
OGC 15-001r3 OGC

Copyright © 2015 OGC.

Open Geospatial Consortium Inc.

Date: 2015-08-27

Reference number of this OGC™ project document: OGC 15-001r3

OGC Version: 1.0.0

Category: OGC™ Implementation Standard

Editors: Benjamin Hagedorn, Simon Thum

3D Portrayal Service Standard

Copyright notice

Copyright © 2015 Open Geospatial Consortium, Inc. All Rights Reserved.

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. It is distributed for review and comment. It is

subject to change without notice and may not be referred to as an OGC Standard.

Recipients of this document are invited to submit, with their comments, notification of

any relevant patent rights of which they are aware and to provide supporting

documentation.

http://www.opengeospatial.org/legal/

i

ii

Contents

1 Scope 4

2 Conformance 4

3 Normative References 4

4 Terms and Definitions 5

5 Conventions 5

5.1 Use of the terms "3D scene" and "3D view" . 5

5.2 Abbreviated terms . 5

5.3 UML notation . 6

5.4 Data dictionary tables . 6

5.5 Namespace prefix conventions . 6

6 3D Portrayal Service Overview 6

6.1 Overview . 6

6.2 Historical background . 6

6.3 Design of this standard . 7

6.4 Interoperability scenarios . 8

7 3DPS Service Model 8

7.1 3DPS Operation Types . 8

7.2 3DPS Service Handling . 9

7.3 Coordinate Reference Systems (CRS) . 10

7.3.1 Vertical Datum . 11

8 3DPS Core 11

8.1 Shared aspects . 11

8.1.1 Position2D data structure . 11

8.1.2 Position3D data structure . 11

8.2 GetCapabilities operation (mandatory) . 12

8.2.1 GetCapabilities Request . 12

8.2.2 GetCapabilities Response . 13

8.2.3 GetCapabilities Exceptions . 20

8.3 Capabilities document XML encoding . 20

8.3.1 Sample GetCapabilities request and response . 21

8.4 AbstractGetPortrayal Operation (abstract) . 23

8.4.1 AbstractGetPortrayal Request . 23

iii

8.4.2 AbstractGetPortrayal Response . 28

8.4.3 Exceptions . 28

8.5 GetResourceById operation (optional) . 28

8.5.1 Obtaining ResourceId URIs . 29

8.5.2 Categories of resources . 29

8.5.3 GetResourceById Request . 29

8.5.4 GetResourceById Response . 30

8.5.5 GetResourceById Exceptions . 30

9 Scene Extension 30

9.1 Introduction . 30

9.2 Modifications to Service Capabilities . 30

9.2.1 Modifications to ServiceIdentification . 30

9.2.2 Modifications to OperationsMetadata . 31

9.2.3 Additions to Layer structure . 31

9.2.4 AvailableOffsets . 33

9.2.5 AvailableOffsetMode . 34

9.2.6 Additions to PortrayalCapabilities structure . 34

9.3 GetScene request . 35

9.3.1 Offset . 37

9.3.2 Format . 37

9.3.3 Viewpoints . 37

9.3.4 Delivery Options . 37

9.4 GetScene response . 37

9.5 GetScene Exceptions . 38

9.6 Binding Extensions for the GetScene Operation . 38

9.6.1 HTTP/GET + KVP Binding . 38

10 View Extension 39

10.1 Introduction . 39

10.2 Concepts . 40

10.2.1 Image layer concept . 40

10.2.2 3D projections . 42

10.2.3 Image Coordinate System . 45

10.2.4 Extensibility . 46

10.3 Modifications to Service Capabilities . 46

10.3.1 Modifications to ServiceIdentification . 46

10.3.2 Modifications to OperationsMetadata . 46

10.3.3 Additions to Layer structure . 46

iv

10.3.4 Additions to PortrayalCapabilities structure . 47

10.4 GetView request . 50

10.4.1 BackgroundColor . 51

10.4.2 TransparentBackground . 51

10.4.3 Portrayals . 51

10.4.4 Exceptions . 53

10.5 GetView response . 53

10.5.1 MIME multipart response . 53

10.6 GetView exceptions . 54

10.7 Binding Extensions for the GetView Operation . 54

10.7.1 HTTP/GET + KVP Binding . 54

10.7.2 GetView request XML encoding (optional) . 57

11 Info Extension 59

11.1 Introduction . 59

11.2 Modifications to Service Capabilities . 60

11.2.1 Modifications to ServiceIdentification . 60

11.2.2 Modifications to OperationsMetadata . 60

11.2.3 Additions to Layer structure . 61

11.3 Abstract GetFeatureInfo request . 63

11.3.1 Layers . 64

11.3.2 FeatureCount . 64

11.3.3 IdOnly . 64

11.3.4 Format . 64

11.3.5 Exceptions . 64

11.4 GetFeatureInfoByRay request . 64

11.4.1 Width, Height . 65

11.4.2 Projection . 65

11.4.3 ImagePosition . 65

11.5 GetFeatureInfoByPosition request . 65

11.5.1 CRS . 66

11.5.2 Coordinate . 66

11.5.3 Tolerance . 66

11.6 GetFeatureInfoByObjectId request . 66

11.6.1 ObjectID . 67

11.6.2 FeaureCount . 67

11.7 GetFeatureInfo response . 67

11.7.1 FeatureInfo encoding . 68

11.7.2 GetFeatureInfo exceptions . 70

11.7.3 Exception codes for GetFeatureInfo operation . 70

v

12 Annex A: Conformance Class Abstract Test Suite (Normative) 72

12.1 Conformance class: core . 72

12.2 Tests for requirements of the core requirements class . 72

12.3 Conformance class: scene . 72

12.4 Tests for requirements of the scene requirements class . 73

12.5 Conformance class: view . 74

12.6 Tests for requirements of the view requirements class . 74

12.7 Conformance class: info . 75

12.8 Tests for requirements of the info requirements class . 75

13 Annex B normative 77

13.1 core schema . 77

13.2 scene schema . 80

13.3 view schema . 80

14 Annex C (informative) 84

15 Annex D (non-normative) 85

15.1 REFERENCES . 86

16 Annex E: Revision History 87

1 / 87

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth

below, to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual

Property without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify,

merge, publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual

Property is furnished to do so, provided that all copyright notices on the intellectual property are retained intact and that each

person to whom the Intellectual Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above

copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LI-

CENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS

THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-

PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-

ULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS

INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL

PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY

WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE EN-

TIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF

INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY

DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING

FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF

CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH

THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with

all copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except

as provided in the following sentence, no such termination of this license shall require the termination of any third party end-user

sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the

Intellectual Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe,

any patent, copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate

this license without any compensation or liability to you, your licensees or any other party. You agree upon termination of any

kind to destroy or cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by

any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual

Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property

without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole

entity that may authorize you or any third party to use certification marks, trademarks or other special designations to indicate

compliance with any LICENSOR standards or specifications. This Agreement is governed by the laws of the Commonwealth

of Massachusetts. The application to this Agreement of the United Nations Convention on Contracts for the International Sale

of Goods is hereby expressly excluded. In the event any provision of this Agreement shall be deemed unenforceable, void or

invalid, such provision shall be modified so as to make it valid and enforceable, and as so modified the entire Agreement shall

remain in full force and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or

remedies available to it.

2 / 87

i. Abstract

The 3D Portrayal Standard is a geospatial 3D content delivery implementation specification. It focuses on what is to be delivered

in which manner to enable interoperable 3D portrayal.

It does not define or endorse particular content transmission formats, but specifies how geospatial 3D content is described,

selected and delivered. It does not prescribe how aforementioned content is to be organized and represented, but provides a

framework to determine whether 3D content is interoperable at the content representation level. More details are available in

Section 6.3.

ii. Keywords

The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, 3D, portrayal, service, geospatial, specification

iii. Preface

This document is based on two OGC discussion papers (WPVS: OGC 09-166r2, W3DS: OGC 09-104r3) which each detail a

service interface to support 3D portrayal of geodata, but using two different mechanisms (image and scene-graph based). Due

to considerable overlap, it was decided that for standardisation, their technical content should be merged as far as possible. This

document represents the efforts by the 3D Portrayal SWG to merge the two proposals, retaining these two different mechanisms

while providing a foundation for other potential mechanisms.

This document does not suggest any updates to the OGC Abstract Specification.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open

Geospatial Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other

intellectual property rights of which they may be aware that might be infringed by any implementation of the standard set forth

in this document, and to provide supporting documentation.

iv. Submitting Organizations

The following organizations submitted this Document to the Open Geospatial Consortium (OGC):

Organization Point of contact

Fraunhofer Gesellschaft Simon Thum

Hasso Plattner Institute at the University of Potsdam Benjamin Hagedorn

Esri R&D Center Zürich Thorsten Reitz

v. Submitters

All questions regarding this document should be directed to the editors or the contributors:

Table 1: Editors

Name Affiliation

Simon Thum Fraunhofer IGD

Benjamin Hagedorn Hasso Plattner Institute at the University of Potsdam

Thorsten Reitz Esri R&D Center Zürich

3 / 87

Table 2: Contributors

Name Affiliation

Volker Coors Fraunhofer IGD, HFT Stuttgart

Arne Schilling virtualcitySYSTEMS

Thomas H. Kolbe Berlin University of Technology

Dieter Hildebrandt Hasso Plattner Institute at the University of Potsdam

Jürgen Döllner Hasso Plattner Institute at the University of Potsdam

Mike McCann Monterey Bay Aquarium Research Institute

Jan Klimke Hasso Plattner Institute at the University of Potsdam

4 / 87

1 Scope

This OGC™ document specifies a standard service interface for web-based 3D geodata portrayal supporting a) delivery of

geometric 3D scene data and b) server-side 3D scene rendering. It is applicable to 3D geodata stores that want to target a range

of portrayal clients, or to 3D geodata portrayal clients that want to portray geodata from a range of compatible sources.

This standard intends to enable semantic interoperability in geospatial 3D portrayal services. That is, it represents 3D geodata

with potentially rich metadata and accompanying description of the technical requirements for portrayal thereof on a given client.

It adresses use cases such as 3D portrayal of geodata and requesting additional information at the user’s discretion. More details

about possible interoperability scenarions may be obtained from the 3DPIE report [OGC 12-075].

This standard does not define or endorse a transmission format for scenes or images. It is therefore not sufficient to enable

interoperability, but to determine automatically if interoperation is possible.

2 Conformance

This OGC interface standard targets at 3DPS 1.0 implementations, i.e. portrayal services and clients.

Requirements for 4 standardization target types are considered:

• Conformance class core, of http://www.opengis.net/spec/3DPS/1.0/conf-class/core, with a single pertaining requirements class,

core, of http://www.opengis.net/spec/3DPS/1.0/req/core.

• Conformance class scene, of http://www.opengis.net/spec/3DPS/1.0/conf-class/scene, with a single pertaining requirements

class, scene, of http://www.opengis.net/spec/3DPS/1.0/req/scene.

• Conformance class view, of http://www.opengis.net/spec/3DPS/1.0/conf-class/view, with a single pertaining requirements

class, view, of http://www.opengis.net/spec/3DPS/1.0/req/view.

• Conformance class info, of http://www.opengis.net/spec/3DPS/1.0/conf-class/info, with a single pertaining requirements class,

info, of http://www.opengis.net/spec/3DPS/1.0/req/info.

Conformance with this standard shall be checked using all the relevant tests specified in Annex A (normative) of this document.

The framework, concepts, and methodology for testing, and the criteria to be achieved to claim conformance are specified in the

OGC Compliance Testing Policies and Procedures and the OGC Compliance Testing web site.

In order to conform to this OGC™ interface standard, a software implementation shall implement the core conformance class

and one or more of scene and view conformance classes. It is also possible for a yet unspecified extension to be considered

sufficient for conformance as are the scene and view extensions. Such an extension shall be accepted as an addendum to this

standard, facilitate 3D portrayal and provide at least one conformance class that is dependent on the core conformance class.

Requirements URIs and conformance test URIs defined in this document are relative to http://www.opengis.net/spec/3DPS/1.0.

It has been brought to the SWGs attention that the omission of a baseline format has consequences for the testability of the

service specification and hence, the definition of conformance. Namely, in the case of the scene conformance class, no single

delivery format may be used to define or test conformance. However this mirrors the situation in the 3D modeling world and

seems unlikely to change soon. Thus, an abstract statement of conformance to the 3D portrayal service standard is to be seen as

a first step to make it easier to interoperate. A particular service instance may not work with a given client due to differences

in data encoding, format provisions employed or a focus on the image-based or scene-based conformance classes. However, a

client implementation will be able to tell reliably whether and how interoperation with a given service instance is possible.

3 Normative References

The following normative documents contain provisions that, through reference in this text, constitute provisions of this document.

For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. For undated references,

the latest edition of the normative document referred to applies.

http://www.opengis.net/spec/3DPS/1.0/conf-class/core
http://www.opengis.net/spec/3DPS/1.0/req/core
http://www.opengis.net/spec/3DPS/1.0/conf-class/scene
http://www.opengis.net/spec/3DPS/1.0/req/scene
http://www.opengis.net/spec/3DPS/1.0/conf-class/view
http://www.opengis.net/spec/3DPS/1.0/req/view
http://www.opengis.net/spec/3DPS/1.0/conf-class/info
http://www.opengis.net/spec/3DPS/1.0/req/info
http://www.opengis.net/spec/3DPS/1.0

5 / 87

WSC

Open Geospatial Consortium, OGC 06-121r9, OGC Web Services Common Standard, version 2.0

W3C XML 1.0

W3C Recommendation, Extensible Markup Language (XML) 1.0 (Fifth Edition), http://www.w3.org/TR/xml

IETF RFC 1738

IETF RFC 1738, Uniform Resource Locators (URL)

ISO/IEC 14977

ISO/IEC 14977:1996(E), Extended BNF

RFC 3986

IETF RFC 3986, Uniform Resource Identifier (URI): Generic Syntax

RFC 2046

IETF RFC 2046, N. Freed, N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, Nov.

1998

OGC KML

OGC 07-147r2, OGC KML, 2008

4 Terms and Definitions

For the purpose of this document, the terms and definitions given in the above references apply. In addition, the following terms

and definitions apply.

For the purposes of this document, the following additional terms and definitions apply.

Portrayal

presentation of information to humans. NOTE: This term is defined by [ISO 19117].

Scene, 3D scene

geometry and texture data that is to be portrayed.

View, 3D view

rendering result generated by projecting a 3D scene to a view plane.

5 Conventions

This sections provides details and examples for any conventions used in the document. Examples of conventions are symbols,

abbreviations, use of XML schema, or special notes regarding how to read the document.

5.1 Use of the terms "3D scene" and "3D view"

The term "3D scene" refers to a digital representation of geographic data that mainly composed from 3D graphics data, which is

also often referred to as 3D display elements.

The term "3D view" refers to a visual representation of a 3D scene that was created by a 3D rendering system and can be directly

perceived by humans.

5.2 Abbreviated terms

Most of the abbreviated terms listed in Sub-clause 5.3 of the OGC Web Services Common Standard [OGC 06-121r9] apply to

this document, plus the following abbreviated terms.

http://www.w3.org/TR/xml

6 / 87

3DPS 3D Portrayal Service

UML Unified Modeling Language

W3DS Web 3D Service

WVS Web View Service

5.3 UML notation

UML static structure diagrams appearing in this specification are used as described in Subclause 5.2 of OGC Web Service

Common [OGC 06-121r9].

5.4 Data dictionary tables

The UML model data dictionary is specified herein in a series of tables. The contents of the columns in these tables are described

in Subclause 5.5 of [OGC 06-121r9]. The contents of these data dictionary tables are normative, including any table footnotes.

5.5 Namespace prefix conventions

The following namespaces are used in this document (Table 3). The prefix abbreviations constitute conventions used here, but

are not normative. The namespaces to which the prefixes refer are normative, however.

Table 3: Namespaces used in this document.

Prefix Namespace URI Description

xsd http://www.w3.org/2001/XMLSchema XML Schema namespace

core http://www.opengis.net/3dps/1.0/core 3DPS Version 1.0 Core

scene http://www.opengis.net/3dps/1.0/-

scene

3DPS Version 1.0 Scene Extension

view http://www.opengis.net/3dps/1.0/view 3DPS Version 1.0 View Extension

info http://www.opengis.net/3dps/1.0/info 3DPS Version 1.0 Info Extension

6 3D Portrayal Service Overview

6.1 Overview

The 3D portrayal service standard (3DPS) is an OGC service implementation specification targeting the delivery of 3D portrayals

in an interoperable fashion. When client and service(s) involved share a common set of capabilities, it becomes possible to view

and analyze 3D geoinformation from diverse sources in a combined manner.

Major use cases include navigating in the represented scene, retrieving feature information, and analyzing detail information like

simulation results or other 3D spatial information provided using the service instances.

6.2 Historical background

In the OGC Military Pilot Project, Phase 1 (MPP-1) three-dimensional portrayal was defined as a new operation — GetView —

on a Web Map Service (WMS). As three-dimensional portrayal adds complexities that are out of scope of a WMS, a new Web

http://www.w3.org/2001/XMLSchema
http://www.opengis.net/3dps/1.0/core
http://www.opengis.net/3dps/1.0/scene
http://www.opengis.net/3dps/1.0/scene
http://www.opengis.net/3dps/1.0/view
http://www.opengis.net/3dps/1.0/info

7 / 87

Terrain Service (WTS) had been defined [OGC 01-061]. OGC-internally, the development of 3D portrayal capabilities led to

the proposals Web 3D Service (W3DS, serving 3D graphics data) and Web Perspective View Service (WPVS, serving rendered

image data), which was generalized and published as OGC Web View Service (WVS, OGC 09-166r2).

Subsequently, five service implementations of at least one of both standards, together with 5 clients (both tailored and general-

purpose), were subjected to the 3D portrayal interoperability experiment (3DPIE, final report published as OGC 12-075). It

emerged that several interoperability scenarios combining both approaches were indeed possible, and that the differences between

W3DS and WVS were significant but mostly reconcilable.

However, some weaknesses also emerged. For example, the problem of scaling to bigger geodata was tackled with the well-

known tiling technique. Tiling does not easily translate to geometric 3D data, and as a consequence there is no one-size-fits-all

solution. Despite this, the proposals put forward a limited but complex solution.

The 3DPS combines the essential parts of the proposed W3DS and WVS into one common interface. It intentionally does not

address some features, notably tiling, to the degree previous approaches did. However the 3D portrayal working group recognizes

the potential of tiling and welcomes work on standardisation to support tiling orthogonally to this standard.

In particular, any kind of approach that is based an spatial index transmission format (as could be negotiated and delivered through

a 3DPS implementation) will likely work well in a 3DPS service implementation and benefit from the rich metadata provided

though OGC Web Service Common, the portable negotiation of format-specific idiosyncrasies and the seamless transition to

server-side rendering offered by 3DPS. Several such formats are standardised, for example [OGC KML]. At the time of this

writing, multiple efforts to set industry standards that address the problem of tiling and indexing 3D geodata are also under way.

6.3 Design of this standard

For this first version of a 3D portrayal service standard, the goal was to find a unifying core of 3D portrayal tasks that can be

standarized as OGC Web Service Common (WSC) based requests in that they provide potential for interoperability, do not limit

the possible implemetations too much, and retain wiggle room for upcoming technologies. It is considered in-scope to define how

instances of this specification may establish interoperability in their particular case, but it is considered out-of-scope to define a

single baseline for interoperability.

For example, it was clear that new approaches that stream images from live 3D renderings as moving pictures or 3D scenes as a

flow of geometries could not be expected to be amenable to standardisation efforts at the time.

At the same time, refinement of scenes or 3D (building) representations beyond multiple representations-based approaches were

not in the base discussion papers and had to be left out due to lack of agreement on the semantics of such approaches.

3D portrayal, in particular the scalable sort, poses specific challenges to the design of the underlying data storage and query

capabilities which are partly subject to this standard and partly have to be left to implementations simply as there is no stable

standardisation target yet. Thus, it is expected that the number of actually interoperable implementations will lag behind adoption

numbers, especially for the scene-based approach (as represented by the scene conformance class). Image-based portrayal, on

the other hand, is easier to standardise due to well-established image formats.

This background is reflected in the standard by means of several design decisions. The standard

• defines two portrayal modes with a common core, to stay adaptable to the moving target of 3D content representation and

distribution technologies

• re-uses existing format capabilities for delay-loading scene parts (tiling and streaming)

• defines many semantics as open lists of capabilities to provide flexible semantics

• favours the possibility of determining interoperability of given implementations over decisions which would actually enhance

interoperability, to leave enough room for future innovation.

While these are relatively defensive design goals, the SWG believes this set represents a good way to a useful first interface

supporting interoperable service-based 3D portrayal. The goal of 3DPS is to find out if actual interoperation is possible, i.e. to

automate matching 3D portrayal clients to services.

8 / 87

6.4 Interoperability scenarios

The interoperability scenarios this standard enables mirror those demonstrated in the 3DPIE (see OGC 12-075), namely:

• Linking W3DS and WVS (Experiment 2 1; Section 7.3.2.2)

• Integration of multiple W3DS in a 3D client (Experiment 3; Section 7.3.2.3)

• W3DS/WVS for browser-based portrayal (Experiment 4; Section 7.3.2.4)

• W3DS/WVS for mobile portrayal (Experiment 5; Section 7.3.2.5)

It is expected that more interoperability scenarios are possible, but these are the practically proven scenarios.

7 3DPS Service Model

7.1 3DPS Operation Types

The specified 3D Portrayal Service (3DPS) provides geometric 3D graphics data and/or rendered images. Thus, it supports two

fundamental 3D portrayal schemes and associated client/server configurations.

The 3D Portrayal Service interface specifies the following operations that may be invoked by a 3DPS client and performed by a

3DPS service.

a. GetCapabilities — This operation allows a client to request information about a service’s capabilities and scene information

offered.

b. AbstractGetPortrayal (abstract) — This is the abstract operation that forms basis for and common parameters of the 3DPS

operations GetScene and GetView.

c. GetResourceById — This operation allows a client to request arbitrary resources, as indicated by the service.

d. GetScene — This operation allows a client to retrieve a 3D scene represented as 3D geometries and texture data, organized

as a scene graph and/or spatial index.

e. GetView — This operation allows a client to retrieve a 3D view of a scene represented as images.

f. GetFeatureInfo — This operation allows a client to retrieve more information about portrayed features.

1 Experiment 1 is out of scope

9 / 87

Figure 1: 3DPS UML class diagram

Figure 1 is a simple UML diagram summarizing the 3DPS interface. This class diagram shows that the 3DPS interface class

inherits the GetCapabilities operation from the OGCWebService interface class and adds the 3DPS operations.

A client should first, during a sequence of 3DPS requests, issue a GetCapabilities request to the service to obtain an up-

to-date listing of available data. To retrieve a vector representation or image representation of the data, a client will then perform

one or more GetScene or GetView requests. If the client needs non-portrayal information (attributes) of one of the features, he

will issue one of the GetFeatureInfo operations, depending on service capabilities and the information that is available to the

client.

7.2 3DPS Service Handling

The AbstractGetPortrayal, the GetScene and the GetView request types make use of the RequestBase structure which mimics

the OWS Common [06-121r9] RequestBase data structure with the following adoptions, as shown in Figure 2 and Table 4:

• Attribute service contains the 3DPS service name, which is fixed to the string “3DPS”.

• Attribute version contains the 3DPS version number, which is fixed to the string “1.0”.

10 / 87

Figure 2: 3DPS RequestBase data structure UML class diagram

Table 4: 3DPS RequestBase components.

Name Definition Data type Multiplicity

service

Service

Service name String, fixed to "3DPS" one (mandatory)

version

Version

Standard version for

operation

String, fixed to "1.0" one or more (mandatory)

All 3DPS requests, except GetCapabilities, shall use a data structure which is a subtype of RequestBase.

For all 3DPS requests, the request service parameter shall have a fixed value of "3DPS".

For all 3DPS requests, the request version parameter shall have a fixed value of "1.0".

7.3 Coordinate Reference Systems (CRS)

This standard uses several CRS types. The two most important CRS types are the request CRS and the layer CRS. There might

also be a bounding box CRS that is different from the request CRS.

Since CRS transformation and conversion is not necessarily feasible for some given client, it is recommended for an implemen-

tation to ensure a common CRS exists that is available on every layer.

Table 5: 3DPS Coordinate Reference System Types

Name Definition

Request CRS The CRS specified after the CRS parameter of a request. It is being considered for viewpoints

and bounding boxes in request parameters and as the primary CRS in the response.

Bounding box CRS A Bounding box may be given with an explicit CRS specification. The bounding box CRS is

either the explicitly specified CRS of the bouding box, or the request CRS.

Layer CRS The Layer CRS is (one of) the CRS in which a particular layer is represented. Depending on

service capabilities, data from the layer may not be requested if the request CRS is not one of

the layer CRSes.

Viewpoint CRS The viewpoint CRS is the CRS in which a viewpoint is defined.

11 / 87

7.3.1 Vertical Datum

In addition, the issue of a vertical datum is important for 3D portrayal because it defines the third dimension. At the time of

this writing, there is no agreement on how to specify a vertical datum in service interfaces, so the vertical datum is implied in

many cases. To enable communicating the vertical datum assumed by a service instance, each layer that holds height data shall

advertise the vertical datum as a CRS. This CRS is then implied in requests querying the layer.

If no such CRS is specified, the vertical datum should be considered unknown, with undefined behaviour potentially ensuing.

Note

This approach is subject to change as agreement is reached on handling vertical CRS in geospatial services.

8 3DPS Core

8.1 Shared aspects

8.1.1 Position2D data structure

As defined in Table 6 , Position2D consist of two coordinates. If any of these coordinates is missing or empty, a 3DPS service

shall raise an InvalidParameterValue with the name of the parent element (in case of XML request) or the containing parameter

(in case of HTTP GET request).

Table 6: Parameters in Position2D data structure

Names Definition Data type and values Multiplicity and use

x1

X1

First position coordinate,

in request CRS

Number type

Origin and units specified by CRS

One (mandatory)

x2

X2

Second position

coordinate, in request

CRS

Number type

Origin and units specified by CRS

One (mandatory)

8.1.2 Position3D data structure

As defined in Table 7 , Position3D consist of three coordinates. If any of these coordinates is missing or empty, a 3DPS service

shall raise an InvalidParameterValue with the name of the parent element (in case of XML request) or the containing parameter

(in case of HTTP GET request).

Table 7: Parameters in Position3D data structure

Names Definition Data type and values Multiplicity and use

x1

X1

First position coordinate,

in request CRS

Number type

Origin and units specified by CRS

One (mandatory)

x2

X2

Second position

coordinate, in request

CRS

Number type

Origin and units specified by CRS

One (mandatory)

x3

X3

Third position

coordinate, in request

CRS

Number type

Origin and units specified by CRS

One (mandatory)

12 / 87

8.2 GetCapabilities operation (mandatory)

A GetCapabilities operation, as required by OWS Common [OGC 06-121r9], allows a 3DPS client to retrieve service and scene

metadata offered by a 3DPS server.

A core:GetCapabilities request shall consist of a core:GetCapabilities structure as defined in Figure 3 and Table 8.

8.2.1 GetCapabilities Request

The mandatory GetCapabilities operation allows clients to retrieve service metadata from a service. The response to a Get-

Capabilities request shall be an XML document containing service metadata about the service, including specific information

about layers and portrayal capabilities. This clause specifies the XML document that a 3DPS instance shall return to describe its

capabilities and contents.

Figure 3: 3DPS core:GetCapabilities request UML class diagram

Table 8: 3DPS core:GetCapabilities request components

Name Definition Data type Multiplicity

service

Service

Service name Character String type,

fixed to "3DPS"

one (mandatory)

13 / 87

8.2.2 GetCapabilities Response

A 3DPS metadata document consists of metadata as defined in Section 7.4.2 of OWS Common [OGC 06-121r9] section 7.4.2, a

Contents section, and a PortrayalCapabilities section.

Requirement 1: http://www.opengis.net/spec/3DPS/1.0/req/service/core/getcapabilities/response/structure

The response to a successful core:GetCapabilities request shall be based on a core:Capabilities structure as defined in Figure 4,

Table 9, Figure 5, Table 10 and Table 13.

Figure 4: 3DPS Capabilities UML class diagram

Table 9: Components of the core:Capabilities structure

Name Definition Data type Multiplicity

ServiceIdentification Metadata about this specific service. The

schema of this section shall be the same as

for all OWSs, as specified in Subclause 7.4.4

and owsServiceIdentification.xsd of [OGC

06-121r9].

as defined in [OGC

06-121r9]

as defined in [OGC

06-121r9]

14 / 87

Table 9: (continued)

Name Definition Data type Multiplicity

ServiceProvider Metadata about the organization operating

this service. The schema of this section shall

be the same for all OWSs, as specified in

Subclause 7.4.5 and owsServiceProvider.xsd

of [OGC 06-121r9].

as defined in [OGC

06-121r9]

as defined in [OGC

06-121r9]

OperationsMetadata Metadata about the operations specified by

this service and implemented by this service,

including the URLs for operation requests.

The basic contents and organization of this

section shall be the same as for all OWSs, as

specified in Subclause 7.4.6 and

owsOperationsMetadata.xsd of [OGC

06-121r9].

as defined in [OGC

06-121r9]

as defined in [OGC

06-121r9]

Contents Information about the 3D data content

offered through this service

Contents type zero or one

PortrayalCapabilities Information about the portrayal capabilities

of this service

PortrayalCapabilities

Type

zero or one

8.2.2.1 Contents

The Contents section provides details about data layers that can be requested for portrayal. Its structure is extended from the

Contents definition in OWS Common [OGC 06-121r9] by extending types referenced in it.

If a service does not offer any discriminate layers, it should make a best effort to emit a default layer that summarizes its offerings.

15 / 87

Figure 5: 3DPS core:Contents and core:Layer and UML class diagram

Table 10: Components of the core:Contents structure

Name Definition Data type Multiplicity

Layer Metadata describing a data set available from

this service

Layer data structure,

see Table 11

Zero or more

(optional)

Include as much as

layers shall be

advertised

16 / 87

Table 11: Parts of core:Layer structure

Name Definition Data type Multiplicity

title

Title

Title of this dataset, human readable LanguageString,

see [OGC 06-121r9]

clause 10.7

One (mandatory)

abstract

Abstract

Brief narrative description of this dataset LanguageString,

see [OGC 06-121r9]

clause 10.7

Zero or one (optional)

keywords

Keywords

Unordered list of one or more commonly

used or formalised word(s) or phrase(s) used

to describe this dataset

ows:Keywords

type

Zero or one (optional)

One for each keyword

authority used

identifier

Identifier

Unambiguous identifier of this dataset,

unique for this service

Character String

type, not empty

Zero or one (optional)

Include when may

need to reference this

dataset

metadata

Metadata

Reference to more metadata about this layer ows:Metadata, see

[OGC 06-121r9],

Table 35

Zero or more (include

when useful)

wgs84BoundingBox

WGS84BoundingBox

Minimum bounding rectangle surrounding

dataset, specified in WGS 84 CRS with

decimal degrees and longitude before

latitude a,c

OWS Common::WGS

84BoundingBox

Zero or more

(optional)

Include when useful

or needed

boundingBox

BoundingBox

Minimum bounding rectangle surrounding

dataset, in available CRS b,c
OWS Common::

BoundingBox

Zero or more

(optional)

Include when relevant

and available, ideally

at least one per

available CRS

layer

Layer

Metadata describing one subsidiary dataset

available from this service

Layer data structure,

see this Table

Zero or more

(optional)

One for each

subsidiary Layer

availableCRS

AvailableCRS

Coordinate reference system in which data

from this layer may be requested

URI One or more

(mandatory)

availableLOD

AvailableLOD

LOD values that hold data for this layer. xs:Name Zero or more

(optional)

deliveryOption

DeliveryOption

The delivery options available when

requesting the layer. Empty means none are

available.

xs:Name Zero or more

(optional)

availableStyle

AvailableStyle

Style available for this layer Style data structure,

see Table Table 12

Zero or more

(optional)

extensions

Extensions

Hook for layer extensions Extensions type zero or one (optional)

a This WGS84BoundingBox can be approximate, but should be as precise as practical. If multiple WGS84 bounding

boxes are included, this shall be interpreted as the union of the areas of these bounding boxes.
b More generally, definition of the horizontal, vertical, and temporal extent of this specific dataset. Zero or more

BoundingBoxes are allowed in addition to one or more WGS84BoundingBoxes to allow more precise specification of the

Dataset area in AvailableCRSs
c If multiple bounding boxes are included having the same CRS, they shall be interpreted as their spatial union.

17 / 87

Table 12: Parts of core:Style structure

Name Definition Data type Multiplicity

title

Title

Title of this style, human readable LanguageString,

see [OGC 06-121r9]

clause 10.7

One (mandatory)

abstract

Abstract

Brief narrative description of this style LanguageString,

see [OGC 06-121r9]

clause 10.7

Zero or one (optional)

keywords

Keywords

Unordered list of one or more commonly

used or formalised word(s) or phrase(s) used

to describe this style

ows:Keywords

type

Zero or one (optional)

One for each keyword

authority used

identifier

Identifier

Unambiguous identifier of this style, unique

for this service

Character String

type, not empty

One (mandatory)

isDefault

IsDefault

This style is used when no style is specified

for this layer in the request

Boolean type Zero or one (optional)

Default is “true”

AvailableCRS

Every Layer is available in one or more layer coordinate reference systems.

In order to indicate which Layer CRSs are available, every named Layer shall have at least one <CRS> element that is either

stated explicitly or inherited from a parent Layer. The root <Layer> element shall include a sequence of zero or more CRS

elements listing all CRSs that are common to all subsidiary layers. A child layer may optionally add to the list inherited from a

parent layer. Any duplication shall be ignored by clients.

When a Layer is available in several coordinate reference systems, the list of available CRS values shall be represented as a

sequence of <CRS> elements, each of which contains only a single CRS name.

EXAMPLE: <CRS>CRS:84</CRS> <CRS>EPSG:26718</CRS>.

AvailableLOD

Each layer may advertise a set of “levels of detail” present on that layer. Usually they are organized in one or more LOD Schemes,

see AvailableLODScheme. The LOD scheme describes attributes to the individual levels of detail so a client is able to process

and use them adequately.

Each LOD is described in a separate LOD node containing a unique identifier, title, description, and the actual value or magnitude

of the LOD. This value is a URI consisting of a prefix and the actual numeric value, separated by a colon, e.g. "CityGML:1".

The prefix indicates the spectrum of possible values and how these values should be interpreted, and conventionally is fixed per

LODScheme node.

The numeric value indicates the actual “level” of detail on that ordinal scale. The scale values have a total order, which is

connexive (a > b or a < b or a = b) and transitive (a > b > c implies a > c), but no interval or metric may be derived from the

values. For instance, “CityGML:4” is more accurate than “CityGML:2”, but not necessarily twice as accurate. The order of the

LOD nodes within the LODScheme node is not defined, but it is recommended to use an order increasing by the LODValue, from

lower to higher levels of detail.

AvailableStyle

Each layer may advertise layer-specific styles (service styles) which modify the appearance of feature representations retrieved

through the 3DPS AbstractGetPortrayal operation. The style’s Identifier is used in an AbstractGetPortrayal request parameter

Styles. If only a single style is available, that style is known as the “default” style and does not need to be advertised by the

service. The data structure of Style is listed in Table 12. Each style consists of an Identifier, a Title which may be presented to

the user, an Abstract and a list of Keywords. The Abstract should give a brief narrative description of how the visualization is

influenced by the style.

Extensions

Component Extensions is provided as a canonical place for extensions to define layer-specific metadata and can be used, e.g., by

3DPS extension modules as a hook for operation-specific layer extensions.

18 / 87

8.2.2.2 PortrayalCapabilities

The PortrayalCapabilities UML is included in Figure 4.

Table 13: 3DPS core:PortrayalCapabilities components

Name Definition Data type Multiplicity

deliveryOptions

DeliveryOptions

Delivery options supported when

requesting this layer

Non-empty list of

DeliveryOption type,

see Table 14

One or more

(optional)

availableLODScheme

AvailableLODScheme

Name of the LOD scheme this

layer supports

xs:string One (mandatory)

supportsBoundingBoxConversion

SupportsBoundingBoxConversion

Flag indicating if the Server can

convert non-advertised

BoundingBoxes

Boolean type

(true/false)

Zero or one (optional)

backgrounds

Backgrounds

Metadata describing backgrounds

that can be used for portrayal

generation

Non-empty list of

Background type, see

Table 15

One or more

(optional)

viewpointHints

ViewpointHints

Metadata describing meaningful

viewpoints and settings of the

virtual camera

Non-empty list of

ViewPoint type, see

Table 16

One or more

(optional)

extensions

Extensions

Hook for layer extensions Extensions type zero or one (optional)

Table 14: 3DPS core:DeliveryOptions

Name Definition Data type Multiplicity

name

Name

xs:Name The name used to refer to the

delivery option

One (Mandatory)

identifier

Identifier

ows:CodeType A code representing the delivery

option.

One (mandatory)

format

Format

ows:MimeType A format which supports the delivery

option. Empty means no restriction.

Zero or one (optional)

Table 15: Parts of core:Background structure

Name Definition Data type Multiplicity

title

Title

Title of the background, normally

used for display to a human

Language String data structure, see

[OGC 06-121r9] clause 10.7

One (mandatory)

abstract

Abstract

Brief narrative description of this

background, normally available for

display to a human

Language String data structure, see

[OGC 06-121r9] clause 10.7

Zero or one

(optional)

identifier

Identifier

Unambiguous identifier of this

background, unique for this 3DPS

service

Character String type, not empty Zero or one

(optional)

Include when may

need to reference

this dataset

19 / 87

Table 16: Parts of core:Viewpoint structure

Name Definition Data type Multiplicity

title

Title

Title of the viewpoint, normally used

for display to a human

Language String data structure, see

[OGC 06-121r9] clause 10.7

One (mandatory)

abstract

Abstract

Brief narrative description of this

background, normally available for

display to a human

Language String data structure, see

[OGC 06-121r9] clause 10.7

Zero or one

(optional)

identifier

Identifier

Unambiguous identifier of this

background, unique for this 3DPS

service

Character String type, not empty Zero or one

(optional)

Include when may

need to reference

this dataset

viewpointComponentsCamera and projection specification

for generating the desired portrayal

ProjectionBaseType, not empty

E.g., PerspectiveProjection

OrthographicProjection,

see

DeliveryOptions

A delivery option is an optional mode that affects how the implementation serves its data. For example, whether the service sends

a full textured building or some down-scaled variant that looks alike from a distance may be controlled using a delivery option.

Similarly, whether it sends a color image or relative depth from a given viewpoint might be controlled this way.

The goal of delivery options is to be able to broker the best-performing exchange mode between a client and a service instance

without causing malfunction due to interoperability issues. If an implementation has special features geared towards specific

clients, e.g. an optimized streaming option for terrain data, it should use the delivery option as a marker on the layers that support

the feature. Clients are expected to possess a positive list of delivery options they support, and to only ask for delivery options

they are ready to support.

Delivery options are a way to safeguard tweaks, optimizations and other means necessary for performance but detrimental to

interoperability. Delivery options help to establish interoperability and improve performance in more complex settings, e.g.

involving multiple service instances, by making communications more transparent, predictable, and thus dependable.

Interoperability considerations Similar to the Format parameter, availability of delivery options may affect the potential for

interoperability with a given client. Unlike the Format parameter, delivery options may co-exist in a single request, they may or

may not not be subject to interoperability considerations, and finally, delivery options do not require (but benefit from) a shared

understanding of the available options. Accordingly, some delivery options may be sensible only in specific clients, uncommon

format profiles, or depend on other specific circumstances a given client does not know about.

Clients should match the service-provided list of delivery options with an internal list of desired mechanisms, and generally

refrain from requesting unsupported or unwanted delivery options. Delivery options may have an impact on interoperability, but

there seems to be no general way of communicating the pitfalls or benefits associated with them. This standard therefore just

gives deliver options names and URIs that hopefully serve to safely determine the (absence of) potential for interoperability.

Discussion The intent behind delivery options is to provide safe means of establishing interoperability. That is, if a client may

communicate and portray properly data from a set or subset of service instances should be know in advance, and not through user-

observed or silent failure. MIME types, formats and their profiles alone are not well-suited to capture the fast-paced evolution in

3D portrayal in the detail required to establish interoperability. In lieu of a commonly accepted mechanisam to do that, delivery

options enable safeguarding the development of improved mechanisms so interoperability can be safely determined by machines.

The same goals could be achieved by using MIME types and parameters (e.g. RFC 2231), but while MIME has interoperability

as a goal, performance or bandwidth are not generally seen as a concern for MIME. Moreover, many of the practically working

approaches encompass several formats, making the reliance on MIME types artificial. Dropping back to naming profiles on

MIME types which are to be standardised as well to provide scope for interoperability.

Given these considerations, the “delivery options” approach seems a much more workable way of addressing the current diversity

of mechanisms. Interoperability may be assessed by humans and can be implanted (in a backwards-compatible manner) into

clients because each delivery option is associated with multiple URIs treated as aliases, some of which may serve backwards

20 / 87

compatibility. Thus, implementers of this standard may safely evolve their designs as long as they make breaking changes visible

through delivery options.

AvailableLODScheme

The LODScheme child node describes a set of Levels of Detail that can be provided by the layer (see Figure 5). A layer may

contain objects in several representations to choose from. In this document, the term LOD always refers to the concept of discrete

Levels of Detail, meaning that any given geographic feature may have multiple geometric representations. These representations

can be considered independent of each other, for the purpose of portrayal.

For instance, a building may be represented as simple box geometry, as a geometry with additional façade textures, as a group

containing elements for walls, roofs, windows, doors, or even the complete room interior. Each of these representations describes

the same geographic feature and can therefore be stored in the same layer. However, it is not necessary that all LODs are

consistently available for each feature. A Client may assemble his scene graph from subsets of the same layer having different

LODs and thus adjust the workload placed on the graphics pipeline.

Each LOD scheme (of which there may be one or more) defines a full order of LOD definitions. The exact meaning of individual

LOD levels remains out of scope for the purposes of this standard. However, the order should, on average, reflect the complexity

of members of a certain level of detail definition.

Informative: The commonly understood LOD definitions of CityGML can be found in [08-007r1] clause 6.2, and are specified

in Table 20.

SupportsBoundingBoxConversion

True if the service instance supports conversion of bounding boxes from the request CRS into appropriate layer CRSes for query.

Backgrounds

Backgrounds is a non-empty list containing Background elements as described in Table 15.

Viewpoints

The parameter value contains a comma separated list of tuple values for defining for each viewpoint a) a name, b) the Point of

Interest (POI), c) the Point of Camera (POC), d) the up vector (UP), and e) the Field of View (FOV). Thus 11 values are used

to define one viewpoint. In case of multiple viewpoints, all values are appended to the list consecutively. The list of Viewpoints

parameter values shall be divisible by 11.

Template:

Viewpoints=NAME,POIx,POIy,POIz,POCx,POCy,POCz,UPx,UPy,UPz,FOV

All tuple values refer to the spatial reference system specified by the CRS parameter. The FOV is specified in arc degrees.

Extensions

Component Extensions is provided as a canonical place for extensions to define service metadata and can be used, e.g., as a hook

for operaton-specific service metadata by 3DPS extension modules.

8.2.3 GetCapabilities Exceptions

If a 3DPS service encounters an error while performing a GetCapabilities operation, it shall return an exception report message

as specified in Subclause 7.4.1 of [OGC 06-121r9].

8.3 Capabilities document XML encoding

A XML schema fragment for a service metadata document extends OWS CapabilitiesType in owsCommon.xsd of [OGC 06-

121r9] as refined for the 3DPS, and may be reviewed under Section 13.

As indicated, this XML Schema Document uses the owsServiceIdentification.xsd, owsServiceProvider.xsd,

and owsOperationsMetadata.xsd schemas specified in [OGC 06-121r9]. It also uses XML Schema Documents for the

Contents and PortrayalCapabilities sections of the Capabilities XML document, which are split per target namespace as listed in

Table 17. All these XML Schema Documents contain documentation of the meaning of each element, attribute, and type, and

this documentation shall be considered normative as specified in Subclause 11.6.3 of [OGC 06-121r9].

21 / 87

Table 17: Namespaces and their schema files

Namespace URI Schema file

http://www.opengis.net/3dps/1.0/core 3dps-core.xsd

http://www.opengis.net/3dps/1.0/scene 3dps-scene.xsd

http://www.opengis.net/3dps/1.0/view 3dps-view.xsd

http://www.opengis.net/3dps/1.0/info 3dps-info.xsd

8.3.1 Sample GetCapabilities request and response

EXAMPLE: A GetCapabilities request may look like this:

http://www.example.com/3dps?SERVICE=3DPS&ACCEPTVERSIONS=1.0&REQUEST=GETCAPABILITIES

EXAMPLE: The response to a valid GetCapabilities request may look like this:

<?xml version="1.0" encoding="UTF-8"?>

<ps:Capabilities xmlns:ows="http://www.opengis.net/ows/2.0" xmlns:ps="http://www.opengis. ←֓

net/3dps/1.0"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.opengis.net/3dps/1.0 ../../../schema/3dpResp.xsd" version=" ←֓

1.0.0">

<ows:ServiceIdentification>

<ows:Title>3DPS Example Implementation</ows:Title>

<ows:Abstract>A 3DPS Example</ows:Abstract>

<ows:Keywords>

<ows:Keyword>3D</ows:Keyword>

<ows:Keyword>Portrayal</ows:Keyword>

</ows:Keywords>

<ows:ServiceType codeSpace="OGC">3DPS</ows:ServiceType>

<ows:ServiceTypeVersion>1.0.0</ows:ServiceTypeVersion>

<ows:Profile>default</ows:Profile>

<ows:Fees>none</ows:Fees>

<ows:AccessConstraints>none</ows:AccessConstraints>

</ows:ServiceIdentification>

<ows:ServiceProvider>

<ows:ProviderName>Fraunhofer IGD</ows:ProviderName>

<ows:ProviderSite xlink:href="http://www.igd.fraunhofer.de/en/Institut/Abteilungen/ ←֓

GEO" />

<ows:ServiceContact>

<ows:PositionName>Geographic Information Management</ows:PositionName>

<ows:ContactInfo>

<ows:Address>

<ows:ElectronicMailAddress>geo@igd.fraunhofer.de</ ←֓

ows:ElectronicMailAddress>

</ows:Address>

</ows:ContactInfo>

</ows:ServiceContact>

</ows:ServiceProvider>

<ows:OperationsMetadata>

<ows:Operation name="GetScene">

<ows:DCP>

<ows:HTTP>

<ows:Get xlink:href="http://example.com/ogc/3dps?" />

</ows:HTTP>

http://www.opengis.net/3dps/1.0/core
http://www.opengis.net/3dps/1.0/scene
http://www.opengis.net/3dps/1.0/view
http://www.opengis.net/3dps/1.0/info
http://www.example.com/3dps?SERVICE=3DPS&ACCEPTVERSIONS=1.0&REQUEST=GETCAPABILITIES

22 / 87

</ows:DCP>

<ows:Parameter name="exceptions">

<ows:AllowedValues>

<ows:Value>text/xml</ows:Value>

<ows:Value>application/vnd.ogc.se_xml</ows:Value>

<ows:Value>application/vnd.ogc.se_blank</ows:Value>

<ows:Value>blank</ows:Value>

<ows:Value>errormarker</ows:Value> <!-- custom extension -->

</ows:AllowedValues>

<ows:DefaultValue>text/xml</ows:DefaultValue>

<ows:Meaning>the type of exception report expected for a request</ ←֓

ows:Meaning>

</ows:Parameter>

<ows:Parameter name="NoData">

<ows:AllowedValues>

<!-- empty as an allowed value mirrors supportsNoData -->

<ows:Value>empty</ows:Value>

<ows:Value>blank</ows:Value>

</ows:AllowedValues>

<ows:DefaultValue>empty</ows:DefaultValue>

<ows:Meaning>what to do if no data is present in the response</ows:Meaning>

</ows:Parameter>

<!-- the following are part of the standard and may be omitted -->

<ows:Parameter name="crs">

<ows:Meaning>the coordinate reference system the client expects the ←֓

response to be encoded in</ows:Meaning>

</ows:Parameter>

</ows:Operation>

<ows:Operation name="GetView">

<ows:DCP>

<ows:HTTP>

<ows:Get xlink:href="http://example.com/ogc/3dps?" />

</ows:HTTP>

</ows:DCP>

<ows:Parameter name="exceptions">

<ows:AllowedValues>

<ows:Value>text/xml</ows:Value>

<ows:Value>application/vnd.ogc.se_xml</ows:Value>

<ows:Value>application/vnd.ogc.se_inimage</ows:Value>

<ows:Value>application/vnd.ogc.se_blank</ows:Value>

<ows:Value>blank</ows:Value>

</ows:AllowedValues>

<ows:DefaultValue>text/xml</ows:DefaultValue>

<ows:Meaning>the type of exception report expected for a request</ ←֓

ows:Meaning>

</ows:Parameter>

<ows:Metadata>

<ows:AdditionalParameter>

<ows:Name>unspecifiedParameter</ows:Name>

<ows:Value></ows:Value>

</ows:AdditionalParameter>

</ows:Metadata>

</ows:Operation>

<ows:Parameter name="boundingBox">

<ows:AnyValue/>

</ows:Parameter>

<!-- TODO list all parameters -->

</ows:OperationsMetadata>

<Contents>

<Layers>

<ows:Identifier>layer1</ows:Identifier>

<ows:BoundingBox>

23 / 87

<ows:LowerCorner></ows:LowerCorner>

<ows:UpperCorner></ows:UpperCorner>

</ows:BoundingBox>

<ows:OutputFormat>text/xml</ows:OutputFormat>

<ows:OutputFormat>model/x3d+xml</ows:OutputFormat>

<LodScheme>CityGML</LodScheme>

</Layers>

<Layers>

<ows:Identifier></ows:Identifier>

<ows:BoundingBox>

<ows:LowerCorner></ows:LowerCorner>

<ows:UpperCorner></ows:UpperCorner>

</ows:BoundingBox>

<ows:OutputFormat>text/xml</ows:OutputFormat>

<ows:OutputFormat>model/x3d+xml</ows:OutputFormat>

<LodScheme>CityGML</LodScheme>

</Layers>

</Contents>

<Portrayal>

<OverallStyles>wireframe</OverallStyles>

<OverallStyles>dynamicSky</OverallStyles>

<OverallStyles>energyLossEstimation</OverallStyles>

<LodScheme>

<Name>CityGML</Name>

<Identifier codeSpace="http://www.opengis.net/3dps/1.0">CityGML</Identifier>

<Items>CityGML:0</Items>

<Items>CityGML:1</Items>

<Items>CityGML:2</Items>

<Items>CityGML:3</Items>

<Items>CityGML:4</Items>

</LodScheme>

<LodScheme>

<Name>custom</Name>

<Identifier codeSpace="http://example.com">ExampleCustomLod</Identifier>

<Items>boundingBox</Items>

<Items>simplified</Items>

<Items>full</Items>

</LodScheme>

<SupportsNoData>true</SupportsNoData>

<SupportsBoundingBoxConversion>true</SupportsBoundingBoxConversion>

</Portrayal>

</ps:Capabilities>

8.4 AbstractGetPortrayal Operation (abstract)

The abstract core:AbstractGetPortrayal operation specifies the commonality between the two represented approaches,

3D scene-graph delivery and rendered image delivery. The actual operations (serving a particular approach) shall be defined by

adding parameters and specifying those not concretized in the AbstractGetPortrayal operation.

This operation is not to be implemented directly.

8.4.1 AbstractGetPortrayal Request

A core:AbstractGetPortrayal request shall consist of a core:AbstractGetPortrayal structure as defined in

Figure 6 and Table 18. This applies only to actual implementations of the request.

core:GetCapabilities structure

Figure 6: 3DPS core:AbstractGetPortrayal operation request UML class diagram

24 / 87

Table 18: Parameters of the AbstractGetPortayal operation.

Names Definition Data type and values Multiplicity and

use

service

Service

Service type identifier String, fixed to “3DPS” One (mandatory)

request

Request

Operation name String,

value to be specified by concrete

operations

One (mandatory)

version

Version

Standard version for operation String, not empty Value is

specified by each Implementation

Standard and Schemas version

One (mandatory)

crs

CRS

Primary CRS anyURI as defined in [OGC

06-121r9] clause 10.3

One (mandatory)

boundingBox

BoundingBox

Bounding box surrounding selected

dataset, in available CRS.

BoundingBox data structure, see

[OGC 06-121r9] clause 10.2.

to be specified per

operation

spatialSelection

SpatialSelection

Indicates method of selecting objects

with BoundingBox

String, not empty. Value is one of

“contains_center”, “overlaps”, “cut”.

Default is “overlaps”.

to be specified per

operation

layers

Layers

List of layer to retrieve the data from StringList type, comma

separated list of layer Identifiers

One (mandatory)

styles

Styles

List of service styles to be applied to

the layers

StringList, comma-separated list

of one rendering style per requested

layer

Zero or one

(optional)

background

Background

Identifier of desired background Character String type, not empty

Values are specified in service

metadata

Zero or one

(optional)

Include when

background

desired

lods

LODs

List of LODs requested for the layers StringList, comma separated list

of URIs

Zero or one

(optional)

lodSelection

LODSelection

Indicates method for selecting LODs String, Values are specified in

service metadata

Zero or one

(optional)

overallStyles

OverallStyles

Identifier(s) of desired overall scene

style(s)

StringList, not empty Values are

specified in service metadata

Zero or one

(optional) Include

when overall

styling desired

deliveryOptions

DeliveryOptions

Names of the delivery options

requested by the client

StringList, comma separated list

of URIs

Zero or more

(optional)

exceptions

Exceptions

Format of exceptions ows:MimeType, see [OGC 06-121r9]

clause 10.5

Zero or one

(optional)

8.4.1.1 CRS

The parameter value for the coordinate reference system (CRS) is defined in [OGC 06-121r9] clause 10.3 and [OGC 04-046r3].

If a 2D CRS is used, the height reference is taken from the layer’s vertical datum.

The given CRS is considered to be in effect for the operation query and response. In particular, it will be considered as the CRS

for the bounding box if that is not specified explicitly. See Section 7.3 for details.

8.4.1.2 BoundingBox

The BoundingBox parameter allows a Client to request a particular spatial subset.

25 / 87

It defines the coordinates of the bounding box corners in at least 2 dimensions and, optionally, the CRS in which they are

specified. The CRS given is relevant only to the query and defaults to the one given with the CRS parameter.

If a 3DPS service supports boundingBox CRSs other than available Layer CRS, this capability should be advertised in the

Capabilities.

The BoundingBox data structure is defined in [OGC 06-121r9] clause 10.2. The units, ordering and direction of increment of

the x1, x2 and x3 axes are as defined by the CRS parameter.

If the BoundingBox values are not defined for the given CRS (e.g., latitudes greater than 90 degrees in CRS:84), the service

shall treat this as an error. If a request contains an invalid bounding box (e.g., one whose minimum x1 is greater than the

maximum x1) the service shall treat this as an error. No axis wrap-around behaviour should be assumed.

8.4.1.3 SpatialSelection

The default selection method is that any features that are partly or entirely contained in the BoundingBox shall be returned.

If a spatial selection method other than intersecting the BoundingBox with the feature’s spatial extent is desired, the SpatialSelec-

tion parameter can be used. The default behaviour of selecting a feature is to check the spatial relation between the BoundingBox

and the feature’s 3D geometry.

Table 19 defines the possible spatial selection modes.

Table 19: Spatial selection modes

Name Description

overlaps Overlaps A feature is only selected, if its 3D geometry is contained in or intersects with the given

BoundingBox. This is the default mode.

contains_center A feature is only selected, if its “center point” is contained or intersects with the BoundingBox.

How the center point is computed by the service is not defined, but it shall be inside the convex

hull of the feature.

cut Cut This spatial selection method shall not return features or part of features that lie outside of the

BoundingBox. Features that are completely contained in the BoundingBox shall be returned

unmodified. Features that intersect with the borders of the BoundingBox shall be split and

parts that lie outside shall be cut away. The parts that lie inside of the BoundingBox shall be

selected for response. Multiple requests with adjacent BoundingBoxes shall generate feature

geometries that fit seamlessly together without gaps or cracks.

8.4.1.4 Layers

The Layers parameter specifies a comma separated list of layer identifiers to be displayed. The concept of the layer is a metaphor

to the traditional (two-dimensional) cartography, with which geo objects of different classes were drawn on different transparent

foils resulting in a map with an overall view of these foils.

The definition of a layer for the purposes of this standard is lent from WMS: “basic unit of geographic information that may be

requested as a map from a service”.

The order in which the layers are listed in the Layers parameter does not influence the visual appearance of the generated scene

or view. However, the order of the lists in the (optional) Styles and LOD parameters shall correspond with the Layers list. Each

entry in the Layers comma separated list shall refer to a layer identifier as described in the service’s meta data.

The Layers parameter can be empty, which means not to constrain the output to any specific set of layers. A service receiving an

empty Layers parameter could serve all data available, only a subset of the data, or no data at all.

8.4.1.5 Styles

The mandatory Styles parameter lists the style in which each layer is to be rendered. The value of the Styles parameter

is a comma-separated list of one or more valid style identifiers. There is a one-to-one correspondence between the values in

26 / 87

the Layers parameter and the values in the Styles parameter. Each data layer in the list of Layers is rendered using the

corresponding style in the same position in the list of STYLES. Each style Name shall be one that was defined for or inherited by

this layer as specified in the service meta data. (In other words, the client may not request a layer in a style that was only defined

for a different layer.)

A client may request the default Style for a layer using an empty value. If several layers are requested with a mixture of named and

default styles, the Styles parameter shall include empty values between commas (as in “STYLES=style1„style2„”) to represent

default Styles. If all layers are to be shown using the default style, a request shall contain either multiple comma-separated values

one for each layer (as in “STYLES=„,”) or a single empty value (“STYLES=”).

If a service advertises several styles for a layer, and the client sends a request for the default style, the choice of which style to

use as default shall be indicated in the capabilities.

Currently, the 3DPS only supports service-defined styles, advertised by identifier in the service meta data. Thus, styling of

features may not be transparent to a client. Therefore it is recommended to include a detailed style description in the service’s

meta data. In case of user styles included in the GetScene request, the client has full control over the styling.

Example:

Layers=dtm,buildings,vegetation&Styles=orthophoto,,simple

8.4.1.6 LODs

The parameter LODs specifies for each layer which Level of Detail (LOD) to choose from when accessing the service’s data

repository. The parameter value is a comma separated list of names referring to the available Levels of Detail as specified in the

service meta data’s layer section and portrayal capabilities section.

The length of this list shall be equal to the length of the list in the Layers parameter. The order of the LODs list entries shall

correlate with the Layers list entries, meaning that LOD n shall be selected from layer n.

Conventionally, a name consists of a prefix and the actual numeric LOD value, separated by a colon, e.g. “CityGML:4” for

indoor models. The prefix indicates the spectrum of possible values and how these values should be interpreted.

Table 20 lists LOD names associated with well-known LOD schemes whose meaning should be preserved, i.e. no conflicting

names or semantics should be introduced by a service implementation.

Table 20: Well-known LOD names

URIs Description

CityGML:0, CityGML:1, CityGML:2,

CityGML:3, CityGML:4

OGC [08-007r1] clause 6.2

INSPIRE:0, INSPIRE:1, INSPIRE:2,

INSPIRE:3, INSPIRE:4

same as citygml

8.4.1.7 LODSelection

In conjunction with the LOD parameter, the LODSelection parameter may be used for telling the service how to interpret the

LOD value for each layer. Four selection methods are predefined that fit the well-known LOD-based multiple representations

approach; thus they are not necessarily sensible for a given implementation and should be checked to be supported in the

GetCapabilities response before invocation.

The predefined LOD selection methods are defined in Table 21.

27 / 87

Table 21: 3DPS LOD selection modes

Name Description

equals Equals For each feature, the available LODs are compared with the LOD value provided in the

AbstactGetPortrayal request. If the specified LOD is available for this feature, then the

according model shall be selected and included for portrayal response. If the specified LOD is

not available for this feature, then the feature shall not be included in the scene or view. Default

selection method.

equals_or_smaller This method causes the service to compile a scene from multiple available LODs. Only one

LOD for each feature shall be selected. If the specified LOD is available for this feature, then

the according model shall be selected and included in the scene. If the specified LOD is not

available for this feature, then the service shall select the next lower LOD available for this

feature. If no LOD equal or lower than the specified LOD is available for this feature, then this

feature shall be omitted in the scene altogether. Cumulative LOD models, e.g. building blocks

representing multiple buildings as a single geometry, shall be handled so that no overlaps with

higher LODs occur. If a higher LOD for one building included in the block is available, then

the block shall be omitted.

combined Combined This method causes the service to include multiple LODs for each feature in the scene, if

available. The service shall include for each feature all LODs equal or smaller than the

specified LOD value in the AbstactGetPortrayal request.

equal_or_similar The service shall make a best effort to find models closely matching the requested LOD.

Completeness of the result, if possible free of doubly represented features, is the quality

criterion for this strategy.

The selection methods offered by a 3DPS service shall be advertised in the service’s meta data. They are not necessarily listed

here as this is considered an extension point.

8.4.1.8 OverallStyles

The optional OverallStyles parameter specifies, which styles to apply to the overall 3D scene or view. It contains a list of

identifiers of OverallStyles as described in the service metadata.

An OverallStyle is usually a reference to a scene or view embellishment that is not treated as being bound to a specific

layer, e.g. an endornment of certain features, or a special shading to be used to portray a data overlay in the 3D scene or view.

For simple clients, such embellishments may result in a much improved user experience, or show additional information.

However, such offerings are often implementation-specific and may be harmful to service interoperability. Therefore, if none

are specified, an implementation should not deliver any. If the combination of styles requested cannot be delivered, the service

should make an effort to prioritise the first-mentioned overall styles, or return an exception.

8.4.1.9 DeliveryOptions

Specifies a list of delivery options requested by the client. The client is expected to be prepared to properly handle each of the

delivery options. See DeliveryOptions for details.

This list is to be interpreted as a request, i.e. failure to use a specific delivery option is not to be treated as an error. The reason is

that it is hard to foresee, properly describe and implement the constraints that might hold for a particular delivery option, e.g. a

terrain streaming method might have legal constraints depending on the effective legislation. It is not, in full generality, possible

for a client to only ask for delivery options that will work for the service instance. A more mundane case might be a delivery

option that is only available for a part of the layers being requested. Treating this as an error would preclude forming such a

request.

However, requesting a delivery option that is not advertised for any of the layers being requested, or not at all, should be treated

as an error with the DeliveryOptionNotDefined exception code.

28 / 87

8.4.1.10 Exceptions

The optional Exceptions parameter specifies the behaviour of the service upon detecting an error, e.g. invalid request or internal

server error. The default value is “text/xml”. The value shall be one of the MIME types offered in the service’s Capabilities

document meta data parameter value, see Section 8.3.1. This may include the special value “blank”, as outlined below.

If the Exceptions parameter is set to “blank” (i.e., the character sequence comprised of ‘b’, ‘l’, ‘a’, ‘n’, ‘k’), then the service

shall, upon detecting an error, return a document of the MIME type specified in the format parameter whose content is uniformly

“off”, i.e. a document with a valid structure according to the format and no, or no useful, information content. This silent mode is

useful if the client is not prepared to process service exceptions. For example the client may be a generic client that understands

the format expected but not OGC exception reports.

Accordingly, the service may issue an HTTP status code of 200 (OK) or 204 (no content) instead of an error code (see Sec-

tion 8.4.3).

8.4.2 AbstractGetPortrayal Response

The response shall be specified by actual implementations of this abstract operation without restrictions by the abstract operation.

8.4.3 Exceptions

If a 3DPS service encounters an error while performing a GetCapabilities operation, it shall return an exception report message

as specified in Clause 8 of [OGC 06-121r9].

In case of an incorrect request or an intermittent error while generating or delivering the response, the response shall be supplied

in the requested format for exceptional cases (parameters EXCEPTION) by the service. The rules of the underlying DCP are to

be observed, in particular the HTTP status code and MIME type should be set according to the exception.

All exception codes defined in [06-121r9] remain valid. The exception codes listed in Table 22 are defined for more specific

cases.

Table 22: AbstractGetPortrayal Exceptions

exceptionCode

value

Meaning of code locator value

StyleNotDefi

ned

an unadvertised Style is requested the style name

BackgroundNo

tDefined

an unadvertised Background is

requested

the background

name

DeliveryOpti

onNotDefined

an unadvertised delivery option is

requested

the delivery option

name

LodNotDefi

ned

an unadvertised LOD name is

requested

the LOD name

LodNotApplic

able

if an unsuitable LOD name is

requested

the LOD name

8.5 GetResourceById operation (optional)

Optionally, a 3DPS implementation may offer a GetResourceById operation to deliver resources deemed necessary for

operation. The operation follows the blueprint given in the OGC Web Services Common Standard [OGC 06-121r9] Section 9.3,

subsequently the “base GetResourceByID operation”.2

2 Following the notion that “Id” is an abbreviation not an acronym

29 / 87

A typical reason to implement GetResourceById is streaming, i.e. delay-loading pre-computed parts of the data on offer

to support interactive users exploring the data. Other types of resources could be textures, geospatial indexes, or parts of a web

application to access the service.

There is no obligation to route such resources through a GetResourceById operation, however, it might be preferable for

deployment reasons, e.g., to control (re-)generation of resources or to state their origin in sensitive scenarios.

8.5.1 Obtaining ResourceId URIs

There are several ways in which identifiers may be obtained, which in principle can be direct or indirect. “Direct” refers to the

specification of a URI suitable to submit as the ResourceId. “Indirect” refers to the specification of a URL that constitutes a valid

GetResourceById operation request when resolved and executed.

The only direct way of obtaining resource identifiers is as part of a layer’s metadata. It should be noted that since the output

format is required, the direct specification only makes sense when the outputFormat parameter is also specified.

Indirect resource identifiers may be obtained as URIs embedded in GetCapabilities, GetScene or any other 3DPS oper-

ation response, including HTTP redirects where permissible.

No service instance should expect a client to come up with or modify resource identifiers by itself.

8.5.2 Categories of resources

This operation may respond to requests with a variety of resource categories, and this operation does not impose a limit on the

categories. However, as called for in the base GetResourceByID operation, it lists typical categories and associated MIME types.

An implementation may deliver other resource categories as it sees fit.

Table 23: Examples of resource categories as delivered by the GetRe-

sourceById operation.

Type Example use Example MIME type(s)

Images 3D Views or Textures image/png, image/jpeg

Indexes Geospatial indexes application/vnd.google-earth.kml+xml,

model/x3d+xml

Geodata 2D/3D geospatial data, tiles or else application/vnd.google-earth.kml+xml,

model/x3d+xml

8.5.3 GetResourceById Request

The GetResourceById request strictly follows the base GetResourceByID request with changes and clarifications listed here.

Requirement 2: http://www.opengis.net/spec/3DPS/1.0/req/service/core/getResourceById/request

A core:GetResourceById request shall be conformant to the base GetResourceByID operation as defined in [OGC 06-

121r9], Section 9.3, with the additional constraints laid out in this section.

Table 24: Changed parameters of the GetResourceById operation.

Names Definition Data type and values Multiplicity and

use

resourceId

ResourceId 2
Unambiguous identifier of desired

resource

URI, not empty One (mandatory)

30 / 87

8.5.3.1 ResourceId

The resourceId parameter shall be mandatory.

8.5.3.2 OutputFormat

The outputFormat parameter shall be mandatory and specify the expected output format. While the output format may be

determined by the resource identified with the resource identifier, specifying the output format works in cases where that is

not the case (e.g. multiple representations of one resource) but not vice versa. The format, even if not necessary for resource

selection, should be used for validation.

8.5.4 GetResourceById Response

Requirement 3: http://www.opengis.net/spec/3DPS/1.0/req/service/core/getResourceById/response

The GetResourceById response shall be a document conforming to the requested MIME type, or an exception.

8.5.5 GetResourceById Exceptions

Exceptions shall be handled according to the base GetResourceByID operation.

9 Scene Extension

9.1 Introduction

The GetScene operation of the Scene Extension allows a client to retrieve a 3D scene, i.e. graphical data (including geometry

and texture data as well as hierarchies) in a standard data format from a 3DPS service. To achieve an actual 3D portrayal, this

data needs to be rendered at the client side. This has the benefit that the client can deliver a responsive navigation experience to

the user because it can avoid or delay round-trips to the service instance in most cases.

The GetScene operation is the entry point for a 3D scene based client wanting to request the geodata an instance is capable of

serving in a particular bounding box. At this point, the client is assumed to have issued a GetCapabilites request, processed the

reply and established the instance’s capability to serve compatible 3D geodata.

Existing and evolving 3D model formats and their delivery mechanisms vary a lot. Thus, 3DPS GetScene is intentionally

defined to allow for a range of mechanisms, potentially limiting the scope for interoperability to quite specific client/server

combinations. However, 3DPS GetScene intends make it possible to integrate different 3D data pools in a single client view.

It fosters this interoperability scenario by enabling the client to determine whether the data served by the instances may be

combined sensibly at all. In other words, GetScene cannot make 3D data interoperable, but it can help getting there or see why

it will not work - before failing horribly in front of the user.

A 3DPS client needs to support the 3D model format, in which a 3DPS delivers a scene as GetScene response. Potential

interoperability problems arising from a mismatch of client format capability and implicit service expectations should be dealt

with using the content of the GetCapabilities response (in particular Delivery Options), format-side provisions such as profiles

or additional service parameters, in order of preference.

9.2 Modifications to Service Capabilities

9.2.1 Modifications to ServiceIdentification

A service announces support of the Scene Extension to a client by adding the URL identifying this extension to the list of

supported extensions delivered in the Capabilities document.

31 / 87

Requirement 4: http://www.opengis.net/spec/3DPS/1.0/req/service/scene/extension-identifier

A 3DPS service implementing conformance class scene of this Scene Extension shall include the following URI in the Profile

element of the ServiceIdentification in a GetCapabilities response: http://www.opengis.net/spec/3DPS/1.0/-

extension/scene/1.0

Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core)

9.2.2 Modifications to OperationsMetadata

Requirement 5: http://www.opengis.net/spec/3DPS/1.0/req/service/scene/operations-metadata-getscene

A 3DPS service implementing conformance class scene of this Scene Extension shall include an Operation element in the

service’s OperationsMetadata having its name attribute set to GetScene. Dependency: 3DPS Core (http://www.opengis.net/-

spec/3DPS/1.0/conf-class/core)

9.2.3 Additions to Layer structure

Requirement 6: http://www.opengis.net/spec/3DPS/1.0/req/service/scene/layer-extension

A 3DPS service implementing conformance class scene of this Scene Extension shall extend the core:Layer Extension element

as defined in Figure 7 and Table 25

Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core)

http://www.opengis.net/spec/3DPS/1.0/extension/scene/1.0
http://www.opengis.net/spec/3DPS/1.0/extension/scene/1.0
http://www.opengis.net/spec/3DPS/1.0/conf-class/core
http://www.opengis.net/spec/3DPS/1.0/conf-class/core
http://www.opengis.net/spec/3DPS/1.0/conf-class/core
http://www.opengis.net/spec/3DPS/1.0/conf-class/core

32 / 87

Figure 7: 3DPS scene:Layer extensions UML class diagram

Table 25: Extension of the core:Layer structure.

Names Definition Data type and values Multiplicity and use

availableStyle

AvailableStyle Style available for this layer Style data structure, see Ta-

ble TODO

Zero or more (optional)

availableFormat

AvailableFormat

Output format valid for this

layer

ows:OutputFormat type Zero or more (optional)

33 / 87

Table 25: (continued)

Names Definition Data type and values Multiplicity and use

availableOffset+ Available-

Offset

Offsets available for query-

ing this layer

FixedOffset data structure,

see Table 27

Zero or more (optional)

9.2.3.1 AvailableStyle

Styles usually affect the symbolization of features, e.g., the materials can be replaced by another material, including diffuse

color, reflection properties, and transparency as defined in the style. Styling can also take the feature attribute values as input

for distinguishing features of different categories by color. Styling may also apply different symbols to point and line features

including geometric primitives, billboards, textures, and complex 3D proto types. The size of these symbols may be scaled

according on feature attribute values. It is recommended to use the Symbology Encoding (SE) and Filter Encoding (FE) as basis

for defining service styles (see [OGC 04-095] and [OGC 05-077r4]), and extend the capabilities for styling 3D objects (see [OGC

09-042]).

9.2.3.2 AvailableFormat

Information about data formats in which the advertised Layers are available is added to the 3DPS service metadata by using the

layer extension mechanism provided by the 3DPS Core.

AvailableFormat items advertise available encodings of scene returned by the GetScene operation as ows:MimeType as per [OGC

06-121r9] clause 10.5.

Table 26 specifies canonical MIME types. These MIME types shall be advertised and recognized by a service implementation if

the formats represented by them are supported, even if more qualified alternatives exist.

Annex D describes the X3D profiles and nodes that are appropriate for use by a service that returns X3D. It highlights the use of

the Geospatial component which is important to support as it allows for combination of content from different services.

Table 26: Canonical MIME types for scene encoding (non-exhaustive

list)

Encoding format MIME type

X3D VRML model/x3d+vrml

X3D XML model/x3d+xml

OGC KML as XML application/vnd.google-earth.kml+xml

OGC KML as KMZ application/vnd.google-earth.kmz

VRML model/vrml

Requirement 7: http://www.opengis.net/spec/3DPS/1.0/req/service/scene/mimetypes

A 3DPS service implementing conformance class scene of this Scene Extension shall advertise available output formats as MIME

types, and in addition, shall advertise and recognize the MIME types named in Table 26 if the formats represented by them are

supported, even if more qualified alternatives exist.

9.2.4 AvailableOffsets

Any fixed offsets in which the layer is available. A client should not expect other offsets to be available unless the arbitraryOffset

portrayal capability is “true”.

34 / 87

9.2.5 AvailableOffsetMode

Depending on the requested CRS, coordinate values of 3D objects may become bigger than typical 3D display pipelines can

handle. For example, UTM coordinates require a mantissa of 9 digits for achieving accuracy in centimeters. Clients using single

precision floating point numbers (32 bit; IEEE Std 754-2008) are not able to handle such coordinates very well.

The offset parameter can be used in order to define a reference point in 3D which is then used to enhance the technically available

precision, for example by subtracting it from all coordinate values, thus reducing the number of significant digits. This offset

needs coordination.

Some 3D formats have built-in capabilities to handle geo coordinates, but even in such cases it may be advantageous to use

a common offset the client determines. The offset may be applied in several ways, exemplified by the offset modes given in

Table 27. For all offset modes it holds that CRS coordinate order is observed in the request. An implemetation should choose a

suitable offset mode if an explicit mode is not given. An implementation should advertise the offset modes it supports and is free

to add more specific offset modes if available. It should support one of the modes given in Table 27 for increased interoperability.

Table 27: Offset modes

Namea Definition

subtract

Subtract The offset is subtracted from all coordinates specifying absolute geolocations. Thus, when the

client adds the offset to those again, true geocoordinates in the request CRS are obtained.

embed

Embed

The offset is embedded in the resulting scene by means of the request format. Not all formats

have such provisions, the client should know if it is capable of handling the request format’s

appropriate mechanism. It is unspecified whether the offset is actually subtracted from geoco-

ordinates, or wheter it is embedded in the request CRS. However, "embed" should enable the

client to obtain true geocoordinates without remembering the offset separate from the result. A

possible realization of "embed" is the X3D "GeoOrigin" node.

a The name capitalization rules being used here are specified in Subclause 11.6.2 of [OGC 06-121r9].

Under circumstances, the offset may be service-defined, so only one of the offset values offered in the capabilities may be

retrieved successfully. If the service advertises offsets, they should include an explicit mode specification.

Clarification: An offset is conceptually different from false easting/northing. False easting/northing serves to make geocoordi-

nates unique, while offset makes unique global coordinates ambiguous. Thus, an offset is NOT expected to be represented in a

CRS definition.

Information about available offset modes is to be added to the Service Metadata by using the capabilities extension mechanism

provided by the 3DPS Core.

9.2.6 Additions to PortrayalCapabilities structure

Requirement 8: http://www.opengis.net/spec/3DPS/1.0/req/service/scene/portrayalcapabilities-extension

A 3DPS service implementing conformance class scene shall extend the core:PortrayalCapabilities Extension element as defined

in Figure 8, Table 28

Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core)

http://www.opengis.net/spec/3DPS/1.0/conf-class/core

35 / 87

Figure 8: 3DPS scene:PortrayalCapabilities UML diagram

Table 28: Extension of the core:PortrayalCapabilities struc-

ture.

Names Definition Data type and values Multiplicity and use

arbitraryOffset

ArbitraryOffset

Specifies whether the

client may request

arbitrary offset

parameters

Boolean type, not empty

Value either “true” or “false”.

Default is “false”

One (mandatory)

9.3 GetScene request

Requirement 9: http://www.opengis.net/spec/3DPS/1.0/req/service/scene/getscene/request/structure

A scene:GetScene request shall consist of a scene:GetScene structure as defined in Figure 9 and Table 29.

36 / 87

Figure 9: 3DPS scene:GetScene request UML class diagram

Table 29: 3DPS scene:GetScene request components

Namesa Definition Data type and values Multiplicity and use

offset

Offset

Offset vector which shall be applied

to the scene, using the mode

specified (if any)

Character String type, list of

coordinate value of length 2 or 3,

separated by comma b. Optionally

followed by a colon and an explicit

offset mode name

Zero or one (optional)

format

Format

Format encoding of the scene ows:MimeType, see [OGC 06-121r9]

clause 10.5

One (mandatory)

viewpoints

Viewpoints

Add Viewpoints to choose from Character String type, list of tuple

value, separated by comma.

Zero or one (optional)

a a The name capitalization rules being used here are specified in Subclause 11.6.2 of [OGC 06-121r9]. b Coordinates are

ordered in the request CRS order.

37 / 87

9.3.1 Offset

The offset and, optionally, offset mode to use for scene delivery. See Section 9.2.4 and Section 9.2.5.

9.3.2 Format

The mandatory Format parameter specifies the target encoding of the returned scene provided as ows:MimeType, see [OGC

06-121r9] clause 10.5. Available formats are described in the service’s meta data.

9.3.3 Viewpoints

The optional parameter Viewpoints can be used to include a list of viewpoints in the scene the user can choose from. Viewpoints

are presented in most viewers as list which can be used to move quickly to another pre-defined position and view direction. If

multiple viewpoints are defined, then the first in the list shall be used as default viewpoint when loading the scene. This is mainly

useful to create a HTTP Get-based link into a 3D scene.

9.3.4 Delivery Options

Typical delivery options in GetScene based requests may be obtained from Table 30.

Table 30: Additional scene:DeliveryOption names

Names URI Description

spatialIndex

SpatialIndex

http://www.opengis.net/spec/3DPS/-

1.0/concept/service/scene/-

deliveryOptions/spatialIndex

deliver spatially annotated links to this service, e.g. KML

NetworkLink, X3D GeoLOD, ESRI i3s format, but

generally not any actual geometries

textureAtlas

TextureAtlas

http://www.opengis.net/spec/3DPS/-

1.0/concept/service/scene/-

deliveryOptions/textureAtlas

try to recombine textures to optimize rendering

regroupGeometry

RegroupGeometry

http://www.opengis.net/spec/3DPS/-

1.0/concept/service/scene/-

deliveryOptions/regroup

regroup geometry to optimize rendering; object identity

needs not to be maintained

reduceQuality

ReduceQuality

http://www.opengis.net/spec/3DPS/-

1.0/concept/service/scene/-

deliveryOptions/reduceQuality

Use any technique available to save bandwidth, source

data quality needs not to be maintained

9.4 GetScene response

The response to a valid GetScene request is a document of the MIME type as specified in the request Format parameter,

except under error conditions. The document contains a 3D scene assembled from the features of the selected Layers (mainly)

within the specified BoundingBox, represented in the specified CRS and Format.

Note

This implies CRS coordinate order, which may be very different to an applicable client-side computer graphics convention. It is

the client’s responsibility to execute any transforms required to convert from CRS axis order to the client’s axis order convention.

http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/spatialIndex
http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/spatialIndex
http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/spatialIndex
http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/textureAtlas
http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/textureAtlas
http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/textureAtlas
http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/regroup
http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/regroup
http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/regroup
http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/reduceQuality
http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/reduceQuality
http://www.opengis.net/spec/3DPS/1.0/concept/service/scene/deliveryOptions/reduceQuality

38 / 87

If the GetScene request contains a list of service style identifiers and/or an overallStyle, then the features delivered are portrayed

according to the respective style(s). Some output formats may not support all the portrayal capabilities (here, this term refers

to format provisions not subject to the 3DPS) that are called for by the lodSelection, for defining a virtual camera/viewpoint, or

to support certain styles. It is left to the implemetation to decide whether to treat this as an error condition or to continue on a

best-effort basis. However, if such a condition arises and the implemetation chooses to treat it as an error, the error code should

be FormatCapabilityMissing. The same holds when the service implemetation imposes the shortcoming, not the format

definition itself. For example, this is the case when a “combined” LOD is requested but the format does not have provisions to

switch individual features as appropriate.

If the response data contains references to additional resources which are to be loaded by the client, for instance URIs of textures,

then those resources should be accessible to the client following standard RFC 3986 Resolution rules, where the base URI is

the GetScene request URI that produced the response. Relative paths may be used, but are discouraged due to their potential

interference with service invocations.

URIs within the GetScene response might also point to GetResourceById operation requests to the same service or other

accessible 3DPS instances, or may point to other service end points producing the required MIME type. For example, a WCS

may be used as source for terrain textures. To maximise interoperability, URIs representing serivce calls should be valid service

invocations in themselves, i.e. not require the client to understand the service structure. In other words, service invocations

should be treatable as resources. Notwithstanding this, an advanced or special client could take advantage of prior knowledge

about certain services to deliver a better experience. Such behaviour should be guarded by appropriate delivery options to make

sure a general client does not request it by accident.

Requirement 10: http://www.opengis.net/spec/3DPS/1.0/req/service/scene/getScene/response

The GetScene response shall be a document conforming to the requested MIME type, or an exception.

9.5 GetScene Exceptions

A GetView request may return any of the exception reports defined in core:AbstractGetPortrayal and/or as specified

in Clause 8 of [OGC 06-121r9].

In addition, a service shall throw a service exception (code = FormatCapabilityMissing) if an unavailable format-specific

feature is requested. The locator should be the parameter containing the unsupported style or other portrayal feature, and the text

should be indicative of the root cause.

9.6 Binding Extensions for the GetScene Operation

The GetScene request my be issued as a HTTP Get KVP-based request.

9.6.1 HTTP/GET + KVP Binding

The folowing table defines the KVP encoding for GetScene. It contains the complete parameter mapping including the param-

eters defined by AbstractGetPortrayal and core:RequestBase.

Table 31: Parameters of the GetScene operation.

Names Definition Data type and values Multiplicity and

use

service

Service

Service type identifier String, fixed to “3DPS” One (mandatory)

request

Request

Operation name String,

Fixed to "GetScene".

One (mandatory)

version

Version

Standard version for operation String, not empty

Fixed to "1.0".

One (mandatory)

crs

CRS

Primary CRS anyURI as defined in [OGC

06-121r9] clause 10.3

One (mandatory)

39 / 87

Table 31: (continued)

Names Definition Data type and values Multiplicity and

use

boundingBox

BoundingBox

Bounding box surrounding selected

dataset, in available CRS.

List of comma-separated real

numbers, e.g. “minx1, minx2, maxx1,

maxx2” or “minx1, minx2, minx3,

maxx1, maxx2, maxx3”. (Any spaces

used to separate values here are for

presentation only, not normative.)

Zero or one

(optional)

Include when

spatial selection is

desired

spatialSelection

SpatialSelection

Indicates method of selecting objects

with BoundingBox

String, not empty. Value is one of

“contains_center”, “overlaps”, “cut”.

Default is “overlaps”.

Zero or one

(optional)

layers

Layers

List of layer to retrieve the data from StringList type, comma

separated list of layer Identifiers

One (mandatory)

styles

Styles

List of service styles to be applied to

the layers

StringList, comma-separated list

of one rendering style per requested

layer

Zero or one

(optional)

background

Background

Identifier of desired background Character String type, not empty

Values are specified in service

metadata

Zero or one

(optional)

Include when

background

desired

lods

LODs

List of LODs requested for the layers StringList, comma separated list

of URIs

Zero or one

(optional)

lodSelection

LODSelection

Indicates method for selecting LODs String, Values are specified in

service metadata

Zero or one

(optional)

overallStyles

OverallStyles

Identifier(s) of desired overall scene

style(s)

StringList, not empty Values are

specified in service metadata

Zero or one

(optional) Include

when overall

styling desired

deliveryOptions

DeliveryOptions

Names of the delivery options

requested by the client

StringList, comma separated list

of URIs

Zero or more

(optional)

exceptions

Exceptions

Format of exceptions ows:MimeType, see [OGC 06-121r9]

clause 10.5

Zero or one

(optional)

offset

Offset

Offset vector which shall be applied

to the scene, using the mode specified

(if any)

Character String type, list of

coordinate value of length 2 or 3,

separated by comma b. Optionally

followed by a colon and an explicit

offset mode name

Zero or one

(optional)

format

Format

Format encoding of the scene ows:MimeType, see [OGC 06-121r9]

clause 10.5

One (mandatory)

viewpoints

Viewpoints

Add Viewpoints to choose from Character String type, list of tuple

value, separated by comma.

Zero or one

(optional)

10 View Extension

10.1 Introduction

The View Extension defines the GetView operation, which allows a client to retrieve readily rendered images, i.e. visual

representations of an underlying 3D scene, as plain standard images. Image generation is done completely on the server side.

This allows for high quality 3D visualization in identical quality on any device, including resource-poor mobile devices.

40 / 87

10.2 Concepts

This section explains the concepts behind the GetView operation. Readers familiar with computer graphics concepts may want

to skip it.

10.2.1 Image layer concept

Besides color images, the View module defines additional image layers of a 3D view, which represent discrete geometric and

thematic information for each image pixel. They follow the G-Buffer concept used in computer graphics and are not necessarily

meant for human consumption.

It is foreseen to encode non-color image layers using standard image formats as well. This allows for applying the same principles

for data encoding, data compression, data exchange, and client-side data loading and processing for all image layers.

Table 32 lists the image layer types suggested by the 3DPS View module. These image layers and suggested encodings are

described in the following.

Table 32: Image layer names and descriptions

Names URI Description

color Color http://www.opengis.net/spec/3DPS/1.0/-

concept/service/view/imageLayers/color

contains color value for each pixel

depth Depth http://www.opengis.net/spec/3DPS/1.0/-

concept/service/view/imageLayers/depth

contains depth values describing the

view-space distance to each pixel

objectId ObjectId http://www.opengis.net/spec/3DPS/1.0/-

concept/service/view/imageLayers/objectid

contains object identifier values identifying

the features at a pixel

normal Normal http://www.opengis.net/spec/3DPS/1.0/-

concept/service/view/imageLayers/normal

encodes the surface normal for the surface

represented

mask Mask http://www.opengis.net/spec/3DPS/1.0/-

concept/service/view/imageLayers/mask

encodes for each pixel, whether any feature is

visible there

10.2.1.1 Image layer types

Color layer A color layer contains a color value for each pixel, e.g., RGB or RGBA color data. Alpha values are required for

storing a transparent background. For color layers, standard image encodings provide good compression results.

Depth layer A depth layer encodes for each pixel the distance to the visible surface. Unit of measure shall be meter (#m) as

defined by GML3 [OGC 03-105r1]. This representation abstracts from computer graphical details and the distance values can

be used without additional computation in many applications. Also depth images represent a major means to compose multiple

images generated from the same camera position and by the same projection.

ObjectId layer Object identifiers (object-ids for short) are distinct numeric values assigned to all the features in the 3D geo

database provided by the 3DPS. An ObjectId layer contains an object-id for each pixel and allows a client application e.g. to

determine all the pixels that show a specific feature or to retrieve feature information based on the object-id.

For a 3DPS service, object-ids shall be unique over all provided data Layers and even over multiple GetView requests, due

to facilitating consistent interaction across multiple 3D views. The object-id basically refers to the graphical representation of

a feature and does not necessarily equal to feature identifiers. It is rather left to a specific 3DPS service how to determine and

assign unique object-ids to all features. Object-id value “0” is reserved for pixels that do not represent a feature (e.g. pixels

representing the sky) or for which no object-id could be determined.

Normal layer A normal layer describes for each pixel the direction of the surface normal visible at that pixel. A normal layer

might be used e.g. for computing good camera positions of client-side computation of image effects.

Mask layer A mask layer contains a value of “1” for each pixel that covers a scene object and “0” otherwise. For example, Mask

layers provide information about unused image space or support client-side altering of the scene background.

http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/color
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/color
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/depth
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/depth
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/objectid
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/objectid
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/normal
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/normal
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/mask
http://www.opengis.net/spec/3DPS/1.0/concept/service/view/imageLayers/mask

41 / 87

Other image layers The image layers specified in this View Extension represent a fundamental subset of view-related data.

However, image layers are not limited to the specified ones. A 3DPS service can implement and advertise additional image

layers in the service’s metadata document together with available encodings and formats.

10.2.1.2 Image layer encodings

Image layer encodings can differ in

a. the way of representing image layer data, e.g., as RGB colors

b. the way of encoding this data as standard image.

Image layer encodings/formats shall be advertised as (parameterized) Mime types in the service’s metadata document.

The View Extension suggests representing image layer data in colors and encoding them by appropriate standard image formats.

Alternative encodings/formats are possible.

In the following, default encodings for the suggested image layers are described. Table 33 provides an overview of the corre-

sponding Mime types describing these default encodings. A Mime type parameter “mode” shall be used for adjusting the required

bit depth.

Table 33: Image layer encodings (non-exhaustive)

Image layer

name

MIME types

Color image/jpeg

image/png a

image/png;mode=24bit

image/png;mode=32bit

Depth image/png a

image/png;mode=24bit

image/png;mode=32bit

ObjectId image/jpeg

image/png a

image/png;mode=24bit

image/png;mode=32bit

Normal image/jpeg

image/jpeg;mode=24bit

image/png;mode=32bit

image/png a

image/png;mode=24bit

image/png;mode=32bit

Mask image/jpeg (inefficient due to 24 bit data storage)

image/png a

image/png;mode=1bit
a Server chooses bit depth.

For alternative service-specific data encodings, a Mime type parameter “encoding” should be used for identifying the data en-

coding and format.

EXAMPLE: A 3DPS service-specific MIME type for a normal layer encoding could be “image/png;mode=24bit,encoding=two-

component” which specifies the representation of normal vectors by two components only.

Depth layer default encoding Per default, depth values shall be represented by float values. They shall be encoded as colors by

converting the float value into a Byte array and assigning these Bytes to the color components. The endianness shall be RGB for

42 / 87

24 bit encoding or RGBA for 32 bit encoding. Figure 10 shows an example of encoding depth values as 32 bit RGBA colors.

Due to the direct storage as color components, resulting depth images possess very little pixel-to-pixel coherence, and should not

be stored in lossy image formats.

Figure 10: Example of encoding a depth value as 32 bit RGBA color components

ObjectId layer default encoding Per default, object-ids shall be represented by unsigned integer values. They are encoded

as colors by converting the object-id integer value into a Byte array and assigning these Bytes to the color components. The

endianness shall be RGB for 24 bit encoding or RGBA for 32 bit encoding. Figure 11 shows an example of encoding object-ids

as 32 bit RGBA colors. This does not specify the internal endianness of the image format used to encode the colors, rather the

mapping of bytes to properly decoded and separated color components.

Figure 11: Example of encoding an object-id as 32 bit RGBA color components

Normal layer default encoding Per default, normal layers encode normalized normal vectors in world space by encoding each

vector component (X,Y,Z) as color component (R,G,B) of a 24 bit color image. A surface normal shall be encoded as 24 RGB

color values in the following way:

1. Surface normal shall be considered in world space.

2. Surface normal shall be normalized to length of 1.0.

3. Each normalized normal shall be transformed into a right-hand Cartesian coordinate system, having the z-axis pointing up,

which lead to a normalized normal n = (x, y, z).

4. For each X, Y, and Z component of the transformed normal a decimal value is computed by adding 1 and dividing the

result by 2.

5. These values represent the color components, R, G, and B respectively. Endianness shall be RGB.

A 3DPS consumer requesting a normal layer encoded in this default format, shall decode this data the other way round, by

multiplying with 2 and subtracting 1 and assigning the value to the x, y, and z components of a normal vector.

Mask layer default encoding Mask values 0 and 1 shall be color-encoded as follows: white shall be used for mask value “0”,

i.e., for pixels that do not cover a scene object; the color black shall be used mask value “1”, i.e., for pixels that do cover scene

objects. Mask layers could be encoded in any image format, but formats capable of 1-bit content should be preferred for coding

efficiency.

10.2.2 3D projections

Two-dimensional representations of a 3D virtual environment are generated by transforming points of the 3D scene onto a pro-

jection surface. Planar projections can be categorized into perspective projections and parallel projections, which can be further

sub-categorized, e.g., in one and two-point perspective projections or orthographic and oblique parallel projections (Figure 12).

Besides this, projections can be planar or non-planar. With planar projections, points in the 3D space are linearly mapped to

43 / 87

points on a 2D projection plane, i.e., the 3D point, the projected point, and the center of projection are collinear. With non-planar

projections, these rays from center of projection to the three-dimensional point are non-linearly mapped, but are, for example,

projected spherical or cylindrical.

Figure 12: Examples of Projection types.

While a 1-point central perspective projection is close to the human perception of the real world, various application domains and

visualization techniques could benefit from additional projection types. Because of that, the View Extension allows for choosing

a projection type that shall be applied for rendering the view (Figure 13).

Figure 13: Examples of perspective (left) and orthographic (right) projections.

The 3DPS View Extension specifies two planar projection types, a perspective projection type and an orthographic projection

type, PerspectiveProjection and OrthographicProjection, as defined in Table 35 and Table 36.

A specific 3DPS service can provide additional projection types. Supported projections shall be advertised in the service metadata

document.

Table 34: Supported ProjectionTypes and meaning

Identifier Description

perspective Perspective Perspective projection as defined in Table 35

orthographic Orthographic Orthographic projection as defined in Table 36

44 / 87

Possible values for the parameters of each projection type should be advertised in the service’s metadata.

Table 35: view:PerspectiveProjection components

Name Definition Data type Multiplicity and use

poc

POC

Position of the virtual

camera

Position3D type, see Table 7 One (mandatory)

poi

POI

Position of point of

interest

Position3D type, see Table 7 One (mandatory)

up

Up

Position of a point

forming the vector

pointing in “up”

direction by subtracting

the POC

Position3D type, see Table 7 Zero or one (optional)

Include when camera roll desired

fovx

FOVX

Field of view of the

virtual camera in

horizontal direction

Double type

Value in degrees, service metadata

shall specify default value

Zero or one (optional)

Include when FOVX other than

default value desired

fovy

FOVY

Field of view of the

virtual camera in vertical

direction

Double type

Value in degrees, service metadata

shall specify default value

Zero or one (optional)

Include when FOVY other than

default value desired

nearPlane

NearPlane

Distance to the near to

the camera clipping

plane

Double type

Default value is advertised in service

metadata. Values in the measure of

the request CRSa

Zero or one (optional) Include when

NearPlane other than default desired

farPlane

FarPlane

Distance to the far

clipping plane

Double type

Default value is advertised in service

metadata. Values in measure of the

request CRSa

Zero or one (optional)

Include when FarPlane other than

default desired

a In the case of a 2D CRS, measure unit is meter

Table 36: view:OrthographicProjection components

Name Definition Data type Multiplicity and use

poc

POC

Position of the virtual

camera

Position3D type, see Table 7 One (mandatory)

poi

POI

Position of point of

interest

Position3D type, see Table 7 One (mandatory)

up

Up

Position of a point

forming the vector

pointing in “up”

direction by subtracting

the POC

Position3D type, see Table 7 Zero or one (optional)

Include when camera roll desired

left

Left

Distance to the left

border of the view

frustum

Double type

Default value is advertised in service

metadata. Value in measure of the

request CRSa

Zero or one (optional)

Include when value other than default

desired

right

Right

Distance to the right

border of the view

frustum

Double type

Default value is advertised in service

metadata. Value in measure of the

request CRSa

Zero or one (optional)

Include when value other than default

desired

bottom

Bottom

Distance to the bottom

border of the view

frustum

Double type

Default value is advertised in service

metadata. Value in measure of the

request CRSa

Zero or one (optional)

Include when value other than default

desired

45 / 87

Table 36: (continued)

Name Definition Data type Multiplicity and use

top

Top

Distance to the top

border of the view

frustum

Double type

Default value is advertised in service

metadata. Value in measure of the

request CRSa

Zero or one (optional)

Include when value other than default

desired

nearPlane

NearPlane

Distance to the near to

the camera clipping

plane

Double type

Default value is advertised in service

metadata. Values in the measure of

the request CRSa

Zero or one (optional) Include when

NearPlane other than default desired

farPlane

FarPlane

Distance to the far

clipping plane

Double type

Default value is advertised in service

metadata. Values in measure of the

request CRSa

Zero or one (optional)

Include when FarPlane other than

default desired

a In the case of a 2D CRS, measure unit is meter

POC, POI, Up In PerspectiveProjection and OrthographicProjection data structures, the mandatory POC and POI parameters

and the optional Up parameter specify the position and orientation of a virtual camera used for generating the 3D view on the 3D

scene.

NearPlane, FarPlane In PerspectiveProjection and OrthographicProjection data structures, the optional NearPlane and FarPlane

parameters specify the distance to the near clipping plane and far clipping plane. A 3DPS service shall suggest appropriate

default values in the NearPlaneHint and FarPlaneHint elements of the service metadata.

FOVX, FOVY In PerspectiveProjection data structure, the optional FOVX and FOVY parameters specify the field of

view of the virtual camera. Values are in degree. FOVX specifies the horizontal angle of view, FOVY specifies the vertical angle

of view. The service shall suggest default values for FOVX and FOVY. If FOVX and FOVY are not provided, the service shall

use default values. If only one of FOVX or FOVY is provided, the service shall compute the missing value from the aspect ration

of the requested Width and Height.

Left, Right, Bottom, Top In OrthographicProjection data structure, the optional Left, Right, Bottom, and Top parameter

specify the left, right, lower, and upper borders of the cuboidal view frustum. These borders shall be specified as distance to the

center of projection.

EXAMPLE: An orthographic projection resulting in an image having the center of projection (POI) in the center of that image

includes a parameter set such as: Left=-100, Right=100, Bottom=-100, Top=100.

10.2.3 Image Coordinate System

The 3DPS View Extension uses two principal classes of Coordinate Systems (CS): an Image CS applicable to the image showing

the 3D view generated by the 3DPS, and the Layer CRS used for specifying the data source BoundingBox.

An Image CS is a coordinate system for a 3D view produced by a 3DPS supporting the View Extension. A 3D view is a

rectangular grid of pixels. The Image CS has a horizontal axis denoted x, and a vertical axis denoted y. x and y shall have only

nonnegative integer values. The origin (x,y) = (0,0) is the pixel in the upper left corner of the image; x increases to the right and y

increases downward. The Image CS corresponds to the Map CS described in the WMS specification [OGC 06-042] clause 6.7.2.

The Width and Height parameters used in several 3DPS operation requests (e.g., GetView) correspond to x and y as follows:

• Width denotes the size of the 3D view image in pixels along the x axis (that is, Width-1 is the maximum value of x).

• Height denotes the size of the 3D view image in pixels along the y axis (that is, Height-1 is the maximum value of y).

46 / 87

10.2.4 Extensibility

The View Extension is designed for supporting extensibility of the following aspects of 3D portrayal:

a) Image layers: Beyond image layers COLOR, OBJECTID, DEPTH, NORMAL, MASK, specific 3DPS services can provide

additional image layers. Those shall be advertised in the 3DPS service’s metadata document.

b) Image layer encodings: Beyond encoding image layers as suggested in this specification, specific 3DPS service can provide

other encodings. These encodings shall be advertised in the 3DPS service’s metadata document.

EXAMPLE: A specific 3DPS service could provide an image layer containing only the specular lighting information, which can

be used for image post-processing.

10.3 Modifications to Service Capabilities

10.3.1 Modifications to ServiceIdentification

A service announces support of the View Extension to a client by adding the URL identifying this extension to the list of

supported extensions delivered in the Capabilities document.

Requirement 11: http://www.opengis.net/spec/3DPS/1.0/req/service/view/extension-identifier

A 3DPS service implementing conformance class view of this View Extension shall include the following URI in the Prof

ile element of the ServiceIdentification in a GetCapabilities request: http://www.opengis.net/spec/3DPS/1.0/-

extension/view/1.0

Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core)

10.3.2 Modifications to OperationsMetadata

Requirement 12: http://www.opengis.net/spec/3DPS/1.0/req/service/view/operations-metadata-getview

A 3DPS service implementing conformance class view of this View Extension shall include an Operation element in the service’s

OperationsMetadata having its name attribute set to GetView. Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/-

1.0/conf-class/core)

10.3.3 Additions to Layer structure

Requirement 13: http://www.opengis.net/spec/3DPS/1.0/req/service/view/layer-extension

A 3DPS service implementing conformance class view of this View Extension shall extend the core:Layer Extension element as

defined in Figure 14 and Table 37

Dependency: 3DPS Core

http://www.opengis.net/spec/3DPS/1.0/extension/view/1.0
http://www.opengis.net/spec/3DPS/1.0/extension/view/1.0
http://www.opengis.net/spec/3DPS/1.0/conf-class/core
http://www.opengis.net/spec/3DPS/1.0/conf-class/core
http://www.opengis.net/spec/3DPS/1.0/conf-class/core

47 / 87

Figure 14: 3DPS view:Layer extensions UML class diagram

Table 37: Extension of the core:Layer structure.

Names Definition Data type and values Multiplicity and use

availableStyle

AvailableStyle

Style available for this layer Style data structure, see

AvailableStyle

Zero or more (optional)

10.3.4 Additions to PortrayalCapabilities structure

Requirement 14: http://www.opengis.net/spec/3DPS/1.0/req/service/view/portrayalcapabilities-extension

A 3DPS service implementing conformance class view shall extend the core:PortrayalCapabilities Extension element as defined

in Figure 15, Table 38, Table 39, Table 32, Table 40, and Table 41

Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core)

http://www.opengis.net/spec/3DPS/1.0/conf-class/core

48 / 87

Figure 15: 3DPS view:PortrayalCapabilities UML class diagram

Table 38: Extension of the core:PortrayalCapabilities struc-

ture.

Names Definition Data type and values Multiplicity and use

availableImageLayer

AvailableImageLayer

Image layers that can be served

by this service

ImageLayer type, see

Table 39

At least default

“COLOR” layer shall

be supported

One or more

(mandatory)

One for each supported

ImageLayer

availableProjection

AvailableProjection

A projection that is supported

by this service

Projection type, see

Table 40

Zero or more (optional)

Include one for each

supported projection

type

nearPlaneHint

NearPlaneHint

Hint at convenient near plane

parameter value

PositiveNumber type Zero or one (optional)

farPlaneHint

FarPlaneHint

Hint at convenient far plane

parameter value

PositiveNumber type Zero or one (optional)

supportsMultipleViews

SupportsMultipleViews

Signals if the service supports

the retrieval of multiple views

or image layers

Boolean type

Default shall be “true”

Zero or one (optional)

Include when multipart

response is not

supported

49 / 87

Table 39: Parts of ImageLayer data structure

Name Definition Data type Multiplicity

identifier

Identifier

Unambiguous identifier of this

image layer, unique for this

service

CodeList type, not empty One (mandatory)

availableFormat

AvailableFormat

Formats that are available for this

ImageLayer

List of ows:MIME type, not

empty, see [OGC 06-121r9]

clause 10.5

One or more

(mandatory)

Include one for each

supported image layer

format

Table 40: Parts of Projection data structure

Name Definition Data type Multiplicity

title

Title

Title of this projection, human

readable

LanguageString, see [OGC

06-121r9] clause 10.7

Zero or one (optional)

abstract

Abstract

Brief narrative description of this

projection

LanguageString, see [OGC

06-121r9] clause 10.7

Zero or one (optional)

identifier

Identifier

Identifier of the projection type,

unique for this service

Character Sting type, not empty One (mandatory)

projectionParameter

ProjectionParameter

Parameter that specifies this

projection

DomainType, see [OGC

06-121r9] clause 13.2.1

This data type has an attribute

described in Table 41

Zero or more

(optional)

Include one for each

parameter of the

projection

Table 41: Parts of ProjectionParameter data structure

Name Definition Data type Multiplicity

required

Required

Flag signaling whether projection

parameter is required or can be

omitted

Boolean type, not empty

Default shall be “true”

Zero or one (optional)

Include when other

than default “true”

desired

10.3.4.1 NearPlaneHint, FarPlaneHint

For retrieving good visual results from the 3D portrayal service, the near and far clipping planes restricting the viewing frustum

have to be set appropriately. The NearPlaneHint and FarPlaneHint provide a hint on such values.

10.3.4.2 SupportsMultipleViews

This flag signals if a 3DPS service supports responding multiple views or multiple image layers by a single GetView response as

HTTP multipart/mixed message (see Section 10.5.1).

50 / 87

10.4 GetView request

Requirement 15: http://www.opengis.net/spec/3DPS/1.0/req/service/view/getview/request/structure

The view:GetView request shall comply with the structure defined in Figure 16 and Table 42.

Figure 16: GetView request UML class diagram

Table 42: Additional properties of the GetView request

Names Definition Data type and values Multiplicity and use

backgroundColor

BackgroundColor

Background color

desired

Character String type, not empty

Hexadecimal RGB color values,

format 0xRRGGBB. Default is

0xFFFFFF (white)

Zero or one (optional)

Include when

background color

other than white

desired

51 / 87

Table 42: (continued)

Names Definition Data type and values Multiplicity and use

transparentBackground

TransparentBackground

Background

transparency desired a
Boolean type, not empty

Default is “false”

Zero or one (optional)

Include when

transparent

background desired

portrayals

Portrayals

List of portrayal

output specifications

List of PortrayalOutput type, not

empty

One (mandatory)

a When provided within the same request, only that one of the two or three background-related parameters is applied that

is evaluated first. Order of evaluation is: Background before BackgroundColor before TransparentBackground.

10.4.1 BackgroundColor

The optional BackgroundColor parameter is a string that specifies the color to be used as the background (non-data) pixels

of a COLOR image layer. The general format of BackgroundColor is a hexadecimal encoding of an RGB value where two

hexadecimal characters are used for each of red, green, and blue color values. The values can range between 00 and FF (0 and

255, base 10) for each. The format is 0xRRGGBB; either upper or lower case characters are allowed for RR, GG, and BB values.

The “0x” prefix shall have a lower case “x”. The default value is 0xFFFFFF (corresponding to the color white) if this parameter

is absent from the request.

When the Format parameter is an image format, a 3DPS shall set the background pixels to the color specified by the Background-

Color parameter.

A 3DPS service shall use the BackgroundColor only a) when no Background parameter is provided with the GetView request

or b) in the case of an exception and exception format is “inimage”.

10.4.2 TransparentBackground

The optional TransparentBackground parameter specifies whether the view background of a COLOR layer is to be made

transparent or not. Default value is “false”.

Note

The image/gif format provides 1-bit transparency and is properly displayed by common web clients. The image/png format

provides a range of transparency options but support in viewing applications is often implemented slightly at odds with the

specification (which is precise regarding alpha blending). The image/jpeg format does not provide transparency.

When TransparentBackground is set to true and the Formats parameter contains an image format (e.g. image/gif), then a

3DPS shall return (when permitted by the requested format) a result where all of the pixels not representing features or data values

in that Layer are set to a transparent value. If the picture format does not support transparency, then the service shall respond with

a non-transparent image (in other words, it is not an error for the client to always request transparent maps regardless of format).

When Transparent parameter is set to “false”, non-data pixels shall be set to the value of BackgroundColor (see 7.3.3.10).

A 3DPS service shall generate a transparent background only, when no Background and BackgroundColor parameter are provided

with the GetView request.

10.4.3 Portrayals

The mandatory Portrayals parameter specifies one or multiple portrayals to be generated by a 3DPS. It contains one or multiple

PortrayalOuput components, which specify image size (width and height), projections, output formats, and image qualities

as defined in Table 43.

52 / 87

Table 43: Components of the view:PortrayalOutput data struc-

ture.

Names Definition Data type and values Multiplicity and use

width

Width

Width of desired output,

in pixels

PositiveInteger type One (mandatory)

height

Height

Height of desired output,

in pixels

PositiveInteger type One (mandatory)

projections

Projections

Camera specification

and projection

parameters

List of Projection data structure, see

Table 35 and Table 36, not empty

Supported projections are specified in

service metadata

One (mandatory)

imageLayers

ImageLayers

Reference(s) to image

layers to retrieve

List of Character String type, not

empty

Supported ImageLayers (and

formats) are specified in service

metadata

One (mandatory)

formats

Formats

Format encoding(s) of

ImageLayer(s)

List of ows:MIME type, not empty,

see [OGC 06-121r9] clause 10.5. List

must have same length as in

parameter ImageLayers

Values are specified in service

metadata

One (mandatory)

qualities

Qualities

Integer that specifies

desired quality of

portrayal view (e.g. data

resolution, rendering

accuracy) a

List of Integer type, can be empty.

List must have same length as lists in

parameters Projections, ImageLayers,

and Formats. List items can be empty

Values from 0 to 100. Default is 100

Zero or one (optional)

Include when desired

a The Quality parameter is only useful for formats supporting lossy compression. For other output formats the Quality

parameter shall be ignored. The Quality parameter should be used carefully: Applying lossy image compression to image

layers other than COLOR, will result in images containing errors, e.g., wrong depth values or object identifiers.

10.4.3.1 Width, Height

The mandatory Width and Height parameters specify the size in integer pixels of the 3D view that shall be generated. The Image

CS (see Section 10.2.3) applies to the image. Width-1 specifies the maximum value of the x axis in the Image CS, and Height-1

specifies the maximum value of the y axis in the Map CS.

If the request is for an image format, the returned picture, regardless of its MIME type, shall have exactly the specified width and

height in pixels.

10.4.3.2 Projections

The mandatory Projections parameter specifies a list of projections to apply for generating the 3D views. A projection contains

the specification of the virtual camera and projection parameters as defined in Section 10.2.2, Table 35 and Table 36.

10.4.3.3 ImageLayers

The component ImageLayers contains a list of references to one or more ImageLayers advertised by the 3DPS as advertised in

it’s service metadata, e.g., one of those listed in Table 32.

53 / 87

10.4.3.4 Formats

The mandatory Formats parameter specifies a list of image formats as ows:MimeType, see [OGC 06-121r9] clause 10.5. The

length of this list shall be equal to the length of the list in the ImageLayers parameter. The order of the list shall correlate with

the list in the ImageLayers parameter, meaning that format n shall be applied for encoding the data of image layer n. Each entry

in this list shall refer to a MIME type as described in the service’s metadata (see Table 39).

10.4.3.5 Qualities

The optional Qualities parameter specifies a list of integers, which describe for each requested ImageLayer and Format the visual

quality of the output. Values are between 0 and 100. Empty values are possible and refer to the default value (100).

The Qualities parameter is only useful for COLOR images; for other image layer types, the compression algorithms can generate

invalid data. Additionally, the Qualities parameter is only useful for output formats that support image compression. If a requested

output format does not support different qualities, the 3DPS shall ignore the parameter for this format.

10.4.4 Exceptions

The optional Exceptions parameter defined by core:AbstractGetPortrayal states the format in which to report errors

during processing a GetView request. In addition to the parameter values defined by core:AbstractGetPortrayal, this

View Extension adds the special value “inimage” (i.e., the character sequence comprised of ‘i’, ‘n’, ‘i’, ‘m’, ‘a’, ‘g’, ‘e’) to the

list of possible parameter values.

If the Exceptions parameter is set to “inimage”, the service shall, upon detecting an error, return an object of the MIME type

specified in the Format parameter whose content includes text describing the nature of the error. In the case of a picture format,

the error message shall be drawn on the returned picture.

A service shall advertise the supported Exception values as AllowedValues of a Parameter element with name set to “Exception-

Format” in the OperationsMetadata.

10.5 GetView response

The normal response to a valid GetView operation request shall be

a. if a single image layer is requested: a document of the MIME type as specified in the Format parameter of the GetView

request,

b. if multiple 3D views or image layers are requested: a multipart/mixed message containing image layers of the MIME type

as specified in the Format parameter for each image layer.

10.5.1 MIME multipart response

If multiple image layers are requested, they shall be responded as MIME multipart/mixed content in an HTTP response

according to Section 5.1.3 of [RFC 2046]. Each responded image layer shall be encoded as one part of that message.

The parts of this multipart/mixed message are separated by the string “3DPS_MULTIPART_MESSAGE_BOUNDARY”, which

is also indicated in the Content-Type header of the multipart response message. According to [IETF RFC 2046], a multipart

message also ends with the message’s boundary string.

Each part of the multipart response shall be a document of a MIME type as specified in the Format parameter for this image

layer. Each part contains a header that declares the MIME type of this message part.

Table Table 44 specifies the number and order of image layers in the GetView multipart response, if multiple Projections and/or

multiple ImageLayers are requested in one PortrayalOutput. If multiple PortrayalOutputs are requested, the resulting image layer

sets are concatenated in the same way, i.e., corresponding to their order in the GetView request.

54 / 87

Table 44: Number and order of responded image layers of one requested

PortrayalOutput in GetView multipart/mixed response

Requested Projections Requested ImageLayers Number and order of result image layers

multiple (N) one Number=N

Order is the same as that of requested Projections

one (1) multiple (N) Number=N

Order is the same as that of requested ImageLayers

multiple (M) multiple (N) Number=M*N

Order is: for each Projection (order as in request) all

ImageLayers (order as in request)

In the case that not all requested image layers can be generated, a 3DPS service shall not respond any image layer, but shall

respond with an appropriate exception message.

A 3DPS client that requests multiple image layers shall be capable to parse the multipart response and to extract the message

parts.

10.6 GetView exceptions

A GetView request may return any of the exception reports defined in core:AbstractGetPortrayal and/or as specified

in Clause 8 of [OGC 06-121r9].

Requirement 16: http://www.opengis.net/spec/3DPS/1.0/req/service/view/exception/common

A GetView request, upon encountering an error, shall return any of the exception reports defined in core:AbstractGetPo

rtrayal and/or as specified in Clause 8 of [OGC 06-121r9]. Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/-

1.0/conf-class/core), OWS Common 2.0

10.7 Binding Extensions for the GetView Operation

10.7.1 HTTP/GET + KVP Binding

This clause specifies the KVP encoding for the GetView operation.

EXAMPLE: A possible GetView request might look like this:

http://hostname:port/path?SERVICE=3DPS&VERSION=1.0

&REQUEST=GetView&CRS=EPSG:26916&BOUNDINGBOX=202759.0,3310170.0,30.0,213200.0,3320896.0,100.0

&SPATIALSELECTION=contains_center&LAYERS=all&STYLES=&OVERALLSTYLES=foggy,abstract

&BACKGROUND=skybox&PORTRAYALS=WIDTH=1024;HEIGHT=1024;

&Projections=Perspective,210000,332000,50,211000,332000,30,0,0,1,60„0.01,1000.0

&IMAGELAYERS=COLOR;FORMATS=image/jpeg;QUALITIES=85&EXCEPTIONS=INIMAGE

Servers may implement HTTP GET transfer of the GetView operation request, using KVP encoding. The KVP encoding of the

GetView operation request shall use the parameters specified in Table 45. The parameters listed in Table 45 shall be as specified

in Table 42 and Table 43.

Table 45: GetView operation request URL parameters

Name a Optionality and use Definition and

format

Example

service Mandatory Service type identifier

service=3DPS

http://www.opengis.net/spec/3DPS/1.0/conf-class/core
http://www.opengis.net/spec/3DPS/1.0/conf-class/core
http://hostname:port/path?SERVICE=3DPS&VERSION=1.0

55 / 87

Table 45: (continued)

Name a Optionality and use Definition and

format

Example

request Mandatory Operation name

request=GetView

version Mandatory Standard and schema

version for this

operation version=1.0

crs Mandatory CRS to apply to

BoundingBox and

Viewpoint(s) crs=EPSG:26916

boundingBox Optional, include

when spatial selection

by bounding box

desired

Bounding box

surrounding desired

subset of layer(s), in

desired CRS

boundingbox=202759.0,3310170.0,30.0,

213200.0,3320896.0,100.0

spatialSelection Optional, include

when spatial selection

desired

Indicates method of

selecting objects with

BoundingBox spatialselection=contains_center

layers Layers Mandatory Identifier(s) of desired

data layer(s)
layers=dem,bldgs

styles Styles Optional, include

when named layer

style desired

Identifier(s) of desired

layer style(s)
styles=default,default

overallStyles Optional, include

when image style

desired

Identifier(s) of desired

overall image style(s)
overallstyles=foggy,abstract

background

Background

Optional, include

when background

desired

Identifier of desired

background
background=skybox

backgroundColor Optional, include

when background

color desired

Background color

desired
backgroundcolor=0xFF0000

transparentBackground Optional, include

when transparent

background desired

Non-data parts shall

be transparent
transparentBackground=true

56 / 87

Table 45: (continued)

Name a Optionality and use Definition and

format

Example

portrayals Portrayals Mandatory List of specifications

of Width (one),

Height (one),

Projections (one or

more), ImageLayers

(one or more),

Formats (one or

more), Qualities (one

or more)

Portrayals= WIDTH=1024;HEIGHT=1024;

Projections= Perspective,

202000,3310000,200, 202000,3305000,200,

0,0,1, 60„ 0.01,1000.0; IMAGE-

LAYERS=COLOR,DEPTH; FOR-

MATS=image/jpeg,image/png%3Bmode=32bit;

QUALITIES=100,100 @

WIDTH=768;HEIGHT=768; Projec-

tions= Perspective, 202000,3310000,200,

202000,3305000,200, 0,0,1, 60„ 0.01,1000.0;

IMAGELAYERS=COLOR,DEPTH; FOR-

MATS=image/png,image/png; QUALI-

TIES=100,100 b

exceptions Optional, include

when default XML

not desired

Format of exceptions

Exceptions=INIMAGE

a All parameter names listed here are using mostly lower case letters. However, any parameter name capitalization shall be

allowed in KVP encoding, see Subclause 11.5.2 of [OGC 06-121r9]. b The value for this field shall be encoded as

specified in section TODO

10.7.1.1 BoundingBox

The value of the BoundingBox parameter is a list of comma-separated real numbers as described [OGC 06-121r9] clause 10.2.3.

The units, ordering, and direction of increment of the X and Y axes are as defined by the request’s CRS parameter. A 3D

BoundingBox is KVP encoded in the form “minx,miny,minz,maxx,maxy,maxz”.

10.7.1.2 Layers

The mandatory Layers parameter shall be a comma-separated list of Layer Identifiers as advertised in the service’s metadata

Contents section.

10.7.1.3 Styles

The mandatory Styles parameter shall be a comma-separated list of Style Identifiers as advertised in the service’s metadata

Contents section. The list shall contain one Style identifier for each Layer in the Layers parameter; the order shall be the same.

Thus, the Style list shall have the same length as the Layer list. The Style list can be empty; in this case the default style shall be

applied to all Layers. An entry of the Styles list can be empty; in this case the default Style of the corresponding Layer shall be

applied.

10.7.1.4 KVP encoding of Portrayals

PortrayalOutput KVP encoding

Encoding of the PortrayalOutput value fields shall be as follows:

a. An at symbol (@) shall be used to separate one PortrayalOutput value from the next.

b. A semicolon (;) shall be used to separate one PortrayalOutput parameter from another.

57 / 87

c. Missing mandatory PortrayalOutput parameter names shall raise a MissingParameterValue exception.

d. An equal sign (=) shall be used to separate a PortrayalOutput parameter name from its value.

e. All PortrayalOutput parameter values shall be encoded using the standard Internet practice for encoding URLs [RFC 1738].

The PortrayalOutput parameter’s value, in a KVP GetView request, shall conform to the following grammar (using EBNF,

Extended Backus-Naur Form notation [ISO/IEC 14977]):

Portrayals = PortrayalOutput, {"@", PortrayalOutput};

PortrayalOutput = "WIDTH=", ‘image width’,

";HEIGHT=", ‘image height’,

";PROJECTIONS=", ProjectionList,

";IMAGELAYERS=", ImageLayerList,

";FORMATS=", FormatList,

";QUALITIES=" QualityList;

ProjectionList = Projection, {",", Projection};

Projection = ProjectionTypeName, {",", ProjectionParameterValue};

ProjectionTypeName = "Perspective" | "Orthographic" |

‘name of other supported projection’;

ProjectionParameterValue = empty | ‘URL encoded value’

ImageLayerList = ImageLayer, {",", ImageLayer};

ImageLayer = "COLOR" | "DEPTH" | "OBJECTID" | "NORMAL" | "MASK" |

‘service-specific image layer identifier’;

FormatList = Format, {",", Format};

Format = ‘URL encoded mime type’;

QualityList = (Quality | empty), {",", (Qualitiy | empty)};

Quality = ‘quality value’;

URL encoding (according to [RFC 3986]) is required for parameter values. For example the semicolon (;) within a parameterized

MIME type identifier has to be escaped by “%3B”:

EXAMPLE: The encoding for “image/png;mode=32Bit” is “image/png%3Bmode=32Bit”.

Projection parameters KVP encoding

The Projections parameter (which is a parameter of the PortrayalOutput type) shall be encoded as comma separated list of tuple

values. Multiple projection specifications are concatenated with a comma as separator. For each requested Projection, the size of

the tuple shall be the same as the number of the parameters of this projection plus one (the preceding Projection Identifier). The

order of the projection’s parameter values shall be the same as in the service metadata. For optional projection parameters (see

Table 35 and Table 36) the values can be empty. In this case, the service has to use default values, ignore parameters, or compute

values. The Projections parameter shall contain multiple projections only, when the 3DPS service advertises the capability to

generate multiple view and/or image layers element in the service metadata.

10.7.2 GetView request XML encoding (optional)

A 3DPS services may implement HTTP POST transfer of the GetView operation request using XML encoding. The following

schema fragment specifies the contents and structure of a GetView operation request encoded in XML:

<!-- === -->

<element name="GetView" type="view:GetViewType"/>

<!-- === -->

<complexType name="GetViewType">

<annotation>

<documentation>XML encoded 3DPS GetView operation request. </documentation>

</annotation>

<complexContent>

58 / 87

<extension base="core:PSRequestBaseType">

<sequence>

<element name="CRS" type="anyURI"/>

<element ref="ows:BoundingBox" minOccurs="0"/>

<element name="SpatialSelection" type="ows:CodeType" minOccurs="0"/>

<element name="Layers" type="core:IdentifierListType" minOccurs="1"/>

<element name="Styles" type="core:IdentifierListType" minOccurs="0"/>

<element name="OverallStyles" type="core:IdentifierListType" minOccurs="0"/>

<element name="Background" type="string" minOccurs="0"/>

<element name="BackgroundColor" type="string" minOccurs="0"/>

<element name="TransparentBackground" type="boolean" minOccurs="0"/>

<element name="Portrayals" type="view:PortrayalOutputListType"/>

<element name="Exceptions" type="string" minOccurs="0"/>

</sequence>

</extension>

</complexContent>

</complexType>

EXAMPLE: An example GetView operation request XML encoded for HTTP POST is:

<?xml version="1.0" encoding="UTF-8"?>

<view:GetView

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:core="http://www.opengis.net/3dps/1.0/core"

xmlns:view="http://www.opengis.net/3dps/1.0/view"

xsi:schemaLocation="http://www.opengis.net/3dps/1.0/view ../viewGetView.xsd"

xmlns:ows="http://www.opengis.net/ows/1.1"

xmlns:xlink="http://www.w3.org/1999/xlink"

service="3DPS" request="GetView" version="1.0">

<core:CRS>EPSG:1234</core:CRS>

<ows:BoundingBox>

<ows:LowerCorner>0.0 0.0 0.0</ows:LowerCorner>

<ows:UpperCorner>100.0 100.0 100.0</ows:UpperCorner>

</ows:BoundingBox>

<core:SpatialSelection>contains_center</core:SpatialSelection>

<core:Layers>

<ows:Identifier>dem</ows:Identifier>

<ows:Identifier>bldgs</ows:Identifier>

</core:Layers>

<core:Styles>

<ows:Identifier>nice</ows:Identifier>

<ows:Identifier></ows:Identifier>

</core:Styles>

<core:OverallStyles>

<ows:Identifier>fog</ows:Identifier>

<ows:Identifier>abstract</ows:Identifier>

</core:OverallStyles>

<core:Background>skybox</core:Background>

<view:BackgroundColor>0xFF0000</view:BackgroundColor>

<view:Exceptions>INIMAGE</view:Exceptions>

<view:Portrayals>

<view:Portrayal>

<view:Width>1024</view:Width>

<view:Height>1024</view:Height>

<view:Projections>

<view:PerspectiveProjection>

<view:POC>100 100 100</view:POC>

<view:POI>101 101 101</view:POI>

<view:Up>0 0 1</view:Up>

<view:FOVX>80</view:FOVX>

<view:FOVY>60</view:FOVY>

<view:NearPlane>0.0001</view:NearPlane>

59 / 87

<view:FarPlane>10000.0</view:FarPlane>

</view:PerspectiveProjection>

<view:OrthographicProjection>

<view:POC>100 100 100</view:POC>

<view:POI>101 101 101</view:POI>

<view:Up>0 0 1</view:Up>

<view:Left>-100</view:Left>

<view:Right>-100</view:Right>

<view:Bottom>-100</view:Bottom>

<view:Top>100</view:Top>

<view:NearPlane>0.0001</view:NearPlane>

<view:FarPlane>10000.0</view:FarPlane>

</view:OrthographicProjection>

</view:Projections>

<view:ImageLayers>

<ows:Identifier>COLOR</ows:Identifier>

<ows:Identifier>DEPTH</ows:Identifier>

<ows:Identifier>OBJECTID</ows:Identifier>

</view:ImageLayers>

<view:Formats>

<view:Format>image/jpeg</view:Format>

<view:Format>image/png; mode=32bit</view:Format>

<view:Format>text/xml</view:Format>

</view:Formats>

<view:Qualities>80,,</view:Qualities>

</view:Portrayal>

</view:Portrayals>

</view:GetView>

11 Info Extension

11.1 Introduction

The Info Extension specifies capabilities that allow a client to request information about features within a portrayal from a

3DPS service. The canonical use case for the Info Extension is that a user explores the response of a GetView or GetScene

request and points at an object within the portrayal for which to obtain more information.

For this, the Info Extension specifies three specialized operations that are based on an abstract GetFeatureInfo operation

and that implement three different methods to identify the selected feature.

• GetFeatureInfoByRay

• GetFeatureInfoByPosition

• GetFeatureInfoByObjectId

The actual method of how the 3D Portrayal service decides which features are selected and what kind of information is returned

is left to the 3D Portrayal Service implementation. The GetFeatureInfo operation response can be restricted to a feature

identifier with the parameter idonly. The feature identifier may be used to access a WebFeatureService for further information

pertaining that feature. The GetFeatureInfo operation is only supported for those Layers for which the attribute queryable="true"

has been defined or inherited. A client should not issue a GetFeatureInfo request for other layers. A 3D Portrayal Service shall

respond with a properly formatted service exception response (code = OperationNotSupported) if it receives a GetFeatureInfo

request it does not support. Also a list of layers shall be provided with the GetFeatureInfo request so that the search for attribute

information can be restricted to selected data sets.

60 / 87

11.2 Modifications to Service Capabilities

11.2.1 Modifications to ServiceIdentification

A service announces support of the Info Extension to a client by adding the URL identifying this extension to the list of

supported extensions delivered in the Capabilities document.

Requirement 17: http://www.opengis.net/spec/3DPS/1.0/req/service/info/extension-identifier

A 3DPS service implementing conformance class info of this Info Extension shall include the following URI in the Prof

ile element of the ServiceIdentification in a GetCapabilities request: http://www.opengis.net/spec/3DPS/1.0/-

extension/info/1.0

Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core) and one of scene (http://www.opengis.net/-

spec/3DPS/1.0/conf-class/scene) or view (http://www.opengis.net/spec/3DPS/1.0/conf-class/view)

11.2.2 Modifications to OperationsMetadata

Requirement 18: http://www.opengis.net/spec/3DPS/1.0/req/service/info/operations-metadata-getfeatureinfo

A 3DPS service implementing conformance class info of this Info Extension shall include one Operation element in the service’s

OperationsMetadata for each of the implemented GetFeatureInfo operation and set its “name” attribute to a value as defined in

Table 46. Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core)

Table 46: Possible values of “name” attributes of OperationsMetadata

section elements

Value of Operation attribute “name” Meaning of attribute value

GetFeatureInfoByRay The GetFeatureInfoByRay operation is implemented by this service

GetFeatureInfoByPosition The GetFeatureInfoByPosition operation is implemented by this service

GetFeatureInfoByObjectId The GetFeatureInfoByObjectId operation is implemented by this service

Requirement 19: http://www.opengis.net/spec/3DPS/1.0/req/service/info/operations-metadata-getfeatureinfo-formats

A 3DPS service implementing conformance class info of this Info Extension shall include for each implemented GetFeature-

Info operation a list of output formats offered for that operation as ows:MimeType, advertised as ows:Value elements of an

ows:Parameter element of the ows:Operation element of this operation, see [OGC 06-121r9] clause 10.5. Dependency: 3DPS

Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core)

EXAMPLE: A partial example of an OperationsMetadata element is as follows:

<OperationsMetadata>

<Operation name="GetCapabilities">

<DCP>

<HTTP>

<Get xlink:href="http://example.com/transform?"/>

</HTTP>

</DCP>

<Parameter name="Format">

<Value>text/xml</Value>

</Parameter>

</Operation>

<Operation name="GetFeatureInfoByRay">

<DCP>

<HTTP>

<Get xlink:href="http://example.com/transform?"/>

<Post xlink:href="http://example.com/transform?"/>

</HTTP>

http://www.opengis.net/spec/3DPS/1.0/extension/info/1.0
http://www.opengis.net/spec/3DPS/1.0/extension/info/1.0
http://www.opengis.net/spec/3DPS/1.0/conf-class/core
http://www.opengis.net/spec/3DPS/1.0/conf-class/scene
http://www.opengis.net/spec/3DPS/1.0/conf-class/scene
http://www.opengis.net/spec/3DPS/1.0/conf-class/view
http://www.opengis.net/spec/3DPS/1.0/conf-class/core
http://www.opengis.net/spec/3DPS/1.0/conf-class/core

61 / 87

</DCP>

<Parameter name="Format">

<Value>text/xml</Value>

<Value>text/plain</Value>

<Value>text/html</Value>

</Parameter>

<Parameter name="Exceptions">

<Value>text/xml</Value>

<Value>text/plain</Value>

<Value>text/html</Value>

</Parameter>

</Operation>

<Operation name="GetFeatureInfo">

<DCP>

<HTTP>

<Get xlink:href="http://example.com/transform?"/>

</HTTP>

</DCP>

<Parameter name="Format">

<Value>text/xml</Value>

<Value>text/plain</Value>

<Value>text/html</Value>

</Parameter>

</Operation>

</OperationsMetadata>

11.2.3 Additions to Layer structure

Requirement 20: http://www.opengis.net/spec/3DPS/1.0/req/service/info/layer-extension

A 3DPS service implementing conformance class info of this Info Extension shall extend the core:Layer Extension element as

defined in Figure 17 and Table 47

Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core)

http://www.opengis.net/spec/3DPS/1.0/conf-class/core

62 / 87

Figure 17: 3DPS info:Layer extensions UML class diagram

In the info module, the Layer’s description is enhaced with the queryable attribute.

Table 47: Extension of the core:Layer structure.

Names Definition Data type and values Multiplicity and use

queryable

Queryable Flag indicating if feature

info can be requested from

this layer

Boolean type

“true” means the layer is

queryable, “false” means

layer is not queryable, de-

fault is “false”

Zero or one (optional)

63 / 87

11.3 Abstract GetFeatureInfo request

Requirement 21: http://www.opengis.net/spec/3DPS/1.0/req/service/info/abstractGetFeatureInfo

An info:AbstractGetFeatureInfo request shall consist of an info:AbstractGetFeatureInfo structure as de-

fined in Figure 18 and Table 48.

Figure 18: 3DPS info:AbstractGetFeatureInfo operation request UML class diagram

Table 48: Parameters of the AbstractGetFeatureInfo operation.

Namesa Definition Data type and values Multiplicity and use

layers

Layers List of layer to retrieve the

data from

Character String type,

comma separated list of

layer Identifiers

One (mandatory)

featureCount

FeatureCount

Number of features to return

information from.

Integer type, default is “1” Zero or one (optional)

idonly

IdOnly

restrict feature information

to feature id

Boolean type, default is

“false”

Zero or One (optional)

format

Format

Format encoding of the re-

sult

ows:MimeType, see [OGC

06-121r9] clause 10.5

One (mandatory)

64 / 87

Table 48: (continued)

Namesa Definition Data type and values Multiplicity and use

exceptions

Exceptions

Reference to format in

which operation exceptions

should be returned

ows:MimeType, see [OGC

06-121r9] clause 10.5

Zero or one (optional)

11.3.1 Layers

The Layers parameter specifies a comma separated list of layer identifiers from which the service spatially selects features based

on the coordinate, and collects attribute information from. The order in which the layers are listed in the Layers parameter

determines the order in which the feature information will be displayed in the GetFeatureInfo response. Each entry in the Layers

comma separated list shall refer to a layer identifier as described in the service’s meta data.

11.3.2 FeatureCount

The optional FeatureCount parameter specifies the maximum number of features per layer for which feature information shall

be returned. The parameter value shall be a positive integer. The default value is 1 if this parameter is omitted or is other than a

positive integer.

11.3.3 IdOnly

The optional IdOnly parameter can be used to restrict the getFeatureInfo response to the unique feature identifier only (IdOnly

= true). The feature identifier can be used to request further information of the feature from a WebFeatureService, for example.

Default is IdOnly=false.

11.3.4 Format

The mandatory Format parameter specifies the target encoding of the returned attribute information provided as ows:MimeType,

see [OGC 06-121r9] clause 10.5. Available formats are described in the service’s meta data.

11.3.5 Exceptions

The optional Exceptions parameter specifies the behaviour of the service upon detecting an error, e.g. invalid request or internal

service error. The default value is “text/xml”. The value shall be one of the MIME types offered in the service’s meta data

parameter value, see 7.3.2.2.

11.4 GetFeatureInfoByRay request

GetFeatureInfoByRay allows a client to request information about features by selecting them through a virtual ray, set up

from the virtual camera to a 3D point or 2D point in a 3D scene or 3D view, respectively.

It is assumed that, when performing the ray cast, the scene may not be accurately reproduced inside the service instance for

the benefit of item selection. Thus, the request does not feature the additional options of the View or Scene profile to aid in

reproduction. Rather, some amount of error should be assumed when using this request.

The GetFeatureInfoByRay request is derived from the AbstractGetFeatureInfo request and inherits all its parameters.

Additional parameters are defined for setting up an intersection ray.

Requirement 22: http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyray/request

An info:GetFeatureInfoByRay request shall consist of an info:GetFeatureInfoByRay structure as defined in

Figure 18, Table 49 and Table 48.

65 / 87

Table 49: Parameters of the GetFeatureInfoByRay request.

Names Definition Data type and values Multiplicity and use

crs

CRS

CRS to apply to

BoundingBox and

Projection parameters

URI One (mandatory)

width

Width

Width of output image that

the request refers to, in

pixels

PositiveInteger type One (mandatory)

height

Height

Height of output image that

the request refers to, in

pixels

PositiveInteger type One (mandatory)

projection

Projection

Camera specification and

projection parameters

Projection type, see Table

TODO and Table TODO

Supported projection types

are specified in service

metadata

One (mandatory)

imagePosition

ImagePosition

Discrete pixel position for

which to search for features

to return information from

Position2D type in image

CS, see Table 6

One (mandatory)

11.4.1 Width, Height

The mandatory Width and Height parameters specify the size in integer pixels of the view that describes the ray cast.

11.4.2 Projection

The mandatory Projection parameter specifies a projection to apply to the ray cast. A projection contains the specification of the

virtual camera and projection parameters as defined in Section 10.2.2, Table 35 and Table 36.

11.4.3 ImagePosition

The mandatory Position parameter specifies the 2D pixel position for which to analyze the scene and for where to retrieve

information for. The parameter value is a list of two integer numbers describing the X, Y coordinates of the pixel in Image CS.

11.5 GetFeatureInfoByPosition request

The GetFeatureInfoByRay request is derived from the AbstractGetFeatureInfo request and inherits all its parameters. Additional

parameters are defined to support locating nearby features.

The GetFeatureInfoByPosition operation finds features based on a location, usually determined in the portrayal by

clicking on, or close to, an object. The service locates the closest featureCount features and returns the associated feature

attributes to the client.

Requirement 23: http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyposition/request

An info:GetFeatureInfoByPosition request shall consist of an info:GetFeatureInfoByPosition structure

as defined in Figure 18, Table 50 and Table 48.

66 / 87

Table 50: Parameters of the GetFeatureInfoByPosition operation.

Namesa Definition Data type and values Multiplicity and use

crs

CRS CRS of the coordinates URI One (mandatory)

coordinate

Coordinate

Location coordinates used

to search for features

Element of type Position3D.

Coordinate order in CRS

space

One (mandatory)

tolerance

Tolerance

Tolerance in meter A floating-point number Zero or one (optional)

11.5.1 CRS

The parameter value for the coordinate reference system (CRS) is defined in [OGC 06-121r9] clause 10.3 and [OGC 04-046r3].

When using a 2D CRS, then the height reference is taken from the layer’s vertical datum.

11.5.2 Coordinate

The mandatory Coordinate parameter specifies a geolocation within the scene from which feature information will be retrieved.

The parameter value is a list of comma separated floating point numbers describing a geoposition in CRS coordinates. This

location should be within or at the border of a feature geometry for accuracy reasons, but it does not need to. The 3D Portrayal

Service shall detect the feature(s) whose geometry is covering the location or which are close to the location.

11.5.3 Tolerance

Optionally, a tolerance in meter may be specified which guides the service in determining the range in which features should be

located. It it provisional only, i.e. the service may return features ouside that range even when specified, and it also may use an

implemetation-defined default if not specified.

11.6 GetFeatureInfoByObjectId request

The GetFeatureInfoByRay request is derived from the AbstractGetFeatureInfo request and inherits all its parameters. Additional

and refined parameters are defined to specify a list of desired identifiers.

Some (mostly 3D) formats allow for inclusion of object identifiers. Such identifiers may then be used to obtain feature attributes

directly. Except through the specified idonly mechanism, the details of how precisely object identifiers are obtained in the

client are left unspecified. When an object identifier is obtained and further information is sought, the GetFeatureInfoByObjectId

operation can be used directly to request additional information.

Requirement 24: http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyobjectid/request

An info:GetFeatureInfoByObjectId request shall consist of an info:GetFeatureInfoByRay structure as de-

fined in Figure 18, Table 51 and Table 48.

67 / 87

Table 51: Parameters of the GetFeatureInfoByPosition operation.

Names Definition Data type and values Multiplicity and use

objectId

ObjectId unique identifier of the se-

lected feature(s)

URI One or more (mandatory)

featureCount

FeatureCount

11.6.1 ObjectID

Unique identifier(s) of the selected feature(s).

11.6.2 FeaureCount

If the featureCount is specified, it shall correspond to the number of object identifiers provided. Otherwise, featureCount shall

be assumed to equal the cardinality of ObjectId identifiers.

11.7 GetFeatureInfo response

The normal response to a valid GetFeatureInfo operation request shall be a document in which the attribute information of each

identified feature is listed. The response is a document encoded in the MIME type as specified in the Format parameter.

Requirement 25: http://www.opengis.net/spec/3DPS/1.0/req/service/info/response

To a valid GetFeatureInfo request, a 3DPS service implementing conformance class info of this Info Extension shall respond a

FeatureInfo as defined in Table 52, Table 53, Table 54 and Table 55.

Dependency: 3DPS Core (http://www.opengis.net/spec/3DPS/1.0/conf-class/core)

Note

A FeatureInfoList can contain multiple more than one FeatureAttributeList elements, which allows, e.g., for grouping feature

attributes by their topic or domain.

Table 52: FeatureInfo components

Names Definition Data type and values Multiplicity and use

featureInfoList

FeatureInfoList List containing information

of one feature

FeatureInfoList type One or more (mandatory)

Include one for each feature

that was found

http://www.opengis.net/spec/3DPS/1.0/conf-class/core

68 / 87

Table 53: FeatureInfoList components

Names Definition Data type and values Multiplicity and use

featureId

FeatureId Feature identifier that may

be used to directly re-

quest an underlying feature

database (e.g. OGC WFS)

Character String type, not

empty

Zero or one (optional)

Include if feature identifier

is available

objectId

ObjectId

Object identifier, local the

the service instance

Character String type, not

empty

Zero or one (optional)

Include if object identifier is

available

typeName

TypeName

Name of the feature’s type Character String type, not

empty

Zero or one (optional) + In-

clude if a type name is avail-

able

featureAttributeList

FeatureAttributeList

Group of feature attributes FeatureAttributeList data

type, not empty

Zero or more (optional)

Include when attributes

available for this feature

Table 54: FeatureAttributeList components

Names Definition Data type and values Multiplicity and use

attribute

Attribute Feature attribute name and

value

FeatureAttribute type, not

empty

One or more (mandatory)

Table 55: FeatureAttribute components

Names Definition Data type and values Multiplicity and use

name

Name Attribute name Character String type, not

empty

One (mandatory)

value

Value

Attribute value Character String type, might

be empty

One (mandatory)

11.7.1 FeatureInfo encoding

11.7.1.1 FeatureInfo XML encoding

Example: An example XML encoded FeatureInfo response is:

69 / 87

<FeatureInfo xmlns="http://www.opengis.net/3dps/1.0/info">

<FeatureInfoList featureType="buildings">

<ObjectId>496376</ObjectId>

<FeatureId>BLDG_0003000e0080fce9</FeatureId>

<FeatureAttributeList>

<FeatureAttribute name="id">34891270</FeatureAttribute>

<FeatureAttribute name="objkey">1123 Hochschulgebaeude</FeatureAttribute>

<FeatureAttribute name="strkey">2390</FeatureAttribute>

<FeatureAttribute name="hsno">1</FeatureAttribute>

<FeatureAttribute name="description">Alte Universitaet</FeatureAttribute>

</FeatureAttributeList>

<FeatureAttributeList>

<FeatureAttribute name="sockelhoehe">2.500000</FeatureAttribute>

<FeatureAttribute name="traufhoehe">15.000000</FeatureAttribute>

<FeatureAttribute name="height">115.347270</FeatureAttribute>

</FeatureAttributeList>

</FeatureInfoList>

</FeatureInfo>

11.7.1.2 FeatureInfo HTML encoding

A GetFeatureInfo operation response may look like this encoded in text/html:

<html>

<head></head>

<body>

<table>

<tr>

<th>Buildings</th>

</tr>

<tr>

<th></th>

<th>id</th>

<th>objkey</th>

<th>strkey</th>

<th>hsno</th>

<th>description</th>

<th>sockelhoehe</th>

<th>traufhoehe</th>

<th>height</th>

</tr>

<tr>

<td>1</td>

<td>34891270</td>

<td>1123 Hochschulgebaeude</td>

<td>2390</td>

<td>1</td>

<td>Alte Universitaet</td>

<td>2.500000</td>

<td>15.000000</td>

<td>115.347270</td>

</tr>

</table>

</body>

</html>

70 / 87

11.7.2 GetFeatureInfo exceptions

When a 3DPortrayalService service encounters an error while performing a GetFeatureInfo operation, it shall return an exception

report message as specified in Clause 8 of [OGC 06-121r9]. The allowed standard exception codes shall include those listed in

Table 56. For each listed exceptionCode, the contents of the “locator” parameter value shall be filled as specified in the right

column of the table.

Note

To reduce the need for readers to refer to other documents, the first four values listed below are copied from Table 27 in

Subclause 8.3 of [OGC 06-121r9].

11.7.3 Exception codes for GetFeatureInfo operation

Table 56: Exception codes of the GetFeatureInfo operation.

exceptionCode value Meaning of code “locator” value

OperationNotSupported
Request is for an operation that is not supported by this

service

Name of operation not sup-

ported

MissingParameterValue Operation request does not include a parameter value, and

this service did not declare a default value for that param-

eter

Name of missing parameter

InvalidParameterValue Operation request contains an invalid parameter value Name of parameter with in-

valid value

OptionNotSupported Request is for an option that is not supported by this ser-

vice

Identifier of option not sup-

ported

CRSNotSupported Operation request contains a value in the CRS parameter

which is not supported by the service

Name of unsupported CRS

UnknownLayer Operation request contains an identifier in the Layers pa-

rameter which is unknown to the service

Identifier of invalid layer

FormatNotSupported Operation request contains a MIME type in the Format pa-

rameter which is not supported by the service

Name of unsupported format

ExceptionNotSupported Operation request contains a value in the Exception pa-

rameter which is not supported by the service

Name of unsupported excep-

tion format

71 / 87

Table 56: (continued)

exceptionCode value Meaning of code “locator” value

NoApplicableCode No other exceptionCode specified by this service and ser-

vice applies to this exception

None, omit “locator” param-

eter

72 / 87

12 Annex A: Conformance Class Abstract Test Suite (Normative)

References to XML schema read either ows:Type or core:Type and refer to http://www.opengis.net/ows/2.0

or http://www.opengis.net/3dps/1.0/core, respectively.

12.1 Conformance class: core

Conformance class: core

The OGC URI identifier of this conformance class is: http://www.opengis.net/spec/3DPS/1.0/conf-class/core

Test id http://www.opengis.net/spec/3DPS/1.0/testing/conf-class/core

Test purpose Verify that the service implements the “core” 3DPS conformance class.

Test method Verify that the service declares and implements the core conformance class by evaluating the

GetCapabilities response. Verify that the requests and responses to a supported operation are

syntactically correct. Verify that the service supports the view conformance class, the scene

conformance class or both.

12.2 Tests for requirements of the core requirements class

Most core requirements are actually requirements against extensions to this standard. They are therefore not included here.

GetCapabilities Response

Requirement 1

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/core/getcapabilities/response/structure

Test purpose Test that the GetCapabilities response conforms to the specification.

Test method Verify that the GetCapabilities response is valid accoring to the declared schema and that the

root element conforms to core:CapabilitiesType.

GetResource Request

Requirement 2

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/core/getResourceById/request

Test purpose Test that the GetCapabilities response conforms to the specification.

Test method Verify the services core:GetResourceById against [OGC 06-121r9]

getResourceId response

Requirement 3

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/core/getResourceById/response

Test purpose Test that the response is formed as expected.

Test method Request data from the service and validate its innner stucture and the service responses mime

type to match the requested MIME.’

12.3 Conformance class: scene

Conformance class: scene

The OGC URI identifier of this conformance class is: http://www.opengis.net/spec/3DPS/1.0/conf-class/scene

Test id http://www.opengis.net/spec/3DPS/1.0/testing/profile/scene

Test purpose Verify that the service implements the “scene” 3DPS conformance class.

Test method Verify that the service declares and implements the GetScene operation. Verify that GetScene

declares at least one format. Verify conformance test http://www.opengis.net/

spec/3DPS/1.0/testing/conf-class/core.

http://www.opengis.net/spec/3DPS/1.0/conf-class/core
http://www.opengis.net/spec/3DPS/1.0/testing/conf-class/core
http://www.opengis.net/spec/3DPS/1.0/req/service/core/getcapabilities/response/structure
http://www.opengis.net/spec/3DPS/1.0/req/service/core/getResourceById/request
http://www.opengis.net/spec/3DPS/1.0/req/service/core/getResourceById/response
http://www.opengis.net/spec/3DPS/1.0/conf-class/scene
http://www.opengis.net/spec/3DPS/1.0/testing/profile/scene

73 / 87

12.4 Tests for requirements of the scene requirements class

Note

These tests require an instance that has some content.

Modifications to service identification

Requirement 4

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/scene/extension-identifier

Test purpose Test that an instance declares its implemetation of the scene requirements class.

Test method Verify that the GetCapabilities answer includes the declaration of a profile element http://

www.opengis.net/spec/3DPS/1.0/extension/scene/1.0

Test for Operations Metadata

Requirement 5

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/scene/operations-metadata-getscene

Test purpose Test that operations metadata is complete.

Test method Verify that the GetCapabilities response includes an operantion named "GetScene". Verify that

the operation declares the parameters given in Table 18 and Table 29 are declared.

Layer extension test

Requirement 6

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/scene/layer-extension

Test purpose Ensure that the layer extensions for scene-based portrayal are declared.

Test method Verify that there are layers which are declared with XML conforming to the scene:

SceneLayerType schema

Mime types

Requirement 7

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/scene/mimetypes

Test purpose Test that declared MIME types conform to the specification.

Test method Verify that there are MIME types available for each layer. Verify that for each parameterized

MIME type, there is a corresponding unparameterized MIME.

Portrayal capabilities declaration test

Requirement 8

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/scene/portrayalcapabilities-extension

Test purpose Test that portrayal capabilities are declared properly.

Test method Verify that the GetCapabilities response contains an element conform to the

scene:PortrayalCapabilities schema.

Response

Requirement 10

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/scene/getscene/response

Test purpose Test that the response is formed as expected.

Test method Request data from all layers from the service in all declared MIME types, individually. Verify

that each response is formed according to the provisions of the format associated with the

MIME type used for that response, or is an error. Verify that at least one response is not an

error.

http://www.opengis.net/spec/3DPS/1.0/req/service/scene/extension-identifier
http://www.opengis.net/spec/3DPS/1.0/req/service/scene/operations-metadata-getscene
http://www.opengis.net/spec/3DPS/1.0/req/service/scene/layer-extension
http://www.opengis.net/spec/3DPS/1.0/req/service/scene/mimetypes
http://www.opengis.net/spec/3DPS/1.0/req/service/scene/portrayalcapabilities-extension
http://www.opengis.net/spec/3DPS/1.0/req/service/scene/getscene/response

74 / 87

12.5 Conformance class: view

Conformance class: view

The OGC URI identifier of this conformance class is: http://www.opengis.net/spec/3DPS/1.0/conf-class/view

Test id http://www.opengis.net/spec/3DPS/1.0/testing/profile/view

Test purpose Verify that the service implements the “view” 3DPS conformance class.

Test method Verify that the service declares and implements the GetView operation. Verify that GetView

declares at least one format. Verify conformance test http://www.opengis.net/

spec/3DPS/1.0/testing/conf-class/core.

12.6 Tests for requirements of the view requirements class

Modifications to service identification

Requirement 11

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/view/extension-identifier

Test purpose Test that an instance declares its implementation of the view requirements class.

Test method Verify that the GetCapabilities answer includes the declaration of a profile element http://

www.opengis.net/spec/3DPS/1.0/extension/view/1.0

Test for Operations Metadata

Requirement 12

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/view/operations-metadata-getview

Test purpose Test that operations metadata is complete.

Test method Verify that the GetCapabilities response includes an operation named "GetView". Verify that

the operation declares the parameters given in Table 18 and Table 42 are declared.

Layer extension test

Requirement 13

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/view/layer-extension

Test purpose Ensure that the layer extensions for view-based portrayal are declared.

Test method Verify that there are layers which are declared with XML conforming to the view:

ViewLayerType schema

Portrayal capabilities declaration test

Requirement 14

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/view/portrayalcapabilities-extension

Test purpose Test that portrayal capabilities are declared properly.

Test method Verify that the GetCapabilities response contains an element conform to the

core:PortrayalCapabilities schema.

Test exception use in response

Requirement 16

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/view/exception/common

Test purpose Test that the response is formed as expected.

Test method Request data from all layers from the service in all declared MIME types, individually. Verify

that each response is formed according to the provisions of the format associated with the

MIME type used for that response, or is an error. Verify that at least one response is not an

error.

http://www.opengis.net/spec/3DPS/1.0/conf-class/view
http://www.opengis.net/spec/3DPS/1.0/testing/profile/view
http://www.opengis.net/spec/3DPS/1.0/req/service/view/extension-identifier
http://www.opengis.net/spec/3DPS/1.0/req/service/view/operations-metadata-getview
http://www.opengis.net/spec/3DPS/1.0/req/service/view/layer-extension
http://www.opengis.net/spec/3DPS/1.0/req/service/view/portrayalcapabilities-extension
http://www.opengis.net/spec/3DPS/1.0/req/service/view/exception/common

75 / 87

12.7 Conformance class: info

Conformance class: info

The OGC URI identifier of this conformance class is: http://www.opengis.net/spec/3DPS/1.0/conf-class/info

Test id http://www.opengis.net/spec/3DPS/1.0/testing/profile/info

Test purpose Verify that the service implements the “info” 3DPS conformance class.

Test method Verify that the service declares and implements one of GetFeatureInfoByRay,

GetFeatureInfoByPosition or GetFeatureInfoByObjectID operations. Verify

conformance test http://www.opengis.net/spec/3DPS/1.0/testing/conf-

class/core. Verify either conformance test conf-class/scene or conf-class/

view or both.

12.8 Tests for requirements of the info requirements class

Modifications to service identification

Requirement 17

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/info/extension-identifier

Test purpose Test that an instance declares its implemetation of the info requirements class.

Test method Verify that the GetCapabilities answer includes the declaration of a profile element http://

www.opengis.net/spec/3DPS/1.0/extension/info/1.0

Test for Operations Metadata

Requirement 18

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/info/operations-metadata-getfeatureinfo

Test purpose Test that operations metadata contains at least one info request

Test method Verify that the GetCapabilities response includes at least one operation mentioned in Table 46.

Test for feature information formats

Requirement 19

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/info/operations-metadata-getfeatureinfo-

formats

Test purpose Test that feature information formats are declared

Test method Verify that each operation from Table 46 in the operations metadata declares a format

parameter and one or more possible values.

Test for the layer extension

Requirement 20

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/info/layer-extension

Test purpose Test that the layer extension is used

Test method Verify that at least one layer is declared conforming to info:Layer.

Test the abstract feature info generalization

Requirement 21

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/info/abstractGetFeatureInfo

Test purpose Test that all geature info operations extend AbstractGetFeatureInfo

Test method Verify that each operation from Table 46 declared in the operations metadata also declares the

parameters listed in Table 48.

Test GetFeatureInfoByRay request structure

Requirement 22

http://www.opengis.net/spec/3DPS/1.0/conf-class/info
http://www.opengis.net/spec/3DPS/1.0/testing/profile/info
http://www.opengis.net/spec/3DPS/1.0/req/service/info/extension-identifier
http://www.opengis.net/spec/3DPS/1.0/req/service/info/operations-metadata-getfeatureinfo
http://www.opengis.net/spec/3DPS/1.0/req/service/info/operations-metadata-getfeatureinfo-formats
http://www.opengis.net/spec/3DPS/1.0/req/service/info/operations-metadata-getfeatureinfo-formats
http://www.opengis.net/spec/3DPS/1.0/req/service/info/layer-extension
http://www.opengis.net/spec/3DPS/1.0/req/service/info/abstractGetFeatureInfo

76 / 87

Test GetFeatureInfoByRay request structure

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyray/request

Test purpose Test that the request structure conforms to this standard

Test method Verify that the request structure as declared is consistent with Figure 18, Table 49 and Table 48.

Verify that all parameters are declared.

Test GetFeatureInfoByRay request structure

Requirement 23

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyposition/request

Test purpose Test that the request structure conforms to this standard

Test method Verify that the request structure as declared is consistent with Figure 18, Table 50 and Table 48.

Verify that all parameters are declared.

Test GetFeatureInfoByRay request structure

Requirement 24

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyobjectid/request

Test purpose Test that the request structure conforms to this standard

Test method Verify that the request structure as declared is consistent with Figure 18, Table 51 and Table 48.

Verify that all parameters are declared.

Test exception use in response

Requirement 25

Test identifier http://www.opengis.net/spec/3DPS/1.0/req/service/info/response

Test purpose Test that the response is formed as expected.

Test method Request feaure info from all queryable layers from the service in all declared MIME types,

individually. Verify that each response is formed according to the provisions of the format

associated with the MIME type used for that response, or is an error. Verify that at least one

response is not an error.

http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyray/request
http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyposition/request
http://www.opengis.net/spec/3DPS/1.0/req/service/info/getfeatureinfobyobjectid/request
http://www.opengis.net/spec/3DPS/1.0/req/service/info/response

77 / 87

13 Annex B normative

The XML schema documents corresponding to XML 3DPS queries and responses are to be found in

http://schemas.opengis.net/3dps/1.0

The XML schemas are being developed jointly with the standard documents, and care has been taked that every well-formed (in

the XML sense) example validates against the schema.

The schema content is being repeated here as a convenience to the reader. The schemas on schema.opengis.org are

considered normative.

13.1 core schema

<?xml version="1.0" encoding="utf-8"?>

<xs:schema targetNamespace="http://www.opengis.net/3dps/1.0/core" xmlns="http://www.opengis ←֓

.net/3dps/1.0/core" xmlns:core="http://www.opengis.net/3dps/1.0/core" xmlns:view="http: ←֓

//www.opengis.net/3dps/1.0/view" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ows=" ←֓

http://www.opengis.net/ows/2.0">

<xs:import namespace="http://www.opengis.net/ows/2.0" schemaLocation="http:// ←֓

schemas.opengis.net/ows/2.0/ows19115subset.xsd"/>

<xs:import namespace="http://www.opengis.net/ows/2.0" schemaLocation="http:// ←֓

schemas.opengis.net/ows/2.0/owsCommon.xsd"/>

<xs:import namespace="http://www.opengis.net/3dps/1.0/view" schemaLocation="3dps- ←֓

view.xsd"/>

<xs:import namespace="http://www.opengis.net/ows/2.0" schemaLocation="http:// ←֓

schemas.opengis.net/ows/2.0/owsGetCapabilities.xsd"/>

<xs:import namespace="http://www.opengis.net/ows/2.0" schemaLocation="http:// ←֓

schemas.opengis.net/ows/2.0/owsDataIdentification.xsd"/>

<xs:complexType name="CapabilitiesType">

<xs:complexContent>

<xs:extension base="ows:CapabilitiesBaseType">

<xs:sequence>

<xs:element name="Portrayal" type=" ←֓

PortrayalCapabilities" minOccurs="1" maxOccurs=" ←֓

1"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="AbstractLayerConstraintType">

<xs:complexContent>

<xs:extension base="ows:IdentificationType">

<xs:sequence>

<xs:element ref="ows:Identifier" minOccurs="1" ←֓

maxOccurs="unbounded"/>

<xs:element ref="ows:BoundingBox" minOccurs="1" ←֓

maxOccurs="unbounded"/>

<xs:element name="ref_element7" type="ows:MimeType" ←֓

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="DeliveryOption">

<xs:annotation>

<xs:documentation>Describe a delivery option, which is a service ←֓

usage convention targetting specific use cases, for example ←֓

streaming large scenes or optimizing for low bandwidth. Delivery ←֓

options may be restricted to certain formats and layers.

http://schemas.opengis.net/3dps/1.0

78 / 87

A delivery option is understood to be a special mode to be invoked on top of the basic ←֓

delivery of data or geometry information. It may require special client capabilities.</ ←֓

xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="name" type="xs:Name" minOccurs="1" maxOccurs="1">

<xs:annotation>

<xs:documentation>The name used to refer to the ←֓

delivery option</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="identifier" type="ows:CodeType" minOccurs="0" ←֓

maxOccurs="1">

<xs:annotation>

<xs:documentation>A code representing the delivery ←֓

option supported by this server. Each method may ←֓

be freely defined in an own codespace, and the ←֓

standard documents a list of those which are ←֓

well-understood and deemed likely to foster ←֓

interoperability across service instances.</ ←֓

xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="formats" type="ows:MimeType" minOccurs="0" ←֓

maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>The formats which support this ←֓

delivery option. Empty means no restriction, all ←֓

service formats support the option.</ ←֓

xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:element name="Capabilities" type="core:CapabilitiesType"/>

<xs:complexType name="PortrayalCapabilities">

<xs:annotation>

<xs:documentation>This element contains a summary of capabilities ←֓

provided by the service. It is intended to be useful for ←֓

selecting capabilities to use in a concrete scenario, but there ←֓

is no guarantee that any particular combination of them will ←֓

work as intended.</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="OverallStyles" type="xs:string" minOccurs="0" ←֓

maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>A list of overall styles accepted ←֓

by the server</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="ViewPoints" type="ows:PositionType" minOccurs="0" ←֓

maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>A list of view points that might ←֓

be relevant to the client</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="AvailableLodScheme" type="view:LodScheme" ←֓

minOccurs="0" maxOccurs="unbounded">

<xs:annotation>

79 / 87

<xs:documentation>The LoD schemes supported by the ←֓

server. The individuial level-of-detail item ←֓

names should be distinct, although typically ←֓

every layer would only support a single scheme.< ←֓

/xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="SupportsBoundingBoxConversion" type="xs:boolean" ←֓

minOccurs="1" maxOccurs="1"/>

<xs:element name="SupportsArbitraryOffset" type="xs:boolean" ←֓

minOccurs="1" maxOccurs="1"/>

<xs:element name="CapabilitiesType" type="CapabilitiesType" ←֓

minOccurs="1" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="AbstractLayerExtensionType">

<xs:complexContent>

<xs:extension base="AbstractLayerConstraintType">

<xs:sequence>

<xs:element name="LodScheme" type="xs:Name" ←֓

minOccurs="1" maxOccurs="1">

<xs:annotation>

<xs:documentation>The name of the ←֓

LoD scheme this layer supports</ ←֓

xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="AvailableLoD" type="xs:Name" ←֓

minOccurs="0" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>List of level-of- ←֓

detail values that are exected ←֓

to hold data for that layer. ←֓

They should be specified in the ←֓

order they are specified in the ←֓

LodScheme. Empty indicates that ←֓

no level of detail processing is ←֓

supported.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="DeliveryOptions" type="xs:Name" ←֓

minOccurs="0" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>the delivery ←֓

options available for the layer. ←֓

Empty means none are available. ←֓

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="Styles" type="xs:Name" minOccurs= ←֓

"0" maxOccurs="unbounded"/>

<xs:element name="VerticalCRS" type="xs:anyURI" ←֓

minOccurs="1" maxOccurs="1">

<xs:annotation>

<xs:documentation>The Vertical CRS, ←֓

if known.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="queryable" type="xs:boolean" ←֓

minOccurs="1" maxOccurs="1"/>

</xs:sequence>

</xs:extension>

80 / 87

</xs:complexContent>

</xs:complexType>

<xs:complexType name="LevelOfDetail">

<xs:sequence>

<xs:element name="Ordinal" type="xs:int" minOccurs="1" maxOccurs="1 ←֓

"/>

<xs:element name="LodScheme" type="view:LodScheme" minOccurs="1" ←֓

maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

13.2 scene schema

<?xml version="1.0" encoding="utf-8"?>

<xs:schema targetNamespace="http://www.opengis.net/3dps/1.0/scene" xmlns="http://www. ←֓

opengis.net/3dps/1.0/scene" xmlns:scene="http://www.opengis.net/3dps/1.0/scene" ←֓

xmlns:core="http://www.opengis.net/3dps/1.0/core" xmlns:xs="http://www.w3.org/2001/ ←֓

XMLSchema" xmlns:ows="http://www.opengis.net/ows/2.0" xmlns:view="http://www.opengis.net ←֓

/3dps/1.0/view">

<xs:import namespace="http://www.opengis.net/ows/2.0" schemaLocation="http:// ←֓

schemas.opengis.net/ows/2.0/owsCommon.xsd"/>

<xs:import namespace="http://www.opengis.net/3dps/1.0/core" schemaLocation="3dps- ←֓

core.xsd"/>

<xs:complexType name="SceneLayerType">

<xs:complexContent>

<xs:extension base="core:AbstractLayerExtensionType">

<xs:sequence>

<xs:element ref="xs:Name" minOccurs="1" maxOccurs=" ←֓

unbounded"/>

<xs:element ref="ows:PositionType" minOccurs="0" ←֓

maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="PortrayalCapabilities">

<xs:complexContent>

<xs:extension base="core:PortrayalCapabilities">

<xs:sequence>

<xs:element ref="boolean" minOccurs="1" maxOccurs=" ←֓

1"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:schema>

13.3 view schema

<?xml version="1.0" encoding="utf-8"?>

<xs:schema targetNamespace="http://www.opengis.net/3dps/1.0/view" xmlns="http://www.opengis ←֓

.net/3dps/1.0/view" xmlns:view="http://www.opengis.net/3dps/1.0/view" xmlns:core="http: ←֓

//www.opengis.net/3dps/1.0/core" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ows=" ←֓

http://www.opengis.net/ows/2.0">

<xs:import namespace="http://www.opengis.net/ows/2.0" schemaLocation="http:// ←֓

schemas.opengis.net/ows/2.0/ows19115subset.xsd"/>

81 / 87

<xs:import namespace="http://www.opengis.net/3dps/1.0/core" schemaLocation="3dps- ←֓

core.xsd"/>

<xs:complexType name="ImageLayerType">

<xs:complexContent>

<xs:extension base="core:AbstractLayerExtensionType">

<xs:sequence>

<xs:element ref="AvailableStyles" minOccurs="1" ←֓

maxOccurs="1"/>

<xs:element name="LodScheme">

<xs:complexType>

<xs:annotation>

<xs:documentation>Describes ←֓

a LoD scheme as used ←֓

for portrayal. The name ←֓

might refer to the ←֓

standard document or be ←֓

chosen arbitrarily.</ ←֓

xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element ref="xs:Name" ←֓

minOccurs="1" maxOccurs= ←֓

"1">

<xs:annotation>

< ←֓

xs:documentation

>The ←֓

name ←֓

used to ←֓

refer to ←֓

the ←֓

level-of ←֓

-detail ←֓

scheme. ←֓

The name ←֓

is ←֓

intended ←֓

to be ←֓

valid as ←֓

a name ←֓

local to ←֓

the ←֓

service ←֓

instance ←֓

, while ←֓

the ←֓

identifier ←֓

←֓

provides ←֓

a ←֓

global ←֓

complement ←֓

.</ ←֓

xs:documentation

>

</xs:annotation>

</xs:element>

<xs:element ref=" ←֓

ows:CodeType" minOccurs= ←֓

"0" maxOccurs="unbounded ←֓

">

<xs:annotation>

82 / 87

< ←֓

xs:documentation

>To ←֓

unambiguously ←֓

←֓

identify ←֓

the ←֓

scheme</ ←֓

xs:documentation

>

</xs:annotation>

</xs:element>

<xs:element ref=" ←֓

core:LevelOfDetail" ←֓

minOccurs="1" maxOccurs= ←֓

"unbounded">

<xs:annotation>

< ←֓

xs:documentation

>Ordered ←֓

list of ←֓

names, ←֓

each ←֓

referring ←֓

to a ←֓

successively ←֓

lower ←֓

level-of ←֓

-detail< ←֓

/ ←֓

xs:documentation

>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="PortrayalCapabilities">

<xs:complexContent>

<xs:extension base="core:PortrayalCapabilities">

<xs:sequence>

<xs:element ref="ImageLayerType" minOccurs="1" ←֓

maxOccurs="unbounded"/>

<xs:element ref="Projection" minOccurs="1" ←֓

maxOccurs="unbounded"/>

<xs:element ref="double" minOccurs="1" maxOccurs="1 ←֓

">

<xs:annotation>

<xs:documentation>must not be ←֓

smaller zero</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element ref="double" minOccurs="1" maxOccurs="1 ←֓

"/>

<xs:element ref="boolean" minOccurs="1" maxOccurs=" ←֓

1"/>

</xs:sequence>

</xs:extension>

83 / 87

</xs:complexContent>

</xs:complexType>

</xs:schema>

These XML Schema Documents use (i.e. import) and build on the OWS common XML Schema Documents specified in [OGC

06-121r9], named:

• ows19115subset.xsd

• owsCommon.xsd

• owsDataIdentification.xsd

• owsExceptionReport.xsd

• owsGetCapabilities.xsd

• owsOperationsMetadata.xsd

• owsServiceIdentification.xsd

• owsServiceProvider.xsd

All these XML Schema Documents contain documentation of the meaning of each element and attribute, and this documentation

shall be considered normative as specified in Subclause 11.6.3 of [OGC 06-121r9].

84 / 87

14 Annex C (informative)

Implementing tiling and refinement in scene-based portrayal

This standard intentionally does not define a way to delay-load tiles or other parts of a scene as the client is advancing within

the portrayal. Part of the reason is that it is simply too early to describe the underlying techniques in sufficient detail to enable

interoperability.

An often-used technique is to tile bigger scenes to achieve manageable chunks, and delay-load them as appropriate. This is often

combined with refinement of geometries and/or image material, and performed using preprocessing.

This specification avoids assumptions about how a valid response looks like where possible. As a consequence, is is possible to

answer to a request with a collection of LOD nodes acting as a spatial index that control the delay-loading of scene parts.

Such scenes may then refer to service invocations using core:GetResourceById operation invocations or resources defined

outside of the service delivering the scene. That is, a delay-loading regime has to be mapped to the provisions of the format and

then executed by causing delay-loading in the client. Intentionally, there is no limitation regarding the underlying methods.

However, there is the deliveryOption mechanism (DeliveryOptions) which shall be used to avoid exposing uncommon

practises to clients which are not prepared to handle them.

85 / 87

15 Annex D (non-normative)

Extensible 3D (X3D)

The data comprising a 3D scene portrayal may come from different data sources and layers; for example modern 3D geo visu-

alizations commonly include both the landscape of the real world and real-world objects such as trees, buildings. For real-time

portrayal, these resources must be organized and composed into a data structure that can be rendered at at least 24 frames per

second and respond to user input. The most well-known and widely adopted of the Web 3D technologies are the ISO set of

languages, specifically the international standards of Virtual Reality Modeling Language (VRML) and its successor, Extensible

3D (X3D).

Extensible 3D (X3D) is an open and royalty-free International Standard for the description of such portrayals (ISO/IEC IS 19775-

1:2013 http://www.web3d.org/documents/specifications/19775-1/V3.3/index.html). X3D generally refers to a suite of standards

developed by the not-for profit Web3D Consortium (web3d.org). An X3D scene graph can be equivalently encoded as XML

(ISO/IEC 19776-1), utf-8 (ISO/IEC 19776-2) and binary (ISO/IEC 19776-3). Runtime X3D scene graphs can be manipulated

programmatically through the Scene Access Interface (SAI; ISO/IEC 19775-2). This API is bound to several languages including

the standards for ECMAScript (ISO/IEC 19777-1) and Java (ISO/IEC 19777-2).

These scene graph languages are quite expressive in that a small number of basic elements (nodes) can be combined according

to rules (content model) to create innumerable permutations and visualization possibilities. Consider the fundamental case of

terrain: TIN-type geometry’s explicit triangulation means more data to transmit, but it is faster to load and render in the client.

The GRID-type structure is more compact to transmit because its connectivity is implicit, but it must be calculated to triangles

on the client before rendering. These two types of geometry data structures are both supported by X3D portrayal, each in several

forms. The TIN geometry type can be directly represented as an IndexedFaceSet (or IndexedTriangleSet), while the GRID-type

can be represented by the ElevationGrid or the GeoElevationGrid. Authors must use the application and interface requirements

to determine the composition of their scene for real-time delivery and portrayal.

One important set of nodes is defined in the Geospatial Component (Clause 25, http://www.web3d.org/documents/specifications/-

19775-1/V3.3/Part01/components/geodata.html). The Geospatial component includes conventions that are defined by the Spatial

Reference Model (see ISO/IEC 18026) including support for 23 standard ellipsoids and a number of nodes that can use spatial

reference frames for modeling purposes. These new standard components enable applications to handle double precision co-

ordinates and geometry in different projections as well as to manage multiple levels of detail (LODs) of geospatial data. The

spatial reference frames supported by X3D 3.3 are geocentric, geodetic and UTM. The following nodes comprise the Geospatial

component:

• GeoCoordinate

• GeoElevationGrid

• GeoLocation

• GeoLOD

• GeoMetadata

• GeoOrigin

• GeoPositionInterpolator

• GeoProximitySensor

• GeoTouchSensor

• GeoTransform

• GeoViewpoint

The Geospatial component allows for the mashup of responses from different services in that common coordinates can be used

the GetScene response. The X3D specification requires that the client software perform the conversion to cartesian computer

graphics coordinates, subtracting any offset required to gain precision as specified in the GeoOrigin node. The Geospatial nodes

also help create better interactive experiences in the 3D viewing client.

http://www.web3d.org/documents/specifications/19775-1/V3.3/index.html
http://www.web3d.org/documents/specifications/19775-1/V3.3/Part01/components/geodata.html
http://www.web3d.org/documents/specifications/19775-1/V3.3/Part01/components/geodata.html

86 / 87

One important concept to note is that X3D is a modular standard when it comes to conformance. Related nodes are grouped into

Components, which are detailed in each Clause of the specification. Components can be combined and supported at different

levels of conformance, standardized as Profiles. Profiles enable tool builders to only implement the subset of the language they

need for their application. In addition, X3D scenes contain header statements that designate the required node set to load the

content, for example:

PROFILE Interactive

COMPONENT Geospatial

Table 57: summarized from the Annex of X3D 3.3 19775-1:

Core profile Absolute minimal file definitions required by X3D

Interchange profile Exchange of geometry and animations between authoring

systems

Interactive profile Implementing a lightweight playback engine that supports

rich graphics and interactivity MPEG-4 interactive profile

Providing the base point of interoperability with the

MPEG-4 standard

CADInterchange profile Distillation of computer-aided design (CAD) data to

downstream applications, appropriately supporting

Geometry and Appearance capabilities data for CAD

MedicalInterchange profile Exchange of polygonal geometry, volumetric data and

accompanying documentation between medical imaging

systems

Immersive profile Implementing immersive virtual worlds with complete

navigational and environmental sensor controls

Full profile The Full profile of X3D is comprised of all features of the

standard

15.1 REFERENCES

[1] Reddy, M., Iverson, L., and Leclerc, Y.G. 2000. Under the hood of GeoVRML 1.0. Proceedings of the fifth symposium on

Virtual reality modeling language (Web3D-VRML) 23-28.

[2] McCann, M., Puk, R., Hudson, A., Melton, R., and Brutzman, D. 2009. Proposed enhancements to the x3d geospatial

component. Proceedings of the 14th International Conference on 3D Web Technology 155-158.

[3] Yoo, B., and Brutzman, D. 2009. X3D earth terrain-tile production chain for georeferenced simulation. Proceedings of the

14th international conference on 3D Web technology 159-166.

[4] Oliveira, N., and Rocha, J.G. 2013. Web 3D Service Implementation. Computational Science and Its Applications-ICCSA

2013. 538-549.

[5] Oliveira, N., and Rocha, J.G. 2013. Tiling 3d terrain models. Computational Science and Its Applications-ICCSA 2013.

550-561.

[6] Reitz, T., Krämer, M., and Thum, S. 2009. A processing pipeline for X3D earth-based spatial data view services. Proceedings

of the 14th international conference on 3D web technology 137-145

87 / 87

16 Annex E: Revision History

Table 58: Document revision history.

Date Release Editor Paragraph

modified

Description

09/2013 - Simon Thum all initial revision

10.02.2014 - Benjamin Hagedorn scope, overview,

abbreviations

continued editing

16.02.2014 - Benjamin Hagedorn all updated to latest document template

through 2014 - all all various (see git history)

12.12.2014 - Simon Thum all prepare for OAB review

02.01.2015 - Mike McCann Annex D added Annex on X3D Geospatial

05/2015 - Simon Thum all Prepare for submission to TC

07/2015 - Simon Thum

Benjamin Hagedorn

all prepare for OAB review

	Scope
	Conformance
	Normative References
	Terms and Definitions
	Conventions
	Use of the terms "3D scene" and "3D view"
	Abbreviated terms
	UML notation
	Data dictionary tables
	Namespace prefix conventions

	3D Portrayal Service Overview
	Overview
	Historical background
	Design of this standard
	Interoperability scenarios

	3DPS Service Model
	3DPS Operation Types
	3DPS Service Handling
	Coordinate Reference Systems (CRS)
	Vertical Datum

	3DPS Core
	Shared aspects
	Position2D data structure
	Position3D data structure

	GetCapabilities operation (mandatory)
	GetCapabilities Request
	GetCapabilities Response
	GetCapabilities Exceptions

	Capabilities document XML encoding
	Sample GetCapabilities request and response

	AbstractGetPortrayal Operation (abstract)
	AbstractGetPortrayal Request
	AbstractGetPortrayal Response
	Exceptions

	GetResourceById operation (optional)
	Obtaining ResourceId URIs
	Categories of resources
	GetResourceById Request
	GetResourceById Response
	GetResourceById Exceptions

	Scene Extension
	Introduction
	Modifications to Service Capabilities
	Modifications to ServiceIdentification
	Modifications to OperationsMetadata
	Additions to Layer structure
	AvailableOffsets
	AvailableOffsetMode
	Additions to PortrayalCapabilities structure

	GetScene request
	Offset
	Format
	Viewpoints
	Delivery Options

	GetScene response
	GetScene Exceptions
	Binding Extensions for the GetScene Operation
	HTTP/GET + KVP Binding

	View Extension
	Introduction
	Concepts
	Image layer concept
	3D projections
	Image Coordinate System
	Extensibility

	Modifications to Service Capabilities
	Modifications to ServiceIdentification
	Modifications to OperationsMetadata
	Additions to Layer structure
	Additions to PortrayalCapabilities structure

	GetView request
	BackgroundColor
	TransparentBackground
	Portrayals
	Exceptions

	GetView response
	MIME multipart response

	GetView exceptions
	Binding Extensions for the GetView Operation
	HTTP/GET + KVP Binding
	GetView request XML encoding (optional)

	Info Extension
	Introduction
	Modifications to Service Capabilities
	Modifications to ServiceIdentification
	Modifications to OperationsMetadata
	Additions to Layer structure

	Abstract GetFeatureInfo request
	Layers
	FeatureCount
	IdOnly
	Format
	Exceptions

	GetFeatureInfoByRay request
	Width, Height
	Projection
	ImagePosition

	GetFeatureInfoByPosition request
	CRS
	Coordinate
	Tolerance

	GetFeatureInfoByObjectId request
	ObjectID
	FeaureCount

	GetFeatureInfo response
	FeatureInfo encoding
	GetFeatureInfo exceptions
	Exception codes for GetFeatureInfo operation

	Annex A: Conformance Class Abstract Test Suite (Normative)
	Conformance class: core
	Tests for requirements of the core requirements class
	Conformance class: scene
	Tests for requirements of the scene requirements class
	Conformance class: view
	Tests for requirements of the view requirements class
	Conformance class: info
	Tests for requirements of the info requirements class

	Annex B normative
	core schema
	scene schema
	view schema

	Annex C (informative)
	Annex D (non-normative)
	REFERENCES

	Annex E: Revision History

