

Open Geospatial Consortium

Publication Date: 2015-08-19

Approval Date: 2015-06-05

Submission Date: 2015-05-13

Reference number of this document: OGC 15-024r2

External Identifier for this document is: http://www.opengis.net/doc/PER/tb11-sbvr-guidance

Category: Public Engineering Report

Editor: Johannes Echterhoff

OGC® Testbed 11 Aviation - Guidance on Using Semantics of
Business Vocabulary and Business Rules (SBVR) Engineering

Report

Copyright © 2015 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document is an OGC Public Engineering Report
created as a deliverable in an OGC Interoperability Initiative and is not an official position of the
OGC membership. It is distributed for review and comment. It is subject to change without notice
and may not be referred to as an OGC Standard. Further, any OGC Engineering Report should not
be referenced as required or mandatory technology in procurements.

Document type: OGC® Engineering Report
Document subtype: NA
Document stage: Approved for public release
Document language: English

OGC 15-024r2

ii Copyright © 2015 Open Geospatial Consortium

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium iii

License Agreement
Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications. This Agreement is governed by the laws of the Commonwealth of Massachusetts. The
application to this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly
excluded. In the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

OGC 15-024r2

iv Copyright © 2015 Open Geospatial Consortium

i. Abstract
This document is a deliverable of the OGC Testbed 111. It describes the results of
developing a tool to automatically derive Schematron code from SBVR constraints. It
also documents a vocabulary with a profile of core geospatial terms and concepts, which
can be used to express geospatial constraints in business rules.

ii. Keywords
The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, aviation, architecture, SBVR, testbed 11

1 URL of Testbed 11 page on OGC public website is http://www.opengeospatial.org/projects/initiatives/testbed11.

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium v

Contents Page

1	
 Introduction ... 1	

1.1	
 Scope .. 1	

1.2	
 Document contributor contact points ... 1	

1.3	
 Future work .. 2	

1.4	
 Foreword .. 3	

2	
 References ... 4	

3	
 Terms and definitions ... 5	

4	
 Abbreviated terms ... 6	

5	
 OGC Testbed 11 Guidance Using SBVR - Overview .. 7	

6	
 Geospatial Vocabulary .. 8	

6.1	
 Overview .. 8	

6.2	
 Vocabulary ... 8	

6.2.1	
 Spatial Characteristics .. 8	

6.2.2	
 Other adopted concepts .. 12	

6.2.3	
 Spatial Relationship Operators .. 13	

6.2.4	
 Spatial Analysis Operators ... 14	

6.3	
 Considerations for use in business rules ... 15	

6.3.1	
 Geometry representation .. 15	

6.3.2	
 Spatial operator use .. 16	

6.4	
 Analysis of geometric constraints from the Aerodrome Map Databasse 16	

7	
 Guidance for SBVR Rule Development ... 22	

7.1	
 Identify Schema Level that SBVR Rule is written for 22	

OGC 15-024r2

vi Copyright © 2015 Open Geospatial Consortium

7.2	
 Be aware of implications when writing rules involving (dynamic) AIXM
feature types ... 22	

8	
 Automated Derivation of SBVR Business Rules to Schematron Rules 26	

8.1	
 Analysis of AIXM SBVR Rules and SBVR Profile for AIXM 26	

8.1.1	
 Assignment / Existence Checks ... 26	

8.1.2	
 Handling of Choices .. 27	

8.1.3	
 Handling Inheritance .. 30	

8.1.4	
 Expressions for XPath Axis Names ... 34	

8.1.5	
 Regular Expressions ... 35	

8.1.6	
 Inclusion of External Vocabularies .. 36	

8.1.7	
 SRS Name .. 37	

8.2	
 Schematron Derivation ... 38	

8.2.1	
 Overview .. 38	

8.2.2	
 Loading the Conceptual Models .. 38	

8.2.3	
 AIXM Model (Core and Extensions) Merging .. 40	

8.2.4	
 Loading SBVR Constraints from Excel File ... 42	

8.2.5	
 Parsing SBVR Constraints to First Order Logic .. 43	

8.2.5.1	
 Supported SBVR Grammar .. 44	

8.2.5.2	
 Time Slice Handling ... 51	

8.2.5.3	
 First Order Logic Language .. 51	

8.2.6	
 Translation to Schematron ... 53	

8.2.6.1	
 Recognition of AIXM Extension Elements .. 57	

8.2.6.2	
 Support for Feature References in Schematron Code 58	

8.2.6.3	
 Realization of ‘of-type’ operator .. 58	

8.2.6.4	
 Realization of null-checks ... 60	

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium vii

9	
 Accomplishments .. 61	

Annex A: Revision history ... 62	

OGC 15-024r2

viii Copyright © 2015 Open Geospatial Consortium

Figures Page
Figure 1 – Assignment check example – AircraftStand and ApronAreaAvailability in

context 26	

Figure 2 – ChangeOverPoint and <<choice>> SignificantPoint with its options 28	

Figure 3 – Construction of a <<choice>>, equivalent to a <<union>> as defined in the ISO
19100 series of standards 29	

Figure 4 – Inheritance example – AirTrafficControlService and Procedure in context 31	

Figure 5 – General case of an inheritance relationship 32	

Figure 6 - Inheritance example (2) – RunwayCentrelinePoint and NavaidEquipment in
context 34	

Figure 7 – Schematron derivation process 38	

Figure 8 – package structure of AIXM, including the core conceptual schema and
extensions 39	

Figure 9 - AIXM extension mechanism - RunwayDirection belongsTo Event 41	

Figure 10 – SBVR constraint defined directly in the UML model 42	

Figure 11 – Grammar – an SBVR rule can be expressed in one of two ways 44	

Figure 12 – Grammar – the constituents of a sentence in an SBVR rule 45	

Figure 13 – Grammar – noun concept concatenation 45	

Figure 14 – Grammar – relative clause expression 47	

Figure 15 – Grammar – predicate expression 48	

Figure 16 – Grammar – simple predicate 49	

Figure 17 – Grammar – verb expression 50	

Figure 18 – Overview of the First Order Logic language supported for SBVR constraint
derivation 52	

Figure 19 – Conceptual schema example for ‘of-type’ operator translation to Schematron 59	

Tables Page
Table 1 – Spatial relationships as identified by the AMDB constraint analysis, and their

implementation using standardized operators ... 17	

Table 2 – Different ways of selecting AIXM feature time slices in a business rule 24	

Table 3 – The various cases of formulating a rule that includes a <<choice>> 29	

Table 4 – The different cases of formulating a rule to identify classes in an inheritance
hierarchy .. 32	

Table 5 – Mapping of AIXM stereotypes to well-known stereotypes 39	

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium ix

Table 6 – Quantifiers supported by the tool .. 46	

Table 7 – Examples of rules with explicit and implicit use of the “timeSlice” property 51	

Table 8 – Mapping of First Order Logic constructs to XPath/Schematron 54	

Listings Page
Listing 1 – Schematron for rules using ‘of-type’ operator ... 59	

OGC® Engineering Report OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 1

OGC® Testbed 11 Aviation - Guidance on Using Semantics of
Business Vocabulary and Business Rules (SBVR) Engineering
Report

1 Introduction

1.1 Scope

This document is a deliverable of the OGC Testbed 11. It describes the results of
developing a tool to automatically derive Schematron code from SBVR constraints. It
also documents a vocabulary with a profile of core geospatial terms and concepts, which
can be used to express geospatial constraints in business rules.

1.2 Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Name Organization
Johannes Echterhoff (editor) interactive instruments GmbH

OGC 15-024r2

2 Copyright © 2015 Open Geospatial Consortium

1.3 Future work

The following items were identified for consideration in future initiatives:

 Detailed testing - The Schematron derivation tool was implemented in less than
four months. Only a very short amount of time was left to test the resulting
Schematron. Future work should therefore include detailed testing. This is even
more important when considering the complexity of the AIXM schemas, both the
conceptual schema (also taking into account the Temporality Model) and the
XML implementation schema.

 Complete AIXM schema merging – Testbed 11 defined a process to merge the
information from AIXM extension schemas and the core schema on-the-fly. This
is critical for parsing SBVR constraints that use concepts from AIXM extension
schemas (for further details, see 8.2.3).
The merging process defined in Testbed 11 supports features required for the
Testbed 11 demonstration. The process must be extended in order to support all
aspects relevant for merging AIXM schemas.

 Add support for choices/unions and association classes – Due to time and
resource constraints the automation tool only implements core schema constructs.
AIXM <<choice>> and <<union>> types as well as association classes are not
supported yet. Future work should implement additional functionality – also
taking into account the considerations on the handling of <<choice>> types as
documented in 8.1.2.

 Continue the work on the geospatial vocabulary – Work in Testbed 11 focused
on the definition of a geospatial vocabulary that includes a profile of core
geospatial terms and concepts. Future work should test the use of the vocabulary
in actual business rules, and implement support for spatial operators and geometry
operands.

 Regular expressions in SBVR rules – Some of the AIXM business rules define
constraints on the content of properties with textual value type (e.g. that the text
value shall have at most three digits). Such free-text descriptions of how a textual
value should be structured are very hard if not impossible for an automation tool
to parse.
A solution would be to add a predicate to the SBVR grammar that supports the
specification of a regular expression. The regular expression could be translated to
Schematron, which if XPath 2.0 is used may not even require an additional
function library for the validation. For further details, see 8.1.5.

 Schema-aware Schematron processor – The Schematron rules generated by the
automation tool could be simplified if they were written for a schema-aware
Schematron processor. Especially the check to determine that a given object is of
a specific type could be improved this way (using the schema-element() XPath
2.0 function).

 Support for rules involving elements of external schemas – At the moment the
automation tool cannot generate Schematron code for constraints if they address
concepts from external schemas where the XML encoding is unknown.
The encoding could be unknown because the external schema has a specific

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 3

encoding that is not defined by a set of known rules, or because the external
schema is not contained in the model that is being processed, or because the
external schema does not provide information about the encoding rules that shall
be used to derive its XML encoding.
Future work should investigate if mappings between elements from the
conceptual schema and their equivalents in the XML encoding can be created.
Such mappings could be used by the automation tool to derive Schematron code,
also for SBVR constraints that use concepts from external schema.

 Mapping between First Order Logic (FOL) and Object Constraint Language
(OCL) – SBVR constraints are parsed into First Order Logic as intermediate
language, which is converted to Schematron. An analysis should be performed to
see if a mapping exists between FOL constructs and OCL. Such a mapping could
be used to transform FOL constructs into OCL, and thus leverage already existing
OCL parsing and derivation functionality. It could also be used to turn OCL
constraints into more human readable expressions, so that they can be understood
by non-experts.

1.4 Foreword

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

OGC 15-024r2

4 Copyright © 2015 Open Geospatial Consortium

2 References

The following documents are referenced in this document. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply. For
undated references, the latest edition of the normative document referred to applies.

Other OGC Documents:

 [OGC 10-088r3] OGC OWS-7 Schema Automation Engineering Report
 [OGC 12-028r1] Use of GML for Aviation Data, OGC Discussion Paper
 [OGC 12-147] OGC OWS-9 Aviation Architecture Engineering Report

Aviation Documents:

 [AIXMTM] AIXM 5 Temporality Model, available online at
http://www.aixm.aero/gallery/content/public/AIXM51/AIXM%20Temporality%2
01.0.pdf (accessed May 8, 2015)

 [AIXMASGEN] AIXM Application Schema Generation, available online at
http://www.aixm.aero/gallery/content/public/AIXM51/AIXM_Application_Sche
ma_Generation-1.1.pdf (accessed May 10, 2015)

 [AIXMUML2XSD] AIXM UML to XML Schema Mapping, available online at
http://www.aixm.aero/gallery/content/public/AIXM51/AIXM_UML_to_AIXM_
XSD_Mapping-1.1.pdf (accessed March 16, 2015)

 Digital NOTAM Event Specification ed 1.0, available online at
http://www.aixm.aero/gallery/content/public/digital_notam/Specifications/Digital
%20NOTAM%20Event%20Specification%201.0.doc (accessed March 17, 2015)

 [SBVR Profile for AIXM] AIXM 5.1 - Business Rules (data verification) – Using
SBVR and Schematron, v0.3 available online at
https://extranet.eurocontrol.int/http://webprisme.cfmu.eurocontrol.int/aixmwiki_p
ublic/bin/download/Main/AIXM_Business_Rules/AIXM%2D5.1%2DBusinessRu
les%2DusingSBVRandSchematronV0.3.docx (accessed May 10, 2015)

Other Documents:

 [ISO 19103] Geographic information – Conceptual schema language
 [ISO 19107:2003] Geographic information – Spatial schema
 [ISO Committee Draft 19107:2015] Geographic information – Spatial schema
 [ISO 19111] Geographic information – Spatial referencing by coordinates
 [ISO 19125-1] Geographic information – Simple feature access – Part 1:

Common architecture
 [ISO 19162] Geographic information – Well known text representation of

coordinate reference systems

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 5

3 Terms and definitions

For the purposes of this report, the following terms and definitions apply.

3.1 AIXM business rule

business rule that is under the jurisdiction of the aeronautical information domain.

3.2 business rule

rule that is under business jurisdiction.

NOTE: can be represented via a constraint, e.g. an SBVR constraint

3.3 rule

One of a set of explicit or understood regulations or principles governing conduct or
procedure within a particular area of activity ... a law or principle that operates within a
particular sphere of knowledge, describing, or prescribing what is possible or allowable.

3.4 SBVR constraint

A constraint (defined for an element of the conceptual schema) which is written in
SBVR.

OGC 15-024r2

6 Copyright © 2015 Open Geospatial Consortium

4 Abbreviated terms

AIXM Aeronautical Information Exchange Model

AMDB Aerodrome Map Database
DNES Digital NOTAM Event Specification

DNOTAM Digital NOTAM
EAP Enterprise Architect Project

EPSG European Petroleum Survey Group
FOL First Order Logic

GIS Geographic Information System
GML Geography Markup Language

ISO International Organization for Standardization
NOTAM Notice to Airmen

OMG Object Management Group
OCL Object Constraint Language

OGC Open Geospatial Consortium
OMG Object Management Group

SBVR Semantics of Business Vocabulary and Business Rules
SQL Structured Query Language

SRS Spatial Reference System
UML Unified Modeling Language
UoM Unit of Measure

WKT Well-known-text
XML Extensible Markup Language

XPath XML Path Language
XSLT Extensible Stylesheet Language Transformations

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 7

5 OGC Testbed 11 Guidance Using SBVR - Overview

One of the topics addressed by the OGC Testbed 11 Aviation thread was the use of
constraints represented using Semantics of Business Vocabulary and Business Rules
(SBVR). AIXM business rules are expressed as SBVR constraints. The tasks regarding
SBVR in the Aviation thread were to:

 Define a vocabulary/profile with “geospatial” terms for SBVR. For example:
object1 (spatially) intersects object2.

 Determine to which extent the implementation of SBVR business rules can be
automated. Target implementations: Schematron, maybe also OCL.

The following chapters document the results of the work conducted in Testbed 11 for
these tasks.

OGC 15-024r2

8 Copyright © 2015 Open Geospatial Consortium

6 Geospatial Vocabulary

6.1 Overview

A large set of requirements exists for processing of “geospatial” information. ISO and
OGC standards cover common requirements including, but not limited to:

 describing the spatial characteristics of a feature, their geometry and topology
 spatial referencing by coordinates and geographic identifiers
 linear referencing
 describing spatial operations

The standards specify a set of terms which form a “geospatial” vocabulary. However,
they do not use SBVR to do so. Rather, the terms are specified either explicitly in the
“Terms and Definitions” section, or implicitly in the normative text and schemas.

Capturing all the terms from the range of ISO and OGC standards within a “geospatial”
SBVR vocabulary would have been a tremendous task far exceeding the scope of Testbed
11. The vocabulary documented in this chapter therefore contains a profile of core
geospatial terms and concepts. More specifically, the vocabulary focuses on the spatial
operators that most GIS processing software – especially spatial databases – usually
supports.

6.2 Vocabulary

6.2.1 Spatial Characteristics

NOTE: solid is not defined in this vocabulary because solids are not used in AIXM, and are not supported
by ISO 19125 (which is the basis for most GIS processing software).

boundary	

Definition: A boundary is a set that represents the limit of an entity.

Source: [ISO 19107]

closure	

Definition: The closure is the union of the interior and boundary of a
topological or geometric object.

Source: [ISO 19107]

coordinate	

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 9

Definition: A coordinate is one of a sequence of N-numbers designating
the position of a point in N-dimensional space.

Source: [ISO 19111]

coordinate	
 reference	
 system	

Definition: A coordinate reference system is a coordinate system that is
related to the real world by a datum.

Source: [ISO 19111]

coordinate	
 system	

Definition: A coordinate system is a set of mathematical rules for
specifying how coordinates are to be assigned to points.

Source: [ISO 19111]

curve	

Definition: A curve is a 1-dimensional geometric primitive, representing
the continuous image of a line.

Note: The boundary of a curve is the set of points at either end of
the curve. If the curve is a cycle, the two ends are identical,
and the curve (if topologically closed) is considered to not
have a boundary. The first point is called the start point, and
the last is the end point.

Broader concept: geometric primitive

Synonyms: GM_Curve [ISO 19107]

Source: [ISO 19107]

direct	
 position	

OGC 15-024r2

10 Copyright © 2015 Open Geospatial Consortium

Definition: A direct position is a position described by a single set of
coordinates within a coordinate reference system.

Source: [ISO 19107]

exterior	

Definition: The exterior [of a geometric object] is the difference between
the universe and the closure [of the geometric object].

Source: [ISO 19107]

geometric	
 aggregate	

Definition: A geometric aggregate is a collection of geometric objects that
has no internal structure.

Note: No assumptions about the spatial relationships between the
elements can be made.

Source: [ISO 19107]

geometric	
 boundary	

Definition: A geometric boundary is a boundary represented by a set of
geometric primitives of smaller geometric dimension that
limits the extent of a geometric object.

Source: [ISO 19107]

geometric	
 object	

Definition: A geometric object is a spatial object representing a geometric
set.

Synonyms: GM_Object [ISO 19107], geometry

Source: [ISO 19107]

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 11

geometric	
 primitive	

Definition: A geometric primitive is a geometric object representing a
single, connected, homogeneous element of space.

Broader concept: geometric object

Synonyms: GM_Primitive [ISO 19107]

Source: [ISO 19107]

geometric	
 set	

Definition: A geometric set is a set of direct positions.

Source: [ISO 19107]

interior	

Definition: The interior [of a geometric object] is the set of all direct
positions that are on a geometric object but which are not on
its boundary.

Source: [ISO 19107]

pattern	
 matrix	

Source: [ISO CD 19107]

point	

Definition: A point is a 0-dimensional geometric primitive representing a
position.

Note: The boundary of a point is the empty set.

Broader concept: geometric primitive

OGC 15-024r2

12 Copyright © 2015 Open Geospatial Consortium

Synonyms: GM_Point [ISO 19107]

Source: [ISO 19107]

surface	

Definition: A surface is a 2-dimensional geometric primitive, locally
representing a continuous image of a region of a plane.

Note: The boundary of a surface is the set of oriented, closed curves
that delineate the limits of the surface.

Broader concept: geometric primitive

Synonyms: GM_Surface [ISO 19107]

Source: [ISO 19107]

topological	
 object	

Definition: A topological object is a spatial object representing spatial
characteristics that are invariant under continuous
transformations.

Source: [ISO 19107]

6.2.2 Other adopted concepts

measure	

Definition: A measure is the result from performing the act or process of
ascertaining the value of a characteristic of some entity.

Source: [ISO 19103]

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 13

6.2.3 Spatial Relationship Operators

The definitions of named spatial relationships between geometric objects follow the
definitions in [ISO CD 19107]. They are based on the Dimensionally Extended nine-
Intersection Model (DE-9IM). Because the DE-9IM based specification of each named
relationship is very formal and cannot be expressed in simple English for each case, the
following verb concepts only refer to the source of the definition, but do not provide the
definition itself. In addition to the named operators, the “relates” operator has been
included to support specific use cases. Where appropriate for use in SBVR rules,
suggestions for synonyms have been added.

geometry	
 contains	
 geometry	

Source: [ISO CD 19107] [section 10.7.5.3.2]

geometry	
 equals	
 geometry	

Source: [ISO CD 19107] [section 10.7.5.3.1]

geometry	
 disjoint	
 geometry	

Source: [ISO CD 19107] [section 10.7.5.3.3]

Synonyms: is-disjoint-with

geometry	
 touches	
 geometry	

Source: [ISO CD 19107] [section 10.7.5.3.5]

Synonyms: meets

geometry	
 within	
 geometry	

Source: [ISO CD 19107] [section 10.7.5.3.7]

Synonyms: is-within, inside, is-inside

geometry	
 overlaps	
 geometry	

OGC 15-024r2

14 Copyright © 2015 Open Geospatial Consortium

Source: [ISO CD 19107] [section 10.7.5.3.8]

geometry	
 crosses	
 geometry	

Source: [ISO CD 19107] [section 10.7.5.3.6]

geometry	
 intersects	
 geometry	

Source: [ISO CD 19107] [section 10.7.5.3.4]

geometry	
 relates	
 geometry	
 as	
 pattern	
 matrix	

Note: This operator requires two geometries and a pattern matrix to
test against.

Source: [ISO CD 19107] [section 10.7.5.2 – full topological relate]

6.2.4 Spatial Analysis Operators

geometry	
 is-­‐within-­‐distance	
 of	
 measure	
 to	
 geometry	

Note: This is equal to testing that a) a buffer created around the first
geometry (with given measure as distance) and b) the second
geometry intersect.

Source: [ISO CD 19107] [section 10.7.6 - ‘DWithin’]

geometry	
 is-­‐beyond	
 measure	
 to	
 geometry	

Note: This is equal to testing that a) a buffer created around the first
geometry (with given measure as distance) and b) the second
geometry are disjoint.

Source: [ISO CD 19107] [section 10.7.6 - ‘Beyond’]

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 15

6.3 Considerations for use in business rules

6.3.1 Geometry representation

The set of AIXM SBVR business rules that have been analyzed in Testbed 11 applied
predicates on variable values. The variables were declared through quantifications, and
specific properties of the variable value were selected for use in the predicate via noun
and verb concepts.

For example, in rule “each AirportHeliport shall have availability.operationalStatus
equal-to 'CLOSED'” there is an implicit variable that ranges over all AirportHeliports.
The noun “availability.operationalStatus” selects the operationalStatus property of
AirportHeliportAvailability objects that are owned by a given AirportHeliport.

A binary predicate can be applied by having a variable value on the left-hand side of a
binary expression and a literal on the right-hand side. In the example, ‘CLOSED’ is the
string literal used on the right-hand side of the ‘equal-to’ comparison operator.

Spatial operators can be used in a similar way. The left-hand side would identify a
variable value that has a spatial type while the right-hand side of the operator would be a
literal.

In case of the ‘within-distance’ operator the literal should be a measure, consisting of a
number and a unit of measure. For other spatial operators we need a literal representation
of a geometry. We recommend using the well-known-text (WKT) encoding defined by
[ISO 19125-1] to express such literals.

If the coordinates of a geometry represented in WKT are not given in a default spatial
reference system (which could be EPSG 4326), then it would be necessary to state the
SRS explicitly. This could be achieved using a well-known-text description of the SRS as
defined by [ISO 19162]. How the SRS would be included in a business rule would need
to be determined in future work.

NOTE: having a variable value point to a spatial property of an AIXM feature has the benefit of precisely
identifying a parameter for a spatial operator. However, that property may not be easy to identify. On the
one hand, it may not be directly contained in the feature itself (but for example in an object referenced by
the feature).On the other hand, the actual geometry of an AIXM feature may need to be computed on-the-
fly – an Airspace is an example (with the geometry being defined by a combination of airspace volumes).

Writing business rules with spatial constraints would be much easier if each AIXM feature had a well-
known ‘geometry’ property. The SBVR to Schematron conversion could detect that the ‘geometry’
property is used and delegate the computation of the geometry to another software component.

The service based computation of geometry for AIXM features has been investigated in OGC Testbed 9
(see [OGC 12-147], chapter 8). If rules existed to compute a geometry for each AIXM feature type then
business rules could make use of the ‘geometry’ property as a shortcut.

OGC 15-024r2

16 Copyright © 2015 Open Geospatial Consortium

6.3.2 Spatial operator use

Business rules using spatial operators could be formulated as follows:

An AirportHeliport with contact.address.country equal-to ‘Germany’ shall have ARP
within POLYGON((5.75 55.5,15 55.5,15 47,5.75 47,5.75 55.5)).

A business rule may require that none of the geometries to be tested by a spatial
relationship operator is a literal. An example of such a rule in free text is:

A RunwayMarking feature shall be contained in a RunwayElement feature and/or a
RunwayDisplacedArea feature and/or a Stopway feature and/or a RunwayIntersection
feature and/or Blastpad feature.

This rule requires that the spatial relationship of a given RunwayMarking geometry is
checked against the geometries in the range of all RunwayElement,
RunwayDisplacedArea, Stopway, RunwayIntersection and Blastpad features. In order to
implement this we need variables to identify the geometries of RunwayMarking objects
as well as the other objects. So far the variable for the left-hand side of a binary
expression is implicitly defined in a quantification. The SBVR grammar would need to be
extended to support declaration of the other variables, either implicitly or explicitly2. This
requires further analysis and development.

6.4 Analysis of geometric constraints from the Aerodrome Map Databasse

An analysis of Aerodrome Map Database (AMDB) constraints, more specifically the
geometric constraints and the keywords they use, was provided as input for the
development of the geospatial vocabulary. The analysis contained diagrams that had been
created to explain the meaning of the keywords. This section provides an analysis of
these keywords and their potential implementation using the spatial relationship operators
defined in the vocabulary.

2 The Object Constraint Language (OCL) uses ‘let’ expressions to explicitly declare variables that can be used in
following expressions.

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 17

Table 1 – Spatial relationships as identified by the AMDB constraint analysis, and
their implementation using standardized operators

Image depicting the spatial
relationship

(source: AMDB constraint
analysis)

Textual
description of
spatial
relationship
using geometric
keywords

(source: AMDB
constraint
analysis)

Analysis with suggestion for
implementation using
vocabulary terms (based on
standardized spatial
relationship operators)

Point is located at
the edge of
Polygon

Point touches Polygon

Point is contained
in Polygon

Point is-within Polygon

Point is located
on Line

Point intersects Line

In this situation one could also
say that:

Point is-within Line

Line ends at Point Line touches Point

Line1 crosses
Line2

Line1 crosses Line2

Line1 starts/ends
at the edge of
Line2

Line1 touches Line2

Line1 is
connected to
Line2

If the intention is to ensure that
the end points of the two lines
intersect but nothing else then
one can use the relates operator,

OGC 15-024r2

18 Copyright © 2015 Open Geospatial Consortium

Image depicting the spatial
relationship

(source: AMDB constraint
analysis)

Textual
description of
spatial
relationship
using geometric
keywords

(source: AMDB
constraint
analysis)

Analysis with suggestion for
implementation using
vocabulary terms (based on
standardized spatial
relationship operators)

checking that:

the boundary of Line1 shall
intersect the boundary of Line2
but the interior of Line1 shall
not intersect the interior of Line
2

Line1 overlaps
Line2

Line1 overlaps Line2

Line1 is attached
to Line2

Line1 overlaps Line2 and Line1
does not cross Line2

Line is contained
in Polygon

Line is-within Polygon

Line intersects
Polygon

Line intersects Polygon

The depicted relationship would
also be covered by the crosses
operator:

Line crosses Polygon

Line crosses
Polygon

Line crosses Polygon

In order to ensure that the end
points of the line are outside the
polygon one could also say that:

Line crosses Polygon and the
boundary of the Line does not

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 19

Image depicting the spatial
relationship

(source: AMDB constraint
analysis)

Textual
description of
spatial
relationship
using geometric
keywords

(source: AMDB
constraint
analysis)

Analysis with suggestion for
implementation using
vocabulary terms (based on
standardized spatial
relationship operators)

intersect the closure of the
Polygon

Line starts/ends at
the edge of
Polygon

Line touches Polygon

Line is attached
to Polygon

The depicted relationship can
be represented with varying
degrees of complexity (and
detail).

We can start with:

Line touches Polygon

In order to ensure that the
intersection is not just a point,
we can also check the
dimension by adding:

and the dimension of the
intersection between the
interior of the Line and the
closure of the Polygon is equal
to 1

Furthermore, in order to ensure
that the end points of the line
are not on the border of the
polygon, we can add:

and the intersection between the
boundary of the Line and the
closure of the Polygon is empty

OGC 15-024r2

20 Copyright © 2015 Open Geospatial Consortium

Image depicting the spatial
relationship

(source: AMDB constraint
analysis)

Textual
description of
spatial
relationship
using geometric
keywords

(source: AMDB
constraint
analysis)

Analysis with suggestion for
implementation using
vocabulary terms (based on
standardized spatial
relationship operators)

We can see that, depending on
the desired outcome of the
relationship test, we need to use
a combination of spatial
relationship operators. The
relates operator would allow us
to express a complex
relationship directly.

Polygon1 is
contained in
Polygon2

Polygon2 contains Polygon1

Polygon1
overlaps
Polygon2

Polygon1 overlaps Polygon2

Polygon1 is
attached to
Polygon2

Again, the depicted relationship
can be represented with varying
degrees of complexity.

We can start with:

Polygon1 touches Polygon2

In order to ensure that the
intersection is not just a point,
we can also check the
dimension by adding:

and the dimension of the
intersection between the closure
of Polygon1 and the closure of

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 21

Image depicting the spatial
relationship

(source: AMDB constraint
analysis)

Textual
description of
spatial
relationship
using geometric
keywords

(source: AMDB
constraint
analysis)

Analysis with suggestion for
implementation using
vocabulary terms (based on
standardized spatial
relationship operators)

Polygon2 is equal to 1

The relates operator would
allow us to express the intended
complex relationship directly.

Conclusions & Recommendations

The spatial relationships identified by the AMDB constraint analysis can be implemented
using the set of named spatial relationship operators standardized by ISO/OGC. In
addition, the “relates” operator can be useful to identify specific relationships.

We recommend that a geospatial vocabulary used in the Aviation community uses the
spatial relationship operators standardized by OGC and ISO. This would support
understanding of geometric constraints by experts within the wider geospatial
community.
Nevertheless, if other names for spatial relationship operators have already been
established within the aviation community, it would be possible to use those names in an
aviation specific vocabulary while still adopting the definition and meaning of the
standardized names. However, this requires that no conflict of terms is created (for
example, defining “intersects” differently).

Depending upon the digitalization quality of geometries in aeronautical data, spatial
relationship tests may require the use of buffering, i.e. the distance-within and beyond
operators. For example, for a line to be touching a point (fourth example in Table 1), the
line end and the point must have the same coordinates. Any gap between the two points
will cause the touches relationship operator evaluating to false.

OGC 15-024r2

22 Copyright © 2015 Open Geospatial Consortium

7 Guidance for SBVR Rule Development

7.1 Identify Schema Level that SBVR Rule is written for

For automated derivation of Schematron from an SBVR rule, it is important to know the
schema level for which the SBVR rule has been written3. This can be the conceptual level
and the implementation level.

If a rule has been written for the conceptual schema level, avoid using concepts that are
only available in the implementation schema.

For example:

 XPath like notation for noun concept concatenation using “/” and qualified names
(ns:element).

 Specific axis notation that is built upon the XML structure like descendant-or-self
(see 8.1.4 for further details).

The [SBVR Profile for AIXM] should clearly identify for which schema level a construct
defined by the profile is applicable. For example, “is-descendant-of” and “has
descendant” should only be used for rules on the XML implementation schema level. An
exception would be if such constructs were also clearly defined for the conceptual level.

In general, we recommend writing business rules only for the conceptual level. This
allows deriving rule information for different implementation schema, for example XML
(in form of Schematron code) but also SQL (as SQL constraints). This would also avoid
that the business expert that writes the rules needs to understand a specific
implementation. Last but not least, it is also better because a specific implementation
technology may be replaced at some point in the future by another technology, which
would require that rules are re-written.

7.2 Be aware of implications when writing rules involving (dynamic) AIXM feature
types

Each AIXM feature is a dynamic feature. Conceptually, these features are represented by
a set of time slices. The AIXM UML model does not explicitly show this. The abstract
AIXMFeature class has a set of timeSlices. The model does not show that AIXM feature
types such as AirportHeliport inherit from AIXMFeature. Rather, this relationship is
implicit. Furthermore, according to the UML model the properties of actual AIXM
feature types belong to the feature. However, conceptually speaking they are owned by
the according time slice type (e.g. AirportHeliportTimeSlice, which can be found in the
XML implementation schema but not in the conceptual schema). This has implications
for how business rules should be written.

3 Instead of “written for” one can also say “targets”: an SBVR rule targets a specific schema level

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 23

We use the following (made-up) rule as example:

Each AirportHeliport shall have assigned designator value.

NOTE: there is an implicit quantification of “at-least-one” for “assigned designator value” (see description
of the SBVR grammar in 8.2.5.1); the rule therefore is actually: “Each AirportHeliport shall have at-least-
one assigned designator value.”

Let us assume that the intention behind this rule is to ensure that throughout the lifetime
of an AirportHeliport feature, it shall always have a ‘designator’ value that is not null.
The designator value is stored within time slices owned by the AirportHeliport feature –
both conceptually and in actual XML encoded data. According to the AIXM Temporality
Model [AIXMTM] there are different interpretations for time slices: baseline, permdelta,
tempdelta, and snapshot. Without going into too much detail here, we can say that the
time slices represent the state of an AIXM feature throughout its lifetime. Changes to
property values are tracked through time and stored in time slices. A temporary change,
for example, is stored in a tempdelta. A permanent change can be stored in a baseline and
a permdelta. Last but not least, a snapshot represents the state of a feature for a given
point in time. Values for the ‘designator’ property will be stored in all baselines and
snapshots, but likely not in all permdeltas and tempdeltas.

A key question when evaluating AIXM business rules on actual AIXM data is for which
time slices a condition must be checked. The rule from the example does not specify this.

Discussions within Testbed 11 revealed that AIXM business rules can be defined for all
four or a subset of time slice interpretation types. It therefore is not possible to
automatically select a specific subset of time slices – for example just baselines and
snapshots – to evaluate a business rule against.

In order to automatically derive Schematron from SBVR rules, a software tool must
therefore be able to identify which time slice types need to be checked. This can be
achieved in two ways:

 The rule itself contains the selection of time slices, as required.
 Metadata for a rule states which time slice interpretations are to be checked. The

excel file that contains AIXM business rules has such metadata.

The solution chosen for Testbed 11 was to express the necessary time slice selection in
the business rule itself, for the following reasons:

 A business rule may require different sets of interpretations for different
conditions, which cannot be expressed using a single field in an excel spreadsheet.

 The software solution should also support the parsing of SBVR constraints if they
are directly contained in the UML model, and not loaded from an excel file.

The following table shows the different ways of performing a selection of time slices
based upon their interpretation.

OGC 15-024r2

24 Copyright © 2015 Open Geospatial Consortium

Table 2 – Different ways of selecting AIXM feature time slices in a business rule

Business rule Selected time slices

Each AirportHeliport.timeSlice with
interpretation equal-to
(‘BASELINE’,’SNAPSHOT’) shall have
at least one assigned designator value.

Here we have an explicit selection of time
slices based upon their interpretation value.
Each baseline and snapshot is checked to
see if it has a designator value (not being
null), while tempdeltas and permdeltas are
ignored.

Each AirportHeliport.timeSlice shall have
at least one assigned designator value.

This can be problematic, because each and
every time slice – thus also a tempdelta –
must have a designator value (not being
null); otherwise the translated rule will
evaluate to false.

If the AIXM data to be checked with
Schematron rules only contained baselines
and snapshots then this should not be a
problem. The validation of AIXM data and
the way that AIXM business rule must be
written in order to achieve correct results
can thus be influenced by the
preprocessing (in this case: selection)
performed on the input data.

Each AirportHeliport shall have at least
one assigned designator value.

The tool recognizes that AirportHeliport is
an AIXM feature type and therefore adds
the “timeSlice” property as a segment
before all calls to properties of that feature.

The rule thus will become: Each
AirportHeliport shall have at least one
assigned timeSlice.designator value.

This can be problematic, because if just
one time slice – for example a tempdelta –
exists that had a designator value (not
being null), the translated rule will
evaluate to true. The result would also be
true if just one out of the possibly many
baselines belonging to the feature had a
designator value.

Of course, if the input data contained only
one baseline or snapshot this wouldn’t be a

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 25

Business rule Selected time slices

problem. So again, the validation depends
on the input data.

Conclusions & Recommendations

We can conclude that the way an AIXM business rule takes time slices into account can
have an impact on the validation result and that the validation result can be influenced
through a selection of the input data.

We recommend that AIXM business rules be written with explicit selection of time
slices. This should be done whenever the rule states a condition that must be fulfilled for
an AIXM feature property.

NOTE: Testbed 11 did not analyze the implications of other common time slice properties such as valid
time as well as sequence and correction numbers. Together with the time slice interpretation these
properties are essential when determining the value(s) of an AIXM feature for any point in time. It is not
clear if Schematron tests should be concerned with the actual state of an AIXM feature (that would need to
be computed from all time slices on-the-fly). If the actual state is important a preprocessing step could be
introduced. It would compute a snapshot which can be tested by the Schematron code.

OGC 15-024r2

26 Copyright © 2015 Open Geospatial Consortium

8 Automated Derivation of SBVR Business Rules to Schematron Rules

8.1 Analysis of AIXM SBVR Rules and SBVR Profile for AIXM

NOTE: for simplicity reasons the rules presented in this section do not take time slice selection into
account. For a detailed description of that topic, see section 7.2.

8.1.1 Assignment / Existence Checks

Example

AIXM-5.1_RULE-1A8519: It is obligatory that each AircraftStand with assigned
availability value isOperationalBy exactly one ApronAreaAvailability

Analysis

In the context of AircraftStand, noun “availability” and verb “isOperationalBy” refer to
the same property value, which is of type ApronAreaAvailability.

Figure 1 – Assignment check example – AircraftStand and ApronAreaAvailability
in context

In this example, the cardinality of availability is 0..*. In other cases, it can be 0..1.

The “assigned” keyword is an existential quantification. The SBVR profile adds to say
that “… the referent thing is not null”. The use of “assigned” boils down to a null /
existence check. It is a shortcut for the existential quantifier which, according to the
SBVR profile, can be expressed with “at least one”.

“assigned” is part of a predicate that is (potentially part of) a filter on a set of values. In
the example, this set is the set of all AircraftStand objects. In other words, the rule targets
only those AircraftStand objects that have at least one availability value that is not null.

«feature»
Apron::AircraftStand

«object»
Apron::

ApronAreaAvailability

0..*

isOperationalBy

+availabil ity 0..*

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 27

This essentially constitutes a selection of AircraftStand objects. The expression
“isOperationalBy exactly one ApronAreaAvailability” contains a quantification that
targets the same property as the assignment used in the selection: availability (because
“isOperationalBy” is the name of the association where availability is the role that
represents a property of AircraftStand).

An existential quantification checks that a certain number of elements of a given set4
exist. For an element to exist, it must not be null. A quantification of a variable X
therefore implies an assignment check for that variable.

In summary, the rule can be simplified to: it is obligatory that each AircraftStand
isOperationalBy at most one ApronAreaAvailability

If the rule was intended to ensure that exactly one availability exists for each
AircraftStand, it could be written as follows:

 It is obligatory that each AircraftStand isOperationalBy exactly one
ApronAreaAvailability or

 Each AircraftStand shall have exactly one availability.

8.1.2 Handling of Choices

Example

AIXM-5.1_RULE-1A853D: It is obligatory that each ChangeOverPoint with assigned
airportReferencePoint value isLocatedAt exactly one AirportHeliport

Analysis

The conceptual model of a ChangeOverPoint has an optional “location” property of type
“SignificantPoint” (see Figure 2).

4 In the example that is the set of all availability property values of a given AircraftStand.

OGC 15-024r2

28 Copyright © 2015 Open Geospatial Consortium

Figure 2 – ChangeOverPoint and <<choice>> SignificantPoint with its options

The location.SignificantPoint has not been included in the SBVR rule because
SignificantPoint is a “choice” class and at first it was decided to consider them
“transparent”.

Using the association name as verb that identifies the choice and then the name of the
class that represents the desired choice works if all choices have different types.
However, this is not true in general. Consider the following figure.

«feature»
En-route::ChangeOv erPoint

+ distance: ValDistanceType

«choice»
Points::

SignificantPoint

«feature»
Airport/Heliport::
AirportHeliport

«feature»
Helicopter Surfaces::

TouchDownLiftOff

«feature»
Runway::

RunwayCentrelinePoint

GM_Point

«object»
Geometry::Point

«feature»
Nav aids::Nav aid

«feature»
Points::

DesignatedPoint

0..*

+aimingPoint 0..1

0..*
+position

0..1

0..*

isLocatedAt

+location 0..1 0..*

+airportReferencePoint 0..1

0..*

+runwayPoint

0..1

0..*

+navaidSystem

0..10..*

+fixDesignatedPoint

0..1

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 29

Figure 3 – Construction of a <<choice>>, equivalent to a <<union>> as defined in
the ISO 19100 series of standards

It is perfectly valid to have two choices of the same type, because the semantics of each
choice would be different.

The rule “It is obligatory that each Class1 verb exactly one Class4” would be ambiguous,
because it is not clear whether choiceB or choiceC is allowed.

Thus, it is better to be explicit when formulating a rule that involves a <<choice>> type.

Three cases need to be considered:

1. The <<choice>> itself shall be identified – for example for a general existence
check.

2. One of the available choices shall be identified.
3. Two or more of the available choices shall be identified.

Rules for the different cases can be formulated as shown in Table 3.

Table 3 – The various cases of formulating a rule that includes a <<choice>>

 Using shall / shall not Using obligation / prohibition

Case 1 Each Class1 shall have
quantification propertyOfClass1.

It is obligatory that each Class1 has
quantification propertyOfClass1.

Each ChangeOverPoint shall have
a location. a)

It is obligatory that each
ChangeOverPoint has a location. a)

Case 2 A Class1 shall have quantification
choiceB as propertyOfClass1.

It is obligatory that a Class1 has
quantification choiceB as

«feature»
Class1

«choice»
Class2

Class3

Class4

Class5

verb

+propertyOfClass1 0..1

+choiceC

+choiceB

+choiceA

+choiceD

OGC 15-024r2

30 Copyright © 2015 Open Geospatial Consortium

propertyOfClass1.

A ChangeOverPoint shall have an
airportReferencePoint as location.

It is obligatory that a ChangeOverPoint
has an airportReferencePoint as location.

Case 3 A Class1 shall have quantification
choiceA or choiceB or choiceC as
propertyOfClass1.b)

It is obligatory that a Class1 has
quantification choiceA or choiceB or
choiceC as propertyOfClass1.b)

a) The cardinality in the example (Figure 2) would theoretically allow a SignificantPoint
(rather: a non-abstract subtype of SignificantPoint) without any actual choice value,
because the choices themselves are optional. However, the <<choice>> class does not
appear in the AIXM XML encoding. Instead, the name of an XML element that
represents a choice is a concatenation of the role name of the <<choice>> class with the
role name of the target class of each choice branch, separated by “_” (see
[AIXMUML2XSD] for further details).
The UML to GML application schema encoding rules for <<union>> classes prevent
this mismatch between conceptual and implementation schema. There, the properties of
a <<union>> always have cardinality 1.

b) The choices must be concatenated with ‘or’.

We suggest the introduction of the construct “choice1 or … or choiceN as” to identify the
choice or choices of interest. This appears to result in a suitable formulation of the rule.

8.1.3 Handling Inheritance

Example

AIXM-5.1_RULE-BB801: It is obligatory that each Service
specialization TrafficSeparationService specialization AirTrafficControlService with
assigned clientProcedure value controls exactly one Procedure specialization
StandardInstrumentDeparture

Analysis

According to the SBVR profile for AIXM, “specialisation” is an additional categorisation
fact-type used to target a specific non-abstract subclass in an inheritance hierarchy. In this
case, the rule shall ensure that an AirTrafficControlService has at most one5
clientProcedure of type StandardInstrumentDeparture.

5 Section 8.1.1 explains why the rule results in an „at most one“ quantification, rather than an „exactly one“.

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 31

Figure 4 – Inheritance example – AirTrafficControlService and Procedure in
context

Documenting all parents of the rule relevant classes is unnecessary and overly
complicates the SBVR rule. The inheritance information is already contained in the
conceptual schema from which it can be retrieved by the automation tool. The rule can
therefore be simplified to:

“It is obligatory that each AirTrafficControlService controls at most one
StandardInstrumentDeparture”

The context class – AirTrafficControlService – is clearly identified by the rule. The value
type of property “clientProcedure” is the abstract type “Procedure”. It has multiple
subtypes, StandardInstrumentDeparture being one of them. The tool can determine that
StandardInstrumentDeparture is a valid substitution for Procedure. This should be
sufficient information to derive schematron rules.

When it gets to inheritance, we need to consider two cases:

1. The set of classes composed of a given type and all its subtypes shall be
identified.

2. Only a specific subset of the subtypes shall be identified.

«feature»
Service::Service

«feature»
Service::

TrafficSeparationService

«feature»
Serv ice::

AirTrafficControlServ ice

«feature»
Procedure Overview::

Procedure

«feature»
Departure Procedure::

StandardInstrumentDeparture

0..*

controls

+clientProcedure

0..*

OGC 15-024r2

32 Copyright © 2015 Open Geospatial Consortium

Rules for the different cases can be formulated as shown in Table 4. The rule
formulations in the table not only cover the specific AIXM SBVR rule used as example
so far. They also cover a more general example, which is shown in the following figure.

Figure 5 – General case of an inheritance relationship

As we can see, both ClassA and ClassB have a set of subtypes. Keep in mind that any
subtype can be used to represent its supertype, following the semantics of inheritance
defined by UML. It therefore is not necessary - and in fact would even be wrong – to
exclude a specific subtype in a rule when its supertype would be included (for example,
excluding SubtypeB1 or SubtypeB11 when ClassB was included). We can therefore
focus on rule formulations that allow us to identify those classes we are really interested
in. All subtypes of these classes should automatically be identified as well.

Table 4 – The different cases of formulating a rule to identify classes in an
inheritance hierarchy

 Using shall / shall not Using obligation / prohibition

Case 1 Each AirTrafficControlService
shall have at most one
clientProcedure

It is obligatory that each
AirTrafficControlService controls at
most one Procedure

Each ClassA shall have
quantification propertyOfClassA

It is obligatory that each ClassA verb
quantification ClassB

Case 2 Each AirTrafficControlService
shall have at most one

It is obligatory that each
AirTrafficControlService controls at

«featureType»
ClassA

«featureType»
ClassB

«featureType»
SubtypeA1

«featureType»
SubtypeA1_1

«featureType»
SubtypeB1

«featureType»
SubtypeB2

«featureType»
SubtypeB11

verb

+propertyOfClassA
«property»

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 33

clientProcedure of type
StandardInstrumentDeparture

most one StandardInstrumentDeparture

Each ClassA shall have
quantification propertyOfClassA
of type SubtypeB11 or SubtypeB2

It is obligatory that each ClassA verb
quantification SubtypeB11 or SubtypeB2

Note that when using “shall” and “shall not” the keyword “of type” is introduced to
support a more natural formulation of the rule. This is not necessary when obligation and
prohibition is used as modality.

This approach allows rules to be expressed against abstract types, removing the need to
create rules for each subtype if only properties of the supertype are rule relevant.

Likewise, it would remove the need to list all possible subtypes in the rule. An example
for this is:

AIXM-5.1_RULE-BA47A: It is obligatory that each RunwayCentrelinePoint with
assigned navaidEquipment value hasEstablished exactly one NavaidEquipment
specialization Localizer or Glidepath or VOR or TACAN or DME or NDB or
MarkerBeacon or SDF or Elevation or DirectionFinder or Azimuth

OGC 15-024r2

34 Copyright © 2015 Open Geospatial Consortium

Figure 6 - Inheritance example (2) – RunwayCentrelinePoint and NavaidEquipment
in context

When deriving Schematron rules the tool should automatically take inheritance into
account. The schema-element() XPath 2.0 function would be very useful to identify a
type and all possible subtypes. However, schema aware XPath processing may not
always be available in Schematron processors. As a fallback, the tool uses the names of
all subtypes found in the model. The drawback of that approach is that any potential
extension that is not contained in the model and that added further subtypes will not be
recognized by the Schematron rules generated by the tool.

8.1.4 Expressions for XPath Axis Names

Example

AIXM-5.1_RULE-1A3EC1: Each Curve or ElevatedCurve shall not have descendant
ArcStringByBulge

«feature»
Runway::

RunwayCentrelinePoint

«feature»
Navaids::

NavaidEquipment

«feature»
Navaids::
Localizer

«feature»
Navaids::VOR

«feature»
Navaids::SDF

«feature»
Navaids::
Elevation

«feature»
Navaids::NDB

«feature»
Navaids::DME

«feature»
Navaids::

MarkerBeacon

«feature»
Navaids::

DirectionFinder

«feature»
Navaids::
Glidepath

«feature»
Navaids::Azimuth

«feature»
Navaids::TACAN

0..*

hasEstablished

+navaidEquipment
0..*

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 35

Analysis

The keywords “has/have descendant” and “is-descendant-of” are introduced by the
SBVR Profile for AIXM as additional fact-types/verbs. They heavily relate to the
descendant-or-self axis notation in XPath expressions.

Use of these verbs is suitable when the XML implementation is the schema level that an
SBVR rule targets (see 7.1). If the schema level is the conceptual level, i.e. rules are
written for the UML model, the “descendant” verbs are not appropriate because the
structure of a UML model is different compared to an XML document. The relationships
between elements in the UML model are not only parent-child relationships. There can be
reflexive associations and cyclic relationships which are not covered by XPath axes.

Apparently, the rule in the example has been written for the XML implementation
schema. It uses “Curve” and “ArcStringByBulge” instead of “GM_Curve” and
"GM_ArcStringByBulge" which are contained in the conceptual model of ISO 19107.

If the rule was written for the conceptual schema, it should read: “Each GM_Curve shall
not have a segment of type GM_ArcStringByBulge.” Derivation of Schematron for this
rule would require additional knowledge about the specific implementation of ISO 19107
in XML. Testbed 11 focused on rules for a given application schema – AIXM – which
has well-defined encoding rules to derive XML Schema from the conceptual model.
Support for rules written for external models, especially with a very specific XML
implementation, is therefore a future work item.

8.1.5 Regular Expressions

Example

AIXM-5.1_RULE-1A4A7A: Each AerialRefuellingAnchor with refuellingBaseLevel.uom
equal-to ('FL', 'SM') shall have refuellingBaseLevel value expressed with 1, 2 or 3 digits

Analysis

It is very hard for a tool to recognize conditions like “value expressed with 1, 2 or 3
digits”. Whenever the textual representation of a property value must comply with a
specific structure, regular expressions could be used. They provide a rich feature set to
control text structure.

Using a regular expression, the rule from the example can be formulated as follows:

Each AerialRefuellingAnchor with refuellingBaseLevel.uom equal-to ('FL', 'SM') shall
have refuellingBaseLevel matching ‘\d{0,3}’.

Admittedly, if the expert that creates SBVR rules is not experienced with regular
expressions, it would be hard for him or her to write such a rule. On the other hand,
creating regular expressions is not too hard. The expert could therefore have someone

OGC 15-024r2

36 Copyright © 2015 Open Geospatial Consortium

familiar with regular expressions write the expression for him. The benefit would be that
the tool is then able to automatically derive Schematron code from the rule.

XPath 1.0 does not support regular expression matching. Its successor, XPath 2.0,
provides such functionality. By default, Schematron uses the XPath language as used in
XSLT 1.0 – which is XPath 1.0. Modern tools also support XSLT 2.0 and thus XPath 2.0
for Schematron validation. At this point it is not clear whether the regular expression
support offered by XPath 2.0 is sufficient or not. If not, a new function could be
introduced that realizes regular expressions as required6. This would have the added
benefit that the function can be defined for both XPath 1.0 and 2.0. The cost would be
that it requires an extension of the Schematron processor.

8.1.6 Inclusion of External Vocabularies

Example

AIXM-5.1_RULE-29FE0: A Note shall not (be-descendant-of FeatureTimeslice with
assigned descendant event:theEvent value) and have assigned translatedNote.note value
using a different character set from
{'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z',
'a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z','0','1','2','3','4','5
','6','7','8','9','-','?',':','(',')','.',',',"'",'=','/','+'}

Analysis

The presence of “be-descendant-of” indicates that this rule is targeting the XML
implementation schema, rather than the conceptual schema (see 8.1.4). The rule would
also be a candidate for using a regular expression (see 8.1.5). Of primary interest in this
section, however, is the presence of “event:theEvent” in the rule.

"theEvent" is a property introduced by the Digital NOTAM Event Specification (DNES).
The construct “event:theEvent” very likely represents a qualified name. In the XML
encoding qualified names uniquely identify the namespace to which an element belongs.
In this case “event” hints at the namespace assigned to the DNES, because “event” is
often used as the XML namespace abbreviation for elements of this schema.

The conceptual schema of the DNES is not included in the core AIXM UML model. The
DNES is an AIXM application schema that is an extension of the AIXM 5.1 model. As
such, it is not part of the AIXM vocabulary represented by the core conceptual schema of
AIXM. According to [1] there are different ways to include a term (noun or verb) from an
external vocabulary in SBVR rules written against a given vocabulary (in our case:
AIXM):

6 Such an approach has been taken before, for regular expression matching in OCL expressions (for further details, see
OGC 10-088r3 section 6.6.7).

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 37

 Adopt the term and its definition
 Quote the term
 Include the external vocabulary

Suffice to say that in the context of writing SBVR rules with a conceptual schema
providing most of the vocabulary7 these approaches essentially represent a schema
import. Qualification of a term is only needed in case that the (rule) context of the term
does not uniquely identify the vocabulary that the term belongs to. For the example, this
means that “theEvent” can be used without using “event:” as qualifier, because the core
AIXM schema does not contain a property or association named “theEvent”.
Qualification can be achieved in different ways:

 Using qualified names as in XML – example: event:theEvent
 Using a UML style – example: {DNES application schema name}::theEvent
 Using a namespace identifier (often used in [1]) – example: theEvent [DNES

namespace]

The latter may be easier to read and write for someone who is not familiar with XML.

In order for a tool to recognize terms that belong to an external schema, the tool must
know that schema. In order to recognize DNES terms, the tool would therefore need to
know all classes that belong to the conceptual schema of DNES, their inheritance
relationships, their attributes and associations, as well as any schemas that DNES
imports. The best way to achieve this is to provide a consolidated UML model to the tool,
with all these details readily available. The consolidated model would include the core
AIXM schema as well as the DNES schema plus any imported schema.

8.1.7 SRS Name

Example

AIXM-5.1_RULE-3E8: Each assigned srsName value shall be equal-to
'urn:ogc:def:crs:EPSG::4326'

Analysis

“srsName” is not part of the conceptual model of ISO 19107. Apparently the SBVR rule
is written for the XML implementation schema of AIXM, not its conceptual schema. It
makes sense to do so because this covers all cases where an SRS name can occur with
just a single rule.

Note that this rule creates a bit of tension, because (OGC 12-028r1) implies that – at least
theoretically – EPSG::3395 could be used to express a rhumbline where the latitudes of
two consecutive points of a curve segment are different.

7 The rest is provided by the SBVR profile for AIXM.

OGC 15-024r2

38 Copyright © 2015 Open Geospatial Consortium

8.2 Schematron Derivation

8.2.1 Overview

The process of deriving Schematron code from business rules expressed in SBVR
consists of five steps (Figure 7) which are described in detail in the following sections.

Figure 7 – Schematron derivation process

The functions required for the execution of each step are implemented by ShapeChange8,
an open source tool that converts application schemas in UML to GML application
schemas, Schematron schemas, JSON schemas and many other representations.

8.2.2 Loading the Conceptual Models

The conceptual schema of AIXM 5.1 was made available via a Sparx Systems Enterprise
Architect Project (.eap) file. Within Testbed 11, the conceptual schema for the Digital
NOTAM Event Specification has been added to the model as well.

8 http://shapechange.net

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 39

Figure 8 – package structure of AIXM, including the core conceptual schema and
extensions

Loading the model from the .eap file is achieved using readily available ShapeChange
functionality. Only the packages “AIXM” and “Digital NOTAM Event Specification”
(see Figure 8) are loaded as application schema.

While loading the schema contents, stereotypes used in AIXM are mapped to stereotypes
that are well-known by ShapeChange. Well-known stereotypes for the purposes of
ShapeChange are those defined in the UML specification, and in the ISO 19100-series of
specifications, specifically ISO/TS 19103:2005, ISO 19109:2005 and GML 3.2/ISO
19136:2007. Table 5 documents the stereotype mapping applied in Testbed 11.

Table 5 – Mapping of AIXM stereotypes to well-known stereotypes

Stereotype used in AIXM model Well-known Stereotype

object, message <none> (an empty stereotype identifies an
object type)

choice union

feature featureType

Once the AIXM schemas have been loaded, they are merged as described in the
following section.

OGC 15-024r2

40 Copyright © 2015 Open Geospatial Consortium

8.2.3 AIXM Model (Core and Extensions) Merging

AIXM has a specific way of adding information to core schema classes that is different to
how it is usually done in UML and in ISO application schema. Where usually
information is added through subtyping, AIXM has the concept of extensions. An
extension schema is a schema that:

 Can define <<extension>> classes that extend:
o either a specific feature or object type
o or all feature types9

 Can define <<codelist>> classes that extend code lists from the core schema
 Can define new code lists as well as feature and object types

The objective of this approach is described in [AIXMASGEN] section 1.3 as follows:

“The core AIXM model provides the definition of standardised aeronautical
information features. In order to use AIXM for a specific application, a Community of
Interest (COI) will have to agree upon how instances of AIXM features are to be
exchanged and communicated in the community. […]

In the definition of the AIXM Application Schema, the COI might also want to extend
the core AIXM with additional properties and features. Some principles that regulate
such extensions include:

 An extension of an existing AIXM feature should remain valid against the definition
of the core AIXM XSD element with the same name (for that purpose, the
AbstractSomeFeatureExtension element is provided in the core AIXM XSD). A
consequence is that it is not possible to extend <<datatype>> classes. Only
<<codelist>> may be extended.

 An additional feature and objects shall follow the core AIXM modelling
conventions (stereotypes, naming, data types, etc.)”

A consequence of this approach is that actual AIXM data can contain information that is
specified by multiple extensions, and that an AIXM processor is able to ignore unknown
extensions to core AIXM features.

With the AIXM extension mechanism, AIXM feature and object types conceptually own
all the properties that are added to them via <<extension>> types. This is useful for
writing business rules, because it allows rules like the following:

Each RunwayDirection.timeSlice that belongsTo Event with scenario equal-to
'RWY.CLS' and with version equal-to '2.0' shall have exactly one assigned availability

9 An example for such an extension is the “AnyAIXMFeature” type defined in the Digital NOTAM Event
Specification, which adds “theEvent” property to all AIXM features. The property allows the time slice of an AIXM
feature to reference the Event it belongs to.

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 41

value and shall have availability.ManoeuvringAreaAvailability.operationalStatus
equal-to 'CLOSED'.

“belongsTo” is the name of an association that is added via the Digital NOTAM Event
Specification to all AIXM feature types (see Figure 9).

Figure 9 - AIXM extension mechanism - RunwayDirection belongsTo Event

In order to parse AIXM business rules and generate Schematron code with correct XPath
expressions, ShapeChange checks that the noun and verb concepts declared in business
rules are compliant to the conceptual model of AIXM. This means that a business rule
can only make statements about properties of an AIXM feature if the feature actually has
these properties.

The rule chosen as example in this section makes use of the property “theEvent” via the
verb “belongsTo” that refers to “Event”. The property is defined in the DNES extension
schema and accessed as if it belonged to the feature type RunwayDirection. According to
the conceptual model shown in Figure 9 RunwayDirection does not have this property.
ShapeChange would therefore report an error while parsing the business rule10 – unless
the AIXM schemas are merged on-the-fly.

10 The reason is that there is no explicit inheritance relationship between RunwayDirection and the extension class. The
AIXM extension mechanism appears to prefer extensions of specific feature and object types through explicit
inheritance relationships. However, the Digital NOTAM Event Specification is an example where an extension is
declared for all feature types, not through explicit relationships but rather through implication.

«extension»
Digital NOTAM Ev ent Specification::

AnyAIXMFeature

«feature»
Digital NOTAM Ev ent Specification::

Ev ent

«feature»
Runway::

RunwayDirection
RunwayDirection	
 is	

extended	
 implicitly	
 by	

AnyAIXMFeature.

0..*

belongsTo

+theEvent 0..1

OGC 15-024r2

42 Copyright © 2015 Open Geospatial Consortium

ShapeChange supports a model transformation that merges AIXM extension schemas and
the core schema. The result of the merging process is a single schema that contains the
feature and object types declared in all schemas, where properties added via extensions
have been copied to the relevant types. Merging also adds time slices to AIXM feature
types. More specifically, time slice types are defined for each AIXM feature type, with
the properties that belong to the feature type. This solves the issue of time slices not
explicitly being defined for AIXM feature types on the conceptual level. It also allows
access to time slice specific properties like their “interpretation” in business rules (see
section 7.2 for further details).

NOTE: due to time constraints in Testbed 11 work on the AIXM schema merging transformation focused
on the realization of those aspects that were required to support the Testbed 11 demonstration scenario.
Time slice properties like validTime as well as metadata properties are not supported yet. The realization of
a complete AIXM schema merge covering all aspects of AIXM schemas is future work.

While merging the schemas, ShapeChange keeps track of XML Schema information –
like the target namespace and the preferred namespace prefix – for extension schema
elements. This is required for creating correct XPath expressions and namespace
declarations when creating Schematron code.

After the AIXM schemas have been merged, the AIXM business rules can be loaded into
the model.

8.2.4 Loading SBVR Constraints from Excel File

UML class diagrams are useful to model the structure of information, as well as certain
semantics. Requirements such as allowed value ranges for numeric properties, especially
if dependent on other property values, can best be described using so called constraints.

Constraints can be specified on individual model elements. In practice they are usually
specified on classes. There are different ways to express a constraint. It can be free text,
for consumption by humans. The Object Constraint Language (OCL) is another option to
define constraints. OCL is a standard from the Object Management Group (OMG). OCL
expressions are very formal, highly expressive, and usually written for automated
processing. In Testbed 11 SBVR was introduced as another type of constraint. Figure 10
illustrates that it is possible to define SBVR constraints directly in the UML model, using
modeling software such as Enterprise Architect from Sparx Systems.

Figure 10 – SBVR constraint defined directly in the UML model

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 43

ShapeChange supports parsing of constraints that are defined directly on schema
elements.

AIXM business rules are maintained outside of the AIXM UML model. The reason is
that not all of them are generally applicable. Some of the business rules only apply to
specific use cases. AIXM business rules thus need to be loaded on a case by case basis.

For this reason another ShapeChange transformation has been implemented in Testbed
11. It supports enriching the AIXM schema (once it has been merged, see previous
section) with SBVR constraints that are stored in an excel spreadsheet.

The format of the spreadsheet must be as follows:

 the rules must be defined on a single sheet named “Constraints” (case is ignored)
 row numbering must be continuous, and start with 1
 row 1 contains the header information for the following rows
 the following columns are of interest (case of column names is ignored):

o “Name” (required) - contains the name of a business rule
o “Text” (required) - contains the text of a business rule
o “Comments” (optional) – describes the rule
o “Schema Package” (optional) – name of the package that contains the

class the rule is specified for (for cases in which classes with the same
name can be found in multiple packages)

o “Class” (optional) – name of the class the rule is specified for; the name
must be exactly as defined in the conceptual schema; therefore, do not use
QNames

NOTE: the constraint loading function can be extended in the future to be more lenient with respect to
formatting of the excel file. Aspects like column names can also be made configurable, to support the
preferences of a given community.

It may appear strange that the class name is optional. The reason for this is that the
constraint loader attempts to parse the name of the relevant class directly from the rule
text. The current grammar supports this. Class names stated in the spreadsheet are given
preference. In other words, class names are only parsed from rules if no class name is
provided. If the name of the class that provides the context for a rule could not be found,
or if the conceptual schema does not contain a class with that name, then a message is
logged and the business rule is ignored.

Once the rules have been loaded into the AIXM schema, they can be processed by
ShapeChange. In order to derive Schematron code from the constraints, they must first be
parsed into an intermediate language, which is described in the following section.

8.2.5 Parsing SBVR Constraints to First Order Logic

The text of an SBVR constraint is parsed to a First Order Logic (FOL) predicate in a
three-phased approach:

OGC 15-024r2

44 Copyright © 2015 Open Geospatial Consortium

1. via a lexical analysis the SBVR text is converted into a stream of meaningful
tokens

2. the token stream is then parsed to recognize the structure of the sentence
3. the result is transformed into an FOL predicate

Phase 3 involves the following semantic checks:

 ensure that the properties used in noun concepts or identified by verbs actually
belong to the class in the given context

 ensure that there is no mix of ‘and’ and ‘or’ in logical combinations of verb
expressions

 ensure that logical combination of relative clauses is not applied on nested
expressions

NOTE: for further detail on the last two checks, see the documentation of the SBVR grammar in section
8.2.5.1.

If one or more errors are detected while parsing an SBVR constraint, they are logged by
the tool. Processing will then move on to the next constraint.

The next section documents the SBVR grammar that is supported by the SBVR-to-
Schematron processing tool. Section 8.2.5.2 provides more details on how time slices are
handled during the parsing process. Finally, section 8.2.5.3 describes the First Order
Logic supported by the tool.

8.2.5.1 Supported SBVR Grammar

The Schematron derivation tool recognizes a specific grammar which is described in this
section. The grammar has been developed based upon information found in the SBVR
standard and especially in the [SBVR Profile for AIXM] as well as the large set of AIXM
SBVR rules that were available in Testbed 11.

A rule is given in one of two forms (see Figure 11): the modality is expressed using
“shall” / “shall not” or it is expressed using “It is obligatory / prohibited that …” (a dot to
complete the sentence is optional).

Figure 11 – Grammar – an SBVR rule can be expressed in one of two ways

The following figure provides a more detailed view of these sentences.

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 45

Figure 12 – Grammar – the constituents of a sentence in an SBVR rule

The structure of the two forms in which the sentence of an SBVR rule can be written is
quite similar – only the way that modality is expressed is different.

We can see that there is an initial quantification for a noun concept. This is either a single
class or property name from the conceptual AIXM schema or a combination thereof
using dots as separators (Figure 13).

Figure 13 – Grammar – noun concept concatenation

The name of a concept must comply with the following regular expression: [a-zA-Z_][a-
zA-Z0-9_]*

The tool supports the quantifiers listed in the [SBVR Profile for AIXM]:

OGC 15-024r2

46 Copyright © 2015 Open Geospatial Consortium

Table 6 – Quantifiers supported by the tool

Quantifier Name Written as

(including the version with first character given in lower case)

universal ‘An’, ‘A’, ‘All’, ‘Each’

existential ‘At least one’

exactly-one ‘Exactly one’

at-most-one ‘At most one’

at-most-n ‘At most INT’

at-least-n ‘At least INT’

at-least-2 ‘More than one’

exactly-n ‘Exactly INT’

numeric range ‘At least INT and at most INT’

Note: INT is an unsigned integer value

The first noun concept provides the context for the whole sentence. It represents a set of
objects (e.g. all Airspace features). An optional relative clause (Figure 14) can be used to
apply a selection on this set of objects. In other words, we can test that an object satisfies
a pre-condition before we check that it fulfills the main condition that is expressed via a
(logical combination of) verb expression(s).

NOTE: because scoping via parentheses for logical expressions in SBVR rules is not foreseen at the
moment, logical combination of verb expressions can only be created using ‘and’or ‘or’. A mix of ‘and’
and ‘or’ logical operators is not allowed.

Let us focus on the relative clause first.

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 47

Figure 14 – Grammar – relative clause expression

A relative clause as shown in Figure 14 is a predicate expression (introduced by the
keyword ‘with’), a verb expression (introduced by the keyword ‘that’, and possibly
negated using ‘not’ or ‘does not’), or a logical combination thereof.

Ambiguity when using a logical combination of relative clauses and nested verb
expressions

Note that a logical combination of relative clauses is prohibited if used in combination
with nested verb expressions. The problem is that the context for the relative clause that
is added using a logical expression would be ambiguous. Consider the following
example:

“Each ClassA shall have prop1 that has prop2 that belongs to XYZ and that …”

Without any further punctuation marks the context of the relative clause introduced by
“and that” can be prop1 but also prop2!

A predicate expression contains an optional quantifier and either an assignment predicate
or simple predicate (Figure 15).

OGC 15-024r2

48 Copyright © 2015 Open Geospatial Consortium

Figure 15 – Grammar – predicate expression

By default, the tool interprets a not explicitly stated quantifier as the existential
quantifier. The context for the following predicate is given by a noun concept. An
assignment predicate is interpreted as a null check. A simple predicate can either be a
type check or a simple comparison with a name or number (Figure 16)11. The negation of
the predicate can be expressed via the optional ‘not’.

11 The range of available operators can be expanded in the future, for example adding spatial relationship operators as
suggested in chapter 6.

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 49

Figure 16 – Grammar – simple predicate

Whenever the grammar shows a “Name”, it actually supports provision of a list of names
as specified in the [SBVR Profile for AIXM]. A single name must comply with the
following regular expression: \'[a-zA-Z0-9-_\.]+\'

A “Number” is an integer or real (with a single dot as separator and at least one digit on
each side of the dot). It can be signed (with a minus or plus sign).

The grammar supports the comparison operators that are listed in the [SBVR Profile for
AIXM]. The keywords for each operator shown in Figure 16 must be written in lower
case, and separated either by spaces or hyphens (not both). Thus, ‘lower than’ and ‘equal-
to’ are valid operators, but both ‘Higher than’ and ‘lower-or equal to’ are not12.

If ‘equal-to’ is applied on a list of names, then the outcome is true if the value that is
compared is equal to at least one of the names. The comparison operator ‘other-than’ is
translated to not(equal-to(…)). Thus, when applied on a list of names the result is true if
the value is not equal to any of the names.

The ‘of-type’ operator checks that an object is of a specific schema type. The operator
expects at least one class name to be provided. Multiple class names can be given by
separating them with ‘or’. It is also possible to provide a list of class names (which has
the same meaning as if they were separated by ‘or’). Examples of rules that use this
operator are given in 8.2.6.3.

12 ‚Higher than‘ starts with an upper case character while ‘lower-or equal to’ mixes spaces and hyphens as separators.

OGC 15-024r2

50 Copyright © 2015 Open Geospatial Consortium

The SBVR grammar supports verb expressions that are structured as shown in the
following figure.

Figure 17 – Grammar – verb expression

A verb concept – including the reserved verbs “has” and “have” – opens up a verb
expression.

Two special cases are supported to perform assignment checks. Both of them are usually
only used in combination with the verbs “has” and “have”. An assignment check like
we’ve already seen in a predicate expression can be used, but also an assignment check
that is combined with the ‘other-than’ comparison operator.

A verb expression can also be used to perform a quantification on a property A, more
specifically its value(s). The set of values to be quantified can further be checked through
predicates. Three cases are supported:

 a relative clause specifies a condition for the sub-properties of a given value (of
property A),

 a predicate specifies a condition that must be fulfilled by property A itself;
 if the SBVR rule does not contain a condition for the quantification then by

default an assignment check is performed.

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 51

8.2.5.2 Time Slice Handling

If an SBVR rule does not explicitly state “timeSlice” as context for the property
(represented by a noun or verb) of an AIXM <<feature>> then the parser automatically
adds the “timeSlice” step directly in front of the property call, as shown in the following
examples.

Table 7 – Examples of rules with explicit and implicit use of the “timeSlice”
property

SBVR Rule First Order Logic Expression

Each Airspace shall have assigned
designator value

forall (x1:self.Airspace | exists{1..*}
(x2:x1.timeSlice.designator | not (is-
null(x2))))

Each RunwayDirection.timeSlice that
belongsTo Event with scenario equal-to
'RWY.CLS' and with version equal-to
'2.0' shall have exactly one assigned
availability value and shall have
availability.ManoeuvringAreaAvailabilit
y.operationalStatus equal-to 'CLOSED'

forall (x1:self.RunwayDirection.timeSlice |
(not (exists{1..*} (x2:x1.belongsTo.Event |
(exists{1..*} (x3:x2.timeSlice.scenario | x3 =
RWY.CLS)) and (exists{1..*}
(x4:x2.timeSlice.version | x4 = 2.0))))) or
((exists{1} (x5:x1.availability | not (is-
null(x5)))) and (exists{1..*}
(x6:x1.availability.ManoeuvringAreaAvailabi
lity.operationalStatus | x6 = CLOSED))))

When converted to Schematron, path expressions are represented by XPath expressions.
If a “timeSlice” is added in front of a property call, then the result is an expression that
targets all time slices of the feature object.

If multiple conditions need to be checked for an individual time slice or if a condition
requires a specific quantifier for time slices, the SBVR rule should explicitly state the
“timeSlice” context for the condition(s); also see section 7.2.

Let us take a look at the first example shown in Table 7. Here, the FOL expression that
results from automatically adding the missing “timeSlice” step checks that each and
every time slice of an Airspace, and thus also all TEMPDELTAs, has an assigned
designator property. If this is only required for BASELINE and SNAPSHOT time slices,
the rule can be formulated like this: “Each Airspace.timeSlice with interpretation equal-to
‘BASELINE’ or with interpretation equal-to ‘SNAPSHOT’ shall have assigned
designator value”.

8.2.5.3 First Order Logic Language

The derivation of Schematron from SBVR constraints is achieved by translating the
information contained in the constraint text into an intermediate language, the First Order

OGC 15-024r2

52 Copyright © 2015 Open Geospatial Consortium

Logic (FOL) language. Figure 18 provides an overview of the supported language
constructs.

Figure 18 – Overview of the First Order Logic language supported for SBVR
constraint derivation

Each sentence in the SBVR grammar is represented by an enclosing quantification. A
quantification is used to check that a certain number of objects in the range of a variable
satisfy a particular condition. The implementation realized in Testbed 11 supports the
usual comparison operators as well as null- and type-checks. Conditions can be combined
and negated using logical predicates (and, or, not).

Quantification

quantifier: Quantifier
var: Variable
condition: Predicate

Predicate

Quantifier

lowerBoundary: int
upperBoundary: int

isUniversal(): boolean
isExistential(): boolean

LogicalPredicate

Not

predicate: Predicate

AndOr

predicate: Predicate [2..*] (List)
type: AndOrType

ComparisonPredicate

UnaryComparisonPredicate

expr: Expression

BinaryComparisonPredicate

exprLeft: Expression
exprRight: Expression

Variable

name: String
nextOuterScope: Variable [0..1]

Expression

Literal

EqualToisNull«enumeration»
AndOrType

and
or

SchemaCall

nameInSbvr: String

isTypeOf

ClassLiteral

«interface»
ClassInfo

ClassCall

«interface»
PropertyInfo

PropertyCall

StringLiteralList

value: String [1..*] (List)

StringLiteral

value: String

interfaces	
 defined	
 by	

ShapeChange

HigherOrEqualTo

HigherThan

LowerOrEqualTo

LowerThan

schemaElementschemaElement schemaElement

nextElement
0..1

variableContext

0..1

value

0..1

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 53

In the SBVR grammar, relative clauses can be used to perform a selection of the objects
that must fulfill a specific condition defined by the enclosing quantification. The
predicate that defines the selection is folded into the overall condition of the
quantification via an ‘implies’ construct:

let P be the condition of the selection, and Q be the actual condition that must be
satisfied, then the overall condition is:

P implies Q, which is equivalent to not (P and not(Q)), and thus not(P) or Q

The truth table is:

P Q P implies Q

T T T

T F F

F T T

F F T

This suits the purpose: only if the selection condition P is true and the actual condition Q
is false do we have a mismatch. If the selection is not satisfied for a given element, then
we are simply not interested in that element.

8.2.6 Translation to Schematron

Conversion from SBVR to Schematron is performed on the basis of a First Order Logic
representation of SBVR expressions.

Though originally stemming from a natural language formulation, SBVR, the syntax of
the First Order Logic representation is defined in a recursive way. Therefore the
principles of translation from this syntax to another language can best be described using
a recursive notation.

For a valid FOL expression x, let τ(x) denote the equivalent XPath expression. The
expression x may contain free variables (explicit or implicit), which need to be treated
and bound to their definition context when computing τ(x).

Table 8 describes how all particular constructs of the First Order Logic translate to
XPath/Schematron.

OGC 15-024r2

54 Copyright © 2015 Open Geospatial Consortium

Table 8 – Mapping of First Order Logic constructs to XPath/Schematron

First Order
Logic
construct

(and category, if
applicable)

Textual
representation

In words Schematron translation

Universal
quantification

forall(t:x|p(t)) All members
of some set x
of objects or
values shall
fulfill
predicate p.

every τ(t) in τ(x) satisfies τ(p(τ(t)))

where t translates to a unique $
prefixed variable name, and τ(x)
translates to current() if the
quantification is at the outmost level.

Existential
quantification:
„at least l and
at most h”

exists{l,h}(t:x|p(
t))

The number
of members
of some set x
of objects or
values, which
fulfill
predicate p
shall be
between l and
h.

for $var in count(for τ(t) in τ(x)
return if τ(p(τ(t))) then 1 else ())
return ($var>=τ(l) and $var<=τ(h))

Existential
quantification:
„exactly n”

exists{n}(t:x|p(t
))

The number
of members
of some set x
of objects or
values, which
fulfill
predicate p
shall be
exactly n.

for $var in count(for τ(t) in τ(x)
return if τ(p(τ(t))) then 1 else ())
return ($var=n)

Existential
quantification:
“at most n”

exists{0..n}(t:x|
p(t))

The number
of members
of some set x
of objects or
values, which
fulfill
predicate p
shall be at
most n.

for $var in count(for τ(t) in τ(x)
return if τ(p(τ(t))) then 1 else ())
return $var<=n)

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 55

First Order
Logic
construct

(and category, if
applicable)

Textual
representation

In words Schematron translation

Existential
quantification:
“at least n”

exists{n..*}(t:x|
p(t))

The number
of members
of some set x
of objects or
values, which
fulfill
predicate p
shall be at
least n.

for $var in count(for τ(t) in τ(x)
return if τ(p(τ(t))) then 1 else ())
return ($var>=n)

Variable
access

t defined in a
quantification,
such as
forall(t:x|p(t))

the variable
name, either
explicitly or
implicitly
provided

The variable name, preceded by ‘$’ –
for example $x1, $c1.

Note: this is the translation for τ(t),
which is mentioned in the
Schematron translations of
quantifications.

Property call x.pname Set of object
instances or
values
reached from
the instance
or set
represented
by x by
applying
property
name, pname.

If pname is encoded as an XML
attribute:

τ(x)/@pname

Otherwise, if pname is simple-valued
or if pname is object-valued and the
last segment in the schema call:

τ(x)/pname

Otherwise, if pname is object-valued
and encoded inline:

τ(x)/pname/*

Otherwise, if pname is realized by
reference using xlink:href pointing to
object instances in the same
document:

//*[concat(α,@gml:id,β)=

OGC 15-024r2

56 Copyright © 2015 Open Geospatial Consortium

First Order
Logic
construct

(and category, if
applicable)

Textual
representation

In words Schematron translation

τ(x)/pname/@xlink:href]

α and β are a prefix and a postfix to
adjust xlink:href values and gml:ids.
Typically bare name references are
used – hence α=# and β=empty.

Otherwise (if encoded inline or by
reference):

(τ(x)/pname/*)|//*[concat(α,@gml:id
,β)= τ(x)/pname/@xlink:href]

Logical infix and(x1,...,xn)

or(x1,...,xn)

Logical
combination
as indicated

τ(x1) and ... and τ(xn)

τ(x1) or ... or τ(xn)

Negation not(x) Logical
negation of x

not(τ(x))

Null check isNull(x) Determine if
the value of x
is null.

If the last segment of the patch
expression in τ(x) is encoded as an
XML attribute:

not(string-length(normalize-space
τ(x))))

Otherwise:

τ(x)[@xsi:nil='true']

Equality isEqualTo(e1,e2
)

Equality of
expressions
e1, e2

τ(e1)= τ(e2)

Note: This assumes that equality on
sets is fulfilled if at least one pair is
equal. Otherwise some more refined
code generation will be necessary.

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 57

First Order
Logic
construct

(and category, if
applicable)

Textual
representation

In words Schematron translation

Type check isTypeOf(x,(Cla
ssLiteral)z)

X is checked
for complying
with the type
y identified
by class
literal z.

τ(x)[name()=’T1‘ or … or
name()=’Ti’], where

Tk is the qualified name of one of the
concrete derivations of y, including
y, if it is not abstract (names of
abstract types are ignored).

String literal 'xxxxx' same

Numeric
literal

123 or 3.1415 same

String literal
list

('abc','def',...) List of
‘names’

same

Class literal class name (e.g.
AirportHeliport)

name of the
class

name of the class identified by the
class literal

The following sections describe specific aspects of the translation.

8.2.6.1 Recognition of AIXM Extension Elements

Classes and properties declared in an AIXM extension schema are translated using the
target namespace and preferred prefix declared by that schema. The relevant schema
information has been preserved by ShapeChange in the AIXM schema merging process
step (see 8.2.3).

In addition, properties of AIXM features that have been specified in an extension receive
a slightly modified translation:

 Let pname be the name of an extension property, and
 let nsP be the preferred namespace prefix for the schema in which the property

has been declared, and
 let nsFT be the preferred namespace prefix for the schema in which the feature

type that owns the property, then:

OGC 15-024r2

58 Copyright © 2015 Open Geospatial Consortium

o if pname is simple-valued or if pname is object-valued and the last
segment in the schema call:

§ τ(x)/nsFT:extension/*/nsP:pname
o Otherwise, if pname is object-valued and encoded inline:

§ τ(x)/nsFT:extension/*/nsP:pname/*
o Otherwise, if pname is encoded by reference using xlink:href pointing to

object instances in the same document:
§ //*[concat(α,@gml:id,β)=
τ(x)/nsFT:extension/*/nsP:pname/@xlink:href]

§ α and β are a prefix and a postfix to adjust xlink:href values and
gml:ids. Typically bare name references are used – hence α=# and
β=empty.

o Otherwise (if encoded inline or by reference):
§ (τ(x)/nsFT:extension/*/nsP:pname/*)|//*[concat(α,@gml:id,β)=
τ(x)/nsFT:extension/*/nsP:pname/@xlink:href]

8.2.6.2 Support for Feature References in Schematron Code

The SBVR Profile for AIXM states the following:

According to the AIXM Feature Identification and Reference document,
associations between features can be implemented with abstract or local
references. In the current version, the Schematron code provided assumes that all
associations are encoded as local references (xlink:href=”#...” referring to the
gml:id value of the target feature).

At present, the Schematron derivation tool also supports only local references.

It would be possible to extend the Schematron translation to also support abstract
references. However, a pre-processing step for the data that shall be validated could also
ensure that abstract references are resolved to local ones, prior to Schematron validation.
That would allow the Schematron code to continue only using local references, and thus
prevent adding another level of complexity in the resulting code. The validation service
or the enrichment service might be suitable candidates for this kind of pre-processing.

8.2.6.3 Realization of ‘of-type’ operator

The SBVR grammar of the tool (8.2.5.1) supports an ‘of-type’ operator in predicates.
This operator checks that a given object has a specific type, which is specified by a single
or a list of class names. Whenever such a class name identifies a supertype in an
inheritance hierarchy, the tool automatically includes all known (non-abstract) subtypes
in the type check – in addition to the supertype itself (if it is not abstract).

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 59

When translated to Schematron, the ‘of-type’ operator is realized as a series of QName
checks.

Example

Given the following schema:

Figure 19 – Conceptual schema example for ‘of-type’ operator translation to
Schematron

Given the following rules:

1. Each Class1_3 shall have class1_1 of-type 'Class1_1A' or 'Class1_1B'.
2. Each Class1_3 shall have class1_1 of-type 'Class1_1'.

The tool produces the following Schematron rule / assertions:

Listing 1 – Schematron for rules using ‘of-type’ operator

<rule context="core:Class1_3">
 <assert id="1" test="every $x1 in current() satisfies (for $c1 in
count(for $x2 in $x1/core:timeSlice/*/core:class1_1 return if
(//*[concat('#',@gml:id)=$x2/@xlink:href][name()='core:Class1_1A'] or
//*[concat('#',@gml:id)=$x2/@xlink:href][name()='core:Class1_1B']) then
1 else ()) return ($c1 >= 1))">Each Class1_3 shall have class1_1 of-
type 'Class1_1A' or 'Class1_1B'.</assert>
 <assert id="2" test="every $x1 in current() satisfies (for $c1 in
count(for $x2 in $x1/core:timeSlice/*/core:class1_1 return if
(//*[concat('#',@gml:id)=$x2/@xlink:href][name()='core:Class1_1A' or
name()='core:Class1_1B' or name()='core:Class1_1']) then 1 else ())

«featureType»
Test1::Class1_1

+ pDatatype: Class1_2

«property»
+ p1: CharacterString

«DataType»
Test1::Class1_2

+ uom: CharacterString

«featureType»
Test1::Class1_1A

«property»
+ pA: CharacterString

«featureType»
Test1::Class1_1B

«property»
+ pB: Boolean

«featureType»
Test1::Class1_1C

«property»
+ pC: Integer

«featureType»
Test1::Class1_3

+class1_1

OGC 15-024r2

60 Copyright © 2015 Open Geospatial Consortium

return ($c1 >= 1))">Each Class1_3 shall have class1_1 of-type
'Class1_1'.</assert>
</rule>

As we can see, the translation of the first rule performs a check against the QNames of
Class1_1A and Class1_1B. The XPath created for the second rule also checks for the
QName of Class1_1 itself, but not of its subtype Class1_1C because that is abstract.

8.2.6.4 Realization of null-checks

The null check for a given property is realized in two different ways, depending on how
the property is encoded in XML:

1. Propert encoded as XML element: here the XPath expression applies a check on
the xsi:nil XML attribute.

o Example: […] for $x3 in $x1/core:timeSlice/*/core:pDatatype/@uom
return if (not(not(string-length(normalize-space($x3))))) then 1 else () […]

2. Property encoded as XML attribute: in this case the XPath expression generated
by the tool checks that the attribute has a non-empty string value, trimming
leading and trailing whitespace.

o Example: […] for $x2 in $x1/core:timeSlice/*/core:p1 return if
(not($x2[@xsi:nil='true'])) then 1 else () […]

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 61

9 Accomplishments

 The open source tool ShapeChange has been extended to load and parse SBVR
constraints and to automatically derive Schematron code from them. The process
supports SBVR constraints for both AIXM schemas as well as ISO 19109
application schemas.

 A model transformation has been realized, to support the AIXM extension
mechanism.

 More than 60% of the AIXM business rules have been translated to Schematron
rules, showing that the implementation of constraints expressed using SBVR can
be automated to a significant extent. The translation rate can be increased even
further through future work as described in section 1.3.

 The generated Schematron rules have successfully been integrated in a validation
web service, and successfully tested there using a test dataset.

OGC 15-024r2

62 Copyright © 2015 Open Geospatial Consortium

Annex A: Revision history

Date Release Editor Primary
clauses
modified

Description

2015-05-
13

0.1 Johannes
Echterhoff

all first version of complete ER

2015-
Jun-11

Pub Carl Reed Numerous Prepare for publication

OGC 15-024r2

Copyright © 2015 Open Geospatial Consortium 63

Bibliography

[1] (2013) Rob van Haarst: SBVR Made Easy – Business Vocabulary and Rules as a
Critical Asset, Publisher: ConceptualHeaven

