

Mapping UML to GML Application Schemas

Guidelines and Encoding Rules

	Version:
	0.1-b

	Date:
	05/08/2003

	Status:
	Draft

	Filename:
	UGAS-Guidelines-and-Encoding-Rules.doc

	Path:
	N/a

	Author:
	C. Portele

interactive instruments GmbH

	Version
	Date
	Changes
	Editor

	0.1-a
	01/11/03
	First Draft
	C. Portele

	0.1-b
	05/08/03
	Document updated
	C. Portele

Table of Contents

31
Introduction

42
Guidelines for UML Application Schemas

42.1
Guidelines with respect to the use of UML

42.1.1
General (Application Schema, Packages)

52.1.2
Classes

72.1.3
Attributes

72.1.4
Associations

82.1.5
Predefined Elements

92.1.6
OCL Constraints

92.1.7
Other information

92.2
Guidelines with respect to XMI

113
Encoding Rules

113.1
General Remarks

113.2
Encoding Rules

113.2.1
General encoding requirements

113.2.2
Input data structure

113.2.3
Output data structure

123.2.4
Conversion rules

1 Introduction

This document describes a mapping from an UML Application Schema into a GML Application Schema via an XMI representation of the UML Application Schema. The UML Application Schema must be conformant to ISO DIS 19109 and follow some additional modeling guidelines described in this document.

This document describes work in progress and the rules have been so far tested in an OGC pilot (GOS-TP, Geospatial One-Stop Transportation Pilot). It is based on the definitions of GML 3.00, ISO DIS 19118, ISO PDTS 19103, ISO DIS 19109 as well as early drafts documents of ISO/TC 211 WI 19136 and WI 19139. Knowledge of these documents is required to understand this document.

2 Guidelines for UML Application Schemas

2.1 Guidelines with respect to the use of UML

To be a valid input into the mapping the UML Application Schema shall conform to all of the following rules.

2.1.1 General (Application Schema, Packages)

· The UML Application Schema shall conform to the rules defined in ISO DIS 19109 and ISO PDTS 19103.

· The UML Application Schema shall conform with the metamodel of UML 1.3.

· The UML Application Schema shall be represented by a package with the stereotype <<Application Schema>>. This package must contain (i.e. own directly or indirectly) all UML model elements to be mapped to object types in the GML Application Schema. The UML model must be complete and not contain external references unless exceptions are explicitly stated below. This allows that predefined classes may be imported from the standardized schemas of the ISO 19100 Harmonized Model.

· All package names shall be unique.

· Dependencies between packages must be modelled explicitly. Permission elements with stereotype <<import>> or unspecified dependency elements between packages shall be used to express the dependency of elements in a package from elements in another package. All other dependency elements will be ignored.

[image: image1.wmf]Event Model

<<Leaf>>

Road

<<Application Schema>>

Linear Reference Systems

<<Application Schema>>

Figure 1 – Dependencies between packages

· The visibility of all UML elements must be set correctly.

· Documentation of the elements in the UML model shall be stored in tagged values “documentation”.

· Every package will be mapped to a XML Schema document. By default all schemas will be in the same XML namespace. A different XML namespace for a package and its sub-packages may be specified by a tagged value (tag name “xmlNamespace“ for the URI, tag name “xmlNamespaceAbbreviation“ for the abbreviation). These tagged values shall be set for the UML Application Schema package. If they are not set, default values will be used.

· The following additional tagged values are used by the UGAS Tool, if they are set on the package level (otherwise default values will be used):

· xmlNamespace (URI)

· xmlNamespaceAbbreviation (short string of characters and numbers)

· version (version number of the package)

· xsdName (file name without the “.xsd” extension)

[image: image2.png]
Figure 2 – Tagged values of a package

2.1.2 Classes

· All class names within the same XML namespace must be unique.

· Documentation of UML model elements shall be done in the UML tool so that it is exported as a tagged value with tag name “documentation” by the tool (see UML 1.3).

· Feature types shall be modelled as UML classes without stereotype
.

· Abstract feature types may have the stereotype <<Abstract>>, but shall be marked as an abstract class (the UML meta model property “isAbstract” of the class is “true”). The <<Abstract>> stereotype therefore is equivalent to no stereotype.

· The same is true for the stereotype <<Leaf>> and classes that are marked as leaf types (the UML meta model property “isLeaf” of the class is “true”; no subtypes allowed).

[image: image3.wmf]RoadSeg

+ status : CharacterString

+ fieldMeasure : Length

+ authorityID : CharacterString

+ length : Length

+ geometry[0..1] : GM_Curve

+ topology[0..1] : TP_DirectedEdge

+ isAnchorSection : Boolean = false

Figure 3 – Feature Type

· Abstract types shall be modelled as UML classes with stereotype <<Interface>> or <<Type>>. They may have zero or more operations (these are not mapped to the GML Application Schema), attributes or associations. These classes shall be marked as abstract (the UML meta model property “isAbstract” of the class is “true”).

· All subtypes of abstract types must be either feature or data types.

· Data types shall be modelled as UML classes with stereotype <<DataType>>.

[image: image4.wmf]LR_OffsetExpression

+ offsetReference : LR_OffsetReference

+ offset[0..1] : Measure

<<DataType>>

Figure 4 – Data Type

· Enumerations shall be modelled as UML classes with stereotype <<Enumeration>>.

· Code lists shall be modelled as UML classes with stereotype <<CodeList>>.

[image: image5.wmf]PointEventList

+ pass

+ tollBooth

+ tollCharge

+ maxElevation

<<CodeList>>

Figure 5 – Code List

· UML classes of the ISO 19100 Harmonized Model that are part of the GML 3.0 profile of the Harmonized Model may be subclassed in the UML Application Schema. Redefinition of properties is not allowed, only extension (i.e. adding additional properties is supported).

· All classes with other stereotypes than those mentioned above may be part of the UML Application Schema, but will be ignored
.

· Generalization relationships are allowed only between feature types and between data types. These generalizations shall have no stereotype or the stereotype <<disjoint>>. All generalization relationships with other stereotypes will be ignored. The discriminator property of the UML generalization shall be blank.

· If a class is a specialization of another class, then this class shall have only one supertype (no support for multiple inheritance).

[image: image6.wmf]RoadPoint

+ geometry [0..1] : GM_Point

+ topology [0..1] : TP_Node

+ isAnchorPoint : Boolean = false

+ alongLocation [0..1] : LR_PositionExpression

...

RoadSeg

+ status : CharacterString

+ fieldMeasure : Length

+ authorityID : CharacterString

+ length : Length

+ geometry[0..1] : GM_Curve

+ topology[0..1] : TP_DirectedEdge

+ isAnchorSection : Boolean = false

RoadFeatureEvent

+ atPosition [0..1] : LR_PositionExpression

+ startPosition [0..1] : LR_PositionExpression

+ endPosition [0..1] : LR_PositionExpression

+ geometry [0..1] : GM_Primitive

MAT_Feature

+ source : CI_ResponsibleParty

+ name : LocalName

+ description [0..1] : CharacterString

(from MAT Feature)

RoadFeature

+ lastUpdateDate : DateTime

...

<<Abstract>>

Figure 6 – Generalization Relationships between Feature Types

2.1.3 Attributes

· Every UML attribute of an abstract type, feature type or data type shall have a name and a type. If its multiplicity is not “1”, the multiplicity shall be given explicitly. An initial value may be specified for attributes with a number, string or enumeration type.

The type must either be a predefined type (see sections 2.1.5/3.2.4.4 and 3.2.4.11) or a class defined in the UML model. An attribute with a type that is a feature type is treated like an association navigable only towards the association end of the target type.

See Figure 3 for some examples.

· Every UML attribute of an enumeration class shall have a name. The type information is left empty. No multiplicity, ordering or initial value information shall be attached to the attribute.

· Every UML attribute of a code list class shall have a name. The type information is left empty. No multiplicity or ordering information shall be attached to the attribute. An initial value may be specified to document a code for the code list value. If it is omitted, the value (i.e. the attribute name) is used as the code.

See Figure 5 for an example.

2.1.4 Associations

· Every UML association shall be an association with exactly two association ends. Both association ends must connect to a feature or data type and must have no stereotype or the stereotype <<association>> (or the whole association will be ignored).

· The rules for association ends are:

· If an association end is navigable it shall be marked as such and shall have a name. An association end with no name will be ignored, even if it marked as navigable.

· If the multiplicity of an association end is not “*”, the multiplicity shall be given explicitly.

· The aggregation kind shall be specified explicitly if it is not “none”.

[image: image7.wmf]RoadPath

+ geometry [0..1] : GM_MultiCurve

+ topology [0..1] : TP_DirectedEdge

+ routeNumber : CharacterString

+composedOfWholeorPartial

0..*

{ordered}

RoadSeg

+ status : CharacterString

+ fieldMeasure : Length

+ authorityID : CharacterString

+ length : Length

+ geometry[0..1] : GM_Curve

+ topology[0..1] : TP_DirectedEdge

+ isAnchorSection : Boolean = false

0..*

+event

0..*

+event

0..*

0..*

Event

+ value[0..1] : CharacterString

...

+ source : CI_ResponsibleParty

...

(from Event Model)

from

0..*

0..*

0..*

0..*

to

0..*

+isTheEndOf

0..*

+isTheStartOf

0..*

+locatedOn

+pointAlong

0..*

+startPoint

1

+endPoint

from

0..*

0..*

0..*

0..*

to

tranPointEquivalence

TranSegEquivalence

0..*

1

0..*

1

0..*

0..*

RoadPoint

+ geometry [0..1] : GM_Point

+ topology [0..1] : TP_Node

+ isAnchorPoint : Boolean = false

+ alongLocation [0..1] : LR_PositionExpression

...

0..*

Figure 7 – Associations

· An association may be represented by an UML association class to model additional properties of the association.

2.1.5 Predefined Elements

· The following predefined types from ISO PDTS 19103 are treated as “basic types” in the sense of ISO DIS 19118 Annex A (i.e. a canonical XML Encoding is attached to them). These basic types are assumed to be pre-defined basic types and need to be explicitly defined in the UML model.

· Character

· CharacterString

· Integer

· Real

· Decimal

· Number

· Vector

· Date

· Time

· DateTime

· Boolean

· Sign

· Fraction

· GenericName

· LocalName

· ScopedName

· Length

· Distance

· Angle

· Velocity

· Scale

· Area

· Volume

· Measure

· UnitOfMeasure

2.1.6 OCL Constraints

· All OCL constraints are ignored
.

2.1.7 Other information

· All other information in the UML Application Schema is not used in the mapping process and is ignored.
2.2 Guidelines with respect to XMI

To be valid input into the mapping process, the XMI representation of the UML Application Schema must conform to the following:

· The UML model containing the application schema and all other required model elements shall be stored in a single XMI document.

· The XMI document shall be well-formed.

· The XMI document shall conform with XMI version 1.0.

· The XMI document shall be valid, i.e. contain a DOCTYPE declaration and the document must validate against this document type definition. This DTD must be the normative DTD that is part of UML 1.3.

· Only the contents of the <XMI.header> and the <XMI.content> elements are be used by the UGAS Tool. All other elements will be ignored.

[image: image8.png]
Figure 7 – Export options with the Unisys XMI export tool for Rational Rose

3 Encoding Rules

3.1 General Remarks

The mapping from an ISO 19109 conformant UML Application Schema to the corresponding GML Application Schema is based on a set of encoding rules. These encoding rules are compliant with the rules for GML Application Schemas and are based on ISO DIS 19118.

NOTE: The ISO/TC 211 work item 19136 (GML) will define encoding rules for the mapping from UML Application Schemas to GML Application Schemas. The encoding rules described in this document should eventually conform with these rules. The harmonization is an ongoing process.
The target version of GML is 3.00.

3.2 Encoding Rules

The schema encoding rules are based on the general idea that the class definitions in the application schema are mapped to type and element declarations in XML Schema, so that the objects in the instance model can be mapped to corresponding element structures in the XML document.

3.2.1 General encoding requirements

3.2.1.1 Application schema

The input Application Schema shall be defined in XMI 1.0 (UML 1.3 DTD) according to the guidelines specified in the previous chapter.

See ISO DIS 19118 A.2.1 for additional requirements.

3.2.1.2 Character repertoire and languages

“UTF-8” will be used as the character encoding of the XML Schema files (with the associated character repertoire) in accordance with the XML specification.

3.2.1.3 Exchange metadata

If GML 3.00 or later is the target version of the GML Application Schema, exchange metadata can be specified for every Feature or Feature Collection in an instance document (by using the „gml:metaDataProperty“ element and the draft ISO 19139 XML Schema definition of ISO FDIS 19115). No specific schema for the exchange metadata is added to the GML application schema.

3.2.1.4 Dataset and object identification

Unique identifiers according to XML's ID mechanism are used to identify objects.

3.2.1.5 Update mechanism

No explicit update mechanism is defined for the features defined in the GML Application Schema. It is assumed that existing mechanisms like the “Transaction” operation of the Web Feature Service is used to update a data store.

3.2.2 Input data structure

See ISO DIS 19118 A.3 for a description of the input data structure.

3.2.3 Output data structure

This encoding rule is based on the XML Recommendation 1.0 and the XML Linking Language (XLink) Version 1.0. The schema for the output data structure that governs the structure of the exchange format shall be a (set of) valid XML Schema(s) according to XML Schema 1.0 and the Rules for Application Schemas of GML 3.00.

The XML Schema conversion rules are defined in the next section.

3.2.4 Conversion rules

3.2.4.1 General concepts

The schema conversion rules define how to produce XML Schema documents (XSDs) according to an ISO 19109 application schema expressed in UML. A number of general rules are defined in the following clauses to describe the mapping from an UML model (or more precisely the UML 1.3 metamodel instances encoded in a XMI 1.0 compliant document) that follows the guidelines described in chapter 2.

NOTE: In this document the namespace "xsd:" is used to refer to the namespace of XML Schema, which is "http://www.w3.org/2001/XMLSchema". The namespace “gml:” refers to the namespace of GML, which is “http://www.opengis.net/gml”.

The rules are based on the current rules for the GML model and syntax as described in chapters 7 and 8 (especially section 7.2) of GML 3.00 and also on the encoding rules of ISO DIS 19118 Annex A.

The following table gives an overview:

	Table: UML (GML Application Schema Overview

	UML Application Schema
	GML Application Schema

	Package
	One XML Schema document per package

	<<DataType>>
	Object and property type & global element

	<<Enumeration>>
	Restriction of xsd:string

	<<CodeList>>
	Union of an enumeration and a pattern

	<<BasicType>>
	Canonical, pre-defined representation in XML Schema, only allowed for the list of types in section 2.1.5

	No stereotype
	Direct/indirect extension of gml:AbstractFeatureType, property type & global element

	<<Feature>>
	Direct/indirect extension of gml:AbstractFeatureType, property type & global element

	<<Type>>
	Direct/indirect extension of gml:AbstractFeatureType, property type & global element

	Operations
	Not encoded

	Attribute
	local xsd:element, type is either a property type (if the type is a complex type) or a simple type.

	Association role
	local xsd:element, type is always a property type (only named and navigable roles)

	OCL constraints
	Not encoded

The multiplicity of attributes and association roles is mapped to „minOccurs“ and „maxOccurs“ attributes in <xsd:element> declarations. The detailled mapping rules are described below.

3.2.4.2 UML Packages

· One XML Schema file is generated per package. Name and namespace are determined by the name and – if set – the tagged values of the package (see chapter 2).

· The schema file contains all the XML Schema definitions resulting from the UML classes directly owned by the package.

· The dependencies of the packages and the package hierarchy are used to determine the required imports and includes of other XML Schema files.

· The following tagged values of packages are evaluated:

· xmlNamespace and xmlNamespaceAbbreviation (URI and abbreviation of the target namespace of the XML Schema document

· version (version attribute of the root element of the XML Schema document (default “unknown”)

· xsdName (name of the XML Schema document in the local file system (default: package name)

Example: Mapping the information from Figure 1 and Figure 2 results in:

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://www.opengis.net/gos/tp" xmlns="http://www.w3.org/2001/XMLSchema" xmlns:gml="http://www.opengis.net/gml" xmlns:gos="http://www.opengis.net/gos" xmlns:gostp="http://www.opengis.net/gos/tp" xmlns:iso19115="http://www.isotc211.org/iso19115/" xmlns:lrs="http://www.somenamespace.com/lrs" xmlns:xlink="http://www.w3.org/1999/xlink" elementFormDefault="qualified" version="2003-04-24">

<include schemaLocation="EventModel.xsd"/>

<import namespace="http://www.somenamespace.com/lrs" schemaLocation="LinearReferenceSystems.xsd"/>

<import namespace="http://www.opengis.net/gml" schemaLocation="base/gml3.xsd"/>

<!-- … -->

</schema>

3.2.4.3 UML Classes (general rules)

· Allowed stereotypes for UML classes are: no stereotype, <<Type>>, <<DataType>>, <<BasicType>>, <<Abstract>>, <<CodeList>>, <<Enumeration>>, <<Leaf>>, <<Interface>>, <<Feature>>. All classes will be mapped to the corresponding class category as described in chapter 2.

· All UML classes with other stereotypes will be ignored.

· All UML classes shall have zero or one supertype.

· All UML classes are mapped to named types. A suffix “Type” is added to the name of the type.

3.2.4.4 UML Classes (basic types)

· The following basic types from the ISO PDTS 19103 profile of GML are predefined and can be used in an UML Application Schema. The mapping to a built-in type of XML Schema (“xsd:”) or GML (“gml:”) is specified.

· CharacterString (xsd:string

· Integer (xsd:integer

· Real (xsd:double

· Decimal (xsd:double

· Number (xsd:double

· Vector (gml:VectorType

· Date (xsd:date

· Time (xsd:time

· DateTime (xsd:dateTime

· Boolean (xsd:boolean

· GenericName (gml:CodeType

· LocalName (gml:CodeType

· ScopedName (gml:CodeType

· Length (gml:LengthType

· Distance (gml:LengthType

· Angle (gml:AngleType

· Velocity (gml:VelocityType

· Scale (gml:ScaleType

· Area (gml:AreaType

· Volume (gml:VolumeType

· Measure (gml:MeasureType

· UnitOfMeasure (gml:UnitOfMeasureType

3.2.4.5 UML Classes (data types)

· UML classes with stereotype <<DataType>> are mapped as XML Schema complex types. If the class is a root class it is also a root type in XML Schema, otherwise it extends its supertype which shall not be derived from gml:AbstractGMLType (directly or indirectly). Abstract superclasses without any attribute or navigable association role are ignored.

· Global XML elements with appropriate settings for name (name of the UML class), type (name of the UML class plus “Type”), abstractness (if the class is abstract) and substiution groups (the name of the superclass) may be defined for these classes.

· A named complex type is created for these classes (carrying the name of the class with a “PropertyType” suffix). The type follows the pattern for association properties as defined in GML (see GML 3.0 section 7.2.2.3), but without allowing Xlink attributes.

3.2.4.6 UML Classes (feature types)

· UML classes without stereotype (or the stereotypes <<Abstract>>, <<Type>>, <<Feature>> or <<Interface>>) derive directly or indirectly from gml:AbstractFeatureType. If the class is a root class it extends directly gml:AbstractFeatureType, otherwise it extends its supertype which shall be derived from gml:AbstractFeatureType (again, directly or indirectly)
.

· Global XML elements with appropriate settings for name (name of the UML class), type (name of the UML class plus “Type”), abstractness (true, if the class is abstract) and substiution group (the name of the supertype) are defined for these classes.

· A named complex type is created for these classes (carrying the name of the class with a “PropertyType” suffix). The type follows the pattern for association properties as defined in GML (see GML 3.0 section 7.2.2.3).

· A named complex type is created for these classes (carrying the name of the class with a “PropertyByValueType” suffix). The type is a profile of the pattern for association properties as defined in GML restricted to the “by value” form (again, see GML 3.0 section 7.2.2.3).

Example: Mapping “RoadFeature” from Figure 6 results in:

<complexType name="RoadFeatureType" abstract="true">

<complexContent>

<extension base="gos:MAT_FeatureType">

<sequence>

<element name="lastUpdateDate" type="dateTime"/>

</sequence>

</extension>

</complexContent>
</complexType>

<complexType name="RoadFeaturePropertyType">

<sequence>

<element ref="gostp:RoadFeature" minOccurs="0"/>

</sequence>

<attributeGroup ref="gml:AssociationAttributeGroup"/>
</complexType>

<complexType name="RoadFeaturePropertyByValueType">

<sequence>

<element ref="gostp:RoadFeature"/>

</sequence>
</complexType>

<element name="RoadFeature" type="gostp:RoadFeatureType" abstract="true"

substitutionGroup="gos:MAT_Feature"/>
3.2.4.7 UML Classes (enumerations)

· UML classes with stereotype <<Enumeration>> are mapped to XML Schema simple types. The base type is “string”, the domain of values is restricted to the allowed set of literal values as specified by the attribute names of the UML class.

3.2.4.8 UML Classes (code lists)

· UML classes with stereotype <<CodeList>> are mapped like enumerations, but with an added value (<pattern value=’other: \w{2,}’/>) that allows for any text value beside the predefined values; these free values are prefixed with “other: ”.

Example: Mapping “PointEventList” from Figure 5 results in:

<simpleType name="PointEventListType">

<union memberTypes="gostp:PointEventListEnumerationType gostp:PointEventListOtherType"/>
</simpleType>
<simpleType name="PointEventListEnumerationType">

<restriction base="string">

<enumeration value="pass"/>

<enumeration value="tollBooth"/>

<enumeration value="tollCharge"/>

<enumeration value="maxElevation"/>

</restriction>
</simpleType>
<simpleType name="PointEventListOtherType">

<restriction base="string">

<pattern value="other: \w{2,}"/>

</restriction>
</simpleType>
3.2.4.9 UML Attributes and Association roles

· An UML attribute or association role of a class that is mapped to an object type is mapped to a local element with the same name in the complex type defining the content model of the object type. The minOccurs and maxOccurs attributes are set according to the definitions in the UML model (see ISO DIS 19118 Annex A for details of the mapping). The type depends on the type of the value of the property in UML:

· If the type of the value of the property is of simple content, then the type is used directly.

· If the type of the value of the property is of complex content, then the property type is used.

· An UML attribute of a code list or enumeration type is mapped to enumeration value in a restriction of “string” as explained above.

· If an UML attribute or UML association is redefined (i.e. a subclass contains an attribute with the same name as in a supertype) then the type derivation takes place in two steps. First a restriction of the superclass is done restricting the redefined attributes and/or specialized associations (the rules for restrictions in XML shall be adhered to by the UML Application Schema). Then this restricted type is extended to include all the additional properties of the subclass. An XML element is only generated for the second type, the intermediate type will never be instantiated and is abstract.

Example: Mapping “RoadSeg” from Figure 6/Figure 7 results in:

<complexType name="RoadSegType">

<complexContent>

<extension base="gostp:RoadFeatureType">

<sequence>

<element name="status" type="string"/>

<element name="fieldMeasure" type="gml:LengthType"/>

<element name="authorityID" type="string"/>

<element name="length" type="gml:LengthType"/>

<element name="geometry" type="gml:CurvePropertyType" minOccurs="0"/>

<element name="topology" type="gml:DirectedEdgePropertyType" minOccurs="0"/>

<element name="isAnchorSection" type="boolean" default="false"/>

<element name="pointAlong" type="gostp:RoadPointPropertyType" minOccurs="0"

maxOccurs="unbounded"/>

<element name="event" type="gostp:EventPropertyType" minOccurs="0"

maxOccurs="unbounded"/>

<element name="startPoint" type="gostp:RoadPointPropertyType"/>

<element name="endPoint" type="gostp:RoadPointPropertyType"/>

<element name="to" type="gostp:RoadSegPropertyType" minOccurs="0"

maxOccurs="unbounded"/>

</sequence>

</extension>

</complexContent>
</complexType>

3.2.4.10 Documentation

· Tagged values “documentation” are mapped to annotation/documentation elements in the XML Schema files.

3.2.4.11 Imported Classes from the ISO 19100 Harmonized Model

In addition to the rules defined above, the following rules apply when the UML Application Schema imports classes from the ISO 19100 Harmonized Model.

· Classes from the ISO 19100 Harmonized Model that are implemented by the GML Schemas shall be recognized. The use of ISO 19100 classes shall be conformant with ISO DIS 19109. The mapping of the relevant classes from the ISO 19100 harmonized model according to ISO DIS 19109 is shown in the following table. Currently elements from the spatial schema, the temporal schema and the metadata schema are supported (predefined XML Schema representations are available).

	Type of attribute or association end
	Type of GML2 property
	Type of GML3 property

	GM_Object
	gml:GeometryPropertyType
	gml:GeometryPropertyType

	GM_Primitive
	gml:GeometryPropertyType
	gml:GeometricPrimtivePropertyType

	GM_Point
	gml:PointPropertyType
	gml:PointPropertyType

	GM_Curve
	gml:LineStringPropertyType
	gml:CurvePropertyType

	GM_Surface
	gml:PolygonPropertyType
	gml:SurfacePropertyType

	GM_Solid
	-
	gml:SolidPropertyType

	GM_CompositePoint
	-
	gml:PointPropertyType

	GM_CompositeCurve
	-
	Anonymous property type for gml:CompositeCurve

	GM_CompositeSurface
	-
	Anonymous property type for gml:CompositeSurface

	GM_CompositeSolid
	-
	Anonymous property type for gml:CompositeSolid

	GM_Complex
	-
	gml:GeometricComplexPropertyType

	GM_Aggregate
	gml:MultiGeometryPropertyType
	gml:MultiGeometryPropertyType

	GM_MultiPoint
	gml:MultiPointPropertyType
	gml:MultiPointPropertyType

	GM_MultiCurve
	gml:MultiLineStringPropertyType
	gml:MultiCurvePropertyType

	GM_MultiSurface
	gml:MultiPolygonPropertyType
	gml:MultiSurfacePropertyType

	GM_MultiSolid
	-
	gml:MultiSolidPropertyType

	GM_MultiPrimitive
	gml:MultiGeometryPropertyType
	gml:MultiGeometryPropertyType

	TP_Node
	-
	gml:DirectedNodePropertyType

	TP_Edge
	-
	gml:DirectedEdgePropertyType

	TP_Face
	-
	gml:DirectedFacePropertyType

	TP_Solid
	-
	gml:DirectedTopoSolidPropertyType

	TP_DirectedNode
	-
	gml:DirectedNodePropertyType

	TP_DirectedEdge
	-
	gml:DirectedEdgePropertyType

	TP_DirectedFace
	-
	gml:DirectedFacePropertyType

	TP_DirectedSolid
	-
	gml:DirectedTopoSolidPropertyType

	TP_Complex
	-
	gml:TopoComplexMemberType

	TM_Instant
	-
	gml:TimeInstantPropertyType

	TM_Period
	-
	gml:TimePeriodPropertyType

	MD_Metadata
	-
	iso19115:MD_Metadata

	CI_ReposonsibleParty
	-
	iso19115:CI_ReposonsibleParty

	CI_Address
	-
	iso19115:CI_Address

	CI_ContactInfo
	-
	iso19115:CI_ContactInfo

ISO 19139 is in a early draft stage. Therefore currently only a minimal set of classes is supported by these encoding rules. More will be added when ISO 19139 matures.

� 	Note that it would be easier, if classes representing feature types would be tagged with a stereotype <<Feature>> and ShapeChange recognises this stereotype. However, as ISO DIS 19109 does not support this stereotype, it is not necessary to mark features with any stereotype.

� 	Note that <<Union>> is currently not supported as it is not defined in ISO PDTS 19103 anymore. However, since this stereotype is used quite frequently in ISO 19100 models, it may be added later. The same is true for <<BasicType>>.

� 	The original idea was to support a minimal set of OCL constraints. However, this has been removed for two reasons: 1) At least Rational Rose does not export the constraints in the UML model to XMI and therefore the tool is not able to map these to XML Schema. 2) The discussions showed that to enable consistent implementation of the model in different products (at least currently) the use of XML Schema should be kept rather simple and within the framework of the basic rules described in this document.

� 	A feature type with no supertype and exactly one aggregation or composition to another class could in principle be mapped to a feature collection (i.e. become a restriction of gml:AbstractFeatureCollectionType). The association role would be substitutable for gml:featureMember. The name of the global element would be a combination of the class and the property name to guarantee uniqueness in the namespace.

� 	The mapping of association classes is not stable yet and will be added at a later stage.

�PAGE \# "'Seite: '#'�'" �� This needs some more discussion. I found it very awkward to define container types for metadata elements. This make them very remote (several levels of nesting) from the feature itself. Therefore, I currently have modelled them just as standard GML properties.

Also: currently only a few types are predefined, the full list of ISO NWIP 19139 will be added later.

�PAGE \# "'Seite: '#'�'" �� This needs some more discussion. I found it very awkward to define container types for metadata elements. This make them very remote (several levels of nesting) from the feature itself. Therefore, I currently have modelled them just as standard GML properties.

Also: currently only a few types are predefined, the full list of ISO NWIP 19139 will be added later.

�PAGE \# "'Seite: '#'�'" �� This needs some more discussion. I found it very awkward to define container types for metadata elements. This make them very remote (several levels of nesting) from the feature itself. Therefore, I currently have modelled them just as standard GML properties.

Also: currently only a few types are predefined, the full list of ISO NWIP 19139 will be added later.

	OKSTRA-Pflegestelle

interactive instruments GmbH
Trierer Straße 70-72
53115 Bonn
	Herr Clemens Portele
Tel. 0228 91410 73
Fax 0228 91410 90
Email portele@interactive-instruments.de

	Im Auftrag von

Bundesanstalt für Straßenwesen

ZD - OKSTRA

Brüderstraße 53

51427 Bergisch Gladbach
	Herr Alfred Stein
Tel. 02204 43 354
Fax 02204 43 673
Email stein@bast.de

_1114079247.bin

_1114080705.bin

