

Open Geospatial Consortium

Publication Date: 2015-08-19

Approval Date: 2015-06-04

Posted Date: 2015-05-31

Reference number of this document: OGC 15-053r1

Reference URL for this document: http://www.opengis.net/doc/PER/tb-11-geojson-in-ogc

Category: Public Engineering Report

Editor: Joan Masó

Testbed 11 Implementing JSON/GeoJSON in an OGC
Standard Engineering Report

Copyright © 2015 Open Geospatial Consortium.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document is an OGC Public Engineering Report
created as a deliverable in an OGC Interoperability Initiative and is not an official position of the
OGC membership. It is distributed for review and comment. It is subject to change without notice
and may not be referred to as an OGC Standard. Further, any OGC Engineering Report should not
be referenced as required or mandatory technology in procurements.

Document type: OGC® Engineering Report
Document subtype: NA
Document stage: Approved for public release
Document language: English

OGC 15-053r1

ii Copyright © 2015 Open Geospatial Consortium.

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this
Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable,
and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be
construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in
violation of U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction
which may impact your right to import, export or use the Intellectual Property, and you represent that you have complied with any
regulations or registration procedures required by applicable law to make this license enforceable

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. iii

Contents Page

1	 Introduction ... 1	
1.1	 Scope .. 1	
1.2	 Document contributor contact points ... 1	
1.3	 Future work .. 1	
1.4	 Forward .. 2	

2	 References ... 2	
3	 Terms and definitions ... 3	

4	 Conventions .. 3	
4.1	 Abbreviated terms .. 3	
4.2	 UML notation ... 4	

5	 JSON overview ... 4	
5.1	 JSON an encoding without complex data types. .. 6	
5.2	 JSON schema ... 7	
5.3	 JSON-LD .. 9	

5.3.1	 Using JSON-LD to define namespaces .. 12	
5.3.2	 Using JSON-LD to declare simple and complex types. 13	

5.4	 XML Schema, Schematron, JSON Schema, JSON-LD validation 14	
5.5	 GeoJSON .. 16	

5.5.1	 Comparing conceptual limitations in GeoJSON and in GML-SF 17	
5.5.2	 Comparing GeoJSON coordinates with WKT ... 17	

5.6	 TopoJSON .. 19	
5.7	 Symbology in GeoJSON .. 21	
5.8	 Current status in OGC .. 21	

6	 Deriving a JSON encoding from XML and UML .. 22	
6.1	 Derive JSON from XML .. 22	

6.1.1	 General Rules for transforming XML into JSON .. 22	
6.1.1.1	 The rule of plural .. 23	
6.1.1.2	 Mixed elements .. 24	
6.1.1.3	 NULL elements .. 25	

6.1.2	 Exceptions to the general rules .. 26	
6.1.2.1	 Encoding the Object-property alternation in JSON .. 26	
6.1.2.2	 Linking in JSON ... 28	
6.1.2.3	 Geospatial objects ... 30	

6.2	 Derive JSON from UML .. 32	
7	 Discussion about GeoJSON .. 32	

7.1	 JSON Schema for GeoJSON .. 32	
7.1.1	 Generic GeoJSON validation ... 32	
7.1.2	 Specific GeoJSON validation .. 34	

OGC 15-053r1

iv Copyright © 2015 Open Geospatial Consortium.

7.2	 GeoJSON in JSON-LD .. 38	
7.3	 The need for an alternative to GeoJSON. Another encoding for features in

JSON. ... 40	
7.3.1	 Reason to define an GeoJSON alternative encoding 40	

7.4	 Proposing a WKT JSON for features ... 40	
7.5	 GeoJSON-LD with a modified JSON-LD parser ... 45	

8	 GeoJSON in OGC ... 52	
8.1	 OWS Context encoded in GeoJSON .. 52	

8.1.1	 JSON schema for OWS context JSON .. 52	
8.1.2	 JSON-LD schema for OWS context JSON ... 52	

8.2	 Offer GeoJSON files in the web with OWS Context. 52	
8.2.1	 Simple approach based on “files” .. 52	
8.2.2	 Current mechanims in OWS Context. ... 53	
8.2.3	 HTML as a natural way for linking. OWS Context encoded in HTML 54	
8.2.4	 HTML as a natural way for linking. OWS Context encoded in JSON-

LD in a webpage .. 59	

9	 Coverage JSON ... 60	
9.1	 GMLCov in JSON .. 62	

10	 JSON in Web Services .. 68	
10.1	 JSON in OWS Common ... 68	

10.1.1	 Service Metadata document in JSON .. 69	
10.1.1.1	 ServiceIdentification in JSON .. 71	
10.1.1.2	 ServiceProvider in JSON .. 73	
10.1.1.3	 OperationsMetadata in JSON ... 77	
10.1.1.4	 Contents section in Service Metadata in JSON .. 81	

10.1.2	 JSON GetCapabilities request .. 81	
10.1.3	 JSON requests .. 81	
10.1.4	 JSON exception ... 82	
10.1.5	 JSON responses ... 82	
10.1.6	 Bounding Boxes ... 82	

10.2	 JSON in Web Map Services ... 82	
10.2.1	 JSON in GetCapabilities response ... 82	
10.2.2	 JSON for WMS GetMap response ... 82	
10.2.3	 JSON for WMS GetFeatureInfo response ... 83	

10.3	 JSON in Web Map Tile Service ... 85	
10.3.1	 JSON in Map Tile Service ... 85	
10.3.2	 JSON encoding for a TileMatrixSet .. 86	

10.4	 Serving GeoJSON with a Web Feature Service ... 87	
10.4.1	 Pointers to GeoJSON fragments .. 88	

10.5	 Metadata in JSON .. 89	
10.5.1	 ISO Metadata in JSON .. 89	
10.5.2	 Geospatial User Feedback in JSON ... 89	

11	 Rules for encoding JSON-LD from UML .. 101	

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. v

11.1	 Property name limitations .. 101	
11.2	 Rules for simple data types .. 101	

11.2.1	 Text encoding ... 101	
11.2.2	 Number encoding ... 101	
11.2.3	 Simple data types in JSON-LD .. 102	
11.2.4	 Identifiers, URLs and URI in JSON-LD .. 102	
11.2.5	 Declaration of simple data types .. 102	

11.3	 Rules for complex data types ... 102	
11.3.1	 Listing you property names ... 103	
11.3.2	 Declaring complex data types .. 103	
11.3.3	 Defining type and ids ... 104	
11.3.4	 Defining data types .. 104	

11.3.4.1	 Defining enumerations ... 104	
11.3.4.2	 Inheritance and subclassing .. 104	

11.4	 Geospatial data types .. 104	
11.5	 Sharing the @context with several instances ... 105	

12	 Recommendations ... 105	
13	 Future work ... 107	

13.1	 Future work directly extracted from the recommendations 107	
13.2	 GeoJSON in W3C Prov .. 109	

Annex A Use cases (informative) .. 110	

Annex B JSON Schema validation for OWS Context GeoJSON .. 117	

Annex C WMTS Simple TileMatrixSet Description in JSON-LD (informative) 124	

Annex D JSON in C (informative) ... 134	

Annex E Revision history (informative) .. 135	

Figures Page
Figure 1: River GeoJSON file example transformed to RDF through JSON-LD 51	

Figure 2: IDE Rioja using GitHub to provide geospatial information in GeoJSON 53	

Figure 3: A found recipe presentation in Google search results 54	

Figure 4: OWS Context example encoded in HTML 58	

Figure 5: HTML OWS Context example tested in the Google Structured Data Testing Tool
 58	

Figure 6: OWS Context example encoded in schema.org JSON-LD and tested in the Google
Structured Data Testing Tool 60	

OGC 15-053r1

vi Copyright © 2015 Open Geospatial Consortium.

Figure 7: GMLCov main subclasses 62	

Figure 8: ETOPO20 dataset 63	

Figure 9: Service Metadata response UML diagram 69	

Figure 10: OWS Common ServiceIdentification UML diagram 71	

Figure 11: OWS Common ServiceProvider UML diagram 74	

Figure 12: OWS Common OperationsMetadata UML diagram 78	

Figure 13: Google search result showing a rating average. 90	

Figure 14: How IMDb presents user feedback to users 90	

Figure 15: How to achieve the integration of the GeoJSON data into the semantic world?
 112	

Figure 16: Adding @context @id and @type we convert GeoJSON into JSON-LD 115	

Figure 17: An automatic process can convert JSON-LD into n3 triples. A conversion of
GeoJSON coordinates in WKT is needed. 116	

Tables Page
Table 1: Steps to load values in JavaScript .. 5	

Table 2: Comparison of different validation approaches ... 14	

Table 3: Comparing JSON coordinates with WKT notation ... 17	

Table 4: Elements of the AgregateRating .. 91	

Table 5: Elements of the Review ... 91	

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. vii

Abstract

In the OGC Testbed 11, the Cross-Community Interoperability (CCI) thread had a key
objective of building on the work accomplished in the OGC 8, 9 and 10 Testbeds. The
goal of the CCI threads is to increase interoperability between communities sharing
geospatial data. This thread made advances in semantic mediation approaches for data
discovery, access and use of heterogeneous data models and heterogeneous metadata
models. This particular Engineering Report (ER) is part of the OGC efforts to advance
the OGC Architecture with the adoption of REST interfaces and more encodings such as
JSON.

This document is a response to a recommendation expressed in OGC 14-113 OGC JSON
position statement of including JSON/GeoJSON research as a component in the OGC
Testbed 11 activity with the goals:

 Develop a consistent approach across the OGC suite of service standards for using
JSON and GeoJSON.

 Define and document rules for JSON and GeoJSON extensions to OGC Web
Service encodings, which was started in Testbed 10 and reflected in the draft
OWS Context GeoJSON Encoding.

The document covers several aspects of JSON and its relation with OGC standards:

 Clause 5 gives a general introduction to JSON concepts that will be the bases for
the next clauses (e.g.: JSON schema, JSON-LD, GeoJSON, TopoJSON, etc).

 Clause 6 revisits the rules provided in OGC 14-009r2 OGC Testbed-10 Rules for
JSON and GeoJSON Adoption: Focus on OWS-Context and complementing them
with missing aspects. In particular, Subclause 6.1.2.2 is proposing strategies for
implementing links in JSON.

 Clause 7 reviews GeoJSON. Limitations of GeoJSON are enumerated and simple
solutions are suggested in subclause 5.5.1 but not discussed in depth. This ER
considers that such issues need to be resolved by the community. For that reason
this ER accepts GeoJSON as is: an encoding for simple features. It concentrates
on making GeoJSON more solid by associating it with to a JSON schema. In
subclause 7.3 and 7.4 a major issue with the coordinates that prevents an easy
adoption of JSON-LD in GeoJSON is identified and a solution is proposed based
on Well Known Text. The section proposes a way to connect the simple features
and WFS to RDF and linked data by introducing geospatial rules in common
JSON-LD parsers.

OGC 15-053r1

viii Copyright © 2015 Open Geospatial Consortium.

 Clause 8 is a contribution to the current work in the OWS Context Standards
Working Group (SWG). A JSON schema for OWS Context is proposed and an
analyses on how JSON-LD can be applied to OWS Context JSON is provided.
This clause also proposes another encoding for OWS Context that is based on
Microdata and HTML5 that can also be expressed in JSON-LD using schema.org
approach.

 Clause 9 proposes a JSON encoding for coverages based on recoding GMLCov in
JSON. In this part a small demo has also elaborated
(http://www.creaf.uab.cat/joanma/coveragejson/) to demonstrate the feasibility of
a map browser in HTML5 based on WCS instead of WMS.

 Clause 10 makes proposals on how JSON can be used in OWS services. The
section starts by making recommendations on how to encode GetCapabilities in
JSON and then reviews some OWS standards such as WMS, WMTS and WFS.
Some final recommendation for Geospatial User Feedback are also provided.

 Clause 11 proposes a set of rules to translate UML into JSON-LD. The rules are
compendium of best practices that are illustrated throughout this document and
are presented in a single place for convenience.

Business Value

The incorporation of JSON in OGC standards has been demanded requirement from the
geospatial developer community for some time. They see an opportunity to increment
productivity in the web browser based applications and in the mobile phone apps sector.
Even if, in theory, users should not impacted by a migration from XML to JSON, in
practice the simplification in the application developments will give more “free time” to
developers that can spend in providing better solutions to users (such as more
interactivity or more functionality). Developers will also be able to create code that is
easier to maintain and as a consequence be more error free. The join adoption of REST +
JSON will increase interoperability with the non geospatial world and re-stimulate the
creation of new much-ups (a concept that was in fact introduced in the XML+AJAX
years) and increase the use of geospatial technology. The fact that new emerging open
source map browsers such as Leaflet (and MapBox, and CartoBD) have adopted
GeoJSON as their main encoding and Esri has their RESTful API are signs that there is a
business model that we in the OGC cannot ignore

The document includes some concrete proposals that demonstrate how OGC standards
can be combined with adopted mass market standards In particular both OWS Context in
Microdata (complemented with the JSON-LD encoding for schema.org) and Geospatial

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. ix

User Feedback standards could increasing interoperability by making the geospatial
information equivalent to any other product that is exposed an documented in the web
using structured content strategies recommended in schema.org (e.g. Movies, Recipes,
Products, Reviews). We recommend to work with the main search engine actors to
increase discoverability of geospatial information; a recurrently mentioned problem by
the geospatial community.

This document also proposes a way to use a JSON version of GMLCov that could be
used in combination with WCS to present data directly in web browsers (instead of
presenting pictorial representations). This should increase usability and productivity of
rectified grid coverage data.

Keywords

ogcdocs, ogc documents, testbed-11, encoding, JSON, GeoJSON, TopoJSON, JSON-LD,
RDF, HTML5, Well-Known-Text, WKT, GMLCov, WFS-JSON, WMS, WMTS, GUF,
Microdata, OWS Context.

OGC® Engineering Report OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 1

Implementing JSON/GeoJSON in an OGC Standard: Testbed
11 Engineering Report

1 Introduction

1.1 Scope

This OGC® Engineering Report (ER) provides guidelines for the use of JSON in OGC
standards for encoding requests and responses of services. This ER also provides
guidance on how to use GeoJSON in the OGC context. In addition guidelines for the use
of JSON-LD and JSON schema in several OGC standards are provided.

This ER is applicable to OGC service standards in general and in particular to the ones
that deal with encoding features such as WFS but also proposes additions to WCS, WMS
and WMTS.

1.2 Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Name Organization
Joan Masó UAB-CREAF

Special thanks to Jon Harry and Peter Vretanos for long email discussions and to Josh
Lieberman for its leadership in the Testbed-11 CCI group and contributions.

1.3 Future work

Improvements in this document are desirable to with the help of other Testbed 11
participants and the rest of the TC. The document also makes some recommendations on
possible additions to current standards. Experimenting with these additions will
complement this work.

This document has not elaborated on the security issues. 14-113 OGC JSON Position
Statement document mentions some security issues related with the JavaScript interpreter

OGC 15-053r1

2 Copyright © 2015 Open Geospatial Consortium.

to execute JSON text dynamically as embedded JavaScript and the possibility of inserting
malicious code that need further consideration.

The document partially addresses the lack of an agreed method to validate semantically
in JSON and possible alternatives for schema documents. The authors are particularly
sensible to semantic and syntactic validation and most of the code shown in this
document has been validated as much as current technologies allow it. This document
proposes some alternatives and recommendations but a formal and clear solution is still
needed.

1.4 Forward

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

2 References

The following documents are referenced in this document. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply. For
undated references, the latest edition of the normative document referred to applies.

OGC 06-121r9, OGC® Web Services Common Standard, Version 2.0

NOTE This OWS Common Standard contains a list of normative references that are also applicable to
this Implementation Standard.

IETF RFC 4627, The application/json Media Type for JavaScript Object Notation
(JSON), D. Crockford, http://www.ietf.org/rfc/rfc4627.txt

OGC 06-103r4, OGC Implementation Specification for Geographic information - Simple
feature access - Part 1: Common architecture v.1.2.1

OGC 14-009r1, OGC Testbed-10 Rules for JSON and GeoJSON Adoption: Focus on
OWS-Context, Pedro Gonçalves, 2014 ,
https://portal.opengeospatial.org/files/?artifact_id=57477

OGC 14-055 OWS Context GeoJson Encoding, Pedro Gonçalves, 2015, Soon publicly
available for public comments.

OGC 12-093 OWS-9 SSI UGAS Conversion Engineering Report.

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 3

Please check the Bibliography at the end of this document for additional references.

3 Terms and definitions

For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard [OGC 06-121r9] shall apply. In addition, the following terms
and definitions apply.

3.1
array
one of the data types that the value of a JSON key can have. I contains a sorted list of
unnamed values

NOTE In fact, in JavaScript, an array is an object that has keys with consecutive numerical names.

3.2
declaration
associate an JavaScript object with a name of a data type.

3.3
define
Describe an JavaScript object data type by providing a list of its key properties, data type
declarations and multiplicities.

NOTE As you will read later in the text JSON-LD is able to declare but not to define.

3.4
key
a JSON text that will represents the name of a variable in the JavaScript Document
Object Model.

3.5
object
one of the data types that the value of a JSON key can have. It contains a list of property
keys.

4 Conventions

4.1 Abbreviated terms

Some more frequently used abbreviated terms:

AJAX Asynchronous JavaScript And XML
API Application Program Interface

OGC 15-053r1

4 Copyright © 2015 Open Geospatial Consortium.

DOM Document Object Model
JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation for Linked Data
OWL Web Ontology Language

RDF Resource Description Framework
WKT Well Known Text

XML Extendable Markup Language

4.2 UML notation

Diagrams that appear in this standard are presented using the Unified Modeling Language
(UML) static structure diagram, as described in Subclause 5.2 of [OGC 06-121r3].

5 JSON overview

This ER Topic addresses JSON and GeoJSON in OGC standards.

JavaScript Object Notation (JSON) is an open standard format that uses human-readable
text but also a machine readable encoding to transmit data objects consisting of attribute–
value (or arrays of values) pairs. The attribute is a quoted text and the values can be a
quoted text, a number, or the words true, false and null. JSON is used primarily to
transmit data between a server and web application, as an alternative for XML.

Although originally derived as a subset of JavaScript scripting language, JSON is a
language-independent data format. Code for parsing and generating JSON data is
available in many programming languages such as C++ or Java.

JSON is currently described by RFC 7159 and ECMA-404. The ECMA standard is
minimal, describing only the allowed grammar syntax, whereas the RFC also provides
some semantic and security considerations. The official Internet media type for JSON is
application/json. The common JSON filename extension is “.json” but specific
applications of JSON usually recommends other file extensions that contains the word
“json” such us “.geojson”.

This is an example of a river described in JSON:

{
 "river":
 {
 "name": "mississipi",
 "length": 3734,
 "discharge": 16790,
 "source": "Lake Itasca",
 "mouth": "Gulf of Mexico",

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 5

 "country": "United States of America",
 "bridges": ["Eads Bridge", "Chain of Rocks Bridge"]
 }
}
(http://en.wikipedia.org/wiki/Mississippi_River)

NOTE: One of the most annoying properties of the JSON encoding is that it is not possible to include
comments in the file. This makes explaining the content inline impossible and commenting JSON
fragments in this document more difficult.

This object is equivalent to this other one encoded in XML:

<?xml version="1.0" encoding="UTF-8"?>
<River>
 <name>mississipi</name>
 <length>3734</length>
 <discharge>16790</discharge>
 <source>Lake Itasca</source>
 <mouth>Gulf of Mexico</mouth>
 <country>United States of America</country>
 <bridge>Eads Bridge</bridge>
 <bridge>Chain of Rocks Bridge</bridge>
</River>

For AJAX applications, JSON is faster and easier to integrate in JavaScript code than
XML. See the needed steps in the following comparison table:

Table 1: Steps to load values in JavaScript

Using XML you should do: Using JSON you should do:

1. Fetch an XML document

2. Use the XML DOM to loop
through the document

3. Extract values and store in
variables

1. Fetch a JSON string

2. Parse the JSON string with
JSON.parse(string)

Step 1: To fetch the JSON file in a JavaScript page you use the same function as to get a
XML file: XMLHttpRequest

Step 2: Once you have the text stream, to load a “river” object in JavaScript you just need
to do this:

var River = JSON.parse(text);
Then you can access any attribute in the object tree like any other variable structure. E.g.
to access the river name you just do:

OGC 15-053r1

6 Copyright © 2015 Open Geospatial Consortium.

River.name;

The function JSON.parse() also validates the JSON stream syntactically and generates
parse errors indicating any known problems. JSON.parse will parse only data ignoring
methods of function definitions.

NOTE: First implementations of JSON parsing used the JavaScript eval() function. This is very risky since
eval() will just not process data but any reference to methods of functions. This exposes a program to errant
or malicious scripts. This is a serious issue when dealing with data retrieved from other Internet sites. The
use of eval() is strongly discouraged.

In our opinion, JSON allows for the same things that can be done in XML (or a few less)
but JSON’s simplicity to immediately handle all attributes and embedded objects has
made JSON popular among developers resulting in more agile development
environments.

5.1 JSON an encoding without complex data types.

JSON inherits the flexibility of JavaScript. JavaScript is a language without class
definition capability. This means that there are no complex data types; only “original”
objects that are not associated to any predefined key (e.g. property) name list (i.e. each
object has its own identity). Objects are created without associating them a class and
properties are added during the creation or later when needed (at run time). This is a
fundamental distinction with most of the common Object Oriented Languages and with
GML. In fact, this approach is not new: in “simple” XML you can write an object name
and add internal elements to it. The Document Object Model (DOM) will load them
without associating them to any complex data type names. We can say that the document
is syntactically valid. This is a powerful characteristic but prevents interoperability due to
users receiving one of these files not knowing what to expect and the application is only
able to present the data tree to the user for them to decide. Standards like ISO 19109 were
created to provide a method to add geospatial data types (i.e. an application schema) and
to increase interoperability by reducing freedom. GML follows ISO 19109 and adds
geospatial data types to XML by using a XML mechanism for “autocontrol” the format:
semantic validation. Semantic validation uses namespaces and XML schema files to
define complex data types.

The fundamental question is: Do we what an equivalent mechanism to reduce the
freedom in JSON objects and to be able to control complex data types? (simple data types
are already better considered in RFC 7159 as will be mentioned later)They see at least 3
ways of doing this:

 A natural way is to mimic namespaces and schemas for JSON.

 A more indirect way is to link JSON to Linked data types and vocabularies like
OWL or SKOS.

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 7

 Another alternative approach is to define the classes in UML and map them to
JSON-LD data types declarations.

The next subclauses in this ER explore these three possibilities. Please note that
GeoJSON already defines classes in a document (another less structured alternative) even
if it does not provide an structured way of doing this such as schemas or UML. There is a
long tradition to impose data models to geospatial information. For example, the
INSPIRE directive for the creation of European SDI provides a list of datasets that need
to be available at the European level classified in three Annexes. For each dataset (e.g
Cadastral parcels from Annex I, Land Cover from Annex II, and Energy resources from
Annex III) a data model encoded in UML, Feature Catalogue and GML has been
provided and agreed to in a thematic working group. Being able to define classes (and
complex data types) in a JSON encoding for features seems almost unavoidable.

5.2 JSON schema

A JSON schema is a document that defines the structure of JSON data. The Internet
media type is "application/schema+json". JSON Schema defines what JSON keys are
expected and the type of data values for a given application. JSON Schema is intended
for semantic validation and documentation of data models. JSON schema acts in a similar
way to XSD for a XML file. Indeed, some applications (such us XML Validator Buddy)
are able to combine a JSON file with its corresponding JSON schema to test and validate
if the content of the JSON file corresponds to the expected data model. Unfortunately, the
level of control that JSON Schema provides is not as strict as XML Schema. The main
problem lies in the fact that JSON objects are considered extendable by default. This
means that adding attributes not specified in the schema does not give you an error. This
prevents detecting object or attribute names with typos (that are confused with extended
elements) except if they are declared as mandatory. Another difference is that JSON
attributes are not supposed to have order so the order of the attributes of an object cannot
be validated. In many cases this is not a problem since most of the data models used in
the OGC do not depend on the other properties even if the XML “tradition” has imposed
this unnecessary description.

NOTE: The fact that XML “sequence” imposes an order makes more complicated the validation of an
Atom or a KML files (by design, both formats have their properties unsorted). This resulted in the use of
RelaxNG and XSD 1.1 languages respectively for validating them (or to use the “choice” alternative to
“sequence” as suggested by others).

If we suppose that all rivers share the same data model, the previous JSON instance
example, can be validated against a JSON Schema like this:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "JSON minimal example",
 "description": "Schema for the minimal example that is a
river",
 "type": "object",
 "required": ["River"],
 "items": {

OGC 15-053r1

8 Copyright © 2015 Open Geospatial Consortium.

 "title": "Minimal River",
 "type": "object",
 "required": ["name"],
 "properties": {
 "name": {
 "type": "string"
 },
 "length": {
 "type": "number",
 "minimum": 0,
 "uom": "km"
 },
 "discharge": {
 "type": "number",
 "minimum": 0,
 "uom": "m^3/s"
 },
 "source": {
 "type": "string"
 },
 "mouth": {
 "type": "string"
 },
 "country": {
 "type": "string"
 },
 "bridges": {
 "type": "array",
 "items": {
 "type": "string"
 }
 }
 }
 }
}

An interesting thing about JSON Schema is that it is also written in JSON (but using a
predefined data model). This makes JSON Schema automatically extendable. We are
using this property to extend the properties describing some of the attributes of the river
already adding in the example a key "uom" that allows us to specify the units of measure
of the numeric values of the "length" and "discharge" attributes. This could be useful for
better defining feature types.

Recommendation 1: Consider extending JSON schema to fully describe the properties of a feature
type, including units in alphanumeric properties and CRS in the geometric attributes instead of
having to repeat them in each instance.
Target: OWS Common

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 9

Unfortunatelly, JSON schema is a IETF draft that expired in August 2013 and the future
of the specification is uncertain. Fortunatelly there is still some activity in the blogs
associated with the project even if one of the authors has recently blogged that he was
forced to abandon the project due to lack of time.

Recommendation 2: Consider the possibility that OGC assists the IETF team in moving the JSON
Schema forward.
Target: Architecture.DWG and OWS Common

Recommendation 3: Consider the possibility that OGC defines specific types for OGC/SIO geometry
types.
Target: Architecture.DWG and OWS Common

NOTE: Most of the examples provided here have been validated syntactically and semantically using a
windows application XML Validator Buddy. I appreciate the discussions with the developers of the product
and some fast bug fixing or even fast adding of new functionalities.

5.3 JSON-LD

JSON-LD is a lightweight format initially designed for Linked Data (this is the “why” in
the LD acronym). JSON-LD is based on JSON and provides a way to help JSON data to
interoperate at Web-scale. The goal was to require as little effort as possible from
developers to transform their existing JSON to JSON-LD. By defining the concept of a
"@context" provides additional mappings from JSON to an RDF model. In practice,
since there is an automatic way to go from JSON-LD to an RDF encoding, JSON-LD is
considered also an encoding for RDF (a proof of this is that many programs that deal with
RDF accept JSON-LD as input formant in addition to RDF/XML, turtle, n3, nq, etc. The
“@context” links object properties in a JSON document to concepts in an ontology. A
“@context” can be embedded directly in a JSON-LD document or written into a separate
file and then referenced it from several other JSON files.

In practice JSON-LD can serve other purposes. JSON-LD can also help in the validation
of a document. The reason is that it connects JSON variables to their definition in the
semantic world (using “@id”) but also declaring data types (using “@type”). By
connecting to a reestablished ontology, indirectly adds the idea of a namespace. This
way, classes and its corresponding properties are defined by the ontology.

NOTE: JSON does not provide a mechanism for namespaces. There are some efforts to include them but
some developers are worried to mimic XML too much reintroducing the complexity that JSON is avoiding.

Unfortunately, JSON-LD does not provide any object definition (a way to define which
properties correspond to which objects), because this is supposed to be provided by the
ontology itself. This means that objects and properties are defined in a “flat” list.

The following example incorporates “@context” to the previous JSON river example.
Note the capacity to define each object and property using a URI and to define the type of
some of the objects (in the absence of the “@type”, a string data type is supposed).

{
 "@context": {

OGC 15-053r1

10 Copyright © 2015 Open Geospatial Consortium.

 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "uom": "http://www.opengis.net/def/uom",
 "River": "http://www.opengis.uab.cat/River",
 "name": "http://schema.org/name",
 "length": {
 "@id": "http://schema.org/distance",
 "@type": "xsd:float",
 "uom": "km"
 },
 "discharge": {
 "@id": "http://www.opengis.uab.cat/river/discharge",
 "@type": "xsd:float",
 "uom": "m^3/s"
 },
 "source": "http://www.opengis.uab.cat/riverSource",
 "mouth": "http://www.opengis.uab.cat/riverMouth",
 "country": "http://schema.org/nationality",
 "bridges": "http://www.opengis.uab.cat/riverBridge"
 },
 "River":
 {
 "name": "mississipi",
 "length": 3734,
 "discharge": 16790,
 "source": "Lake Itasca",
 "mouth": "Gulf of Mexico",
 "country": "United States of America",
 "bridges": ["Eads Bridge", "Chain of Rocks Bridge"]
 }
}

Again, a part of using @id and @type, the property “uom” is included making use of the
JSON-LD extensibility.

To be able to link this object in the linked data an “@id” for the object is needed and a
“@type” can replace the name of the class “River”.

{
 "@context": {
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "uom": "http://www.opengis.net/def/uom",
 "riverType": "http://www.opengis.uab.cat/River",
 "name": "http://schema.org/name",
 "length": {
 "@id": "http://schema.org/distance",
 "@type": "xsd:float",
 "uom": "km"
 },

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 11

 "discharge": {
 "@id": "http://www.opengis.uab.cat/river/discharge",
 "@type": "xsd:float",
 "uom": "m^3/s"
 },
 "source": "http://www.opengis.uab.cat/riverSource",
 "mouth": "http://www.opengis.uab.cat/riverMouth",
 "country": "http://schema.org/nationality",
 "bridges": "http://www.opengis.uab.cat/riverBridge"
 },
 "@id": "http://en.wikipedia.org/wiki/Mississippi_River",
 "@type": "riverType",
 "name": "mississipi",
 "length": 3734,
 "discharge": 16790,
 "source": "Lake Itasca",
 "mouth": "Gulf of Mexico",
 "country": "United States of America",
 "bridges": ["Eads Bridge", "Chain of Rocks Bridge"]
}

Now it is possible to automatically translate this into RDF in the nquad notation
(http://www.w3.org/TR/n-quads/). One of the tools that executes this transformation is
the JSON-LD playground (http://json-ld.org/playground/index.html)

<http://en.wikipedia.org/wiki/Mississippi_River>
 <http://schema.org/distance>
 "3734"^^<http://www.w3.org/2001/XMLSchema#float> .
<http://en.wikipedia.org/wiki/Mississippi_River>
 <http://schema.org/name>
 "mississipi" .
<http://en.wikipedia.org/wiki/Mississippi_River>
 <http://schema.org/nationality>
 "United States of America" .
<http://en.wikipedia.org/wiki/Mississippi_River>
 <http://www.opengis.uab.cat/river/discharge>
 "16790"^^<http://www.w3.org/2001/XMLSchema#float> .
<http://en.wikipedia.org/wiki/Mississippi_River>
 <http://www.opengis.uab.cat/riverBridge>
 "Chain of Rocks Bridge" .
<http://en.wikipedia.org/wiki/Mississippi_River>
 <http://www.opengis.uab.cat/riverBridge>
 "Eads Bridge" .
<http://en.wikipedia.org/wiki/Mississippi_River>
 <http://www.opengis.uab.cat/riverMouth>
 "Gulf of Mexico" .
<http://en.wikipedia.org/wiki/Mississippi_River>
 <http://www.opengis.uab.cat/riverSource>
 "Lake Itasca" .

OGC 15-053r1

12 Copyright © 2015 Open Geospatial Consortium.

<http://en.wikipedia.org/wiki/Mississippi_River>
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
 <http://www.opengis.uab.cat/River> .

NOTE: Similar attempts to transform a generic XML into RDF were also developed such as the Gleaning
Resource Descriptions from Dialects of Languages (GRDDL).

JSON-LD was defined for making JSON to RDF conversions as easy as possible.
Nevertheless, JSON-LD can be used for 2 more purposes:

 Defining namespaces

 JSON Validation

5.3.1 Using JSON-LD to define namespaces

JSON was defined with simplicity in mind. It is not considered good practice to introduce
namespaces directly into key names. One of the reasons for not doing so is that the use of
the common delimiter link “:” result in invalid JavaScript key names that can only be
accessed with the more “baroque” notation. Let’s consider the following JSON fragment:

wfs=JSON.parse('{"wfs:ServiceIdentification":{"ows:Title": "The
title"}}');

Accessing the title cannot be done by using normal “.” Notation.

wfs.wfs:ServiceIdentification.ows:Title

Fortunately, JavaScript considers arrays and objects identical, so we can use the array
notation to access the key:

wfs[wfs:ServiceIdentification][ows:Title]

JSON-LD allows for including a @context section enumerating the abbreviated
namespace next to the URI namespace. Then the @context can contain different object
and property names and the corresponding abbreviated namespace next to the name in
that namespace.

{
 "@context":
 {
 "wfs": "http://www.opengis.net/wfs/2.5/",
 "ows": "http://www.opengis.net/ows/2.0/",

 "ServiceIdentification": "wfs:ServiceIdentification",
 "Title ": "ows:Title",
 }

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 13

 "ServiceIdentification":{
 "Title": "The title"
 }
}

By doing so, all JSON elements that are associated to a namespace URI can be
dereferenced into a full URL when transformed to other RDF encoding such as nquads.
Nquads examples in this document illustrate this mechanism.

5.3.2 Using JSON-LD to declare simple and complex types.

In JSON-LD we can declare the data type of all keys in a JSON file. When type is not
declared a string type is assumed. This is valid for simple types (generality declared by
using the "http://www.w3.org/2001/XMLSchema#" (normally abbreviated as “xsd”).

{
 "@context": {
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "discharge": {
 "@id": "http://www.opengis.uab.cat/river/discharge",
 "@type": "xsd:float",
 }
 }
 "discharge": 3.14
}

On the other hand complex types that can be defined by any other namespace (e.g.:
http://schema.org”). You can declare that an object is of a complex type by adding a
@type property (or a synonymous of “@type”) to it.

{
 "@context": {
 "geojson": "http://ld.geojson.org/vocab#",
 "type": "@type",
 }
 "geometry": {
 "type": "geojson:LineString",
 "coordinates": [
 [-95.2075, 47.239722], [-89.253333, 29.151111]
]
 }
}

The way complex data types are defined is out of scope of the JSON-LD specification
that relies on the RDF way of defining complex types and vocabularies in OWL or
SKOS.

OGC 15-053r1

14 Copyright © 2015 Open Geospatial Consortium.

On the other hand, JSON schema do allow for complex types definition:

{
 "type": "object",
 "required": ["type", "id", "properties"],
 "properties": {
 "id" : { "type": "string", "format": "uri" },
 "type": { "enum": ["Feature"] },
 "geometry": { "$ref": "#/definitions/geometry" },
 "properties": {
 "type": "object"
 }
 }
}

5.4 XML Schema, Schematron, JSON Schema, JSON-LD validation

The creation of a @context section in a JSON-LD introduces many elements that look
similar to the ones introduced in JSON Schema. It seems reasonable to suppose that
JSON-LD could be used by a validating algorithm to validate a JSON file in a similar
way that JSON Schema does. The table 2 summarizes the capabilities provided by
different validation strategies.

Table 2: Comparison of different validation approaches

Validation functionality XML
Schema

Schematron JSON
Schema

JSON-LD

Data types yes limited4 yes

Limits in simple data types yes yes yes no

Declare object of complex
types

yes no yes yes

Define complex data types yes yes no1

Mandatory properties
(multiplicity one) in objects

yes yes no1

More than one multiplicity of
properties in objects

yes Will be
arrays3

no
controlled

Order of the properties in
objects

yes no no no

Object tree dependency yes yes with id’s

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 15

and links

Links between objects xlink not yet
clear

with
@type:@id

Unknown properties yes no2 yes

Unknown objects yes no2 yes

Namespaces yes yes no yes (by
definition
all keys are
full URIs)

Conditional rules no yes no no

Connection to RDF no no no yes

1 Could be provided by the vocabulary pointed by the URIs

2 JSON is considered more flexible and extensible so an unknown property is
considered an extension and it is ignored.

3 use “type”:”array”, "minItems" : min, "maxItems": max:
http://stackoverflow.com/questions/23141511/how-to-map-uml-composition-
cardinality-to-json-schema

4 limited to the JSON data types: “string”, “number”, “object”, “array”...

The authors of this ER believe that JSON-LD could be used as a validation strategy with
the adoption of some additional conventions. In fact, many examples in this document
have been validated using the JSON-LD playground. It is out of scope of this ER to try to
completely assess this possibility but the authors recommend doing additional testing in
the future.

Recommendation 4: Consider the combined use of JSON schema and the @context section of a
JSON-LD file (possibly in combination with the ontologies linked to it) as a means for validating a
JSON file in the OGC. The next OGC Testbed could include a test on this approach as an activity.
Target: Testbed-12

Recommendation 5: Consider the possibilities of using the namespace URIs in @context section of a
JSON-LD file as a means to connect to formal ontologies structured in OWL SKOS or other RDF
encoding as a way to validate complex types in JSON files in the OGC. The next OGC Testbed could
include a test on this approach as an activity.
Target: Testbed-12

NOTE: https://developers.google.com/structured-data/testing-tool that will be mentioned later already
verifies complex data structures in files written in JSON-LD and a similar approach is suggested here.

OGC 15-053r1

16 Copyright © 2015 Open Geospatial Consortium.

5.5 GeoJSON

In 2008, a group of individuals including some OGC members formed a community
project to define and published a JSON encoding for simple geometries and features. The
result of this work is GeoJSON. GeoJSON is a format for encoding simple feature
geographic data structures. A GeoJSON object may represent a geometry, a feature, or a
collection of features. GeoJSON supports the following geometric types: Point,
LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, and
GeometryCollection. Features in GeoJSON contain a geometry object and additional
properties, and features are grouped in a feature collection. Version 1 (also refereed as the
2008 version) was released in 16 June 2008 and can be found in geojson.org. Later,
(2014) the group submitted a draft into the IETF process. At the moment they have been
very active releasing 4 draft versions, the last one in February 2015.

This is how the river example, looks like encoded in GeoJSON:

{
 "type": "Feature",
 "geometry": {
 "type": "LineString",
 "coordinates": [
 [-95.2075, 47.239722], [-89.253333, 29.151111]
]
 },
 "properties": {
 "url": "http://en.wikipedia.org/wiki/Mississippi_River",
 "name": "mississipi",
 "length": 3734,
 "discharge": 16790,
 "source": "Lake Itasca",
 "mouth": "Gulf of Mexico",
 "country": "United States of America",
 "bridges": ["Eads Bridge", "Chain of Rocks Bridge"]
 }
}

As you can see, an object Feature has 3 members “type” “geometry” and “properties”.
GeoJSON mainly sets restrictions on the values of type and in the content of the
geometry element (that mainly contains an n dimensional array of coordinates) (see the
red parts above). GeoJSON does not impose any restriction on the members of the
properties, so they can be numbers, texts or other objects (only limited by the JSON types
themselves).

As stated in OGC 14-113 OGC JSON Position Statement, GeoJSON is getting
momentum and “OGC members and the broader geo-community are using or intending
on using JSON encodings for some or all of their applications that require geographic
data encoding and transfer”. Many people are starting to distribute maps in the internet in

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 17

this format (e.g.: https://github.com/johan/world.geo.json) and applications to download
(e.g.: http://geojson-maps.kyd.com.au/) and editing online (e.g.: http://geojson.io/) are
proliferating. In particular, GitHub offers the possibility to upload GeoJSON files with
versioning (https://help.github.com/articles/mapping-geojson-files-on-github).

5.5.1 Comparing conceptual limitations in GeoJSON and in GML-SF

GeoJSON separates the geometry from the alphanumeric properties. This is not done in
GML. Indeed, GML features have an array of properties, some of them derived from
GML geometric types and others derived from XML types. In the GeoJSON case,
geometry can be as simple as a single point and as complex as a geometry collection.
GeoJSON geometry has no semantics associated with it so there is no information about
what the geometry is representing (the centre of the road, the margins, the asphalted
zone...). To overcome the GeoJSON restriction of having a single geometry, a geometry
collection can be used, but again, no semantics are associated with the elements of the
collection. GML-SF does not impose restrictions on the number of geometric properties
and in theory can have several geometries per feature and the properties that will have
names helping to identify the meaning. In practice instances of GML-SF rarely use more
than one geometric property. A possible solution to overcome this problem is to include
GeoJSON geometries in the properties array. In fact, nothing in the current GeoJSON
standard prevents the use of other geometrical descriptions in the properties array even if
current parsers probably will not recognize them.

GML-SF0 and GML-SF1 can only have simple non-geometrical properties (such strings
of numbers) explicitly excluding complex structures. GeoJSON imposes no restriction on
its properties (and the can be strings, numbers or objects). In this sense, GeoJSON is at
the same level as GML-SF2.

GML-SF can define a model that limits the type of the geospatial property to single
defined type (e.g.: a point). GeoJSON does not impose any homogeneity rules on the
geometrical properties. This way, a feature collection can have features with a mixture of
geometric points, lines, polygons, etc. GeoJSON does not impose any restrictions on the
non-geometric properties either. If necessary some restrictions can be imposed by using a
specific JSON schema as will be discussed later.

5.5.2 Comparing GeoJSON coordinates with WKT

The following table compares the JSON coordinates notation with the Well Known Text
(WKT) notation (WKT is defined in OGC 06-103r4, OpenGIS Implementation
Specification for Geographic information - Simple feature access - Part 1: Common
architecture). This will be helpful both to determine which subset of WKT GeoJSON
covers and also to see parallelism between both encodings

Table 3: Comparing JSON coordinates with WKT notation

Geometry Text Literal Coordinates JSON Comment

OGC 15-053r1

18 Copyright © 2015 Open Geospatial Consortium.

Type Representation

Point Point (10 10) "type": "Point",
"coordinates": [10,
10]

a Point

LineString LineString (10 10,
20 20, 30 40)

"type":
"LineString",
"coordinates": [[10,
10], [20, 20], [30,
40]]

a LineString
with 3 points

Polygon Polygon ((10 10, 10
20, 20 20, 20 15, 10
10))

"type": "Polygon",
"coordinates":
[[[10, 10], [10,
20], [20, 20], [20,
15], [10,10]]]

a Polygon with
1 exteriorRing
and 0
interiorRings

Multipoint MultiPoint ((10 10),
(20 20))

"type":
"MultiPoint",
"coordinates": [[10,
10], [20, 20]]

a MultiPoint
with 2 points

MultiLine
String

MultiLineString((10
10, 20 20), (15 15,
30 15))

"type":
"MultiLineString",
"coordinates":
[[[10, 10], [10,
20]], [[15, 15],
[30, 15]]]

a
MultiLineString
with 2
linestrings

MultiPoly
gon

MultiPolygon(((10
10, 10 20, 20 20, 20
15, 10 10)), ((60
60, 70 70, 80 60, 60
60)))

"type":
"MultiPolygon",
"coordinates":
[[[[10, 10], [10,
20], [20, 20] , [20,
15], [10, 10]]],
[[[60, 60], [70,
70], [80, 60], [60,
60]]]]

a MultiPolygon
with 2 polygons

GeomColl
ection

GeometryCollection (
POINT (10 10),
POINT (30 30),
LINESTRING (15 15,
20 20))

"type":
"GeometryCollection"
,
[{
"type": "Point",
"coordinates": [10,
10]
},{
"type": "Point",
"coordinates": [30,
30]]
},{
"type":
"LineString",
"coordinates": [[15,
15], [20, 20]]

a
GeometryCollec
tion consisting
of 2 Point
values and a
LineString value

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 19

}]

Polyhedro
n

Polyhedron Z (((0 0
0, 0 0 1, 0 1 1, 0 1
0, 0 0 0)), ((0 0
0, 0 1 0, 1 1 0, 1 0
0, 0 0 0)), ((0 0
0, 1 0 0, 1 0 1, 0 0
1, 0 0 0)), ((1 1
0, 1 1 1, 1 0 1, 1 0
0, 1 1 0)), ((0 1
0, 0 1 1, 1 1 1, 1 1
0, 0 1 0)), ((0 0
1, 1 0 1, 1 1 1, 0 1
1. 0 0 1)))

N/A A polyhedron
cube, corner at
the origin and
opposite corner
at (1, 1, 1).

Tin Tin Z (((0 0 0, 0 0
1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 0
0, 0 0 0)), ((0 0
0, 1 0 0, 0 0 1, 0 0
0)), ((1 0 0, 0 1
0, 0 0 1, 1 0 0)),
)

N/A A tetrahedron (4
triangular
faces), corner at
the origin and
each unit
coordinate digit.

Point Point Z (10 10 5) "type": "Point",
"coordinates": [10,
10, 5]

a 3D Point

Point Point ZM (10 10 5
40)

N/A the same 3D
Point with M
value of 40

Point Point M (10 10 40) N/A a 2D Point with
M value of 40

5.6 TopoJSON

TopoJSON is an extension of GeoJSON that encodes only a specific topological case: 2D
planar topological polygons composed by sequences of edges. Rather than representing
geometries directly as arrays of coordinates, polygons geometries are defined as
sequences of edges (actually TopoJSON call them “arcs”). Each edge is defined only
once, but can be referenced several times by different shapes, thus reducing redundancy
and decreasing the file size and it is specified here: https://github.com/topojson/topojson-
specification/blob/master/README.md.

Some state that a typical TopoJSON file is 80% smaller than its GeoJSON equivalent. A
JavaScript library such as https://github.com/mbostock/topojson can be used to transform
form TopoJSON to GeoJSON.

The last river document could be presented in TopoJSON as:

{

OGC 15-053r1

20 Copyright © 2015 Open Geospatial Consortium.

 "type":"Topology",
 "transform":{
 "scale": [1,1],
 "translate": [0,0]
 },
 "objects":{
 "mississipi_river":{
 "type":"GeometryCollection",
 "geometries":[
 {
 "type": "LineString",
 "arcs": [0],
 "properties":{
 "url": "http://en.wikipedia.org/wiki/Mississippi_River",
 "name": "mississipi",
 "length": 3734,
 "discharge": 16790,
 "source": "Lake Itasca",
 "mouth": "Gulf of Mexico",
 "country": "United States of America",
 "bridges": ["Eads Bridge", "Chain of Rocks Bridge"]
 }
 }
]
 }
 },
 "arcs": [[[-95.2075, 47.239722], [-89.253333, 29.151111]]]
}

In particular, a JavaScript code has been developed to transform TopoJSON in GeoJSON.
This way, JavaScript clients supporting GeoJSON can automatically support TopoJSON.

The work on TopoJSON is out of scope of this ER but it is showing us an accepted way
of extending GeoJSON into other paradigms that can support characteristics that the core
GeoJSON does not cover. The possibility of having a JavaScript transformation code that
is able to convert a JSON file into a valid GeoJSON file is worth considering as a way to
move forward.

Recommendation 6: Consider TopoJSON as a model to create a JSON encoding that is different (not
just an extension, because addresses a topic that GeoJSON can not consider) but can be mapped and
automatically converted into a GeoJSON file (using for example a JavaScript library).
Target: OWS Common

Recommendation 7: Connect work in previous testbeds about a WPS profile for topological
applications with the TopoJSON to study the applicability and interoperability of TopoJSON in
OGC standards such as WPS and WFS.
Target: Testbed 12

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 21

5.7 Symbology in GeoJSON

A very simple vendor specification has been produced to extend GeoJSON to include a
minimum control of its symbology: https://github.com/mapbox/simplestyle-
spec/tree/master/1.1.0. This specification defines a set of keys that can be included in the
properties array of each feature to define some visualization properties. These properties
are related to markers sizes and shapes, and colors for polygons and lines.

{
 "type": "FeatureCollection",
 "features": [{ "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [0, 0]
 },
 "properties": {
 "description": "Bus stop",
 "marker-size": "medium",
 "marker-symbol": "bus",
 "marker-color": "#ace"
 }
 }, {
 "type": "Feature",
 "geometry": {
 "type": "LineString",
 "coordinates": [[0, 0], [10, 10]]
 },
 "properties": {
 "description": "Bus path",
 "stroke": "#f0f0f0",
 "stroke-width": 2
 }
 }]
}

5.8 Current status in OGC

Traditionally the OGC has used XML to encode data and service descriptions of any
kind. Discussions as to the merits of JSON as a competing encoding or as an alternative
to facilitate the implementation of OGC standards have been ongoing. As a result, the
OGC 14-113 OGC JSON Position Statement was approved by the OGC members and
released. Most of the information in this subclause has been extracted from that
document.

Currently not many OGC standards are using JSON. Some standard authors are reluctant
to propose standard ways of using JSON or GeoJSON without a clear guidance from the
TC as a whole. One surprising example is that several OGC members developed
commercial WFS servers that are able to respond with a GeoJSON payload (as well as
other encodings) but the new version of WFS standard version 2.5 drafts still does not

OGC 15-053r1

22 Copyright © 2015 Open Geospatial Consortium.

describe clearly support for either JSON or GeoJSON (even if it provides some
recommendations). The most concrete example of standard candidate using JSON or
GeoJSON is:

 OGC 14-055, OWS Context GeoJSON Encoding Standard. Submitted to Pending
August 2014.
https://portal.opengeospatial.org/files/?artifact_id=59982&version=1

o This candidate standard extends GeoJSON to include the elements coming
from the OWS Context conceptual model. “The goal of this standard is to
provide a definition of how to encode a context document, which can be
extended to allow a context referencing a fully configured service set,
which can be defined and consistently interpreted by clients”.

Works in previous testbeds is mentioned throughout this document: OGC 14-009r2,
Testbed-10 Rules for JSON and GeoJSON Adoption: Focus on OWS-Context (March
2014) and OWS 12-093 UGAS Conversion Engineering Report

Some other document part of the OGC process has been uploaded to the OGC systems:

 [OWS Common] Define XML and JSON schema for a web linking structure
based on RFC 5988 (Change Request)

 XACML 3.0 JSON Profile (Presentation)

6 Deriving a JSON encoding from XML and UML

JSON may be an alternative to XML, providing better integration with other standards
making OGC standard implementation more accessible. Even if JSON does not provide
useful technologies such as XSLT or namespaces, the possibility of including JSON-LD
in the JSON encodings opens a door for fully integrating two ways of describing entities:
object/features and RDF/semantics in a single encoding.

6.1 Derive JSON from XML

As stated, most of the OGC encoding and services rely on XML. Therefore, it would be
interesting to provide a way to directly transform XML encodings into JSON encodings.
This was already explored in the previous Testbed 10 in the Engineering Report: “OGC
14-009r1, OGC Testbed-10 Rules for JSON and GeoJSON Adoption: Focus on OWS-
Context” and we are mainly adopting this work here but with 2 exceptions to the general
rules.

6.1.1 General Rules for transforming XML into JSON

This is the summary of the general transformation rules in OGC 14-009r1:

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 23

 The XML element local name is the JSON object name.

 The XML element single text node is the JSON object value.

 The XML element attributes nodes are transformed in JSON nested objects (see
OGC 14-009r1 section 6.1.1).

 The XML nested elements are transformed in JSON nested objects (see OGC 14-
009r1 section 6.1.2).

 A XML element text node is transformed in a JSON nested object when other
types of nodes are present (see OGC 14-009r1 section 6.1.3).

 The XML element text value can be casted to a JSON object value type (see OGC
14-009r1 section 6.2).

 XML fragments can be transformed in text members (see OGC 14-009r1 section
6.3).

In addition, the following two recommendations are not in the original list but the text of
the document suggest they are as important as the previous ones.

 XML repeated elements (or attributes) are transformed into JSON arrays. The
JSON array name could be changed to plural when convenient (see OGC 14-
009r1 section 6.1.4).

 XML namespaces are ignored.

6.1.1.1 The rule of plural

The plural rule in OGC 14-009r1 seems reasonable but we have to allow for some
exceptions. For example, some current XML documents in OGC (e.g. a WFS
ServiceMetadata document) will generate unnatural translations:

<ows:Keywords>
 <ows:Keyword>WFS</ows:Keyword>
 <ows:Keyword>WMS</ows:Keyword>
 <ows:Keyword>GEOSERVER</ows:Keyword>
</ows:Keywords>

Translation into JSON:

"Keywords":
{
 "Keywords": ["WFS", "WMS", "GEOSERVER"]
}

OGC 15-053r1

24 Copyright © 2015 Open Geospatial Consortium.

results in unnecessary repetition of the “Keywords” word that can probably be simplified.

Please note that some XML elements can already be plural resulting in JSON plural
names even if they are not arrays. The fact that the name is plural cannot be used as a
way to anticipate if a key is an array. In many senses objects and arrays are considered
equivalent in JavaScript (an array is considered an object with numeric members) so
identifying an array is not completely straightforward. Proof of this is that the JavaScript
operator “typeof” returns “object” both for “objects” and “arrays”.

var fruits = ["Banana", "Orange", "Apple", "Mango"];
typeof fruits; // typeof returns object

To solve this problem you can create your own isArray() function 1:

function isArray(myArray) {
 return myArray.constructor.toString().indexOf("Array") > -1;
}

6.1.1.2 Mixed elements

OGC 14-009r1 Section 6.1.3 states: “For this XML mixed element the text node will be
transformed into a JSON object where the name is the parent XML element name and the
value is the text node contents.”

For example, the following XML fragment:

<branch olive="true">
not empty
<leaf>green</leaf>
<peach type="red">some</peach>
</branch>

results in:

"branch" : {
 "branch" : "not empty",
 "olive" : "true",
 "leaf" : "green",
 "peach" : {
 "peach" : "some",
 "type" : "red"
 }
}

1 http://www.w3schools.com/js/js_arrays.asp

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 25

NOTE: the line '"peach" : "some",' is missing in the original example.

To access the text node you simple repeated the name of the node: "branch.branch"

The section 6.1.3 in OGC 14-009r1 does not state that a combination of a XML element
containing a text node and one of more attributes is in the scope of the same problem
even if these cases cannot be called a mixed XML element. This case is much more
common in the OGC. For example, this situation is already present in WFS Capabilities
documents such as this one:
(http://cida.usgs.gov/nwc/geoserver/NHDPlusFlowlines/ows?service=WFS&version=1.0.
0&request=GetCapabilities):

<ogc:Function_Name nArgs="1">abs</ogc:Function_Name>

that will end in:

"ogc_Function_Name":
{
 "ogc_Function_Name": "abs";
 "nArgs":"1"
}

6.1.1.3 NULL elements

OGC 14-009r1 Section 6.2.4 says: “The XML empty elements must be explicitly
transformed to the null JSON object.”

This way an XML fragment like this:

<tree value="false">
<child/>
</tree>

is transformed into this:

"tree" : {
"child" : null

}

In this explanation, it would be good to add this similar case:

<Get
onlineResource="http://cida.usgs.gov:80/nwc/geoserver/NHDPlusFlow
lines/wfs?request=GetCapabilities"/>

In this case there is no need to generate a null element and the transformation would be:

"Get":

OGC 15-053r1

26 Copyright © 2015 Open Geospatial Consortium.

{
 "onlineResource":
"http://cida.usgs.gov:80/nwc/geoserver/NHDPlusFlowlines/wfs?reque
st=GetCapabilities"
}

In addition, it could be useful to differentiate an empty attribute from a null element. For
example:

<tree value="false">
<child/>
<child2></child2>
</tree>

it will be transformed into this:

"tree" : {
"child" : null
"child2" : ""

}

Recommendation 8: Produce an OGC best practice for converting XML documents into JSON based
on OGC 14-009r1 and some other considerations exposed in this ER.
Target: OWS Common

6.1.2 Exceptions to the general rules

6.1.2.1 Encoding the Object-property alternation in JSON

GML and ISO 19115 are two examples of documents that use the object-property model
where objects names (in fact the class names) in UpperCamelCase contain only property
names in lowerCamelCase. Properties can be defined as objects (again in
UpperCamelCase). When translating into JSON the class name needs to be removed and
substituted by a type key (e.g. "@type") with a reference to a class type name.

This way, the following XML fragment:

<mdb:MD_Metadata>
 <mdb:contact>
 <cit:CI_Responsibility>
 <cit:party>
 <cit:CI_Organisation>
 <cit:name>
 <gco:CharacterString>Institut CartogrÃ fic de
Catalunya (ICC)</gco:CharacterString>
 </cit:name>
 <cit:contactInfo>
 <cit:CI_Contact>

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 27

 <cit:address>
 <cit:CI_Address>
 <cit:deliveryPoint>
 <gco:CharacterString>Parc de
MontjuÃ¯c</gco:CharacterString>
 </cit:deliveryPoint>
 <cit:city>

 <gco:CharacterString>Barcelona</gco:CharacterString>
 </cit:city>
 <cit:postalCode>
 <gco:CharacterString>E-
08038</gco:CharacterString>
 </cit:postalCode>
 <cit:electronicMailAddress>

 <gco:CharacterString>centre.atencio@icc.cat</gco:CharacterStri
ng>
 </cit:electronicMailAddress>
 </cit:CI_Address>
 </cit:address>
 </cit:CI_Contact>
 </cit:contactInfo>
 </cit:CI_Organisation>
 </cit:party>
 </cit:CI_Responsibility>
 </mdb:contact>
</mdb:MD_Metadata>

should be encoded in JSON like this:

{
 "@type": "mdb:MD_Metadata",
 "contact":{
 "@type": "cit:CI_Responsibility",
 "party": {
 "@type": "cit:CI_Organisation",
 "name": "Institut Cartogràfic de Catalunya (ICC)",
 "contactInfo": {
 "@type": "cit:CI_Contact",
 "address": {
 "@type": "cit:CI_Address",
 "deliveryPoint": "Parc de Montjuïc",
 "city": "Barcelona",
 "postalCode": "E-08038",
 "electronicMailAddress": "centre.atencio@icc.cat"
 }
 }
 }
 }

OGC 15-053r1

28 Copyright © 2015 Open Geospatial Consortium.

}

NOTE: There is also a project that is targeting the encoding of ISO and FGDC metadata in JSON:
https://github.com/adiwg

Recommendation 9: Include adding "@type" keys to JSON objects as a good practice to makethe
transition to JSON-LD and RDF easier. It is also good practice that type names are qualified with a
abbreviated namespaces (e.g.: ows:ServiceIdentification) that could be later dereferenced using
JSON-LD @context.
Target: OWS Common with OAB

The GML case is even more special because GeoJSON should be considered and an
alternative encoding for vector features. GeoJSON can be extended to fully support all
geospatial types that GML support if needed. Nevertheless, OGC membership can
perhaps select another approach that would be more suitable in the future

6.1.2.2 Linking in JSON

NOTE: This section is a response to the demand expressed in the CR-242 (OGC 12-121) requesting that
OWS Common includes a recommendation for expressing links in JSON that can allow for a functionally
similar to the one provided by XLink.

Many OGC standards use xlink (or other similar forms of links) to relate elements in the
same document or in a remote document. A direct translation of these links will not result
in the right conversion to JSON-LD. In a general case, there is a need for encoding the
source of the link, a target url, the reason why this link is required, the title of the link, the
MIME type recovered from the link and the expected size.

There are several encodings proposed in the Internet to do this in JSON but none of them
are gaining more momentum than others. Some of them can be seen here:

 http://json-schema.org/links
 http://amundsen.com/media-types/collection/examples/
 https://github.com/kevinswiber/siren
 https://gist.github.com/miyagawa/1912431
 http://tools.ietf.org/html/draft-kelly-json-hal-06
 http://blog.cto.hiv/relations-in-linked-data/

It is difficult to find arguments in favor of a particular approach until a conversion into
JSON-LD is explored. In JSON-LD all objects need to have a key that is considered a
synonymous to “@id”. This key can be a target of any relation. A relation can be
established in source object as an attribute with a key name stating the reason of the link
that can be mapped with the atom link rel values. This key will also be a link object with
extra properties. The object will have an key synonymous of “@id” is considered the
target object and a key synonymous of “@type” indicating that this is a “link” object in
the “atom” namespace. The object can have extra parameters about the MIMEtype and

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 29

the expected size of the object. For convenience the reason for the link can be
encapsulated in a “link” key.

In the following example, we are relating (linking) the representation of the Rio Negro
river in Wikipedia with the Amazon river and also to a metadata record better describing
the Rio Negro.

{
 "type": "pg:River",
 "id": "wiki:Rio_Negro_(Amazon)",
 "tributes":
 {
 "href": "wiki:Amazon_River",
 "type": "pg:River",
 },
 "links":
 {
 "id": "wiki:Rio_Negro_(Amazon)",
 "via":
 {
 "type": "atom:link",
 "MIMEtype": "application/xml",
 "href": "http://www.river.com/MetadataRioNegro.xml",
 "title": "XML metadata for the Rio Negro river",
 "length": 1523,
 }
 }
}

Using the following context:

 "@context":
 {
 "atom": "http://www.w3.org/2005/Atom/",
 "wiki": "http://en.wikipedia.org/wiki/",
 "pg": "http://physicalgeography.schema.org/",

 "id": "@id",
 "href": "@id",
 "type": "@type",
 "MIMEtype": "atom:type",

 "links": "_:",
 "via": "atom:via",
 "title": "atom:title",
 "length": "atom:length",
 "tributes": "pg:tributes",
 }

OGC 15-053r1

30 Copyright © 2015 Open Geospatial Consortium.

We can automatically transform the JSON file into RDF where the relations between
objects are highlighted in green.

<http://en.wikipedia.org/wiki/Rio_Negro_(Amazon)>
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
 <http://physicalgeography.schema.org/River> .

<http://en.wikipedia.org/wiki/Rio_Negro_(Amazon)
 <http://physicalgeography.schema.org/tributes>
 <http://en.wikipedia.org/wiki/Amazon_River> .

<http://en.wikipedia.org/wiki/Amazon_River>
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
 <http://physicalgeography.schema.org/River> .

<http://en.wikipedia.org/wiki/Rio_Negro_(Amazon)>
 <http://www.w3.org/2005/Atom/via>
 <http://www.river.com/MetadataRioNegro.xml> .

<http://www.river.com/MetadataRioNegro.xml>
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
 <http://www.w3.org/2005/Atom/link> .
<http://www.river.com/MetadataRioNegro.xml>
 <http://www.w3.org/2005/Atom/length>
 "1523"^^<http://www.w3.org/2001/XMLSchema#integer> .
<http://www.river.com/MetadataRioNegro.xml>
 <http://www.w3.org/2005/Atom/title>
 "XML metadata for the Rio Negro river" .
<http://www.river.com/MetadataRioNegro.xml>
 <http://www.w3.org/2005/Atom/type>
 "application/xml" .

Recommendation 10: Include in a best practice for JSON a subclause for linking to other objects in
JSON, using the natural approaches that JSON-LD provides for both simple links and atom links.
Target: OWS Common.SWG

6.1.2.3 Geospatial objects

XML objects that can be described as simple features (in particular GML objects) and
Bounding Boxes should be encoded in GeoJSON geometric elements.

For instance, the <ows:WGS84BoundingBox> object, should be converted into a bbox
GeoJSON objects. For example, the following WFS ServiceMetadata fragment:

<FeatureTypeList>
 <FeatureType>
 <Name>NHDPlusFlowlines:PlusFlowlineVAA_NHDPlus18</Name>
 <Title>PlusFlowlineVAA</Title>

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 31

 <Abstract/>
 <DefaultCRS>urn:ogc:def:crs:EPSG::900913</DefaultCRS>
 <ows:WGS84BoundingBox>
 <ows:LowerCorner>-124.40958558399815
32.50005761536461</ows:LowerCorner>
 <ows:UpperCorner>-114.58848453257575
43.33627233179173</ows:UpperCorner>
 </ows:WGS84BoundingBox>
 </FeatureType>
 ...

Should be converted into:

{
 "Name": "NHDPlusFlowlines:FeatureTypeList",
 "FeatureType": [
 {
 "Name": "NHDPlusFlowlines:PlusFlowlineVAA_NHDPlus18",
 "Title": "PlusFlowlineVAA",
 "Abstract": null,
 "DefaultCRS": "urn:ogc:def:crs:EPSG::900913",
 "bbox": [-124.40958558399815 32.50005761536461,
 -114.58848453257575, 43.33627233179173]
 }
}

The corresponding context could be:

Using the following context:

 "@context":
 {
 "wfs": "http://www.opengis.net/wfs/2.5/",
 "ows": "http://www.opengis.net/ows/2.0/",
 "geojson": "http://ld.geojson.org/vocab#",

 "Name": "@id",
 "Title": "ows:Title",
 "Abstract": "ows:Abstact",
 "DefaultCRS": "wfs:DefaultCRS",
 "bbox": "geojson:bbox",
 }

Recommendation 11: Include in the JSON best practice that if a fragment of a XML document
contains a geospatial object then when converting to JSON, consider using the GeoJSON equivalent
type.
Target: OWS.Common

OGC 15-053r1

32 Copyright © 2015 Open Geospatial Consortium.

6.2 Derive JSON from UML

Deriving JSON form UML is out of scope of this Engineering Report. The Engineering
Report elaborated in the Testbed 9 OGC 12-093 “OWS-9: UML-to-GML-Application-
Schema (UGAS) Conversion Engineering Report”, elaborates on how to derive JSON
encodings from UML automatically.

7 Discussion about GeoJSON

7.1 JSON Schema for GeoJSON

In the same way that a GML instance can be described by a GML application schema
(XSD file) a GeoJSON file can be described by a JSON Schema. There are two
approaches for this:

 A generic JSON schema describing any GeoJSON file.

 A specific JSON schema describing a particular GeoJSON file of a particular
feature type.

7.1.1 Generic GeoJSON validation

https://github.com/fge/sample-json-schemas/tree/master/geojson provides an attempt to
generate a GeoJSON generic JSON schema. This can be useful to validate that a JSON
file is in fact a GeoJSON file but does not provide the “GML application schema”
functionality.

We have done a similar exercise during the process of defining a JSON Schema for OWS
Context as seen later.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "GeoJSON schema",
 "type": "object",
 "required": ["type"],
 "properties": {
 "type": { "enum": ["FeatureCollection"] },
 "id" : { "type": "string", "format": "uri" },
 "bbox": {
 "type": "array",
 "items": {
 "type": "array",
 "minItems": 4,
 "items" : { "type": "number" }
 }
 },
 "features" : {

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 33

 "type": "array",
 "items": {
 "type": "object",
 "required": ["type", "properties"],
 "properties": {
 "type": { "enum": ["Feature"] },
 "geometry": { "$ref": "#/definitions/geometry" },
 "properties": { "type": "object" }
 }
 }
 }
 },
 "definitions": {
 "geometry": {
 "title": "geometry",
 "type": "object",
 "oneOf": [{
 "properties": {
 "type": { "enum": ["Point"] },
 "coordinates": {
 "type": "array",
 "minItems": 2,
 "items": { "type": "number"}
 }
 }
 },
 {
 "properties": {
 "type": { "enum": ["LineString", "Multipoint"]},
 "coordinates": {
 "type": "array",
 "minItems": 2,
 "items": {
 "type": "array",
 "minItems": 2,
 "items" : { "type": "number" }
 }
 }
 }
 },
 {
 "properties": {
 "type": { "enum": ["Polygon",
"MultiLineString"]},
 "coordinates": {
 "type": "array",
 "items": {
 "type": "array",
 "minItems": 2,
 "items": {
 "type": "array",

OGC 15-053r1

34 Copyright © 2015 Open Geospatial Consortium.

 "minItems": 2,
 "items" : { "type": "number" }
 }
 }
 }
 }
 },
 {
 "properties": {
 "type": { "enum": ["MultiPolygon"] },
 "coordinates": {
 "type": "array",
 "items": {
 "type": "array",
 "items": {
 "type": "array",
 "minItems": 2,
 "items": {
 "type": "array",
 "minItems": 2,
 "items" : { "type": "number" }
 }
 }
 }
 }
 }
 },
 {
 "properties": {
 "type": { "enum": ["GeometryCollection"]},
 "geometries": {
 "type": "array",
 "items": { "$ref": "#/definitions/geometry" }
 }
 }
 }]
 }
 }
}

7.1.2 Specific GeoJSON validation

The generic schema presented before leaves open the nature of the geometry and the
content of properties. A specific JSON schema that acts like a GML application schema
could be more appropriate to better describe a GeoJSON instance type. In it we can limit:

 The possibilities of geometry to a specific geometry type (e.g. LineString)

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 35

 The content of properties to a set of recognized list of attributes (even if in JSON
schema we cannot validate the inclusion of unknown properties).

This is an example of a river collection JSON file:

{
 "id": "river:ExampleRiverCollection",
 "type": "FeatureCollection",
 "features":
 [
 {
 "id": "wikipedia:Mississippi_River",
 "type": "Feature",
 "geometry":
 {
 "id": "wikipedia:Mississippi_River",
 "type": "LineString",
 "crs": "ogc_def:crs/OGC/1.3/CRS84",
 "coordinates":
 [
 [
 -95.2075,
 47.239722
],

 [
 -89.253333,
 29.151111
]
]
 },
 "properties":
 {
 "url": "wikipedia:Mississippi_River",
 "type": "riverType",
 "name": "mississipi",
 "length": 3734,
 "discharge": 16790,
 "source": "Lake Itasca ",
 "mouth": "Gulf of Mexico",
 "country": "United States of America",
 "bridges":
 [
 "Eads Bridge",
 "Chain of Rocks Bridge"
]
 }
 },

 {
 "id": "wikipedia:Ebro",

OGC 15-053r1

36 Copyright © 2015 Open Geospatial Consortium.

 "type": "Feature",
 "geometry":
 {
 "id": "wikipedia:Ebro",
 "type": "LineString",
 "crs": "ogc_def:crs/OGC/1.3/CRS84",
 "coordinates":
 [
 [
 -4.402942,
 43.039111
],

 [
 0.863056,
 40.72
]
]
 },
 "properties":
 {
 "url": "wikipedia:Ebro",
 "type": "riverType",
 "name": "ebro",
 "length": 930,
 "discharge": 426,
 "source": "Pico Tres Mares",
 "mouth": "Mediterranean Sea",
 "country": "Spain"
 }
 }
]
}

This is how a JSON schema for validating this featureType looks:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "Specific GeoJSON schema for riverType",
 "type": "object",
 "required": ["type"],
 "properties":
 {
 "type": {
 "enum": ["FeatureCollection"]
 },
 "id": {
 "type": "string",

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 37

 "format": "uri"
 },
 "bbox": {
 "type": "array",
 "items": {
 "type": "array",
 "minItems": 4,
 "items": {
 "type": "number"
 }
 }
 },
 "features": {
 "type": "array",
 "items": {
 "type": "object",
 "required": ["type", "geometry","properties"],
 "properties":
 {
 "type": {"enum": ["Feature"]},
 "geometry": {
 "$ref": "#/definitions/geometry"
 },
 "properties": {
 "type": "object",
 "required": ["type", "name", "country"],
 "properties":
 {
 "url": { "type": "string", "format": "uri"
},
 "type": { "enum": ["riverType"] },
 "name": { "type": "string"},
 "length": { "type": "number"},
 "discharge": { "type": "number"},
 "source": { "type": "string"},
 "mouth": { "type": "string"},
 "country": { "type": "string"},
 "bridges": {
 "type": "array",
 "items": {
 "type": "string"
 }
 }
 }
 }
 }
 }
 }
 },
 "definitions":
 {

OGC 15-053r1

38 Copyright © 2015 Open Geospatial Consortium.

 "geometry":
 {
 "title": "geometry",
 "type": "object",
 "properties":
 {
 "type":
 {
 "enum":
 [
 "LineString"
]
 },
 "coordinates":
 {
 "type": "array",
 "minItems": 2,
 "items":
 {
 "type": "array",
 "minItems": 2,
 "items":
 {
 "type": "number"
 }
 }
 }
 }
 }
 }
}

Recommendation 12: Adopt the creation of specific JSON schema documents as a means of defining
feature types and as a means for feature instance validation (as the equivalent of GML application
schema).
Target: WFS and OAB

NOTE: the adoption of this strategy will give GeoJSON implementations more robustness. It is particularly
important to increase interoperability of the services that has to process data.

7.2 GeoJSON in JSON-LD

JSON-LD provides a transformation template called “@context” that indirectly defines a
set of rules or transforming a JSON file into an RDF. This is similar to writing a XSLT
but using a complete different language.

In this section we describe how to convert the previous GeoJSON example into a useful
JSON-LD. To do so, there are 3 main issues:

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 39

 Create the right “@context” code to give semantics to the “key names”.

 Remove the “properties” node.

 Express the coordinates correctly in RDF.

To solve the first issue, we use a subset of the experimental vocabulary that is found in
http://geojson.org/vocab that sometimes uses the URI http://example.com/vocab# and
some other the http://ld.geojson.org/vocab# that is supposed to contain the GeoJSON
concepts. In fact the complete vocabulary can be found at
http://geojson.org/contexts/geojson-base.jsonld. Our subset contains geojson:coordinates,
geojson:Feature and geojson:LineString. We also used the URI
http://www.opengis.uab.cat/River/ to define the semantics of the river properties

To solve the second I had to apply a little “trick” using the same “id” for the root object,
the geometry object and the properties object and associate “geometry” and “properties”
to the “_:”void uri.

GeoJSON is very clear about the encoding of the coordinates. Coordinates are n-
dimensional arrays of numbers. Unfortunately sorted n-dimensional arrays cannot be
exported to RDF. By default, in JSON-LD, the elements of an array are considered an
“unsorted” list of values, so that they become unsorted in the RDF transformation. JSON-
LD provides a methodology to transform a sorted array (using “@container”: “@list”),
but, unfortunately the implementations we have tested, only make it possible for one
dimensional array. In fact, this issue is discussed in https://github.com/geojson/geojson-
ld/issues/28 (and with less completeness in https://github.com/geojson/geojson-
ld/issues/26 and https://github.com/geojson/geojson-ld/issues/12) that were closed with
no solution. In conclusions, the current GeoJSON encoding for coordinates prevents the
correct automatic transformation to RDF (via JSON-LD).

Recommendation 13: Consider carefully the unsolved issue where GeoJSON coordinates prevents a
natural way to apply JSON-LD to GeoJSON and an automatic conversion to RDF. Following
recommendations are proposing alternative solutions.
Target: OAB

It seems that a logical solution is to propose an encoding that is not based on arrays such
us the one used here http://geovocab.org/geometry.html or the Well Known Text (WKT)
(http://www.opengeospatial.org/standards/sfa). WKT encoding can be applied in two
methods:

 As a new encoding for JSON features that will break compatibility with
GeoJSON.

 As an intermediate encoding for the JSON to RDF conversion. This way we will
be able to convert any existing GeoJSON coordinates array during the JSON to
RDF conversion.

OGC 15-053r1

40 Copyright © 2015 Open Geospatial Consortium.

7.3 The need for an alternative to GeoJSON. Another encoding for features in JSON.

7.3.1 Reason to define an GeoJSON alternative encoding

Limitations of the current version of GeoJSON are:

 Coordinates array cannot be converted to RDF using JSON-LD due to the fact
that multidimensional arrays are very complicated to represent in RDF.

 The current GeoJSON draft in the IETF removes the possibility to specify and use
any other CRS than CRS:842. In our criteria the way CRS was proposed in
geojson.org is too complicated. The issue could be resolved by adding an optional
simple crs key in “geometry” that will contain a crs URI next to “coordinates”.

 Only one geometry can be associated with a feature. Even if this limitation can be
overcome by the use of a GeometricCollection, geometric properties have no
name so there is no semantics associated to them. This could be also easily solved
by adding a “propertyName” key to “geometry”.

 Complex geometrical objects (other than points, lines and polygons) cannot be
described.

 It does not support the raster/coverage model. This document proposes a solution
for this in clause 9.

7.4 Proposing a WKT JSON for features

There was no consensus by the Testbed 11 participants in the convenience of defining an
encoding that breaks compatibility with GeoJSON. GeoJSON has a high degree of
acceptance in the geospatial community of developers and covers many use cases. Some
people think that by defining a non-compatible JSON for feature encoding OGC risks
dividing the community and reducing interoperability. Other people think that the
limitations that current GeoJSON presents a need for an alternative solution.

After considering the limitation of the coordinates array discussed in the previous
subclause, the proposed encoding proposes substituting the “coordinates”
multidimensional array proposed in GeoJSON and use WKT (OGC 06-103r4) instead to
describe the geometries of the features, allowing for an easy and automatic conversion of
RDF to GeoJSON. The proposed encoding also includes support for different CRSs.

2 This is an unfortunate result of discussions the axes order discussion between GeoJSON developers and some people
that prefer following EPSG order. It is un unfortunate decision because,we have seen several examples of GeoJSON
files using CRSs different from CRS84/WGS84 that could result invalid if IETF final approves GeoJSON the way it is.

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 41

The proposal replaces “geometry” in GeoJSON by a “literalGeometries” that can have a
“free” name geometric complex properties that are formed by an id, a crs link and a wkt
geometry as a text.

The example documented is a JSON-LD with a @context and feature collection. The
@context section has two parts, one that will be generic for the format and another one
that is common for a feature type. As a practical rule, I have avoided the use of the ‘@’
and ‘:” in the feature collection section (outside the @context section). By doing so, the
access to objects and elements in JavaScript is simplified.

Generic part:

{
 "@context":
 {
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "geojson": "http://ld.geojson.org/vocab#",
 "schema": "http://schema.org/",
 "ogc_def": "http://www.opengis.net/def/",
 "ogc_geo": "http://www.opengis.net/ont/geosparql#",
 "wktjson": "http://www.opengis.net/wktjson/",

 "id": "@id",
 "url": "@id",
 "type": "@type",
 "features": "geojson:features",
 "properties": "_:",

 "featureType": "geojson:Feature",
 "featureCollectionType": "geojson:FeatureCollection",
 "lineStringType": "geojson:LineString",

 "Feature": "featureType",
 "FeatureCollection": "featureCollectionType",
 "LineString": "lineStringType",

 "literalGeometries":"_:",
 "asWKT": "ogc_geo:wktLiteral",
 "literalFeature": "wktjson:literalFeature",

 "crs": {
 "@id": "ogc_def:crs",
 "@type": "@id"
 },

One trick that we are using here is defining other characteristics of the feature types that
are not going to be used and are going to be ignored by a common JSON-LD parser but
could be useful to better describe the values of properties in the feature model. In this
case we are providing the units of measure of the numeric properties.

OGC 15-053r1

42 Copyright © 2015 Open Geospatial Consortium.

 "uom": "ogc_def:uom",

Here we need to define a namespace for this feature type and an auxiliary namespace for
the feature instances identifiers (in this case we are using the Wikipedia URL’s as
identifiers).

 "river": "http://www.opengis.uab.cat/River/",
 "wikipedia": "http://en.wikipedia.org/wiki/",

In GeoJSON there is no FeatureType concept but nothing prevents us to have a property
with the name “@type” and with the value “riverType” for each feature instance.

 "riverType": "river",

These are the attributes of the instances of the “riverType” features. As you can see, it is
possible to define a URL to a semantic definition, a data type and other properties that
will be ignored by the JSON-LD parser.

 "name": "schema:name",
 "length": {
 "@id": "schema:distance",
 "@type": "xsd:float",
 "uom": "km"
 },
 "discharge": {
 "@id": "river:discharge",
 "@type": "xsd:float",
 "uom": "m^3/s"
 },
 "source": "river:source",
 "mouth": "river:mouth",
 "country": "schema:nationality",
 "bridges": "river:bridge",

 "riverExtremePos": "river:riverExtremePos"
 },

Once the @context part ends, the feature collection is presented. Each feature presents an
id, a type, literal geometries and properties. In this example we present a feature
collection formed by 2 features.

 "id": "river:ExampleRiverCollection",
 "type": "FeatureCollection",
 "features": [
 {
 "id": "wikipedia:Mississippi_River",
 "type": "literalFeature",
 "literalGeometries": {
 "id": "wikipedia:Mississippi_River",

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 43

 "riverExtremePos": {
 "id": "wikipedia:Mississippi_River/ExtremePos",
 "crs": "ogc_def:crs/OGC/1.3/CRS84",
 "asWKT": "LINESTRING (-95.2075 47.239722, -89.253333
29.151111)"
 }
 },
 "properties": {
 "url": "wikipedia:Mississippi_River",
 "type": "riverType",
 "name": "mississipi",
 "length": 3734,
 "discharge": 16790,
 "source": "Lake Itasca",
 "mouth": "Gulf of Mexico",
 "country": "United States of America",
 "bridges": ["Eads Bridge", "Chain of Rocks Bridge"]
 }
 },
 {
 "id": "wikipedia:Ebro",
 "type": "literalFeature",
 "literalGeometries": {
 "url": "wikipedia:Ebro",
 "riverExtremePos": {
 "id": "wikipedia:Ebro/ExtremePos",
 "crs": "ogc_def:crs/OGC/1.3/CRS84",
 "asWKT": "LINESTRING (-4.402942 43.039111, 0.863056
40.72)"
 }
 },
 "properties": {
 "url": "wikipedia:Ebro",
 "type": "riverType",
 "name": "ebro",
 "length": 930,
 "discharge": 426,
 "source": "Pico Tres Mares",
 "mouth": "Mediterranean Sea",
 "country": "Spain"
 }
 }
]
}

The literalGeometries element replaces the “geometry” in a GeoJSON encoding and
overcomes its main limitations. If we look in more detail at the literalGeometries
element, we can see that it has the same id that the parent element (forcing the parser to

OGC 15-053r1

44 Copyright © 2015 Open Geospatial Consortium.

ignore the literalGeomtries grouping when translating it to RDF) and a list (one in this
case) of geometric properties. These properties have an id, a crs uri and a literal wkt
string.

 "literalGeometries": {
 "id": "wikipedia:Mississippi_River",
 "riverExtremePos": {
 "id": "wikipedia:Mississippi_River/ExtremePos",
 "crs": "ogc_def:crs/OGC/1.3/CRS84",
 "asWKT": "LINESTRING (-95.2075 47.239722, -89.253333
29.151111)"
 }
 },

A JSON-LD parser is able to transform this document into RDF nquad notation.

<http://www.opengis.uab.cat/River/ExampleRiverCollection>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://ld.geojson.org/vocab#FeatureCollection> .

<http://www.opengis.uab.cat/River/ExampleRiverCollection>
<http://ld.geojson.org/vocab#features>
<http://en.wikipedia.org/wiki/Ebro> .

<http://www.opengis.uab.cat/River/ExampleRiverCollection>
<http://ld.geojson.org/vocab#features>
<http://en.wikipedia.org/wiki/Mississippi_River> .

<http://en.wikipedia.org/wiki/Ebro> <http://www.w3.org/1999/02/22-rdf-

syntax-ns#type> <http://www.opengis.uab.cat/River/> .
<http://en.wikipedia.org/wiki/Ebro> <http://schema.org/distance>

"930"^^<http://www.w3.org/2001/XMLSchema#float> .
<http://en.wikipedia.org/wiki/Ebro> <http://schema.org/name> "ebro" .
<http://en.wikipedia.org/wiki/Ebro> <http://schema.org/nationality>

"Spain" .
<http://en.wikipedia.org/wiki/Ebro>

<http://www.opengis.uab.cat/River/discharge>
"426"^^<http://www.w3.org/2001/XMLSchema#float> .

<http://en.wikipedia.org/wiki/Ebro>
<http://www.opengis.uab.cat/River/mouth> "Mediterranean Sea" .

<http://en.wikipedia.org/wiki/Ebro>
<http://www.opengis.uab.cat/River/source> "Pico Tres Mares" .

<http://en.wikipedia.org/wiki/Ebro> <http://www.w3.org/1999/02/22-rdf-

syntax-ns#type> <http://www.opengis.net/wktjson/literalFeature> .
<http://en.wikipedia.org/wiki/Ebro>

<http://www.opengis.uab.cat/River/riverExtremePos>
<http://en.wikipedia.org/wiki/Ebro/ExtremePos> .

<http://en.wikipedia.org/wiki/Ebro/ExtremePos>
<http://www.opengis.net/def/crs>
<http://www.opengis.net/def/crs/OGC/1.3/CRS84> .

<http://en.wikipedia.org/wiki/Ebro/ExtremePos>
<http://www.opengis.net/ont/geosparql#wktLiteral> "LINESTRING (-
4.402942 43.039111, 0.863056 40.72)" .

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 45

<http://en.wikipedia.org/wiki/Mississippi_River>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.uab.cat/River/> .

<http://en.wikipedia.org/wiki/Mississippi_River>
<http://schema.org/distance>
"3734"^^<http://www.w3.org/2001/XMLSchema#float> .

<http://en.wikipedia.org/wiki/Mississippi_River>
<http://schema.org/name> "mississipi" .

<http://en.wikipedia.org/wiki/Mississippi_River>
<http://schema.org/nationality> "United States of America" .

<http://en.wikipedia.org/wiki/Mississippi_River>
<http://www.opengis.uab.cat/River/bridge> "Chain of Rocks Bridge"
.

<http://en.wikipedia.org/wiki/Mississippi_River>
<http://www.opengis.uab.cat/River/bridge> "Eads Bridge" .

<http://en.wikipedia.org/wiki/Mississippi_River>
<http://www.opengis.uab.cat/River/discharge>
"16790"^^<http://www.w3.org/2001/XMLSchema#float> .

<http://en.wikipedia.org/wiki/Mississippi_River>
<http://www.opengis.uab.cat/River/mouth> "Gulf of Mexico" .

<http://en.wikipedia.org/wiki/Mississippi_River>
<http://www.opengis.uab.cat/River/source> "Lake Itasca" .

<http://en.wikipedia.org/wiki/Mississippi_River>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/wktjson/literalFeature> .

<http://en.wikipedia.org/wiki/Mississippi_River>
<http://www.opengis.uab.cat/River/riverExtremePos>
<http://en.wikipedia.org/wiki/Mississippi_River/ExtremePos> .

<http://en.wikipedia.org/wiki/Mississippi_River/ExtremePos>
<http://www.opengis.net/ont/geosparql#wktLiteral> "LINESTRING (-
95.2075 47.239722, -89.253333 29.151111)" .

<http://en.wikipedia.org/wiki/Mississippi_River/ExtremePos>
<http://www.opengis.net/def/crs>
<http://www.opengis.net/def/crs/OGC/1.3/CRS84> .

7.5 GeoJSON-LD with a modified JSON-LD parser

Another possible solution is to introduce some modifications in the JSON-LD parser to
transform GeoJSON coordinates into WKT on the fly resulting in a satisfactory RDF
encoding. In fact, this solution was suggested in “https://github.com/geojson/geojson-
ld/issues/31: “Develop and promote JSON-LD processor support for jsonld:jsonData”.
This parser can be based in a WKT/GeoJSON JavaScript library such as
http://openlayers.org/dev/examples/vector-formats.html, http://arthur-e.github.io/Wicket/,
https://github.com/mapbox/wellknown or can be developed ad-hoc.

In this case, we use directly a GeoJSON file with the right @context document but we
add some convenient elements to it that will be needed.

{
 "@context":
 {

OGC 15-053r1

46 Copyright © 2015 Open Geospatial Consortium.

 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "geojson": "http://ld.geojson.org/vocab#",
 "schema": "http://schema.org/",
 "ogc_geo": "http://www.opengis.net/ont/geosparql#",

 "id": "@id",
 "url": "@id",
 "type": "@type",
 "features": "geojson:features",
 "geometry": "_:",
 "properties": "_:",

 "asWKT": "ogc_geo:wktLiteral",

 "featureType": "geojson:Feature",
 "featureCollectionType": "geojson:FeatureCollection",
 "lineStringType": "geojson:LineString",

 "Feature": "featureType",
 "FeatureCollection": "featureCollectionType",
 "LineString": "lineStringType",
 ...
 },

To demonstrate the feasibility of this approach, we have created a modified version of the
http://json-ld.org/playground/index.html that includes a small piece of code that
transforms the GeoJSON n-dimensional arrays of coordinates and the bbox into the WKT
equivalents. The converted string is included as the value of the “asWKT” JSON key and
the “coordinates” key is removed. The transformation is requested before the JSON-LD
engine reads and interprets the JSON-LD file. The code to transform the coordinates
array into WKT the following:

function geometryasWKT(geometry)
{
var identified=false;

 if (geometry.type=="Point")
 {
 geometry.asWKT="POINT(";
 for (var i_dim=0; i_dim<geometry.coordinates.length;
i_dim++)
 {
 geometry.asWKT+=geometry.coordinates[i_dim];
 if (i_dim+1<geometry.coordinates.length)
 geometry.asWKT+=" "
 }
 identified=true;
 }

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 47

 else if (geometry.type=="MultiPoint")
 {
 geometry.asWKT="MULTIPOINT(";
 for (var i_vrt=0; i_vrt<geometry.coordinates.length;
i_vrt++)
 {
 geometry.asWKT+="(";
 for (var i_dim=0;
i_dim<geometry.coordinates[i_vrt].length; i_dim++)
 {
 geometry.asWKT+=geometry.coordinates[i_vrt][i_dim];
 if (i_dim+1<geometry.coordinates[i_vrt].length)
 geometry.asWKT+=" "
 }
 geometry.asWKT+=")";
 if (i_vrt+1<geometry.coordinates.length)
 geometry.asWKT+=","
 }
 identified=true;
 }
 else if (geometry.type=="LineString")
 {
 geometry.asWKT="LINESTRING(";
 for (var i_vrt=0; i_vrt<geometry.coordinates.length;
i_vrt++)
 {
 for (var i_dim=0;
i_dim<geometry.coordinates[i_vrt].length; i_dim++)
 {
 geometry.asWKT+=geometry.coordinates[i_vrt][i_dim];
 if (i_dim+1<geometry.coordinates[i_vrt].length)
 geometry.asWKT+=" "
 }
 if (i_vrt+1<geometry.coordinates.length)
 geometry.asWKT+=","
 }
 identified=true;
 }
 else if (geometry.type=="MultiLineString" ||
geometry.type=="Polygon")
 {
 if (geometry.type=="MultiLineString")
 geometry.asWKT="MULTILINESTRING(";
 else
 geometry.asWKT="POLYGON(";
 for (var i_ls=0; i_ls<geometry.coordinates.length; i_ls++)
 {
 geometry.asWKT+="(";
 for (var i_vrt=0;
i_vrt<geometry.coordinates[i_ls].length; i_vrt++)
 {

OGC 15-053r1

48 Copyright © 2015 Open Geospatial Consortium.

 for (var i_dim=0;
i_dim<geometry.coordinates[i_ls][i_vrt].length; i_dim++)
 {

 geometry.asWKT+=geometry.coordinates[i_ls][i_vrt][i_dim];
 if
(i_dim+1<geometry.coordinates[i_ls][i_vrt].length)
 geometry.asWKT+=" "
 }
 if (i_vrt+1<geometry.coordinates[i_ls].length)
 geometry.asWKT+=","
 }
 geometry.asWKT+=")";
 if (i_ls+1<geometry.coordinates.length)
 geometry.asWKT+=","
 }
 identified=true;
 }
 else if (geometry.type=="MultiPolygon")
 {
 geometry.asWKT="MULTIPOLYGON(";
 for (var i_pol=0; i_pol<geometry.coordinates.length;
i_pol++)
 {
 geometry.asWKT+="(";
 for (var i_ls=0;
i_ls<geometry.coordinates[i_pol].length; i_ls++)
 {
 geometry.asWKT+="(";
 for (var i_vrt=0;
i_vrt<geometry.coordinates[i_pol][i_ls].length; i_vrt++)
 {
 for (var i_dim=0;
i_dim<geometry.coordinates[i_pol][i_ls][i_vrt].length; i_dim++)
 {

 geometry.asWKT+=geometry.coordinates[i_pol][i_ls][i_vrt][i_dim
];
 if
(i_dim+1<geometry.coordinates[i_pol][i_ls][i_vrt].length)
 geometry.asWKT+=" "
 }
 if (i_vrt+1<geometry.coordinates[i_pol][i_ls].length)
 geometry.asWKT+=","
 }
 geometry.asWKT+=")";
 if (i_ls+1<geometry.coordinates[i_pol].length)
 geometry.asWKT+=","
 }
 geometry.asWKT+=")";

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 49

 if (i_pol+1<geometry.coordinates.length)
 geometry.asWKT+=","
 }
 identified=true;
 }
 //else if (geometry.type=="GeometryCollection")
 // alert("GeometryCollection");
 if (identified==true)
 {
 geometry.asWKT+=")";
 delete geometry.coordinates;
 delete geometry.type;
 }
}

function bboxasWKT(feature)
{
 var n_dim=feature.bbox.length/2;

 feature.asWKT="POLYGON(((";
 for (var i_dim=0; i_dim<n_dim; i_dim++)
 {
 feature.asWKT+=feature.bbox[i_dim];
 if (i_dim+1<n_dim)
 feature.asWKT+=" "
 }
 feature.asWKT+="),(";
 for (var i_dim=0; i_dim<n_dim; i_dim++)
 {
 if (i_dim==1)
 feature.asWKT+=feature.bbox[n_dim+i_dim];
 else
 feature.asWKT+=feature.bbox[i_dim];
 if (i_dim+1<n_dim)
 feature.asWKT+=" "
 }
 feature.asWKT+="),(";
 for (var i_dim=0; i_dim<n_dim; i_dim++)
 {
 feature.asWKT+=feature.bbox[n_dim+i_dim];
 if (i_dim+1<n_dim)
 feature.asWKT+=" "
 }
 feature.asWKT+="),(";
 for (var i_dim=0; i_dim<n_dim; i_dim++)
 {
 if (i_dim==1)
 feature.asWKT+=feature.bbox[i_dim];
 else
 feature.asWKT+=feature.bbox[n_dim+i_dim];
 if (i_dim+1<n_dim)

OGC 15-053r1

50 Copyright © 2015 Open Geospatial Consortium.

 feature.asWKT+=" "
 }
 feature.asWKT+="),(";
 for (var i_dim=0; i_dim<n_dim; i_dim++)
 {
 feature.asWKT+=feature.bbox[i_dim];
 if (i_dim+1<n_dim)
 feature.asWKT+=" "
 }
 feature.asWKT+=")))";
 delete feature.bbox;
}

function geoJSONasWKT(geojson)
{
 if (typeof geojson == "object")
 {
 if (geojson.length)
 {
 for(var i=0; i<geojson.length; i++)
 {
 geoJSONasWKT(geojson[i]);
 }
 }
 else
 {
 for(var name in geojson)
 {
 if (geojson.hasOwnProperty(name))
 {
 if (name == "geometry" && typeof geojson[name] ==
"object")
 {
 if (geojson[name].type &&
geojson[name].coordinates)
 {
 geometryasWKT(geojson[name]);
 }
 }
 else if (name == "geometries" && typeof geojson[name] ==
"object" && geojson[name].length)
 {
 for(var i=0; i<geojson[name].length; i++)
 {
 if (geojson[name][i].type &&
geojson[name][i].coordinates)
 {
 geometryasWKT(geojson[name][i]);
 }
 }

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 51

 }
 else if (name == "bbox" && typeof geojson[name] ==
"object" && geojson[name].length>3 && typeof geojson[name][0] ==
"number" && typeof geojson[name][1] == "number" && typeof
geojson[name][2] == "number" && typeof geojson[name][3] ==
"number")
 {
 bboxasWKT(geojson);
 }
 else if (typeof geojson[name] == "object")
 geoJSONasWKT(geojson[name]);
 }
 }
 }
 }
 return;
}

Bbox was converted to a rectangular polygon due to the fact that no equivalent element is
present in WKT.

The result of the conversion is the same than in previous section and can be seen in the
following illustration as a RDF graph:

Figure 1: River GeoJSON file example transformed to RDF through JSON-LD

Recommendation 14: Respect the original format of GeoJSON and apply a piece of code to
transform GeoJSON into WKT JSON for simple features on the fly to obtain RDF notation from
GeoJSON.
Target: OAB

Recommendation 15: Consider JSON-LD as an alternative for creating GML application schemas as
a means of defining feature types and as a mean for validation.
Target: OWS Common.SWG and OAB

OGC 15-053r1

52 Copyright © 2015 Open Geospatial Consortium.

Recommendation 16: Add a BBOX element in the WKT standard.
Target: CR to Simple Features for SQL

8 GeoJSON in OGC

8.1 OWS Context encoded in GeoJSON

The creation of a JSON encoding for OWS Context was started in the Testbed 10 and the
results are collected in the Engineering Report: “OGC 14-009r1, OGC Testbed-10 Rules
for JSON and GeoJSON Adoption: Focus on OWS-Context”. A version for this standard
candidate will soon be released for public comment with the reference OGC 14-055
OWS Context GeoJSON Encoding. What we did in the Testbed 11 was to create a JSON
schema and a JSON-LD for validating the examples OWS Context group will provide
with this standard.

8.1.1 JSON schema for OWS context JSON

Recommendation 17: Distribute this JSON schema, and the examples validated with it, in
schemas.opengis.net when OWS context JSON standard gets approved.
Target: OWS Context

8.1.2 JSON-LD schema for OWS context JSON

Recommendation 18: Distribute this JSON-LD @context, and the examples validated with it, in
schemas.opengis.net when OWS context JSON standard gets approved.
Target: OWS Common.SWG and OAB

8.2 Offer GeoJSON files in the web with OWS Context.

8.2.1 Simple approach based on “files”

Many people are starting to publish maps in GeoJSON by simply uploading files on
GitHub. The Rioja Spatial Data Infrastructure in Spain is an example of this
https://github.com/iderioja/base_datos_geografica/blob/master/README_EN.md giving
access to official datasets in GeoJSON.

GitHub offers the users the capability to show the map directly in their portal and the
versioning capability. Nevertheless, there is a general feeling that there is still a need for
an easy discovery mechanism for geospatial data. Even if GitHub (and any other
repository will not be able to do "subsetting" of the features, some common queries and
subsets can also be stored. GitHub is also providing two other characteristics that make
datasets more discoverable: Datasets are exposed by a list of automatic links and there is
a manifest or metadata file that describes the data. This characteristic helps web search
engines to better index the geospatial features: The data becomes discoverable.

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 53

Figure 2: IDE Rioja using GitHub to provide geospatial information in GeoJSON

Could we make a standard mechanism of providing metadata about a set of links
discoverable in the web? In fact, this is one of the original use cases considered in OWS
Context. Indeed, OWS Context can provide a minimum set of metadata, and offer a link
to a set of resources. In addition, each OWS Context resource can also link to a geospatial
metadata description (e.g. a full ISO19115 description), to a schema, and to a web service
to get the data in other formats or to add geospatial filtering capability. In other words,
OWS context can be used as the single entry point to a list of geospatial resources.

In principle, we could use OWS context to expose and describe a list of GeoJSON files.
Unfortunately, OWS context does not define any extension for GeoJSON linking or
embedding. Even we could mimic other extensions to do the same it could be useful that
OWS Context provides a specific extension for GeoJSON.

Recommendation 19: Create an extension of OWS Context JSON for illustrating how to reference
GeoJSON data both embedded or linked.
Target: CR to OWS Context.SWG

8.2.2 Current mechanims in OWS Context.

Currently, OWS Context is only available in OWS Atom encoding. Very soon, the OWS
Context SWG will release a GeoJSON encoding. What is the best way to expose OWS
Context in the web? Atom-XML seemed a good alternative a few years ago but today,
there are reasons to be concerned. There are some evidences that the main search engine
in the web is removing RSS support. Recently, Google removed support to
GeoRSS/Atom in Google maps. The new version of Google maps does not support Atom
anymore even though it is still possible to request using the old version. How long
Google will maintain support to the old version is uncertain. Google also removed an app
called Google Reader that was a web based generic RSS reader. It is difficult to predict if
this is also going to impact the Google search engine but there are reason to suspect that
RSS is no longer of interest for Google.

OGC 15-053r1

54 Copyright © 2015 Open Geospatial Consortium.

The GeoJSON encoding seems a good alternative because we will have a homogeneous
encoding where a GeoJSON-context will link to other GeoJSON files that will contain
real (simple) features. The problem is that JSON doesn't provide native file linking
mechanism and GeoJSON-context was forced to propose one (based on the transposition
of the Atom link mechanism). The adoption of this or other linking mechanism on the
web it not expected soon so it is not expected that this approach is useful in web search
engines.

As we have demonstrated before, JSON-LD provides an alternative way of linking
resources on the semantic web. Is it possible that search engines adopt some form of
JSON or JSON-LD in the future? It seems so. In fact, Google is already experimenting
with JSON-LD for describing critical reviews of web resources:
https://developers.google.com/structured-data/critic-reviews. JSON-LD could be a
promising alternative in the future.

8.2.3 HTML as a natural way for linking. OWS Context encoded in HTML

Everybody knows that HTML was designed with the linking capacity in mind. Both,
users reading HTML and automatic crawlers, transverse links all the time. HTML seems
the natural selection for linking JSON on the web. The question is how to complement
the linking mechanism with some additional metadata that search engines could use for
indexing. A solution could come from mechanism that web search engines already had
agreed to use for better indexing: Microdata.

Microdata is a WHATWG3 HTML specification that provides both vocabulary and
strategies to embed metadata within existing content on web pages. Search engines, web
crawlers, and browsers can extract and process Microdata from a web page and use it to
provide a richer browsing experience for users (Google, Microsoft and Yahoo! rely on
this markup). In particular, provide more relevant results to users. Microdata can also be
considered an annotating mechanism in HTML elements with machine-readable tags.
Microdata vocabularies provide the semantics, or meaning of an Item. The aim is to use
Microdata to achieve better results in searches and also better presentations in the found
items

Figure 3: A found recipe presentation in Google search results

3 Web Hypertext Application Technology Working Group

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 55

A collection of commonly used markup vocabularies are provided by Schema.org
schemas which include: Person, Event, Organization, Product, Review, Review-
aggregate, Breadcrumb, Offer, Offer-aggregate. Where possible, authors are encouraged
to re-use existing vocabularies, as this makes content re-use easier. It is also possible to
create a custom vocabulary that better fits the purpose.

In this section we are going to explore the current use of common vocabularies to
describe geospatial resources. Our purpose is to illustrate how this approach could work
in practice and present the approach as a possible encoding for OWS Context in HTML.
This section presents a solution that validates correctly in the Google Structured Data
Testing Tool (https://developers.google.com/structured-data/testing-tool/). The possibility
of defining a new vocabulary for describing geospatial resources can be considered later
by the OWS Context group.

The simple use case that we are going to consider here is a list of resources that could be
GeoJSON or TIFF files available on the web. To expose them we are going to create a
web page that is going to link them. The common object in the Microdata vocabulary that
better fits with OWS Context is the “Product” vocabulary. It is possible to create a web
page that enumerates a list of products (http://schema.org/Product) and for each product it
is possible to include one or more offers (http://schema.org/Offer). This way we are
going to map the product concept to the resource concept in OWS Context and the offer
concept to the offering concept in OWS Context.

One of the simplest examples in the currently approved OWS Context atom encoding is
the following:

<?xml version="1.0" encoding="UTF-8"?>
<?valbuddy_schematron ../owc.sch?>
<?xml-model href="../atom.rnc" type="application/relax-ng-
regular-syntax"?>
<feed>
 <link rel="profile"
 href="http://www.opengis.net/spec/owc-atom/1.0/req/core"
 title="This file is compliant with version 1.0 of OGC
Context"/>
 <id>http://www.opengis.net/owc/1.0/examples/geotiff</id>
 <title>GeoTIFF Example</title>
 <subtitle type="html">
 GeoTIFF Example
 </subtitle>
 <author>
 <name>Joan Masó</name>
 </author>
 <updated>2012-11-04T17:26:23Z</updated>
 <entry>

 <id>ftp://ftp.remotesensing.org/pub/geotiff/samples/gdal_eg/ce
a.txt</id>
 <title>GeoTIFF Example</title>

OGC 15-053r1

56 Copyright © 2015 Open Geospatial Consortium.

 <updated>2011-11-01T00:00:00Z</updated>
 <dc:publisher>CREAF</dc:publisher>
 <content type="text">GeoTIFF Example coming from
ftp://ftp.remotesensing.org/pub/geotiff/samples/gdal_eg</content>
 <owc:offering code="http://www.opengis.net/spec/owc-
atom/1.0/req/geotiff">
 <owc:content type="image/tiff"
href="ftp://ftp.remotesensing.org/pub/geotiff/samples/gdal_eg/cea
.tif"/>
 </owc:offering>
 </entry>
</feed>

As any other OWS Context document it has two sections: the general metadata
describing the context document and the list of resources. To encode the first section we
can use the w3c standard for metadata (http://www.w3.org/TR/html5/document-
metadata.html) and to encode the second part we will use Microdata.

The result is de following web page:

<?xml version="1.0" encoding="UTF-8"?>
<html>
<head>
 <link rel="profile"
 href="http://www.opengis.net/spec/owc-atom/1.0/req/core"
 title="This file is compliant with version 1.0 of OGC
Context"/>
 <title>GeoTIFF Example</title>
 <meta name="descriptor" content="A OWS Context GeoTIFF
Example">
 <meta name="keywords" content="geotiff,example">
 <meta name="author" content="Joan Masó">
 <meta name="atom:updated" content="2012-11-04T17:26:23Z">
</head>

<h1>GeoTIFF Example</h1>

<div itemscope itemtype="http://schema.org/Product">

 <h2>GeoTIFF Example 1</h2>
 <table border="0"><tr><td>
 <img itemprop="image" width="64" src="http://png-
3.findicons.com/files/icons/1637/file_icons_vs_2/256/tiff.png"
alt="GeoTIFF preview" />
</td><td>
 CREAF

 GeoTIFF Example coming from
ftp://ftp.remotesensing.org/pub/geotiff/samples/gdal_eg

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 57

 Product ID: <span
itemprop="productID">ftp://ftp.remotesensing.org/pub/geotiff/samp
les/gdal_eg/cea.txt

 </td></tr>
 </table>
 <h3>Offerings</h3>
 <span itemprop="offers" itemscope
itemtype="http://schema.org/Offer">
 <span itemprop="availableAtOrFrom" itemscope
itemtype="http://schema.org/Place">
 <div itemprop="geo" itemscope
itemtype="http://schema.org/GeoCoordinates">
 Latitude: 40 deg 44 min 54.36 sec N, Longitude: 73 deg 59
min 8.5 dec W
 <meta itemprop="latitude" content="40.75" />
 <meta itemprop="longitude" content="73.98" />
 </div>

 Updated <time itemprop="availabilityStarts" datetime="2020-
11-05">2020-11-05</time>

 Available from: <span itemprop="seller" itemscope
itemtype="http://schema.org/Organization">
 CREAF

 URL:<a
href="ftp://ftp.remotesensing.org/pub/geotiff/samples/gdal_eg/cea
.tif"
itemprop="url">ftp://ftp.remotesensing.org/pub/geotiff/samples/gd
al_eg/cea.tif

 Fees: 0.00

</div>
</html>

Note that we are also using http://schema.org/Place to encode a citation of a place. In
schema.org a Place can be described in different ways including a physical postal address
but also a “geo” element. A “geo” element can be a GeoCoordinates or a GeoShape. A
GeoCoordinates is an element that describes the position as a single point that includes a
longitude, a latitude and an elevation (and all the properties coming from Thing). On the
contrary, GeoShape (see http://schema.org/GeoShape) provides 4 additional geometries
to describe a Place: box, circle, line and polygon all accompanied by a single elevation.
The description of the geometries is done in text and the restriction of the text is very
simple and it does not specify the number of dimensions (2 are assumed) and coordinates
are space separated. Polygons do not allow for holes and lines does not allow for multi-
linestrings. Even if there are limitations in Place, it provides enough possibilities for the
needs of the OWS Context where in many times, the geometric description of a resource
requires just a bounding box or a simple envelop.

OGC 15-053r1

58 Copyright © 2015 Open Geospatial Consortium.

It is not always possible to make a one to one mapping between the OWS context and
Microdata but many mappings are easily implemented. The current mapping was done
making a priority that the Google Structured Data Testing Tool provides no errors.

Figure 4: OWS Context example encoded in HTML

Figure 5: HTML OWS Context example tested in the
Google Structured Data Testing Tool

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 59

Recommendation 20: Consider the HTML Microdata approach as a new encoding for OWS Context
as a way to improve auto-discovery of OGC services and geospatial resources.
Target: OWS Context

Recommendation 21: Consider the benefits and drawbacks of extending schema.org vocabularies
with a new type for “geospatial resource” that completely matches with OWS Context conceptual
model.
Target: OWS Context

8.2.4 HTML as a natural way for linking. OWS Context encoded in JSON-LD in a
webpage

You could wonder why the previous section has been included in this engineering report
if it does not make use of JSON at all. There is a reason: schema.org vocabularies can be
encoded in Microdata but also in JSON-LD. This way, the same information embedded
in and <meta> tags of the previous example can also be encoded in a JSON-LD
fragment that can be included in a web page.

This allows for proposing even another encoding for OWS Context based on schema.org
vocabularies. We are still using the vocabularies for Products but we are encoding the
same information in JSON-LD.

<script type="application/ld+json">
{
 "@context": "http://schema.org",
 "@type": "Product",
 "description": "GeoTIFF Example coming from
ftp://ftp.remotesensing.org/pub/geotiff/samples/gdal_eg",
 "name": "GeoTIFF Example 1",
 "image": "http://png-
3.findicons.com/files/icons/1637/file_icons_vs_2/256/tiff.png",
 "brand": "CREAF",
 "productID":
"ftp://ftp.remotesensing.org/pub/geotiff/samples/gdal_eg/cea.txt"
,
 "offers": {
 "@type": "Offer",
 "availableAtOrFrom": {
 "@type": "Place",
 "geo": {
 "@type": "GeoCoordinates",
 "latitude": "40.75",
 "longitude": "73.98"
 }
 },
 "availabilityStarts": "2020-11-05",
 "seller": {
 "@type": "Organization",
 "name": "CREAF"
 },

OGC 15-053r1

60 Copyright © 2015 Open Geospatial Consortium.

 "url":
"ftp://ftp.remotesensing.org/pub/geotiff/samples/gdal_eg/cea.tif"
,
 "price": "0.00"
 }
}
</script>

Figure 6: OWS Context example encoded in schema.org JSON-LD
and tested in the Google Structured Data Testing Tool

Recommendation 22: Consider JSON-LD encodings for HTML structured data to create another
encoding for OWS Context.
Target: OWS Context

9 Coverage JSON

GeoJSON covers the need for encoding features in JSON and makes it easier to deal with
geospatial features in the browser. TopoJSON was created to easily encode and deal with
specific case of 2D topological polygons in the browser. We could think if there is the
same need for coverages. If we think just about referenced grids, a grid is just a sequence
of values. In practice this could just be encoded in a JSON array. In fact, there is an
initiative in Github to convert a netCDF file into JSON that just does a conversion of
netCDF to JSON as an object that contains arrays of values:
https://github.com/jllodra/ncdump-json

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 61

But a referenced grid is a bit more than an array. It requires some extra metadata to fully
describe the meaning of the array of values. NetCDF also contains this description and
the mentioned application is able also to extract it using this syntax:

ncdump-json sresa1b_ncar_ccsm3-example.nc -h –j

And the resulting data for a NetCDF example is:

{
 "dimensions":
 {
 "lat": 128,
 "lon": 256,
 "bnds": 2,
 "plev": 17,
 "time": "UNLIMITED ; // (1 currently)"
 },
 "variables":
 {
 "area":
 {
 "type": "float",
 "dimensions":
 [
 "lat",
 "lon"
],
 "attributes":
 {
 "long_name": "Surface area",
 "units": "meter2"
 }
 },
 "lat":
 {
 "type": "float",
 "dimensions":
 [
 "lat"
],
 "attributes":
 {
 "long_name": "latitude",
 "units": "degrees_north",
 "axis": "Y",
 "standard_name": "latitude",
 "bounds": "lat_bnds"
 }
 },
...

OGC 15-053r1

62 Copyright © 2015 Open Geospatial Consortium.

 },
 "global_attributes":
 {
 "CVS_Id": "Id",
 "creation_date": "",
 "prg_ID": "Source file unknown Version unknown Date
unknown",
 "cmd_ln": "bds -x 256 -y 128 -m 23 -o
/data/zender/data/dst_T85.nc",
 "contact": "ccsm@ucar.edu",
 "project_id": "IPCC Fourth Assessment",
 "Conventions": "CF-1.0",
 "references": "Collins, W.D., et al., 2005: The Community
Climate System Model, Version 3 Journal of Climate Main website:
http://www.ccsm.ucar.edu",
 "acknowledgment": " Any use of CCSM data should acknowledge
the contribution of the CCSM project and CCSM sponsor agencies
...",
 "realization": 1,
 "experiment_id": "720 ppm stabilization experiment
(SRESA1B)",
 "model_name_english": "NCAR CCSM"
 }
}

This coverage description is specific for netCDF. There is a need for a standard
description of a coverage in JSON.

9.1 GMLCov in JSON

OGC already provides a mean for encoding the description of a coverage that is raster
encoding neutral and it is called GMLCov (OGC 09-146r2). This standard defines a
coverage by providing metadata and data about the domainSet (definition of the grid
structure), the rangeType (definition of the values meaning) and the rangeSet (the actual
values).

Figure 7: GMLCov main subclasses

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 63

Here we are applying the XML to JSON general rules to convert the GMLCov into a
JSON file (with some exceptions). We are also proposing an example based on a dataset
called etopo20 that presents the elevation and bathymetry:
http://www.monsoondata.org:9090/dods/topo/rose/etopo20.info

Figure 8: ETOPO20 dataset

The structure of the coverage JSON is:

{
 "type": "GridCoverage",
 "id": "http://www.someserver.com/examples/C0001",
 "bbox": [-180, -90, 180, 90],
 "domainSet": {...}
 "rangeSet": {...}
 "rangeType": {...}
}

The domainSet allow us to define the axis and their units, the pixel size, the origin and
the number of rows and columns of the image. Please note the use of GeoJSON in some
part.

 "domainSet":
 {
 "type:": "RectifiedGrid",
 "id": "http://www.someserver.com/examples/rg0001_C0001",
 "dimension": 2,
 "axisLabels": ["Long", "Lat"],
 "origin":
 {
 "geometry":
 {
 "crs":
 "http://www.opengis.net/def/crs/OGC/1.3/CRS84",

OGC 15-053r1

64 Copyright © 2015 Open Geospatial Consortium.

 "type": "Point",
 "coordinates": [-180, -90]
 }
 },
 "offsetVectors": [{
 "geometry":{
 "crs":
 "http://www.opengis.net/def/crs/OGC/1.3/CRS84",
 "type": "Point",
 "coordinates": [0.0, 0.333333333333334]
 },
 "properties":{
 "axisLabel": "Long",
 "low": 0,
 "high": 1080
 }},{
 "geometry":{
 "crs":
"http://www.opengis.net/def/crs/OGC/1.3/CRS84",
 "type": "Point",
 "coordinates": [-0.333333333333334, 0.0]
 },
 "properties":{
 "axisLabel": "Lat",
 "low": 0,
 "high": 540
 }
 }]
 },

The rangeType is useful for defining the semantics of the values in the coverage, its units
and, also, the expected range of values.

 "rangeType":
 {

 "fields": [{

 "name": "elevation",
 "type": "quantity",
 "definition": "https://schema.org/elevation",
 "description": "Height",
 "uom":
 {
 "id": "http://www.opengis.net/def/uom/OGC/1.0/metre",
 "code": "m",
 "title": "meters"
 },
 "allowedValues":
 {

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 65

 "low": -7810,
 "high": 7000,
 "significantFigures": 4
 }
 }]
 }
}

For the rangeSet one immediate possibility could be to include the values directly as an
array. We all know this is not a very efficient encoding so we could include a scale and
translate values to scale and translate the values to a numeric range that is more compact
in the same way that is suggested in topoJSON for the coordinates array.

 "rangeSet":

 {
 "dataBlocks":[
 {
 "name": "elevation",
 "scale": 1,
 "translate": 0,
 "values": [-4115,-4114,-4113,-4113,...,2783,2782,2782]
 }]
 },

We could wonder if this encoding is useful. The answer lies on the new characteristics of
HTML5. The canvas new object allows for editing the individual pixel values of the
canvas. This way it is possible to inject the coverage JSON values array into the canvas
object and represent the data as an image without any client intervention. The following
code fragment shows the data in a coverage JSON called “image” in a gray scale into a
“map” canvas.

function DrawCoverage(map, image)
{
var i_cell=0, i_data=0, j, i, value256, a;

 var c=document.getElementById(map);
 if (c==null)
 {
 alert("No support for canvas detected");
 return;
 }
 c.width = image.domainSet.offsetVectors[0].properties.high-
 image.domainSet.offsetVectors[0].properties.low;
 c.height = image.domainSet.offsetVectors[1].properties.high-
 image.domainSet.offsetVectors[1].properties.low;

 var ctx=c.getContext("2d");
 ctx.clearRect(0, 0, ctx.canvas.width, ctx.canvas.height);

OGC 15-053r1

66 Copyright © 2015 Open Geospatial Consortium.

 var imgData=ctx.createImageData(c.width,c.height);

 a=256/(image.rangeType.fields[0].allowedValues.high –
 image.rangeType.fields[0].allowedValues.low);

 for (j=0;j<imgData.height;j++)
 {
 for (i=0;i<imgData.width;i++)
 {
 value256=Math.floor(a*(
 image.rangeSet.dataBlocks[0].values[i_cell] -
 image.rangeType.fields[0].allowedValues.low));
 imgData.data[i_data+0]=value256;
 imgData.data[i_data+1]=value256;
 imgData.data[i_data+2]=value256;
 imgData.data[i_data+3]=256;
 i_cell++;
 i_data+=4;
 }
 }
 ctx.putImageData(imgData,0,0);
}

As we already said, encoding raster values as text is not very efficient. Binary encodings
are better. We can modify the rangeSet fragment to include a link to a binary file.

 "rangeSet":
 {
 "files":[
 {
 "name": "elevation",
 "scale": 1,
 "translate": 0,
 "fileName": "http://www.server.com/binary/etopo20.img"
 }]
 },

We could wonder if this encoding can be of any use in an Internet browser. Again there is
an answer the new characteristics of HTML5. HTML5 has extended JavaScript capability
with binary arrays. This means that it is now possible to download a binary file using
AJAX, load it into a buffer array and then interpret it. The following function is able to
download a binary file and deliver it:

function loadCoverageFile(path, success, error)
{
 var xhr = new XMLHttpRequest();

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 67

 xhr.onreadystatechange = function()
 {
 if (xhr.readyState === XMLHttpRequest.DONE) {
 if (xhr.status === 200) {
 if (success)
 success(xhr.response);
 } else {
 if (error)
 error(xhr.statusText);
 }
 }
 };
 xhr.open("GET", path, true);
 xhr.responseType = "arraybuffer";

 xhr.send();
}

The following function loads it in the JavaScript representation of the coverage JSON:

function FileToDrawCoverage(ab)
{
 if (image.rangeSet.dataBlocks==null)
 image.rangeSet.dataBlocks=new Array(1);
 if (image.rangeSet.dataBlocks[0]==null)
 image.rangeSet.dataBlocks[0]=new Object();
 image.rangeSet.dataBlocks[0].arrayBuffer=ab;
}

The following function uses its values and sends them to the canvas. In this code we
assume that the file has only int16 values (singed short int) for the values of the cells with
no header and no compression. We use little endian byte order.

function DrawCoverage(map, image, palette, filter)
{
var i_cell=0, i_data=0, j, i, value, value256, a;

 var c=document.getElementById(map);
 if (c==null)
 {
 alert("No support for canvas detected");
 return;
 }
 c.width = image.domainSet.offsetVectors[0].properties.high-
 image.domainSet.offsetVectors[0].properties.low;
 c.height = image.domainSet.offsetVectors[1].properties.high-
 image.domainSet.offsetVectors[1].properties.low;

 var ctx=c.getContext("2d");
 ctx.clearRect(0, 0, ctx.canvas.width, ctx.canvas.height);

OGC 15-053r1

68 Copyright © 2015 Open Geospatial Consortium.

 var imgData=ctx.createImageData(c.width,c.height);
 var dv=new DataView(image.rangeSet.dataBlocks[0].arrayBuffer);

 a=256/(image.rangeType.fields[0].allowedValues.high –
 image.rangeType.fields[0].allowedValues.low);

 for (j=0;j<imgData.height;j++)
 {
 for (i=0;i<imgData.width;i++)
 {
 value=dv.getInt16(i_cell*2, littleEndian);
 value256=Math.floor(a*(value-
 image.rangeType.fields[0].allowedValues.low));
 imgData.data[i_data+0]=value256;
 imgData.data[i_data+1]=value256;
 imgData.data[i_data+2]=value256;
 imgData.data[i_data+3]=256;
 i_cell++;
 i_data+=4;
 }
 }
 ctx.putImageData(imgData,0,0);
}

A small demonstration based on the previous code is available at
http://www.creaf.uab.cat/joanma/coveragejson/).

 Coverage JSON in combination with HTML5 opens the possibility that a WCS serving
coverage JSON can be used by a web browser client to show fragments of coverage data
without the need of an intermediate image file or a WMS interface. The client will be
able to change visualization options of even to make operations between coverages
directly in the web browser because it has the actual data instead of a simple image.

Recommendation 23: Elaborate a converge JSON as a new standard encoding for GMLCov.
Target: WCS.SWG

10 JSON in Web Services

10.1 JSON in OWS Common

For this section we are taking 06-121r9 OGC Web Services Common v.2.0.0 as a
reference.

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 69

10.1.1 Service Metadata document in JSON

Subclause 7.4 in the OWS Common standard definesthe information that a
GetCapabilities response (a service metadata document) has to contain. Fortunately, the
model is defined in UML so it can be reused to elaborate an encoding for JSON. One of
the interesting things in the transposition between the UML model and the XML is that
UML model presents the property-object alternation (lowerCamelCase for properties and
upperCamelCase for class names) but the translation into XML remove class names and
always uses upperCamelCase. We suspect this was done to reduce the size and
complexity of the encoded file instances. We believe that since JSON is less verbose we
can reintroduce properties in lowerCamelCase and annotate class names as type keys as
suggested in subclause Encoding the Object-property alternation in JSON.

Here we will review the service metadata document parts and will suggest encodings for
each part based on the recommendations we have produced.

Recommendation 24: Include in OWS Common recommendations on how to provide service
metadata in JSON derived from the UML models. Include as part of the OWS Common Schemas
@context documents for independent validation of the 4 main sections of the Service Metadata. A
JSON schema document can also be provided.
Target: OWS Common

Figure 9: Service Metadata response UML diagram

The general structure is presented in JSON-LD as a @context and an example on how it
looks like:

OGC 15-053r1

70 Copyright © 2015 Open Geospatial Consortium.

{
 "@context":
 {
 "ows": "http://www.opengis.net/ows/2.0/",
 "mywfs": "http://www.BlueOx.org/mywfs/2.5/",

 "id": "@id",
 "type": "@type",

 "serviceIdentification": "ows:serviceIdentification",
 "serviceProvider": "ows:serviceProvider",
 "operationsMetadata": "ows:operationsMetadata"
 },

 "id": "mywfs:Demo1",
 "type": "ows:ServiceMetadata",
 "serviceIdentification":
 {
 "id": "mywfs:ServiceIdentificationDemo1",
 "type": "ows:ServiceIdentification"
 },
 "serviceProvider":
 {
 "id": "mywfs:serviceProviderDemo1",
 "type": "ows:ServiceProvider"
 },
 "operationsMetadata":
 {
 "id": "mywfs:operationsMetadataDemo1",
 "type": "ows:OperationsMetadata"
 }
}

This can be automatically translated into an RDF representation:

<http://www.BlueOx.org/mywfs/2.5/Demo1>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/ows/2.0/ServiceMetadata> .

<http://www.BlueOx.org/mywfs/2.5/Demo1>

<http://www.opengis.net/ows/2.0/serviceIdentification>
<http://www.BlueOx.org/mywfs/2.5/ServiceIdentificationDemo1> .

<http://www.BlueOx.org/mywfs/2.5/Demo1>
<http://www.opengis.net/ows/2.0/serviceProvider>
<http://www.BlueOx.org/mywfs/2.5/serviceProviderDemo1> .

<http://www.BlueOx.org/mywfs/2.5/Demo1>
<http://www.opengis.net/ows/2.0/operationsMetadata>
<http://www.BlueOx.org/mywfs/2.5/operationsMetadataDemo1> .

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 71

<http://www.BlueOx.org/mywfs/2.5/ServiceIdentificationDemo1>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/ows/2.0/ServiceIdentification> .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderDemo1>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/ows/2.0/ServiceProvider> .

<http://www.BlueOx.org/mywfs/2.5/operationsMetadataDemo1>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/ows/2.0/OperationsMetadata> .

10.1.1.1 ServiceIdentification in JSON

This is the service identification section presented in UML.

Figure 10: OWS Common ServiceIdentification UML diagram

The structure is presented in JSON-LD as a @context and an example:

{
 "@context":
 {
 "ows": "http://www.opengis.net/ows/2.0/",
 "mywfs": "http://www.BlueOx.org/mywfs/2.5/",

 "id": "@id",
 "type": "@type",

 "title": "ows:title",
 "abstract": "ows:abstract",
 "keywords": "_:",
 "keyword": "ows:keyword",

 "serviceType": "ows:serviceIdentification/serviceType",

OGC 15-053r1

72 Copyright © 2015 Open Geospatial Consortium.

 "serviceTypeVersion":
"ows:serviceIdentification/serviceTypeVersion",
 "fees": "ows:serviceIdentification/fees",
 "accessConstraints":
"ows:serviceIdentification/accessConstraints"
 },
 "id": "mywfs:ServiceIdentificationDemo1",
 "type": "ows:ServiceIdentification",

 "title": "OGC Member WFS",
 "abstract": "Web Feature Service maintained by NSDI data
provider, serving FGDC framework layer XXX; contact
Paul.Bunyon@BlueOx.org",
 "keywords":
 {
 "id": "mywfs:serviceIdentificationKeywordsDemo1",
 "type": "ows:Keywords",
 "keyword": ["FGDC", "NSDI", "Framework Data Layer"],
 },
 "serviceType": "WFS",
 "serviceTypeVersion": ["2.5.0", "2.0.0", "1.1.0", "1.0.0"],
 "fees": "NONE",
 "accessConstraints": "NONE"
}

That can be automatically transformed to RDF like this:

<http://www.BlueOx.org/mywfs/2.5/ServiceIdentificationDemo1>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/ows/2.0/ServiceIdentification> .

<http://www.BlueOx.org/mywfs/2.5/ServiceIdentificationDemo1>

<http://www.opengis.net/ows/2.0/title> "OGC Member WFS" .
<http://www.BlueOx.org/mywfs/2.5/ServiceIdentificationDemo1>

<http://www.opengis.net/ows/2.0/abstract> "Web Feature Service
maintained by NSDI data provider, serving FGDC framework layer
XXX; contact Paul.Bunyon@BlueOx.org" .

<http://www.BlueOx.org/mywfs/2.5/serviceIdentificationKeywordsDemo1>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/ows/2.0/Keywords> .

<http://www.BlueOx.org/mywfs/2.5/serviceIdentificationKeywordsDemo1>
<http://www.opengis.net/ows/2.0/keyword> "FGDC" .

<http://www.BlueOx.org/mywfs/2.5/serviceIdentificationKeywordsDemo1>
<http://www.opengis.net/ows/2.0/keyword> "Framework Data Layer" .

<http://www.BlueOx.org/mywfs/2.5/serviceIdentificationKeywordsDemo1>
<http://www.opengis.net/ows/2.0/keyword> "NSDI" .

<http://www.BlueOx.org/mywfs/2.5/ServiceIdentificationDemo1>

<http://www.opengis.net/ows/2.0/serviceIdentification/serviceType>
"WFS" .

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 73

<http://www.BlueOx.org/mywfs/2.5/ServiceIdentificationDemo1>
<http://www.opengis.net/ows/2.0/serviceIdentification/serviceTypeV
ersion> "1.0.0" .

<http://www.BlueOx.org/mywfs/2.5/ServiceIdentificationDemo1>
<http://www.opengis.net/ows/2.0/serviceIdentification/serviceTypeV
ersion> "1.1.0" .

<http://www.BlueOx.org/mywfs/2.5/ServiceIdentificationDemo1>
<http://www.opengis.net/ows/2.0/serviceIdentification/serviceTypeV
ersion> "2.0.0" .

<http://www.BlueOx.org/mywfs/2.5/ServiceIdentificationDemo1>
<http://www.opengis.net/ows/2.0/serviceIdentification/serviceTypeV
ersion> "2.5.0" .

<http://www.BlueOx.org/mywfs/2.5/ServiceIdentificationDemo1>
<http://www.opengis.net/ows/2.0/serviceIdentification/accessConstr
aints> "NONE" .

<http://www.BlueOx.org/mywfs/2.5/ServiceIdentificationDemo1>
<http://www.opengis.net/ows/2.0/serviceIdentification/fees> "NONE"
.

10.1.1.2 ServiceProvider in JSON

This is the service provider section presented in UML.

OGC 15-053r1

74 Copyright © 2015 Open Geospatial Consortium.

Figure 11: OWS Common ServiceProvider UML diagram

The structure is presented in JSON-LD as a @context and an example:

{
 "@context":
 {
 "ows": "http://www.opengis.net/ows/2.0/",
 "mywfs": "http://www.BlueOx.org/mywfs/2.5/",

 "id": "@id",
 "type": "@type",

 "providerName": "ows:serviceProvider/providerName",
 "providerSite":
 {
 "@id": "ows:serviceProvider/providerSide",
 "@type": "@id"
 },
 "serviceContact": "ows:serviceProvider/serviceContact:",
 "individualName": "ows:serviceProvider/individualName",

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 75

 "positionName": "ows:serviceProvider/positionName",
 "contactInfo": "ows:serviceProvider/contactInfo:",
 "phone": "ows:serviceProvider/phone:",
 "voice": "ows:serviceProvider/phone-Voice",
 "facsimile": "ows:serviceProvider/phone-Facsimile",
 "address": "ows:serviceProvider/addresss:",
 "deliveryPoint": "ows:serviceProvider/deliveryPoint",
 "city": "ows:serviceProvider/City",
 "administrativeArea":
"ows:serviceProvider/administrativeArea",
 "postalCode": "ows:serviceProvider/postalCode",
 "country": "ows:serviceProvider/country",
 "electronicMailAddress":
"ows:serviceProvider/electronicMailAddress",
 "onlineResource":
 {
 "@id": "ows:serviceProvider/onlineResource",
 "@type": "@id"
 },
 "hoursOfService": "ows:serviceProvider/hoursOfService",
 "contactInstructions":
"ows:serviceProvider/contactInstructions",
 "role": "ows:serviceProvider/role"
 },
 "id": "mywfs:serviceProviderDemo1",
 "type": "ows:ServiceProvider",
 "providerName": "BlueOx Inc.",
 "providerSite": "http://www.cubewerx.com",
 "serviceContact":
 {
 "id": "mywfs:serviceProviderServiceContactDemo1",
 "type": "ows:ServiceContact",
 "individualName": "Paul Bunyon",
 "positionName": "Mythology Manager",
 "contactInfo":
 {
 "id": "mywfs:serviceProviderContactInfoDemo1",
 "type": "ows:Contact",
 "phone":
 {
 "id": "mywfs:serviceProviderPhoneDemo1",
 "type": "ows:Telephone",
 "voice": "1.800.BIG.WOOD",
 "facsimile": "1.800.FAX.WOOD"
 },
 "address":
 {
 "id": "mywfs:serviceProviderAddressDemo1",
 "type": "ows:Address",
 "deliveryPoint": "North Country",
 "city": "Small Town",

OGC 15-053r1

76 Copyright © 2015 Open Geospatial Consortium.

 "administrativeArea": "Rural County",
 "postalCode": "12345",
 "country": "USA",
 "electronicMailAddress": "Paul.Bunyon@BlueOx.org"
 },
 "onlineResource": "http://www.BlueOx.org/contactUs",
 "hoursOfService": "24x7",
 "contactInstructions": "eMail Paul with normal requests;
Phone Paul for emergency requests; if you get voice mail and your
request can't wait, contact another mythological figure listed on
the contactUs page of our web site."
 },
 "role": "PointOfContact"
 }
}

That can be automatically transformed to RDF like this:

<http://www.BlueOx.org/mywfs/2.5/serviceProviderDemo1>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/ows/2.0/ServiceProvider> .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderDemo1>

<http://www.opengis.net/ows/2.0/serviceProvider/providerName>
"BlueOx Inc." .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderDemo1>
<http://www.opengis.net/ows/2.0/serviceProvider/providerSide>
<http://www.cubewerx.com> .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderServiceContactDemo1>

<http://www.opengis.net/ows/2.0/serviceProvider/individualName>
"Paul Bunyon" .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderServiceContactDemo1>
<http://www.opengis.net/ows/2.0/serviceProvider/positionName>
"Mythology Manager" .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderServiceContactDemo1>
<http://www.opengis.net/ows/2.0/serviceProvider/role>
"PointOfContact" .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderDemo1>
<http://www.opengis.net/ows/2.0/serviceProvider/serviceContact:>
<http://www.BlueOx.org/mywfs/2.5/serviceProviderServiceContactDemo
1> .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderContactInfoDemo1>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/ows/2.0/Contact> .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderServiceContactDemo1>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/ows/2.0/ServiceContact> .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderContactInfoDemo1>
<http://www.opengis.net/ows/2.0/serviceProvider/addresss:>
<http://www.BlueOx.org/mywfs/2.5/serviceProviderAddressDemo1> .

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 77

<http://www.BlueOx.org/mywfs/2.5/serviceProviderContactInfoDemo1>
<http://www.opengis.net/ows/2.0/serviceProvider/contactInstruction
s> "eMail Paul with normal requests; Phone Paul for emergency
requests; if you get voice mail and your request can't wait,
contact another mythological figure listed on the contactUs page
of our web site." .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderContactInfoDemo1>
<http://www.opengis.net/ows/2.0/serviceProvider/hoursOfService>
"24x7" .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderContactInfoDemo1>
<http://www.opengis.net/ows/2.0/serviceProvider/onlineResource>
<http://www.BlueOx.org/contactUs> .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderContactInfoDemo1>
<http://www.opengis.net/ows/2.0/serviceProvider/phone:>
<http://www.BlueOx.org/mywfs/2.5/serviceProviderPhoneDemo1> .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderServiceContactDemo1>
<http://www.opengis.net/ows/2.0/serviceProvider/contactInfo:>
<http://www.BlueOx.org/mywfs/2.5/serviceProviderContactInfoDemo1>
.

<http://www.BlueOx.org/mywfs/2.5/serviceProviderAddressDemo1>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/ows/2.0/Address> .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderAddressDemo1>
<http://www.opengis.net/ows/2.0/serviceProvider/City> "Small Town"
.

<http://www.BlueOx.org/mywfs/2.5/serviceProviderAddressDemo1>
<http://www.opengis.net/ows/2.0/serviceProvider/administrativeArea
> "Rural County" .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderAddressDemo1>
<http://www.opengis.net/ows/2.0/serviceProvider/country> "USA" .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderAddressDemo1>
<http://www.opengis.net/ows/2.0/serviceProvider/deliveryPoint>
"North Country" .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderAddressDemo1>
<http://www.opengis.net/ows/2.0/serviceProvider/electronicMailAddr
ess> "Paul.Bunyon@BlueOx.org" .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderAddressDemo1>
<http://www.opengis.net/ows/2.0/serviceProvider/postalCode>
"12345" .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderPhoneDemo1>
<http://www.opengis.net/ows/2.0/serviceProvider/phone-Facsimile>
"1.800.FAX.WOOD" .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderPhoneDemo1>
<http://www.opengis.net/ows/2.0/serviceProvider/phone-Voice>
"1.800.BIG.WOOD" .

<http://www.BlueOx.org/mywfs/2.5/serviceProviderPhoneDemo1>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/ows/2.0/Telephone> .

10.1.1.3 OperationsMetadata in JSON

This is the operations metadata section presented in UML.

OGC 15-053r1

78 Copyright © 2015 Open Geospatial Consortium.

Figure 12: OWS Common OperationsMetadata UML diagram

The structure is presented in JSON-LD as a @context and an example:

{
 "@context":
 {
 "ows": "http://www.opengis.net/ows/2.0/",
 "mywfs": "http://www.BlueOx.org/mywfs/2.5/",

 "id": "@id",
 "name": "@id",
 "type": "@type",

 "operation": "ows:OperationsMetadata/Operation",
 "DCP": "_:",
 "HTTP": "_:",
 "Get": "_:",
 "href":

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 79

 {
 "@id": "ows:href",
 "@type": "@id"
 },
 "noValues": "ows:noValues",
 "defaultValue": "ows:defaultValue",
 "constraints": "ows:constraint"
 },
 "id": "mywfs:operationsMetadataDemo1",
 "type": "ows:OperationsMetadata",
 "operation": [
 {
 "name": "mywfs:operationDemo1/GetCapabilities",
 "type": "ows:Operation",
 "DCP": [
 {
 "HTTP":
 {
 "Get":
 {
 "name":
"mywfs:operationDemo1/GetCapabilities/method",
 "type": "ows:RequestMethod",
 "href": "http://www.BlueOx.org/mywfs/2.5?"
 }
 }
 }]
 },
 {
 "name": "mywfs:OperationDemo1/NoOp",
 "type": "ows:Operation",
 "DCP": [
 {
 "HTTP":
 {
 "Get":
 {
 "name": "mywfs:OperationDemo1/NoOp/method",
 "type": "ows:RequestMethod",
 "href": "http://www.BlueOx.org/mywfs/2.5?"
 }
 }
 }]
 }],
 "constraints": [
 {
 "name":
"mywfs:OperationsMetadata/Constraint/ImplementsBasicWFS",
 "type": "ows:Domain",
 "noValues": "",
 "defaultValue": "TRUE"

OGC 15-053r1

80 Copyright © 2015 Open Geospatial Consortium.

 }, {
 "name":
"mywfs:OperationsMetadata/Constraint/ImplementsTransactionalWFS",
 "type": "ows:Domain",
 "noValues": "",
 "defaultValue": "TRUE"
 }]
}
That can be automatically transformed to RDF like this:

<http://www.BlueOx.org/mywfs/2.5/operationsMetadataDemo1>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/ows/2.0/OperationsMetadata> .

<http://www.BlueOx.org/mywfs/2.5/operationsMetadataDemo1>

<http://www.opengis.net/ows/2.0/OperationsMetadata/Operation>
<http://www.BlueOx.org/mywfs/2.5/operationDemo1/GetCapabilities> .

<http://www.BlueOx.org/mywfs/2.5/operationsMetadataDemo1>
<http://www.opengis.net/ows/2.0/OperationsMetadata/Operation>
<http://www.BlueOx.org/mywfs/2.5/OperationDemo1/NoOp> .

<http://www.BlueOx.org/mywfs/2.5/OperationDemo1/NoOp>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/ows/2.0/Operation> .

<http://www.BlueOx.org/mywfs/2.5/OperationDemo1/NoOp/method>
<http://www.opengis.net/ows/2.0/href>
<http://www.BlueOx.org/mywfs/2.5?> .

<http://www.BlueOx.org/mywfs/2.5/OperationDemo1/NoOp/method>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/ows/2.0/RequestMethod> .

<http://www.BlueOx.org/mywfs/2.5/operationDemo1/GetCapabilities>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/ows/2.0/Operation> .

<http://www.BlueOx.org/mywfs/2.5/operationDemo1/GetCapabilities/method>
<http://www.opengis.net/ows/2.0/href>
<http://www.BlueOx.org/mywfs/2.5?> .

<http://www.BlueOx.org/mywfs/2.5/operationDemo1/GetCapabilities/method>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/ows/2.0/RequestMethod> .

<http://www.BlueOx.org/mywfs/2.5/operationsMetadataDemo1>

<http://www.opengis.net/ows/2.0/constraint>
<http://www.BlueOx.org/mywfs/2.5/OperationsMetadata/Constraint/Imp
lementsBasicWFS> .

<http://www.BlueOx.org/mywfs/2.5/operationsMetadataDemo1>
<http://www.opengis.net/ows/2.0/constraint>
<http://www.BlueOx.org/mywfs/2.5/OperationsMetadata/Constraint/Imp
lementsTransactionalWFS> .

<http://www.BlueOx.org/mywfs/2.5/OperationsMetadata/Constraint/Implemen

tsBasicWFS> <http://www.opengis.net/ows/2.0/defaultValue> "TRUE" .
<http://www.BlueOx.org/mywfs/2.5/OperationsMetadata/Constraint/Implemen

tsBasicWFS> <http://www.opengis.net/ows/2.0/noValues> "" .

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 81

<http://www.BlueOx.org/mywfs/2.5/OperationsMetadata/Constraint/Implemen
tsBasicWFS> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/ows/2.0/Domain> .

<http://www.BlueOx.org/mywfs/2.5/OperationsMetadata/Constraint/Implemen

tsTransactionalWFS> <http://www.opengis.net/ows/2.0/defaultValue>
"TRUE" .

<http://www.BlueOx.org/mywfs/2.5/OperationsMetadata/Constraint/Implemen
tsTransactionalWFS> <http://www.opengis.net/ows/2.0/noValues> "" .

<http://www.BlueOx.org/mywfs/2.5/OperationsMetadata/Constraint/Implemen
tsTransactionalWFS> <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> <http://www.opengis.net/ows/2.0/Domain> .

10.1.1.4 Contents section in Service Metadata in JSON

The Contents section of the service metadata document is more ambiguous in OWS
Common because it depends deeply on the nature of the service. OWS Common only
specifies that a list of resource descriptions will be includes (if calls each one
“datasetSummary”). A dataset summary should have an id, a title, an abstract, some
keywords, a Bounding Box in WGS84 and Bounding Boxes in other CRS’s. All this
elements are also present in OWS Context. This ER is proposing to use a OWS Context
encodings for this section. Since OWS Context in GeoJSON has already been drafted, we
thing that adopting it will help to reduce redundancies and increase interoperability.

Recommendation 25: Consider OWS Context as the Contents section of service metadata document.
In particular adopt the OWS Context JSON encoding in the JSON encoding of OWS Common.
Target: OWS Common

10.1.2 JSON GetCapabilities request

Subclause 7.2.4 on OWS Common is considering a XML encoding for GetCapabilities.
In our opinion, we should avoid creating a JSON request for GetCapabilities and limit
JSON usage in combination with REST requests (or KVP request).

Recommendation 26: OWS Common should recommend a REST requests for GetCapabilities and
should recommend JSON as a default request.
Target: OWS Common

10.1.3 JSON requests

For complex requests, we may consider the need for a JSON encoding. In this case, OWS
Common defines a minimum set of parameters in subclause 9.2.1. OWS Common should
provide a @context fragment defining them.

Recommendation 27: Define the OWS Common minimum set of parameters in a request as a
@context fragment. A JSON schema can also be provided.
Target: OWS Common

OGC 15-053r1

82 Copyright © 2015 Open Geospatial Consortium.

10.1.4 JSON exception

Subclause 7.4.1 on OWS Common defines an exception report for GetCapabilities and
Clause 8 the general rules of the exceptions. In our opinion, we should avoid creating a
JSON exception for GetCapabilities and limit ourselves to use the HTTP error levels and
appropriate descriptions for them in a more RESTful style.

10.1.5 JSON responses

JSON responses can be provided also when currently an XML response is possible. In
this case, the standard will provide a @context fragment and eventually a JSON Schema.

10.1.6 Bounding Boxes

Subclause 10.2 on OWS Common defines how to use Bounding Boxes in OWS
Common. SubClause 10.2.2 and in the case of JSON encoding whenever possible we
should use GeoJSON bbox.

Subclause 10.2.1 defines a generic bounding box.

"CRSbbox":
{
 "crs": "http://www.opengis.net/def/crs/OGC/1.3/CRS84",
 "LowerCorner": "POINT(-180 -90)",
 "UpperCorner": "POINT(180 90)"
}

10.2 JSON in Web Map Services

This subclause discusses how to include JSON in the WMS service.

10.2.1 JSON in GetCapabilities response

The subclause 10.1.1 already discuses this topic in a more general way.

10.2.2 JSON for WMS GetMap response

In the past, several discussions suggested the need to be able on how to get metadata
about individual maps returned by a WMS service. A JSON response can be a
opportunity to do so:

To request a JSON response in GetMap you only have to request the right format:

"?service=WMS&request=GetMap&format=application/json"

Then, the response can contain some information about the map and the map image itself
embedded or linked.

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 83

The following example return the image code embedded in the JSON as base64 encoding

{
 "id": 15,
 "box": [-180,-90,180,90],
 "title": "Example data fragment",
 "author": "ACME Corp.",
 "img":{
 "format": "image/gif",
 "data": "iVBORw...kJggg=="
 }
}

The following example return the image code embedded in the JSON as base64 encoding

{
 "id": 16,
 "title": "Example data fragment",
 "author": "ACME Corp.",
 "img": {
 "href"="?service=WMS&request=GetMap&format=image/gif"
 }
}

This encoding ideas reproduce some suggestion coming from: http://json-
schema.org/latest/json-schema-hypermedia.html.

Another possibility is return GeoJSON vectors and relies on the ability of the map brower
to present the information to the client. For example Leaflet map client is able to render
GeoJSON on the screen.

10.2.3 JSON for WMS GetFeatureInfo response

GetFeatureInfo response format was left open to the implementations. This was done to
make it simple. Since in WMS the data model associated with the features that are
represented in the map is not exposed (at least in the general case with no SLD support),
we cannot rely on the feature type concept. In this case the capability of the JavaScript
language and JSON of being able to allow for any set of properties can play in our
advantage.

It is important that we support both FeatureInfo reports coming from any kind of features
including grid coverages. In a general implementation, information can be provided not
just about the features were the I,J point is contained but also from its surroundings. In
fact some WMS implementations have a “distance” parameter to specify the radius of the
circle where the server look inside for features to return information about them (see
support for the vendor specific parameter “buffer” in geoserver 2.7
http://docs.geoserver.org/stable/en/user/services/wms/vendor.html).

OGC 15-053r1

84 Copyright © 2015 Open Geospatial Consortium.

We propose a special use of GeoJSON to respond to GetFeatureInfo. The GeoJSON will
contain a collection of features where each one will represent a feature in the original
data. In the “geometry” part, we return a GeoJSON point when the feature was covering
or touching the I,J position or a GeoJSON string formed by two 2 vertices that goes from
the CRS values of the point where the place I,J where pointing and a point that is in the
interior or the border of the returned feature. In the “properties” part we could return the
properties of this feature.

{
 "type": "FeatureCollection",
 "features":
 [
 {
 "type": "Feature",
 "geometry":
 {
 "type": "Point",
 "coordinates":
 [-47.314159, 45.3141519],
 },
 "id": 20245062,
 "properties":
 {
 "COMID": 20245062,
 "FDATE": "1999-11-24T06:00:00Z",
 "LENGTHKM": 5.415,
 "REACHCODE": "16060014044574"
 }
 }
]
}

Please note that we recommend that features are well identified. We are not
recommending returning the full geometry description because we assume that this is the
work of a WFS GetFeature operation using identifiers recovered by the GetFeatureInfo
request.

Recommendation 28: In WMS 1.4 include a encoding for GetFeatureInfo responses based on
GeoJSON but replacing the geometry part by maker of the position of the query and the position of
the returned feature. If returned objects correspond to simple features, return an “id” that allows
recovering the geometry using an additional WFS query.
Target: WMS.SWG

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 85

10.3 JSON in Web Map Tile Service

10.3.1 JSON in Map Tile Service

It is worth mentioning that a very simple open specification (linked to what it seems a
single vendor) called tileJSON has already been produced to describe a set of tiles in
JSON and can be found here: https://github.com/mapbox/tilejson-spec/tree/master/2.1.0.

In essence, it provides a very simple encoding for describing the availability of a WMTS
Simple profile layer in Web Mercator.

The minimum tileJSON file is:

{
 "tiles": ["http://tile.openstreetmap.org/{z}/{x}/{y}.png"],
 "minzoom": 0,
 "maxzoom": 18
}

One of the good thing of this encoding is that this JSON fragment can be ingested
directly in web browser code. This is a code that generates a map browser for the San
Francisco area:

<!DOCTYPE html>
<html>
<head>
 <meta charset=utf-8 />
 <title></title>
 <script
src='https://api.tiles.mapbox.com/mapbox.js/v2.1.9/mapbox.js'></s
cript>
 <link
href='https://api.tiles.mapbox.com/mapbox.js/v2.1.9/mapbox.css'
rel='stylesheet' />
 <style>
 body { margin:0; padding:0; }
 .map { position:absolute; top:0; bottom:0; width:100%; }
 </style>
</head>
<body>
<div id='map' class='map'> </div>

<script>
var tilejson = {
 "tiles": ["http://tile.openstreetmap.org/{z}/{x}/{y}.png"],
 "minzoom": 0,
 "maxzoom": 18
}
L.mapbox.map('map', tilejson, {
 scrollWheelZoom: false

OGC 15-053r1

86 Copyright © 2015 Open Geospatial Consortium.

}).setView([37.82053680, -122.36481177], 11);
</script>

</body>
</html>

Recommendation 29: Consider to include tileJSON in a non normative example for the WMTS
Simple profile.
Target: WMS.SWG

10.3.2 JSON encoding for a TileMatrixSet

One of the elements that makes singular the WMTS is capability to completely describe a
tile matrix set. Being able to provide the description of a tile matrix set as in JSON could
simplify the way WMTS clients deal with tile space descriptions. In particular it could be
useful to have a json description of the fixed tile matrix sets provided by the new WMTS
simple profile.

{
 "tileMatrixSet": [{
 "id": "wmtss:WorldWebMercatorQuad",
 "type": "wmts:TileMatrixSet",
 "title": "Google Maps Compatible for the World",
 "CRSbbox":
 {
 "crs": "http://www.opengis.net/def/crs/EPSG/0/3857",
 "lowerCorner": "POINT(-20037508.3427892, -
20037508.3427892)",
 "upperCorner": "POINT(20037508.3427892,
20037508.3427892)"
 },
 "crs": "http://www.opengis.net/def/crs/EPSG/0/3857",
 "wellKnownScaleSet":
"http://www.opengis.net/def/wkss/OGC/1.0/GoogleMapsCompatible",

 "tileMatrix": [{
 "id": "wmtss:WorldWebMercatorQuad0",
 "type": "wmts:TileMatrix",
 "scaleDenominator": 559082264.0287178,
 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 1,
 "matrixHeight": 1
 },{
 "id": "wmtss:WorldWebMercatorQuad1",
 "type": "wmts:TileMatrix",
 "scaleDenominator": 279541132.0143589,

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 87

 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 2,
 "matrixHeight": 2
 },{
 "id": "wmtss:WorldWebMercatorQuad18",
 "type": "wmts:TileMatrix",
 "scaleDenominator": 2132.729583849784,
 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 262272,
 "matrixHeight": 262272
 }]
 }]
}

Recommendation 30: Include in the WMTS Simple profile the JSON description of the WMTS
simple two tile matrix sets.
Target: WMS.SWG

10.4 Serving GeoJSON with a Web Feature Service

Some people believe that WFS can only serve GML features but even if this is a common
case nothing in the standard prevents from using other geospatial formats and encodings.
In particular, it is possible to server GeoJSON as a result of a WFS GetFeature request. In
fact, GeoServer has been doing this for a quite a while. A more profound question is if it
possible to have a WFS without GML support. WFS is deeply related with the idea of the
GML application schema and the definition of feature types. We already have mentioned
that GeoJSON does not provide this concept directly. Reintroducing this concept in
GeoJSON as an extension is easy by means of adding to each GeoJSON feature a
property called “type”. This will allow a WFS server to group the features in feature
types and to provide a list of available feature types in the GetCapabilities.

Recommendation 31: For a WFS serving GeoJSON, force the features to have a property that
contains the feature type.
Target: WFS.SWG

A fundamental question could be the format that a DescribeFeatureType operation has to
return when asking the characteristics of a feature type. Having to return a GML
encoding seems unnecessary. One possibility explored is to return a encoding neutral
representation for describing feature types as described in ISO19110. Following the new
ISO19115-3 encoding for metadata a river object can be encoded like this:

<gfc:FC_FeatureCatalogue>
 <gfc:featureType>
 <gfc:FC_FeatureType>
 <gfc:typeName>riverType</gfc:typeName>

OGC 15-053r1

88 Copyright © 2015 Open Geospatial Consortium.

 <gfc:isAbstract>
 <gco:Boolean>false</gco:Boolean>
 </gfc:isAbstract>
 <gfc:carrierOfCharacteristics>
 <gfc:FC_FeatureAttribute>
 <gfc:memberName> length </gfc:memberName>
 <gfc:definition><gco:CharacterString>Length
</gco:CharacterString></gfc:definition>
 <gfc:cardinality>1</gfc:cardinality>
 <gfc:code><gco:CharacterString>length
</gco:CharacterString></gfc:code>
 <gfc:valueMeasurementUnit>m
 </gfc:valueMeasurementUnit>
 </gfc:FC_FeatureAttribute>
 </gfc:carrierOfCharacteristics>
 </gfc:FC_FeatureType>
 </gfc:featureType>
</gfc:FC_FeatureCatalogue>

It could be preferable to be able use a JSON encoding also for this aspect. There is
always the possibility to generate a JSON encoding for ISO19110 but it could be better to
adopt a solution that already exists. We have already discussed in this ER some of the
current alternatives for GeoJSON validation in subclause 7 that could be used here. We
have explored the possibility to create specific JSON schema for each feature type and
also to use JSON-LD “@context” section to achieve a similar functionality. We have
seen that JSON-LD is an approved standard and also allows a nice connection to RDF
representations of features. The connection to RDF and the semantic web is particularly
attractive giving the use of GeoJSON and extra characteristic that GML cannot provide
as easily.

Recommendation 32: Consider that WFS DescribeFeatureType returns a @context section
describing the Feature type in GeoJSON.
Target: WFS.SWG

10.4.1 Pointers to GeoJSON fragments

One of the issues that we have in using GeoJSON for describing features is that WFS
uses FES, and FES needs XPath:

<fes:PropertyIsLessThanOrEqualTo>
 <fes:ValueReference>myns:Person/myns:mailAddress/
 myns:Address/myns:streetNumber</fes:ValueReference>
 <fes:Literal>10999</fes:Literal>
</fes:PropertyIsLessThanOrEqualTo>

Currently, JSON provides 2 alternatives to do this: JSON Pointer
(https://tools.ietf.org/html/rfc6901) and JSON Path (http://goessner.net/articles/JsonPath).

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 89

JSON pointer is used to specify a specific node in a JSON encoded document while
JSON Path mimics most of the XPath query functionalities.

In JSON pointer the last XML fragment will look like:

"@context": "http://www.opengis.net/fes/2.0",
"PropertyIsLessThanOrEqualTo": {
 "ValueReference": "/Person/mailAddress/Address/streetNumber",
 "Literal": 10999
}

In JSON Path the last XML fragment will look like:

"@context": "http://www.opengis.net/fes/2.0",
"PropertyIsLessThanOrEqualTo": {
 "ValueReference": "$.Person.mailAddress.Address.streetNumber",
 "Literal": 10999
}

Recommendation 33: Consider using either JSON Pointer or JSON Path in places where a XPath is
required.
Target: WFS.SWG

10.5 Metadata in JSON

In this subclause we discuss aspects about the official metadata provided mainly in ISO
19115 data model by the producer of the geospatial resource and geospatial user feedback
produced by the consumer of the resource.

10.5.1 ISO Metadata in JSON

This aspect has not been developed in this testbed but some effort has been found in the
web. One of the most significants is:
https://github.com/adiwg/mdBook/blob/master/mdjson_schemas/README.md.

10.5.2 Geospatial User Feedback in JSON

During the review of the schema.org materials we realize that there is already an standard
for user feedback in the Internet. Google is providing support to it to shop user reviews
directly on the search results page:

OGC 15-053r1

90 Copyright © 2015 Open Geospatial Consortium.

Figure 13: Google search result showing a rating average.

The rating comes from the actual page internal structure
(http://www.imdb.com/title/tt0382625/) encoded in Microdata that we show here in a
simplified form:

<div itemtype="http://schema.org/AggregateRating" itemscope
itemprop="aggregateRating">
Ratings:
6.5/<span
itemprop="bestRating">10 from
278,569 users
Reviews:
1,943 user|
291 critic|
</div>

Figure 14: How IMDb presents user feedback to users

Indeed, Microdata is used everywhere in this page to define the movie itself, the director,
etc as can be seen in this html fragment.

<div id="pagecontent" itemscope
itemtype="http://schema.org/Movie">
The Da Vinci Code
<time itemprop="duration" datetime="PT149M" >149 min</time>
<meta itemprop="datePublished" content="2006-05-19" />
<div class="txt-block" itemprop="director" itemscope
itemtype="http://schema.org/Person">...
</div></div>

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 91

The exact encoding of AggregateRating in Microdata and in JSON-LD can be seen at:
http://schema.org/AggregateRating.

Table 4: Elements of the AgregateRating

Nameb Definition Data type and
value

Multiplicity
and use

itemReviewed The item that is being
reviewed/rated.

Thing Unspecified

ratingCount The count of total number
of ratings.

Integer Unspecified

reviewCount The count of total number
of reviews.

Integer Unspecified

bestRatinga The highest value allowed
in this rating system. If
bestRating is omitted, 5 is
assumed.

Text or
Number

Unspecified

ratingValuea The rating for the content. Text Unspecified

worstRatinga The lowest value allowed in
this rating system. If
worstRating is omitted, 1 is
assumed.

Text or
Number

Unspecified

a Properties inherited from Rating
b Other properties are inherited from Thing, See http://schema.org/Thing

In many cases, feedback is accompanied AggregateRating and Ratings are acompanied
by information of individual Reviews as specified in http://schema.org/Review.

Table 5: Elements of the Review

Name Definition Data type
and value

Multiplicity
and use

itemReviewed The item that is being reviewed/rated. Thing Unspecified

reviewBody The actual body of the review. Text Unspecified

reviewRating The rating given in this review. Note
that reviews can themselves be rated.
The reviewRating applies to rating
given by the review. The

Rating Unspecified

OGC 15-053r1

92 Copyright © 2015 Open Geospatial Consortium.

Name Definition Data type
and value

Multiplicity
and use

aggregateRating property applies to
the review itself, as a creative work.

about The subject matter of the content. Thing Unspecified

accessibilityAPI

Indicates that the resource is
compatible with the referenced
accessibility API (WebSchemas wiki
lists possible values).

Text Unspecified

accessibilityCon
trol

Identifies input methods that are
sufficient to fully control the described
resource (WebSchemas wiki lists
possible values).

Text Unspecified

accessibilityFeat
ure

Content features of the resource, such
as accessible media, alternatives and
supported enhancements for
accessibility (WebSchemas wiki lists
possible values).

Text Unspecified

accessibilityHaz
ard

A characteristic of the described
resource that is physiologically
dangerous to some users. Related to
WCAG 2.0 guideline 2.3
(WebSchemas wiki lists possible
values).

Text Unspecified

accountablePers
on

Specifies the Person that is legally
accountable for the CreativeWork.

Person Unspecified

aggregateRating

The overall rating, based on a
collection of reviews or ratings, of the
item.

AggregateR
ating

Unspecified

alternativeHeadl
ine

A secondary title of the CreativeWork. Text Unspecified

associatedMedia

A media object that encodes this
CreativeWork. This property is a
synonym for encoding.

MediaObjec
t

Unspecified

audience An intended audience, i.e. a group for
whom something was created.

Audience Unspecified

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 93

Name Definition Data type
and value

Multiplicity
and use

Supersedes serviceAudience.

audio An embedded audio object. AudioObjec
t

Unspecified

author The author of this content. Please note
that author is special in that HTML 5
provides a special mechanism for
indicating authorship via the rel tag.
That is equivalent to this and may be
used interchangeably.

Person or
Organizatio
n

Unspecified

award An award won by or for this item.
Supersedes awards.

Text Unspecified

character Fictional person connected with a
creative work.

Person Unspecified

citation A citation or reference to another
creative work, such as another
publication, web page, scholarly
article, etc.

CreativeWo
rk or Text

Unspecified

comment Comments, typically from users. Comment Unspecified

commentCount The number of comments this
CreativeWork (e.g. Article, Question
or Answer) has received. This is most
applicable to works published in Web
sites with commenting system;
additional comments may exist
elsewhere.

Integer Unspecified

contentLocation

The location depicted or described in
the content. For example, the location
in a photograph or painting.

Place Unspecified

contentRating Official rating of a piece of content—
for example,'MPAA PG-13'.

Text Unspecified

contributor A secondary contributor to the
CreativeWork.

Person or
Organizatio
n

Unspecified

OGC 15-053r1

94 Copyright © 2015 Open Geospatial Consortium.

Name Definition Data type
and value

Multiplicity
and use

copyrightHolder

The party holding the legal copyright
to the CreativeWork.

Person or
Organizatio
n

Unspecified

copyrightYear The year during which the claimed
copyright for the CreativeWork was
first asserted.

Number Unspecified

creator The creator/author of this
CreativeWork. This is the same as the
Author property for CreativeWork.

Person or
Organizatio
n

Unspecified

dateCreated The date on which the CreativeWork
was created.

Date Unspecified

dateModified The date on which the CreativeWork
was most recently modified.

Date Unspecified

datePublished Date of first broadcast/publication. Date Unspecified

discussionUrl A link to the page containing the
comments of the CreativeWork.

URL Unspecified

editor Specifies the Person who edited the
CreativeWork.

Person Unspecified

educationalAlig
nment

An alignment to an established
educational framework.

AlignmentO
bject

Unspecified

educationalUse The purpose of a work in the context
of education; for example,
'assignment', 'group work'.

Text Unspecified

encoding A media object that encodes this
CreativeWork. This property is a
synonym for associatedMedia.
Supersedes encodings.

MediaObjec
t

Unspecified

exampleOfWork

A creative work that this work is an
example/instance/realization/derivatio
n of. Inverse property: workExample.

CreativeWo
rk

Unspecified

genre Genre of the creative work or group. Text Unspecified

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 95

Name Definition Data type
and value

Multiplicity
and use

hasPart Indicates a CreativeWork that is (in
some sense) a part of this
CreativeWork. Inverse property:
isPartOf.

CreativeWo
rk

Unspecified

headline Headline of the article. Text Unspecified

inLanguage The language of the content or
performance or used in an action.
Please use one of the language codes
from the IETF BCP 47 standard.
Supersedes language.

Language
or Text

Unspecified

interactivityTyp
e

The predominant mode of learning
supported by the learning resource.
Acceptable values are 'active',
'expositive', or 'mixed'.

Text Unspecified

isBasedOnUrl A resource that was used in the
creation of this resource. This term can
be repeated for multiple sources. For
example, http://example.com/great-
multiplication-intro.html.

URL Unspecified

isFamilyFriendl
y

Indicates whether this content is
family friendly.

Boolean Unspecified

isPartOf Indicates a CreativeWork that this
CreativeWork is (in some sense) part
of. Inverse property: hasPart.

CreativeWo
rk

Unspecified

keywords Keywords or tags used to describe this
content. Multiple entries in a
keywords list are typically delimited
by commas.

Text Unspecified

learningResourc
eType

The predominant type or kind
characterizing the learning resource.
For example, 'presentation', 'handout'.

Text Unspecified

license A license document that applies to this
content, typically indicated by URL.

CreativeWo
rk or URL

Unspecified

mainEntity Indicates the primary entity described
in some page or other CreativeWork.

Thing Unspecified

OGC 15-053r1

96 Copyright © 2015 Open Geospatial Consortium.

Name Definition Data type
and value

Multiplicity
and use

Inverse property: mainEntityOfPage.

mentions Indicates that the CreativeWork
contains a reference to, but is not
necessarily about a concept.

Thing Unspecified

offers An offer to provide this item—for
example, an offer to sell a product,
rent the DVD of a movie, or give away
tickets to an event.

Offer Unspecified

position The position of an item in a series or
sequence of items.

Integer or
Text

Unspecified

producer The person or organization who
produced the work (e.g. music album,
movie, tv/radio series etc.).

Person or
Organizatio
n

Unspecified

provider The service provider, service operator,
or service performer; the goods
producer. Another party (a seller) may
offer those services or goods on behalf
of the provider. A provider may also
serve as the seller. Supersedes carrier.

Person or
Organizatio
n

Unspecified

publication A publication event associated with
the item.

Publication
Event

Unspecified

publisher The publisher of the creative work. Organizatio
n

Unspecified

publishingPrinci
ples

Link to page describing the editorial
principles of the organization
primarily responsible for the creation
of the CreativeWork.

URL Unspecified

recordedAt The Event where the CreativeWork
was recorded. The CreativeWork may
capture all or part of the event. Inverse
property: recordedIn.

Event Unspecified

releasedEvent The place and time the release was
issued, expressed as a

Publication
Event

Unspecified

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 97

Name Definition Data type
and value

Multiplicity
and use

PublicationEvent.

review A review of the item. Supersedes
reviews.

Review Unspecified

schemaVersion Indicates (by URL or string) a
particular version of a schema used in
some CreativeWork. For example, a
document could declare a
schemaVersion using an URL such as
http://schema.org/version/2.0/ if
precise indication of schema version
was required by some application.

URL or
Text

Unspecified

sourceOrganizat
ion

The Organization on whose behalf the
creator was working.

Organizatio
n

Unspecified

text The textual content of this
CreativeWork.

Text Unspecified

thumbnailUrl A thumbnail image relevant to the
Thing.

URL Unspecified

timeRequired Approximate or typical time it takes to
work with or through this learning
resource for the typical intended target
audience, e.g. 'P30M', 'P1H25M'.

Duration Unspecified

translator Organization or person who adapts a
creative work to different languages,
regional differences and technical
requirements of a target market.

Person or
Organizatio
n

Unspecified

typicalAgeRang
e

The typical expected age range, e.g.
'7-9', '11-'.

Text Unspecified

version The version of the CreativeWork
embodied by a specified resource.

Number Unspecified

video An embedded video object. VideoObjec
t

Unspecified

workExample Example/instance/realization/derivatio
n of the concept of this creative work.
eg. The paperback edition, first

CreativeWo
rk

Unspecified

OGC 15-053r1

98 Copyright © 2015 Open Geospatial Consortium.

Name Definition Data type
and value

Multiplicity
and use

edition, or eBook. Inverse property:
exampleOfWork.

additionalType An additional type for the item,
typically used for adding more specific
types from external vocabularies in
microdata syntax. This is a
relationship between something and a
class that the thing is in. In RDFa
syntax, it is better to use the native
RDFa syntax - the 'typeof' attribute -
for multiple types. Schema.org tools
may have only weaker understanding
of extra types, in particular those
defined externally.

URL Unspecified

alternateName An alias for the item. Text Unspecified

description A short description of the item. Text Unspecified

image An image of the item. This can be a
URL or a fully described
ImageObject.

URL or
ImageObjec
t

Unspecified

mainEntityOfPa
ge

Indicates a page (or other
CreativeWork) for which this thing is
the main entity being described.
Inverse property: mainEntity.

CreativeWo
rk or URL

Unspecified

name The name of the item. Text Unspecified

potentialAction Indicates a potential Action, which
describes an idealized action in which
this thing would play an 'object' role.

Action Unspecified

sameAs URL of a reference Web page that
unambiguously indicates the item's
identity. E.g. the URL of the item's
Wikipedia page, Freebase page, or
official website.

URL Unspecified

url URL of the item. URL Unspecified

a Properties inherited from Rating

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 99

Name Definition Data type
and value

Multiplicity
and use

b Other properties are inherited from Thing, See http://schema.org/Thing

The page https://developers.google.com/structured-data/critic-reviews provides
information on how Google has implemented it an some examples on how this is
implements in JSON-LD, the encoding strongly recommended by Google.

OGC 15-053r1

100 Copyright © 2015 Open Geospatial Consortium.

<script type="application/ld+json">
{
 "@context":"http://schema.org",
 "@type":"Review",
 "author":{
 "@type":"Person",
 "name":"Lisa Kennedy",
 "sameAs":"https://plus.google.com/114108465800532712602"
 },
 "datePublished":"2014-03-13T20:00",
 "description":"Nerve-racking, sentimental and thrilling.",
 "itemReviewed":{
 "@type":"Movie",
 "name":"Gravity",
 "sameAs":"http://www.imdb.com/title/tt1454468/",
 "datePublished":"2013-10-04T00:00",
 "director":{
 "@type":"Person",
 "name":"Alfonso Cuarón",
 "sameAs":"http://en.wikipedia.org/wiki/Alfonso_Cuar%C3%B3n"
 },
 "actor":[
 {
 "@type":"Person",
 "name":"Sandra Bullock",
 "sameAs":"http://en.wikipedia.org/wiki/Sandra_Bullock"
 },
 {
 "@type":"Person",
 "name":"George Clooney",
 "sameAs":"http://en.wikipedia.org/wiki/George_Clooney"
 }
]
 },
 "publisher":{
 "@type":"Organization",
 "name":"Denver Post",
 "sameAs":"http://www.denverpost.com"
 },
 "reviewRating":{
 "@type":"Rating",
 "worstRating":1,
 "bestRating":4,
 "ratingValue":3.5
 },
 "url":"http://www.denverpost.com/movies/ci_24225964/gravity-
movie-review-anchored-by-sandra-bullock-its"
}
</script>

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 101

Recommendation 34: Consider the schema.org model for describing a geospatial user feedback
model
Target: GUF.SWG

Recommendation 35: Consider a JSON-LD encoding for Geospatial User Feedback that maps the
conceptual model to the http://schema.org/AggregateRating and http://schema.org/Review elements
Target: GUF.SWG

Recommendation 36: Consider including experimentation in GUF and OWS Context using
microdata format in JSON-LD for geospatial features.
Target: Testbed-12

11 Rules for encoding JSON-LD from UML

During the presentation of a draft of this document at the 2015 Boulder OGC TC there
was general agreement in the value of having a set of rules to derive a JSON-LD
encoding from a UML model (as a better alternative than of deriving the JSON from the
XML directly). This clause has the intention of summarizing the rules applied throughout
this document. The aim is to provide the necessary material for discussion and to create a
more formal OGC document later. Currently this set of rules is not fully comprehensive.
The missing aspects are emphasized.

11.1 Property name limitations

11.2 Rules for simple data types

11.2.1 Text encoding

Unfortunately, there is no way to specify the character set used in a JSON encoded file.
Worse than that, when JSON is included in an HTML file that has been produced and is
marked in a character set, some implementation consider that the JSON file is in the same
encoding that the HTML that embed it. Obviously, a JSON file can be included from
more than one HTML than are marked with different character set, resulting in
misinterpretations of the character set of the JSON file. To avoid that,
https://tools.ietf.org/html/rfc7159, considers that “a JSON file SHALL be encoded in
UTF-8, UTF-16, or UTF-32. The default encoding is UTF-8, and JSON texts that are
encoded in UTF-8 are interoperable in the sense that they will be read successfully by the
maximum number of implementations (there are many implementations that cannot
successfully read texts in other encodings (such as UTF-16 and UTF-32))”.
“Implementations MUST NOT add a byte order mark to the beginning of a JSON text.”,

11.2.2 Number encoding

https://tools.ietf.org/html/rfc7159 says that “A number is represented in base 10 using
decimal digits. A number contains an integer component that may be prefixed with an
optional minus sign, which may be followed by a fraction part and/or an exponent part. A
fraction part is a decimal point followed by one or more digits. An exponent part begins
with the letter ‘E’ in upper or lower case, which may be followed by a plus or minus sign.

OGC 15-053r1

102 Copyright © 2015 Open Geospatial Consortium.

The E and optional sign are followed by one or more digits. Infinity and NaN are not
permitted (remember that “null” is allowed). There are not theoretical limitations on
number figures BUT two limits can be assumed: for floating point numbers, many
software follow IEEE 754-2008 binary64 (double precision) numbers. In addition, for
integers numbers, it is not recommendable to go beyond the range [–(2**53)+1, (2**53)–
1].

11.2.3 Simple data types in JSON-LD

JSON-LD syntax associates simple types to simple data types in the xsd namespace. It
explicitly mentions xsd:string (that is the default value), xsd:double or as xsd:integer for
numbers, and xsd:boolean (for the true or false values).

Even if it is not mentioned explicitly. Other types xsd can be used, and in particular,
xsd:dateTime and xsd:duration are mentioned in implementations of schema.org
(https://github.com/json-ld/json-ld.org/blob/master/contexts/person.jsonld) and are
recommended here. This way, data types in UML can be easily mapped to this xsd types.

11.2.4 Identifiers, URLs and URI in JSON-LD

“@id” is a reserved type for URI’s and URL’s and all URI’s and URL’s should use this
type.

11.2.5 Declaration of simple data types

In the “@context” section you should define the data types of all properties that are going
to be used. To do that, we associate a key in the JSON file to a property name in the data
model and to a simple data type like this:

 "@context": {
 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "onlineResource": {
 "@id": "ows:onlineResource", "@type": "@id"}
 "date": {
 "@id": "ows:publication", "@type": "xsd:dateTime"}
 }

A list of equivalence between the UML simple types and the xsd time could be useful
here. It will look very similar to the one we use in the UML XML conversions.

11.3 Rules for complex data types

Complex data types are defined with namespaces. Each namespace has a URI and an
abbreviation. In JSON-LD, and abbreviated namespace is defined as a synonymous of a
URI namespace in a @context section like this:

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 103

 "@context": {
 "ows": "http://www.opengis.net/ows/2.0/",
 }

Having a namespace for our own types and id’s is also useful

 "@context": {
 "ows": "http://www.opengis.net/ows/2.0/",
 "mythings": "http://www.someserver.org/mythings/1.0/",
 }

Ending the namespace with a”/” is useful because the namespace string is ready to be
concatenated with any property name, class name, or data type name.

We assume that all datatypes in this namespace are well defined in this namespace.

11.3.1 Listing you property names

In the “@context” section you should list all property names that are going to be used. To
do that, we associate a key in the JSON file to a property name in the UML data model
like this (note that no mention of the data types or classes is done here):

 "@context": {
 "ows": "http://www.opengis.net/ows/2.0/",
 "serviceIdentification": "ows:serviceIdentification",
 "serviceProvider": "ows:serviceProvider",
 "operationsMetadata": "ows:operationsMetadata"
 }

11.3.2 Declaring complex data types

The declaration of simple data types is done in a @context section. The declaration of a
complex data type is done directly in the object instances using the reserved property
name “@type”. Types can contain the abbreviated namespace. In addition, each object
needs an id to make the transition to RDF easy. To do that we will use the reserved key
“@id”. This way, all complex type objects will start with this two keys:

{
 "@id": " mythings:Demo1",
 "@type": "ows:ServiceMetadata",
 ...
}

OGC 15-053r1

104 Copyright © 2015 Open Geospatial Consortium.

11.3.3 Defining type and ids

The key names starting will a “@” are not easy to use in JavaScript. To avoid this we
strongly recommend creating synonymous of them. This is the final look of the complex
type declaration:

 "@context": {
 "id": "@id",
 "type": "@type",
 ...
 }

 "id": " mythings:Demo1",
 "type": "ows:ServiceMetadata",
 "serviceIdentification":
 {
 "id": "mythings:ServiceIdentificationDemo1",
 "type": "ows:ServiceIdentification"
 ...
 },
 "serviceProvider":
 {
 "id": "mythings:serviceProviderDemo1",
 "type": "ows:ServiceProvider"
 ...
 },
 ...

11.3.4 Defining data types

JSON-LD does not provide this capability and we need to rely in additional languages to
do this such as OWL or JSON Schema. This document already provides the
recommendation to do more work on this direction to determine the best approach.

11.3.4.1 Defining enumerations

JSON-LD does not provide this capability but it could be done with JSON Schema.

11.3.4.2 Inheritance and subclassing

Current version on JSON Schema does not seem to support inheritance or subclassing.
Only using OWL we can express inheritance.

11.4 Geospatial data types

As we said before, geospatial data types can be expressed as using WKT notation.

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 105

11.5 Sharing the @context with several instances

Even if this was not illustrated before in this document the @context part of a JSON-LD
file can be stored in an independent file and included and shared by more than one
instance. This way is @context document part could be storied in the
schemas.opengis.net and imported for each instance.

12 Recommendations

This is the list of recommendations exposed before and collected here as a reference:

Recommendation 1: Consider extending JSON schema to fully describe the properties of a
feature type, including units in alphanumeric properties and CRS in the geometric
attributes instead of having to repeat them in each instance. Target: OWS Common	

Recommendation 2: Consider the possibility that OGC assists the IETF team in moving the
JSON Schema forward. Target: Architecture.DWG and OWS Common	

Recommendation 3: Consider the possibility that OGC defines specific types for OGC/SIO
geometry types. Target: Architecture.DWG and OWS Common	

Recommendation 4: Consider the combined use of JSON schema and the @context section
of a JSON-LD file (possibly in combination with the ontologies linked to it) as a means
for validating a JSON file in the OGC. The next OGC Testbed could include a test on
this approach as an activity. Target: Testbed-12	

Recommendation 5: Consider the possibilities of using the namespace URIs in @context
section of a JSON-LD file as a means to connect to formal ontologies structured in
OWL SKOS or other RDF encoding as a way to validate complex types in JSON files in
the OGC. The next OGC Testbed could include a test on this approach as an activity.
Target: Testbed-12	

Recommendation 6: Consider TopoJSON as a model to create a JSON encoding that is
different (not just an extension, because addresses a topic that GeoJSON can not
consider) but can be mapped and automatically converted into a GeoJSON file (using
for example a JavaScript library). Target: OWS Common	

Recommendation 7: Connect work in previous testbeds about a WPS profile for topological
applications with the TopoJSON to study the applicability and interoperability of
TopoJSON in OGC standards such as WPS and WFS. Target: Testbed 12	

Recommendation 8: Produce an OGC best practice for converting XML documents into
JSON based on OGC 14-009r1 and some other considerations exposed in this ER.
Target: OWS Common	

Recommendation 9: Include adding "@type" keys to JSON objects as a good practice to
makethe transition to JSON-LD and RDF easier. It is also good practice that type
names are qualified with a abbreviated namespaces (e.g.: ows:ServiceIdentification)
that could be later dereferenced using JSON-LD @context. Target: OWS Common
with OAB	

OGC 15-053r1

106 Copyright © 2015 Open Geospatial Consortium.

Recommendation 10: Include in a best practice for JSON a subclause for linking to other
objects in JSON, using the natural approaches that JSON-LD provides for both simple
links and atom links. Target: OWS Common.SWG	

Recommendation 11: Include in the JSON best practice that if a fragment of a XML
document contains a geospatial object then when converting to JSON, consider using
the GeoJSON equivalent type. Target: OWS.Common	

Recommendation 12: Adopt the creation of specific JSON schema documents as a means of
defining feature types and as a means for feature instance validation (as the equivalent
of GML application schema). Target: WFS and OAB	

Recommendation 13: Consider carefully the unsolved issue where GeoJSON coordinates
prevents a natural way to apply JSON-LD to GeoJSON and an automatic conversion to
RDF. Following recommendations are proposing alternative solutions. Target: OAB	

Recommendation 14: Respect the original format of GeoJSON and apply a piece of code to
transform GeoJSON into WKT JSON for simple features on the fly to obtain RDF
notation from GeoJSON. Target: OAB	

Recommendation 15: Consider JSON-LD as an alternative for creating GML application
schemas as a means of defining feature types and as a mean for validation. Target:
OWS Common.SWG and OAB	

Recommendation 16: Add a BBOX element in the WKT standard. Target: CR to Simple
Features for SQL	

Recommendation 17: Distribute this JSON schema, and the examples validated with it, in
schemas.opengis.net when OWS context JSON standard gets approved. Target: OWS
Context	

Recommendation 18: Distribute this JSON-LD @context, and the examples validated with
it, in schemas.opengis.net when OWS context JSON standard gets approved. Target:
OWS Common.SWG and OAB	

Recommendation 19: Create an extension of OWS Context JSON for illustrating how to
reference GeoJSON data both embedded or linked. Target: CR to OWS Context.SWG	

Recommendation 20: Consider the HTML Microdata approach as a new encoding for OWS
Context as a way to improve auto-discovery of OGC services and geospatial resources.
Target: OWS Context	

Recommendation 21: Consider the benefits and drawbacks of extending schema.org
vocabularies with a new type for “geospatial resource” that completely matches with
OWS Context conceptual model. Target: OWS Context	

Recommendation 22: Consider JSON-LD encodings for HTML structured data to create
another encoding for OWS Context. Target: OWS Context	

Recommendation 23: Elaborate a converge JSON as a new standard encoding for
GMLCov. Target: WCS.SWG	

Recommendation 24: Include in OWS Common recommendations on how to provide
service metadata in JSON derived from the UML models. Include as part of the OWS
Common Schemas @context documents for independent validation of the 4 main

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 107

sections of the Service Metadata. A JSON schema document can also be provided.
Target: OWS Common	

Recommendation 25: Consider OWS Context as the Contents section of service metadata
document. In particular adopt the OWS Context JSON encoding in the JSON encoding
of OWS Common. Target: OWS Common	

Recommendation 26: OWS Common should recommend a REST requests for
GetCapabilities and should recommend JSON as a default request. Target: OWS
Common	

Recommendation 27: Define the OWS Common minimum set of parameters in a request as
a @context fragment. A JSON schema can also be provided. Target: OWS Common	

Recommendation 28: In WMS 1.4 include a encoding for GetFeatureInfo responses based
on GeoJSON but replacing the geometry part by maker of the position of the query and
the position of the returned feature. If returned objects correspond to simple features,
return an “id” that allows recovering the geometry using an additional WFS query.
Target: WMS.SWG	

Recommendation 29: Consider to include tileJSON in a non normative example for the
WMTS Simple profile. Target: WMS.SWG	

Recommendation 30: Include in the WMTS Simple profile the JSON description of the
WMTS simple two tile matrix sets. Target: WMS.SWG	

Recommendation 31: For a WFS serving GeoJSON, force the features to have a property
that contains the feature type. Target: WFS.SWG	

Recommendation 32: Consider that WFS DescribeFeatureType returns a @context section
describing the Feature type in GeoJSON. Target: WFS.SWG	

Recommendation 33: Consider using either JSON Pointer or JSON Path in places where a
XPath is required. Target: WFS.SWG	

Recommendation 34: Consider the schema.org model for describing a geospatial user
feedback model Target: GUF.SWG	

Recommendation 35: Consider a JSON-LD encoding for Geospatial User Feedback that
maps the conceptual model to the http://schema.org/AggregateRating and
http://schema.org/Review elements Target: GUF.SWG	

Recommendation 36: Consider including experimentation in GUF and OWS Context using
microdata format in JSON-LD for geospatial features. Target: Testbed-12	

13 Future work

The previous section enumerates the recommendations justified throughout this
document. Each recommendation specifies that target group for future work. The
implementation of them needs a coordinated effort between OGC TC WGs and for next
Testbeds. This section provides a short list of ways of moving forward.

OGC 15-053r1

108 Copyright © 2015 Open Geospatial Consortium.

13.1 Future work for the TC WGs

This ER elaborated in the Testbed 11 proposes a set of recommendations and many
examples on how to move forward in the use of JSON in OGC standards. The first
general recommendation for the TC is to propose a way forward in the use of JSON and
JSON-LD. OGC TC needs to decide on:

 The way geometries need to be encoded in JSON.

 The exact rules to encode UML models into JSON-LD and eventually to translate
XML encoding into JSON encodings.

 The way to validate JSON/JSON-LD and how to distribute validation schemas in
the web (e.g. schemas.opengis.net)

 The general adoption of JSON-LD (or only JSON).

 A way to encode links in JSON.

 How to encode GetCapabilities in JSON-LD

 Add BBOX to WKT standard.

This document contains specific recommendations on concrete aspects that OGC TC
could take into consideration.

13.2 Future work for next Testbeds

This ER elaborated in the Testbed 11 proposes a set of recommendations for the use of
JSON and JSON-LD in OGC services. Some practical developments have been
conducted but no extensive testing was done. As a general recommendation, there is a
need for more experimentation in JSON-LD and OGC standards. Our recommendation is
that the OGC Testbed 12 needs to include a general thread on JSON-LD services and
data formats where several services (e.g. WFS, WPS, WCS etc) provided by several
participants use JSON-LD encodings extensively for ServiceMetadata, data formats,
POST requests etc. Service chain and integration in clients need to be demonstrated.

In addition OGC Testbed 12 could explore the use of HTML and JSON encodings for
microformats and schema.org as a way to improve discoverability of services and
geospatial data in the web. In particular, OWS Context and Geospatial User Feedback
standards can benefit from this approach.

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 109

13.3 GeoJSON in W3C Prov

JSON-LD was been proposed as an alternative encoding for W3C Prov by University of
Southampton, UK, edited by Trung Dong Huynh, Michael O. Jewell, Amir Sezavar
Kshavarz, Danius T. Michaelides, Huanjia Yang, and Luc Moreau
(http://www.w3.org/Submission/2013/01/Comment/). Some similar work can be seen
here: https://gist.github.com/stain/6027751. An interesting line of work could be to try to
use prov-json in conjunction with GeoJSON.

OGC 15-053r1

110 Copyright © 2015 Open Geospatial Consortium.

Annex A

Use cases (informative)

A.1 General

This annex presents the use case that was included in the Testbed 11 scenarios.

A.2 Integrating GeoJSON into the semantic web

In this use case, we have two services that are able to serve the same information using
two different data models. The information served is data about incidents in San
Frencisco:

 ImageMatters SPARQL service is serving the data using a triple store and returns
an RDF encoded in N3 (and TTL, RDF/XML etc).

 Cubewebx WFS service is serving it using a data model based on geopatial
entities expressed in GeoJSON (and GML).

The objective is have an automatic way to go from GeoJSON encoding to some
equivalent representation in RDF.

Image matters request is:
http://ows.usersmarts.com/ldapp/ows11/demo/ems/sfpd/incidents/11615608228150.n3
and returns:

@prefix hswg:
<http://www.opengis.net/testbed11/ont/incident/hswg#> .
@prefix geosparql: <http://www.opengis.net/ont/geosparql#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix wgs84: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

<http://ows.usersmarts.com/ldapp/ows11/demo/ems/sfpd/incidents/11
615608228150>
 a hswg:HSWGIncident ;
 hswg:hasAddress [
 hswg:Address ;
 hswg:city "San Francisco" ;
 hswg:fullAddress "0 Block of HARDING RD" ;
 hswg:policeDistrict "TARAVAL" ;
 hswg:state "CA"
] ;
 hswg:incidentDate "2011-12-10"^^xsd:date ;

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 111

 hswg:incidentNumber "116156082" ;
 hswg:incidentTime "09:10:00"^^xsd:time ;
 hswg:incidentType
<http://www.fgdc.gov/HSWG/taxonomy/IncidentTypes#CivilRioting> ;
 hswg:location [
 a wgs84:Point , geosparql:Point ;
 geosparql:asWKT "POINT (-122.4977043
37.72473844)"^^geosparql:wktLiteral ;
 wgs84:lat 37.72473844 ;
 wgs84:long -122.4977043
] ;
 hswg:resolution "NONE" ;
 hswg:summary "MALICIOUS MISCHIEF, VANDALISM" .

Cubewebx request is:
http://www.pvretano.com/cubewerx/cubeserv/default/wfs/2.5.0/ows11/HSWG_Incidents
?f=application/json and it returns:

{
 "type": "FeatureCollection",
 "features":
 [
 {
 "type": "Feature",
 "geometry":
 {
 "type": "Point",
 "coordinates":
 [
 -122.4977043,
 37.72473844
]
 },
 "properties":
 {
 "gmlid":
"CWFID.HSWG_INCIDENTS.0.0.4D91EC1FAEC21F639C2324020000",
 "IncidntNum": "116156082",
 "Category": "VANDALISM",
 "Descript": "MALICIOUS MISCHIEF, VANDALISM",
 "HSWG_Category": "Civil Rioting",
 "DayOfWeek": "Saturday",
 "Date": "2011-12-10",
 "Time": "09:10:00",
 "PdDistrict": "TARAVAL",
 "Resolution": "NONE",
 "Address": "0 Block of HARDING RD",
 "Location": "(37.7247384376425, -122.49770432371)",

OGC 15-053r1

112 Copyright © 2015 Open Geospatial Consortium.

 "PdId": "11615608228150"
 }
 },
 {
 "type": "Feature",
 ...
 }
]
}

Figure 15: How to achieve the integration of the GeoJSON data into the semantic
world?

By adding some identifiers a type and a @context section to the document we are ready
to transform the GeoJSON into an RDF format:

{
 "@context":
 {
 "hswg":
"http://www.opengis.net/testbed11/ont/incident/hswg/",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",

 "geojson": "http://ld.geojson.org/vocab#",
 "ogc_geo": "http://www.opengis.net/ont/geosparql#",

 "id": "@id",

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 113

 "type": "@type",
 "features": "geojson:features",
 "geometry": "_:",
 "properties": "_:",

 "asWKT": {"@id": "ogc_geo:asWKT", "@type":
"ogc_geo:wktLiteral"},

 "featureType": "geojson:Feature",
 "featureCollectionType": "geojson:FeatureCollection",
 "pointType": "geojson:Point",

 "Feature": "featureType",
 "FeatureCollection": "featureCollectionType",
 "Point": "pointType",

 "IncidntNum": {"@id": "hswg:incidentNumber", "@type":
"xsd:string"},
 "HSWG_Category": {"@id": "hswg:incidentType", "@type":
"xsd:string"},
 "Descript": {"@id": "hswg:summary", "@type": "xsd:string"},
 "Date": {"@id": "hswg:incidentDate", "@type": "xsd:date"},
 "Time": {"@id": "hswg:incidentTime", "@type": "xsd:time"},
 "PdDistrict": {"@id": "hswg:hswg:Address/policeDistrict",
"@type": "xsd:string"},
 "Resolution": {"@id": "hswg:hswg:Address/resolution",
"@type": "xsd:string"},
 "Address": {"@id": "hswg:Address/fullAddress", "@type":
"xsd:string"}
 },

 "id": "hswg:collection1",
 "type": "FeatureCollection",
 "features":
 [
 {
 "id": "hswg:11615608228150",
 "type": "Feature",
 "geometry":
 {
 "id": "hswg:11615608228150",
 "type": "Point",
 "coordinates":
 [
 -122.4977043,
 37.72473844
]
 },
 "properties":
 {
 "id": "hswg:11615608228150",

OGC 15-053r1

114 Copyright © 2015 Open Geospatial Consortium.

 "type": "hswg:HSWGIncident",
 "gmlid":
"CWFID.HSWG_INCIDENTS.0.0.4D91EC1FAEC21F639C2324020000",
 "IncidntNum": "116156082",
 "Category": "VANDALISM",
 "Descript": "MALICIOUS MISCHIEF, VANDALISM",
 "HSWG_Category": "Civil Rioting",
 "DayOfWeek": "Saturday",
 "Date": "2011-12-10",
 "Time": "09:10:00",
 "PdDistrict": "TARAVAL",
 "Resolution": "NONE",
 "Address": "0 Block of HARDING RD",
 "Location": "(37.7247384376425, -122.49770432371)",
 "PdId": "11615608228150"
 }
 },
 {
 "id": "hswg:11099249228165",
 "type": "Feature",
 ...
 }
]
}

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 115

Figure 16: Adding @context @id and @type we convert GeoJSON into JSON-LD

Know we apply a modified JSON-LD parser GeoJSON coordinates array is transformed
into Well Known Text, and then, the JSON-LD is transformed into RDF/n3. The process
been explained in subclause 7.5 . The result is:

<http://www.opengis.net/testbed11/ont/incident/hswg/1161560822815
0> <http://www.opengis.net/ont/geosparql#asWKT> "POINT(-
122.4977043
37.72473844)"^^<http://www.opengis.net/ont/geosparql#wktLiteral>
.
<http://www.opengis.net/testbed11/ont/incident/hswg/1161560822815
0>
<http://www.opengis.net/testbed11/ont/incident/hswg/Address/fullA
ddress> "0 Block of HARDING RD" .
<http://www.opengis.net/testbed11/ont/incident/hswg/1161560822815
0>
<http://www.opengis.net/testbed11/ont/incident/hswg/hswg:Address/
policeDistrict> "TARAVAL" .
<http://www.opengis.net/testbed11/ont/incident/hswg/1161560822815
0>
<http://www.opengis.net/testbed11/ont/incident/hswg/hswg:Address/
resolution> "NONE" .
<http://www.opengis.net/testbed11/ont/incident/hswg/1161560822815
0>
<http://www.opengis.net/testbed11/ont/incident/hswg/incidentDate>
"2011-12-10"^^<http://www.w3.org/2001/XMLSchema#date> .
<http://www.opengis.net/testbed11/ont/incident/hswg/1161560822815
0>
<http://www.opengis.net/testbed11/ont/incident/hswg/incidentNumbe
r> "116156082" .
<http://www.opengis.net/testbed11/ont/incident/hswg/1161560822815
0>
<http://www.opengis.net/testbed11/ont/incident/hswg/incidentTime>
"09:10:00"^^<http://www.w3.org/2001/XMLSchema#time> .
<http://www.opengis.net/testbed11/ont/incident/hswg/1161560822815
0>
<http://www.opengis.net/testbed11/ont/incident/hswg/incidentType>
"Civil Rioting" .
<http://www.opengis.net/testbed11/ont/incident/hswg/1161560822815
0> <http://www.opengis.net/testbed11/ont/incident/hswg/summary>
"MALICIOUS MISCHIEF, VANDALISM" .
<http://www.opengis.net/testbed11/ont/incident/hswg/1161560822815
0> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://ld.geojson.org/vocab#Feature> .
<http://www.opengis.net/testbed11/ont/incident/hswg/1161560822815
0> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/testbed11/ont/incident/hswg/HSWGIncident>
.

OGC 15-053r1

116 Copyright © 2015 Open Geospatial Consortium.

<http://www.opengis.net/testbed11/ont/incident/hswg/collection1>
<http://ld.geojson.org/vocab#features>
<http://www.opengis.net/testbed11/ont/incident/hswg/1161560822815
0> .
<http://www.opengis.net/testbed11/ont/incident/hswg/collection1>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://ld.geojson.org/vocab#FeatureCollection> .

We have produced a notation that is now equivalent to the ImageMatters GeoSparql
server an achieved integration in the semantic web.

Figure 17: An automatic process can convert JSON-LD into n3 triples. A conversion
of GeoJSON coordinates in WKT is needed.

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 117

Annex B

JSON Schema validation for OWS Context GeoJSON

B.1 General

GeoJSON encoding for the OWS Context describes the encoding in GeoJSON of the
OWS Context Model that is presented in abstract terms in a the OGC 12-080r2
document. The goal of OWS Context has been to allow many types of OGC data delivery
services to be referenced and therefore exploited (for example, not just OGC Web Map
Service but also OGC Web Feature Service, OGC Web Coverage Service and OGC Web
Processing Service) but it does not explicitly define the encoding of these services in the
core, only the general approach to be used for different types of service interface.

At the time of writing this ER, OWS Context GeoJSON was in the request for comments
phase in the OGC and can be still be modified according with the comments received.

Clause 8.1 describes how GeoJSON encoding for OWS Context can be validated using
JSON Schema.

B.2 GeoJSON schema for OWS Context GeoJSON

We present the full version of the schema. This JSON schema will be used to validate the
examples that will accompany the final version of the standard. Eventually it could also b
the first JSON Schema in schemas.opengis.net.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "OWS Context JSON schema",
 "type": "object",
 "required": ["type", "id", "properties"],
 "properties": {
 "type": { "enum": ["FeatureCollection"] },
 "id" : { "type": "string", "format": "uri" },
 "properties": {
 "type": "object",
 "required": ["links", "lang", "title", "updated"],
 "properties": {
 "links" : {
 "type": "object",
 "required": ["profiles"],
 "properties": {
 "profiles": {
 "type": "array",
 "items": { "$ref": "#/definitions/links" }

OGC 15-053r1

118 Copyright © 2015 Open Geospatial Consortium.

 },
 "via": {
 "type": "array",
 "items": { "$ref": "#/definitions/links" }
 }
 }
 },
 "lang" : { "type": "string" },
 "title" : { "type": "string" },
 "subtitle" : { "type": "string" },
 "updated" : { "type": "string", "format": "date-time"
},
 "authors" : { "$ref": "#/definitions/authors" },
 "publisher" : { "type": "string" },
 "generator" : {
 "type": "object",
 "properties": {
 "title" : { "type": "string" },
 "uri" : { "type": "string", "format": "uri" },
 "version" : { "type": "string" }
 }
 },
 "display" : {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "pixelWidth": { "type": "number" },
 "pixelHeight": { "type": "number" },
 "mmPerPixel": { "type": "number" }
 }
 }
 },
 "rights" : { "type": "string" },
 "bbox" : {
 "type": "array",
 "minItems" : 4,
 "items": { "type": "number" }
 },
 "date" : { "type": "string" },
 "categories" : { "$ref": "#/definitions/categories" }
 }
 },
 "features" : {
 "type": "array",
 "items": {
 "type": "object",
 "required": ["type", "id", "properties"],
 "properties": {
 "id" : { "type": "string", "format": "uri" },

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 119

 "type": { "enum": ["Feature"] },
 "geometry": { "$ref": "#/definitions/geometry" },
 "properties": {
 "type": "object",
 "required": ["title", "updated"],
 "properties": {
 "title" : { "type": "string" },
 "abstract" : { "type": "string" },
 "updated" : { "type": "string", "format":
"date-time" },
 "authors" : { "$ref":
"#/definitions/authors" },
 "publisher" : { "type": "string" },
 "rights" : { "type": "string" },
 "date" : { "type": "string" },
 "links" : {
 "type": "object",
 "properties": {
 "previews": {
 "type": "array",
 "items": { "$ref":
"#/definitions/links" }
 },
 "alternates": {
 "type": "array",
 "items": { "$ref":
"#/definitions/links" }
 },
 "data": {
 "type": "array",
 "items": { "$ref":
"#/definitions/links" }
 },
 "via": {
 "type": "array",
 "items": { "$ref":
"#/definitions/links" }
 }
 }
 },
 "date" : { "type": "string" },
 "active": { "enum": [true, false] },
 "categories" : { "$ref":
"#/definitions/categories" },
 "minscaledenominator": { "type": "number" },
 "maxscaledenominator": { "type": "number" },
 "folder" : { "type": "string" },
 "offerings" : {
 "type": "array",
 "items": {
 "type": "object",

OGC 15-053r1

120 Copyright © 2015 Open Geospatial Consortium.

 "required": ["code"],
 "properties": {
 "code": { "type": "string",
"format": "uri" },
 "operations" : {
 "type": "array",
 "items" : {
 "type": "object",
 "required": ["code",
"method", "href"],
 "properties": {
 "code": { "type": "string"
},
 "method": { "enum": [
"GET", "POST", "PUT", "DELETE", "HEAD"] },
 "type": { "type": "string"
},
 "href": { "type":
"string", "format": "uri" },
 "request": { "$ref":
"#/definitions/content" },
 "result": { "$ref":
"#/definitions/content" }
 }
 }
 },
 "contents" : {
 "type": "array",
 "items" : { "$ref":
"#/definitions/content" }
 },
 "styles" : {
 "type": "array",
 "items" : {
 "type": "object",
 "required": ["name", "title"],
 "properties": {
 "name": { "type": "string" },
 "title": { "type": "string"
},
 "abstract": { "type":
"string" },
 "default": { "enum": [true,
false] },
 "legendURL": { "type":
"string", "format": "uri" },
 "content": { "$ref":
"#/definitions/content" }
 }
 }

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 121

 }
 }
 }
 }
 }
 }
 }
 }
 }
 },
 "definitions": {
 "links": {
 "title": "links",
 "description": "Properties that all types of links
have. It mimics the Atom link",
 "required": ["href"],
 "properties": {
 "href": {"type": "string", "format": "uri" },
 "type" : { "type": "string" },
 "title" : { "type": "string" },
 "lang" : { "type": "string" }
 }
 },
 "authors" : {
 "title": "authors",
 "description": "Properties that all types of authors
have. It mimics the Atom author",
 "type": "array",
 "items": {
 "type": "object",
 "required": ["name"],
 "properties": {
 "name": { "type": "string" },
 "email" : { "type": "string", "format": "email" },
 "uri" : { "type": "string", "format": "uri" }
 }
 }
 },
 "categories" : {
 "title": "categories",
 "type": "array",

 "items": {
 "type": "object",
 "required": ["term"],
 "properties": {
 "term" : { "type": "string"},
 "scheme" : { "type": "string", "format": "uri" },
 "label" : { "type": "string"}
 }
 }

OGC 15-053r1

122 Copyright © 2015 Open Geospatial Consortium.

 },
 "content": {
 "title": "content",
 "type": "object",
 "required": ["type"],
 "properties": {
 "type" : { "type": "string"},
 "href" : { "type": "string", "format": "uri"},
 "title" : { "type": "string"},
 "content" : { "type": "string"}
 }
 },
 "geometry": {
 "title": "geometry",
 "type": "object",
 "oneOf": [{
 "properties": {
 "type": { "enum": ["Point"] },
 "coordinates": {
 "type": "array",
 "minItems": 2,
 "items": { "type": "number"}
 }
 }
 },
 {
 "properties": {
 "type": { "enum": ["LineString", "Multipoint"]},
 "coordinates": {
 "type": "array",
 "minItems": 2,
 "items": {
 "type": "array",
 "minItems": 2,
 "items" : { "type": "number" }
 }
 }
 }
 },
 {
 "properties": {
 "type": { "enum": ["Polygon",
"MultiLineString"]},
 "coordinates": {
 "type": "array",
 "items": {
 "type": "array",
 "minItems": 2,
 "items": {
 "type": "array",

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 123

 "minItems": 2,
 "items" : { "type": "number" }
 }
 }
 }
 }
 },
 {
 "properties": {
 "type": { "enum": ["MultiPolygon"] },
 "coordinates": {
 "type": "array",
 "items": {
 "type": "array",
 "items": {
 "type": "array",
 "minItems": 2,
 "items": {
 "type": "array",
 "minItems": 2,
 "items" : { "type": "number" }
 }
 }
 }
 }
 }
 },
 {
 "properties": {
 "type": { "enum": ["GeometryCollection"]},
 "geometries": {
 "type": "array",
 "items": { "$ref": "#/definitions/geometry" }
 }
 }
 }]
 }
 }
}

OGC 15-053r1

124 Copyright © 2015 Open Geospatial Consortium.

Annex C

WMTS Simple TileMatrixSet Description in JSON-LD (informative)

C.1 General

The Web Map Tile Service (WMTS) Simple profile defines restrictions that limit the
flexibility in implementing a WMTS instance. Adding additional requirements has the
goal of simplifying the creation of services and clients. By implementing this profile,
clients can more easily combine data coming from different services including from other
WMTS instances and even from some tile implementations that are not OGC WMTS
based, such as some current distributions of OSM. In fact, most of these tiling services
are implicitly following most of the WMTS requirements. Many current WMTS services
that implement this profile will have to undergo some changes on how tiles are exposed,
and a client that is compatible with WMTS 1.0 will be immediately compatible with this
profile. The aim is to align the WMTS standard to other popular tile initiatives which are
less flexible but widely adopted.

To do that, two TileMatrixSet are imposed for both World Web Mercator and for CRS84.
A TielMatrixSet defines a list of scales and a tiling schema for each of them.

C.2 WMTS Simple profile JSON-LD TileMatrixSet description

The WMTS Simple profile provides the description TileMatrixSet in a table and also as a
set of schematron rules. Here, we encode this TileMatrixSets in JSON as an array of two
big objects. We hope this could be useful for future implementers of the WMTS Simple
profiles clients.

{

 "@context":{
 "ows": "http://www.opengis.net/ows/1.1/",
 "wmts": "http://www.opengis.net/wmts/1.0/",
 "wmtss": "http://www.opengis.net/spec/wmts-
simple/1.0/conf/simple-profile/",
 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "id": "@id",
 "type": "@type",

 "tileMatrixSet": "wmts:tileMatrixSet",
 "title": "ows:title",
 "CRSbbox": "ows:BoundingBox",

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 125

 "crs": {"@id":"ows:SupportedCRS", "@type": "@id"},
 "lowerCorner": "ows:lowerCorner",
 "lowerCorner": "ows:lowerCorner",
 "wellKnownScaleSet": {"@id":"wmts:wellKnownScaleSet",
"@type": "@id"},

 "tileMatrix": "wmts:tileMatrix",
 "scaleDenominator": {"@id": "wmts:scaleDenominator",
"@type": "xsd:float"},
 "topLeftCorner": "wmts:topLeftCorner",
 "tileWidth": {"@id": "wmts:tileWidth", "@type":
"xsd:positiveInteger"},
 "tileHeight": {"@id": "wmts:tileHeight", "@type":
"xsd:positiveInteger"},
 "matrixWidth": {"@id": "wmts:matrixWidth", "@type":
"xsd:positiveInteger"},
 "matrixHeight": {"@id": "wmts:matrixHeight", "@type":
"xsd:positiveInteger"}
 },
 "id": "wmtss:",
 "tileMatrixSet": [{
 "type": "wmts:TileMatrixSet",
 "title": "Google Maps Compatible for the World",
 "id": "wmtss:WorldWebMercatorQuad",
 "CRSbbox":
 {
 "type": "ows:CRSbbox",
 "id": "wmtss:WorldWebMercatorQuad/CRSbbox",
 "crs": "http://www.opengis.net/def/crs/EPSG/0/3857",
 "lowerCorner": "POINT(-20037508.3427892, -
20037508.3427892)",
 "upperCorner": "POINT(20037508.3427892,
20037508.3427892)"
 },
 "crs": "http://www.opengis.net/def/crs/EPSG/0/3857",
 "wellKnownScaleSet":
"http://www.opengis.net/def/wkss/OGC/1.0/GoogleMapsCompatible",

 "tileMatrix": [{
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldWebMercatorQuad/0",
 "scaleDenominator": 559082264.0287178,
 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 1,
 "matrixHeight": 1
 },{
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldWebMercatorQuad/1",

OGC 15-053r1

126 Copyright © 2015 Open Geospatial Consortium.

 "scaleDenominator": 279541132.0143589,
 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 2,
 "matrixHeight": 2
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldWebMercatorQuad/2",
 "scaleDenominator": 139770566.0071794,
 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 4,
 "matrixHeight": 4
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldWebMercatorQuad/3",
 "scaleDenominator": 69885283.00358972,
 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 8,
 "matrixHeight": 8
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldWebMercatorQuad/4",
 "scaleDenominator": 34942641.50179486,
 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 16,
 "matrixHeight": 16
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldWebMercatorQuad/5",
 "scaleDenominator": 17471320.75089743,
 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 32,
 "matrixHeight": 32
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldWebMercatorQuad/6",

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 127

 "scaleDenominator": 8735660.375448715,
 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 64,
 "matrixHeight": 64
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldWebMercatorQuad/7",
 "scaleDenominator": 4367830.187724357,
 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 128,
 "matrixHeight": 128
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldWebMercatorQuad/8",
 "scaleDenominator": 2183915.093862179,
 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 256,
 "matrixHeight": 256
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldWebMercatorQuad/9",
 "scaleDenominator": 1091957.546931089,
 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 512,
 "matrixHeight": 512
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldWebMercatorQuad/10",
 "scaleDenominator": 545978.7734655447,
 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 1024,
 "matrixHeight": 1024
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldWebMercatorQuad/11",
 "scaleDenominator": 272989.3867327723,

OGC 15-053r1

128 Copyright © 2015 Open Geospatial Consortium.

 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 2048,
 "matrixHeight": 2048
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldWebMercatorQuad/12",
 "scaleDenominator": 136494.6933663862,
 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 4096,
 "matrixHeight": 4096
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldWebMercatorQuad/13",
 "scaleDenominator": 68247.34668319309,
 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 8196,
 "matrixHeight": 8196
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldWebMercatorQuad/14",
 "scaleDenominator": 34123.67334159654,
 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 16392,
 "matrixHeight": 16392
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldWebMercatorQuad/15",
 "scaleDenominator": 17061.83667079827,
 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 32784,
 "matrixHeight": 32784
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldWebMercatorQuad/16",
 "scaleDenominator": 8530.918335399136,

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 129

 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 65568,
 "matrixHeight": 65568
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldWebMercatorQuad/17",
 "scaleDenominator": 4265.459167699568,
 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 131136,
 "matrixHeight": 131136
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldWebMercatorQuad/18",
 "scaleDenominator": 2132.729583849784,
 "topLeftCorner": "POINT(-20037508.3427892,
20037508.3427892)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 262272,
 "matrixHeight": 262272
 }]
 },{
 "type": "wmts:TileMatrixSet",
 "title": "CRS84 for the World",
 "id": "wmtss:WorldCRS84Quad",
 "CRSbbox":
 {
 "type": "ows:CRSbbox",
 "id": "wmtss:WorldCRS84Quad/CRSbbox",
 "crs": "http://www.opengis.net/def/crs/OGC/1.3/CRS84",
 "lowerCorner": "POINT(-180, -90)",
 "upperCorner": "POINT(180, 90)"
 },
 "crs": "http://www.opengis.net/def/crs/OGC/1.3/CRS84",
 "wellKnownScaleSet":
"http://www.opengis.net/def/wkss/OGC/1.0/GoogleCRS84Quad",

 "tileMatrix": [{
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldCRS84Quad/-1",
 "scaleDenominator": 559082264.0287178,
 "topLeftCorner": "POINT(-180, 90)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 1,

OGC 15-053r1

130 Copyright © 2015 Open Geospatial Consortium.

 "matrixHeight": 1
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldCRS84Quad/0",
 "scaleDenominator": 279541132.0143589,
 "topLeftCorner": "POINT(-180, 90)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 2,
 "matrixHeight": 1
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldCRS84Quad/1",
 "scaleDenominator": 139770566.0071794,
 "topLeftCorner": "POINT(-180, 90)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 4,
 "matrixHeight": 2
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldCRS84Quad/2",
 "scaleDenominator": 69885283.00358972,
 "topLeftCorner": "POINT(-180, 90)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 8,
 "matrixHeight": 4
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldCRS84Quad/3",
 "scaleDenominator": 34942641.50179486,
 "topLeftCorner": "POINT(-180, 90)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 16,
 "matrixHeight": 8
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldCRS84Quad/4",
 "scaleDenominator": 17471320.75089743,
 "topLeftCorner": "POINT(-180, 90)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 32,
 "matrixHeight": 16
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldCRS84Quad/5",
 "scaleDenominator": 8735660.375448715,

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 131

 "topLeftCorner": "POINT(-180, 90)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 64,
 "matrixHeight": 32
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldCRS84Quad/6",
 "scaleDenominator": 4367830.187724357,
 "topLeftCorner": "POINT(-180, 90)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 128,
 "matrixHeight": 64
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldCRS84Quad/7",
 "scaleDenominator": 2183915.093862179,
 "topLeftCorner": "POINT(-180, 90)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 256,
 "matrixHeight": 128
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldCRS84Quad/8",
 "scaleDenominator": 1091957.546931089,
 "topLeftCorner": "POINT(-180, 90)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 512,
 "matrixHeight": 256
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldCRS84Quad/9",
 "scaleDenominator": 545978.7734655447,
 "topLeftCorner": "POINT(-180, 90)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 1024,
 "matrixHeight": 512
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldCRS84Quad/10",
 "scaleDenominator": 272989.3867327723,
 "topLeftCorner": "POINT(-180, 90)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 2048,
 "matrixHeight": 1024
 }, {

OGC 15-053r1

132 Copyright © 2015 Open Geospatial Consortium.

 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldCRS84Quad/11",
 "scaleDenominator": 136494.6933663862,
 "topLeftCorner": "POINT(-180, 90)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 4096,
 "matrixHeight": 2048
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldCRS84Quad/12",
 "scaleDenominator": 68247.34668319309,
 "topLeftCorner": "POINT(-180, 90)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 8196,
 "matrixHeight": 4096
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldCRS84Quad/13",
 "scaleDenominator": 34123.67334159654,
 "topLeftCorner": "POINT(-180, 90)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 16392,
 "matrixHeight": 8196
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldCRS84Quad/14",
 "scaleDenominator": 17061.83667079827,
 "topLeftCorner": "POINT(-180, 90)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 32784,
 "matrixHeight": 16392
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldCRS84Quad/15",
 "scaleDenominator": 8530.918335399136,
 "topLeftCorner": "POINT(-180, 90)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 65568,
 "matrixHeight": 32784
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldCRS84Quad/16",
 "scaleDenominator": 4265.459167699568,
 "topLeftCorner": "POINT(-180, 90)",
 "tileWidth": 256,

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 133

 "tileHeight": 256,
 "matrixWidth": 131136,
 "matrixHeight": 65568
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldCRS84Quad/17",
 "scaleDenominator": 2132.729583849784,
 "topLeftCorner": "POINT(-180, 90)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 262272,
 "matrixHeight": 131136
 }, {
 "type": "wmts:TileMatrix",
 "id": "wmtss:WorldCRS84Quad/18",
 "scaleDenominator": 1066.364791924892,
 "topLeftCorner": "POINT(-180, 90)",
 "tileWidth": 256,
 "tileHeight": 256,
 "matrixWidth": 524544,
 "matrixHeight": 262272
 }]
 }]
}

OGC 15-053r1

134 Copyright © 2015 Open Geospatial Consortium.

Annex D

JSON in C (informative)

D.1 General

Clause 5 describes how to work with JSON in JavaScript. This is ideal for the client side
in a web browser. www.json.org provides links to many libraries for reading and writing
many JSON files in other languages that can be useful for development in the server side.
This annex describes a library in C that we selected to import a GeoJSON file into the
author’s GIS software called MiraMon and to assess how difficult is to work with JSON
in a language different than JavaScript.

D.2 Experience with cJSON

After testing some other alternatives, cJSON demonstrated to be simpler and easiest way
to read a JSON file in C language. The library supposes that the programmer is able to
upload a json file into a string by itself. Then, loading the string in a structure tree is as
simple as using the function cJSON_Parse(text); . The function returns a structure that
is of struct cJSON * type, that represents the first key of the root object. To navigante
in the JSON structure, you can use the elements next and prev to visit the siblings keys
and child to go into the child elements of a complex element. Depending on the type
content, valuestring, valueint and valuedouble can be used to recover the value of a
simple key. cJSON_GetObjectItem() be used to access a key by its name and
cJSON_GetArraySize and cJSON_GetArrayItem are useful to deal with arrays.

One of the advantages of cJSON is that it is only composed by a single open source .c
module and a single include .h module. The compilation of the module is not dependent
on the compiler you are using and we were able to use it with no problem both in Visual
Studio and in Borland C++.

OGC 15-053r1

Copyright © 2015 Open Geospatial Consortium. 135

Annex E

Revision history (informative)

Date Release Editor Primary clauses
modified

Description

2015-04-03 v 0.1 Joan Masó all First draft
2015-05-31 v.0.2 Joan Masó all Consolidation of the draft for the Boulder TC

meeting presentation for gathering new
input. Revisions from Núria Julià (CREAF)
and Dave Weslow (NGA) included.

2015-Jun-22 NA Carl Reed Various Prepare for publication

OGC 15-053r1

136 Copyright © 2015 Open Geospatial Consortium.

Bibliography

[1] INSPIRE data models
http://inspire.ec.europa.eu/index.cfm/pageid/2/list/datamodels

[2] JSON Schema: interactive and non interactive validation draft-fge-json-schema-
validation-00, fge. Galiegue, Ed, K. Zyp, G. Court, http://tools.ietf.org/html/draft-
fge-json-schema-validation-00

[3] Lanthaler M, Gutl C. (2012) On Using JSON-LD to Create Evolvable RESTful
Services

[4] Microdata (HTML) http://en.wikipedia.org/wiki/Microdata_(HTML)

[5] Microdata: https://html.spec.whatwg.org/multipage/microdata.html

[6] RDF 1.1 N-Quads; A line-based syntax for RDF datasets
http://www.w3.org/TR/n-quads/

[7] OGC 14-113, OGC JSON Position Statement. Internal document.

[8] OGC 12-121, Define XML and JSON schema for a web linking structure based
on RFC 5988. Change Request 242

[9] OGC 06-103r4, OpenGIS Implementation Specification for Geographic
information - Simple feature access - Part 1: Common architecture
http://www.opengeospatial.org/standards/sfa

