
 

Copyright Notice 
Copyright 2003   University of Minnesota 
 
The companies and organizations listed above have granted the Open GIS Consortium, Inc. (OGC) a nonexclusive, 
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and 
distribute copies of the modified version.  
 
This document does not represent a commitment to implement any portion of this specification in any company’s 
products.  
 
OGC’s Legal, IPR and Copyright Statements are found at http://www.opengis.org/legal/ipr.htm. 
 
Permission to use, copy, and distribute this document in any medium for any purpose and without fee or royalty is 
hereby granted, provided that you include the above list of copyright holders and the entire text of this NOTICE.  
 
We request that authorship attribution be provided in any software, documents, or other items or products that you 
create pursuant to the implementation of the contents of this document, or any portion thereof.  
 
No right to create modifications or derivatives of OGC documents is granted pursuant to this license. However, if 
additional requirements (as documented in the Copyright FAQ at http://www.opengis.org/legal/ipr_faq.htm) are 
satisfied, the right to create modifications or derivatives is sometimes granted by the OGC to individuals complying 
with those requirements.  
 
THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR 
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF 
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE 
CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF 
SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR 
OTHER RIGHTS.  
 
COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL 
DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION 
OF THE CONTENTS THEREOF.  
 
The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to this 
document or its contents without specific, written prior permission. Title to copyright in this document will at all times 
remain with copyright holders.  
 
RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth 
in subdivision (c)(1)(ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013  
 
OpenGIS® is a trademark or registered trademark of Open GIS Consortium, Inc. in the United States and in other 
countries.  
 

Note: This document is not an OGC Standard. Internal and external documents cannot refer to it as such. 
Drafts are distributed for review and comment and are subject to change without notice. 



University of Minnesota (UMN) MapServer 
MapServer v3.5 implements WMS features. At the time this document was written, Mapserver 
supports the following WMS versions: 1.0.0, 1.0.7, and 1.1.0 (a.k.a. 1.0.8).  

With MapServer, it is the "mapserv" CGI program that knows how to handle WMS requests. So 
setting up a WMS server with MapServer involves installing the mapserv CGI program and 
setting up a mapfile (files which define map object) with appropriate metadata in it.  

Recipe A: UMN Mapserver HOWTO for Setting Up a WMS 
Server with Mapserver 
Step 1: Preliminary Requirements 
The following preliminary requirements are needed to run a WMS Server using UMN MapServer: 

• MapServer should be installed, configured and running. To do so please follow the 
UMN MapServer online instructions1.  

• If you have a MapServer currently installed, check that your mapserv executable 
includes WMS support. One way to verify this is to use the "-v" command-line switch 
and look for "SUPPORTS=WMS".  

On Unix: 

$ ./mapserv -v 

  MapServer version 3.5 (pre-alpha)  

  OUTPUT=PNG OUTPUT=JPEG  

  OUTPUT=WBMP SUPPORTS=PROJ SUPPORTS=TTF  

  SUPPORTS=WMS  

  INPUT=EPPL7 INPUT=JPEG INPUT=OGR  

  INPUT=GDAL INPUT=SHAPEFILE 

On Windows: 

C:\apache\cgi-bin> mapserv -v 

  MapServer version 3.5 (pre-alpha)  

  OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP SUPPORTS=PROJ  

  SUPPORTS=TTF SUPPORTS=WMS  

  INPUT=EPPL7 INPUT=JPEG INPUT=OGR 

  INPUT=GDAL INPUT=SHAPEFILE 

Step 2: Setup a Mapfile For Your WMS 
Each instance of a WMS server that you setup needs to have its own mapfile. This is an ordinary 
MapServer mapfile in which some parameters and some metadata entries are mandatory. Most 
of the metadata is required in order to produce a valid GetCapabilites output.   

                                                 
1 UMN Map Server homepage:http://mapserver.gis.umn.edu/) 



Figure 1, below, below shows an example fragment of a mapfile: 

Figure 1: Sample UMN MapServer Mapfile Fragment 

Here is the list of parameters and metadata items that usually are optional with MapServer, but 
are required (or strongly recommended) for a WMS configuration:  

At the map level:  

• Map NAME & Map PROJECTION  

• Map Metadata (in the WEB Object):  

• wms_title  

• wms_onlineresource  

• wms_srs (unless PROJECTION object is defined using "init=epsg:...")  

And for each layer:  

• Layer NAME & Layer PROJECTION  

• Layer Metadata  

• wms_title  

• wms_srs (optional since the layers inherit the map's SRS value)  

Below, each parameter is discussed in more detail:  

• Map NAME and wms_title:  

WMS Capabilities requires a Name and a Title tag for every layer. The Map's NAME and 
wms_title metadata will be used to set the root layer's name and title in the 
GetCapabilities XML output. The root layer in the WMS context corresponds to the whole 
mapfile.  

• Layer NAME and wms_title metadata:  

Every individual layer needs its own unique name and title. Layer names are also used in 
GetMap and GetFeatureInfo requests to refer to layers that should be included in the map 
output and in the query.  



•  Map PROJECTION and wms_srs metadata:  

WMS servers have to advertise the projection in which they are able to serve data using EPSG 
projection codes2. Recent versions of the PROJ4 library come with a table of EPSG initialization 
codes and allow users to define a projection like this: 

PROJECTION 

   "init=epsg:4269" 

   END 

The above is sufficient for MapServer to recognize the EPSG code and include it in SRS tags in 
the capabilities output (wms_srs metadata is not required in this case). However, it is often 
impossible to find an EPSG code to match the projection of your data. In those cases, the 
"wms_srs" metadata is used to list one or more EPSG codes that the data can be served in, and 
the PROJECTION object contains the real PROJ4 definition of the data's projection.  

Here is an example of a server whose data is in a Lambert Conformal Conic projection (for which 
there is no EPSG code). It's capabilities output will advertise EPSG:4269 and EPSG:4326 
projections (lat/lon), but the PROJECTION object is set to the real projection that the data is in: 

NAME DEMO 

  ... 

  WEB 

  ... 

  METADATA 

   "wms_title"      "WMS Demo Server" 

   "wms_onlineresource" "http://my.host.com/cgi-
bin/mapserv?map=wms.map&" 

   "wms_srs"       "EPSG:4269 EPSG:4326" 

  END 

  END 

 

  PROJECTION 

   "proj=lcc" 

   "ellps=GRS80" 

   "lat_0=49" 

   "lon_0=-95" 

   "lat_1=49" 

   "lat_2=77" 

  END 

  ... 

• Layer PROJECTION and wms_srs metadata:  

By default in the WMS context, layers inherit the SRS or their parent layer (the map's projection in 
the MapServer case). For this reason, it is not necessary (but still strongly recommended) to 
provide PROJECTION and wms_srs for every layer. However, if your server wants to advertise 
multiple projections, then at least a PROJECTION object is required in every layer, otherwise the 
layers won't be reprojected. This is the way on-the-fly reprojection works in MapServer. Layer 
PROJECTION and wms_srs metadata are defined exactly the same way as the map's 
PROJECTION and wms_srs metadata.  

• The "wms_onlineresource" metadata:  

                                                 
2 EPSG projection codes: http://inovagis.dcea.fct.unl.pt/giserver/epsg.asp.  



The wms_onlineresource metadata is set in the map's Web object metadata and specifies the 
URL that should be used to access your server. This is required for the GetCapabilities 
output. If wms_onlineresource is not provided, then MapServer will try to provide a default 
one using the script name and hostname, but this is not completely reliable. It is strongly 
recommended that you provide the wms_onlineresource metadata.  

See the WMS Specification for the whole story about the online resource URL. Basically, what 
you need is a complete HTTP URL including the http:// prefix, hostname, script name, 
potentially a "map=" parameter, and terminated by "?" or "&".  

Here is a valid online resource URL:  

http://my.host.com/cgi-bin/mapserv?map=mywms.map& 

By creating a wrapper script on the server, it is possible to hide the "map=" parameter from the 
URL and then your server's online resource URL could be something like:  

http://my.host.com/cgi-bin/mywms? 

This is covered in more detail in Section 0 below, "More About the Online Resource URL." 

Step 3: Test Your WMS Server 

Validate the Capabilities Metadata 
With the mapfile in place, you have to check the XML capabilities returned by your server to make 
sure nothing is missing. Using a Web browser, access your server's online resource URL to 
which you add the parameter "REQUEST=GetCapabilities" to the end, e.g.:  

http://my.host.com/cgi-bin/mapserv?map=mywms.map& 

REQUEST=GetCapabilities 

This should return a document of MIME type application/vnd.ogc.wms_xml, so your Web 
browser is likely to prompt you to save the file. Save it and open it in a text editor (Emacs, 
Notepad, etc.)  

If you get an error message in the XML output, then take necessary actions. Common problems 
and solutions are the following: 

Q: How can I find the EPSG code for my data's projection?  

A: If you know the parameters of your data's projection, then you can browse the "epsg" file that 
comes with PROJ4 and look for a projection definition that matches your data's projection. It's a 
simple text file and the EPSG code is inside brackets (<...>) at the beginning of every line.  

Q: My WMS server produces the error "msProcessProjection(): no system list, 
errno: .."  

A: That's likely PROJ4 complaining that it cannot find the "epsg" projection definition file. Make 
sure you have installed PROJ 4.4.3 or more recent and that the "epsg" file is installed at the right 
location. On Unix it should be under /usr/local/share/proj/, and on Windows PROJ looks 
for it under C:\PROJ\.  

If everything went well, you should have a complete XML capabilities document. Search it for the 
word "WARNING"... MapServer inserts XML comments starting with "<!--WARNING: " in the 
XML output if it detects missing mapfile parameters or metadata items. If you notice any warning 
in your XML output, then you have to fix all of them before you can register your server with a 
WMS client, otherwise you will probably run into problems. 



Test With a GetMap Request 
Knowing that the server can produce a valid XML GetCapabilities response, you can now 
test the GetMap request.  

Simply adding "VERSION=1.1.0&REQUEST=GetMap" to your server's URL should generate a 
map with the default map size and all the layers with STATUS ON or DEFAULT displayed, e.g. 

http://my.host.com/cgi-bin/mapserv?map=mywms.map&VERSION=1.1.0& 

REQUEST=GetMap 

Note: this works with MapServer's WMS interface even if it would be an incomplete GetMap 
request according to the WMS spec. It lacks several mandatory parameters such as SRS, BBOX, 
etc, but it is good enough for testing at this point.. 

Test With a Real Web Client 
If you have access to a WMS client, then register your new server's online resource with it and 
you're running. If you don't have your own WMS client, then CubeWerx's WMS interface 
(cubeview) can be useful to test a new server. Access the following page:  

http://www.cubewerx.com/demo/cubeview/cubeview.cgi  

and enter your server's URL at the bottom of the page and click "GO". The default set of layers in 
the interface should be replaced with your server's layers.  

More About the Online Resource URL 
As mentioned in Section 0 "Setup a Mapfile for Your Web Map Service" above, the following 
Online Resource URL is perfectly valid for a MapServer WMS according to section 6.2.1 of the 
WMS 1.1.0 specification: 

http://my.host.com/cgi-bin/mapserv?map=mywms.map& 

Some people will argue that the above URL contains mandatory vendor-specific parameters and 
that this is illegal. First we would like to point out that "map=..." is not considered a vendor-
specific parameter in this case since it is part of the Online Resource URL which is defined as an 
opaque string terminated by "?" or "&"  

However, even if it's valid, the above URL is still ugly and you might want to use a nicer URL for 
your WMS Online Resource URL. Here are some suggestions; some of them will work only on 
Unix, but at least #2 will work for Windows/Apache users as well.  

On Unix servers, you can setup a wrapper shell script that sets the MS_MAPFILE environment 
variable and then passes control to the mapserv executable that results in a cleaner 
OnlineResource URL: 

  #! /bin/sh 

  MS_MAPFILE=/path/to/demo.map 

  export MS_MAPFILE 

  /path/to/mapserv 

Another option is to use the "setenvif" feature of Apache: use symbolic links that all point to a 
same mapserv binary, and then for each symbolic link, test the URL, and set the MAP 
environment accordingly. For Windows and Apache users, the steps are as follows (this requires 
Apache 1.3 or newer):  

• Copy mapserv.exe to a new name for your WMS, such as "mywms.exe".  

• In httpd.conf, add:  



SetEnvIf Request_URI "/cgi-bin/mywms" 
MS_MAPFILE=/path/to/mymap.map 

Recipe B: UMN MapServer HOW TO for Setting Up a 
WMS Client with Mapserver 

Step 1: Compilation / Installation 
The WMS connection type is enabled by the --with-wmsclient configure switch. It requires 
PROJ4 and W3C's libwww (libwww v5.3.2 or newer. This is required because there was a bug 
that caused an infinite loop in older versions), and GDAL is optional (see below).  

• For PROJ4 and GDAL installation, see the MapServer Compilation HOWTO: UNIX3 
or Win324 

• For W3C's libwww, download v5.3.2 (or newer) from CVS or in a tarball and 
compile/install manually5.  

You might want to also include GDAL support if you want your application to be able to reproject 
map slides received from remote servers. This is because raster resampling works only when 
used with the GDAL library in MapServer. If GDAL is not included in your MapServer build, then 
your application can only serve maps in the subset of the projections supported by all the remote 
servers (this should be sufficient for most applications). If you compile with GDAL, then make 
sure that your GDAL includes GIF and/or PNG support, depending on which image format you 
request from remote servers.  

Once the required libraries are installed, then configure MapServer using the --with-wms client 
switch (plus all the other switches you used to use) and recompile.  

This will give you a new set of executables (and possibly php_mapscript if you requested it). 
See the MapServer Compilation HOWTO for installation details. 

Step 2: Check your MapServer executable 
To check that your mapserv executable includes WMS support, use the "-v" command-line 
switch and look for "SUPPORTS=WMS_CLIENT". 

Example 1. On Unix: 

$ ./mapserv -v 

  MapServer version 3.5 (pre-alpha)  

  OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP  

  SUPPORTS=PROJ SUPPORTS=TTF  

  SUPPORTS=WMS_CLIENT INPUT=EPPL7 INPUT=JPEG  

  INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE 

Example 2. On Windows: 

C:\apache\cgi-bin> mapserv -v 

                                                 
3 UMN Map Server Compilation HOWTO (for UNIX) http://mapserver.gis.umn.edu/doc/unix-install-
howto.html 
4 UMN Map Server Compilation HOWTO (for Win32) http://mapserver.gis.umn.edu/doc/win32compile-
howto.htm 
5 W3C’s libwww: http://www.w3.org/Library/ 



  MapServer version 3.5 (pre-alpha)  

  OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP 

  SUPPORTS=PROJ SUPPORTS=TTF SUPPORTS=WMS_CLIENT  

  INPUT=EPPL7 INPUT=JPEG INPUT=OGR 

  INPUT=GDAL INPUT=SHAPEFILE 

Step 3: MapFile configuration - CONNECTIONTYPE WMS 

A PROJECTION must be set in the mapfile for the MAP unless you are sure that all your WMS 
layers support only a single projection which is the same as the PROJECTION of the map. The 
MAP PROJECTION can be set using "init=epsg:xxxx" codes or using regular PROJ4 
parameters. Failure to set a MAP PROJECTION may result in blank maps coming from remote 
WMS servers (because of inconsistent BBOX+SRS combination being used in the WMS 
connection URL).  

WMS layers are accessed via the WMS connection type. Here is an example of a layer using this 
connection type: 

LAYER 

   NAME bathymetry 

   METADATA 

    "wms_title" "Elevation/Bathymetry" 

    "wms_srs"  "EPSG:42304 EPSG:4269 EPSG:4326" 

   END 

   TYPE RASTER 

   STATUS ON 

   CONNECTIONTYPE WMS 

   CONNECTION "http://www2.dmsolutions.ca:8099/cgi-
bin/mswms_gmap?VERSION=1.1.0&LAYERS=bathymetry&FORMAT=image/png" 

   PROJECTION 

    "init=epsg:42304" 

   END 

  END 

The following items are required for the WMS connection type:  

• "wms_srs" metadata: a space-delimited list of EPSG projection codes supported by 
the remote server. You normally get this from the server's capabilities output.  

• CONNECTIONTYPE WMS: of course!  

• CONNECTION parameter: This is the remote server's online resource URL to which 
you append some of the getMap/getFeatureInfo request parameters. At this 
point MapServer sets only the following request parameters:  

REQUEST 

SRS 

BBOX 

WIDTH 

HEIGHT    

The connection string should contain all other required params, including:  

VERSION 

LAYERS 



FORMAT 

TRANSPARENT 

The following layer parameters are optional:  

• PROJECTION object: This is optional at this point. MapServer will create one 
internally if needed.  

• MINSCALE, MAXSCALE: If the remote server's capabilities contain a ScaleHint 
value for this layer, then you might want to set the MINSCALE and MAXSCALE in the 
LAYER object in the mapfile. This will allow MapServer to request the layer only at 
scales where it makes sense.  

• "wms_latlonboundingbox" metadata: The bounding box of this layer in 
geographic coordinates in the format "lon_min lat_min lon_max lat_max". If it 
is set, then MapServer will request the layer only when the map view overlaps that 
bounding box. You normally get this from the server's capabilities output.  

e.g.  

METADATA 

"wms_latlonboundingbox" "-124 48 -123 49" 

END 

• "wms_connectiontimeout" metadata: The maximum time to load a remote WMS 
layer, set in seconds (default is 30 seconds). This metadata can be added at the 
layer level so that it affects only that layer, or it can be added at the map level (in the 
web object) so that it affects all of the layers. Note that wms_connectiontimeout 
at the layer level has priority over the map level.  

... 

  CONNECTIONTYPE WMS 

    METADATA 

     "wms_srs" "EPSG:4269 EPSG:32182" 

     "legend_icon" "Icons/none.gif" 

     "wms_title" "NF Water (Lakes) (a)" 

     "wms_boundingbox" "EPSG:32182 42708.6 5.27438e+06 
5270155.72117e+06" 

     "wms_latlonboundingbox" "-59.7807 47.5557 -52.7934 
51.6261" 

     "wms_connectiontimeout" "60" 

     ... 

    END  

    ... 

In addition to the above layer parameters, you have to set the IMAGEPATH value in the WEB 
object of your mapfile to point to a valid and writable directory. MapServer will use this directory to 
store temporary files downloaded from the remote servers. The temporary files are automatically 
deleted by MapServer so you won't notice them... but a valid IMAGEPATH is still required.  

Limitations/To Do 
1. MapServer WMS connections always request exceptions "INIMAGE", but it may be 

nice to support XML exceptions at some point and return the message via the 
MapServer error reporting mechanisms.  



2. PNG format with transparent=true does not work well with all servers. For 
instance, some servers use the alpha channel for transparency (RGBA images), but 
this is not well supported by MapServer at the moment, so you may be forced to 
request GIF format maps in those cases. Transparent PNGs produced by the 
MapServer WMS work well though, since they are platted images.  

3. GetFeatureInfo is not fully supported yet since the output of GetFeatureInfo is 
left to the discretion of the remote server. A method 
layer.getWMSFeatureInfoURL() has been added to MapScript for applications 
that want to access featureInfo results and handle them directly.  

4. MapServer does not attempt to fetch the layer's capabilities. Doing so at every map 
draw would be extremely inefficient, and caching that information does not belong in 
the core of MapServer. This is better done at the application level, in a script, and 
only the necessary information is passed to the MapServer core via the CONNECTION 
string and metadata.  

Note: DM Solutions will soon release the MapBrowser PHP application which demonstrates 
the use of PHP to fetch and parse remote WMS server capabilities. 

Additional Information: Using ArcExplorer 4 as a Client for 
WMS-compliant UMN Mapserver 
ArcExplorer is a freely downloadable GIS viewer offered by ESRI. With version 4, ArcExplorer 
has an extension that supports the WMS and WFS specifications. Because UMN Mapserver also 
supports these two standards, you can use ArcExplorer as a client application. This means you 
need not be limited by the event/response model commonly seen in Web browser based viewers, 
or worry about writing any client side code (such as Javascript) that may be difficult to support on 
a variety of browsers. As a plus, ArcExplorer is written in Java and will run on Windows, Linux, 
Solaris, MacOS X, Irix, HP-UX and AIX. Besides, it's a good example of how the adoption of 
standards can greatly increase the options available to GIS providers and users. This example 
also shows how to use PHP to modify responses and make Web clients WMS 1.1.1 compliant. 
For setup information see the following URL:  

http://mapserver.gis.umn.edu/cgi-bin/wiki.pl?WMSMapserverArcExplorer 


