

OGC 15-028

8

spatial filter, it can be used to determine the overlapping data sources, since a feature type
offered by a WFS data source by definition has an associated area of interest. If no spatial
filter is available in the request, all WFS data sources linked to the feature type should be
taken to account. The next step is to query the WFS data sources. Depending on the
filtering capabilities supported by a data source, the Broker can decide to send a simple
query (e.g., only consisting of a bounding box filter) and perform the filtering itself; if the
data source supports the used filtering capabilities, the Broker can just forward the query.
When all data sources are queried, the Broker should send a combined feature response to
the client.

Figure 5: Feature querying in the WFS Data Broker

5.3 Broker Component architecture & design

Based on the scope & requirements discussed in the previous section, we can further look
at how a Data Broker component can be designed and implemented.

During the initialization phase, the Data Broker needs to determine the set of feature
types following the approach outlined in Figure 4: Capabilities generation in the WFS

OGC 15-02815-028

 9

Data Broker in the previous section. When up & running, we can distinguish two groups
of tasks when a feature request is received:

 Querying data from the underlying WFS data sources

 Processing the resulting data and sending it to the client

The querying task needs to start from the aggregated feature type, find out the
overlapping individual feature types and query the corresponding WFS data sources. The
processing task needs to loop over these features, perform the broker tasks (conflation,
provenance / lineage) and send the response.

Figure 6: Component architecture of the Data Broker shows the suggested component
architecture to implement these tasks.

Figure 6: Component architecture of the Data Broker

Each WFS source / feature type combination is abstracted behind a model component,
providing an interface to perform queries to the underlying data source. These model
components are created during startup, based on the configured WFS data sources and
feature types. The resulting models are then grouped in a model group, which is
associated with one feature type. This includes a feature type conflation step to merge
similar individual feature types to one coherent feature type. At the model and model
group levels, caching can be applied if desired. Upfront, a query processor takes care of
selecting the right feature types and sending the queries to the underlying WFS data
sources.

The resulting responses are then streamed to a Feature Processing Pipeline. In this
pipeline, features will be decoded, processed and encoded on-the-fly, feature by feature.
This avoids the need to decode a complete response stream upfront.

5.4 Implementation

To support the research regarding the Data Broker concept, Luciad developed an
implementation based on the design discussed in the previous section. This
implementation is built on top of Luciad’s COTS software product LuciadLightspeed.
LuciadLightspeed offers a set of standards-based software components, including an

OGC 15-028

10

OGC Web Services Suite equipped with an OGC-compliant WFS service component.
One of this component’s benefits for the Data Broker task is its open data back-end API,
allowing users to easily connect to any type of storage component – such as other OGC
web services.

5.4.1 Functional overview

The implemented Data Broker has the following functionality:

 OGC-compliant WFS 1.1.0 & 2.0.0 service interface with support for the
following requests: GetCapabilities, DescribeFeatureType and GetFeature.
Supported request encodings are HTTP GET and POST.

 Support for connecting with OGC WFS server components with support for
version 1.1.0 or 2.0.0 and with support for AIXM 5.1 output.

 Support for OGC Filter 1.1.0 and 2.0.0.

 Support for various automatic & on-the-fly feature type operations useful for the
Data Broker:

o Aggregation of similar feature types from different OGC WFS data
sources into one feature type.

o Conflation of similar features served by different OGC WFS data sources.

o Adding of provenance by integrating lineage information on the feature
type level in the capabilities and on the feature level by adding ISO
19115-based lineage metadata to AIXM 5 features.

 Support for caching to improve the Data Broker’s response time.

5.4.2 Deployment characteristics

The Luciad Data Broker implementation is based on Java Servlet technology. To run, the
Broker requires a Java servlet container or application server compatible with Java
Servlet 2.5 or higher. Apache Tomcat 7 was used by Luciad during Testbed 11. Other
than being capable of running a Java Virtual Machine 1.7 (or higher) and an appropriate
servlet container / application server, no requirements are posed on the underlying
hardware or operating system.

5.5 Usage of OGC standards

The developed Data Broker concept relies on the OGC WFS 2.0 standard. Optionally, an
OGC CSW can also be used to set up the data sources for the Data Broker, as will be
further discussed in Section 6.5.

OGC 15-02815-028

 11

5.6 Suggested improvements

This section discussed a number of suggested improvements related to the OGC
standards that have been used for the Data Broker.

OGC WFS 2.0:

 Identification of the update sequence of an individual feature type. The OGC
WFS 2.0 defines an optional property ‘UpdateSequence’ that can be used in the
WFS capabilities to identify the update status or revision version of a WFS. This
property is a global property, applicable to the entire content served by the WFS.
To ease the detection of updates to individual feature types - which is useful in
case the Data Broker applies caching - it would interesting to have this property
also available on a feature type level in the capabilities.

6 Analysis

Because of the fact that the Data Broker provides information coming from other
services, several aspects impact the Broker’s operational behavior. When aggregating
data in a service, the consumer needs to be informed about the origin of the data and any
possible operations that the data might have undergone during the aggregation process.
This aspect is further discussed in Section 6.1. Related to data aggregation, it might be
that a feature exists in two data sources, resulting in the need for data conflation in the
Data Broker. This is further discussed in Section 6.2. To improve performance, a Data
Broker might apply caching techniques to reduce data transfers from its data sources; this
is further discussed in Section 6.3. Section 6.4 further investigates scalability, and how to
ensure that a Data Broker is capable of working smoothly in a sequential / aggregating
setup. Finally, Section 6.5 investigates approaches to flexibly manage the data sources
used by a Data Broker.

6.1 Provenance and Lineage

Provenance and lineage is an important aspect when it comes to aggregated data. Lineage
not only provides a great deal of information on where the data originated from, it also
allows you to estimate the quality and reliability of the data. ISO 19115 describes a
model for metadata that features lineage information. ISO 19139 describes the XML
encoding for ISO 19115.

The ISO 19115 model describes lineage in its DataQuality element. Lineage is composed
of one or more sources, as well as one more process steps. The sources describe the
origin of the data, while the process steps describe what processing has been done to the
data to get the output result.

OGC 15-028

12

Figure 7: ISO 19115 Lineage UML model

Since a lineage element in ISO 19115 can have multiple steps, it is possible to chain
multiple data-brokers after one-another. This is useful in hierarchical setups.

OGC 15-02815-028

 13

Figure 8: ISO 19115 modeling example for a chained Data Broker setup

An example of XML-encoded metadata lineage for a single source can be seen here:

<gmd:MD_Metadata>
<gmd:dataQualityInfo>
 <gmd:DQ_DataQuality>
 <gmd:lineage>
 <gmd:LI_Lineage>
 <gmd:source>
 <gmd:LI_Source>
 <gmd:description>
 <gco:CharacterString>https://demo-wfs-server/wfs?</gco:CharacterString>
 </gmd:description>
 <gmd:sourceCitation>
 <gmd:CI_Citation>
 <gmd:title>
 <gco:CharacterString>Demo Server WFS Source</gco:CharacterString>
 </gmd:title>
 </gmd:CI_Citation>
 </gmd:sourceCitation>

OGC 15-028

14

 <gmd:sourceStep>
 <gmd:LI_ProcessStep>
 <gmd:description>
 <gco:CharacterString>Aggregated data. No modifications were
made.</gco:CharacterString>
 </gmd:description>
 <gmd:dateTime>
 <gco:DateTime>2015-03-24T09:14:54.277+01:00</gco:DateTime>
 </gmd:dateTime>
 <gmd:processor>
 <gmd:CI_ResponsibleParty>
 <gmd:organisationName>
 <gco:CharacterString>Luciad</gco:CharacterString>
 </gmd:organisationName>
 <gmd:contactInfo>
 ………………….
 </gmd:contactInfo>
 </gmd:CI_ResponsibleParty>
 </gmd:processor>
 </gmd:LI_ProcessStep>
 </gmd:sourceStep>
 </gmd:LI_Source>
 </gmd:source>
 </gmd:LI_Lineage>
 </gmd:lineage>
 </gmd:DQ_DataQuality>
</gmd:dataQualityInfo>

</gmd:MD_Metadata

Example lineage XML encoding

When looking at the Data Broker, there are two separate ways to add lineage metadata to
the service:

1. Add lineage metadata on a WFS capabilities level
2. Add lineage metadata on a feature level

Both methods have advantages and disadvantages.

6.1.1 Integration at WFS Capabilities Level

On a capabilities level, we have the option of adding ISO 19115 metadata to a feature
type, using the MetadataURL field of the FeatureType. This field allows us to link to one
or more metadata elements that describe the lineage set for a FeatureType.

While this method is quite fast, and has a low bandwidth requirement, we found that this
method is not optimal for the case where the desire is to merge multiple feature layers
into a single feature layer. For instance, if there are two WFS sources, each serving
AirportHeliport features, it is desirable to configure the Data Broker to offer a single

OGC 15-02815-028

 15

feature layer for AirportHeliport features, instead of two feature layers (i.e., one for each
source).

As soon as you merge these feature layers, metadata on a feature layer can no longer
provide you with the information needed to see where each feature originates from.

Advantages:

 Metadata available without a GetFeature request
 Low metadata redundancy

Disadvantages:

 No fine-grained lineage
 Does not allow Data Broker to merge feature layers from different sources

6.1.2 Integration at Feature Level

For this report we looked primarily at AIXM 5.1 data. The AIXM 5.1 schema has a
“featureMetadata” element for all features. This allows us to encode lineage metadata on
a per-feature basis. This allows us to merge WFS feature layers, and group them per
feature type, without losing track of which feature belongs to which source.

One important aspect for the performance of a feature-level metadata enrichment is the
support of the Data Broker for streaming enrichment. If the Data Broker were to delegate
its requests, and process them after the source has fully return a response, the client
requesting the data could potentially time-out.

Instead, we recommend enriching while streaming, on a feature per feature basis. As soon
as the source WFS service returns a feature, enrich the metadata as needed, and output
the result directly to the response of the client. This has the added benefit that it reduces
the memory footprint of the Data Broker.

Advantages:

 More fine-grained control over where feature data originates from.

Disadvantage:

 Higher bandwidth requirements
More processing required in Data Broker GetFeature request

6.1.3 Recommendation

Our general recommendation for data lineage is to encode lineage at a feature level.
When many data originators are merged into a single WFS Feature type layer (e.g. Figure
3), there quickly arises the need to be able to distinguish data at a feature level. As long

OGC 15-028

16

as the Data Broker streams data feature per feature, the observed performance overhead
should be relatively small, as demonstrated in section 6.4.

6.2 Conflation

Conflation is the act of merging multiple data sources into a single coherent data source.
There are multiple aspects to data conflation, and this section will look over a few of
them, and how they affect the design of the Data Broker.

First, conflation affects the data broker on a WFS capabilities level: How are feature
layers from WFS services merged into a single WFS service? Secondly, conflation
affects the data broker on a feature-level: WFS services with overlapping regions could
have duplicate data. Lastly, conflation also affects the caching mechanism mentioned in
Section 6.3: If we cache locally in the Data Broker, how do we avoid data duplication in
the local cache?

6.2.1.1.1 Conflation at a WFS Capabilities level
We would like to clarify some terminology used in this section. In WFS terms, a “feature
type” refers to an item in the capabilities document that logically groups together a set of
features. This WFS feature type is identifiable with a unique name, given in the
capabilities document of the WFS service.

In AIXM, a “feature type” refers to a specific type of feature. This could be for instance
an aixm:RunwayElement, aixm:AirportHeliport, aixm:Airspace, etc… In both
definitions, the term “feature” refers to an abstraction of real world phenomena.

Please note that the name of a WFS feature type does not have to match the AIXM
feature types it serves. A WFS feature type also doesn’t have to limit itself to a single
AIXM feature type. Table 1 shows a few examples to demonstrate the flexibility of WFS
feature types in combination with AIXM feature types.

Use case WFS Feature Type name AIXM Feature Type

1 aixm:AirportHeliport aixm:AirportHeliport

2 AirportHeliportType aixm:AirportHeliport

3 Random_name aixm:AirportHeliport

4 Airports_and_airspaces aixm:AirportHeliport,
aixm:Airspace

Table 1: Examples of possible WFS feature type names and the type of AIXM features they return

OGC 15-02815-028

 17

At a capabilities level, the Data Broker needs to be capable of merging feature layers that
logically belong in the same category into a single feature layer on the Data Broker. This
means that layers serving the same AIXM Feature Type should be merged into a single
WFS Feature Type at a capabilities level.

In our examination of several WFS sources serving AIXM 5.1 sources, we found that you
can generally not rely on case 1 in Table 1. Often, WFS sources would use one of the first
3 use cases. Use case 4 was generally not seen: A single WFS Feature Type always
seemed to map to a single type of AIXM Feature.

If the condition in use case 1 of Table 1 holds for all WFS sources, then the Data Broker
can have a single initialization step that reads the capabilities documents of the source
WFS services, and matches WFS Feature Type names to serve them as a single feature
layer on the Data Broker. While this would ideal performance-wise, we found that since
there is no coupling between WFS Feature Type name and AIXM Feature identifier, we
cannot rely on this to work in the general case.

If we allow use case 1 to 3 on Table 1, then we can use an alternative to set up the Data
Broker. If we know in advance that a single WFS Feature Type will always return a
single type of AIXM feature, it is still possible to perform a GetFeature request that
returns the first AIXM feature of the WFS Feature Type. This way we will be able to
deduce the feature type of the WFS feature layer by looking at only a single feature type.

While this second method is slower as it requires more calls to the source WFS services,
it is more robust in cases where slight variations in naming conventions of WFS Feature
Types.

Our general recommendation for the Data Broker is to look at the first AIXM feature type
returned by a GetFeature request to a WFS service. This should be done for each WFS
Feature Type in the capabilities document, and should be done at startup of the service.
The return AIXM Feature types should be stored in an in-memory map for each source
WFS Service.

Then for each AIXM feature type found in the source WFS services, create a WFS
Feature Type that serves that AIXM feature. For convenience, the name of this WFS
feature type should be the name of the AIXM feature type. The BBOX should be a union
of the BBOX elements of the source WFS services.

Table 2: Example input WFS Sources and their mapping in the Data BrokerTable 3:
Resulting Data Broker Capabilities (Given Table 2 as input) show an example of this.

WFS
Source

WFS
Feature
Type
name

WFS Feature Type
BBOX

AIXM Feature
Type

Resulting
Data Broker
WFS Feature
Type name

OGC 15-028

18

Source A Airport [0,0,20,20] aixm:AirportHeliport AirportHeliport

Source B Heliport [-10,-10,10,10] aixm:AirportHeliport AirportHeliport

Source B Airspaces [-15,-15,15,15] aixm:Airspace Airspace

Table 2: Example input WFS Sources and their mapping in the Data Broker

Data Broker Feature Type
Name

Data Broker Feature Type
BBOX

AIXM Feature Type

AirportHeliport [-10,-10,20,20] aixm:AirportHeliport

Airspace [-15,-15,15,15] aixm:Airspace

Table 3: Resulting Data Broker Capabilities (Given Table 2 as input)

6.2.2 Conflation at a WFS feature level

Conflation on a feature level involves certain assumptions of data described in [2]. The
recommendations in this document suggest that every AIXM 5.1 feature has a universally
unique identifier (UUID) that is generated by the primary data originator. This means that
if overlapping regions of data are offered by several WFS services, the Data Broker can
identify duplicate features using the identifier property of the AIXM feature.

For AIXM 5.1 data, we make the distinction between gml:identifier and gml:id. On a
feature level, gml:identifier is used to store the UUID (universally unique identifier) of
the AIXM feature. On a sub-feature level, each element of a feature contains a gml:id that
locally identifies a particular subset of that feature. This gml:id is not globally unique, but
it is locally unique to the service it resides in.

6.2.2.1 Feature level identifiers

For feature-level identifiers, we make the assumption that if two WFS sources have
AIXM features with the same UUID that they refer to the same feature. If they have a
different UUID, then either one of two cases is possible:

1. They refer to separate features

2. They refer to the same features, but contain different TimeSlices created by
different sources.

For case 2, the following is described in Error! Reference source not found.:

OGC 15-02815-028

 19

“It is therefore possible that two or more information sets (list of
TimeSlices) exists for the same AIXM feature, in two different systems,
with different gml:identifiers values. When data from different sources
is merged in a single system, owner of that system might be confronted

with the need to identify and merge duplicate data, based on actual
properties of the feature, not on the gml:identifier”.Error! Reference

source not found.

The implications of this statement are that any two features in different source WFS
services could potentially refer to the same conceptual idea (such as a Runway, or an
Airspace), even if they don’t share a common UUID. Detecting this use case is quite
complex and it is our belief that it should be done as a pre-processing step, before setting
up the Data Broker. For this reason, this use case is beyond the scope of this engineering
report, and has been added to Section Error! Reference source not found. as future
work. The rest of this document assumes that UUID’s are able to uniquely distinguish
features, even on a cross-server level.

Document Error! Reference source not found. also mentions the notion that servers
might not be fully up-to-date at any time. If two WFS services contain duplicate data, it is
possible that the two don’t contain exactly the same set of TimeSlices. For instance, if
one of the two acts as a “pseudo-primary” information source, then it could potentially be
out-of-date.

For this case, we recommend that the Data Broker be pre-configured with WFS Services
in such a manner that certain WFS services have priority over others. Giving primary
data originators a higher priority than “pseudo-primary” originators lets the Data Broker
easily choose which feature to serve in case of duplicate UUID’s. The ‘pseudo-primary’
data source would be dropped in case of a conflict, under the assumption that the primary
data source contains more up-to-date data.

Alternatively to this, it is possible perform a property comparison for each conflicting
feature. In this method, the Data Broker compares individual TimeSlices on a property-
level to find duplicate TimeSlices. After all duplicates are detected, it should be possible
to create a single coherent feature with a unique identifier, served by the Data Broker.

The latter method is prone to problems where faulty data has been sent to one of the data
sources. For this reason, we recommend using the former option, as it is more consistent
in handling problematic time-slices.

6.2.2.2 GML object level identifiers

Apart from UUID’s found in AIXM Features, there are also local gml:id elements for
every GML object in a feature. This element is mandatory, and should be locally unique
to the server. An example of the use of gml:id can be seen in Figure 9.

OGC 15-028

20

Figure 9: Example of the use of local gml:id (Example taken from Error! Reference source not found.)

When multiple data sources are merged into one, it is possible that there is a conflict in
local gml:id’s between servers. This is especially the case if each server has a similar
gml:id generation technique.

It is the responsibility of the Data Broker to ensure that while data is being merged from
multiple data sources, every gml:id is still unique inside a single GetFeature request to
the Data Broker. One relatively easy way to achieve this is by prefixing or suffixing the
local gml:id’s with a fixed unique string per source WFS service. This fixed string could
be any string that is unique to the service, such as the URL to the service.

While none of the WFS services tested in testbed-11 had conflicting gml:id, it is still
important to note that the transformation of gml:id tags is not as easy as might seem at
first. Care must be taken to prevent XLinks to gml:id data objects to become invalid. Any
active XLink pointing to a gml:id element must also be transformed to match the new
gml:id.

OGC 15-02815-028

 21

6.2.3 Conflation at a WFS caching level

Similarly to conflation on a WFS feature type, the act of caching locally in the Data
Broker also means that conflation has to happen inside the Data Broker itself. Section 6.3
describes a few caching strategies that involve breaking a single BBOX request into
several smaller BBOX requests, to reduce bandwidth costs for requests to the same
regions. Since features are not neatly packed into a fixed structure or grid, features can be
part of several BBOX regions. In other words: One single feature can appear in multiple
BBOX requests. Figure 10: A single feature overlapping multiple BBOX regions shows
an example of this.

Figure 10: A single feature overlapping multiple BBOX regions

To alleviate this situation, we can define a set of maps and lists to keep track of data that
could potentially be duplicated at the Data Broker cache level. We need a total 2 maps
and a list to manage all the bookkeeping and reduce memory usage to a minimum,
without sacrificing performance. The internal data structure to manage data duplication at
a cache level is:

1. A map that maps BBOX tiles to a list of UUIDs

2. A map of UUIDs to BBOX tiles

3. A one-to-one mapping of UUIDS to their data.

See Figure 11: Example use of data structures to conflate local caching for a visual
example of these structures.

OGC 15-028

22

Figure 11: Example use of data structures to conflate local caching

The use of these data structures allows you to quickly and efficiently query what unique
features are currently cached, and which BBOX regions they reside in. It also ensured the
actual feature data is kept in a separate set, so geometric data is not duplicated.

When building up the cache, each map and set will need to be updated accordingly. If a
UUID is already known, then the resulting feature data should not be decoded again. This
results in increased performance for large features that overlap many BBOX regions.

When removing old cache entries to free up memory, care should be taken on how
feature data is deleted. When a BBOX tile is removed from cache, all UUIDs it pointed to
should also be updated. If a UUID for a feature is no longer available in any other tile, its
feature data should also be removed from the cache.

One potential area where bandwidth could be reduced would be the generation of filters
that exclude certain known UUID’s from queries. For instance, if we have the feature
data for UUID A, we can create queries to ensure that the source WFS exclude this UUID
from the result-set. As mentioned in Section 1.3, we leave this experiment for future
work.

6.3 Caching

To improve the performance of feature requests, the Data Broker can rely on caching
techniques to reduce the amount of data that needs to be queried from its data sources.
Multiple approaches can be used to define a caching strategy, depending on behavioral

OGC 15-02815-028

 23

assumptions and cache control requirements. For the Data Broker, we define the
following assumptions and requirements:

Assumptions:

 Features have a unique identifier, to allow the proper identification of cached
feature entries.

 Feature queries involve at least a bounding box, to enable the use of a spatial-
oriented cache.

Requirements:

 It should be possible to set a maximum size on the cache. This results in a need to
be able to track the size of the cache and clear elements from it if the maximum
size has been reached.

 It should be possible to detect outdated cache items and get new updates from the
Data Broker’s data sources.

The maximum size of a cache is a useful feature to limit the resources used by the Data
Broker. It is necessary for the Data Broker to be able to estimate the memory it is using to
represent cached entries. This is implementation specific, and will often depend on the
underlying language used, as well as the way that features are modeled in the application.

For detection of outdated cache entries, there are multiple options available. These
options generally require support by the source WFS servers.

 HTTP Conditional GET using etags
 HTTP Conditional GET using last-modified
 HTTP Cache Control Headers using expires, max-age or s-maxage

Regardless of what options are available at the server in terms of HTTP headers, it is vital
that the server support spatial filtering on BBOX elements. The idea here is to subdivide
queries into a grid of BBOX queries, where each bounding box is cached separately at the
Data Broker.

OGC 15-028

24

Figure 12: Example of a subdivided query

Figure 12: Example of a subdivided query gives an example of a subdivided query. If a
client requests an arbitrary bounding box spatial filter from the data broker, the data
broker should split up the request into multiple requests, where each request is fit onto its
internal grid representation.

Splitting the problem into a uniform grid format simplifies caching at the broker. This
approach also ensures that future requests around the same areas can reduce the amount
of bandwidth used between source WFS and Data Broker. Only spatial areas in the
uniform grid that are not cached need to be retrieved.

To ensure that the content of the queries gets updated when needed, we require that the
source WFS service support some form of HTTP cache header control.

For the case of etags, we recommend that the etag generated by the WFS service takes
into account not just the request, but also the spatial filter provided in the request. For
other cache control headers, no special functionality needs to be instated.

If the source WFS service supports ResultType=hits, we can replace the uniform grid
representation with a more balanced QuadTree structure in a relatively efficient way. A
ResultType=hits GetFeature query, will return the amount of features for a given query,
without returning any data.

A QuadTree is a data structure that starts off with a bounding box, and subdivides each
cell in 4 pieces. This happens for each cell recursively, until a certain stop-condition is
reached. The objective for caching is to have a balanced tree that has roughly an equal
amount of features per cell. Thus the stop-condition is a certain number of features per
cell. This threshold can be configured on the Data Broker.

OGC 15-02815-028

 25

Figure 13: Uniform grids vs QuadTree

To create a QuadTree representation for a feature layer of a source WFS service, the Data
Broker will have to perform an initial scan of the target dataset. To do this, we query the
service with ResultType=hits find out how many features are present for a certain cell. If
this number exceeds our threshold, we subdivide the cell into 4 sub-cells. If no more cells
need to be subdivided, the QuadTree is complete.

The advantage of using a QuadTree over a uniform grid is that a QuadTree is more
balanced in terms of memory usage per QuadTree cell. It is therefore also more balanced
in terms of bandwidth usage per cell retrieval. A uniform grid can potentially be
suboptimal for cases where a large dataset is focused on a single area, and there are a few
outliers outside of this area. Using a QuadTree alleviates this situation, as it will contain
more cells at locations where there is more data.

The downside of using a QuadTree is that it requires a separate setup step. This setup step
does have a cost, which depends largely on the performance of the source WFS services.
For Data Brokers that are rarely reset or reconfigured, this should not be a big problem.

Querying a WFS service using ResultType=hits should be fairly efficient. While it
requires the server to do spatial intersection tests, the bandwidth used to set up this data
structure is minimal. No feature data is transferred in the setup-phase. The basic
assumption here is that this setup does not have to happen very often, as feature data does
not often spatial move around often for aviation data. Most of the updates to data come
from Digital NOTAMs, which are update to existing features.

Further optimizations could potentially be done by the use of WFS-TE. When a cached
BBOX area is out-of-date, it could potentially be beneficial to only retrieve the latest
changes of each of the cached features to save bandwidth. For instance, the baseline will
not need to be retrieved again. However, since [4] was being revised at the time of

OGC 15-028

26

writing, nu further investigation has been done on this topic, and it has been left as future
work in Section 1.3.

6.4 Scalability

An important aspect when setting up a data distribution architecture involving one or
more WFS Data Broker components is scalability. We can identify a number of factors
that introduce a performance cost and thus impact the overall scalability; for each of these
factors, we will discuss possible mitigation actions.

 Network connection overhead. Each broker essentially introduces an
indirection, resulting in an additional network connection in the overall loop
between a client and a data source. This additional network connection is
inevitable by definition. If performance is a key requirement, make sure that the
available network bandwidth in the broker is aligned with the available bandwidth
in broker’s data sources and the needs of the clients: the weakest link in the
connection loop will determine the network throughput so this is an important
factor with respect to overall scalability.

 Provenance and lineage overhead. Section 6.1 discussed the introduction of
lineage metadata to features queried via a broker, to inform a client about the
origin of the data. This also comes with a performance cost, since a data
enrichment step is needed for this. To make this enrichment step as scalable as
possible, it is important that the broker can process features in a streaming way
without having to store data responses first. In case of XML data, on which the
default WFS exchange format GML is based, this boils down to implementing a
data processing pipeline that uses streaming XML parsing and writing. For most
of the commonly used object-oriented programming languages have, XML APIs
exist with streaming support. Luciad’s Java-based WFS Data Broker uses the
Streaming API for XML (StAX) for this. The implemented data processing
pipeline will buffer the XML of a single feature, decode it into a Java domain
model, perform the enrichment step and encode it back to XML.

 Data aggregation overhead. In a realistic setup, a WFS Data Broker will often
need to contact more than one WFS data source to answer a feature type request.
To optimize the throughput in the broker and overall response time, it is
recommended to perform these requests in parallel. This also reduces the possible
the impact of a slow data source.

 Conflation overhead. Relate to the aggregation of data, a WFS Data Broker will
need to perform conflation in order to avoid duplicate features in its response. As
outlined in Section 6.2, this requires feature to be uniquely identifiable. In case of
AIXM data, this is achieved by using the gml:identifier property on the feature
level, as recommended in [2]. Via an extra step in the data processing pipeline,
this identifier can be used to perform the conflation step. To align this with a
parallel execution of data source queries (as recommended in the previous bullet),
the broker could maintain a temporary map for each incoming request, tracking
all the identifiers of processed features, properly synchronized across all

OGC 15-02815-028

 27

execution threads. When an identifier is already present, the broker knows that the
feature has been encountered and processed earlier.

To test the scalability of the WFS Data Broker in practice, a number of experiments have
been performed using Luciad’s broker implementation in combination with the AIXM
WFS data sources provided in Testbed 11.

Experiment 1: analyzing the impact of adding one or more brokers between a client
and WFS data source.

Figure 14: High-level architecture of the scalability experiment to detect the impact of adding
brokers between a client and a data source

In this experiment, we identify one WFS source, offering a set of features, and 4 WFS
Data Broker components that are sequentially connected with the WFS source. Figure 14:
High-level architecture of the scalability experiment to detect the impact of adding
brokers between a client and a data source shows the high-level architecture of this
experiment.

OGC 15-028

28

The goal is to analyze the impact of sequentially adding brokers in a communication
pipeline. To test this, we request 200 AirportHeliport features from each of the
components and determine the response time. To focus only on the impact added by a
broker, we normalize the results by subtracting the average response time of the WFS
source, since this is a fixed cost not related to the broker. Table 4: Response times for
brokers in a sequential setup and Figure 15: Response times for brokers in a sequential
setup show the results of the test.

Component Reponse time (in ms)

Source 0 (normalized)

Broker 1 255.5

Broker 2 556.5

Broker 3 934.7

Broker 4 1376.5

Table 4: Response times for brokers in a sequential setup

Figure 15: Response times for brokers in a sequential setup

OGC 15-02815-028

 29

By looking at the results, we can clearly see the cost that is introduced by each broker and
the fact that this cost slightly increases for each additional broker. Table 5: Added cost
for each broker in a sequential setup shows the cost introduced by each broker compared
to the previous component.

Component Added cost (in ms)

Broker 1 255.5

Broker 2 301

Broker 3 378.2

Broker 4 441.8

Table 5: Added cost for each broker in a sequential setup

The fact that this cost increases with each broker level is largely explained by the impact
of the data processing pipeline, which enriches a feature with lineage information. This
enrichment step adds about 50 lines of XML to each feature; when looking at the output
of broker 4, this means that about 200 lines of XML are been added per feature, thus 200
x 200 = 40000 lines of XML in total for the request of 200 features. This obviously
impacts the XML decoding and encoding operations in the brokers, and also the network
throughput. However, the relative impact of a broker is still small compared to the
average response time of the feature request when sent to a WFS data source; this was
about 1.5 to 2 seconds for the Aviation WFS providers in Testbed 11.

Experiment 2: testing the impact of feature aggregation in a broker.

Figure 16: High-level architecture of the scalability experiment to detect the impact of feature
aggregation in a broker

OGC 15-028

30

In this experiment, we identify two WFS sources, offering a feature type
(AirportHeliport), and 3 WFS Data Broker components of which 2 redistribute the WFS
sources and of which one aggregates the other 2. Figure 16: High-level architecture of the
scalability experiment to detect the impact of feature aggregation in a broker shows the
high-level architecture of this experiment.

The goal is to analyze the impact of brokers in case they need to aggregate data from
various data sources. To test this, we request 200 AirportHeliport features from the
source, 100 features from each of the two redistributing brokers and finally 200 features
of the broker that aggregates the other 2 brokers. To focus only on the impact added by
the brokers, we again normalize the results by subtracting the average response time of
the WFS source. Table 6: Response times for brokers in a parallel / aggregating setup and
Figure 17: Response times for brokers in a parallel / aggregating setup show the results of
the test.

Component Reponse time (in ms)

Source 0 (normalized)

Broker 1A 240

Broker 1B 240

Broker 2 665.5

Table 6: Response times for brokers in a parallel / aggregating setup

OGC 15-02815-028

 31

Figure 17: Response times for brokers in a parallel / aggregating setup

Table 7: Added cost for each broker in a parallel / aggregating setup shows the cost
introduced by each broker compared to the previous component.

Component Added cost (in ms)

Broker 1A 240

Broker 1B 240

Broker 2 425.5

Table 7: Added cost for each broker in a parallel / aggregating setup

By looking at the results, we can see a cost that is introduced by broker 1A and 1B that is
slightly less than introduced by broker 1 in the previous experiment. This is explained by
the fact that these queries only involved 100 features instead of 200 features. Next, the
cost introduced by broker 2 is higher than introduced by broker 2 in the previous
experiment. This is explained by the fact that broker 2 needs to consume data from 2 data
sources (broker 1A and 1B) and that broker 2 needs to perform a conflation step in the
data processing pipeline. Again, the impact is relatively small compared to requesting
100 features from two WFS sources, which in practice add up to 2.5 - 3 seconds for the
Aviation WFS providers in Testbed 11.

OGC 15-028

32

6.5 Flexible management of sources

When setting up a WFS Data Broker, one or more WFS data sources need to be identified
and configured. In a static architecture, it can be suitable to store a configuration file
together with a broker that lists its data sources. In a dynamic architecture, where new
data sources are introduced, or data brokers are restructured / reconfigured (e.g., with
additional filters for data sources that select certain feature types, define a fixed area of
interest, …), it can be more convenient to centralize this configuration and potentially
offload it to a separate service.

From a technology point of view, primary candidate standards to implement this are ISO
19119 and OGC CSW:

 ISO 19119 is an international metadata standard for describing service metadata.
Included is model to enable users to combine and chain services in ways that are
not pre-defined by the service providers. This could serve as a basis to define the
configuration of a data distribution architecture involving one or more WFS Data
Broker components.

 OGC CSW is an international web service standard to publish and access digital
catalogues of metadata for geospatial data, services and related resource
information. It is fully aligned with the metadata standards ISO 19115 and ISO
19119, so it is an ideal candidate for a web service to manage the configuration of
a WFS Data Broker architecture using ISO 19119.

This approach has not been tested in practice and is therefore listed as potential future
work.

7 Conclusions & recommendations

This document researched the concept of a WFS Data Broker, enabling the possibility to
cascade WFS components to form a data source chain. A main conclusion is that a WFS
Data Broker can be set up in practice, fully aligned with the core OGC WFS standard.
Deeper insight and practical recommendations are given to set up an OGC WFS-based
data distribution architecture involving WFS Data Broker components

Recommendations:

 The Data Broker concept can be implemented using standard OGC WFS
functionality. However, for an optimal setup, several additional recommendations
& added features have been put forward in the Data Broker ER. Highlights
include:

o To optimize aggregation of similar AIXM feature types, it is
recommended to let a WFS serve a single AIXM feature type (e.g.,

OGC 15-02815-028

 33

AirportHeliport) per WFS feature type and with as name the AIXM
feature type name.

o To enable proper conflation, it is recommended using a similar
identification scheme for features across multiple WFS data sources.
Applied to AIXM, this boils down to using a consistent UUID for the
feature’s gml:identifier, making sure that the same airport served by the 2
WFS data sources have the same value.

o To enable the detection of a changed WFS data source, it is recommended
for WFS servers to publish an UpdateSequence value in the capabilities
(optional in the WFS standard).

 It is important for the Data Broker implementation to stream data on a feature-by-
feature basis, rather than on a query-by-query basis. This significantly increases
time-to-response for the client, and it reduces overall memory requirements of the
data broker. In combination with a feature processing pipeline, the Data Broker
can implement all its responsibilities in a streaming way: conflation, caching and
provenance/lineage enrichment.

 Since a single query can contain data from multiple sources, it is important to
store metadata on a per-feature basis. If you don’t, you lose information on the
origin (lineage) of specific features.

 Caching on Data Broker level should be achieved by splitting up requests into
fixed BBOX regions called tiles or cells. Depending on source WFS capabilities,
this can be done using either uniform grid structure, or a more complex
QuadTree.

Annex A: Revision history

Date Release Editor Primary clauses
modified

Description

10/02/2015 0.1 Daniel All Created outline.
22/03/2015 0.2 Robin 5 & 6 Added introduction and overview. Added

small section on caching and suggested
improvements.

24/03/20
15

0.3 Daniel 6.1 & 6.3 Improved section on lineage and
caching.

24/03/20
15

0.4 Robin 5 Added content to the Architecture &
Design section.

24/04/20
15

0.5 Robin 6.4, 6.5, 7, 8 Added section on scalability, flexible
management of data sources,
conclusions, future work and
bibliography.

28/04/20
15

0.6 Robin 6.4 Added scalability research experiments
& results.

OGC 15-028

34

05/05/20
15

0.7 Daniel 6.2 Added section on conflation.

08/05/20
15

0.75 Robin 5 Improved Architecture & Design
section.

11/05/20
15

0.8 Daniel 6.2 Improved section on conflation.

12/05/20
15

0.9 Daniel 1.4, 5.4, 6.1,
6.3, 7

Improved various sections.

12/05/20
15

1.0 RC Daniel,
Robin

All Final editing to prepare version 1.0’s
release candidate.

18/06/20
15

1.0 RC2 Daniel,
Robin

All Revised based on feedback.

OGC 15-02815-028

 35

OGC 15-028

36

Bibliography

[1] OGC Web Feature Service 2.0 Interface Standard, OGC document 09-025r2

[2] http://www.aixm.aero/gallery/content/public/AIXM51/AIXM_Feature_Identificat
ion_and_Reference-1.0.pdf, AIXM 5 Feature Identification and Reference

[3] http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html, HTTP/1.1 header field
definitions (includes caching-related headers)

[4] http://external.opengis.org/twiki_public/AviationDWG/ProposalWFSTemporality
Extension, WFS-TE (Temporal Extension) Discussion Paper (OGC 12-027r3)

[5] http://external.opengeospatial.org/twiki_public/pub/AviationDWG/GMLGuidelin
esForAIXM/12-028_Use_of_GML_for_aviation_data_-
_Discussion_Paper_07.doc, Use of GML for aviation data (OGC 12-028)

[6] ICAO Annex 15(13th Edition), Aeronautical Information Services

