)
Projection Parameter Dictionary (projectionparameterdictionary)
Projection Dictionary (projectiondictionary.dtd)
UnitsDictionary (unitsdictionary.dtd)

7.2. Geocentric Systems

A Geocentric system is encoded in terms of a datum, spheroid (ellipsoid) , a linear
unit of measure, and a choice of Prime Meridian.

The datum is specified as a name only.

7.2.1. Geographic Systems

Geographic Systems use angular coordinates to specify the location of point on
the surface of the earth. In order that such coordinates be convertible to other
systems, the Geographic System also provides a Prime Meridian, a datum surface
and a spheroid (ellipsoid).

The following example is drawn from dictionary of Earth Based Coordinate
Systems.

Example

<EBCS ID="4326" Dimension="2">
 <Geographic2D>
 <Name>

Page 65 of 85Geography Markup Language (GML) v1.0

Note from the example that the definitions of GeodeticDatum, PrimeMeridian,
and CoordinateUnits are not coded in-line.This is in order to allow for separate
dictionaries of these items and to minimize maintenance problems.It will be up to
the application to locate the referenced item (e.g. PrimeMeridian) and fetch it for
processing if required.

7.2.2. Projected Systems

Projected systems provide a means of mapping from the surface of the earth onto
a flat surface (Euclidean Plane or surface homemorphic to the Euclidean plane
(e.g. Cylinder). So that the project system coordinates can be related to other
systems, the Projected Spatial Reference System (Earth Based Coordinate
System) provides an underlying Geographic Reference System with a datum,
ellipsoid, and Prime Meridian.

Each projected coordinate system can have zero or more parameters associated
with it. Standard parameter names can be found in an associated dictionary of
Parameter names.

Example

 WGS 84
 </Name>
 <Authority>
 EPSG
 </Authority>
 <GeodeticDatum
ID="http://www.opengis.org/datums/epsg#6326" />
 <PrimeMeridian
ID="http://www.opengis.org/primemeridian/epsg#8901" />
 <CoordinateAxis ID="Lat" Unit="
http://www.opengis.org/units/epsg#9108" />
 <CoordinateAxis ID="Long" Unit="
http://www.opengis.org/units/epsg#9801" />
 </Geographic2D>
</EBCS>

<EBCS ID="27700" Dimension="2">
 <Projected2D>
 <name>
 OSGB 1936 / British National Grid
 </name>
 <abbreviation>
 British National Grid
 </abbreviation>
 <authority>
 EPSG
 </authority>
 <Projection

Page 66 of 85Geography Markup Language (GML) v1.0

7.2.3. Supporting Dictionaries (DTD)

The main DTD (ebcsdictionary.dtd) is supported in GML by a set of DTD's which
define the encoding of supporting dictionaries for items such as geodetic datums,
ellipsoids, and units. These supporting dictionaries are NOT encoded into the
earth-based coordinate system dictionary for reasons of maintainability and data
integrity.

Note that the elements in these dictionaries are referenced from one another as
shown in Figure 10. At present it is up to the application to decide how to use
these references.An application might, for example, import the referenced
elements and assemble a complete encoding of a particular coordinate system, or
it might simply check the value of a particular data field.

ID="http://www.opengis.org/projections/epsg#TransverseMercator">
<latitude_of_origin>49</latitude_of_origin>
<central_meridian>-2</central_meridian>
<scale_factor>0.999601272</scale_factor>
 <false_easting>400000</false_easting >
 <false_northing>-100000</false_northing >
 </Projection>
 <geographic2dused>
http://www.opengis.org/ebcsdictionary/epsg#4277
 </geographic2dused>
 <CoordinateAxis ID="E"
Unit="http://www.opengis.org/units/epsg#9001" />
 <CoordinateAxis ID="N"
Unit="http://www.opengis.org/units/epsg#9001" />
 </Projected2D>
</EBCS>

Page 67 of 85Geography Markup Language (GML) v1.0

Figure 3. Supporting Dictionaries for Earth Based Coordinate Systems

Each of these dictionaries is defined by a separate DTD. These are attached
below:

Geodetic Datums (Horizontal Datum)
Ellipsoids
Standard Parameters
Prime Meridians
Units (note that this combines both Linear and Angular Units)

When Xpointer/Xlink technology becomes available (Xpointer reached
recommendation status in December 1999), a range reference will enable an XML
file to retrieve any dictionary element (or elements) in a single reference
statement.

Copyright © 2000 OGC All Rights Reserved.

Appendix A: Geometry DTD
<!--
== --
>

Page 68 of 85Geography Markup Language (GML) v1.0

<!-- G e o g r a p h
y -->
<!-- M a r k u p -->
<!-- L a n g u a g
e -->
<!-- -->
<!-- (G M L) -->
<!-- -->
<!-- G E O M E T R Y D T
D -->
<!-- -->
<!-- Copyright (c) 2000 OGC All Rights
Reserved. -->
<!--
== --
>

<!-- the coordinate element holds a list of coordinates as parsed
character data. Note that it does not reference a SRS and does
not constitute a proper geometry class. -->
<!ELEMENT coordinates (#PCDATA) >
<!ATTLIST coordinates
 decimal CDATA #IMPLIED
 cs CDATA #IMPLIED
 ts CDATA #IMPLIED >

<!-- the Box element defines an extent using a pair of
coordinates and a SRS name. -->
<!ELEMENT Box (coordinates) >
<!ATTLIST Box
 ID CDATA #IMPLIED
 srsName CDATA #REQUIRED >

<!--
== --
>
<!-- G E O M E T R Y C L A S S D e f i n i t i o n s
 -->
<!--
== --
>

<!-- a Point is defined by a single coordinate. -->
<!ELEMENT Point (coordinates) >
<!ATTLIST Point
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >

<!-- a LineString is defined by two or more coordinates, with
linear interoplation between them. -->
<!ELEMENT LineString (coordinates) >

Page 69 of 85Geography Markup Language (GML) v1.0

<!ATTLIST LineString
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >

<!-- a Polygon is defined by an outer boundary and zero or more
inner boundaries. These boundaries are themselves defined by
LinerRings. -->
<!ELEMENT Polygon (outerBoundaryIs, innerBoundaryIs*) >
<!ATTLIST Polygon
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT outerBoundaryIs (LinearRing) >
<!ELEMENT innerBoundaryIs (LinearRing) >

<!-- a LinearRing is defined by four or more coordinates, with
linear interpolation between them. The first and last coordinates
must be coincident. -->
<!ELEMENT LinearRing (coordinates) >
<!ATTLIST LinearRing
 ID CDATA #IMPLIED >

<!-- a MultiPoint is defined by zero or more Points, referenced
through a pointMember element. -->
<!ELEMENT MultiPoint (pointMember+) >
<!ATTLIST MultiPoint
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT pointMember (Point) >

<!-- a MultiLineString is defined by zero or more LineStrings,
referenced through a lineStringMember element. -->
<!ELEMENT MultiLineString (lineStringMember+) >
<!ATTLIST MultiLineString
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT lineStringMember (LineString) >

<!-- a MultiPolygon is defined by zero or more Polygons,
referenced through a polygonMember element. -->
<!ELEMENT MultiPolygon (polygonMember+) >
<!ATTLIST MultiPolygon
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT polygonMember (Polygon) >

<!-- a GeometryCollection is defined by zero or more geometries,
referenced through a geometryMember element. A geometryMember
element may be any one of the geometry classes. -->
<!ENTITY % GeometryClasses "(
 Point | LineString | Polygon |
 MultiPoint | MultiLineString | MultiPolygon |

Page 70 of 85Geography Markup Language (GML) v1.0

 GeometryCollection)" >

<!ELEMENT GeometryCollection (geometryMember+) >
<!ATTLIST GeometryCollection
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT geometryMember %GeometryClasses; >

<!--
== --
>
<!-- G E O M E T R Y P R O P E R T Y D e f i n i t i o n
s -->
<!--
== --
>

<!-- GML provides an 'endorsed' name to define the extent of a
feature. The extent is defined by a Box element, the name of the
property is boundedBy. -->
<!ELEMENT boundedBy (Box) >

<!-- the generic geometryProperty can accept a geometry of any
class. -->
<!ELEMENT geometryProperty (%GeometryClasses;) >

<!-- the pointProperty has three descriptive names: centerOf,
location and position. -->
<!ELEMENT pointProperty (Point) >
<!ELEMENT centerOf (Point) >
<!ELEMENT location (Point) >
<!ELEMENT position (Point) >

<!-- the lineStringProperty has two descriptive names:
centerLineOf and edgeOf. -->
<!ELEMENT lineStringProperty (LineString) >
<!ELEMENT centerLineOf (LineString)>
<!ELEMENT edgeOf (LineString)>

<!-- the polygonProperty has two descriptive names: coverage and
extentOf. -->
<!ELEMENT polygonProperty (Polygon) >
<!ELEMENT coverage (Polygon)>
<!ELEMENT extentOf (Polygon)>

<!-- the multiPointProperty has three descriptive names:
multiCenterOf, multiLocation and multiPosition. -->
<!ELEMENT multiPointProperty (MultiPoint) >
<!ELEMENT multiCenterOf (MultiPoint) >
<!ELEMENT multiLocation (MultiPoint) >
<!ELEMENT multiPosition (MultiPoint) >

Page 71 of 85Geography Markup Language (GML) v1.0

Download this GML Geometry DTD (gmlgeometry.dtd)

Copyright © 2000 OGC All Rights Reserved.

Appendix B: Spatial Reference Systems DTD's (informative)

<!-- the multiLineStringProperty has two descriptive names:
multiCenterLineOf and multiEdgeOf. -->
<!ELEMENT multiLineStringProperty (MultiLineString) >
<!ELEMENT multiCenterLineOf (MultiLineString) >
<!ELEMENT multiEdgeOf (MultiLineString) >

<!-- the multiPolygonProperty has two descriptive names:
multiCoverage and multiExtentOf. -->
<!ELEMENT multiPolygonProperty (MultiPolygon) >
<!ELEMENT multiCoverage (MultiPolygon) >
<!ELEMENT multiExtentOf (MultiPolygon) >

<!ELEMENT geometryCollectionProperty (GeometryCollection) >

<!--
== --
>
<!-- F E A T U R E M E T A D A T A D e f i n i t i o n
s -->
<!--
== --
>

<!-- Feature metadata, included in GML Geometry DTD for
convenience; name and description are two 'standard' string
properties defined by GML. -->

<!ELEMENT name (#PCDATA)>
<!ELEMENT description (#PCDATA)>

<!ELEMENT EBCS_DICTIONARY (EBCS*) >

<!ELEMENT EBCS (Projected2D | Geographic2D | Geocentric) >
<!ATTLIST EBCS
 ID CDATA #REQUIRED
 Dimension CDATA #REQUIRED >

<!ELEMENT Projected2D(
 Name?,
 Abbreviation?,
 Alias?,
 Authority?,
 ProjectionClass,

Page 72 of 85Geography Markup Language (GML) v1.0

 Geographic2DUsed,
 CoordinateAxis*,
 Origin?) >

<!ELEMENT Geographic2D (
 Name?,
 Abbreviation?,
 Alias?,
 Authority?,
 GeodeticDatum,
 PrimeMeridian,
 CoordinateAxis*,
 Origin?) >

<!ELEMENT Geocentric (
 Name?,
 Abbreviation?,
 Alias?,
 Authority?,
 GeodeticDatum,
 PrimeMeridian,
 CoordinateAxis*,
 Origin?) >

<!ELEMENT Name (#PCDATA) >

<!ELEMENT Abbreviation (#PCDATA) >

<!ELEMENT Alias (#PCDATA) >

<!ELEMENT Authority (#PCDATA) >

<!ELEMENT ProjectionClass (Parameter*) >
<!ATTLIST ProjectionClass
 ID CDATA #REQUIRED >

<!ELEMENT Geographic2DUsed EMPTY >
<!ATTLIST Geographic2DUsed
 ID CDATA #REQUIRED >

<!ELEMENT Parameter (#PCDATA) >
<!ATTLIST Parameter
 ID CDATA #REQUIRED
 Units CDATA #IMPLIED >

<!ELEMENT CoordinateAxis EMPTY >
<!ATTLIST CoordinateAxis
 ID CDATA #REQUIRED
 Unit CDATA #REQUIRED >

<!ELEMENT Origin (coordinates?) >

Page 73 of 85Geography Markup Language (GML) v1.0

This DTD is used by itself (does not require the other DTD's) to construct a
library of spatial reference systems. These are then referenced by the geometry
class instances defined within the GML Geometry DTD (See Appendix A). The
top level SRS DTD is as follows:

Note that the current release of GML supports the definition of entries for Earth
Based Coordinate System Dictionaries only. Subsequent revisions of the GML
Specification will provide as well for other types of reference systems.

Copyright © 2000 OGC All Rights Reserved.

Appendix C: RDF Schema Definition of GML

<!ATTLIST Origin
 ID CDATA #REQUIRED >

<!ELEMENT GeodeticDatum EMPTY >
<!ATTLIST GeodeticDatum
 ID CDATA #REQUIRED >

<!ELEMENT PrimeMeridian EMPTY >
<!ATTLIST PrimeMeridian
 ID CDATA #REQUIRED >

<!ELEMENT coordinates (#PCDATA) >

<?xml version="1.0" encoding="UTF-8"?>

<!-- == -
<!-- G e o g r a p h y -
<!-- M a r k u p -->
<!-- L a n g u a g e -
<!-- -->
<!-- (G M L) -->
<!-- -->
<!-- R D F S c h e m a D e f i n i t i o n s -
<!-- -->
<!-- Copyright (c) 2000 OGC All Rights Reserved. -
<!-- == -

<rdf:RDF xml:lang="en"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#">

<!--
===
->
<!--=== This section describes the abstract classes and properties f

Page 74 of 85Geography Markup Language (GML) v1.0

=========-->
<!--
===
->

 <rdfs:Class rdf:ID="Geometry">
 <rdfs:comment>
Geometry is the root class of the hierarchy. Geometry is an abstract
class. All instantiable geometry classes referenced in this specific
so that valid instances of a geometry class are topologically closed
geometries include their boundary).
 </rdfs:comment>
 </rdfs:Class>

 <rdfs:Class rdf:ID="Feature">
 <rdfs:comment>
A Feature is a Property List, some of whose properties are of type ge
classes of geographic feature are created by subtyping from the GML F
the application namespace.
 </rdfs:comment>
 </rdfs:Class>

 <rdfs:Class rdf:ID="GeometryCollection">
 <rdfs:subClassOf rdf:resource="#Geometry"/>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/TR/1999/PR-rdf
19990303#Container"/>
 <rdfs:comment>
A GeometryCollection is a geometry that is a collection of 1 or more
the elements in a GeometryCollection must be in the same Spatial Refe
also the Spatial Reference for the GeometryCollection. GeometryCollec
other constraints on its elements. Subclasses of GeometryCollection m
membership based on dimension and may also place other constraints on
spatial overlap between elements.
 </rdfs:comment>
 </rdfs:Class>

 <rdfs:Class rdf:ID="Box">
 <rdfs:subClassOf rdf:resource="#Geometry"/>
 <rdfs:comment>
A rectangular area defined by two points and the four orthogonal geod
defined by these two points
 </rdfs:comment>
 </rdfs:Class>

 <rdf:Property ID="geometryMember">
 <rdfs:range rdf:resource="#Geometry"/>
 <rdfs:domain rdf:resource="#GeometryCollection"/>
 <rdfs:comment>
selects next member in the geometry collection. Plays same role as li
 </rdfs:comment>
 </rdf:Property>

Page 75 of 85Geography Markup Language (GML) v1.0

 <rdf:Property ID="geometryProperty">
 <rdfs:range rdf:resource="#Geometry"/>
 <rdfs:domain rdf:resource="#Feature"/>
 <rdfs:comment>
Abstract property which is the parent of all geospatial properties.
some standard geometry properties users can create additional propert
subProperty relationship and deriving from the OGC properties.
 </rdfs:comment>
 </rdf:Property>

 <rdfs:Class rdf:ID="FeatureCollection">
 <rdfs:subClassOf rdf:resource="#Feature"/>
 <rdfs:comment>
A collection (set) of Features
 </rdfs:comment>
 </rdfs:Class>

 <rdf:Property ID="featureMember">
 <rdfs:range rdf:resource="#Feature"/>
 <rdfs:domain rdf:resource="#FeatureCollection"/>
 <rdfs:comment>
Function which returns next Feature in a FeatureCollection
 </rdfs:comment>
 </rdf:Property>

<!--===
<!--============== This next section defines common metadata properti
<!--===

 <rdf:Property ID="name">
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-sche
19990303#Literal"/>
 <rdfs:domain rdf:resource="#Feature"/>
 </rdf:Property>

 <rdf:Property ID="boundedBy">
 <rdfs:range rdf:resource="#Box"/>
 <rdfs:domain rdf:resource="#Feature"/>
 </rdf:Property>

 <rdf:Property ID="description">
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-sche
19990303#Literal"/>
 <rdfs:domain rdf:resource="#Feature"/>
 </rdf:Property>

 <rdf:Property ID="srsName">
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-sche
19990303#Literal"/>
 <rdfs:domain rdf:resource="#Geometry"/>
 </rdf:Property>

Page 76 of 85Geography Markup Language (GML) v1.0

 <rdf:Property ID="coordinates">
 <rdfs:domain rdf:resource="#Curve"/>
 <rdfs:domain rdf:resource="#Box"/>
 <rdfs:domain rdf:resource="#Point"/>
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-sche
19990303#Literal"/>
 </rdf:Property>

<!--===
<!--======= This next section defines the GML Geometry Classes =====
<!--===

 <rdfs:Class rdf:ID="Point">
 <rdfs:subClassOf rdf:resource="#Geometry"/>
 <rdfs:comment>
Point geometry class. A Point is a 0-dimensional geometry and represe
location in coordinate space. A Point has an x-coordinate value and a
value. Note that GML is more general than the OGC SQL v1.1 specificat
Points of 0-4 (or larger) dimension. The boundary of a Point is the e
 </rdfs:comment>
 </rdfs:Class>

 <rdfs:Class rdf:ID="Curve">
 <rdfs:subClassOf rdf:resource="#Geometry"/>
 <rdfs:comment>
A Curve is a one-dimensional geometric object usually stored as a seq
with the subtype of Curve specifying the form of the interpolation be
specification defines only one subclass of Curve, LineString, which u
interpolation between points. This is the only 1-D Geometry class wh
GML DTD. Topologically a Curve is a one-dimensional geometric object
homeomorphic image of a real, closed, interval D [a, b] {x in R2| a l
mapping f:[a,b] --- R2 as defined in [1], section 3.12.7.2.

A Curve is simple if it does not pass through the same point twice (
3.12.7.3).

A Curve is closed if its start point is equal to its end point. ([1]
3.12.7.3).

The boundary of a closed Curve is empty.

A Curve that is simple and closed is a Ring.

The boundary of a non-closed Curve consists of its two end points. (
3.12.3.2).

A Curve is defined as topologically closed.
 </rdfs:comment>
 </rdfs:Class>

 <rdfs:Class rdf:ID="LineString">

Page 77 of 85Geography Markup Language (GML) v1.0

 <rdfs:subClassOf rdf:resource="#Curve"/>
 <rdfs:comment>
Lines, LineStrings and LinearRings are all Curves. A Line String is a
interpolation between points. Each consecutive pair of points defines
Line is a LineString with exactly 2 points. In GML the points of a Li
defined by a coordinate list and are not defined by GML Points.
 </rdfs:comment>
 </rdfs:Class>

 <rdfs:Class rdf:ID="LinearRing">
 <rdfs:subClassOf rdf:resource="#Curve"/>
 <rdfs:comment>
A LinearRing is a LineString that is both closed and simple. In GML
LinearRing are defined by a coordinate list and are not defined by GM
 </rdfs:comment>
 </rdfs:Class>

 <rdfs:Class rdf:ID="Surface">
 <rdfs:subClassOf rdf:resource="#Geometry"/>
 <rdfs:comment>
Abstract geometry class for 2D geometries
 </rdfs:comment>
 </rdfs:Class>

 <rdfs:Class rdf:ID="Polygon">
 <rdfs:subClassOf rdf:resource="#Surface"/>
 <rdfs:comment>
A Polygon is a planar Surface, defined by 1 exterior boundary and 0 o
boundaries. Each interior boundary defines a hole in the Polygon. The
polygons (the rules that define valid polygons) are:

1. Polygons are topologically closed.

2. The boundary of a Polygon consists of a set of LinearRings that m
exterior and interior boundaries. Note that these are captured in GML
eboundaryis and iboundaryis properties of the Polygon.

3. No two rings in the boundary cross, the rings in the boundary of
intersect at a Point but only as a tangent.

4. A Polygon may not have cut lines, spikes or punctures:

5. The Interior of every Polygon is a connected point set.

6. The Exterior of a Polygon with 1 or more holes is not connected.
a connected component of the Exterior.

In the above assertions, Interior, Closure and Exterior have the stan
definitions. The combination of 1 and 3 make a Polygon a Regular Clos
Polygons are simple geometries in accordance with the terminology of
Specififcation 99-101.

Page 78 of 85Geography Markup Language (GML) v1.0

 </rdfs:comment>
 </rdfs:Class>

 <rdf:Property ID="outerBoundaryIs">
 <rdfs:range rdf:resource="#LinearRing"/>
 <rdfs:domain rdf:resource="#Polygon"/>
 <rdfs:comment>
This property returns the outer boundary of a polygon
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="innerBoundaryIs">
 <rdfs:range rdf:resource="#LinearRing"/>
 <rdfs:domain rdf:resource="#Polygon"/>
 <rdfs:comment>
This property returns a connected component of the interior boundary
polygon can have zero or more iboundaryis properties
 </rdfs:comment>
 </rdf:Property>

 <rdfs:Class rdf:ID="MultiPoint">
 <rdfs:subClassOf rdf:resource="#GeometryCollection"/>
 <rdfs:comment>
A MultiPoint is a 0 dimensional geometric collection. The elements of
restricted to Points. The points are not connected or ordered. A Mul
if no two Points in the MultiPoint are equal (have identical coordina
boundary of a MultiPoint is the empty set.
 </rdfs:comment>
 </rdfs:Class>

 <rdf:Property ID="pointMember">
 <rdfs:range rdf:resource="#Point"/>
 <rdfs:domain rdf:resource="#MultiPoint"/>
 <rdfs:comment>
Returns the next point in a multipoint
 </rdfs:comment>
 </rdf:Property>

 <rdfs:Class rdf:ID="MultiCurve">
 <rdfs:subClassOf rdf:resource="#GeometryCollection"/>
 <rdfs:comment>
A MultiCurve is a one-dimensional eometryCollection whose elements ar
MultiCurve is present in this specification only to provide the conte
definition of a Multi-Line String. MultiCurve is simple if and only
elements are simple, the only intersections between any two elements
that are on the boundary. The boundary of a MultiCurve is obtained b
'mod 2' union rule: A point is in the boundary of a MultiCurve if it
boundaries of an odd number of elements of the MultiCurve ([1], secti

MultiCurve is closed if all of its elements are closed.

Page 79 of 85Geography Markup Language (GML) v1.0

The boundary of a closed MultiCurve is always empty. MultiCurve is de
topologically closed.
 </rdfs:comment>
 </rdfs:Class>

 <rdfs:Class rdf:ID="MultiLineString">
 <rdfs:subClassOf rdf:resource="#GeometryCollection"/>
 <rdfs:comment>
A MultiLineString is a MultiCurve whose elements are LineStrings
 </rdfs:comment>
 </rdfs:Class>

 <rdf:Property ID="lineStringMember">
 <rdfs:range rdf:resource="#LineString"/>
 <rdfs:domain rdf:resource="#MultiLineString"/>
 <rdfs:comment>
Returns the next linestring in a multilinestring
 </rdfs:comment>
 </rdf:Property>

 <rdfs:Class rdf:ID="MultiSurface">
 <rdfs:subClassOf rdf:resource="#GeometryCollection"/>
 <rdfs:comment>
Abstract class for complex 2-D geometries
 </rdfs:comment>
 </rdfs:Class>

 <rdfs:Class rdf:ID="MultiPolygon">
 <rdfs:subClassOf rdf:resource="#MultiSurface"/>
 <rdfs:comment>
A MultiPolygon is a MultiSurface whose elements are Polygons. The ass
MultiPolygons are:

1. The interiors of 2 Polygons that are elements of a MultiPolygon m

2. The Boundaries of any 2 Polygons that are elements of a MultiPoly
'cross' and may touch at only a finite number of points. (Note that c
prevented by assertion 1 above).

3. A MultiPolygon is defined as topologically closed.

4. A MultiPolygon may not have cut lines, spikes or punctures; a Mul
Regular, Closed point set:

5. The interior of a MultiPolygon with more than 1 Polygon is not co
number of connected components of the interior of a MultiPolygon is e
of Polygons in the MultiPolygon.

The boundary of a MultiPolygon is a set of closed curves (LinearRings
the boundaries of its element Polygons. Each Curve in the boundary o
is in the boundary of exactly 1 element Polygon, and every Curve in t

Page 80 of 85Geography Markup Language (GML) v1.0

element Polygon is in the boundary of the MultiPolygon.
 </rdfs:comment>
 </rdfs:Class>

 <rdf:Property ID="polygonMember">
 <rdfs:range rdf:resource="#Polygon"/>
 <rdfs:domain rdf:resource="#MultiPolygon"/>
 <rdfs:comment>
Returns the next polygon in a multipolygon
 </rdfs:comment>
 </rdf:Property>

<!--===
>
<!--============= This section defines the GML geometry properties. =
>
<!--========== All of these properties are sub-Properties of geometry
>
<!--===
>

 <rdf:Property ID="pointProperty">
 <rdfs:range rdf:resource="#Point"/>
 <rdfs:subPropertyOf rdf:resource="#geometryProperty"/>
 <rdfs:comment>
Abstract property function that returns a point of the selected featu
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="lineStringProperty">
 <rdfs:range rdf:resource="#LineString"/>
 <rdfs:subPropertyOf rdf:resource="#geometryProperty"/>
 <rdfs:comment>
Abstract property function that returns a linestring of the selected
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="polygonProperty">
 <rdfs:range rdf:resource="#Polygon"/>
 <rdfs:subPropertyOf rdf:resource="#geometryProperty"/>
 <rdfs:comment>
Abstract property function that returns a polygon of the selected fea
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="location">
 <rdfs:subPropertyOf rdf:resource="#pointProperty"/>
 <rdfs:comment>
Returns a point of the selected feature.
 </rdfs:comment>
 </rdf:Property>

Page 81 of 85Geography Markup Language (GML) v1.0

 <rdf:Property ID="position">
 <rdfs:subPropertyOf rdf:resource="#pointProperty"/>
 <rdfs:comment>
Returns a point of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="centerOf">
 <rdfs:subPropertyOf rdf:resource="#pointProperty"/>
 <rdfs:comment>
Returns the center point of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="centerLineOf">
 <rdfs:subPropertyOf rdf:resource="#lineStringProperty"/>
 <rdfs:comment>
Returns a linestring which is the centerline of the selected feature
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="edgeOf">
 <rdfs:subPropertyOf rdf:resource="#lineStringProperty"/>
 <rdfs:comment>
Returns a linestring which is an edge of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="extentOf">
 <rdfs:subPropertyOf rdf:resource="#polygonProperty"/>
 <rdfs:comment>
Returns a polygon which is the centerline of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="coverage">
 <rdfs:subPropertyOf rdf:resource="#polygonProperty"/>
 <rdfs:comment>
Returns a polygon which is the centerline of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="multiPointProperty">
 <rdfs:range rdf:resource="#MultiPoint"/>
 <rdfs:subPropertyOf rdf:resource="#geometryProperty"/>
 <rdfs:comment>
Abstract property function that returns a multipoint of the selected
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="multiLineStringProperty">

Page 82 of 85Geography Markup Language (GML) v1.0

 <rdfs:range rdf:resource="#MultiLineString"/>
 <rdfs:subPropertyOf rdf:resource="#geometryProperty"/>
 <rdfs:comment>
Abstract property function that returns a multilinestring of the sele
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="multiPolygonProperty">
 <rdfs:range rdf:resource="#MultiPolygon"/>
 <rdfs:subPropertyOf rdf:resource="#geometryProperty"/>
 <rdfs:comment>
Abstract property function that returns a MultiPolygon of the selecte
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="multiLocation">
 <rdfs:subPropertyOf rdf:resource="#multiPointProperty"/>
 <rdfs:comment>
Returns a multipoint of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="multiPosition">
 <rdfs:subPropertyOf rdf:resource="#multiPointProperty"/>
 <rdfs:comment>
Returns a multipoint of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="multiCenterOf">
 <rdfs:subPropertyOf rdf:resource="#multiPointProperty"/>
 <rdfs:comment>
Returns the multi-center point of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="multiCenterLineOf">
 <rdfs:subPropertyOf rdf:resource="#multiLineStringProperty"/>
 <rdfs:comment>
Returns a multilinestring which is the multicenterline of the selecte
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="multiEdgeOf">
 <rdfs:subPropertyOf rdf:resource="#multiLineStringProperty"/>
 <rdfs:comment>
Returns a multilinestring which is a set of edges of the selected fea
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="multiExtentOf">

Page 83 of 85Geography Markup Language (GML) v1.0

Download this GML RDF Schema Definition (gml.rdfs)

Copyright © 2000 OGC All Rights Reserved.

Appendix D: References
[POIX] Point of Interest Exchange Language Specification. Available at
http://www.w3.org/TR/poix/

[QNAME] QNAME specification. Available at http://18.29.1.23:80/TR/REC-
xml-names/#NT-QName

[RDFMS] Resource Description Framework (RDF) Model and Syntax. Available
at http://www.w3.org/TR/REC-rdf-syntax

[RDFSchema] Resource Description Framework (RDF) Schemas; Brickley,
Guha, Layman eds., World Wide Web Consortium Working Draft;
http://www.w3.org/TR/PR-rdf-schema

[SVG] Scalable Vector Graphics. Available at http://www.w3.org/TR/SVG/

[URI] Uniform Resource Identifiers (URI): Generic Syntax; Berners-Lee,
Fielding, Masinter, Internet Draft Standard August, 1998; RFC2396.

[VML] Vector Markup Language. Available at: http://www.w3.org/TR/NOTE-
VML

[VRML] Virtual Reality Markup Language. Available at:
http://www.vrml.org/VRML2.0/FINAL

[XML SCHEMA] XML Schema Part 1: Structures. Available at
http://www.w3.org/TR/xmlschema-1

 <rdfs:subPropertyOf rdf:resource="#multiPolygonProperty"/>
 <rdfs:comment>
Returns a MultiPolygon which is the extent of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="multiCoverage">
 <rdfs:subPropertyOf rdf:resource="#multiPolygonProperty"/>
 <rdfs:comment>
Returns a MultiPolygon which is the coverage of the selected feature
 </rdfs:comment>
 </rdf:Property>
</rdf:RDF>

Page 84 of 85Geography Markup Language (GML) v1.0

[XML SCHEMA DATATYPES] XML Schema Part 2: DataTypes. Available at
http://www.w3.org/TR/xmlschema-2

[XML] XML 1.0 Recommendation from the W3C. Available at
http://www.w3.org/TR/REC-xml

[XMLNS] XML Namespace specification. Available at
http://18.29.1.23:80/TR/REC-xml-names

[XSLT] XSL Transformations. Available at http://www.w3.org/TR/xslt

Copyright © 2000 OGC All Rights Reserved.

Page 85 of 85Geography Markup Language (GML) v1.0

