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spatial filter, it can be used to determine the overlapping data sources, since a feature type 
offered by a WFS data source by definition has an associated area of interest. If no spatial 
filter is available in the request, all WFS data sources linked to the feature type should be 
taken to account. The next step is to query the WFS data sources. Depending on the 
filtering capabilities supported by a data source, the Broker can decide to send a simple 
query (e.g., only consisting of a bounding box filter) and perform the filtering itself; if the 
data source supports the used filtering capabilities, the Broker can just forward the query. 
When all data sources are queried, the Broker should send a combined feature response to 
the client. 

 

Figure 5: Feature querying in the WFS Data Broker 

5.3 Broker Component architecture & design 

Based on the scope & requirements discussed in the previous section, we can further look 
at how a Data Broker component can be designed and implemented. 

During the initialization phase, the Data Broker needs to determine the set of feature 
types following the approach outlined in Figure 4: Capabilities generation in the WFS 



OGC 15-02815-028 

 9 
 

Data Broker in the previous section. When up & running, we can distinguish two groups 
of tasks when a feature request is received: 

 Querying data from the underlying WFS data sources 

 Processing the resulting data and sending it to the client 

The querying task needs to start from the aggregated feature type, find out the 
overlapping individual feature types and query the corresponding WFS data sources. The 
processing task needs to loop over these features, perform the broker tasks (conflation, 
provenance / lineage) and send the response. 

Figure 6: Component architecture of the Data Broker shows the suggested component 
architecture to implement these tasks. 

 

Figure 6: Component architecture of the Data Broker 

Each WFS source / feature type combination is abstracted behind a model component, 
providing an interface to perform queries to the underlying data source. These model 
components are created during startup, based on the configured WFS data sources and 
feature types. The resulting models are then grouped in a model group, which is 
associated with one feature type. This includes a feature type conflation step to merge 
similar individual feature types to one coherent feature type. At the model and model 
group levels, caching can be applied if desired. Upfront, a query processor takes care of 
selecting the right feature types and sending the queries to the underlying WFS data 
sources.  

The resulting responses are then streamed to a Feature Processing Pipeline. In this 
pipeline, features will be decoded, processed and encoded on-the-fly, feature by feature. 
This avoids the need to decode a complete response stream upfront. 

5.4 Implementation 

To support the research regarding the Data Broker concept, Luciad developed an 
implementation based on the design discussed in the previous section. This 
implementation is built on top of Luciad’s COTS software product LuciadLightspeed. 
LuciadLightspeed offers a set of standards-based software components, including an 
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OGC Web Services Suite equipped with an OGC-compliant WFS service component. 
One of this component’s benefits for the Data Broker task is its open data back-end API, 
allowing users to easily connect to any type of storage component – such as other OGC 
web services.  

5.4.1 Functional overview 

The implemented Data Broker has the following functionality: 

 OGC-compliant WFS 1.1.0 & 2.0.0 service interface with support for the 
following requests: GetCapabilities, DescribeFeatureType and GetFeature. 
Supported request encodings are HTTP GET and POST. 

 Support for connecting with OGC WFS server components with support for 
version 1.1.0 or 2.0.0 and with support for AIXM 5.1 output. 

 Support for OGC Filter 1.1.0 and 2.0.0. 

 Support for various automatic & on-the-fly feature type operations useful for the 
Data Broker: 

o Aggregation of similar feature types from different OGC WFS data 
sources into one feature type. 

o Conflation of similar features served by different OGC WFS data sources. 

o Adding of provenance by integrating lineage information on the feature 
type level in the capabilities and on the feature level by adding ISO 
19115-based lineage metadata to AIXM 5 features. 

 Support for caching to improve the Data Broker’s response time. 

5.4.2 Deployment characteristics 

The Luciad Data Broker implementation is based on Java Servlet technology. To run, the 
Broker requires a Java servlet container or application server compatible with Java 
Servlet 2.5 or higher. Apache Tomcat 7 was used by Luciad during Testbed 11. Other 
than being capable of running a Java Virtual Machine 1.7 (or higher) and an appropriate 
servlet container / application server, no requirements are posed on the underlying 
hardware or operating system. 

5.5 Usage of OGC standards 

The developed Data Broker concept relies on the OGC WFS 2.0 standard. Optionally, an 
OGC CSW can also be used to set up the data sources for the Data Broker, as will be 
further discussed in Section 6.5. 
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5.6 Suggested improvements 

This section discussed a number of suggested improvements related to the OGC 
standards that have been used for the Data Broker. 

OGC WFS 2.0: 

 Identification of the update sequence of an individual feature type. The OGC 
WFS 2.0 defines an optional property ‘UpdateSequence’ that can be used in the 
WFS capabilities to identify the update status or revision version of a WFS. This 
property is a global property, applicable to the entire content served by the WFS. 
To ease the detection of updates to individual feature types - which is useful in 
case the Data Broker applies caching - it would interesting to have this property 
also available on a feature type level in the capabilities. 

6 Analysis 

Because of the fact that the Data Broker provides information coming from other 
services, several aspects impact the Broker’s operational behavior. When aggregating 
data in a service, the consumer needs to be informed about the origin of the data and any 
possible operations that the data might have undergone during the aggregation process. 
This aspect is further discussed in Section 6.1. Related to data aggregation, it might be 
that a feature exists in two data sources, resulting in the need for data conflation in the 
Data Broker. This is further discussed in Section 6.2. To improve performance, a Data 
Broker might apply caching techniques to reduce data transfers from its data sources; this 
is further discussed in Section 6.3. Section 6.4 further investigates scalability, and how to 
ensure that a Data Broker is capable of working smoothly in a sequential / aggregating 
setup. Finally, Section 6.5 investigates approaches to flexibly manage the data sources 
used by a Data Broker. 

6.1 Provenance and Lineage 

Provenance and lineage is an important aspect when it comes to aggregated data. Lineage 
not only provides a great deal of information on where the data originated from, it also 
allows you to estimate the quality and reliability of the data. ISO 19115 describes a 
model for metadata that features lineage information. ISO 19139 describes the XML 
encoding for ISO 19115. 

The ISO 19115 model describes lineage in its DataQuality element. Lineage is composed 
of one or more sources, as well as one more process steps. The sources describe the 
origin of the data, while the process steps describe what processing has been done to the 
data to get the output result. 
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Figure 7: ISO 19115 Lineage UML model 

Since a lineage element in ISO 19115 can have multiple steps, it is possible to chain 
multiple data-brokers after one-another. This is useful in hierarchical setups. 
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Figure 8: ISO 19115 modeling example for a chained Data Broker setup 

An example of XML-encoded metadata lineage for a single source can be seen here: 

<gmd:MD_Metadata> 
<gmd:dataQualityInfo> 
  <gmd:DQ_DataQuality> 
    <gmd:lineage> 
      <gmd:LI_Lineage> 
        <gmd:source> 
          <gmd:LI_Source> 
            <gmd:description> 
              <gco:CharacterString>https://demo-wfs-server/wfs?</gco:CharacterString> 
            </gmd:description> 
            <gmd:sourceCitation> 
              <gmd:CI_Citation> 
                <gmd:title> 
                  <gco:CharacterString>Demo Server WFS Source</gco:CharacterString> 
                </gmd:title> 
              </gmd:CI_Citation> 
            </gmd:sourceCitation> 
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            <gmd:sourceStep> 
              <gmd:LI_ProcessStep> 
                <gmd:description> 
                  <gco:CharacterString>Aggregated data. No modifications were 
made.</gco:CharacterString> 
                </gmd:description> 
                <gmd:dateTime> 
                  <gco:DateTime>2015-03-24T09:14:54.277+01:00</gco:DateTime> 
                </gmd:dateTime> 
                <gmd:processor> 
                  <gmd:CI_ResponsibleParty> 
                    <gmd:organisationName> 
                      <gco:CharacterString>Luciad</gco:CharacterString> 
                    </gmd:organisationName> 
                    <gmd:contactInfo> 
                   …………………. 
                     </gmd:contactInfo> 
                  </gmd:CI_ResponsibleParty> 
                </gmd:processor> 
              </gmd:LI_ProcessStep> 
            </gmd:sourceStep> 
          </gmd:LI_Source> 
        </gmd:source> 
      </gmd:LI_Lineage> 
    </gmd:lineage> 
  </gmd:DQ_DataQuality> 
</gmd:dataQualityInfo> 

</gmd:MD_Metadata 

Example lineage XML encoding 

When looking at the Data Broker, there are two separate ways to add lineage metadata to 
the service: 

1. Add lineage metadata on a WFS capabilities level 
2. Add lineage metadata on a feature level 

Both methods have advantages and disadvantages. 

6.1.1 Integration at WFS Capabilities Level 

On a capabilities level, we have the option of adding ISO 19115 metadata to a feature 
type, using the MetadataURL field of the FeatureType. This field allows us to link to one 
or more metadata elements that describe the lineage set for a FeatureType.   

While this method is quite fast, and has a low bandwidth requirement, we found that this 
method is not optimal for the case where the desire is to merge multiple feature layers 
into a single feature layer. For instance, if there are two WFS sources, each serving 
AirportHeliport features, it is desirable to configure the Data Broker to offer a single 



OGC 15-02815-028 

 15 
 

feature layer for AirportHeliport features, instead of two feature layers (i.e., one for each 
source). 

As soon as you merge these feature layers, metadata on a feature layer can no longer 
provide you with the information needed to see where each feature originates from. 

Advantages: 

 Metadata available without a GetFeature request 
 Low metadata redundancy  

Disadvantages: 

 No fine-grained lineage 
 Does not allow Data Broker to merge feature layers from different sources 

6.1.2 Integration at Feature Level 

For this report we looked primarily at AIXM 5.1 data. The AIXM 5.1 schema has a 
“featureMetadata” element for all features. This allows us to encode lineage metadata on 
a per-feature basis. This allows us to merge WFS feature layers, and group them per 
feature type, without losing track of which feature belongs to which source. 

One important aspect for the performance of a feature-level metadata enrichment is the 
support of the Data Broker for streaming enrichment. If the Data Broker were to delegate 
its requests, and process them after the source has fully return a response, the client 
requesting the data could potentially time-out. 

Instead, we recommend enriching while streaming, on a feature per feature basis. As soon 
as the source WFS service returns a feature, enrich the metadata as needed, and output 
the result directly to the response of the client. This has the added benefit that it reduces 
the memory footprint of the Data Broker. 

Advantages: 

 More fine-grained control over where feature data originates from. 

Disadvantage: 

 Higher bandwidth requirements 
More processing required in Data Broker GetFeature request 

6.1.3 Recommendation 

Our general recommendation for data lineage is to encode lineage at a feature level. 
When many data originators are merged into a single WFS Feature type layer (e.g. Figure 
3), there quickly arises the need to be able to distinguish data at a feature level. As long 
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as the Data Broker streams data feature per feature, the observed performance overhead 
should be relatively small, as demonstrated in section 6.4. 

 

6.2 Conflation 

Conflation is the act of merging multiple data sources into a single coherent data source. 
There are multiple aspects to data conflation, and this section will look over a few of 
them, and how they affect the design of the Data Broker.  

First, conflation affects the data broker on a WFS capabilities level: How are feature 
layers from WFS services merged into a single WFS service? Secondly, conflation 
affects the data broker on a feature-level: WFS services with overlapping regions could 
have duplicate data. Lastly, conflation also affects the caching mechanism mentioned in 
Section 6.3: If we cache locally in the Data Broker, how do we avoid data duplication in 
the local cache? 

6.2.1.1.1 Conflation at a WFS Capabilities level 
We would like to clarify some terminology used in this section. In WFS terms, a “feature 
type” refers to an item in the capabilities document that logically groups together a set of 
features. This WFS feature type is identifiable with a unique name, given in the 
capabilities document of the WFS service. 

In AIXM, a “feature type” refers to a specific type of feature. This could be for instance 
an aixm:RunwayElement, aixm:AirportHeliport, aixm:Airspace, etc… In both 
definitions, the term “feature” refers to an abstraction of real world phenomena.  

Please note that the name of a WFS feature type does not have to match the AIXM 
feature types it serves. A WFS feature type also doesn’t have to limit itself to a single 
AIXM feature type. Table 1 shows a few examples to demonstrate the flexibility of WFS 
feature types in combination with AIXM feature types. 

Use case WFS Feature Type name AIXM Feature Type 

1 aixm:AirportHeliport aixm:AirportHeliport 

2 AirportHeliportType aixm:AirportHeliport 

3 Random_name aixm:AirportHeliport 

4 Airports_and_airspaces aixm:AirportHeliport, 
aixm:Airspace 

Table 1: Examples of possible WFS feature type names and the type of AIXM features they return 
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At a capabilities level, the Data Broker needs to be capable of merging feature layers that 
logically belong in the same category into a single feature layer on the Data Broker. This 
means that layers serving the same AIXM Feature Type should be merged into a single 
WFS Feature Type at a capabilities level. 

In our examination of several WFS sources serving AIXM 5.1 sources, we found that you 
can generally not rely on case 1 in Table 1. Often, WFS sources would use one of the first 
3 use cases. Use case 4 was generally not seen: A single WFS Feature Type always 
seemed to map to a single type of AIXM Feature. 

If the condition in use case 1 of Table 1 holds for all WFS sources, then the Data Broker 
can have a single initialization step that reads the capabilities documents of the source 
WFS services, and matches WFS Feature Type names to serve them as a single feature 
layer on the Data Broker. While this would ideal performance-wise, we found that since 
there is no coupling between WFS Feature Type name and AIXM Feature identifier, we 
cannot rely on this to work in the general case. 

If we allow use case 1 to 3 on Table 1, then we can use an alternative to set up the Data 
Broker. If we know in advance that a single WFS Feature Type will always return a 
single type of AIXM feature, it is still possible to perform a GetFeature request that 
returns the first AIXM feature of the WFS Feature Type. This way we will be able to 
deduce the feature type of the WFS feature layer by looking at only a single feature type. 

While this second method is slower as it requires more calls to the source WFS services, 
it is more robust in cases where slight variations in naming conventions of WFS Feature 
Types. 

Our general recommendation for the Data Broker is to look at the first AIXM feature type 
returned by a GetFeature request to a WFS service. This should be done for each WFS 
Feature Type in the capabilities document, and should be done at startup of the service. 
The return AIXM Feature types should be stored in an in-memory map for each source 
WFS Service. 

Then for each AIXM feature type found in the source WFS services, create a WFS 
Feature Type that serves that AIXM feature. For convenience, the name of this WFS 
feature type should be the name of the AIXM feature type. The BBOX should be a union 
of the BBOX elements of the source WFS services. 

Table 2: Example input WFS Sources and their mapping in the Data BrokerTable 3: 
Resulting Data Broker Capabilities (Given Table 2 as input) show an example of this. 

WFS 
Source 

WFS 
Feature 
Type 
name 

WFS Feature Type 
BBOX 

AIXM Feature 
Type 

Resulting 
Data Broker 
WFS Feature 
Type name 



OGC 15-028 

18  
 

Source A Airport [0,0,20,20] aixm:AirportHeliport AirportHeliport 

Source B Heliport [-10,-10,10,10] aixm:AirportHeliport AirportHeliport 

Source B Airspaces [-15,-15,15,15] aixm:Airspace Airspace 

Table 2: Example input WFS Sources and their mapping in the Data Broker 

Data Broker Feature Type 
Name 

Data Broker Feature Type 
BBOX 

AIXM Feature Type 

AirportHeliport [-10,-10,20,20] aixm:AirportHeliport 

Airspace [-15,-15,15,15] aixm:Airspace 

Table 3: Resulting Data Broker Capabilities (Given Table 2 as input) 

 

6.2.2 Conflation at a WFS feature level 

Conflation on a feature level involves certain assumptions of data described in [2]. The 
recommendations in this document suggest that every AIXM 5.1 feature has a universally 
unique identifier (UUID) that is generated by the primary data originator. This means that 
if overlapping regions of data are offered by several WFS services, the Data Broker can 
identify duplicate features using the identifier property of the AIXM feature. 

For AIXM 5.1 data, we make the distinction between gml:identifier and gml:id. On a 
feature level, gml:identifier is used to store the UUID (universally unique identifier) of 
the AIXM feature. On a sub-feature level, each element of a feature contains a gml:id that 
locally identifies a particular subset of that feature. This gml:id is not globally unique, but 
it is locally unique to the service it resides in. 

6.2.2.1 Feature level identifiers 

For feature-level identifiers, we make the assumption that if two WFS sources have 
AIXM features with the same UUID that they refer to the same feature. If they have a 
different UUID, then either one of two cases is possible: 

1. They refer to separate features 

2. They refer to the same features, but contain different TimeSlices created by 
different sources. 

For case 2, the following is described in Error! Reference source not found.: 
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“It is therefore possible that two or more information sets (list of 
TimeSlices) exists for the same AIXM feature, in two different systems, 
with different gml:identifiers values. When data from different sources 
is merged in a single system, owner of that system might be confronted 

with the need to identify and merge duplicate data, based on actual 
properties of the feature, not on the gml:identifier”.Error! Reference 

source not found. 

 

The implications of this statement are that any two features in different source WFS 
services could potentially refer to the same conceptual idea (such as a Runway, or an 
Airspace), even if they don’t share a common UUID. Detecting this use case is quite 
complex and it is our belief that it should be done as a pre-processing step, before setting 
up the Data Broker. For this reason, this use case is beyond the scope of this engineering 
report, and has been added to Section Error! Reference source not found. as future 
work. The rest of this document assumes that UUID’s are able to uniquely distinguish 
features, even on a cross-server level. 

Document Error! Reference source not found. also mentions the notion that servers 
might not be fully up-to-date at any time. If two WFS services contain duplicate data, it is 
possible that the two don’t contain exactly the same set of TimeSlices. For instance, if 
one of the two acts as a “pseudo-primary” information source, then it could potentially be 
out-of-date. 

For this case, we recommend that the Data Broker be pre-configured with WFS Services 
in such a manner that certain WFS services have priority over others. Giving primary 
data originators a higher priority than “pseudo-primary” originators lets the Data Broker 
easily choose which feature to serve in case of duplicate UUID’s. The ‘pseudo-primary’ 
data source would be dropped in case of a conflict, under the assumption that the primary 
data source contains more up-to-date data. 

Alternatively to this, it is possible perform a property comparison for each conflicting 
feature. In this method, the Data Broker compares individual TimeSlices on a property-
level to find duplicate TimeSlices. After all duplicates are detected, it should be possible 
to create a single coherent feature with a unique identifier, served by the Data Broker. 

The latter method is prone to problems where faulty data has been sent to one of the data 
sources. For this reason, we recommend using the former option, as it is more consistent 
in handling problematic time-slices.  

6.2.2.2 GML object level identifiers 

Apart from UUID’s found in AIXM Features, there are also local gml:id elements for 
every GML object in a feature. This element is mandatory, and should be locally unique 
to the server. An example of the use of gml:id can be seen in Figure 9. 
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Figure 9: Example of the use of local gml:id (Example taken from Error! Reference source not found.) 

When multiple data sources are merged into one, it is possible that there is a conflict in 
local gml:id’s between servers. This is especially the case if each server has a similar 
gml:id generation technique. 

It is the responsibility of the Data Broker to ensure that while data is being merged from 
multiple data sources, every gml:id is still unique inside a single GetFeature request to 
the Data Broker. One relatively easy way to achieve this is by prefixing or suffixing the 
local gml:id’s with a fixed unique string per source WFS service. This fixed string could 
be any string that is unique to the service, such as the URL to the service. 

While none of the WFS services tested in testbed-11 had conflicting gml:id, it is still 
important to note that the transformation of gml:id tags is not as easy as might seem at 
first. Care must be taken to prevent XLinks to gml:id data objects to become invalid. Any 
active XLink pointing to a gml:id element must also be transformed to match the new 
gml:id. 
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6.2.3 Conflation at a WFS caching level 

Similarly to conflation on a WFS feature type, the act of caching locally in the Data 
Broker also means that conflation has to happen inside the Data Broker itself. Section 6.3 
describes a few caching strategies that involve breaking a single BBOX request into 
several smaller BBOX requests, to reduce bandwidth costs for requests to the same 
regions. Since features are not neatly packed into a fixed structure or grid, features can be 
part of several BBOX regions. In other words: One single feature can appear in multiple 
BBOX requests. Figure 10: A single feature overlapping multiple BBOX regions shows 
an example of this. 

 

Figure 10: A single feature overlapping multiple BBOX regions 

To alleviate this situation, we can define a set of maps and lists to keep track of data that 
could potentially be duplicated at the Data Broker cache level. We need a total 2 maps 
and a list to manage all the bookkeeping and reduce memory usage to a minimum, 
without sacrificing performance. The internal data structure to manage data duplication at 
a cache level is:  

1. A map that maps BBOX tiles to a list of UUIDs 

2. A map of UUIDs to BBOX tiles 

3. A one-to-one mapping of UUIDS to their data. 

See Figure 11: Example use of data structures to conflate local caching for a visual 
example of these structures.  
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Figure 11: Example use of data structures to conflate local caching 

The use of these data structures allows you to quickly and efficiently query what unique 
features are currently cached, and which BBOX regions they reside in. It also ensured the 
actual feature data is kept in a separate set, so geometric data is not duplicated. 

When building up the cache, each map and set will need to be updated accordingly. If a 
UUID is already known, then the resulting feature data should not be decoded again. This 
results in increased performance for large features that overlap many BBOX regions. 

When removing old cache entries to free up memory, care should be taken on how 
feature data is deleted. When a BBOX tile is removed from cache, all UUIDs it pointed to 
should also be updated. If a UUID for a feature is no longer available in any other tile, its 
feature data should also be removed from the cache. 

One potential area where bandwidth could be reduced would be the generation of filters 
that exclude certain known UUID’s from queries. For instance, if we have the feature 
data for UUID A, we can create queries to ensure that the source WFS exclude this UUID 
from the result-set. As mentioned in Section 1.3, we leave this experiment for future 
work. 

6.3 Caching 

To improve the performance of feature requests, the Data Broker can rely on caching 
techniques to reduce the amount of data that needs to be queried from its data sources. 
Multiple approaches can be used to define a caching strategy, depending on behavioral 
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assumptions and cache control requirements. For the Data Broker, we define the 
following assumptions and requirements: 

Assumptions: 

 Features have a unique identifier, to allow the proper identification of cached 
feature entries. 

 Feature queries involve at least a bounding box, to enable the use of a spatial-
oriented cache.  

Requirements: 

 It should be possible to set a maximum size on the cache. This results in a need to 
be able to track the size of the cache and clear elements from it if the maximum 
size has been reached.  

 It should be possible to detect outdated cache items and get new updates from the 
Data Broker’s data sources. 

The maximum size of a cache is a useful feature to limit the resources used by the Data 
Broker. It is necessary for the Data Broker to be able to estimate the memory it is using to 
represent cached entries. This is implementation specific, and will often depend on the 
underlying language used, as well as the way that features are modeled in the application. 

For detection of outdated cache entries, there are multiple options available. These 
options generally require support by the source WFS servers. 

 HTTP Conditional GET using etags 
 HTTP Conditional GET using last-modified 
 HTTP Cache Control Headers using expires, max-age or s-maxage 

Regardless of what options are available at the server in terms of HTTP headers, it is vital 
that the server support spatial filtering on BBOX elements. The idea here is to subdivide 
queries into a grid of BBOX queries, where each bounding box is cached separately at the 
Data Broker. 
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Figure 12: Example of a subdivided query 

Figure 12: Example of a subdivided query gives an example of a subdivided query. If a 
client requests an arbitrary bounding box spatial filter from the data broker, the data 
broker should split up the request into multiple requests, where each request is fit onto its 
internal grid representation. 

Splitting the problem into a uniform grid format simplifies caching at the broker. This 
approach also ensures that future requests around the same areas can reduce the amount 
of bandwidth used between source WFS and Data Broker. Only spatial areas in the 
uniform grid that are not cached need to be retrieved. 

To ensure that the content of the queries gets updated when needed, we require that the 
source WFS service support some form of HTTP cache header control. 

For the case of etags, we recommend that the etag generated by the WFS service takes 
into account not just the request, but also the spatial filter provided in the request. For 
other cache control headers, no special functionality needs to be instated. 

If the source WFS service supports ResultType=hits, we can replace the uniform grid 
representation with a more balanced QuadTree structure in a relatively efficient way. A 
ResultType=hits GetFeature query, will return the amount of features for a given query, 
without returning any data. 

A QuadTree is a data structure that starts off with a bounding box, and subdivides each 
cell in 4 pieces. This happens for each cell recursively, until a certain stop-condition is 
reached. The objective for caching is to have a balanced tree that has roughly an equal 
amount of features per cell. Thus the stop-condition is a certain number of features per 
cell. This threshold can be configured on the Data Broker. 
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Figure 13: Uniform grids vs QuadTree 

To create a QuadTree representation for a feature layer of a source WFS service, the Data 
Broker will have to perform an initial scan of the target dataset. To do this, we query the 
service with ResultType=hits find out how many features are present for a certain cell. If 
this number exceeds our threshold, we subdivide the cell into 4 sub-cells. If no more cells 
need to be subdivided, the QuadTree is complete. 

The advantage of using a QuadTree over a uniform grid is that a QuadTree is more 
balanced in terms of memory usage per QuadTree cell. It is therefore also more balanced 
in terms of bandwidth usage per cell retrieval. A uniform grid can potentially be 
suboptimal for cases where a large dataset is focused on a single area, and there are a few 
outliers outside of this area. Using a QuadTree alleviates this situation, as it will contain 
more cells at locations where there is more data. 

The downside of using a QuadTree is that it requires a separate setup step. This setup step 
does have a cost, which depends largely on the performance of the source WFS services. 
For Data Brokers that are rarely reset or reconfigured, this should not be a big problem. 

Querying a WFS service using ResultType=hits should be fairly efficient. While it 
requires the server to do spatial intersection tests, the bandwidth used to set up this data 
structure is minimal. No feature data is transferred in the setup-phase. The basic 
assumption here is that this setup does not have to happen very often, as feature data does 
not often spatial move around often for aviation data. Most of the updates to data come 
from Digital NOTAMs, which are update to existing features. 

Further optimizations could potentially be done by the use of WFS-TE. When a cached 
BBOX area is out-of-date, it could potentially be beneficial to only retrieve the latest 
changes of each of the cached features to save bandwidth. For instance, the baseline will 
not need to be retrieved again. However, since [4] was being revised at the time of 
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writing, nu further investigation has been done on this topic, and it has been left as future 
work in Section 1.3. 

6.4 Scalability 

An important aspect when setting up a data distribution architecture involving one or 
more WFS Data Broker components is scalability. We can identify a number of factors 
that introduce a performance cost and thus impact the overall scalability; for each of these 
factors, we will discuss possible mitigation actions. 

 Network connection overhead. Each broker essentially introduces an 
indirection, resulting in an additional network connection in the overall loop 
between a client and a data source. This additional network connection is 
inevitable by definition. If performance is a key requirement, make sure that the 
available network bandwidth in the broker is aligned with the available bandwidth 
in broker’s data sources and the needs of the clients: the weakest link in the 
connection loop will determine the network throughput so this is an important 
factor with respect to overall scalability. 

 Provenance and lineage overhead. Section 6.1 discussed the introduction of 
lineage metadata to features queried via a broker, to inform a client about the 
origin of the data. This also comes with a performance cost, since a data 
enrichment step is needed for this. To make this enrichment step as scalable as 
possible, it is important that the broker can process features in a streaming way 
without having to store data responses first. In case of XML data, on which the 
default WFS exchange format GML is based, this boils down to implementing a 
data processing pipeline that uses streaming XML parsing and writing. For most 
of the commonly used object-oriented programming languages have, XML APIs 
exist with streaming support. Luciad’s Java-based WFS Data Broker uses the 
Streaming API for XML (StAX) for this. The implemented data processing 
pipeline will buffer the XML of a single feature, decode it into a Java domain 
model, perform the enrichment step and encode it back to XML. 

 Data aggregation overhead. In a realistic setup, a WFS Data Broker will often 
need to contact more than one WFS data source to answer a feature type request. 
To optimize the throughput in the broker and overall response time, it is 
recommended to perform these requests in parallel. This also reduces the possible 
the impact of a slow data source.  

 Conflation overhead. Relate to the aggregation of data, a WFS Data Broker will 
need to perform conflation in order to avoid duplicate features in its response. As 
outlined in Section 6.2, this requires feature to be uniquely identifiable. In case of 
AIXM data, this is achieved by using the gml:identifier property on the feature 
level, as recommended in [2]. Via an extra step in the data processing pipeline, 
this identifier can be used to perform the conflation step. To align this with a 
parallel execution of data source queries (as recommended in the previous bullet), 
the broker could maintain a temporary map for each incoming request, tracking 
all the identifiers of processed features, properly synchronized across all 
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execution threads. When an identifier is already present, the broker knows that the 
feature has been encountered and processed earlier. 

To test the scalability of the WFS Data Broker in practice, a number of experiments have 
been performed using Luciad’s broker implementation in combination with the AIXM 
WFS data sources provided in Testbed 11. 

Experiment 1: analyzing the impact of adding one or more brokers between a client 
and WFS data source. 

 

Figure 14: High-level architecture of the scalability experiment to detect the impact of adding 
brokers between a client and a data source 

In this experiment, we identify one WFS source, offering a set of features, and 4 WFS 
Data Broker components that are sequentially connected with the WFS source. Figure 14: 
High-level architecture of the scalability experiment to detect the impact of adding 
brokers between a client and a data source shows the high-level architecture of this 
experiment. 
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The goal is to analyze the impact of sequentially adding brokers in a communication 
pipeline. To test this, we request 200 AirportHeliport features from each of the 
components and determine the response time. To focus only on the impact added by a 
broker, we normalize the results by subtracting the average response time of the WFS 
source, since this is a fixed cost not related to the broker. Table 4: Response times for 
brokers in a sequential setup and Figure 15: Response times for brokers in a sequential 
setup show the results of the test. 

 
 
 

Component Reponse time (in ms) 

Source 0 (normalized) 

Broker 1 255.5 

Broker 2 556.5 

Broker 3 934.7 

Broker 4 1376.5 

Table 4: Response times for brokers in a sequential setup 

 

 

Figure 15: Response times for brokers in a sequential setup 
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By looking at the results, we can clearly see the cost that is introduced by each broker and 
the fact that this cost slightly increases for each additional broker. Table 5: Added cost 
for each broker in a sequential setup shows the cost introduced by each broker compared 
to the previous component. 

Component Added cost (in ms) 

Broker 1 255.5 

Broker 2 301 

Broker 3 378.2 

Broker 4 441.8 

Table 5: Added cost for each broker in a sequential setup 

The fact that this cost increases with each broker level is largely explained by the impact 
of the data processing pipeline, which enriches a feature with lineage information. This 
enrichment step adds about 50 lines of XML to each feature; when looking at the output 
of broker 4, this means that about 200 lines of XML are been added per feature, thus 200 
x 200 = 40000 lines of XML in total for the request of 200 features. This obviously 
impacts the XML decoding and encoding operations in the brokers, and also the network 
throughput. However, the relative impact of a broker is still small compared to the 
average response time of the feature request when sent to a WFS data source; this was 
about 1.5 to 2 seconds for the Aviation WFS providers in Testbed 11. 

Experiment 2: testing the impact of feature aggregation in a broker. 

 

Figure 16: High-level architecture of the scalability experiment to detect the impact of feature 
aggregation in a broker 
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In this experiment, we identify two WFS sources, offering a feature type 
(AirportHeliport), and 3 WFS Data Broker components of which 2 redistribute the WFS 
sources and of which one aggregates the other 2. Figure 16: High-level architecture of the 
scalability experiment to detect the impact of feature aggregation in a broker shows the 
high-level architecture of this experiment. 

The goal is to analyze the impact of brokers in case they need to aggregate data from 
various data sources. To test this, we request 200 AirportHeliport features from the 
source, 100 features from each of the two redistributing brokers and finally 200 features 
of the broker that aggregates the other 2 brokers. To focus only on the impact added by 
the brokers, we again normalize the results by subtracting the average response time of 
the WFS source. Table 6: Response times for brokers in a parallel / aggregating setup and 
Figure 17: Response times for brokers in a parallel / aggregating setup show the results of 
the test. 

Component Reponse time (in ms) 

Source 0 (normalized) 

Broker 1A 240 

Broker 1B 240 

Broker 2 665.5 

Table 6: Response times for brokers in a parallel / aggregating setup 
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Figure 17: Response times for brokers in a parallel / aggregating setup 

Table 7: Added cost for each broker in a parallel / aggregating setup shows the cost 
introduced by each broker compared to the previous component. 

Component Added cost (in ms) 

Broker 1A 240 

Broker 1B 240 

Broker 2 425.5 

Table 7: Added cost for each broker in a parallel / aggregating setup 

By looking at the results, we can see a cost that is introduced by broker 1A and 1B that is 
slightly less than introduced by broker 1 in the previous experiment. This is explained by 
the fact that these queries only involved 100 features instead of 200 features. Next, the 
cost introduced by broker 2 is higher than introduced by broker 2 in the previous 
experiment. This is explained by the fact that broker 2 needs to consume data from 2 data 
sources (broker 1A and 1B) and that broker 2 needs to perform a conflation step in the 
data processing pipeline. Again, the impact is relatively small compared to requesting 
100 features from two WFS sources, which in practice add up to 2.5 - 3 seconds for the 
Aviation WFS providers in Testbed 11. 
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6.5 Flexible management of sources 

When setting up a WFS Data Broker, one or more WFS data sources need to be identified 
and configured. In a static architecture, it can be suitable to store a configuration file 
together with a broker that lists its data sources. In a dynamic architecture, where new 
data sources are introduced, or data brokers are restructured / reconfigured (e.g., with 
additional filters for data sources that select certain feature types, define a fixed area of 
interest, …), it can be more convenient to centralize this configuration and potentially 
offload it to a separate service.  

From a technology point of view, primary candidate standards to implement this are ISO 
19119 and OGC CSW: 

 ISO 19119 is an international metadata standard for describing service metadata. 
Included is model to enable users to combine and chain services in ways that are 
not pre-defined by the service providers. This could serve as a basis to define the 
configuration of a data distribution architecture involving one or more WFS Data 
Broker components. 

 OGC CSW is an international web service standard to publish and access digital 
catalogues of metadata for geospatial data, services and related resource 
information. It is fully aligned with the metadata standards ISO 19115 and ISO 
19119, so it is an ideal candidate for a web service to manage the configuration of 
a WFS Data Broker architecture using ISO 19119. 

This approach has not been tested in practice and is therefore listed as potential future 
work. 

7 Conclusions & recommendations 

This document researched the concept of a WFS Data Broker, enabling the possibility to 
cascade WFS components to form a data source chain. A main conclusion is that a WFS 
Data Broker can be set up in practice, fully aligned with the core OGC WFS standard. 
Deeper insight and practical recommendations are given to set up an OGC WFS-based 
data distribution architecture involving WFS Data Broker components 

Recommendations: 

 The Data Broker concept can be implemented using standard OGC WFS 
functionality. However, for an optimal setup, several additional recommendations 
& added features have been put forward in the Data Broker ER. Highlights 
include: 

o To optimize aggregation of similar AIXM feature types, it is 
recommended to let a WFS serve a single AIXM feature type (e.g., 
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AirportHeliport) per WFS feature type and with as name the AIXM 
feature type name. 

o To enable proper conflation, it is recommended using a similar 
identification scheme for features across multiple WFS data sources. 
Applied to AIXM, this boils down to using a consistent UUID for the 
feature’s gml:identifier, making sure that the same airport served by the 2 
WFS data sources have the same value. 

o To enable the detection of a changed WFS data source, it is recommended 
for WFS servers to publish an UpdateSequence value in the capabilities 
(optional in the WFS standard). 

 It is important for the Data Broker implementation to stream data on a feature-by-
feature basis, rather than on a query-by-query basis. This significantly increases 
time-to-response for the client, and it reduces overall memory requirements of the 
data broker. In combination with a feature processing pipeline, the Data Broker 
can implement all its responsibilities in a streaming way: conflation, caching and 
provenance/lineage enrichment. 

 Since a single query can contain data from multiple sources, it is important to 
store metadata on a per-feature basis. If you don’t, you lose information on the 
origin (lineage) of specific features. 

 Caching on Data Broker level should be achieved by splitting up requests into 
fixed BBOX regions called tiles or cells. Depending on source WFS capabilities, 
this can be done using either uniform grid structure, or a more complex 
QuadTree. 
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