
OGC 03-064r5

Open GIS Consortium Inc.

Date: 2004-05-14

Reference number of this OpenGIS® project document: OGC 03-064r5

Version: 0.5.0

Category: OpenGIS® Implementation Specification

Editor: Eric Bertel, Polexis, Inc. / OGC

GO-1 Application Objects

Copyright notice

This OGC document is a draft and is copyright-protected by OGC. While the
reproduction of drafts in any form for use by participants in the OGC standards
development process is permitted without prior permission from OGC, neither this
document nor any extract from it may be reproduced, stored or transmitted in any
form for any other purpose without prior written permission from OGC.

Warning

This document is not an OGC Standard. It is distributed for review and comment. It
is subject to change without notice and may not be referred to as an OGC Standard.

Recipients of this document are invited to submit, with their comments, notification
of any relevant patent rights of which they are aware and to provide supporting
documentation.

File nam : 03-064Document language: English

Document type: OpenGIS® Recommendation Paper
Document stage: Final

e r5_GO-
1_Application_Objects.doc

OGC 03-064r5

Contents

i. Preface... v

ii. Submitting organizations .. v

iii. Submission contact points.. v

iv. Revision history ... vi

v. Changes to the OpenGIS Abstract Specification............................ vii
vi. Future Work ... vii
Foreword.. x

Introduction.. xi
1 Scope.. 1

2 Conformance .. 1
2.1 Types of Conformance.. 1
2.2 Display Object Conformance... 2
2.3 Spatial Object Conformance.. 2
2.4 OGC Service Conformance.. 3

3 Normative references... 3

4 Terms and definitions .. 3

5 Conventions .. 3
5.1 Symbols (and abbreviated terms).. 3
5.2 UML Notation ... 4

6 Application Object Definitions ... 5
6.1 Factory ... 5

Graphic Object Creation.. 5
6.1 Display Objects .. 6

6.1.1 Canvas.. 6
6.1.1.1 General Description.. 6
6.1.1.2 Output Device.. 7
6.1.1.3 Input Device... 7
6.1.1.4 Coordinate Reference System.. 7
6.1.1.5 Z-Order and Rendering of Graphics .. 8
6.1.1.6 Canvas State .. 9
6.1.2 Events .. 10

6.2 Graphical Data Objects.. 12
6.2.1 Graphic .. 14

6.2.1.1 General Description.. 14

ii © OGC 2004 – All rights reserved

OGC 03-064r5

6.2.1.2 Primitives ... 16
6.2.1.3 Aggregates ... 19
6.2.1.4 Graphic Symbols... 19
6.2.1.5 Graphic Object Creation.. 21
6.2.1.6 Path Type... 21

6.2.2 GraphicStyle.. 23
6.2.2.1 Relationship to Graphic ... 23
6.2.2.2 Relationship to OGC SLD.. 23
6.2.2.3 GraphicStyle elements ... 24
6.2.2.4 Graphic-to-GraphicStyle element applicability 26
6.2.2.5 GraphicStyle inheritance.. 27

6.3 Spatial Objects .. 27
6.3.1 Geometry ... 28

6.3.1.1 DirectPosition .. 30
6.3.1.2 CurveSegment and Conic... 31
6.3.1.3 CompositeCurve and Ring... 32
6.3.1.4 SurfaceBoundary .. 33
6.3.1.5 Aggregate ... 34
6.3.1.6 Envelope... 35

6.3.2 Coordinate Reference System Model .. 35
6.3.2.1 Coordinate System.. 35
6.3.2.2 Reference System .. 37
6.3.2.3 Datum... 38
6.3.2.4 Coordinate Reference System.. 40
6.3.2.5 Map Projection.. 43
6.3.2.6 Coordinate Operations ... 44
6.3.2.7 Relative Coordinates... 48

6.3.3 Reference System Factories and Authority Factories 49

7 Behaviours .. 50
7.1 Adding a Graphic to a display ... 50
7.2 Mouse click selects graphical object.. 51

7.2.1 Editing Graphics ... 52
7.3 Graphic object is instantiated from a Geometry and an SLD. 53
7.4 Relative Coordinate Use Cases .. 55

7.4.1 An image that does not scale with a CRS ... 55
7.4.2 An image that is in a CRS chain and scales with a ProjectedCRS 55
7.4.3 An EngineeringCRS scaling directly with another
EngineeringCRS. .. 56

7.5. Symbology Use Cases.. 56
7.5.1 MIL-STD 2525 Tactical Graphic .. 56
7.5.2 MIL-STD 2525 Air Track .. 57
7.5.3 Surface Weather.. 58
7.5.4 Homeland Security.. 60

7.6 Z-order Use Case... 60

© OGC 2004 – All rights reserved

iii

OGC 03-064r5

Annex A (normative) Application Objects Programming Interface for
Java 62

Annex B (normative) Symbology Property Names 63

Bibliography .. 67

iv © OGC 2004 – All rights reserved

OGC 03-064r5

i. Preface

This document is the Open GIS Consortium Application Objects Implementation
Specification. This specification is a result of the OGC Geographic Objects Initiative,
which was established to develop an open set of common, lightweight, language-
independent abstractions for describing, managing, rendering, and manipulating
geometric and geographic objects within an application programming environment. This
document defines that set of vendor-neutral, object-oriented geometric and geographic
object abstractions for the application space. It provides both an abstract object
specification (in UML) and a programming-language specific profile (in Java) to that
specification. The language-specific bindings serve as an open Application Program
Interface (API).

ii. Submitting organizations

The following organisations submitted this Implementation Specification to the Open
GIS Consortium Inc. in response to the OGC Call for Participation (CFP) in the
Geographic Objects Phase One (GO-1) Initiative:

a) Polexis

b) Northrop Grumman Information Technology

c) Pennsylvania State University

iii. Submission contact points

All questions regarding this submission should be directed to the editor or the submitters:

CONTACT COMPANY ADDRESS PHONE/FAX EMAIL

Eric Bertel Polexis eric@polexis.co
m

Greg Reynolds Polexis greynolds@pole
xis.com

© OGC 2004 – All rights reserved

v

OGC 03-064r5

CONTACT COMPANY ADDRESS PHONE/FAX EMAIL

xis.com

John Davidson Image
Matters
LLC/OGC

 johnd@imagem
attersllc.com

Phillip C.
Dibner

Ecosystem
Associates/O
GC

 pcd@ecosystem
.com

Charles Heazel OGC cheazel@openg
is.org

Ava Mann Northrop
Grumman IT

 amann@northro
pgrumman.com

James MacGill Penn. State
Univ.

 jmacgill@psu.e
du

iv. Revision history

Date Release Author Paragraph modified Description

19 May 03 0.1.9 P. Dibner First public draft

03 June 03 0.2.0 P. Dibner Cleanup for June 2003 TC

17 Sept 03 0.3.0 E. Bertel Second public draft

11 Mar04 0.3.5 E. Bertel Added 6.3.4.5.1,
6.3.4.5.2, 6.3.4.5.3,
6.3.4.7.
Modified vi, 6.1.1.4,
6.2.2.1, 6.2.2.2,
6.2.2.3, 6.2.2.4,
6.2.2.5, 6.3.4.2,
6.3.4.5,
Bibliography.

Additional content resulting from
GO-1 proof-of-concept
implementation.

11 Mar 04 0.4.0 G. Reynolds Added 6.1.1.6,
6.3.4.3.1, 6.5, 6.5.1,
6.5.2, 6.5.3, 6.5.4,
6.5.5, 7.2.1, Annex

Third public draft

vi © OGC 2004 – All rights reserved

OGC 03-064r5

B.
Modified 6.1.1.5,
Bibliography.

14 May 04 0.5.0 E. Bertel Modified i, vi, xi, 1,
2, 6.1, 6.1.1.1,
6.1.1.4, 6.1.1.6,
6.1.1.7, 6.2.1.2,
6.2.1.8, 6.2.2 (each),
6.3, 6.3.1 (each), ,
6.3.4 (each), 6.3.4.6,
Bibliography,
Figures 1 - 32.

Removed 6.3.2,
6.3.2.1, 6.3.3,
6.3.4.5.3, 6.4, 6.4.1,
6.4.2, 6.4.3.

Fourth public draft, incorporating
changes based on comments at the
April 2004 Technical Conference
GO-1 RFC presentation,
modifications to the GeoAPI
baseline, and numerous minor
editorial corrections.

v. Changes to the OpenGIS Abstract Specification

The OpenGIS® Abstract Specification does not require changes to accommodate this
OpenGIS® standard.

vi. Future Work

The Application Objects specification defines a set of core packages that support a small
set of Geometries, a basic set of renderable Graphics that correspond to those
Geometries, 2D device abstractions (displays, mouse, keyboard, etc.), and supporting
classes. Implementation of these APIs will support the needs of many users of geospatial
and graphic information. These APIs support the rendering of geospatial datasets,
provide fine-grained symbolization of geometries, and support dynamic, event and user
driven animation of geo-registered graphics.

We anticipate the need for extensions to this specification to support more specialized
applications. It is likely that the core packages will warrant some granular enhancements,
which would constitute revisions to the specification. Some extensions, however, will
constitute major new capability areas. Implementing these extensions as a revision to this
Application Objects specification would not be advisable, especially if the extension
introduces a capability that not all implementers would want to support. These new

© OGC 2004 – All rights reserved

vii

OGC 03-064r5

capability areas should be defined in separate "extension" specifications that include the
core specification by reference. Implementations would be declared compliant with one
or more of these extensions, and consumers could choose a product that meets their
applications' need.

We recommend that future work on new Application Object-dependent specifications be
considered for the following extensions:

• 3D - to support 3D Geometries and 3D Graphics for objects such as surfaces and
solids, perhaps the integration of standard 3D models such as VRML, and other 3D
concepts.

• Advanced 2D - to support the more advanced 2D Geometries and 2D Graphics
including those defined by Topic 1 (ISO-19107).

• Immediate Mode Rendering - to add an optional "call back" method to allow the
application programmer to render Graphics using lightweight, transient calls during
the physical rendering process (which is useful to support the rendering of extensive
amounts of graphical information, but not easily supported by some implementations,
such as distributed or client/server map engines). This allows an application
programmer to reuse Geometry and Graphics objects to render many similar items
(e.g., thousands of CurveSegments) and avoid the overhead of modelling them in
memory, prior to render time. In addition to the performance considerations, this also
allows for scale and location-dependent rendering to be done by the application, such
as rendering sparse representations of grid data, where application logic must be used
to calculate the correct placement of the graphics.

• Additional data sources - GO-1 has been architected to accommodate non-geospatial
data models. The integration of non-GIS information models (engineering, modelling
and simulation, etc.) into the GO-1 framework should be pursued.

We recommend that future work on new Application Object core specification be
considered in the following areas:

• A more extensive investigation into the differences in requirements and capabilities
of graphical vs. analytic geometry descriptions.

• The API will eventually need to be extended to give the Canvas the ability to span
multiple processes and correctly align its state between those processes (e.g. a Canvas
that is served to multiple network clients). The X protocol is a good example of an
architecture that handles this situation.

Furthermore, we recommend that the work from GO-1 be considered for inclusion in the
following OGC work areas:

viii © OGC 2004 – All rights reserved

OGC 03-064r5

• Style Layer Descriptor (SLD) - The GO-1 GraphicStyle can express certain
concepts not found in SLD (e.g. Viewability, Editability, Highlight,
ArrowStyle, FillStyle, FillPattern,Symbology). The SLD
specification should be expanded to express these concepts.

• Coordinate Reference System (CRS) and Coordinate Transformation (CT) – The GO-
1 API introduces the Projection object family, which extends the OGC
Conversion object; the MathTransform object family as a decorator to the
OGC Operation object family; and a pattern using a default Factory in concert
with an AuthorityFactory. With the exception of Projection, all of these
additions are implemented from the OGC 01-009 implementation specification
(Coordinate Transformation Services).

•

© OGC 2004 – All rights reserved

ix

OGC 03-064r5

Foreword

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open GIS Consortium Inc. shall not be held responsible
for identifying any or all such patent rights.

This document consists of the following parts, under the main body:

• Clause 1: Scope

• Clause 2: Conformance

• Clause 3: Normative references

• Clause 4: Terms and definitions

• Clause 5: Conventions

• Clause 6: Design and Specification for Application Objects

• Clause 7 Behaviours

• Annex Documents: Detailed Implementation Specifications for Application Objects in
External, Javadoc Documents

• Bibliography

x © OGC 2004 – All rights reserved

OGC 03-064r5

Introduction

This document describes architectural and implementation issues concerning the
development of a suite of software objects that facilitate the development of applications
with geospatial content, as elucidated during the Geographic Objects Phase 1 Initiative
(GO-1) conducted under the auspices of the Open GIS Consortium Interoperability
program (OGC IP). The particular implementation focus of this initiative is interface
definition and code organization in the Java programming language.

The bases of the interface definition are the object models defined in The OpenGIS
Abstract Specification Topic 1: Feature Geometry (ISO-19107 Spatial Schema) Version 5
(OGC 01-101r5) and The OpenGIS Abstract Specification Topic 2: Spatial Referencing
By Coordinates (OGC 03-073r4). These models provide the architectural bridge between
the OGC GO-1 application-domain specification and other OGC service-domain
specifications.

© OGC 2004 – All rights reserved

xi

DRAFT OpenGIS© Specification OGC 03-064r4

OpenGIS© Interface — Application Objects

1 Scope

This OpenGIS document describes the specification for Application Objects. These are
the Java implementations of objects and interfaces that can be used to implement
geospatial applications.

Application Objects are oriented on the application domain (e.g. user-facing, localized
processes and operations), and less so on the service domain (e.g. centralized processes
and operations that are not necessarily exposed to the user).

2 Conformance

2.1 Types of Conformance

This document recognises two broad categories of conformance, API conformance and
functional conformance. API conformance is the ability of an application to invoke all of
the required operations without any unexpected returned values or states. API
conformance does not require that the component actually do anything. Functional
conformance mandates not only that the required operations can be invoked, but also that
the component performs the operations in a standard and universally understood manner.

Because this API is intended to be used in a wide range of deployment environments, the
primary focus of this document is upon API conformance. API conformance can be
specified and tested in a manner that is implementation-neutral. When an operation is
invoked, it either succeeds, or fails to produce the intended result. There is no ambiguity.

Functional conformance is more difficult and far more implementation-dependent. What
is acceptable in one environment may not be adequate in another. For example, a high-
performance, low-power display might be designed to render lines in only a few colours
and styles. This would be inadequate for a more feature-rich unit used to develop
cartographic imagery. Such differences in functionality should be invisible to a generic
API. A rigid definition of functional conformance would limit component developers'
ability to tailor their products to the requirements of their respective developer
communities.

Even within the domain of API conformance, there is a wide spectrum of developer
objectives and corresponding application types. Not all of these would benefit by
incorporating every interface specified below. In the remainder of this section we
describe various categories of conformance, and suggest the kinds of applications that
might benefit most from each one.

© OGC 2004– All rights reserved

1

OGC 03-064r5

Crucial to this notion are the object classes and interfaces that form natural suites of
related functionality, or packages, that define the substance of the various conformance
classes. Certain suites, like the Spatial Objects, can be implemented as compliant
standalone object libraries. Others, like the Display Objects, are dependent upon one or
more other frameworks, and compliant implementations of these must also comply with
the specifications of the frameworks on which they depend. To utilize them implies a
conformance to the object suites upon which they depend as well.

Even within a framework, there is variation among environments as to which operations
and perhaps even which objects may be necessary or useful. Future versions of this
specification may provide additional flexibility to implementers by defining different
conformance profiles. Simpler profiles would offer less functionality, simpler
implementation, and fewer resource requirements than the more extensive profiles.

2.2 Display Object Conformance

The Display Objects described in this document include the Canvas, Graphic,
GraphicStyle, and the objects of the Event model. The Canvas is the rendering
environment for the user. Graphics objects are the entities that a Canvas manipulates and
renders according to the styling attributes of a GraphicStyle object. Events provide user
input to the Canvas, and both control and notification between objects on the Canvas.
Together, these constitute the display subsystem of an application.

Display system conformance confers a number of benefits upon applications that
implement it. Some of these benefits are:

1. Implementations have a variety of architectural and design decisions already made for
them. They implement patterns and benefit from best practices as identified by
participants in the GO-1 initiative.

2. Among the patterns of interest are a consistent means of ingesting data from a variety
of OGC-specified sources.

3. Users of these systems will find familiar user interaction paradigms and control
semantics as they move between applications.

4. Applications loosely coupled to their display subsystems may connect with any of a
number of local or remote displays, and may therefore provide a means to coordinate
control or share information among a variety of distributed sites.

5. Thus display system conformance confers interoperability with respect to the display
and user interface subsystem.

2.3 Spatial Object Conformance

Geometry, Coordinate Reference System, and related entities constitute the spatial
objects defined by GO-1. These build upon the body of work that has resulted in the

2 © OGC 2004 – All rights reserved

OGC 03-064r5

OGC Abstract Specification Topic 1 (ISO-19107), OGC Abstract Specification Topic 2,
and several OGC Discussion and Recommendation Papers.

Direct support of spatial objects confers interoperability with local conforming data
sources and with remote services, like WFS, that provide an encoded stream of features
per the definitions in these documents.

2.4 OGC Service Conformance

While this specification outlines certain service interfaces, it does not require the use of
any particular service implementation. A conformal application may derive its data from
one or more services as defined by any of the OGC service specifications. It may also act
as a client to transformation or other processing services when they become available.

The OGC web services defined to date are effectively standalone. An application may
conform to any one of them independently, without necessarily conforming to others.

3 Normative references

The following normative documents contain provisions that, through reference in this
text, constitute provisions of this part of OGC 03-064. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. However, parties
to agreements based on this part of OGC 03-064 are encouraged to investigate the
possibility of applying the most recent editions of the normative documents indicated
below. For undated references, the latest edition of the normative document referred to
applies.

(Normative references are included in the Bibliography.)

4 Terms and definitions

For the purposes of this document, the terms and definitions given in Section 5.1 below
apply.

5 Conventions

5.1 Symbols (and abbreviated terms)

API Application Program Interface

COTS Commercial Off The Shelf

CRS Coordinate Reference System

CS Coordinate System

GO-1 Geographic Objects, Phase 1

© OGC 2004– All rights reserved

3

OGC 03-064r5

ISO International Organisation for Standardisation

OGC Open GIS Consortium

SLD Styled Layer Descriptor

SRS Spatial Reference System

UML Unified Modelling Language

XML eXtended Markup Language

1D One Dimensional

2D Two Dimensional

3D Three Dimensional

5.2 UML Notation

The diagrams that appear in this standard are presented using the Unified Modelling
Language (UML) static structure diagram. The UML notations used in this standard are
described in the diagram below.

Association between classes

role-1 role-2

Association Name
Class #1 Class #2

Association Cardinality

Class Only one

Class Zero or more

Class Optional (zero or one)

1..* Class One or more

n Class Specific number

Aggregation between classes

Aggregate
Class

Component
Class #1

Component
Class #2

Component
Class #n

……….

0..*

0..1

Class Inheritance (subtyping of classes)
Superclass

Subclass #1

…………..

Subclass #2 Subclass #n

Figure 1 - UML notation

In this standard, the following three stereotypes of UML classes are used:

4 © OGC 2004 – All rights reserved

OGC 03-064r5

a) <<Interface>> A definition of a set of operations that is supported by objects having
this interface. An Interface class cannot contain any attributes.

b) <<DataType>> A descriptor of a set of values that lack identity (independent
existence and the possibility of side effects). A DataType is a class with no
operations whose primary purpose is to hold the information.

c) <<CodeList>> is a flexible enumeration that uses string values for expressing a list of
potential values.

In this standard, the following standard data types are used:

a) CharacterString – A sequence of characters

b) Integer – An integer number

c) Double – A double precision floating point number

d) Float – A single precision floating point number

6 Application Object Definitions

6.1 Factory

The GO-1 factory classes support a getCapabilities() operation that allows it to
describe the features it supports. An application attempting to use a given
implementation can invoke this method to determine whether an implementation is
suitable for rendering its graphic information, or whether it would have to do extra work
in order to use the implementation.

For example, the CommonFactory.getCapabilities()method returns an object
that implements the CommonCapabilities interface. This object may then be
queried about support for specific features. In order to ascertain display capabilities, the
DisplayFactory.getCapabilities() method is used to obtain capabilities related to graphic
primitives and styles.

Among the kinds of information an application may discover are various types of
graphical rendering that the implementation is capable of doing, e.g., kinds of stroke and
fill patterns available, support for blinking or backlighting, colour palette, line join styles
and end caps, etc.

Graphic Object Creation

Graphic objects are created by invocation of the relevant creation method against a
DisplayFactory. The Factory pattern, which is used extensively throughout GO-1,
insulates client code from all details of the created class internals. Graphic creation
methods may instantiate Graphic objects based on ISO-19107 geometries presented to

© OGC 2004– All rights reserved

5

OGC 03-064r5

them, but they may also be created using Shapefiles, or other formats for setting the
geometry and geospatial location of a Graphic.

6.1 Display Objects

Display objects mediate the dynamic interactions of geospatial, graphical, or other data
with the application. The particular role of such objects in the context of the present
specification involves interaction with end users: displaying the data on a user-viewable
device, and accepting user or programmatic input to control the application.

6.1.1 Canvas

6.1.1.1 General Description

The Canvas class defines a common abstraction for the display and user manipulation
of geospatial information. It contains and manages a collection of Graphic objects that
may be rendered as a map or represent features on a map, and maintains display context.

Instances of this class are created by the DisplayFactory. The Factory pattern,
which is used extensively throughout GO-1, insulates client code from all details of the
created class internals.

6 © OGC 2004 – All rights reserved

OGC 03-064r5

Figure 2 - Canvas and related classes

6.1.1.2 Output Device

A Canvas is associated with an output device such as a window or a portion of a
window on a display screen, or an image buffer. The Canvas is responsible for
intelligent handling of the viewable area of the window, including panning, zooming,
growing, and shrinking, repaints of "dirty" areas in the image due to external window
changes, and visual changes in the Graphics due to editing, animation, or filtering.

6.1.1.3 Input Device

A Canvas may be associated with one or more input devices such as a mouse, keyboard,
eye tracker, or gesture reader. These devices allow the user to manipulate the Graphic
objects held by the Canvas. The Canvas manages the input events from these devices.

6.1.1.4 Coordinate Reference System

The Canvas maintains two coordinate reference systems (CRS):

1. The Canvas display CRS is associated with the geometry of the display device,
and generally uses display coordinates such as pixels.

© OGC 2004– All rights reserved

7

OGC 03-064r5

2. The Canvas objective CRS is associated with the data modelled by the Canvas,
and is generally associated with model coordinates, such as points.

Most computer screens are a rectangular array of pixels, and would use a CRS backed by
a CartesianCS for the display CRS. A planetarium or IMAX theatre is a spherical
display, and might require a spherical coordinate reference system.

The Canvas objective CRS is typically a ProjectedCRS for a rendered map, but
could be a GeographicCRS if simple lat/lon rendering is desired, or a non-georeferenced
CoordinateReferenceSystem, such as an isometric projection of an
EngineeringCRS.

The Canvas must provide accessors for two MathTransform objects, the first which
specifies the particular transformation method from the objective CRS to the display
CRS, and the second which specifies the transformation method from the display CRS to
the objective CRS (note this latter transformation can be provided by
MathTransform.invert() method which is part of OGC 01-009
specification). This MathTransform shall be invertible, in order to get the
transformation method from the display CRS to the objective CRS. For example if the
ProjectedCRS defines objects in grid coordinates, the first transform can convert the grid
coordinates of a ProjectedCRS to screen coordinates of the display CRS.
Alternately an implementation can choose to utilize as the objective CRS a non-projected
CoordinateReferenceSystem, such as a GeospatialCRS, a
GeographicCRS, or an EngineeringCRS.

Before adding a Graphic to a Canvas the user is responsible to ensure that the
CoordinateReferenceSystem of the Graphic is supported by the
implementation, by using
CommonCapabilities.getSupportedCoordinateReferenceSystems().

If the Graphic CoordinateReferenceSystem is not supported, then the client must
transform the Graphic to an appropriate CoordinateReferenceSystem prior to
adding it.

If the Graphic CoordinateReferenceSystem is supported, but is different than the
objective CRS of the Canvas, the Canvas will transform the original Graphic object
to a new Graphic object, discard the original Graphic object, and return a reference
to the new Graphic object. The client is responsible to update its internal reference to
the new Graphic object.

6.1.1.5 Z-Order and Rendering of Graphics

The Canvas controls the visual layering, or z-order, of the Graphic objects it contains.
The z-order allows Graphics to overlap and occlude each other in a controllable way.

8 © OGC 2004 – All rights reserved

OGC 03-064r5

The Canvas may optimise its display by not rendering Graphics that are fully
occluded.

Furthermore, when an input device selects a location on the display, the z-order allows
the Canvas to designate the topmost Graphic (i.e., the highest z-order value for all
Graphics at that coordinate location) as the object of interest.

In the general case of a distributed, asynchronous environment, the z-order cannot be
designated deterministically by software external to the Canvas. To maximise the
control of the situation, GraphicStyle objects have a z-order hint that the application
can set, and the Canvas can read. When a Graphic is added to a Canvas, the
Canvas gets the Graphic's z-order hint and attempts to place the Graphic at that z-
order location. The z-order is defined as a double to permit a large range of values.

6.1.1.6 Canvas State

Figure 3 - Canvas state and controls

To interact with the Canvas, outside entities must be aware of certain properties that
provide context for graphical operations. Collectively, these properties comprise the
Canvas state, and are contained in instances of CanvasState. This object describes
only the viewing area or volume of the Canvas, not any state or other information about
the data contained within it. When an instance of CanvasState is returned from
Canvas methods, it contains a "snapshot" of the current state of the canvas. Its values
never change, even if the state of the Canvas itself does.

© OGC 2004– All rights reserved

9

OGC 03-064r5

For example, in an XY display CRS, a class implementing CanvasState would
provide access to the following properties:

• pixelWidth

• pixelHeight

• center

• width

• scale

• boundingRectangle

Entities that are interested in reading Canvas state must implement the
CanvasListener interface. CanvasListener includes the canvasChanged()
method, which is called by a Canvas when its state has changed. The Canvas passes a
populated CanvasState data object to the canvasChanged() method.

If an entity needs to change the state of a Canvas, it must implement the
CanvasHandler interface. This interface provides a mechanism for multiple entities
to change Canvas properties without contention or deadlock. The Canvas enables
exactly one CanvasHandler at a time. When a CanvasHandler is enabled, the
Canvas passes it a CanvasController, through which the entity can modify
Canvas state values. The CanvasController remains active until another
CanvasHandler is enabled.

This architecture assumes a Canvas that is in a single process. However, if the Canvas
spans multiple processes, then a state alignment issue occurs, where a process may not
detect a change initiated by another process. This specification does not address this latter
scenario.

6.1.2 Events

6.1.2.1 Model and Rationale

The general paradigm for control by input devices is based on the Java Event model, and
works as follows:

For each control device (e.g. a mouse or keyboard), there is specialized Event object
type. When the device changes state (e.g., a mouse button is pressed), the system sends
an instance of that Event to objects that have implemented and registered an
EventListener interface for that device.

The event-handling mechanism for each device includes a stack of EventHandlers.
When the EventListener receives an Event, it passes it to the first Handler on the
stack. Each Handler implements specialized functionality – the system’s response to the

10 © OGC 2004 – All rights reserved

OGC 03-064r5

Event - that it executes when it receives an Event. Then it can either consume the
Event, or by not consuming it, allow it to be passed to the next handler in the stack.
Thus the response of the system to a control input depends directly on the flow of
Events through the Handler stack.

An EventManager interface allows the application to control which Handlers are on
the stack, and in which order. This flexible arrangement allows the application to
establish different modal responses for different states of the system, such as selection
mode vs. editing mode.

There is also a ManagerSupport object that actually implements several of these
interfaces, and does the real work that allows this input model to function.

This design is explained in greater detail in the following sections.

6.1.2.2 GO-1 Event Management

The GO-1 model for responding to user-actuated controls, programmatic state changes,
and other asynchronous events is mediated through a general-purpose framework based
on the Java Event model. In the Java model, a physical or programmatic change
constitutes an event, which is represented by an Event object that contains information
about the event and identifies the source of the event. Objects can implement an
appropriate EventListener interface and register with the event source in order to
receive events generated by that source. Some event sources, such as those that generate
mouse or keyboard events, are present by default in the underlying system. Others may
be implemented in the application or in library packages. Event sources per se are not a
part of the response system documented here, but they motivate one important aspect of
its organisation: for each source in a GO-1 implementation there is an event handling
subsystem whose structure is described by the following paragraphs.

6.1.2.3 ManagerSupport Object

There is one instantiable class dedicated to each event management chain: a
ManagerSupport class, typically named after the control that it supports:
MouseManagerSupport, KeyManagerSupport, etc.

Each ManagerSupport object implements an EventListener subinterface
appropriate to its event source, and registers as a listener for that source. Consequently, it
receives Events for that source, but it does not respond to them directly. Instead, it
manages a stack of EventHandlers (through its EventManager interface; see
below) and passes Events it receives to one or more Handlers on the stack.

6.1.2.4 EventHandler Stack

For each event chain, there is at least one EventHandler object. The Handlers do the
actual work of mediating the system’s response to an event. For example, a

© OGC 2004– All rights reserved

11

OGC 03-064r5

MouseHandler implements a mouseClicked() operation that may cause an object
to be selected or highlighted.

Like the ManagerSupport object, a Handler implements the EventListener
interface appropriate to its source, but it does not register as a listener. Instead, it
implements the interface in order to inherit (and perhaps override) the relevant event
handling methods.

As noted above, each Support object has a stack of Handlers. When it receives an
event, the Support object invokes the appropriate action method against the top
Handler on the stack. The Handler performs whatever specialized function this method
implements, and then optionally consumes the event. If the event is not consumed, the
Support object invokes the method against the next handler on the stack, and so on
until the event is consumed. Thus an event may trigger a series of responses that varies
according to the arrangement of EventHandlers on the stack. This mechanism may
be used to implement modal behaviours in response to input events, such as a change
from selection behaviours to editing behaviours in the application’s response to mouse
gestures.

6.1.2.5 EventManager

The ManagerSupport object also implements a subclass of the EventManager
interface. EventManagers are concerned primarily with maintaining the stack of
Handlers. They have methods to enable, push, pop, find, remove, and replace Handlers
on the stack.

Canvas objects are loosely coupled with EventManager objects. The
EventManager pattern is extensible to accommodate input devices beyond the
traditional keyboard and mouse (such as eye tracker, gesture reader, etc.). Canvas
support of particular EventManager implementations is determined through
Canvas.findEventManager(Class eventManagerClass), where
eventManagerClass is a class that extends EventManager, and whose
implementation satisfies the various Event operations for that device.

Much of the user input will be processed by the Canvas, which manages its own event
managers. The Graphic class, described under Graphical Data Objects below, also
have event manages similar to the Canvas.

6.2 Graphical Data Objects

A graphical rendering environment differs from a general geospatial processing
environment in several respects. For one thing, due to their inherently limited resolution
and other physical constraints, raster display devices can only accurately depict a limited
set of geometries. For another, each display device and corresponding software system
may have its own notion of how to style the objects that it renders.

12 © OGC 2004 – All rights reserved

OGC 03-064r5

The most significant differences are more general, and incorporate the above particulars.
Displays are often compact, high-performance, and necessarily specialized devices that
raise issues familiar from the earlier days of general-purpose computing. Very robust,
immensely flexible, and therefore large object systems intended to meet every possible
functional requirement are both irrelevant and overly expensive in terms of memory
requirements and processing overhead. Items that constitute the primary focus of
functionality in a general context, such as a map, may be nothing more than a graphical
background in a display system.

The classes described here are therefore lighter weight and less general than the ISO
Geometry classes described in Section 6.3.1 (from the OGC Topic, i.e. ISO-19107).
Nonetheless, they seek to retain the semantics and many of the behaviours of objects
already defined by published or existing OGC standards. Where appropriate, they are
defined as restrictions of the more general objects, and are typically instantiated via
factory objects that take corresponding general-purpose spatial objects as arguments.

© OGC 2004– All rights reserved

13

OGC 03-064r5

6.2.1 Graphic

Figure 4 - Graphic

6.2.1.1 General Description

Graphic objects contain the information needed by a Canvas to create a visual display.
Similar in some respects to a Java 2 Shape, they contain geometric data, styling
information (See GraphicStyle, Section 6.2.2), and geospatial coordinate location.

There are two broad categories of Graphics: primitives and aggregates. Primitive types
are based on a simple rendered object (or an Icon, Text, or an Image) or are based on a
primitive 2D ISO Geometry object, and include GraphicCurveSegment,
GraphicScaledImage, GraphicIcon, GraphicArc, GraphicLabel,
GraphicCompositeCurve, GraphicRing, and

14 © OGC 2004 – All rights reserved

OGC 03-064r5

GraphicSurfaceBoundary. Aggregates are collections of primitives, and
include AggregateGraphic and OrderedAggregateGraphics.

Each primitive graphic object uses ISO-19107 Geometry to define its parameters. For
example, GraphicScaledImage uses an Envelope to define its geographic
extents. To the maximum extent the relationship allows, parameters for the Graphic
object are stored in the underlying Geometry object fields. In cases where the
underlying Geometry class does not have the same accessor and mutator methods, the
Graphic must execute a conversion before storing the result in the underlying
Geometry object. If the underlying Geometry object parameters change, the client is
responsible for calling Graphic.refresh().

When a Graphic object changes or receives mouse or keyboard interaction it fires a
GraphicEvent. A GraphicEvent can be received by objects that implement the
GraphicListener interface. A client may receive GraphicEvents by creating an
object that implements the GraphicListener interface and registering it with a
Graphic via its addGraphicListener() method.

Graphic objects that are aggregations (i.e. AggregateGraphic and
GraphicCompositeCurve, and their inheriting classes) can register
AggregationListeners to listen for AggregationChangeEvents. These
events are notifications when elements are added, removed, or (if applicable) reordered
within the aggregation.

A Canvas knows how to read the attributes and geometric data from each Graphic type,
and how to apply the styling information in the Graphic to create a visual
representation. Graphics also contain a z-order hint, which the Canvas uses to help
manage visual layering of the Graphics it displays.

Geometry objects are portable between implementations of the GO-1 specification. For
example, an external program shall be able to create Geometry objects in one
implementation but apply those Geometry objects to Graphic objects in any
implementation of Canvas or Graphic.

Graphic objects are instantiated with a Factory pattern.

© OGC 2004– All rights reserved

15

OGC 03-064r5

6.2.1.2 Primitives

Figure 5 – GraphicLabel, GraphicIcon, GraphicScaledImage, GraphicCurveSegment

The palette of primitive shapes available to a Graphic is limited to a set that is sufficient
for manipulation and rendering in graphical environments. Graphic objects themselves
are subclassed according to the kind of geometry that they implement, and include the
following:

GraphicCurveSegment defines common abstractions for implementations of 1-D
lines made of one or more curve segments, as well as closed polygons made of a closed
set of three or more curve segments. A settable attribute determines whether the
GraphicCurveSegmentis closed. A settable PathType attribute determines the
interpolation between segment endpoints.

GraphicScaledImage provides an abstraction for implementing projected images
defined by an upper left and a lower right point. This class includes methods for setting
the image transparency and intensity as well as the image data. There are also methods
for setting and getting the CoordinateReferenceSystem of the underlying
Envelope, which specifies the projection of the image.

GraphicIcon defines a common abstraction for implementations to render icons on a

16 © OGC 2004 – All rights reserved

OGC 03-064r5

drawing surface. The position of the icon in the CoordinateReferenceSystem is
idealised as a single point attribute. The alignment of the icon to this point is specified as
a pixel offset from the icon’s upper left corner. The rotation of the label is measured
positively as a clockwise angle, starting from a reference line within the
CoordinateReferenceSystem.

GraphicLabel defines a common abstraction for implementations to render text on a
drawing surface. The position of the label in the CoordinateReferenceSystem is
idealised as a single point attribute. The alignment the label to this point is specified by
the x-anchor and y-anchor. The rotation of the label is measured positively as a clockwise
angle, starting from a reference line within the CoordinateReferenceSystem.

Figure 6 - GraphicArc

GraphicArc provides definitions for closed circles and ellipses, as well as circular or
elliptical arcs. Various settable attributes control its size, width, height, and orientation,
and whether the object can be rotated or resized by the user. In this context width always
refers to the major axis and height to the minor axis. Orientation start and end angles are
defined counter-clockwise from the x-axis.

© OGC 2004– All rights reserved

17

OGC 03-064r5

Figure 7 – GraphicCompositeCurve, GraphicRing, GraphicSurfaceBoundary

GraphicCompositeCurve extends the Graphic class to accommodate the creation
of open or closed continuous curves of arbitrary type. For example, a figure “8” is a
closed ISO-19107 CompositeCurve, while a capital “W” shape is an open
CompositeCurve. The aggregate is ordered, and the end point of each element in the
aggregate is the beginning point of the next one. This interface includes methods to add,
insert, remove, and replace component Graphics within this sequence.

GraphicRing is a graphical representation of a Ring geometry. A Ring is a
CompositeCurve that is closed and whose line segments do not cross. This behaviour
must be enforced by the implementation on the methods inherited from the parent class.
GraphicRing can be explicitly composed of other Graphic objects (via the methods
inherited from GraphicCompositeCurve), or can get its geometry information
directly from a Ring (via the setRing() method).

GraphicSurfaceBoundary is a graphical representation of a SurfaceBoundary
geometry. GraphicSurfaceBoundary can be explicitly composed from
GraphicRing objects, or can get its geometry information directly from a

18 © OGC 2004 – All rights reserved

OGC 03-064r5

SurfaceBoundary geometry. If a GraphicSurfaceBoundary is generated by
the aggregation of GraphicRings, it is left up to the implementation to ensure that the
equivalent SurfaceBoundary geometry is topologically correct (i.e. the constituent
Rings do not touch or overlap).

6.2.1.3 Aggregates

AggregateGraphic defines a common abstraction for implementations of aggregated
Graphic objects. This abstraction makes no assumptions about how the Graphics are
stored within the aggregate. For example, the Graphics may be stored in an array such
that the Graphic in the zero element of the array is considered the front most (highest
z-order) object and the Graphic in the largest element of the array is considered the
bottommost (lowest z-order) object. Alternatively, the Graphics may be stored in a
more efficient data structure.

This abstraction makes no assumptions about thread safety. Implementations of
Graphic that are to be used in a multi-threaded environment must address thread safety
by using synchronised methods or by invoking all methods from a single thread.

OrderedAggregateGraphic extends the AggregateGraphic interface to add
the ability for the user to specify a stacking order or Z-order. When the objects contained
in this aggregate are drawn, they should be drawn in the order they appear in the list of
children, starting with index 0.

Figure 8 - AggregateGraphic, OrderedAggregateGraphic

6.2.1.4 Graphic Symbols

A symbol can be depicted on a map using one of two techniques, pictorial or abstract.
Pictorial symbols are those that are designed to replicate or look like the feature they
represent, such as a cross to identify a hospital or a ship to symbolize a port. They do not

© OGC 2004– All rights reserved

19

OGC 03-064r5

necessarily have a direct connection to what they identify. Abstract symbols are usually
represented by a geometric shape, and bear no relationship to the form of the object they
symbolize.

Symbols can be further defined in terms of their dimension; point (no-dimension), line
(1-dimension), area (2-dimensional), and volume (3-dimensional). Other visual attributes
used to describe a symbol include a combination of size, shape, orientation, color, and
pattern. Most or all of these symbol attributes are pre-determined when a symbology
standard is applied.

Currently there exist a large number of symbology standards covering a broad range of
public and private sector applications. Some of these standards are currently under
development, while new standards are being proposed. Our approach seeks to provide
generic support for both existing and future standards, without mandating the use of any
specific standard.

Figure 9 – Symbology

6.2.1.4.1 Symbology

GO-1 uses a canonical approach to represent standard symbology sets. Tag names and
corresponding data type values are explicitly typed in advance, and described in
Appendix B. Some tags are well known and defined by existing accepted standards.
Others must be derived from best industry practices, existing conventions, or consensus.
Additions to the symbology tags presented in this document are expected and
encouraged, and stakeholders are urged to collaborate on additions and revisions. Prior
to acceptance of this proposed standard, the content of Appendix B is subject to revision.
Tags defined post-acceptance of this specification may be subject to deprecation, but
should not be modified or deleted. An XML schema to describe tags for a supported
Symbology would look like the following.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.polexis.com/site"
 xmlns:site="http://www.polexis.com/site"
 xmlns:sld="http://www.opengis.net/sld"
elementFormDefault="qualified">
<xs:element name="tag" type=symbologyTag>
 <xs:complexType name=symbologyTag>
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="type" type="xs:string"/>

20 © OGC 2004 – All rights reserved

OGC 03-064r5

 <xs:element name="description" type="xs:string" use=”optional”/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

6.2.1.4.2 Visibility Tag

A “.visibility” tag modifier can be optionally appended to any tag name. The data type
for visibility is Boolean. Presence of a visibility value of Boolean.TRUE would mean
that component should be rendered, and a value of Boolean.FALSE would mean don’t
display the component. The following snippet would turn off the AdditionalInformation
indicator for the MIL-STD 2525 symbol use case in Section 7.5.2.

symbology.setSymbologyProperty(symInfo, "AdditionalInformation", "RAF418");
symbology. setSymbologyProperty(symInfo, "AdditionalInformation.visibility",
Boolean.FALSE);

6.2.1.5 Graphic Object Creation

Graphic objects are created by invocation of the relevant creation method against a
DisplayFactory. Graphic creation methods may instantiate Graphic objects
based on ISO-19107 geometries presented to them, but they may also be created using
Shapefiles, or other formats for setting the geometry and geospatial location of a
Graphic.

The GO-1 factory classes support a getCapabilities() operation that allows it to
describe the features it supports. An application attempting to use a given
implementation can invoke this method to determine whether an implementation is
suitable for rendering its graphic information, or whether it would have to do extra work
in order to use the implementation.

For example, the CommonFactory.getCapabilities()method returns an object
that implements the CommonCapabilities interface. This object may then be
queried about support for specific features. In order to ascertain display capabilities, the
DisplayFactory.getCapabilities() method is used to obtain capabilities related to graphic
primitives and styles. Among other things, one may query for the types of graphical
rendering that the implementation is capable of doing, e.g., kinds of stroke and fill
patterns available, support for blinking or backlighting, colour palette, line join styles and
end caps, etc.

6.2.1.6 Path Type

Path types describe how lines are rendered with respect to the modelled surface of the
earth. The categories of path type are:

• Global, consisting of rhumbline and great circle types

© OGC 2004– All rights reserved

21

OGC 03-064r5

• Unprojected, consisting of pixel straight and spline types

• Vector

PathType serves as the base class for objects that represent the various methods for
computing a path between two locations. Singleton instances of PathType will exist to
represent, for example, a path of constant bearing (rhumbline), or a great circle path.
Path type is an algorithmic sequence of interpolation and projection.

• For rhumbline, great circle, and vector, first interpolation is done on the
vertices, which gives in-between points. These in-between points are then
projected into the Canvas display CRS, which converts them to display points.

• For pixel-straight and spline, the vertices are first projected into the Canvas
display CRS as display points. These display points are interpolated, which
generates in-between display points.

For each path type, an implementation will iteratively apply the respective algorithms
until the appropriate display resolution is reached.

Path Type Interpolation Method

rhumbline constant bearing

great circle geodesic

vector linear in world space (interpolation before projection)

pixel-straight linear in display space (interpolation after projection)

spline cubic in display space (interpolation after projection)

Table 1 – Path Types

The Global path type methods calculate a path between two locations, considering the
shape of the earth. The in-between points of the path satisfy two conditions:

1. The in-between points are the same regardless of the way the current path is displayed
(i.e., the path is independent of map projection, Canvas, or other considerations
affecting rendering or portrayal).

2. The in-between points are calculated along a surface that the points are projected
onto, such as the surface of the 3D earth.

The second condition implies that altitude is not taken into account when calculating
Global paths. Hence, paths of this type are well suited for navigation of surface ships or
vehicles.

22 © OGC 2004 – All rights reserved

OGC 03-064r5

This specification defines four path types:

• Great Circle Ellipsoidal

• Great Circle Spherical

• Rhumbline Ellipsoidal

• Rhumbline Spherical

Great circle uses the shortest line on the surface of the earth, assuming either a spherical
or an ellipsoidal earth model. Rhumbline uses a line of constant bearing along the
surface of the earth, also using either a spherical or an ellipsoidal model.

The Unprojected path type methods calculate a path between two locations, not
considering the shape of the earth, but considering the surface of the Canvas.

The methods are:

• Pixel Straight

• Continuous Spline

Pixel straight connects each sequential point with the shortest line on the Canvas.
Continuous Spline uses an interpolation method to connect more than two points.

The Vector path type considers the surface of the earth, but connects sequential point
locations with the shortest direct line, even if it travels below the curved surface of the
3D earth.

6.2.2 GraphicStyle

6.2.2.1 Relationship to Graphic

The GraphicStyle class allows a Graphic to be visually decorated. Each
Graphic contains a GraphicStyle object, and no other graphic can own that style
object. If a particular property on a GraphicStyle is not set, the Graphic will use the
property of its nearest ancestor Graphic that defines the property. If no ancestor defines
the property then a default value is used.

6.2.2.2 Relationship to OGC SLD

The GraphicStyle class has been developed to be as symmetric as possible with
SLD. However, SLD requires that objects be either topologically open or closed, and
immutable after being styled. GraphicArc, GraphicCurveSegment, and
GraphicCompositeCurve can be topologically open or closed, and are modifiable
after being styled, so no direct mapping to SLD is possible.

© OGC 2004– All rights reserved

23

OGC 03-064r5

GraphicStyle can express certain concepts not found in SLD (e.g. Viewability,
Editability, Highlight, ArrowStyle, FillStyle,
FillPattern,Symbology). It is recommended that the SLD specification be
expanded to express these concepts. See Future Work Section.

6.2.2.3 GraphicStyle elements

GraphicStyle is structured as a single interface, extending sub-interfaces containing
groups of paired accessor and mutator methods corresponding to an individual style
element (see table below).

Additionally, GraphicStyle has an accessor and mutator for sub-interfaces consisting
of groups of like elements. An example of such an interface is LineSymbolizer.

The SLD-analogous interfaces are: LineSymbolizer, PolygonSymbolizer,
PointSymbolizer, TextSymbolizer. Additional non-SLD interfaces are:
Viewability, Editability, Highlight, and Symbology.

• LineSymbolizer is closely related to SLD LineSymbolizer in that it
decorates lines.

• PolygonSymbolizer is closely related to SLD PolygonSymbolizer in
that it decorates polygonal shapes.

• PointSymbolizer is closely related to the SLD PointSymbolizer in that
it decorates icons.

• TextSymbolizer is closely related to the SLD TextSymbolizer. The
TextSymbolizer .FONT component is defined as the Java implementation of
Font, as it more accurately defines and distinguishes the concepts of character
and glyph than does the SLD model.

• Viewability allows a Graphic to be made unconditionally invisible, or
conditionally invisible based on a range specified by maxScale and/or
minScale. If maxScale is set, and the Canvas exceeds that scale, the
Graphic is made invisible. Similarly if minScale is set and the Canvas
drops below that scale, the Graphic is made invisible. This in/visibility does not
change the transparency values of GraphicStyle components, but instead
overrides their effect. The z-order hint is used by the Canvas to place the
Graphic in the z-order [see Section 6.1.1.5].

• Editability allows the Graphic to be edited.

• Highlight controls whether a Graphic can blink, and if so, at what rate

• Symbology when defined supersedes any of the other symbolizer objects.

24 © OGC 2004 – All rights reserved

OGC 03-064r5

The following table details the group interfaces, the elements, their types, and their
default values.

Interface Element Type Default
LineSymbolizer LINE_STROKE_BEGIN_ARROW_STYLE

LINE_STROKE_COLOR
LINE_STROKE_DASH_ARRAY
LINE_STROKE_DASH_OFFSET
LINE_STROKE_END_ARROW_STYLE
LINE_STROKE_FILL_BACKGROUND_COLOR
LINE_STROKE_FILL_COLOR
LINE_STROKE_FILL_GRADIENT_POINTS
LINE_STROKE_FILL_OPACITY
LINE_STROKE_FILL_PATTERN
LINE_STROKE_FILL_STYLE
LINE_STROKE_LINECAP
LINE_STROKE_LINEGAP
LINE_STROKE_LINEJOIN
LINE_STROKE_LINESTYLE
LINE_STROKE_OPACITY
LINE_STROKE_PATTERN
LINE_STROKE_WIDTH

ArrowStyle
Color
DashArray
float
ArrowStyle
Color
Color
float[2]
float
FillPattern
FillStyle
LineCap
float
LineJoin
LineStyle
float
FillPattern
float

ArrowStyle.NONE
Color.BLACK
DashArray.NONE
0.0
ArrowStyle.NONE
Color.GRAY
Color.BLACK
N/A
1.0
FillPattern.NONE
FillStyle.SOLID
LineCap.BUTT
10.0
LineJoin.BEVEL
LineStyle.SINGLE
1.0
FillPattern.NONE
1.0

PolygonSymbolizer POLYGON_FILL_BACKGROUND_COLOR
POLYGON_FILL_COLOR
POLYGON_FILL_GRADIENT_POINTS
POLYGON_FILL_OPACITY
POLYGON_FILL_PATTERN
POLYGON_FILL_STYLE
POLYGON_STROKE_BEGIN_ARROW_STYLE
POLYGON_STROKE_COLOR
POLYGON_STROKE_DASH_ARRAY
POLYGON_STROKE_DASH_OFFSET
POLYGON_STROKE_END_ARROW_STYLE
POLYGON_STROKE_FILL_BACKGROUND_COLOR
POLYGON_STROKE_FILL_COLOR
POLYGON_STROKE_FILL_GRADIENT_POINTS
POLYGON_STROKE_FILL_OPACITY
POLYGON_STROKE_FILL_PATTERN
POLYGON_STROKE_FILL_STYLE
POLYGON_STROKE_LINECAP
POLYGON_STROKE_LINEGAP
POLYGON_STROKE_LINEJOIN
POLYGON_STROKE_LINESTYLE
POLYGON_STROKE_OPACITY
POLYGON_STROKE_PATTERN
POLYGON_STROKE_WIDTH

Color
Color
float[2]
float
FillPattern
FillStyle
ArrowStyle
Color
DashArray
Float
ArrowStyle
Color
Color
float[2]
float
FillPattern
FillStyle
LineCap
float
LineJoin
LineStyle
float
FillPattern
float

Color.GRAY
Color.BLACK
N/A
1.0
FillPattern.NONE
FillStyle.SOLID
ArrowStyle.NONE
Color.BLACK
DashArray.NONE
0.0
ArrowStyle.NONE
Color.GRAY
Color.BLACK
N/A
1.0
FillPattern.NONE
FillStyle.SOLID
LineCap.BUTT
10.0
LineJoin.BEVEL
LineStyle.SINGLE
1.0
FillPattern.NONE
1.0

PointSymbolizer POINT_FILL_BACKGROUND_COLOR
POINT_FILL_COLOR
POINT_FILL_GRADIENT_POINTS
POINT_FILL_OPACITY
POINT_FILL_PATTERN
POINT_FILL_STYLE
POINT_MARK
POINT_OPACITY
POINT_ROTATION

Color
Color
float[2]
float
FillPattern
FillStyle
Mark
float
float

Color.GRAY
Color.BLACK
N/A
1.0
FillPattern.NONE
FillStyle.SOLID
Mark.CIRCLE
1.0
0.0

© OGC 2004– All rights reserved

25

OGC 03-064r5

POINT_SIZE
POINT_STROKE_BEGIN_ARROW_STYLE
POINT_STROKE_COLOR
POINT_STROKE_DASH_ARRAY
POINT_STROKE_DASH_OFFSET
POINT_STROKE_END_ARROW_STYLE
POINT_STROKE_FILL_BACKGROUND_COLOR
POINT_STROKE_FILL_COLOR
POINT_STROKE_FILL_GRADIENT_POINTS
POINT_STROKE_FILL_OPACITY
POINT_STROKE_FILL_PATTERN
POINT_STROKE_FILL_STYLE
POINT_STROKE_LINECAP
POINT_STROKE_LINEGAP
POINT_STROKE_LINEJOIN
POINT_STROKE_LINESTYLE
POINT_STROKE_OPACITY
POINT_STROKE_PATTERN
POINT_STROKE_WIDTH

float
ArrowStyle
Color
DashArray
Float
ArrowStyle
Color
Color
float[2]
float
FillPattern
FillStyle
LineCap
float
LineJoin
LineStyle
float
FillPattern
float

16.0
ArrowStyle.NONE
Color.BLACK
DashArray.NONE
0.0
ArrowStyle.NONE
Color.GRAY
Color.BLACK
N/A
1.0
FillPattern.NONE
FillStyle.SOLID
LineCap.BUTT
10.0
LineJoin.BEVEL
LineStyle.SINGLE
1.0
FillPattern.NONE
1.0

TextSymbolizer TEXT_FILL_BACKGROUND_COLOR
TEXT_FILL_COLOR
TEXT_FILL_GRADIENT_POINTS
TEXT_FILL_OPACITY
TEXT_FILL_PATTERN
TEXT_FILL_STYLE
TEXT_FONT
TEXT_HALO_RADIUS
TEXT_LABEL
TEXT_LABEL_ROTATION
TEXT_LABEL_SHOW_LABEL
TEXT_LABEL_XANCHOR
TEXT_LABEL_Y_DISPLACEMENT
TEXT_LABEL_YANCHOR
TEXT_LABEL_Y_DISPLACEMENT

Color
Color
float[2]
float
FillPattern
FillStyle
Font
Float
String
float
boolean
Xanchor
float
YAnchor
float

Color.WHITE
Color.BLACK
N/A
1.0
FillPattern.NONE
FillStyle.SOLID
N/A
1.0
N/A
0.0
false
Xanchor.LEFT
0.0
YAnchor.MIDDLE
0.0

Viewability VIEWABILITY_MAX_SCALE
VIEWABILITY_MIN_SCALE
VIEWABILITY_VISIBLE
VIEWABILITY_Z_ORDER_HINT

int
int
boolean
double

Integer.MAX_VALUE
1.0
true
0.0

Editability EDITABILITY_AUTO_EDIT
EDITABILITY_DRAG_SELECTABLE
EDIABILITY_PICKABLE
EDITABILITY_SELECTED

boolean
boolean
boolean
boolean

true
true
true
false

Highlight HIGHLIGHT_BLINKING
HIGHLIGHT_BLINK_PATTERN

boolean
float[2]

false
{0.5,0.5}

Table 2 – GraphicStyle Elements

6.2.2.4 Graphic-to-GraphicStyle element applicability

The following Graphic classes are decorated by the given GraphicStyle name
categories:

• Graphic: Viewability, Editability (optional), Highlight (optional),
Symbology (optional).

26 © OGC 2004 – All rights reserved

OGC 03-064r5

• GraphicCurveSegment (opened), GraphicArc (opened),
GraphicCompositeCurve (opened): LineSymbolizer.

• GraphicCurveSegment (closed), GraphicArc (closed),
GraphicCompositeCurve (closed), GraphicRing,
GraphicSurfaceBoundary: PolygonSymbolizer.

• GraphicLabel: TextSymbolizer.

• GraphicIcon: PointSymbolizer.

6.2.2.5 GraphicStyle inheritance

When a Graphic object is instantiated by a DisplayFactory, the Graphic
object has a unique GraphicStyle object instantiated and associated with it.

A GraphicStyle object has all possible stylings, because if its associated Graphic
aggregates other Graphic objects, those objects may inherit styling from the
GraphicStyle object. Since the actual geometry of the aggregated Graphics are
not known, GraphicStyle must carry all known types of styling information.

If the GraphicStyle element is not already set, and
GraphicStyle.INHERITANCE_INHERIT_STYLE_FROM_PARENT is true (note
the default value is true), then a GraphicStyle object will inherit a styling property
value from its aggregating object.

 A Graphic can force its aggregated Graphic objects to inherit its own styling by
setting GraphicStyle.INHERITANCE_OVERRIDE_AGGREGATED_GRAPHICS
to true (note that the default value is false). When true, this will force the
aggregated Graphic objects to be rendered with the GraphicStyle of the aggregating
Graphic, but will not change the values of the individual GraphicStyle objects
corresponding to each of the aggregated Graphic objects. This case will override the
behaviour of an aggregated Graphic with the setting
GraphicStyle.INHERITANCE_INHERIT_STYLE_FROM_PARENT of false.

6.3 Spatial Objects

Spatial objects are those that contain geometric or location information. GO-1 utilizes
spatial objects to provide this information to Graphic objects.

The material described in the present section is the focus of an ongoing, separate work
item of the GO-1 Initiative, collectively referred to as the GeoAPI Project. Most of the
Java packages and interface suites discussed here were developed directly from formal
UML models, using automated tools, as part of an assessment and demonstration of the
Model Driven Architecture (MDA) approach for specification and interface development.

© OGC 2004– All rights reserved

27

OGC 03-064r5

6.3.1 Geometry

GO-1 supports a “simple geometry” profile of the robust model for geospatial geometry
developed and published by the International Standards Organisation as ISO-19107
which was adopted with modifications in OGC Topic 1: Feature Geometry [5]. The ISO
model provides an international standard for realizable geometry. This model has been
implemented, with some minor changes, in the Open GIS Consortium Geographic
Markup Language (GML) specification version 3.0 [12].

ISO-19107 is an all-inclusive model, intended to address the most demanding needs of a
geospatial application. Many applications, in particular graphics subsystems, do not need
the full capabilities of this model. The sections below identify the components of the
ISO-19107 Geometry model that are the focus of GO-1.

GO-1 has adopted a subset of ISO-19107 Geometry for handling simple 0, 1 and 2
dimensional geometric primitives. The full semantic and detailed structures of these
geometries are documented in the ISO-19107 specification. Context diagrams and brief
descriptions of the geometries most relevant to GO-1 requirements are provided below.

Note: Except where noted, all descriptive text accompanying the context diagrams in this
section is taken directly from [5].

28 © OGC 2004 – All rights reserved

OGC 03-064r5

Figure 10 – Geometry top-level classes

The adjacent figure depicts the top-level Java interfaces of the GO-1 geometry model.
These Java interfaces are generated directly from the ISO-19107 geometry models. These
are the top-level interfaces for the key geometries that are the focus of GO-1. These
interfaces are briefly described below.

Geometry is the root class of the geometric object taxonomy and supports interfaces
common to all geographically referenced geometric objects. Geometry instances are
sets of direct positions in a particular coordinate reference system. A Geometry can be
regarded as an infinite set of points that satisfies the set operation interfaces for a set of
direct positions, TransfiniteSet<DirectPosition>.

© OGC 2004– All rights reserved

29

OGC 03-064r5

Primitive is the abstract root class of the geometric primitives. Its main purpose is to
define the basic "boundary" operation that ties the primitives in each dimension together.
A Primitive is a geometric object that is not decomposed further into other primitives
in the system. This includes curves and surfaces, even though they are composed of curve
segments and surface patches, respectively. This composition is a strong aggregation:
curve segments and surface patches cannot exist outside the context of a primitive.

Complex is set of disjoint geometric primitives such that the boundary of each primitive
can be represented as the union of other geometric primitives within the complex.

6.3.1.1 DirectPosition

Point is the basic data type for a geometric object consisting of one and only one point.

Figure 11 – DirectPosition and Bearing

DirectPosition object data types hold the coordinates for a position within some
CoordinateReferenceSystem (CoordinateReferenceSystem is described
in Section 6.3.2). DirectPositions, as a data type, are utilized by in other objects,
such as Geometry. When part of a Geometry, a DirectPosition will have the
same CoordinateReferenceSystem as that Geometry.

Bearing is a data type used to represent direction in the coordinate reference system. In
a 2D coordinate reference system, this can be accomplished using a "angle measured
from true north" or a 2D vector point in that direction. In a 3D coordinate reference
system, two angles or any 3D vector is possible. If both a set of angles and a vector are
given, then they shall be consistent with one another.

30 © OGC 2004 – All rights reserved

OGC 03-064r5

6.3.1.2 CurveSegment and Conic

Curve is a descendent subtype of Primitive through OrientablePrimitive. It
is the basis for 1-dimensional geometry. A curve is a continuous image of an open
interval.

Curves are continuous, connected, and have a measurable length in terms of the
coordinate system. The orientation of the Curve is determined by this parameterization,
and is consistent with the tangent function, which approximates the derivative function of
the parameterization and shall always point in the "forward" direction.

A Curve is composed of one or more CurveSegments. Each CurveSegment within
a Curve may be defined using a different interpolation method. The CurveSegments
are connected to one another, with the end point of each segment except the last being the
start point of the next segment in the segment list.

The Conic object represents any general conic curve, with the constraint that the
eccentricity is less than unity. In two dimensions, this will generate a closed ellipse.

Figure 12 – CurveSegment and Conic

© OGC 2004– All rights reserved

31

OGC 03-064r5

6.3.1.3 CompositeCurve and Ring

A CompositeCurve is a Composite with all the geometric properties of a Curve.
Essentially, a composite curve is a list of OrientableCurves agreeing in orientation
in a manner such that each curve (except the first) begins where the previous one ends.

 A Ring is used to represent a single connected component of a SurfaceBoundary.
It consists of a number of references to OrientableCurves connected in a cycle (an
object whose boundary is empty).

A Ring is structurally similar to a CompositeCurve in that the endPoint of each
OrientedCurve in the sequence is the startPoint of the next OrientableCurve in
the sequence. Since the sequence is circular, there is no exception to this rule. Each ring,
like all boundaries, is a cycle and does not intersect itself.

Even though each Ring is topologically simple, the boundary need not be simple. The
easiest case of this is where one of the interior rings of a surface is tangent to its exterior
ring. Implementations may enforce stronger restrictions on the interaction of boundary
elements.

The basic difference between a CompositeCurve and a Ring is that a
CompositeCurve may be open (the end of the last OrientableCurve does not
touch the beginning of the first OrientableCurve) or closed (the end of the last
OrientableCurve touches the beginning of the first OrientableCurve), however
a Ring is always closed.

32 © OGC 2004 – All rights reserved

OGC 03-064r5

Figure 13 – CompositeCurve and Ring

6.3.1.4 SurfaceBoundary

A SurfacePatch defines a homogeneous portion of a Surface. The multiplicity of
the segmentation association specifies that each SurfacePatch shall be in at most one
Surface.

Surface is a subclass of Primitive and is the basis for 2-dimensional geometry.
Unorientable surfaces such as the Möbius band are not allowed. The orientation of a
surface chooses an "up" direction through the choice of the upward normal, which, if the
surface is not a cycle, is the side of the surface from which the exterior boundary appears
counterclockwise. Reversal of the surface orientation reverses the curve orientation of
each boundary component, and interchanges the conceptual "up" and "down" direction of
the surface. If the surface is the boundary of a solid, the "up" direction is usually outward.
For closed surfaces, which have no boundary, the up direction is that of the surface
patches, which must be consistent with one another. Its included SurfacePatches
describe the interior structure of a Surface.

A SurfaceBoundary consists of a number of Rings, corresponding to the various
components of its boundary. In the normal 2D case, one of the Rings is distinguished as

© OGC 2004– All rights reserved

33

OGC 03-064r5

being the exterior boundary. There is exactly one exterior Ring and zero or more interior
Rings. None of the Rings may touch or intersect each other.

Figure 14 - SurfaceBoundary

6.3.1.5 Aggregate

Arbitrary aggregations of geometric objects are possible. These are not assumed to have
any additional internal structure and are used to "collect" pieces of geometry of a
specified type. Operations on these aggregations shall be the accumulators that are
derived from the class operations of their elements. Applications may use aggregates for
objects that use multiple geometric objects in their representations.

Figure 15 - Aggregate

34 © OGC 2004 – All rights reserved

OGC 03-064r5

The Aggregate gathers geometric objects. Since it will often use orientation
modification, the curve reference and surface references do not go directly to the Curve
and Surface, but are directed to OrientableCurve and OrientableSurface.

Most geometric objects cannot be held in collections that are strong aggregations. For this
reason, the collections described in this clause are all weak aggregations, and shall use
references to include geometric objects.

6.3.1.6 Envelope

Envelope is often referred to as a minimum bounding box or rectangle. Regardless of
dimension, a Envelope can be represented without ambiguity as two
DirectPositions. To encode a Envelope, it is sufficient to encode these two
points. The lower corner refers to the DirectPosition whose coordinates are the
minimum numeric values, and the upper corner refers to the DirectPosition whose
coordinates are the maximum numeric values. The terms lower and upper should not be
interpreted as spatially above and/or below.

Figure 16 - Envelope

6.3.2 Coordinate Reference System Model

The GO-1 Coordinate Reference System (CRS) definition is derived from and is
fundamentally consistent with the content of OGC documents 03-009 and 03-010. The
CRS interface, like those for other geometry interfaces, has been derived from UML
models using automated tools. This process and the resulting interfaces are more
completely described in the document that reports upon that effort.

Also, like the other Spatial Object classes, CRS objects are instantiated by a family of
factories that hides the details of object creation from client applications or libraries.

Note: Except where noted, all descriptive text accompanying the context diagrams in this
section is taken directly from [5] and [28].

6.3.2.1 Coordinate System

A CoordinateSystem is the set of coordinate system axes that spans a given
coordinate space. A CoordinateSystem is derived from a set of (mathematical) rules
for specifying how coordinates in a given space are to be assigned to points. The
coordinate values in a coordinate tuple shall be recorded in the order in which the

© OGC 2004– All rights reserved

35

OGC 03-064r5

coordinate system axes associations are recorded, whenever those coordinates use a
coordinate reference system that uses this coordinate system, and no other specification
of axis order is provided.

Figure 17 - Coordinate System

CartesianCS defines a 1-, 2-, or 3-dimensional coordinate system. It gives the
position of points relative to orthogonal straight axes in the 2- and 3-dimensional cases.
In the 1-dimensional case, it contains a single straight coordinate axis. In the multi-

36 © OGC 2004 – All rights reserved

OGC 03-064r5

dimensional case, all axes shall have the same length unit of measure. A CartesianCS
shall have one, two, or three usesAxis associations.

ObliqueCartesianCS defines a 2- or 3-dimensional coordinate system with straight
axes that are not necessarily orthogonal.

EllipsoidalCS defines a 2- or 3-dimensional coordinate system in which position is
specified by geodetic latitude, geodetic longitude and (in the three-dimensional case)
ellipsoidal height, associated with one or more geographic coordinate reference systems.

SphericalCS defines a 3-dimensional coordinate system with one distance, measured
from the origin, and two angular coordinates. Not to be confused with an ellipsoidal
coordinate system based on an ellipsoid ‘degenerated’ into a sphere

CylindricalCS defines a 3-dimensional coordinate system consisting of a polar
coordinate system extended by a straight coordinate axis perpendicular to the plane
spanned by the polar coordinate system.

PolarCS defines a 2-dimensional coordinate system in which position is specified by
distance to the origin and the angle between the line from origin to point and a reference
direction.

VerticalCS defines a 1-dimensional coordinate system used to record the heights (or
depths) of points dependent on the Earth’s gravity field.

LinearCS defines a 1-dimensional coordinate system that consists of the points that lie
on the single axis described. The associated ordinate is the distance from the specified
origin to the point along the axis. Example: usage of the line feature representing a road
to describe points on or along that road.

TemporalCS defines a 1-dimensional coordinate system containing a single time axis
and used to describe the temporal position of a point in the specified time units from a
specified time origin.

UserDefinedCS defines a two- or three-dimensional coordinate system that consists
of any combination of coordinate axes not covered by any other Coordinate System type.
An example is a multi-linear coordinate system which contains one coordinate axis that
may have any 1-D shape which has no intersections with itself. This non-straight axis is
supplemented by one or two straight axes to complete a 2 or 3 dimensional coordinate
system. The non-straight axis is typically incrementally straight or curved.

6.3.2.2 Reference System

ReferenceSystem provides a description of a spatial and temporal reference system
used by a dataset.

© OGC 2004– All rights reserved

37

OGC 03-064r5

Figure 18 - Reference System

Identifier provides an identification of a reference system object. The first use of an
Identifier for an object, if any, is normally the primary identification code, and any
others are aliases.

6.3.2.3 Datum

Datum is commonly used to specify a relationship of a coordinate system to the earth,
thus creating a coordinate reference system. A datum uses a parameter or set of
parameters that determine the location of the origin, the orientation, and the scale of a
coordinate reference system. The anchorPoint property of Datum is a description,
possibly including coordinates, of the point or points used to anchor the datum to the
Earth.

38 © OGC 2004 – All rights reserved

OGC 03-064r5

Figure 19 - Datum

© OGC 2004– All rights reserved

39

OGC 03-064r5

Ellipsoid is a geometric figure that can be used to describe the approximate shape of
the earth. In mathematical terms, it is a surface formed by the rotation of an ellipse about
its minor axis.

EngineeringDatum defines the origin and axes directions of an engineering
coordinate reference system. Normally used in a local context only.

GeodeticDatum references an Ellipsoid which models the shape of the earth.
Due to irregularities in the surface of the Earth, some ellipsoids limit the portion of the
earth’s surface that can be accurately modelled. A GeodeticDatum references a
PrimeMeridian that defines the origin from which longitude values are determined.

ImageDatum defines the origin of an image coordinate reference system. This is used in
a local context only. For an image datum, the anchor point is usually either the centre of
the image or the corner of the image.

VerticalDatum defines the surface of zero altitude. An example would be Mean Sea
Level.

TemporalDatum defines the zero time for some epoch, accessed by getOrigin(). In
Java, this would be Jan 1, 1970.

6.3.2.4 Coordinate Reference System

CoordinateReferenceSystem consists of an ordered sequence of coordinate
system axes that are related to the earth (or another physical object) through a datum. A
coordinate reference system is defined by one datum and by one coordinate system. Most
coordinate reference systems do not move, except for EngineeringCRS objects
defined with respect to moving platforms such as cars, ships, aircraft, and spacecraft.
There are several sub-classes of CoordinateReferenceSystem (see figure below).

40 © OGC 2004 – All rights reserved

OGC 03-064r5

Figure 20 - Coordinate Reference System model from Topic 2

© OGC 2004– All rights reserved

41

OGC 03-064r5

Figure 21 - Coordinate Reference System implementation in GO-1

For GO-1, the common CoordinateReferenceSystem subtypes of primary
interest are:

• ProjectedCRS — A 2D coordinate reference system used to approximate the
shape of the earth on a planar surface, but in such a way that the distortion that is
inherent to the approximation is carefully controlled and known. Distortion
correction is commonly applied to calculated bearings and distances to produce
values that are a close match to actual field values.

• GeographicCRS — A coordinate reference system based on an ellipsoidal
approximation of the geoid; this provides an accurate representation of the
geometry of geographic features for a large portion of the earth's surface.

42 © OGC 2004 – All rights reserved

OGC 03-064r5

• ImageCRS — An engineering coordinate reference system applied to locations
in images. Image coordinate reference systems are treated as a separate sub-type
because a separate user community exists for images with its own terms of
reference.

• EngineeringCRS — A contextually local coordinate reference system; which
can be divided into two broad categories:

1) Earth-fixed systems applied to engineering activities on or near the surface
of the earth;

2) CRSs on moving platforms such as road vehicles, vessels, aircraft, or
spacecraft.

The GO-1 specification implements Topic 2 by combining the two abstract objects
SC_CRS and SC_CoordinateReferenceSystem into a single interface
CoordinateReferenceSystem. This allows the child interface CompoundCRS
to hold instances of itself. Furthermore, an implementation can iterate over instances of
CoordinateReferenceSystem without type-checking. The inherited methods
CompoundCRS.getDatum()and CompoundCRS.getCoordinateSystem()
may return null values for ComopoundCRS.

6.3.2.5 Map Projection

A map projection mediates the transformation of coordinates between the spatial
CoordinateReferenceSystem and a corresponding flat representation. A
ProjectedCRS maintains a Projection object that defines such a transformation
process.

Figure 22 - Projection

Implementers may need to define concrete realizations of Projection for each
supported projection, but details of how each will translate spatial coordinates to either
display coordinates or intermediate grids are optional. Implementation of some
projections will be mandatory, but most will be optional.

© OGC 2004– All rights reserved

43

OGC 03-064r5

6.3.2.6 Coordinate Operations

CoordinateOperation represents a mathematical operation on coordinates that
transforms or converts coordinates to another coordinate reference system. Many but not
all coordinate operations (from CRS A to CRS B) uniquely define the inverse operation
(from CRS B to CRS A). In some cases, the operation method algorithm for the inverse
operation is the same as for the forward algorithm, but the signs of some operation
parameter values must be reversed. In other cases, different algorithms are required for
the forward and inverse operations, but the same operation parameter values are used. If
(some) entirely different parameter values are needed, a different coordinate operation
shall be defined.

Figure 23 - Coordinate Operation

Operation is a parameterised mathematical operation on coordinates that transforms
or converts coordinates to another coordinate reference system. This coordinate operation
thus uses an operation method, usually with associated parameter values.

Transformation objects define an operation on coordinates that usually includes a
change of Datum. They may also mediate conversion from a ProjectedCRS (which
has a datum) to a flat screen. The parameters of a coordinate transformation are
empirically derived from data containing the coordinates of a series of points in both
coordinate reference systems. This computational process is usually "over-determined",
allowing derivation of error (or accuracy) estimates for the transformation. Also, the
stochastic nature of the parameters may result in multiple (different) versions of the same
coordinate transformation.

44 © OGC 2004 – All rights reserved

OGC 03-064r5

Conversion objects define an operation on coordinates that does not include any
change of Datum. The best-known example of a coordinate conversion is a map
projection. The parameters describing coordinate conversions are defined rather than
empirically derived. Note that some conversions have no parameters.

Figure 24 - Operation Parameter

OperationParameter is the definition of a parameter used by an operation method.
Most parameter values are numeric, but other types of parameter values are possible.

© OGC 2004– All rights reserved

45

OGC 03-064r5

OperationMethod is the definition of an algorithm used to perform a coordinate
operation. Most operation methods use a number of operation parameters, although some
coordinate conversions use none. Each coordinate operation using the method assigns
values to these parameters.

The MathTransform object does the work of applying formulae to coordinate values.
A MathTransform does not know or care how the coordinates relate to positions in
the real world. MathTransform objects are intended to be generic in nature; they may
be agnostic to the spatial-coordinate domain, and may be equally applicable to non-
spatial-coordinate domains.

A CoordinateOperation contains a source CoordinateReferenceSystem, a
target CoordinateReferenceSystem, and a MathTransform. The
MathTransform transforms from the source coordinate values to the target coordinate
values.

CoordinateOperation exposes to a user the operation, allowing a user to analyse
the operation from a spatial coordinate context. MathTransform is the backend
implementation of an operation, but has no provision for user analysis.

MathTransform objects consisting of algorithms (or chains of algorithms) that have
identical inputs and identical outputs are themselves interchangeable. Substituting a
MathTransform object with an interchangeable MathTransform object will not
affect the behaviour of the containing CoordinateOperation. An implementation is
allowed to do so if deemed desirable.

46 © OGC 2004 – All rights reserved

OGC 03-064r5

Figure 25 - MathTransform

6.3.2.6.1 Required Coordinate Transformations

GO-1 implementations are required to support the following coordinate transformations:

• Geocentric to Geocentric

• Geocentric to Geographic

• Geographic to Geocentric

• Geographic to Geographic

• Geocentric or Geographic to Projected

• Projected to Geocentric or Geographic

• Engineering to Geocentric or Geographic

• Geocentric or Geographic to Engineering

6.3.2.6.2 Required Operation Methods

GO-1 implementations are required to support the following operation methods:

Molodenski Transform (7 parameter). •

© OGC 2004– All rights reserved

47

OGC 03-064r5

48 © OGC 2004 – All rights reserved

•

•

•

•

•

•

Abridged Molodenski Transform (7 parameter).

Geocentric Translation (3 parameter).

Helmert Transform (7 parameter, with identifiers for Position Vector and Coordinate
Frame Rotation variants).

Affine Transform 2D.

Polynomial Transform (described by NIMA TR 8350.2).

GO-1 implementations may optionally support the following operation methods (for
conversions and transformations):

Grid-Based Transform (NADCON and NTv2).

6.3.2.6.3 Required Datum

GO-1 implementations are required to support the following Datum:

• WGS-84 World Geographic Survey 1984.

6.3.2.7 Relative Coordinates

A technique exists to support relative coordinates. This technique can only be used in
GO-1 implementations that support the restriction that all DirectPositions within a
Geometry have the same CoordinateReferenceSystem.

The technique proposed to accomplish this uses Geometry, which always has a current
CoordinateReferenceSystem. The method Geometry.transform(
CoordinateReferenceSystem, MathTransform), returns another
Geometry instance in the given CoordinateReferenceSystem transformed from
the first Geometry instance using the given MathTransform.

The original Geometry has a reference to the new Geometry, which has a reference to
the new CoordinateReferenceSystem. Thus a Geometric object can effectively
“move” to any given CoordinateReferenceSystem.

If Geometry GA in CoordinateReferenceSystem A desires to transform to a
particular target CoordinateReferenceSystem C, but only has an intermediate
CoordinateReferenceSystem B and MathTransforms A-to-B and B-to-C, the
methods MathTransformFactory.createConcatenatedTransform(
MathTransform, MathTransform) and
MathTransformFactory.createPassThroughTransform(int,
MathTransform, int) can be utilised to create MathTransform A-to-C, and
thereby eliminate the need to instantiate the intermediate Geometry GB object.

OGC 03-064r5

6.3.3 Reference System Factories and Authority Factories

The GO-1 specification for CoordinateReferenceSystem,
CoordinateSystem, Datum, and Operation has a layered factory pattern
consisting of a Factory and one or more implementations of an AuthorityFactory.
CRSFactory, CSFactory, DatumFactory create objects using a properties
java.util.Map object for many of the required parameters. The
CRSAuthorityFactory, CSAuthorityFactory,
DatumAuthorityFactory, and
CoordinateOperationAuthorityFactory objects are intended to connect to
real-world authority databases, such as the European Petroleum Survey Group (EPSG) or
the International Hydrographic Organization (IHO). Each CRSAuthorityFactory
(for example) wraps the CRSFactory and delegates implementation-specific creation
tasks.

For information on the CoordinateReferenceSystems, CoordinateSystems,
Projections, and Datums supported by an implementation, one may query its
CommonFactory. This object also provides supported Geometry types.

All reference system objects are immutable once created. For ProjectedCRS and
other GeneralDerivedCRS objects this presents a complication, in that the
Conversion returned by getConversionFromBase must always return the same object,
and the CoordinateOperationFactory createOperation methods require that the
ProjectedCRS be passed in as a parameter. Thus, one may not pass the required
Projection object into the ProjectedCRS through its constructor, and the
ProjectedCRS may not hold a pointer to the Projection. Instead, the
CoordinateOperationFactory must create the Projection the first time a call
is made to createOperation (passing in at least the ProjectedCRS and its base
GeographicCRS). It will then store this Projection (typically within a Map) for
retrieval on subsequent calls to createOperation in which the same two
CoordinateReferenceObjects plus the relevant OperationMethod are passed in.

It follows from the creation mechanism that implementations of ProjectedCRS will need
to define get methods for internal use in order to pass parameters to the
CoordinateOperationFactory. However, in general
CoordinateReferenceSystem objects do not expose their properties directly, but
rather through Operation objects that involve them. To obtain access to parameters for
a ProjectedCRS via the GO-1 API, one obtains the Projection via
getConversionFromBase, queries it for its ParameterValues, examines the array for
the ParameterValue corresponding to the attribute of interest, then queries that
ParameterValue for its actual value.

© OGC 2004– All rights reserved

49

OGC 03-064r5

7 Behaviours

Here we illustrate a few signature behaviours of an application that uses a GO-1
implementation. We present these behaviours as use cases, some accompanied by
sequence or state diagrams.

7.1 Adding a Graphic to a display

Description: Create a graphic and add it to the display.

Precondition: Begin with an application that includes a full implementation of GO-1
Application Objects. All required Factory objects and a Canvas object have been
instantiated, and a Graphic is ready to be added to the display.

Flow of events:

1. Application requests a Graphic object from the DisplayFactory.

2. Application sets the geometric attributes of the Graphic

3. Application sets the style attributes of the Graphic via getGraphicStyle()

4. Application adds the Graphic object to the Canvas object.

Postcondition: The Graphic is rendered with requested styling on the display device.

This sequence of operations is depicted below.

50 © OGC 2004 – All rights reserved

OGC 03-064r5

getDefaultGeo metry()

Applica tion Feature DisplayFactoryGraphic Canvas

Message1()

createGraphic()

Message2()

setGeometry()

Message3()

add()

Message3()

Figure 26 – Generalized Adding Information to a Display

7.2 Mouse click selects graphical object.

Description: A user selects a feature for editing in the graphical display.

Preconditions: Begin with an application that includes a full implementation of GO-1
Application Objects. The Canvas has a MouseManagerSupport object to which it
delegates mouse event operations. A SelectItemsHandler class exists that implements
MouseHandler. The MouseManagerSupport object has been registered as a
MouseListener and a MouseMotionListener, and the SelectItemsHandler has been pushed
onto the MouseManagerSupport’s (empty) MouseHandler stack. (Even though
SelectItemsHandler is a Java Listener, it is not registered with any EventSource. It is
used as an event dispatcher.)

Flow of events:

1. User clicks on the Canvas, causing a MouseEvent to be fired.

© OGC 2004– All rights reserved

51

OGC 03-064r5

2. The MouseManagerSupport receives the MouseEvent, and passes the
MouseEvent to the first and only item on its MouseHandler stack.

3. The MouseEvent is received and consumed by SelectItemsHandler

4. SelectItemsHandler acquires GraphicStyle from the selected
Graphic and calls
GraphicStyle.setEditabilitySelected(true) to set it
selected.

Postcondition: The user sees the object displayed with styling indicating it has been
selected,.

System GraphicStyleSelectItemsHandler Graphic MouseManager
Support

7.2.1

Grap
prope
hook
progr
imple
widel
gestu

52

mouseClicked(Event)
)

Ed

hic o
rties

s pro
amm
men
y as
res,
Message1(

F

iting Graphics

bjects purposefully
 on Graphic, Show
vided in the specific
atic way of moving
tation. An impleme
sumed that users wil
particularly mouse g
handleClick(Event)

leave editing up to the i
ingAnchorHandles and
ation pertaining to edit
 a Graphic to and from
ntation may choose to e
l have the opportunity t
estures.
GetGraphicStyle()
M

mp
Sho
ing
an
dit
o m
essage3()
)

t

lementation. T
wingEditHand

. Their purpose
editable mode d
 a Graphic as it
odify a Graph
setEditabilitySelected(
M

he tw
les,
 is t
eter
 sees
ic th
essage4()

 igure 27 - Selecting a Graphic Objec
o existing
are the only
o offer a
mined by the
 fit, but it is

rough

© OGC 2004 – All rights reserved

OGC 03-064r5

In order to move a Graphic into editing mode, one or both of the setShowingHandles
methods must be called. If setShowingAnchorHandles is called, then the Graphic should
display handles suitable for relocating the entire Graphic. Each Graphic should display
editing handles for its particular Geometry, so a GraphicCurveSegment would display
handles at its vertices while a GraphicIcon would only display a handle for rotating (the
handle for relocating the GraphicIcon would be categorized as an anchor handle rather
than an editing handle).

7.3 Graphic object is instantiated from a Geometry and an SLD.

Preconditions: Running application has instantiated a geometry CurveSegment and a
compatible StyledLayerDescriptor (SLD) object.

Flow of events:

1. Application creates a new Graphic object with the DisplayFactory. Graphic has
default styling.

2. Application gets the reference to the Graphic’s GraphicStyle.

3. Application gets various styling attributes from the SLD.

4. Application sets the GraphicStyle’s styling attributes with those obtained from the
SLD.

5. Application sets the geometric attributes of the Graphic using the Geometry.

Postcondition: a styled Graphic has been created, and may be added to a Canvas for
display.

© OGC 2004– All rights reserved

53

OGC 03-064r5

Message5()

setStrokeColor()

Message7()

setFillColor()

Message6()

getFill()

Message8()

setGeometry
(CurveSegment)

Message4()

setStrokeWidth()

Message3()

getStroke()

Message2()

getGraphicStyle()

Message1()

DisplayFactory Graphic StyledLayerDescrip GraphicStyle Application

createGraphic
(GraphicCurveSegme

Figure 28 - Graphic Object Creation

54 © OGC 2004 – All rights reserved

OGC 03-064r5

7.4 Relative Coordinate Use Cases

7.4.1 An image that does not scale with a CRS

A dynamically-constructed Graphic that does not scale with the Canvas objective CRS
is to be displayed by the Canvas. The objective CRS of a Canvas happens to be a
GeographicCRS. In this example, the particular type of the display CRS of the
Canvas does not matter. Also irrelevant to this example is the MathTransform
(MTOD) that the Canvas also holds to convert Geometry objects in the Canvas
objective CRS (the GeographicCRS) into Geometry objects in the Canvas display
CRS.

The Graphic is constructed using a square Geometry that is defined by four
DirectPosition objects, which are associated with a single ImageCRS (which in
this example is not the Canvas display CRS). A MathTransform (MTI) is selected
that associates the ImageCRS with the GeographicCRS in such a way that the
Geometry does not translate, rotate, or scale.

For example, the square has pixel coordinates (-4, -4), (4, -4), (4, 4), (-4, 4). This square
is always drawn with the top left corner 4 pixels above and to the right of the reference
coordinate (e.g., a lat/long point) no matter where that point is on the display, and the
square is always 8 pixels wide and 8 pixels high, no matter what the scale of
GeographicCRS with respect to the ImageCRS (zoom factor). Note that this implies
that the Geometry.transform()for the square Geometry may be called on an as-
needed basis: whenever the scale, location, or projection of the GeographicCRS
changes with respect to either the ImageCRS, or changes with respect to the Canvas
display CRS.

7.4.2 An image that is in a CRS chain and scales with a ProjectedCRS
A registered image is to be displayed in a fixed range and bearing from a fixed location in
a Canvas objective CRS, which happens to be a ProjectedCRS.

An EngineeringCRS exists, as does a MathTransform (MTEP) that converts from
the EngineeringCRS to the ProjectedCRS. An ImageCRS exists, as does a
MathTransform (MTIE) that converts from the ImageCRS to the
EngineeringCRS.

The registered image is set with two DirectPositions in the ImageCRS. The
ImageCRS scales with the EngineeringCRS. The EngineeringCRS scales with
the ProjectedCRS.

The Canvas holds another MathTransform (MTOD) to convert the Geometry object
in the Canvas objective CRS (the ProjectedCRS) into Geometry objects in the
Canvas display CRS. The sequence of CRS objects (starting with the initial ImageCRS

© OGC 2004– All rights reserved

55

OGC 03-064r5

and ending with the Canvas display CRS) bound by the intervening MathTransform
objects, together form a “chain”.

An implementation can either create a new Geometry object at each transform()
invocation in the chain, or can call
MathTransformFactory.createConcatenatedTransform()in sequence on
each MathTransform, and ultimately generate a MathTransform that will convert
Geometry objects from the starting CRS (the initial ImageCRS) in the chain to those
in the ending CRS (the Canvas display CRS) in the chain.

7.4.3 An EngineeringCRS scaling directly with another EngineeringCRS.

A ship is to be depicted coming into port. The ship is represented by a Geometry
having an EngineeringCRS (CRSS). The origin of CRSS is a position within the
ship’s Geometry, such as at the centre of buoyancy of the ship or at the forward-most
point of the bow at main deck level. The port is depicted by a set of DirectPostions
having a different EngineeringCRS (CRSP).

A MathTransform (MTSP) exists that converts from CRSS to CRSP. MTSP has the
following qualities: (A) a direct identity scaling from CRSS to CRSP, (B) the behaviour
that the origin DirectPosition of CRSS corresponds to a particular
DirectPosition in CRSP, which denotes the ship position in CRSP, and (C) an
orientation of the CRSS to CRSP, denoting the rotation of the ship with respect to the port.

Note that a mathematically identical case would be if CRSP is a georeferenced CRS, such
as a GeograhicCRS. Similarly mathematically identical is the case where both CRSS
and CRSP are georeferenced CRS types; however, Topic 2 would prohibit time-based
changes to CRSS in a canonically correct implementation.

7.5. Symbology Use Cases

For all standard symbologies detailed in this document, tag sets are fully defined in
Appendix B, and one or more use cases are presented here. Each selected symbology use
case provides sample client side source code that could be used to construct the symbol,
and an illustration of how a corresponding symbol might appear on a map.

7.5.1 MIL-STD 2525 Tactical Graphic

MIL-STD 2525B [34] has evolved from North Atlantic Treaty Organization (NATO)
Standardization Agreement (STANAG) 2019 (APP 6), "Military Symbols for Land
Based Systems," and U.S. Army Field Manual (FM) 101-5-1/Marine Corp Reference

Publication (MCRP) 5-2A, Operational Terms and Graphics. It provides common
warfighting symbology along with details on its display and plotting to ensure the
compatibility, and to the greatest extent possible, the interoperability of DOD Command,
Control, Communications, Computer, and Intelligence (C4I) systems development,
operations, and training. The standard addresses the efficient transmission of symbology

56 © OGC 2004 – All rights reserved

OGC 03-064r5

information within the infosphere through the use of a standard methodology for symbol
hierarchy, information taxonomy, and symbol identifiers. The standard applies to both
automated and hand-drawn graphic displays. These symbols are designed to enhance
DOD's joint warfighting interoperability by providing a standard set of common C4I
symbols.

Figure 29 - MIL-STD 2525 Tactical Graphic

GraphicCurveSegment tacgraph =
(GraphicCurveSegment)displayFactory.createGraphic(GraphicCurveSegment.class);

//anchor 1
LatLonAlt anchor = new LatLonAlt();
anchor.setLatLon(30, 20, degreesUnits);
tacgraph.addAnchorPoint(anchor);

//anchor 2
anchor = new LatLonAlt();
anchor.setLatLon(30, -20, degreesUnits);
tacgraph.addPoint(anchor);

//anchor 3
anchor = new LatLonAlt();
anchor.setLatLon(0, 0, degreesUnits);
tacgraph.addPoint (anchor);

SymbologyInfo symInfo = new SymbologyInfo ("MIL-STD-2525“, “B”);

tacgraph.getGraphicStyle().setSymbologyProperty(symInfo, "SymbolID", "G*TPP----
-****X");
tacgraph.getGraphicStyle().setSymbologyProperty(symInfo, "DirectionOfMovement",
new Double(6.281));
tacgraph.getGraphicStyle().setActiveSymbology(symInfo);
canvas.add(tacgraph);

7.5.2 MIL-STD 2525 Air Track

This example illustrates combining point and line dimensions to form this MIL-STD
2525 Air Track symbol.

© OGC 2004– All rights reserved

57

OGC 03-064r5

Figure 30 - MIL-STD 2525b Air Track

GraphicIcon icon =
(GraphicIcon)displayFactory.createGraphic(GraphicIcon.class);

//anchor point
LatLonAlt anchor = new LatLonAlt();
anchor.setLatLon(30, 20, degreesUnits);
icon.addAnchorPoint(anchor);

// note this GraphicIcon doesn’t require a java Icon as the image
// will determined by the MIL-STD-2525 symbology.
SymbologyInfo symInfo = new SymbologyInfo ("MIL-STD-2525“, “B”);

icon.getGraphicStyle().setSymbologyProperty(symInfo, "SymbolID", "SFAPMF------
USA");
icon.getGraphicStyle().setSymbologyProperty(symInfo, "AdditionalInformation",
"RAF418");
icon.getGraphicStyle().setSymbologyProperty(symInfo, "Frame", Boolean.TRUE);
icon.getGraphicStyle().setSymbologyProperty(symInfo, "Fill", Boolean.TRUE);
icon.getGraphicStyle().setSymbologyProperty(symInfo, "Icon", Boolean.FALSE);
icon.getGraphicStyle().setSymbologyProperty(symInfo, "Speed", new
Double(447.2));
icon.getGraphicStyle().setSymbologyProperty(symInfo, "DirectionOfMovement", new
Double(6.281));
icon.getGraphicStyle().setActiveSymbology(symInfo);
canvas.add(icon);

7.5.3 Surface Weather

Surface weather depictions are commonly found in weather reporting systems. This
symbol is rather detailed, so additional annotations are provided in blue and red. This
Surface weather symbology is based upon the U.S. National Weather Service (NWS)
Meteorology standards [32]. Depiction of such symbology tends to vary slightly across
regions, so implementations may adhere to display standards applicable to their own
geographical regions. A common set of tags for this symbology appears in Appendix B,
Table “SurfaceWeather”.

58 © OGC 2004 – All rights reserved

OGC 03-064r5

Figure 31 - Surface Weather (annotated)

GraphicIcon icon =
(GraphicIcon)displayFactory.createGraphic(GraphicIcon.class);

//anchor point
LatLonAlt anchor = new LatLonAlt();
anchor.setLatLon(24.2, -112.5, degreesUnits);
icon.addAnchorPoint(anchor);
symbol.addAnchorPoint(anchor);

Symbology symInfo = symbol.getSymbology(“SurfaceWeather”);

icon.getGraphicStyle().setSymbologyProperty(symInfo, "SymbolID", "SFAPMF------
USA");
icon.getGraphicStyle().setSymbologyProperty(symInfo, “WindDirection”, new
Double(10.0));
icon.getGraphicStyle().setSymbologyProperty(symInfo, “WindSpeed”, new
Double(5.0));
icon.getGraphicStyle().setSymbologyProperty(symInfo, “Temperature”, new
Integer(34));
icon.getGraphicStyle().setSymbologyProperty(symInfo, “PresentWeather”, 71);
icon.getGraphicStyle().setSymbologyProperty(symInfo, “Visibility”, new
Integer(4));
icon.getGraphicStyle().setSymbologyProperty(symInfo, “Dewpoint”, new
Integer(32));
icon.getGraphicStyle().setSymbologyProperty(symInfo, “SkyCover”, new
Integer(6);
icon.getGraphicStyle().setSymbologyProperty(symInfo, “StationIdentifier”,
“AB1”);
icon.getGraphicStyle().setSymbologyProperty(symInfo, “PressureChange”, new
Integer(28));
icon.getGraphicStyle().setSymbologyProperty(symInfo, “PressureTendency”, new
Integer(1));
icon.getGraphicStyle().setSymbologyProperty(symInfo, “PastWeather”, new
Integer(6));
icon.getGraphicStyle().setSymbologyProperty(symInfo, “PastPrecipitation”, new
Double(0.45));
icon.getGraphicStyle().setSymbologyProperty(symInfo, “HighCloudType”, new
Integer(2));
icon.getGraphicStyle().setSymbologyProperty(symInfo, “MiddleCloudType”, new
Integer(4));
icon.getGraphicStyle().setSymbologyProperty(symInfo, “LowCloudType”, new
Integer(7));

icon.getGraphicStyle().setActiveSymbology(symInfo);

canvas.add(icon);

© OGC 2004– All rights reserved

59

OGC 03-064r5

7.5.4 Homeland Security

The Homeland Security symbology [33] is a work in progress by the Homeland Security
Working Group. This standard has yet to be released as of this writing. Only point
symbols are currently supported. Each SymbolCode is mapped to a single keystroke
character. Those symbol codes are further subdivided into one of four categories;
Incidents, Natural Events, Operations, and Infrastructures. Tags for this symbology
appear in Appendix B, Table “FGDCHomelandSecurity”.

Figure 32 - Homeland Security Symbol

GraphicIcon icon = (GraphicIcon)displayFactory.
createGraphic(GraphicIcon.class);

//anchor point
LatLonAlt anchor = new LatLonAlt();
anchor.setLatLon(23.1, -114.75, degreesUnits);
icon.addAnchorPoint(anchor);
symbol.addAnchorPoint(anchor);

Symbology symInfo = symbol.getSymbology(“FGDCHomelandSecurity”);

// Criminal Activity Incident (Theme)
Symbology symbology = symbol.getSymbology(“FGDCHomelandSecurity”);
icon.getGraphicStyle().setSymbologyProperty(symInfo, “SymbolCode”, “E”);
icon.getGraphicStyle().setSymbologyProperty(symInfo, “SymbolType”, “Incident”)
icon.getGraphicStyle().setSymbologyProperty(symInfo, “Level”, new Integer(0));

icon.getGraphicStyle().setActiveSymbology(symInfo);

canvas.add(icon);

7.6 Z-order Use Case

For the GO-1 reference implementation, we chose to implement z-order in such as way as
to assume that graphic elements that had not set the z-order hint were assumed to share
the z-order of 0 (zero). Any items we desired to draw below the "standard" z-order of all
graphic primitives were set at -1. Any items drawn above all objects at the default z-order
were set at 1.

A use case for this would be the algorithmic determination of z-order by altitude. The
GO-1 client application could pick any range of z for its objects. Let's assume that the
client application picked -100.0 to +100.0 to represent algorithmically determined
elevation (and depth) levels.

Assuming this to be the situation, the following would be true:

60 © OGC 2004 – All rights reserved

OGC 03-064r5

1) Items set with
graphic.getGraphicStyle().setViewabilityZOrderHint(101.0
) would appear "on top" of all items determined algorithmically.

2) Items set with
graphic.getGraphicStyle().setViewabilityZOrderHint(-
101.0) would appear "below" all items determined algorithmically.

3) Items with their z-order hint not set would appear at the level determined by
inheritance.

4) Items in case #3 with no inherited z-order hint would be displayed at the GO-1
specification default z-order of 0.0.

There are a number of approaches by which z-order can be set:

1) Z-order can be set using the
getGraphicStyle().setViewabilityZOrderHint(double) method, on
each graphic.

2) A graphic can be added to an aggregate, which includes
OrderedAggregateGraphic. If the graphic's z-order hint is unset, and inheritance
is enabled, the graphic will be treated as having the z-order of the aggregate.

3) Using OrderedAggregateGraphic, which preserve rending order within
themselves, the client application can guarantee the drawing order of all of its objects
without using the z-order hint in the graphic styles at all. Since each
OrderedAggregateGraphic is guaranteed to render its children in order, from
index 0 to n, and OrderedAggregateGraphic can be added to others as children,
this hierarchy of drawing order can be created.

4) Z-order hints set in the GraphicStyle of a Graphic object always override both
the default z-ordering, and the ordering of an object within a
OrderedAggregateGraphic. Setting the hint, in essence, specifies to the Canvas
exactly at what z level the user wishes the object to be displayed.

Mixing and matching the aforementioned z-order approaches may lead to interesting and
non-deterministic results, according to the implementation. It is our suggestion that, if z-
order is used, one approach be applied consistently for all client objects in order to
decrease the likelihood of unexpected visual results.

© OGC 2004– All rights reserved

61

OGC 03-064r5

Annex A
(normative)

Application Objects Programming Interface for Java

A.1 General

The detailed specifications for the GO-1 Application Objects programming interface have
been made available in Javadoc format. These materials are available under separate
cover in 03-064_Annex_A.zip.

The Spatial Object interface specifications are being developed as a part of the Model
Driven Architecture interface and specification development experiments described at
various points throughout the text above.

62 © OGC 2004 – All rights reserved

OGC 03-064r5

Annex B
(normative)

 Symbology Property Names

B.1 Surface Weather Symbology

References: How to read weather maps

Property Name Type Description
Dewpoint Double Degrees Fahrenheit
HighCloudType Integer Code from 1-9
LowCloudType Integer Code from 1-9
MiddleCloudType Integer Code from 1-9
*PastPrecipitation Double Inches in past six hours
PastWeather Integer Code from 0-9, past six hours
PresentWeather Integer Code from 0-99, present
PressureChange Double Millibars to nearest tenth
PressureTendency Integer Code from 0-8
SeaLevelPressure Double Millibars to nearest tenth
SkyCover Integer Code from 0-9, total cloud cover
*StationIdentifier String http://weather.noaa.gov/tg/site.shtml

Temperature Double Degrees Fahrenheit
Visibility Integer Miles
WindDirection Double Degrees from 0-360
WindSpeed Double Knots

Table 3 - SurfaceWeather

* Denotes a property name extension outside the specification used, but found to be in
common use.

© OGC 2004– All rights reserved

63

http://www.srh.weather.gov/srh/jetstream/synoptic/wxmaps.htm

OGC 03-064r5

B.2 Homeland Security

Reference: Homeland Security Working Group

Property Name Type Description
SymbolCode String keystroke

SymbolType String “Incident”, “NaturalEvent”,
“Operation”, “Infrastructure”

Level Integer 0-4, 0 is no level or n/a

Table 4 - FGDCHomelandSecurity

64 © OGC 2004 – All rights reserved

http://www.fgdc.gov/HSWG/downloadSymbols.htm

OGC 03-064r5

B.3 U.S. Military Symbology

Reference: http://symbology.disa.mil/symbol/mil-std.html

Property Name Type
AdditionalInformation String
AltitudeDepth String
AuxiliaryEquipment Boolean
CombatEffectiveness String
CommonIdentifier String
DateTimeGroup Date
DateTimeGroupAlt Date
DirectionOfMovement Double
EchelonIndicatorDescription String
EquipmentTeardownTime Integer
EvaluationRating String
FeintDummy Boolean
FrameShapeModifier String
Frame Boolean
Fill Boolean
Headquarters Boolean
HigherFormation String
Hostile String
Icon Boolean
IFFSIF String
Installation Boolean
Location String
Mobility String
OffsetLocation Boolean
PlatformType String
Quantity String
Reduced Boolean
Reinforced Boolean
SIGINTMobility String
SignatureEquipment String
SpecialC2Headquarters String
Speed String
StaffComments String
SymbolID String
TaskForce Boolean
Type String
UniqueDesignation String

Table 5 - MIL-STD-2525B

* Refer to MIL-STD-2525B for property name description and behaviour.

© OGC 2004– All rights reserved

65

http://symbology.disa.mil/symbol/mil-std.html

OGC 03-064r5

B.4 Aeronautical Symbology (future)

The 6th Edition of the Aeronautical Chart User's Guide makes available in PDF format
chart symbols for Visual Flight Rules (VFR), Instrument Flight Rules (IFR), and
Instrument Approach (IAP). These are defined by the U.S. National Aeronautical
Charting Office (NACO), and are found at
http://www.naco.faa.gov/index.asp?xml=naco/online/aero_guide.

B.5 Nautical Symbology (future)

The current edition of NOAA Chart No. 1 Nautical Chart Symbols is available from the
National Geospatial-Intelligence Agency (NGA) at
http://pollux.nss.nima.mil/pubs/pubs_j_show_sections.html?vt=ON&dpath=Chart1&ptid
=3&rid=164

66 © OGC 2004 – All rights reserved

http://www.naco.faa.gov/index.asp?xml=naco/online/aero_guide
http://pollux.nss.nima.mil/pubs/pubs_j_show_sections.html?vt=ON&dpath=Chart1&ptid=3&rid=164
http://pollux.nss.nima.mil/pubs/pubs_j_show_sections.html?vt=ON&dpath=Chart1&ptid=3&rid=164

OGC 03-064r5

Bibliography

[1] ISO 31 (all parts), Quantities and units.

[2] IEC 60027 (all parts), Letter symbols to be used in electrical technology.

[3] ISO 1000, SI units and recommendations for the use of their multiples and of
certain other units.

[4] Guidelines for Successful OGC Interface Specifications, OGC document 00-014r1

[5] OpenGIS ® Topic 1: Feature Geometry (ISO 19107 Spatial Schema), version 5,
OGC document 01-101r5. Available at:
http://www.opengis.org/techno/abstract/01-101.pdf

[6] OpenGIS ® Topic 2: Spatial Referencing By Coordinates, OGC document 03-
073r4. Available at http://www.opengis.org/docs/03-073r1.zip

[7] OpenGIS ® Simple Feature Specification for SQLVersion, version 1.1. Available
at: http://www.opengis.org/techno/implementation.htm

[8] OpenGIS ® Topic 5: The OpenGIS Feature. Available at:
http://www.opengis.org/techno/abstract/01-105r2.pdf

[9] OpenGIS ® Grid Coverages Implementation Specification, version 1.0. Available
at: http://www.opengis.org/techno/implementation.htm

[10] OpenGIS ® Catalog Service Implementation Specification, version 1.1.1.
Available at: http://www.opengis.org/techno/implementation.htm

[11] OpenGIS ® Geography Markup Language (GML) Implementation Specification,
version 2.1.2. Available at: http://www.opengis.org/techno/implementation.htm

[12] OpenGIS ® Geography Markup Language (GML) Implementation Specification
(version 3.0), OGC document 02-023r4. Available at:
http://www.opengis.org/docs/02-023r4.pdf

[13] OpenGIS ® Web Mapping Server (WMS) Implementation Specification, version
1.1.1. Available at: http://www.opengis.org/techno/implementation.htm

[14] OpenGIS ® Styled Layer Descriptor (SLD) Implementation Specification, version
1.0. Available at: http://www.opengis.org/techno/implementation.htm

[15] OpenGIS ® Web Feature Server (WFS) Implementation Specification, version
1.0. Available at: http://www.opengis.org/techno/implementation.htm

© OGC 2004– All rights reserved

67

http://www.opengis.org/techno/abstract/01-101.pdf
http://www.opengis.org/docs/03-073r1.zip
http://www.opengis.org/techno/implementation.htm
http://www.opengis.org/techno/abstract/01-105r2.pdf
http://www.opengis.org/techno/implementation.htm
http://www.opengis.org/techno/implementation.htm
http://www.opengis.org/techno/implementation.htm
http://www.opengis.org/docs/02-023r4.pdf
http://www.opengis.org/techno/implementation.htm
http://www.opengis.org/techno/implementation.htm
http://www.opengis.org/techno/implementation.htm

OGC 03-064r5

Filter Encoding:

[16] OpenGIS® Filter Encoding Implementation Specification, version 1.0. Available
at: http://www.opengis.org/techno/implementation.htm

[17] OpenGIS ® Coordinate Transformation Services Implementation Specification,
version 1.0, OGC document 01-009. Available at:
http://www.opengis.org/techno/implementation.htm

[18] Web Coordinate Transformation Service (WCTS), v0.0.4, OGC document 02-
061r1. Available at: http://www.opengis.org/docs/02-061r1.pdf

[19] OpenGIS ® Web Coverage Server (WCS) Discussion Paper, OGC document 02-
024r1. Available at: http://www.opengis.org/techno/requests.htm

[20] Coverage Portrayal Service Specification (CPS), OWS1.1 IPR. OGC document
02-019r1.

[21] Style Management Service IPR, Discussion Paper, OGC document 03-031.
(including proposed changes to SLD). Available at:
http://www.opengis.org/info/discussion.htm

[22] Registry Service, Discussion Paper, OGC document 03-024. Available at:
http://www.opengis.org/info/discussion.htm

[23] Integrated Client for OGC Services, Discussion Paper. OGC document 03-021.
Available at: http://www.opengis.org/info/discussion.htm

[24] OWS Service Information Model, Discussion Paper, OGC document 03-026.
Available at: http://www.opengis.org/info/discussion.htm

[25] OpenGIS ® Web Service Architecture, Discussion Paper, OGC document 03-025.
Available at: http://www.opengis.org/info/discussion.htm

[26] OGC Reference Model (ORM), OGC document 02-077. Available at:
http://www.opengis.org/info/discussion.htm

[27] OGC Spatial Reference Systems, OGC document 02-102. Available at:
http://www.opengis.org/techno/abstract/02-102.pdf

[28] UML for Spatial Referencing by Coordinates, OGC document 03-009R5.
Available at: http://member.opengis.org/tc/archive/arch03/03-009r5.doc

[29] Recommended XML Encoding of CRS Definitions (XML for CRS), v2.1.0, OGC
document 03-010r9. Available at: http://www.opengis.org/docs/03-010r9.zip

[30] CT Definition Data for Coordinate Reference (DD CRS), v1.1.0, OGC document
01-014r5. Available at: http://www.opengis.org/docs/01-014r5.pdf

68 © OGC 2004 – All rights reserved

http://www.opengis.org/techno/implementation.htm
http://www.opengis.org/techno/implementation.htm
http://www.opengis.org/docs/02-061r1.pdf
http://www.opengis.org/techno/requests.htm
http://www.opengis.org/info/discussion.htm
http://www.opengis.org/info/discussion.htm
http://www.opengis.org/info/discussion.htm
http://www.opengis.org/info/discussion.htm
http://www.opengis.org/info/discussion.htm
http://www.opengis.org/info/discussion.htm
http://www.opengis.org/techno/abstract/02-102.pdf
http://member.opengis.org/tc/archive/arch03/03-009r5.doc
http://www.opengis.org/docs/03-010r9.zip
http://www.opengis.org/docs/01-014r5.pdf

OGC 03-064r5

[31] High-Level Ground Coordinate Transformation Interface (HLG-CT), v0.0.3, OGC
document 01-013r1. Available at: http://www.opengis.org/docs/01-013r1.pdf

[32] How To Read Weather Maps, National Weather Service - JetStream. Available at
http://www.srh.weather.gov/srh/jetstream/synoptic/wxmaps.htm - ww_type or
download at
http://www.srh.weather.gov/srh/jetstream/zippedfiles/synoptic_030904.exe

[33] Homeland Security Symbology Reference, FGDC Homeland Security Working
Group. Available at http://www.fgdc.gov/HSWG/downloadSymbols.htm

[34] MIL-STD-2525B Common Warfighting Symbology, ver B, 30 Jan 1999.
Available at http://symbology.disa.mil/symbol/mil-std.html

Open Source Implementation Baselines

GO-1 and GeoAPI:

• http://sourceforge.net/projects/geoapi

Geobject 1.3 and Geobject 2.0a:

• http://geobject.org/umldoc/2.0alpha

• http://sourceforge.net/projects/geobject

Geotools and Geotools2:

• http://modules.geotools.org/core

• http://www.geotools.org

© OGC 2004– All rights reserved

69

http://www.opengis.org/docs/01-013r1.pdf
http://www.srh.weather.gov/srh/jetstream/synoptic/wxmaps.htm
http://www.srh.weather.gov/srh/jetstream/zippedfiles/synoptic_030904.exe
http://www.fgdc.gov/HSWG/downloadSymbols.htm
http://symbology.disa.mil/symbol/mil-std.html
http://sourceforge.net/projects/geoapi
http://geobject.org/umldoc/2.0alpha
http://sourceforge.net/projects/geobject
http://modules.geotools.org/core
http://www.geotools.org/

	1Scope
	2Conformance
	2.1Types of Conformance
	2.2Display Object Conformance
	2.3Spatial Object Conformance
	2.4OGC Service Conformance

	3Normative references
	4Terms and definitions
	5Conventions
	5.1Symbols (and abbreviated terms)
	5.2UML Notation

	6Application Object Definitions
	Factory
	
	Graphic Object Creation

	6.1 Display Objects
	Canvas
	6.1.1.1General Description
	6.1.1.2Output Device
	6.1.1.3Input Device
	6.1.1.4Coordinate Reference System
	Z-Order and Rendering of Graphics
	Canvas State
	6.1.2 Events
	6.1.2.1 Model and Rationale
	6.1.2.2GO-1 Event Management
	6.1.2.3ManagerSupport Object
	6.1.2.4EventHandler Stack
	6.1.2.5EventManager

	6.2Graphical Data Objects
	6.2.1Graphic
	6.2.1.1General Description
	Primitives
	6.2.1.3Aggregates
	6.2.1.4Graphic Symbols
	6.2.1.4.1Symbology
	6.2.1.4.2Visibility Tag

	6.2.1.5Graphic Object Creation
	6.2.1.6Path Type

	6.2.2GraphicStyle
	6.2.2.1Relationship to Graphic
	6.2.2.2Relationship to OGC SLD
	6.2.2.3GraphicStyle elements
	6.2.2.4Graphic-to-GraphicStyle element applicability
	6.2.2.5GraphicStyle inheritance

	6.3Spatial Objects
	6.3.1Geometry
	6.3.1.1DirectPosition
	6.3.1.2CurveSegment and Conic
	6.3.1.3CompositeCurve and Ring
	6.3.1.4SurfaceBoundary
	6.3.1.5Aggregate
	6.3.1.6Envelope

	6.3.2Coordinate Reference System Model
	6.3.2.1Coordinate System
	6.3.2.2Reference System
	6.3.2.3Datum
	6.3.2.4Coordinate Reference System
	6.3.2.5Map Projection
	6.3.2.6Coordinate Operations
	6.3.2.6.1 Required Coordinate Transformations
	Required Operation Methods
	6.3.2.6.3 Required Datum

	6.3.2.7Relative Coordinates

	6.3.3 Reference System Factories and Authority Factories

	7Behaviours
	7.1Adding a Graphic to a display
	7.2Mouse click selects graphical object.
	7.2.1Editing Graphics

	7.3Graphic object is instantiated from a Geometry and an SLD.
	7.4Relative Coordinate Use Cases
	7.4.1An image that does not scale with a CRS
	7.4.2An image that is in a CRS chain and scales with a ProjectedCRS
	7.4.3An EngineeringCRS scaling directly with another EngineeringCRS.

	7.5.Symbology Use Cases
	7.5.1MIL-STD 2525 Tactical Graphic
	7.5.2MIL-STD 2525 Air Track
	7.5.3Surface Weather
	7.5.4Homeland Security

	7.6Z-order Use Case

