

Open Geospatial Consortium

Approval Date: 2013-01-18

Posted Date: 2012-12-21

Publication Date: 2013-06-18

Reference number of this document: OGC 12-163

 Reference URL for this document: http://www.opengis.net/def/doc-type/per/ows9-data-transmission

Category: Public Engineering Report

Editor(s): Thibault Dacla; Eriza Hafid Fazli; Charles Chen; Stuart Wilson

OGC® OWS-9 Data Transmission Management
Copyright © 2013 Open Geospatial Consortium.

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document is an OGC Public
Engineering Report created as a deliverable in an OGC Interoperability Initiative
and is not an official position of the OGC membership. It is distributed for review
and comment. It is subject to change without notice and may not be referred to as
an OGC Standard. Further, any OGC Engineering Report should not be referenced
as required or mandatory technology in procurements.

Document type: OGC® Engineering Report
Document subtype: NA
Document stage: Approved for public release
Document language: English

OGC 12-163

ii

Abstract

This OWS-9 Engineering Report documents investigations, findings, lessons learned and
proposed future work for the Data Transmission Management unit, invented and
prototyped in OWS-9.

The purpose of the Data Transmission Management unit is to optimize, customize and
make reliable the information exchange between the aircraft and the different web
services on the ground.

Keywords

ogcdoc, ogc document, ows9, ows-9, data transmission, aviation, atm, dtm, dms

What is OGC Web Services 9 (OWS-9)?

OWS-9 builds on the outcomes of prior OGC interoperability initiatives and is organized
around the following threads:

- Aviation: Develop and demonstrate the use of the Aeronautical Information Exchange
Model (AIXM) and the Weather Exchange Model (WXXM) in an OGC Web Services
environment, focusing on support for several Single European Sky ATM Research
(SESAR) project requirements as well as FAA (US Federal Aviation Administration)
Aeronautical Information Management (AIM) and Aircraft Access to SWIM (System
Wide Information Management) (AAtS) requirements.

- Cross-Community Interoperability (CCI): Build on the CCI work accomplished in
OWS–8 by increasing interoperability within communities sharing geospatial data,
focusing on semantic mediation, query results delivery, data provenance and quality and
Single Point of Entry Global Gazetteer.

- Security and Services Interoperability (SSI): Investigate 5 main activities: Security
Management, OGC Geography Markup Language (GML) Encoding Standard
Application Schema UGAS (UML to GML Application Schema) Updates, Web Services
Façade, Reference Architecture Profiling, and Bulk Data Transfer.

- OWS Innovations: Explore topics that represent either new areas of work for the
Consortium (such as GPS and Mobile Applications), a desire for new approaches to
existing technologies to solve new challenges (such as the OGC Web Coverage Service
(WCS) work), or some combination of the two.

- Compliance & Interoperability Testing & Evaluation (CITE): Develop a suite of
compliance test scripts for testing and validation of products with interfaces
implementing the following OGC standards: Web Map Service (WMS) 1.3 Interface
Standard, Web Feature Service (WFS) 2.0 Interface Standard, Geography Markup

OGC 12-163

 iii

Language (GML) 3.2.1 Encoding Standard, OWS Context 1.0 (candidate encoding
standard), Sensor Web Enablement (SWE) standards, Web Coverage Service for Earth
Observation (WCS-EO) 1.0 Interface Standard, and TEAM (Test, Evaluation, And
Measurement) Engine Capabilities.

The OWS-9 sponsors are: AGC (Army Geospatial Center, US Army Corps of
Engineers), CREAF-GeoViQua-EC, EUROCONTROL, FAA (US Federal Aviation
Administration), GeoConnections - Natural Resources Canada, Lockheed Martin
Corporation, NASA (US National Aeronautics and Space Administration), NGA (US
National Geospatial-Intelligence Agency), USGS (US Geological Survey), UK DSTL
(UK MoD Defence Science and Technology Laboratory).

OGC 12-163

iv

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this
Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable,
and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be
construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in
violation of U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction
which may impact your right to import, export or use the Intellectual Property, and you represent that you have complied with any
regulations or registration procedures required by applicable law to make this license enforceable

OGC 12-163

 v

Contents Page

1	 Introduction ... 1	
1.1	 Scope .. 1	
1.2	 Document contributor contact points ... 2	
1.3	 Revision history .. 2	
1.4	 Future work .. 2	
1.5	 Forward .. 3	
1.6	 DMS design and implementation in OWS-9 .. 3	

2	 References ... 4	
3	 Conventions .. 5	

3.1	 Abbreviated terms .. 5	
4	 Executive Summary .. 6	

5	 DMS Demonstration ... 11	
5.1	 Aviation Thread Demonstration ... 11	
5.2	 DMS Mini Demonstration .. 11	

6	 DMS Use Cases .. 12	
6.1	 Use Case #1: Session negotiation ... 13	
6.2	 Use Case #2: Request-response .. 15	
6.3	 Use Case #3: Publish-subscribe ... 16	
6.4	 Use Case #4: Dispatcher use cases ... 18	

7	 DMS Communication Model .. 18	
7.1	 Detailed protocol .. 22	
7.2	 Required extensions to OGC Web Services Architecture 24	
7.3	 Lessons learned .. 24	

8	 OWS-9 High Level Requirements .. 25	
9	 Efficient Communications .. 26	

9.1	 Scope of Work .. 27	
9.1.1	 Reliable Messaging .. 27	
9.1.2	 Dispatch Module .. 27	

9.2	 Recommended Approach ... 28	
9.2.1	 Web Services Reliable Messaging architecture ... 28	
9.2.2	 Wire protocol elements .. 29	
9.2.3	 Requirements coverage .. 33	

9.2.3.1	 Lost or out-of-order messages due to wireless link .. 33	
9.2.3.2	 Network failure and IP address change .. 34	
9.2.3.3	 Software failure .. 36	
9.2.3.4	 Dispatcher data summary ... 36	

9.3	 Implementation ... 37	
9.4	 Lessons Learned ... 37	

OGC 12-163

vi

9.5	 Future Work ... 37	
10	 Message Prioritization Module ... 38	

10.1	 Scope of Work .. 38	
10.1.1	 Message Prioritization by Type ... 39	
10.1.2	 Message Prioritization by Time to Expire ... 40	

10.2	 Implementation ... 40	
10.3	 Lessons Learned ... 40	
10.4	 Future Work ... 41	

11	 Efficient Data Exchange ... 41	
11.1	 Scope of Work .. 42	
11.2	 Data Compression Module ... 42	

11.2.1	 Analysis .. 44	
11.2.1.1	 Compaction analysis ... 45	
11.2.1.2	 CPU consumption ... 48	
11.2.1.3	 Gzip compaction time analysis ... 50	
11.2.1.4	 Memory footprint ... 51	

11.2.2	 Overall analysis .. 52	
11.2.2.1	 Strong real-time constraint ... 52	
11.2.2.2	 Strong Compaction constraint .. 52	
11.2.2.3	 Strong resources constraints ... 53	

11.2.3	 Recommended Approach ... 53	
11.2.4	 Implementation .. 54	
11.2.5	 Performance Measures ... 54	

11.3	 Data link selection .. 54	
11.3.1	 Analysis .. 54	

11.4	 Alternative protocols for exchanging messages ... 55	
11.4.1	 Protocols .. 55	

11.4.1.1	 HTTP (Hyper Text Transfer Protocol) ... 55	
11.4.1.2	 FTP (File Transfer Protocol) .. 56	
11.4.1.3	 SMTP (Simple Mail Transfer Protocol) ... 57	
11.4.1.4	 AMQP (Advanced Message Queuing Protocol) .. 58	

11.4.2	 Headers .. 60	
11.5	 Lessons Learned ... 61	
11.6	 Future Work ... 62	

12	 Data Filtering .. 62	
12.1	 Scope of Work .. 63	

12.1.1	 Extraction ... 63	
12.1.2	 Recommended Approach ... 64	
12.1.3	 Densification .. 66	
12.1.4	 Recommended approach .. 66	
12.1.5	 Provider filtering .. 67	
12.1.6	 Recommended approach .. 67	

12.2	 Implementation ... 67	

OGC 12-163

 vii

12.3	 Lessons Learned ... 68	
12.4	 Future Work ... 68	

13	 Data Validation ... 69	
13.1	 Scope of Work .. 69	

13.1.1	 DMS Currency Validation ... 70	
13.1.1.1	 Recommended Approach ... 70	

13.1.2	 Client Latency Validation .. 71	
13.1.2.1	 Recommended Approach ... 71	

13.1.3	 Subscription Interval Validation .. 72	
13.1.3.1	 Recommended Approach ... 72	

13.2	 Implementation ... 73	
13.2.1	 Currency Validation ... 73	

13.3	 Lessons Learned ... 74	
13.4	 Future Work ... 75	

14	 Data Provenance ... 75	
14.1	 Scope of Work .. 75	

14.1.1	 Provenance Tracking ... 76	
14.1.2	 Recommended Approach ... 76	

14.2	 Implementation ... 76	
14.3	 Lessons Learned ... 77	
14.4	 Future Work ... 77	

15	 DMS Metadata Provisioning ... 78	
15.1	 Scope of Work .. 78	

15.1.1	 Reliable Messaging Metadata .. 78	
15.1.2	 Validation Metadata ... 78	
15.1.3	 Provenance Metadata ... 79	
15.1.4	 Filtering Metadata .. 79	

16	 AIXM/WXXM Metadata Compliance ... 80	

17	 Appendix: Systems Rules Model Analysis ... 80	
17.1	 SRM 10.1 – Maintain Data Synchronization between Ground and Aircraft

Users ... 80	
17.2	 SRM 10.2 – Perform Data Validation .. 81	
17.3	 SRM 10.3 – Perform Data Filtering ... 84	
17.4	 SRM 10.4 – Manage Subscription and Data Request Configurations 85	
17.5	 SRM 10.5 – Populate Priority and Security Data Fields 86	
17.6	 SRM 10.6 – Data Provenance .. 88	

Figures Page

OGC 12-163

viii

Figure 1 – DMS System level diagram ... 12	

Figure 2 - Service Negotiation ... 19	

Figure 3 - Request Reply .. 20	

Figure 4 – Subscription request .. 21	

Figure 5 - Notification .. 22	

Figure 6 - Topologically-close DMS .. 35	

Figure 7 - Topologically-far DMS ... 36	

Figure 8 - Prioritization Module Example ... 39	

Figure 9 - Compaction results on D-Notams .. 45	

Figure 10 - Compaction results on second family .. 46	

Figure 11 - Compaction results with post compression for bigger files 47	

Figure 12 - Compaction Speed Results D-Notams ... 48	

Figure 13 - Compaction Speed Results Medium Sized Files .. 49	

Figure 14 - Compaction Speed Results Large Sized Files ... 49	

Figure 15 - Gzip Compaction Speed Results .. 50	

Figure 16 - Compression Algorithm Resource Allocation .. 51	

Figure 17 : AMQP in System Oriented Architectures .. 59	

 Tables
Table 1 - Use case #1 – Session Negotiation ... 13	

Table 2 - Use case #2 – Request - Response .. 15	

Table 3 - Use case #3-1 - Subscription .. 16	

Table 4 - Use case #3-2 - Notification .. 17	

Table 5 - Use case #4 - Dispatch .. 18	

Table 6 – WS-ReliableMessaging basic operations ... 29	

OpenGIS® Engineering Report OGC 12-163

 1

OGC® OWS-9 Data Transmission Management

1 Introduction

1.1 Scope

This document is the results of the investigations and discussions undertaken in OWS-9
concerning the Data Management Service Entity.

This document establishes the structure of the Data Management Service (DMS), defines
its position in the OGC architecture, specifies its role within its architecture, together
with its limits and, as much as possible, its interfaces with other OGC entities (e.g. Web
Feature Service).

The baseline for those definitions can be found in the System Rules Model provided at
the end of the document.

The general motivation of this document is to provide guidelines for the specification of a
broker entity, which main objectives consist of optimizing resources utilization and
improving the quality of service delivery.

To achieve that purpose, this document defines 6 modules that constitute the DMS
functionalities: Efficient Communication, Efficient Data Exchange, Prioritization,
Filtering, Validation and Provenance. Each of these modules is described in this
document in terms of scope, investigation results and recommended approach.

This document is not a set of requirements that need to be fulfilled by a DMS
implementation. It only provides the result of investigations for general transmission
optimization with a strong focus on the aviation domain. However for each module, the
implementation choices made by the development team are described and justified.

OGC 12-163

2

1.2 Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Name Organization
Charles Chen Harris Corporation
Thibault Dacla Atmosphere gbmh
Eriza Fazli TriGnoSys
Stuart Wilson Harris Corporation

1.3 Revision history

Date Release Editor Primary clauses
modified

Description

1.4 Future work

Some points identified for future DMS work:

- The use of SOAP and the intention to make the DMS as transparent as possible to
the different clients and web services eventually create an issue on the client
implementation. If the OWSs already use SOAP, DMS insertion requires that the
client’s original SOAP envelope to be enclosed in another SOAP envelope to
communicate with the DMS. This is rather tricky to do and requires modification
of the middleware that the client typically uses to intercept the original SOAP
envelope. more feedback from all stakeholders including client to devise which
protocol solution to be used; use different transport than HTTP or SOAP

- Cleaner definition of DMS interfaces; right now {request, subscribe request,
notify, {dispatch}}. Some messages are not captured, e.g. if the client wants to get
a WSDL or schema files from the web service.

- Proper definition of the middle entity that operates between clients and the DMS
to make the inclusion of the DMS truly seamless to clients.

- Provision of additional operations at the DMS, such as destroy session.
- Support of binary content (e.g. image formats)
- Further investigation of AMQP as a potential alternative to HTTP for web

services over IP
- Definition of the need scope and responsibility for the addition of filtering options

provided to the client. Tradeoff to be made between bandwidth efficiency and
schema compliance.

- Address the issue of client mobility (change of IP address)
- Similarly, address the use case of DMS handovers

OGC 12-163

 3

1.5 Forward

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

1.6 DMS design and implementation in OWS-9

OGC Interoperability Program (IP) projects such as the OGC Web Services Testbed
Phase 9 (OWS-9) bring together a range of independent participants – from both the
public and private sector - to respond to sponsor requirements. This was also true for the
design and implementation of the Data Management Service (DMS) in OWS-9. Both
ATM-TGS and Harris collaborated on defining the technical specification of the DMS
component, supported by other OWS-9 participants, primarily client developers such as
Luciad.

The resulting DMS specification as well as investigation results represent the consensus
achieved between the relevant stakeholders within OWS-9. All results of the OWS-9
work on Data Transmission (to Aircraft) Management are documented in this OGC
Engineering Report (ER), which is open and publicly available. This allows everyone
who is interested to review the results and to provide feedback, thus creating valuable
input to improve the specification. This process – the ability to provide continuous
feedback and to incorporate it in the specification - will ultimately lead to a DMS
specification that is based on broad industry consensus. OWS-9 laid the foundation by
creating the first version of the DMS specification. Future work on DMS will lead to
further review of the DMS specification as well as new or updated requirements, and thus
possibly revisions and extensions.

That the results – and thus the DMS specification – are publicly available especially
allows other component providers to implement DMS compliant products as well.
Because the DMS specification defines a common service model to satisfy data
transmission (to aircraft) requirements, both vendors and customers can rely upon that
model to build interoperable systems. Vendors of service and/or client components that
support DMS functionality have access to a bigger customer base. Customers that need
DMS functionality have a wider range of products to choose from. All because there is a
common and publicly available, open DMS specification that defines how DMS
functionality can be realized. For customers, it is especially important to base the DMS
products they buy on open specifications to prevent vendor lock-in. If the key DMS
functionality is realized by multiple products, a customer can migrate or switch to a new
product if necessary. For vendors, this provides an opportunity as well, allowing them to
bundle added-value features and strong support with their DMS products. Finally, by

OGC 12-163

4

using a common DMS specification to realize DMS functionality in distributed systems,
this functionality will be realized in an interoperable way.

The OGC Standards as well as Interoperability Programs provide a platform for
discussion and development of technical specifications – such as the DMS – between
interested stakeholders. Product providers can report and discuss their implementation
experience and request clarifications as well as changes to be applied to the
specifications. Also, new requirements can be brought in to ultimately enhance the
specification baseline and eventually also compliant products. The OGC processes to
manage and support this specification development have proven themselves in the
development of specifications that are now international standards supported in many
products and deployed in many application domains. This represents a profound way of
maturing the DMS specification in the future.

In fact, as OGC specifications such as the DMS are scrutinized through review and
implementation by many stakeholders, the danger of not supporting specific technical
requirements is minimized. This provides safety for vendors that implement compliant
products. It does not require such products to be open source. It just means that these
products comply with the open OGC standards/specifications. Speaking of compliance,
the OGC also has a program to certify that a given product complies with an OGC
specification: the Compliance and Interoperability Testing Initiative (CITE). This
provides a way for product providers to prove that their products comply with given OGC
specifications. It also provides a way for end users to more easily integrate the
requirement for standards compliant products in procurements. As the DMS specification
matures, compliance test scripts can be developed to include the DMS in the certification
process.

2 References

The following documents are referenced in this document. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply. For
undated references, the latest edition of the normative document referred to applies.

[OGC] OGC 06-121r3, OpenGIS® Web Services Common Standard
OASIS Web Services Reliable Messaging (WS---‐Reliable Messaging) Version1.2,
http://docs.oasis---‐open.org/ws---‐rx/wsrm/200702

ISO 19142: Geographic information Web Feature Service, 2010-04-26, OGC document
#09-025r1,
http://www.opengeospatial.org/standards/wfs

X.891: Information technology -‐ Generic applications of ASN.1: Fast infoset – 2007-01-
30

W3C XML Information Set (second edition)
http://www.w3.org/TR/xml---‐infoset/

OGC 12-163

 5

[EE] J. Saltzer, D. Reed and D. Clark: “End-to-end arguments in system design”, ACM
Trans. Comp. Sys., 2(4):277-88, Nov. 1984

[OASIS-WSRM] Web Services Reliable Messaging (WS-ReliableMessaging),
Committee Draft 04, August 11, 2006

[IETF-MIPv6] D. Johnson, C. Perkins, J. Arkko: Mobility Support in IPv6, RFC 6275,
June 2011

[ICAO-ATNIPS] Aeronautical Telecommunication Network (ATN) - Manual for the
ATN using IPS standards and protocols (Doc 9896), Draft Version 19, April 2011

[IETF-SIP] J. Rosenberg et al.: SIP: Session Initiation Protocol, RFC 3261, June 2002

[SANDESHA2] Sandesha2 User Guide, online at
http://axis.apache.org/axis2/java/sandesha/userGuide.html

[OGC 08-133] OpenGIS® Sensor Event Service Interface Specification (proposed)

[OGC 11-097] OGC® OWS-8 AIXM 5.1 Compression Benchmarking

In addition to this document, this report includes several XML Schema Document files as
specified in Annex A.

3 Conventions

3.1 Abbreviated terms

AIXM Aeronautical Information Exchange Model

AOC Airline Operational Communication
ATM Air Traffic Management

COTS Commercial Off The Shelf
D-NOTAM Digital NOTAM

EFB Electronic Flight Bag
FAA Federal Aviation Administration

FI/FIS FastInfoSet
GML Geography Markup Language

GZIP GNU ZIP
HTTP HyperText Transfer Protocol

IP Internet Protocol

OGC 12-163

6

ESA European Space Agency
ISO International Standards Organization

NOTAM Notice To Airmen
QoS Quality of Service

SESAR Single European Sky ATM Research program
SOAP Simple Object Access Protocol

SWIM System Wide Information Management
TCP Transmission Control Protocol

XML Extensible Markup Language

4 Executive Summary

The Data Transmission Management (DTM) work attempts to fulfill the high level
requirements identified in the OGC OWS-9 RFQ Annex B, through which some aspects
of the AAtS System Rules Model are taken into account. The overall focus of the DTM
requirements is:

 Reduce bandwidth required for transmission of messages between ground
services and aircraft

 Ensure no messages are lost during transmission to an aircraft
 Provide data quality and provenance information to aircraft receiving data from

ground services
 Make dispatchers on the ground aware of the information sent to aircraft

A significant effort was spent identifying the use cases of the DMS and devising the
protocol required to integrate the DMS within the OGC web service architecture. An
achievement of this investigation is the identification of use cases corresponding to the
session parameter negotiation between aircraft client and the DMS, and use cases for
request-response and publish-subscribe message exchange pattern (MEP). Another result
is the selection of SOAP + HTTP as the underlying web service protocol for exchanges
between aircraft client and DMS. One of the advantages of SOAP is that it supports the
WS-ReliableMessaging standard for reliable communications (cf. Efficient
Communications section below).

The work results in detailed mechanisms for aircraft clients to exchange messages with
ground OGC web services through the DMS using request-response and publish-
subscribe MEP. A so-called initial “pass-through” DMS has been implemented to

OGC 12-163

 7

demonstrate the devised protocol. A set of DMS interfaces have been defined and
provided to the clients as WSDL files, enabling the clients (both aircraft and dispatch) to
use the DMS services.

The RFQ requirements are specified and implemented as DMS “modules”, which can be
integrated in a modular way to the pass-through DMS. The investigation results for the
modules are summarized in the following.

Efficient communications

The RFQ specification of this module covers several aspects:

 Handle breaks in communication
 Handle IP address change of a client
 Ensure data transmissions are not lost and data is delivered as intended
 Determine the priority of data packets exchanged between client and DMS
 Dispatcher synchronization with respect to the data sent from DMS to client

(either a full copy, summary, or selected copy). These requirements are
implemented as three different modules of the DMS

o Reliable messaging module
o Prioritization module
o Dispatch module

Despite the multitude of methods to ensure data transmission reliability across the
communication protocol layers (e.g. forward error correction, reliable link layer, reliable
transport layer/TCP), end-to-end reliability provision at the application layer has the
promise of covering the most possible types of errors, including link, network, and
software. This motivates the use of WS-Reliable Messaging (WS-RM), which resides
towards the application layer of the OSI protocol model. A deeper investigation shows
that WS-RM partially covers the DMS requirements, namely on handling lost or out-of-
order messages due to wireless link, temporary link or network failure without change of
IP address, and (partially) software failure (depends on specific WS-RM
implementation). Change of client IP address is not, considered as being within the scope
of WS-RM solution. It would require support from the network infrastructure, as in the
case of Mobile IP protocol family, or additional functionalities, as offered by register,
redirect, and name servers in the Session Initiation Protocol (SIP) network architecture.
The support of these functionalities within the AAtS or OGC OWS architecture is
considered future work.

Message prioritization within the OGC OWS framework can be achieved by adding
priority information within the message header, which can be inspected by data link
service provider to determine the delivery order over wireless link. Using SOAP as
underlying web service protocol has the additional benefit that it is relatively simple to
include additional information within the SOAP header. A simple XML prioritization
schema is proposed as a result of this investigation. The prioritization mechanism
proposed in OWS-9 is based on the “remaining validity”; a message that will expire

OGC 12-163

8

sooner will get a higher priority. A prioritization mechanism based on the nature of the
data could be set (for example, a runway closure would get a higher priority than a gate
change).

For dispatch synchronization, the DMS dispatch module is foreseen to leverage the OGC
Event Service specification. Specifically, the DMS shall implement ES functionality,
allowing dispatcher client to subscribe and receive notifications corresponding to specific
aircraft client(s).

Efficient data exchange

The RFQ specification for this module tackles the following features:

 The application of the appropriate compression algorithm to reduce bandwidth
consumption

 Investigate alternative protocols to exchange information for ground to air and air
to ground communications between client and DMS

 Perform sensitivity analysis on the proposed protocols

Leveraging the compression study in OWS-8, it has been assessed that three compression
algorithms are of interest for reducing bandwidth consumption when exchanging data
between air and ground: Fast Infoset, Exificient and the classical Gzip. Each of those
algorithms has advantages and disadvantages with regards to the metrics that can be
considered (available resources, complexity, compression ratio …). A sensitivity analysis
has been performed and reveals that from a general perspective, Fast Infoset presents
most advantages, while EXI can provide more compression in certain cases (namely for
small files) and GZip provides few complexity overall.

A short study has been made to determine which protocols could be candidates to replace
HTTP for information exchanges. The considered candidates are SMTP, FTP and
AMQP. It has been shown in a sensitivity analysis that HTTP remains the most
interesting protocol compared to other non-MOM (Message Oriented Middleware)
protocol, but that if the architecture could be modified to be MOM-compliant, AMQP
presents interesting perspectives, especially in terms of reliability and security.

Data filtering

The RFQ specification of this module defines several topics regarding filtering:

 Data extraction
 Data densification
 Filtering capabilities based on various properties

To tackle the extraction of data, two approaches are proposed in the ER. The first one is
the use of XSLT, which will allow a simple filtering of the information based on a
standardized mechanism using XPath as a filter description. The second one introduces

OGC 12-163

 9

the concept of schema masks, where the client could define the subset of information it
requires in the form of a schema. This raises the issue of dataset validity with regard to
OGC standards, but brings enhanced control to the client regarding the amount of
information it receives, therefore improving bandwidth management.

Development of the densification feature was not possible because no protocol or existing
mechanism appear to support this functionality as for today. Therefore the ER only
provides potential guidelines on how to achieve the different densification operation
possible, that is densification as a mean of concurrent values for a given property value,
as a standard deviation or as a range of those values. The ER proposes guidelines on how
to filter the information based on other given criteria, such as data providers and types of
data.

Data validation

The RFQ specification defines three separate validation metrics for Timeliness:

 Data is delivered within its valid timeframe
 Data represents the most up-to-date information
 Subscribed update intervals are being complied with

To ensure data is delivered within its valid timeframe, the timestamp in a message is
compared against the time in which the DMS receives the message to determine if the
message is current. Non-current messages are either dropped or flagged and forwarded to
the client, depending on a client’s preferences. In order to ensure that data is delivered
within its valid timeframe, a pre-set latency tolerance limit is set by the client. The
latency is tracked by the DMS to determine if the data is delivered within the timeframe
as configured by the client. The DMS ensures interval in which messages are transmitted
by subscription-based ground services are being complied with as defined by the client.
Subscription interval compliance is determined by comparing the message reception
interval of a subscription-based ground service (e.g. Event Service) versus a client-
requested message reception interval.

A validation module is developed to implement the approaches listed above. Before
transmission, the module ensures that data being sent to an aircraft client is current. The
module tracks the message transmission to ensure it is delivered in a timely manner. The
validation module has the ability to drop data that is not within a valid timeframe before
they are sent to an aircraft client.

Three validation metrics are defined:

 The percentage of invalid messages received
 The number of messages exceeding the client’s latency tolerance
 The number of messages received that are not compliant with the message

subscription interval

OGC 12-163

10

The aircraft client creates a “validation profile” during the initiation of a connection to
the DMS, which stores the client’s validation settings. Only messages with known
formats (e.g. AIXM) can be evaluated by the Validation Module. Messages using
formats unknown by the DMS cannot be validated.

Data provenance

The RFQ specification of this module defines four separate requirements:

 Create and attach metadata describing the authoritativeness of a data source to
messages sent to an aircraft client

 Track the provenance of the messages being forwarded to the aircraft client
 Provide a mechanism for recording provenance data
 Allow an operator to configure what type or class of information will have

provenance metadata associated with it

Data Provenance is used by aircraft clients in determining the source and alterations of
received messages. Source metadata is generated by the message source, and alteration
metadata is generated by processing services (i.e. DMS). The source and alteration
metadata is inserted into the SOAP header of messages before transmission. The creation
and format of provenance metadata used by the DMS is defined by ISO standard
19115/19139. During initial connection to the DMS, an aircraft client will configure the
DMS Provenance module. A client can configure if provenance metadata shall be
included in messages to control transmission efficiency.

The approach to provenance tracking begins with the insertion of message source
metadata into the SOAP message header by the message creator. Source metadata is
used by the aircraft client to determine the authoritativeness of the data source. The DMS
will propagate provenance as received from an OGC web service. For messages received
without source metadata, the DMS will insert LI_Source “unknown” into the message
header. For message content altered by the DMS (i.e. filtering), LI_ProcessStep metadata
is generated and inserted into the SOAP message header. Process metadata is used to
track the provenance of messages being forwarded to an aircraft client.

OGC 12-163

 11

5 DMS Demonstration

The complete functionality of the DMS is showing in two separate demonstrations (the
Aviation Thread demonstration and the DMS mini demonstration) recorded by the OWS-
9 Aviation Thread in video format. The Aviation Thread demonstration highlights the
capabilities and interactions of the systems developed by the OWS-9 Aviation
Thread participants. How the DMS interacts with client and ground messaging services is
highlighted by the Aviation Thread demonstration. Specifically, the DMS capabilities of
reliable and efficient communications, message content filtering, generation of data
provenance, and dispatch services. The DMS mini demonstration focuses on the viewing
of complete DMS functionality, including features that are not covered in the Aviation
Thread demonstration such as validation, compression, and prioritization. Links to the
locations of these demonstrations are listed below.

5.1 Aviation Thread Demonstration

[Link to Aviation Thread Demonstration video to be inserted]

5.2 DMS Mini Demonstration

[Link to DMS Mini Demonstration video to be inserted]

OGC 12-163

12

6 DMS Use Cases

The DMS Use Cases are depicted in the following figure:

Figure 1 – DMS System level diagram

System

Client
OGC Web Service

Session creation

Request-response

Subscription

Notifications

Dispatcher

Upload baseline information

Data copy / summary update

OGC 12-163

 13

6.1 Use Case #1: Session negotiation

Table 1 - Use case #1 – Session Negotiation

Use Case Identifier: DMS #1 Use Case Name: DMS Session negotiation

Use Case Description: Client performs a handshaking protocol with DMS to select
reliable messaging option, compression algorithm to use, and configuration options for
data validation and filtering.

Actors (Initiators):

Client

Actors (Receivers):

DMS

Pre-conditions:

1. Client has the knowledge of the DMS

2. Client wants to access OGC Web
Services through DMS

3. DMS communication configuration
parameters in the Client are not set.

Post-conditions:

A DMS-Client session is established both
at the Client and DMS side, with the
negotiated parameters set.

The DMS stores the session parameters as
configuration data that can potentially be
retrieved by third party (e.g. dispatch).

Basic course of action:

1. Client contacts the DMS using a Hello message, containing the unique client ID1 (the
consumer reference at the client) and a request for the listing of the available
modules at the DMS.

2. DMS responds to the Client’s message, listing the data management modules
available at the DMS.

3. Client confirms to the DMS the modules that are to be activated in future exchange.

4. The DMS automatically creates a unique consumer reference for the client.

Note: For completeness, there should also be a use case for session termination. This
could not be implemented in OWS-9 due to limited resources, but could be an interesting
add-on for future work. This could be done by adding a terminateSession operation at the
DMS or by setting a timer for session keep alive.

1 The assumption here is that the client is uniquely identified. This assumption was needed to define the DMS
workflow, e.g. data copy/summary, sending notifications arriving at the DMS back to the client. This has been agreed
between the DMS partners but does not stand as an absolute requirement and could be extended in future work.

OGC 12-163

14

This use case allows the Client to agree with the DMS on the DMS functionalities to be
used in the communications between the DMS and the Client, which include:

 Communication efficiency (reliable messaging, prioritization …)

 Communication options (compression, data link selection …)

 Filtering options

 Validation specification

 Provenance

 Metadata Provision

OGC 12-163

 15

6.2 Use Case #2: Request-response

Table 2 - Use case #2 – Request - Response

Use Case Identifier: DMS #2 Use Case Name: Client information request

Use Case Description: Client requests information from OGC Web Service through
DMS.

Actors (Initiators):

Client

Actors (Receivers):

DMS

OGC Web Service (OWS) supporting
request-response (e.g. WFS)

Pre-conditions:

1. Client has initiated session with DMS

2. Client is interested in some features
related to its flight.

Post-conditions:

Client received the features it requested.

Basic course of action:

1. Client sends a request message to the DMS, containing the actual request, and the
endpoint of the OWS.

2. (Optional) The request is compressed by the client.

3. DMS extracts the OWS endpoint information and the actual request from the
message received from the client, and constructs a new request message to the
OWS based on this information.

4. DMS sends the request to the OWS and waits for a response.

5. Once the response is received, the DMS parses the message content and, as
previously agreed with the client, performs validation, filtering, and prioritization
based on it.

6. DMS performs compression on the response as previously agreed with the client.

7. DMS sends the processed data to the client.

8. (Optional) If a dispatcher has subscribed to the client’s data stream, the DMS
sends either a data copy or a data summary to the dispatcher, as defined by the
session parameters.

OGC 12-163

16

This use case covers the interaction between the Client, DMS, and the OGC Web Service
using Request-Response message exchange pattern.

6.3 Use Case #3: Publish-subscribe

Table 3 - Use case #3-1 - Subscription

Use Case Identifier: DMS #3-
1

Use Case Name: Subscription request

Use Case Description: Client registers to receive notifications from Event Service
through DMS.

Actors (Initiators):

Subscriber

Actors (Receivers):

DMS

Event Service

Pre-conditions:

A DMS session has been established for a
client.

The subscriber requires the client to be
updated with particular features for its
flight.

The subscriber knows the consumer
reference attributed by the DMS to the
client session.

Post-conditions:

A subscription is registered for the receiver
at the Event Service.

Basic course of action:

1. (Option 1 – Subscription without Update Intervals) Subscriber sends a
subscription request message to the ES, containing the consumer reference of the
receiver.

2. (Option 2 – Subscription with Update Intervals)Subscriber sends a subscription
request message to the DMS, containing the actual subscription intended for the
ES, the URL of the ES and the consumer reference of the receiver. (this is needed
in the case where update intervals (UIs) need to be checked by the DMS. The UIs
are defined by the subscriber but the information must be known by the DMS).
In that case, the DMS extract the Subscription ID from the subscription response
and maps it to the client for further UIs check.

OGC 12-163

 17

Table 4 - Use case #3-2 - Notification

Use Case Identifier: DMS #3-
2

Use Case Name: Web service notifications

Use Case Description: Client receives notifications from Event Service through DMS.

Actors (Initiators):

Event Service

Actors (Receivers):

DMS

Client

Pre-conditions:

1. Client has subscribed or has been
subscribed to an Event Service.

2.

Post-conditions:

Client receives a notification message
corresponding to its subscription.

Basic course of action:

1. Event Service receives data or data update that matches the subscription profile of
a client, and sends a notification to the corresponding endpoint at DMS (e.g.
www.dms.org/client1).

2. Based on the endpoint (consumer reference) on which the notification has been
received, the DMS identifies the receiver for the notification.

3. (Optional) If the client has made a subscription with specified Update Intervals,
the DMS extracts the Subscription ID from the message, infers the Update
interval subscribed to and determinates compliancy with it.

4. The DMS parses the message content and, as previously agreed with the client,
performs validation, filtering, and prioritization based on it.

5. DMS performs compression on the response as previously agreed with the client.

6. DMS forwards the (potentially processed) notification to the client.

7. (Optional) If a dispatcher has subscribed to the client’s data stream, the DMS
sends either a data copy or a data summary to the dispatcher, as defined by the
session parameters.

These use cases cover the interaction between the Client, DMS, and the Event Service
using Publish-Subscribe pattern.

OGC 12-163

18

6.4 Use Case #4: Dispatcher use cases

Table 5 - Use case #4 - Dispatch

Use Case Identifier: DMS #4 Use Case Name: Dispatcher subscription to client

Use Case Description: Dispatcher subscribes to a client data stream through the DMS.

Actors (Initiators):

Dispatcher

Actors (Receivers):

DMS

Pre-conditions:

The DMS knows the unique identification
of the client.

Post-conditions:

Dispatcher receives information of a client
or a summary of it.

Basic course of action:

1. Dispatcher sends a subscription request to the DMS, containing the identification
of the client it wants to subscribe to, optional filtering options (based on class/type
of message), and the Dispatch consumer reference where it wants to receive data
copy/summary.

2. DMS extracts the client ID from the request and look for the corresponding client.

3. DMS sends to the unique consumer reference endpoint (at the DMS)
corresponding to the particular client to the dispatcher.

4. DMS memorizes that a data copy or data summary is associated with the
corresponding client.

7 DMS Communication Model

The DMS will in general be required to have a generic functionality, namely that it is
able to work not only with OGC services, but also other web services such as FAA or
SESAR SWIM. The DMS specification documented in this report supports
communication (request-response and publish-subscribe based) between an aircraft client
and services on the ground via data link. However, within OWS-9, it is foreseen that the
focus will be on facilitating the communication between an aircraft client and OGC-
compliant web services on the ground, namely a Web Feature Service and an Event
Service. Specifically, it will be demonstrated that an actively participating client (in terms
of performing information request and subscription) will be able to obtain information
from OGC web services on the ground network through the DMS. However as the DMS
supports request-response based service interactions, in general it should also be able to

OGC 12-163

 19

enable communication with WPS, Registry and WCS. The only constraint is that for
OWS-9 binary content is not supported, thus interaction with FPS or the ePIB WPS is not
foreseen. This could be considered as future work in DMS development. The added-
values provided by the DMS in such case include:

 Efficient data transmission over wireless link through compression,

 Reliable communication through the use of reliable messaging,

 Additional/more tailored filtering and validation, in addition to what has been
provided by the ground web services.

 Continuous performance, quality and provenance control and maintenance

Figure 2 - Service Negotiation

Client DMS

1 : getSessionOptions()

2 : getSessionOptionsResponse(Module)

3 : createSession(endpoint, Module)

4 : createSessionResponse

OGC 12-163

20

Figure 3 - Request Reply

Client DMS OWS Dispatcher

1 : clientRequest(endpoint, serviceURL, request)

2 : Request()

3 : Response

4 : validate(response)

5 : filter(response)

6 : prioritize(response)

7 : provenance(response)

8 : clientRequestResponse(response)

9 : createDispatchMessage()

10 : CDispatchNotify(Notification)

OGC 12-163

 21

Figure 4 – Subscription request

Client DMS ES

1 : clientSubscribeRequest(serviceURL, request)

2 : replaceConsumerReference(request)

3 : SubRequest(request)

4 : SubResponse(response)

5 : clientSubscribeRequestResponse(response)

OGC 12-163

22

Figure 5 - Notification

7.1 Detailed protocol

Inserting the DMS may require some changes in the roles within the OGC Web Services
architecture. It is understood, however, that the changes in the client and web services
functionalities shall be kept to a minimum. The approach we propose is to make the DMS
available as a web service, and add a module at the client side in order to be able to use
the services provided by the DMS.

OGC web services standards support different binding possibilities, including SOAP +
HTTP, HTTP POST + plain XML, and KVP. At this stage, using SOAP + HTTP at the

Client DMS ES Dispatcher

1 : Notify(Notification)

2 : validate(Notification)

3 : filter(Notification)

4 : prioritize(Notification)

5 : provenance(Notification)

6 : CDMSNotify(Notification)

7 : createDispatchMessage()

8 : CDispatchNotify(Notification)

OGC 12-163

 23

Client-DMS side seems to be advantageous as it provides the flexibility of adding new
metadata for the DMS functions, namely within the SOAP header, and also permits the
use of WS-* standards, especially WS-ReliableMessaging which addresses one of the
DMS requirements.

The detailed Client-DMS communication mechanisms are outlined in the following, for
request-response and publish-subscribe exchange patterns respectively.

 Request-response model (here we assume that HTTP+XML binding is provided
by the OWS):

o The Client forms an XML request addressed to the OWS..

o The Client then calls the service provided by the DMS, giving the OWS
URL and the request as arguments. Since SOAP binding is provided by
DMS on the Client side, these arguments will constitute the SOAP body of
the SOAP envelope sent by the Client to DMS.

o Upon receipt of the request, the DMS web service obtains the XML
request and forms a new request towards the provided OWS URL. It then
waits for the response from the OWS.

o DMS performs validation, filtering, and prioritization to the response it
receives from the OWS.

o The DMS then forms a response to the Client’s request, including the
OWS response in the SOAP body.

o The process is completed when the Client finished reading response
message.

 Publish-subscribe model:

o The Client forms a SOAP message for subscription request addressed to
the ES. The request will contain ConsumerReference field to indicate the
client EPR..

o The Client then encapsulates the original request into another SOAP
envelope, with the original ES URL and the complete SOAP request
included in the SOAP body.

o Upon receipt of the request, the DMS web service reads the message and
forms a new request towards the ES, replacing the ConsumerReference in
the original request with a new EPR, formed by of DMS EPR and client
identifier. The DMS shall also read specific parameters of the request, e.g.
update interval information, for the purpose of performing validation to
the notifications. It then waits for the response from the ES.

OGC 12-163

24

o DMS then forms a response to the Client’s request, including the ES
subscription response in the SOAP body.

o The process is completed when the Client finished reading the response
message.

o Notifications from the ES will contain the client ID in the wsa:To field, as
it corresponds to the ConsumerReference field sent by the DMS during
subscription request. Every time DMS receives a notification, it shall
obtain the ID and use it to route the notification message to the proper
client, after performing validation, filtering, and prioritization to the
notification.

The validation, filtering, and prioritization steps will be implemented in a modular way
after the first baseline implementation of the DMS, which includes only the forwarding of
requests, responses, and notifications between client and the ground web services.

7.2 Required extensions to OGC Web Services Architecture

To enable the proposed client-DMS communications, a “Client DMS Component” is
required at the client side, which is basically a SOAP-based web service client
component that knows the services available at the DMS (e.g., DMS service discovery,
forward request, etc.), and at the same time provides a web service to receive
notifications. In addition, the interface between the “original” application and the DMS
module component needs to be defined.

7.3 Lessons learned

During the test phase of the Data Transmission Management protocol, a main issue has
been raised from client side. Indeed, the DMS is expecting SOAP for everything it
receives. The SOAP header is used to define (through WS-addressing) the intended
destination of the information being managed/transmitted through the DMS. The useful
information (e.g. the request intended to WFS or ES) is incorporated in the SOAP body
of this request, as explained above. However, given that different web services can
require different bindings – including SOAP – it is possible that at some point, the client
is requested to send the SOAP message intended for the web service within a SOAP
envelope, one being used by the DMS and the included one by the web service.

The client then find itself in a situation in which it has to create a message that has SOAP
within SOAP, which appeared to be problematic for automatic request creators used by
some clients.

The purpose of using SOAP for client-DMS interactions was that it provides the ability to
abstract from the underlying data link protocol. In order to be independent of a specific
protocol, the OWS-9 DMS design includes SOAP based communication. Additionally,

OGC 12-163

 25

SOAP allowed the easy coverage of reliable communication through WS-Reliable
Messaging.

The DMS is all about facilitating and managing the communication between the aircraft
client and the ground services (Aircraft Access to SWIM). Various requirements listed in
the OWS-9 RFQ Annex B influenced the DMS design. Reliable communication in case
of a connection loss is but one of them. A data link protocol may already support
reliability, but may also not. The current design supports both cases. This could in the
future also be an option to switch on or off, depending on the actual data links used in a
DMS session.

The OWS-9 requirements for DMS have some specific pieces of functionality in mind,
not only reliable messaging or generic filtering but also validation, prioritization and
means to attach arbitrary header / metadata fields to messages, in which case the use of
SOAP appears as the best common option.

The possibility to distribute the responsibilities to the different existing entities instead of
grouping them in a new element (DMS) has been evoked, yet from what have been
assessed, those options may not be all available from one web service to another, making
the job of the client quite more difficult and implementation dependent.

The DMS proposes a first approach of what could be the requirements of a new in-the-
middle entity that would undertake responsibility for optimal and customized data
transmission. However those requirements need to be revised at the light of the OWS-9
testbed, taking into account difficulties and awkwardness that come together with a first
set of requirements.

Another minor point that raised questions was the identification of the client, from the
DMS, but also from other entities (like dispatch) perspective. The design adopted in
OWS-9 was that the client endpoint would be used for identification. It may seem
awkward in the case where the client is only request-reply enabled, thus not expected to
subscribe and be notified by event services, and therefore not defining an endpoint at all.

This design choice was made in order not to add an additional identification pattern to
complicate existing process, and to use potentially already existing URL (the client
consumer reference) as its identification. This choice is questionable and may be revoked,
but it appeared to the design team that using what is already there may limit the
complexity of the DMS integration in the overall architecture.

8 OWS-9 High Level Requirements

According to the OWS-9 RFQ Annex B, the following high level requirements have been
identified:

 Investigate, develop, demonstrate, and document a recommended approach for
efficiently managing communications between clients and information
management services via wireless data link

OGC 12-163

26

 Investigate, develop, demonstrate, and document a recommended approach for
improving the efficiency of data exchanges in an air-to-ground data link via DMS.

 Develop, test, and document DMS functionality for filtering information sent to
the client. This involves extracting relevant information (essentially performing a
projection) and performing densification (example: computing trends, average
value, standard deviation value, range of values) on data/responses before they are
actually sent to the client. The solution shall expand or develop user configurable
filtering parameters as described in the Systems Rules Model

 Develop, test, and document DMS functionality for validating information
exchanged between the DMS and the client. The solution shall expand or develop
data validation functionality as described in the Systems Rules Model

 Investigate, test, demonstrate, and document the inclusion of arbitrary
header/metadata fields in messages exchanged between DMS and
client/dispatcher. These fields shall be used to store information including, but
not limited to, in support of functionality to realize data synchronization,
validation, filtering, prioritization, security, authoritativeness, and data link SLA
provisioning functionality

 Investigate, develop, demonstrate, and document a recommended approach for
using metadata at DMS to keep track of quality and provenance information

 The solution should be based on open standards

 The solution as well as identified alternatives shall maintain the interoperability
between clients and information management services

9 Efficient Communications

According to the OWS-9 RFQ Annex B, the DMS shall:

 Handle breaks in communication

 Ensure data transmissions are not lost and data is delivered as intended

 Determine the priority of data packets exchanged between client and DMS so that
data transmissions are optimized.

 Send copies of data retrieved by the client to the dispatcher (full copy)

 Support delivery of data summary of the client to the dispatcher (summary)

OGC 12-163

 27

9.1 Scope of Work

The following scope of work describes the interpretation of the requirements into
development components.

9.1.1 Reliable Messaging

Reliable Messaging is a base feature of the DMS. The purpose of the Reliable Messaging
feature is to ensure that messages sent to and from the aircraft client are delivered in full,
in the presence of software component, system, or network failures. If a message fails to
be delivered for any reason, the DMS must understand that the client has not received the
message. The DMS must take action to reattempt delivery of the undelivered message to
the client (aircraft). Part of the DMS Reliable Messaging feature is the ability of the DMS
to handle breaks in communication to the client (aircraft). Breaks in communication will
occur when an aircraft client switches between communication networks or loses
connectivity to a communication network for any other reason. The DMS must have the
ability to communicate with the aircraft client through all accepted communication
networks. Any data that is lost while being transmitted to the aircraft client due to the
aircraft client switching between data networks must be understood by the DMS as not
been received by the client. The DMS must attempt retransmission of the data to the
aircraft client after connection is re-established to ensure reception of the data by the
client (aircraft). This also applies in the aircraft to DMS direction, where the Client DMS
Component needs to make sure that DMS receives all sent messages, irrespective of any
failures.

 The Reliable Messaging feature must be able to determine whether or not an
aircraft client has received the message that has been sent to the client (aircraft).

 The Reliable Messaging feature must attempt to retransmit any data that was sent
to the aircraft client but not received by the client (aircraft).

9.1.2 Dispatch Module

The Dispatch Module is a service module of the DMS. The Dispatch Module purpose is
to allow a non-aircraft client (known in this document as “client (dispatch)”) to receive a
full or abbreviated copy of the messages the aircraft client receives. The dispatch client
has the option of requesting an abbreviation of the messages received by the client from
the DMS. The purpose of having the dispatch client request abbreviated messages t,
instead of automatically sending the dispatch client the full message, is to conserve
network resources

 The Dispatch Module must send the dispatch client messages containing the type
of data or the whole message received by the aircraft client after the aircraft client
has confirmed the reception of the message.

OGC 12-163

28

9.2 Recommended Approach

Despite the multitude of methods to ensure data transmission reliability across the
communication protocol layers (e.g. forward error correction, reliable link layer, reliable
transport layer / TCP), end-to-end reliability provision at the highest layer has the
promise of covering the most possible types of errors, including link, network, and
software (cf. the “End-to-end Argument” [EE]). This motivates the use of WS-Reliable
Messaging, which resides at the application layer of the layered communication protocol
model.

9.2.1 Web Services Reliable Messaging architecture

Web Services Reliable Messaging (WS-ReliableMessaging) is a specification that allows
two systems to send messages between each other reliably. The aim of this is to ensure
that messages are transferred properly from the sender to the receiver. WS-
ReliableMessaging provides a standard wire-protocol with no API or programming
model of its own. Instead it composes with existing SOAP-based systems.

WS-ReliableMessaging model defines “agents” that reside inside the RM entities’ SOAP
processing engines, and transfer messages, handle retry and do delivery. These agents
aren’t necessarily visible at the application level, they simply ensure that the messages
get retransmitted if lost or undelivered.

In WS-ReliableMessaging there are logically two of these agents – the RM Source
(RMS) and the RM Destination (RMD). They may be implemented by one or more
handlers in any given SOAP stack.

The tasks of RMS are:

- Requests creation and termination of the reliability contract

- Adds reliability headers into messages

- Resends messages if necessary

The tasks of RMD are:

- Responds to requests to create and terminate reliability contract

- Accepts and acknowledges messages

- (Optionally) drops duplicate messages

- (Optionally) holds back out-of-order messages until missing messages arrive

In a two-way reliable scenario there will be an RMS and an RMD on each side of the
communication.

OGC 12-163

 29

9.2.2 Wire protocol elements

The main concept in WS-ReliableMessaging is that of a Sequence. A sequence can be
thought of as the "reliability contract" under which the RMS and RMD agree to reliably
transfer messages from the sender to the receiver. Each sequence has a lifetime, which
could range from being very short (create a sequence, deliver a few messages, and
terminate) to very long. The standard allows a maximum of 2^63 messages in a sequence.

The DMS will use OASIS WS-ReliableMessaging to guarantee reliable communications
between the client and DMS. WS-ReliableMessaging version 1.1 is considered as a
baseline, as it is the latest version implemented by the open source Apache Sandesha2
WS-ReliableMessaging implementation. However it is only considered solely for the
purpose of implementation and tests within OWS-9, and is not a hard requirement for a
generic DMS implementation.

Some operations defined by WS-ReliableMessaging are depicted in Table 6 (not a
comprehensive list).

Table 6 – WS-ReliableMessaging basic operations

WS-ReliableMessaging
operation

Description

CreateSequence Request the creation of a Sequence

CloseSequence Close the Sequence without discarding the Sequence state
at the RMD, and prohibit the RMD to accept new
messages from the RMS.

TerminateSequence Indicate that the Sequence is complete and that the RMS
will not be sending any further messages related to the
Sequence.

Some message examples below are extracted from [OASIS-WSRM]. As an example
message exchange, the sender has three messages to send, and message 2 is lost in transit
for one or other reasons (e.g. wireless link error, software fault, etc.).

Create Sequence

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsrm="http://docs.oasis-open.org/ws-rx/wsrm/200608"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <S:Header>
 <wsa:MessageID>
 http://Business456.com/guid/0baaf88d-483b-4ecf-a6d8-a7c2eb546817
 </wsa:MessageID>
 <wsa:To>http://example.com/serviceB/123</wsa:To>

OGC 12-163

30

 <wsa:Action>http://docs.oasis-open.org/wsrx/-
wsrm/200608/CreateSequence</wsa:Action>
 <wsa:ReplyTo>
 <wsa:Address>http://Business456.com/serviceA/789</wsa:Address>
 </wsa:ReplyTo>
 </S:Header>
 <S:Body>
 <wsrm:CreateSequence>
 <wsrm:AcksTo>
 <wsa:Address>http://Business456.com/serviceA/789</wsa:Address>
 </wsrm:AcksTo>
 </wsrm:CreateSequence>
 </S:Body>
</S:Envelope>

Create Sequence Response

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsrm="http://docs.oasis-open.org/ws-rx/wsrm/200608"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <S:Header>
 <wsa:To>http://Business456.com/serviceA/789</wsa:To>
 <wsa:RelatesTo>
 http://Business456.com/guid/0baaf88d-483b-4ecf-a6d8a7c2eb546817
 </wsa:RelatesTo>
 <wsa:Action>
 http://docs.oasis-open.org/ws-rx/wsrm/200608/CreateSequenceResponse
 </wsa:Action>
 </S:Header>
 <S:Body>
 <wsrm:CreateSequenceResponse>
 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>
 </wsrm:CreateSequenceResponse>
 </S:Body>
</S:Envelope>

After the sequence creation exchange, the messages are sent as the following example:

Message 1

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsrm="http://docs.oasis-open.org/ws-rx/wsrm/200608"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <S:Header>
 <wsa:MessageID>
 http://Business456.com/guid/71e0654e-5ce8-477b-bb9d-34f05cfcbc9e
 </wsa:MessageID>
 <wsa:To>http://example.com/serviceB/123</wsa:To>
 <wsa:From>
 <wsa:Address>http://Business456.com/serviceA/789</wsa:Address>
 </wsa:From>
 <wsa:Action>http://example.com/serviceB/123/request</wsa:Action>

OGC 12-163

 31

 <wsrm:Sequence>
 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>
 <wsrm:MessageNumber>1</wsrm:MessageNumber>
 </wsrm:Sequence>
 </S:Header>
 <S:Body>
 <!-- Some Application Data -->
 </S:Body>
</S:Envelope>

Message 2 and Message 3 follow the same pattern with the value of
wsrm:MessageNumber field incremented.

Message number 2 has not been received by the RMD due to some transmission error, so
it responds with an Acknowledgement for messages 1 and 3:

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsrm="http://docs.oasis-open.org/ws-rx/wsrm/200608"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <S:Header>
 <wsa:MessageID>
 http://example.com/guid/0baaf88d-483b-4ecf-a6d8-a7c2eb546810
 </wsa:MessageID>
 <wsa:To>http://Business456.com/serviceA/789</wsa:To>
 <wsa:From>
 <wsa:Address>http://example.com/serviceB/123</wsa:Address>
 </wsa:From>
 <wsa:Action>
 http://docs.oasis-open.org/ws-rx/wsrm/200608/SequenceAcknowledgement
 </wsa:Action>
 <wsrm:SequenceAcknowledgement>
 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>
 <wsrm:AcknowledgementRange Upper="1" Lower="1"/>
 <wsrm:AcknowledgementRange Upper="3" Lower="3"/>
 </wsrm:SequenceAcknowledgement>
 </S:Header>
 <S:Body/>
</S:Envelope>

The RMS discovers that message number 2 was not accepted, so it resends the message
and requests and Acknowledgement:

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsrm="http://docs.oasis-open.org/ws-rx/wsrm/200608"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <S:Header>
 <wsa:MessageID>
 http://Business456.com/guid/daa7d0b2-c8e0-476e-a9a4-d164154e38de
 </wsa:MessageID>
 <wsa:To>http://example.com/serviceB/123</wsa:To>
 <wsa:From>
 <wsa:Address>http://Business456.com/serviceA/789</wsa:Address>

OGC 12-163

32

 </wsa:From>
 <wsa:Action>http://example.com/serviceB/123/request</wsa:Action>
 <wsrm:Sequence>
 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>
 <wsrm:MessageNumber>2</wsrm:MessageNumber>
 </wsrm:Sequence>
 <wsrm:AckRequested>
 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>
 </wsrm:AckRequested>
 </S:Header>
 <S:Body>
 <!-- Some Application Data -->
 </S:Body>
</S:Envelope>

The RMD now responds with an Acknowledgement for the complete Sequence which
can then be terminated:

Acknowledgement

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsrm="http://docs.oasis-open.org/ws-rx/wsrm/200608"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <S:Header>
 <wsa:MessageID>
 http://example.com/guid/0baaf88d-483b-4ecf-a6d8-a7c2eb546811
 </wsa:MessageID>
 <wsa:To>http://Business456.com/serviceA/789</wsa:To>
 <wsa:From>
 <wsa:Address>http://example.com/serviceB/123</wsa:Address>
 </wsa:From>
 <wsa:Action>
 http://docs.oasis-open.org/ws-rx/wsrm/200608/SequenceAcknowledgement
 </wsa:Action>
 <wsrm:SequenceAcknowledgement>
 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>
 <wsrm:AcknowledgementRange Upper="3" Lower="1"/>
 </wsrm:SequenceAcknowledgement>
 </S:Header>
 <S:Body/>
</S:Envelope>

Terminate Sequence

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsrm="http://docs.oasis-open.org/ws-rx/wsrm/200608"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <S:Header>
 <wsa:MessageID>
 http://Business456.com/guid/0baaf88d-483b-4ecf-a6d8-a7c2eb546812
 </wsa:MessageID>

OGC 12-163

 33

 <wsa:To>http://example.com/serviceB/123</wsa:To>
 <wsa:Action>
 http://docs.oasis-open.org/ws-rx/wsrm/200608/TerminateSequence
 </wsa:Action>
 <wsa:From>
 <wsa:Address>http://Business456.com/serviceA/789</wsa:Address>
 </wsa:From>
 </S:Header>
 <S:Body>
 <wsrm:TerminateSequence>
 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>
 </wsrm:TerminateSequence>
 </S:Body>
</S:Envelope>

Terminate Sequence Response

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsrm="http://docs.oasis-open.org/ws-rx/wsrm/200608"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <S:Header>
 <wsa:MessageID>
 http://Business456.com/guid/0baaf88d-483b-4ecfnegotiation-a6d8-
a7c2eb546813
 </wsa:MessageID>
 <wsa:To>http://example.com/serviceA/789</wsa:To>
 <wsa:Action>
 http://docs.oasis-open.org/ws-
rx/wsrm/200608/TerminateSequenceResponse
 </wsa:Action>
 <wsa:RelatesTo>
 http://Business456.com/guid/0baaf88d-483b-4ecf-a6d8-a7c2eb546812
 </wsa:RelatesTo>
 <wsa:From>
 <wsa:Address>http://Business456.com/serviceA/789</wsa:Address>
 </wsa:From>
 </S:Header>
 <S:Body>
 <wsrm:TerminateSequenceResponse>
 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>
 </wsrm:TerminateSequenceResponse>
 </S:Body>
</S:Envelope>

9.2.3 Requirements coverage

9.2.3.1 Lost or out-of-order messages due to wireless link

This situation is naturally handled by means of MessageNumber and Identifier fields
added to every message, and acknowledgements asked by a RMD for every message that
is not received. At this level, similar reliability guarantee is already provided by TCP as
the underlying transport layer protocol of HTTP. In such case WS-ReliableMessaging is
indeed somewhat redundant.

OGC 12-163

34

9.2.3.2 Network failure and IP address change

Temporary network failure without change of IP address

Similarly to wireless link failure, temporary network outage, where no changes in IP
addresses or any of the EPRs, is handled naturally by the MessageNumber and
acknowledgement/retransmission mechanism of WS-ReliableMessaging. In the event of
multiple retransmission failures, the DMS shall use WS-ReliableMessaging fault
mechanism to notify the event to some external entities, for example to the dispatcher,
which can be configured during Client-DMS configuration exchange, or using
wsa:FaultTo inside the WS-ReliableMessaging CreateSequence message. A maximum
number of retransmissions shall be configured at the DMS. WS-ReliableMessaging with
SOAP 1.2 binding provides only a limited set of possible fault events, in which maximum
retransmission is not available as an option, and there is no mechanism to add custom
error events. One possible solution might be to consider “unsuccessful transmission after
maximum number of retries reached” event as WS-ReliableMessaging
SequenceTerminated fault.

Network failure with IP address change

In IP networking setting, IP address serves both as a network node identifier (for the
purpose of routing), and as an identifier used by upper layer applications (e.g. IP address
is one component of a TCP/UDP “socket”). The design of IP networking forces a node to
change its IP address whenever it changes its point of connectivity, which consequently
breaks existing application layer sessions that use the IP address. Mobile IP protocol
family [IETF-MIPv6] is designed to alleviate this issue, by providing a static address, the
so called Home Address, separate from the dynamic Care-of Address, which depends on
the access network, and devising a signaling mechanism to constantly map the Home and
the Care-of addresses at an anchor entity called the Home Agent.

Within the aviation community, the use of IPv6 is being considered as the future
underlying protocol of future air traffic management (ATM) network, with Mobile IPv6
as the basis for providing network layer mobility [ICAO-ATNIPS]. If this solution were
in place, changing client’s IP address would not pose any issues to the applications, and
no further specifications would be required for the communications between client and
DMS.

When the client’s IP address changes, there are two scenarios that need to be considered
depending on the topological location of the DMS. The first case is if the DMS is the next
hop from the client, i.e. it is the wireless access point / base station, cf. Figure 6. In such
case the followings are most likely the case:

- client’s change of network access point implies change of the serving DMS,

- Client’s IP address is allocated by the DMS or by a router that is topologically
close and under the same authoritative control as the DMS.

OGC 12-163

 35

Figure 6 - Topologically-close DMS

In both cases, the client’s new IP address will be known to the new DMS after the
handover. There are some issues with this scenario:

- Since the serving DMS changes, the DMS EPR information within the client
needs to be updated. One possibility may be that the client is configured with a
registry address, from which it could obtain the DMS EPR corresponding to its
current location or serving network provider.

- The web services need to be informed of the new DMS.

- All client states have to be transferred from the old DMS to the new one;
otherwise some messages may be lost.

Another scenario is where the serving DMS is not changed after handover, cf. Figure 7.
In this case the DMS only knows the client’s EPR, and is not aware of the new IP address
obtained by the client after the handover. In this scenario, seamless message delivery to
the aircraft client after handover is in general not possible without support from the
network layer protocol. The change in the client IP address needs to be propagated in the
network routing infrastructure, so that all intermediate routers within the network will be
able to route the message correctly to the client’s new IP address. Similarly, the name-
resolving infrastructure of the network (e.g. DNS) needs to be updated to map the client’s
new IP address to its EPR (URL).

Connection	 lost

New	 connection
established

DMS1

DMS2

OGC 12-163

36

Figure 7 - Topologically-far DMS

In conclusion, WS-ReliableMessaging between a client and a DMS alone is not a
sufficient solution to overcome the IP address change problem. Support from the routing
infrastructure, as in Mobile IP, or a network of interconnected register, redirect and name
servers that manage client registration, as in the SIP protocol [IETF-SIP], would be
required.

9.2.3.3 Software failure

WS-ReliableMessaging by itself was designed as a wire protocol, not as an end-to-end
application level protocol. The guarantee that it - by itself - offers, is simply that the
message was successfully transferred from the RMS to the RMD and that the RMD
acknowledged it. Different implementations can have different guarantees behind this.
Software failure recovery could be made possible if the implementation allows some sort
of persistent storage capability, i.e. it sends acknowledgements only once the message
has been written to the disk. Apache Sandesha2 provides exactly this capability through
the so-called pluggable storage manager feature [SANDESHA2]. This means that
Sandesha can support server failure and restart. Since this is an implementation-specific
feature, a DMS implementer needs to carefully take it into account when implementing
WS-ReliableMessaging to handle software failure. Nonetheless, this kind of feature is
made available by WS-ReliableMessaging, which justifies its selection to handle
software failure.

9.2.3.4 Dispatcher data summary

To enable delivery of messages or summary of messages to the dispatch client, some
level of logging at the DMS is required. After a successful message delivery to the client,
at the minimum, for every successfully delivered message, the DMS needs to store:

Connection	 lost

New	 connection
established

DMS

OGC 12-163

 37

 Client ID

 Time of successful delivery

 Message content

The interface between DMS and dispatcher client shall use publish-subscribe model,
similar to / based on OGC Event Service specification [OGC 08-133], with the ES
functionality implemented at the DMS, and the dispatcher acts as a subscribing client to
the DMS.

9.3 Implementation

Within the OWS-9 architecture, WS-ReliableMessaging agents need to be implemented
at Client DMS Component on the client side, and at the DMS. Since there is always two-
way communications, both sides need to implement RMS and RMD components.

WS-ReliableMessaging is a mature standard with several open-source implementations
available. For the testbed implementation we choose to use Apache Sandesha2
[SANDESHA2] that supports up to Committee Draft 4 of the specification being
developed under OASIS WS-RX technical committee, but in principle any available WS-
ReliableMessaging implementation could also serve the function

9.4 Lessons Learned

We discover that WS-ReliableMessaging only covers some aspects of the DMS
communications reliability requirements. Moreover it mandates the use of SOAP
between the client and DMS. On one hand SOAP has the advantage of providing a
placeholder for arbitrary metadata such as for provenance or security purposes. On the
other hand, it introduces some complexity with respect to integration of the DMS
functionalities with the aircraft client.

The OWS-9 DMS is designed to be “transparent” to the client-server protocol. The use of
SOAP and the intention to make the DMS as transparent as possible to the different
clients and web services eventually create an issue on the client implementation. If the
OWSs already use SOAP, DMS insertion requires that the client’s original SOAP
envelope to be enclosed in another SOAP envelope to communicate with the DMS. This
is rather tricky to do and requires modification of the middleware that the client typically
uses to intercept the original SOAP envelope. To solve this issue, more feedback is
required from all stakeholders including client to devise which protocol solution to be
used; potentially to use different transport than HTTP or SOAP

9.5 Future Work

We identified that a cleaner client-DMS interface needs to be defined, and a simpler
protocol (possibly without SOAP) has to be identified, to have a better and more
transparent integration with aircraft client implementation. The issue of client network

OGC 12-163

38

mobility is another aspect which solution is not covered by OWS-9 DMS and should be a
priority for future work.

10 Message Prioritization Module

According to the OWS-9 RFQ Annex B, the DMS shall:

 Transmit high-importance and short-to-expire messages ahead of low-importance
and long-to-expire messages.

 Message priority shall be determined by message expiration time, or message
type.

 The DMS shall parse message content to determine message type.
 Client shall be allowed to assign priority to specific message types.

10.1 Scope of Work

Message Prioritization is a service module of the DMS. The purpose of the Prioritization
Module is to optimize the use of available network resources by allowing higher priority
messages to be transmitted ahead of lower priority messages. Outgoing messages are
prioritized by their relative time to expire or by their message type. Messages that are
about to expire are given an elevated priority and messages that are not about to expire
are assigned a lower priority. To quantify the priority level of a message, a set number of
messages (known as a “batch”) are collected as they are received by the prioritization
module. Each message in the batch is parsed and the message type and currency
metadata is realized by the DMS. Message types predefined in the DMS as high priority
are automatically given the highest priority. The remaining messages are prioritized by
their individual time to expire value. The message with the lowest time to expire value
becomes the next highest priority message in the batch, followed by the message with the
second lowest time to expire value, and so on until all messages have been prioritized.
Once the messages contained in the batch have been ordered by priority, they are queued
and transmitted in order, starting with the highest priority message. The Prioritization
Module waits for the Reliable Messaging reception acknowledgement message before
transmitting the next message in the batch. This way, a high priority message will not be
competing with other messages for available network resources if multiple re-
transmissions are required for complete message reception by the client. While the
transmission is taking place, the Prioritization Module begins the process of batching and
prioritization of the next set of received messages. The entire prioritization process has
been designed to fulfil the prioritization requirements set forth by OWS-9 which is listed
below:

 The Prioritization Module must send high priority messages ahead of low priority
messages

 The Prioritization Module must prioritize messages by time to expire

OGC 12-163

 39

 The Prioritization Module must prioritize messages by type as configured by the
client

10.1.1 Message Prioritization by Type

A feature of the Prioritization module is the ability to prioritize the order of message
transmission to a client by transmitting messages of specific types (which have been
previously defined as being high priority) after of all other messages. During client
session negotiation, the aircraft client will define a Prioritization policy that includes a
true/false value indicating whether or not to have messages prioritized prior to
transmission. The Prioritization Module has been preconfigured with a list of high
priority message type. Prior to transmission, messages are batched into groups based on
the order received. The batched messages are parsed and checked against the list of high
priority message types. Messages with a type that is defined as being high priority are

Figure 8 - Prioritization Module Example

OGC 12-163

40

rearranged so that they are the first message in the batch that will be transmitted to the
client. This allows high priority messages to be transmitted ahead of the other messages.

10.1.2 Message Prioritization by Time to Expire

A feature of the Prioritization module is the ability to prioritize the order of message
transmission to a client by comparing the relative time to expire value of the message to
the other messages in the client’s transmission queue. During client session negotiation,
the aircraft client will define a Prioritization policy that includes a true/false value
indicating to the DMS whether or not the aircraft client wishes to have messages
prioritized prior to transmission. Messages being forwarded to a client with prioritization
enabled are placed in a transmission queue. Once in the queue, the DMS parses
incoming messages in batches and checks for metadata data describing the message type
and expiration time. The messages contained in each batch are prioritized by their
relative time to expire. Soon to expire messages are set as high priority and placed in the
front of the queue to be transmitted ahead of low priority messages. Once all messages in
a batch have been successfully transmitted to the client, the next batches of messages in
the transmission queue are sent to the aircraft client. By prioritizing messages in batches,
the DMS prevents low priority messages being blocked from transmission by a large
number of high priority messages.

10.2 Implementation

Apache Camel provides a rule-based queuing and routing engine that is used by the DMS
to prioritize messages. Received messages sent to an Apache Camel service and
temporarily stored on server memory. Once Apache Camel receives a preconfigured
number of messages (in this case 5 messages, but this is easily changed) it groups them
together and evaluates each message for message type and time to expire. This grouping
of messages is known as a batch. Messages in the batch are parsed and any messages
containing a type defined as high priority (e.g. runway closure) are sent to the front of the
priority queue. The remaining messages not defined as being high priority are ordered by
their individual time to expire relative to the other messages in the same batch. Once the
batch of messages is queued the DMS transmits the messages, one at a time, to the
aircraft client. The DMS waits for aircraft client acknowledgement of messages reception
before transmission of the next message in the queue. Once all messages in the batch
have been successfully transmitted to the aircraft the DMS transmits the next batch of
messages. The batching of messages prior to queuing for transmission prevents blocking
of low priority message from transmission by an influx of very high priority messages.

10.3 Lessons Learned

The initial approach to prioritization was to utilize the differentiated services (DiffServ)
quality of service (QoS) standard to mark messages with priority levels for use by the
DMS – aircraft client data link(s). DiffServ is a computer networking architecture that
specifies a mechanism for classifying and managing network traffic using 6-bit values
inserted into the IP header of a packet. Routing and transmission equipment use the 6-bit

OGC 12-163

 41

values to control the application of network resources to specific packets. DiffServ can be
used to provide low latency to voice communications while providing best effort to file
transfers on the same network. The DMS could use DiffServ to prioritize message to
optimally utilize network resources without having actual knowledge of network resource
availability. The intent was to insert Diffserv 6-bit values into the packets headers
carrying high priority messages to increase the chances of the message being received in
an expeditious manner. Technical gaps where discovered when attempting the insertion
of DiffServ values into the packets that contained high priority messages. Because the
DMS deals with messages on the application level, it was not directly possible to
associate messages to the individual packets on the network level. It was realized that
DiffServ is designed to be implemented to allow a single network interface card to insert
the same DiffServ 6-bit value into every IP packet transmitted. This is not conducive to
the type of operational capability required by the Provenance Module.

10.4 Future Work

It was determined that the use of DiffServ as a message prioritization method was not the
optimal method for this research effort. It is still a recommendation that the use of
networking protocols to control the use of datalink resources is the most effective method
of prioritizing messages. The allocation of network resources should be conducted by the
datalink and not by web services, which has no insight into the availability of network
resources. While the current prioritization solution does effectively fulfill the
requirements set forth by OWS-9, future research efforts may discover more effective
methods of message prioritization in QoS standards used on the network level.

The current Prioritization Module implementation is hardcoded with a list of high priority
message types. This straightforward method was chosen to allow the basic process of
client – DMS session creation to be developed. Future development of the DMS and the
Prioritization Module should include the ability of the client to define list of high priority
message types. This additional functionality will allow client to choose which messages
are the most important instead of what is pre-configured in the DMS.

11 Efficient Data Exchange

According to the OWS-9 RFQ Annex B, the following requirements have been identified
for data compression:

 Improve the efficiency of air-to-ground data exchange by reducing bandwidth
consumption through the use of compression

 Utilize OWS-8 recommended compression, Fast Infoset, with deflate post
compression, from the OWS-8 AIXM 5.1 Compression Benchmarking ER

 Investigate more efficient protocols for exchanging messages between client and
information management services from ground-to-air and air-to-ground

 Perform analysis of alternative solutions

OGC 12-163

42

 Perform sensitivity analysis to describe the key drivers of significant changes

 Test and document the performance of improvements of alternative solutions

 Demonstrate the recommended solution

 Document recommendations for minimizing bandwidth impacts for ground to air
and air to ground communications via DMS.

The purpose of the Data Compression Module will be to match a specific compression
algorithm to individual data links. The goal of the Data Compression Module is allow for
the efficient transfer of data over bandwidth restrictive data links. A multitude of
compression algorithms may be used to be suit the data type being transmitted over a
specific data link.

11.1 Scope of Work

The following scope of work describes the interpretation of the requirements into
development components.

11.2 Data Compression Module

The Data Compression module will use at minimum Fast Infoset as recommended from
the OWS-8 AIXM 5.1 Compression Benchmarking ER. However, as further presented,
other compression algorithms can be of interest, especially depending on the type of data
considered (the differences in terms of efficiency between the algorithms are mainly
linked to the complexity of the information treated).

The Data Compression Module must have knowledge of:

1. The type of data being transmitted to the client (aircraft)

2. The data link being used to transmit the data to the client (aircraft)

3. The available resources (memory)

As a matter of fact, the difference between the different considered algorithms can be
measured by more than the “compactness efficiency”. For instance, an algorithm that is
very powerful in terms of size reduction but very demanding in terms of CPU time or
memory would not necessarily be the best option in an environment where the hardware
resources are limited/critical, as the case may be in an aircraft. Also, an efficient
algorithm in terms of compactness could be requiring a lot of processing for
compression/decompression could be inefficient in a fast network where the time of
processing in a critical aspect.

OGC 12-163

 43

Therefore, depending on the context (e.g. data link being used) and the requirements (e.g.
end-to-end time to travel requirement), some compression algorithms will be more
adapted than others.

The Data Compression Module of the DMS will make a decision on which compression
algorithm to use (if any) based on the combination of data type, data link that will be used
to transmit information to the aircraft client and available resources.

Compression algorithms have strengths and weaknesses. Generally, the higher a specific
algorithm can compress a data set, the less bandwidth a data link uses to transmit that
data. The tradeoff is that the systems compressing and decompressing the data (DMS,
and aircraft client respectively) use more system resources when handling the data.
Algorithms that have a high compression ratio should only be used on bandwidth
restrictive data link to conserve system resources.

Based on the extensive study realized in OWS-8, we will consider 3 compression
algorithms:

 Fast Infoset (can be with or without post compression)

 EXIficient (with or without “deflate” post compression and with or without
schema knowledge)

 GZip

We will further study their characteristics; remind their respective strengths and
weaknesses to finally define which algorithm fits best in the different frameworks that
can be characterized by the features hereafter:

 Speed of the connection network (from very slow e.g. SatCom to very fast e.g.
LAN)

 Available resources at the different nodes of the connection network (DMS,
client, WFS …) like CPU, memory ...

 Time constraints from external requirements (Quality of Service)

As mentioned previously, the data exchanged can vary in their nature (type, average size
…) and it has been demonstrated in OWS-8 that the compression algorithms can be more
or less adapted depending on the nature of the data. The different files considered have
been grouped in families, based on their size:

 Family 1 – small files (<10kB), composed of D-Notams

 Family 2 – medium size files (10kB–1MB), composed of single AIXM features
representing a specific characteristic (runway, airspace …).

OGC 12-163

44

 Family 3 – bigger files (>1MB), composed of single or multiple features, to assess
the performance of the algorithms as the volume increases.

 Family 4 – A set of technical files, some of them home made to achieve specific
characteristics (order of disorder of features, amount of coordinates …).

The objective of the Compression performance ER was also to determine which
improvement could be brought to the forging of the features by the different information
service to improve compression. For the sake of this study, we will leave those
considerations out of our scope, so that we only focus on the features as they are likely to
be exchanged between the different nodes, and not how they could optimally be.
Therefore we will not consider the fourth family.

11.2.1 Analysis

The analysis will be driven the three characteristics defined previously (compaction, CPU
time and memory usage).

The naming of the different compression options follow the rules given here after:

 Neither: without any compression

 Document: with post compression

 Schema: with schema knowledge

 Both; with both schema knowledge and post compression

OGC 12-163

 45

11.2.1.1 Compaction analysis

11.2.1.1.1 First family – small files

Figure 9 - Compaction results on D-Notams

The EXI compression with post compression and schema knowledge reduces the size of
D-Notams by almost 90% and makes it the most efficient algorithm for small files.

11.2.1.1.2 Second family – medium size files

In the following sequences of tests (family 2 & 3), the differentiation has been made
between the types of features contained in the samples. The different features are
runways, routes, airspaces, geo borders, vertical structures, navaids and taxiways.

OGC 12-163

46

Figure 10 - Compaction results on second family

For medium size files, EXI performs better (even without schema) than Fast Infoset.
Without post compression, runways, routes, vertical structures and taxiways are
compressed below 30% with both FI and EXI.

The schema knowledge of EXI offers significant improvement for runway elements, geo
borders taxiways and airspaces, but not for runways, route, vertical structures and
navaids.

OGC 12-163

 47

Finally, when considering post compression, no algorithm performs significantly better
than simple gzip compression (XML document). Some of them even perform worse, due
to incompatibility between the output of the EXI/FI compression and the post
compression algorithm. As a matter of fact the maximum upgrade we can obtain is about
5% more compression compared to gzip. Additionally, section 11.2.1.2.2 demonstrates
that this small gain can come with great costs.

11.2.1.1.3 Third family – bigger files

The results for compression algorithms without post compression are very similar to
family 2 here, so we directly consider comparing them with post compression:

Figure 11 - Compaction results with post compression for bigger files

Those charts confirm what has been seen previously: EXI offers a good level of
compaction for taxiways, runways and airspaces compared to Gzip, showing the
efficiency of EXI on files composed of few elements with limited string data (coordinates
and dates)

OGC 12-163

48

11.2.1.1.4 Conclusion

EXI with post compression offers very interesting performance in terms of compaction,
always better than post compression only and Fast Infoset, though the latter offers quite
good performances overall. Adding the schema to EXI with post compression will
improve the performance even more for the following types of data:

 Taxiways

 Airspaces

 Runway elements

 Geo borders

11.2.1.2 CPU consumption

The following graphs show both the CPU time needed by the algorithms and the
compaction ratio associated, to get an idea of the CPU price of compaction.

11.2.1.2.1 First family – D-Notams

Figure 12 - Compaction Speed Results D-Notams

We can see that Fast Infoset without post compression is faster than any other algorithms
(even the basic SAX parser). This charts also points out the great complexity of EXI post
compression, where the CPU time sky rockets. Here EXI with Schema but no post
compression performs very well in terms of both compaction and CPU time. However,
Fast Infoset remains the most interesting when it comes to the ration compaction/time.

OGC 12-163

 49

11.2.1.2.2 Second family – medium size files

Figure 13 - Compaction Speed Results Medium Sized Files

As the file size gets bigger, EXI clearly shows its limits, with CPU times form 3 seconds
to almost 15 seconds (100 times more that SAX), making it completely unusable in a
real-time or even close to real-time environment. Without post compression, Fast Infoset
proves to be very fast, up to 4 times faster than the basic SAX parser.

11.2.1.2.3 Third family – bigger files

The results for the third family are basically confirming the trend observed with the
second family

Figure 14 - Compaction Speed Results Large Sized Files

OGC 12-163

50

Fast Infoset still proves to be faster that SAX (2 to 3 times faster). Fast Infoset with post
compression and EXI with Schema perform approximately the same. Fast Infoset with
post compression is only around 2 times slower than SAX, while its compaction
performance is greatly improved.

11.2.1.2.4 Conclusion

Fast Infoset is clearly the best option when it comes to compaction/time ratio. The very
important throughput it allows makes it an adapted solution for very fast communication
networks. While offering very acceptable compaction performance in terms of
compaction compared to EXI, it clearly demonstrate its lower complexity in terms of
CPU time. EXI with Schema knowledge but no post compression is still in the race,
offering decent compression ratio with CPU comparable to Fast Infoset

11.2.1.3 Gzip compaction time analysis

This section quickly tackles the Gzip different level of compaction (from 1 to 9) and put
it in parallel with the CPU time used, to draw tradeoff conclusions regarding usage of
simple deflate.

Figure 15 - Gzip Compaction Speed Results

As one can see the level 9 costs between 2 and 4 times the cost of level 1. Level 5/6 is
enough for a decent compression and avoids using too much additional CPU for only few
percent of additional compaction.

OGC 12-163

 51

11.2.1.4 Memory footprint

To consider every one of the parameters we are looking at, we need to finally verify the
resources usage of each compression algorithm, to have a consistent overview of their
strengths and weaknesses. This has been done on family 2 only, for the results are similar
for family 3 and may be flawed for family 1 due to the benchmarking environment cf
[OGC 11-097].

Figure 16 - Compression Algorithm Resource Allocation

One can observe that EXI is consuming a lot of memory compared to other algorithms,
especially with schema knowledge and deflate post-compression. As the memory used by
the output buffer is taken in consideration, the raw SAX consumes more than gzip and
Fast Infoset.

Anyway, EXI with schema and deflate is consuming too much:

 Around 150-200 MB for family 1,

 Around 275-300 MB for family 2,

 Around 250-500 MB for family 3

OGC 12-163

52

11.2.2 Overall analysis

The results of the different tests operated have allowed clear identification of the
strengths and weaknesses of the compression algorithms. In a given environment, with its
limits and its requirements, some compression method will be more adapted, while they
will not make sense in other.

The following sections aim to identify the different environment in which we will be
operating, together with their limitations and constraints. Based on that, the most
appropriate algorithm(s) will be identified.

11.2.2.1 Strong real-time constraint

This can be the case for specific types of data, like emergency alerts, etc… This
automatically rules out EXI with post compression (with or without schema). In this case,
there can be different constraints on other parameters:

11.2.2.1.1 “Unlimited” resources available: between DMS and information service

In this case, where we consider that the memory consumption is not an issue, the best
option is Fast Infoset, as being by far the fastest algorithm of all (even faster than SAX
parser). An interesting choice could also be EXI with Schema knowledge. It has one of
the best performances in terms of compaction and operates quite quickly.

11.2.2.1.2 Limited resources available: between Client and DMS

The resources on the aircraft client side can be limited, due to limitations in terms of
equipment that can be embedded in an aircraft. This automatically rules out EXI with
schema knowledge.

In this case where there is a strong time constraint and resources are limited, EXI without
schema knowledge and without post compression is a fair choice. However, the cost of
air time could call for an efficient solution also in terms of compaction; In that case, Fast
Infoset with post compression would be an excellent tradeoff.

11.2.2.2 Strong Compaction constraint

In the case of air to ground and ground to air communications and alike, the most
important thing for operators, from a business perspective, is to keep the costs as low as
possible (and therefore send as few data as possible), while ensuring that information are
still exchanged between parties. Several options are foreseeable depending of other
constraints:

OGC 12-163

 53

11.2.2.2.1 “Unlimited” resources available

This is quite an unlikely situation where the resources are not a limitation while
compaction is. This would be the case in a hi-end aircraft equipped with state of the art
installation. In this case, EXI combining schema knowledge and post compression would
be the best options, for though being very consuming in time and resources; it provides
the best performances in terms of compactness.

11.2.2.2.2 Limited resources available: between Client and DMS

In this situation, EXI with post compression is an interesting choice; it offers excellent
compaction performances and if one is not concerned by the time needed for the
information to be relayed, but is looking at equipment with limited resources, EXI
Document appears as the best solution.

11.2.2.3 Strong resources constraints

In the case where the resources are the most critical feature of the information exchange
(Crisis cell …). One could simply go for GZip compression. It is widely used, very easy
to set up and can offer interesting compression performance and reasonable costs in terms
of CPU time and memory. Fast Infoset is also an excellent choice in this situation

11.2.3 Recommended Approach

During the Session negotiation, the DMS shall propose, among the different module
options, the possibility for the client to select compression options for the future
exchange between DMS and client. The set of options defined by the client as a response
shall constitute the compression policy. The client shall be able to select different options
based on different criteria (e.g. a specific type of compression for a specific type of data,
plus a general compression for all other type of data). This way the client will be able to
tune its policy for each of the different approach it could have (resources constraint, time
constraint, compaction constraint).

For this reason, the DMS shall offer the following compression method to the client:

 Fast Infoset(with or without post compression)

For finer treatment of compression based on the nature of the data, the DMS should also
offer the following compression methods:

 GZip

 EXI (with or without post compression, with or without schema knowledge)

The DMS stores the compression policy requested by the client (it shall potentially be
able to provide it on request.) Whenever the DMS receives data for the client, it shall
perform a check based on data type to assess if and which compression is needed. The
data is then compressed and sent to the client.

OGC 12-163

54

11.2.4 Implementation

During OWS-9, the first plan is to be able to demonstrate the interest of compression on
the one hand and also to demonstrate the capability of the DMS to segregate the traffic
and apply compression only in certain situations. To achieve this purpose, only one
compression algorithm is needed. We will then have two different behaviors
(compressing or not compressing) on the DMS (or client) side. Based on this, we can
demonstrate the capability of the DMS of having different behavior depending on the
compression policy, defined at the session negotiation, which can apply on:

 The data link used

 The types of data

In the implementation of the DMS web service, which will likely be done with Apache,
the plan is to implement Fast Infoset for the following reasons:

 Ease of use : as demonstrated in [OGC 11-097], Fast Infoset is relatively easy to
set up

 Feasibility: Fast Infoset binary serialization is already present on the Apache Axis
2 implementation

11.2.5 Performance Measures

Most of the performance assessments have already been done in [OGC 11-097].
However, it may be interesting to have some performance assessment in a more
operational context (monitoring for instance end to end time to travel …)

11.3 Data link selection

11.3.1 Analysis

The bandwidth saving approach is very dependent on the type of data link
communications will go though.

In the previous section, it has been demonstrated that the DMS could have an approach
based on the data link used. It is also important to look at the problem from the
perspective where the data link is imposed (it could be by the client, the dispatch unit …)

We consider here that the DMS has access to several data links. Each has its properties,
in terms of speed, reliability, availability … Without further information from the client,
it could be considered that the DMS will make a general decision on which data link to
be use (it could in a general manner, when nothing is specified, always privilege the most
reliable link for instance) without concerns for the type of data, its priority …

OGC 12-163

 55

However it could be that the client has specific requirements in terms of speed, reliability
… for certain type of data. In this case it would be interesting for it to be able to specify it
to the DMS, either from a general perspective (the client requires all data to be sent over
fast ground network if possible, else by Satcom) or on a case by case approach (e.g. all
notifications regarding a certain subscription must be sent over the most reliable link,
Satcom for instance.)

In the event of a client having specific requirements regarding the data link to be used in
various cases, the DMS shall provide the possibility to the client, at session negotiation
and also once session is opened, to specify rules of data link usage based on the following
criteria:

 Type of data
 Connections available
 … (TBD)

11.4 Alternative protocols for exchanging messages

This section aims to identify and compare protocols that could come as alternatives for
HTTP, focusing on optimizing bandwidth.

A first part will tackle the protocols themselves, a second part will quickly review the
overheads brought by the different protocols and analyze their impact.

11.4.1 Protocols

11.4.1.1 HTTP (Hyper Text Transfer Protocol)

HTTP is the most widely use protocol on the Internet when it comes to web services. The
reason is mainly the fact that HTTP is the legacy protocol for data exchange on the web.

HTTP provides rather straightforward way of requesting information and then getting it.
It has good support in various programming libraries and is therefore used widely for all
sort of things, including web services.

In this section will first be considered the advantages and drawbacks of HTTP from a
general perspective. Further, alternative protocols (all also based on TCP/IP) will be
considered and their advantages and drawbacks discussed.

The main advantages of HTTP are the following :

 Identification : Speed of delivery is enabled by creating a notification of file type
in the header of the data being transferred, known as MIME type. This enables the
receiving application to quickly open the incoming file without having to ask the
sender what application should be used to read or view the contents of the file.

OGC 12-163

56

 Ease of programming : HTTP is coded in plain text and therefore is easier to
follow and implement than protocols that make use of codes that require lookups.
Data is formatted in lines of text and not as strings of variables or fields.

 Search capabilities : Although HTTP is a simple messaging protocol, it includes
the ability to search a database with a single request. This allows the protocol to
be used to carry out SQL searches and return results conveniently formatted in an
HTML document.

On the other side, HTTP has the following drawbacks :

 Stateless protocol : Each transaction is essentially separate from others. While the
user may perceive the transaction as an ongoing communication, there is no
preservation of data (state) thus all the data must be stored somehow, using
server-side processing, cookies, hidden variables, or some combination of the
above.

 One minor drawback of HTTP is the need to create multiple connections in order
to transmit a typical Web page, which causes an administrative overhead.

In a framework where the bandwidth is little or not limited, and the access to the network
is quasi instantaneous, the drawbacks of HTTP could appear irrelevant. However, in a
context of limited resources (in terms od bandwidth for instance), those inconveniences
can become problematic.

Hereafter will be tackled the following alternatives to HTTP :

 FTP (File Transfer Protocol)
 SMTP (Simple Mail Transfer Protocol)
 AMQP (Advanced Message Queuing Protocol)

11.4.1.2 FTP (File Transfer Protocol)

FTP is a standard network protocol used to transfer files from one host or to another host
over a TCP-based network. FTP users may authenticate themselves using a clear-
text sign-in protocol, normally in the form of a username and password, but can connect
anonymously if the server is configured to allow it.

FTP, contrary to HTTP, is an Out-of-Band protocol, meaning that there is two separate
connections for controlling and for data transfer, while in HTTP (which is an In-Band
Protocol), control and data are exchanged on the same connection, which may imply that
a greater volume of data is exchanged in FTP. This increases the reliability of the
exchange over FTP, but generates additional message exchanges that could be
problematic in a limited resources environment.

The advantages of FTP are presented hereafter:

OGC 12-163

 57

 FTP is a fast and efficient way of transferring bulks of data across the internet.
 It has an automatic backup .Whenever files are edited on a local system they can

be updated by copying them to the host system editing the file. It then provides a
backup system that works both ways.

 FTP gives control over transfer. The data can be transferred either in ASCII mode
(for text files), in Binary mode (for executables or compressed files) or in Local
mode, allowing two entities with identical setups to exchange data in a proprietary
format.

 While using FTP, tools like macros can also be used to make your work more
efficient and easier.

However, FTP has the following drawbacks:

 FTP was not designed to be a secure protocol.
 It is therefore vulnerable to attacks such as spoof, brute force, packet sniffing, ...
 There is no possibility for data encryption over FTP.
 FTP provides no Meta-data together with the files exchanged.

11.4.1.3 SMTP (Simple Mail Transfer Protocol)

Simple Mail Transfer Protocol (SMTP) is an Internet standard for electronic mail (e-mail)
transmission across Internet Protocol (IP) networks.

This protocol will only be described shortly as it appears that it is rather limited and
unlikely to suit the Web Service architecture.

Main differences between HTTP and SMTP are presented here:

 HTTP is mainly a pull protocol--someone loads information on a web server and
users use HTTP to pull the information from the server. On the other hand, SMTP
is primarily a push protocol--the sending mail server pushes the file to receiving
mail server.

 SMTP requires each message, including the body of each message, to be in seven-
bit ASCII format. If the message contains binary data, then the message has to be
encoded into seven-bit ASCII format. HTTP does not have this restriction.

 HTTP encapsulate each object of message in its own response message while
SMTP places all of the message's objects into one message.

The main drawback here would be that SMTP only allows the exchange of ASCII text,
which would render any binary exchange (would that be BinaryXML or compressed
data) impossible. Moreover, the performance of this protocol in terms of flow handling
(congestion) is quite non-existent, making it a not so efficient protocol for data exchange.

OGC 12-163

58

11.4.1.4 AMQP (Advanced Message Queuing Protocol)

The Advanced Message Queuing Protocol is an open standard, binary, application
layer protocol for message-oriented middleware.

The defining features of AMQP are message orientation, queuing, routing (point-to-point
and publish-and-subscribe), reliability and security.

The first and most important information about AMQP is that it is designed for message-
oriented middleware (MOM) (the same goes for JMS (Java Messaging Service)).

A MOM is an infrastructure able to exchange messages between distributed systems. The
main reason for using a MOM is its ability to seamlessly transfer messages between
heterogeneous platforms, allowing applications to be developed for a variety of operating
systems and able to run over several network protocols. Central reasons for using a
message-based communications protocol include its ability to store (buffer), route or
transform messages while conveying them from sender to receiver(s).

In this market, the emerging standard appears to be AMQP, given the growing
community using it (mainly banks) and supporting it (Microsoft, RedHat ...). Its multiple
advantages, described further, are pushing this open standard to become the most widely
used when it comes to B2B message exchange.

First comparing AMQP to the other protocols mentioned previously, here is what shows:

Thanks to its standardized message format (called bare message), implementations of
message brokers from different vendors are truly interoperable, in the same way as
SMTP, HTTP, FTP.

Where AMQP differs enormously from instant messaging or email is that it allows one to
specify what messages will be received and where from, and how trade-offs are made
with respect to security, reliability and performance.

Things that are ambiguous in email get defined in AMQP. For example, message size,
reliability, security, discard policy, TTL, high speed group delivery, 1-of-N delivery, and
so forth.

Further, the protocol comes with some interesting features:

AMQP has the possibility to handle enhanced security through mechanisms of
authentication and/or encryption that are based on based on SASL and/or TLS.

It provides the core set of messaging patterns such as asynchronous directed messaging
(meaning that the sender and the receiver do not have to have access to the network
simultaneously for the messages to be exchanges), request/reply and publish/subscribe.

OGC 12-163

 59

AMQP also offers a very capable flow control, which enables consumers of messages to
slow producers to a manageable speed, and which enable different workloads to proceed
in parallel at different rates over one connection.

In terms of reliability of the service, there mechanisms exist for resuming message
transfers when connections are lost and re-established; for example in the event of service
failover or intermittent connectivity. The protocol can also handle priority levels defined
between sender and receiver.

Regarding web services, AMQP, similarly to HTTP, stands between the pure network
and transport protocols (TCP/IP) and the application layers of the web services, as
depicted in Figure 17

Figure 17 : AMQP in System Oriented Architectures

AMQP can be used as a guaranteed transport for Web service calls - it does not define the
payload, just the transport layer, which means that SOAP, WS-Security, WS-
Transactions, WS-MetaData Exchange, and so forth can all be run over AMQP in the
same way that they can be used over JMS. However, AMQP provides vendor-neutral
interoperability at the lowest levels of the transport link.

Finally, here are the main interesting points of AMQP compared to the competition JMS :

 Unlike JMS, which only defines an API, AMQP is a wire-level protocol. Meaning
that the format of the data that is sent across the network as a stream of octets is
described and standardized.

OGC 12-163

60

 JMS does not define the format of the messages that are exchanged, so JMS
systems are not or hardly interoperable.

To conclude on AMQP, here are the main features of interest, along with the principal
(and potentially critical) downside of this protocol, and of MOM in general:

Advantages:

 Asynchronous delivery
 Routing (request/reply - publish/subscribe)
 (especially AMQP) Supporting implementation on a lot of API (JMS C# C++,

PHP, ...)

Disadvantages:

The main disadvantage of message oriented middleware systems is that they require an
extra component in the architecture, the message transfer agent (message broker). As
with any system, adding another component can lead to reductions in performance and
reliability, and can also make the system as a whole more difficult and expensive
to maintain.

11.4.2 Headers

After stating the actual advantages and drawbacks of those protocol from a general
perspective, it is now interesting to compare the headers of the different options. Indeed,
in an environment where the bandwidth is limited, and the number of message exchange
can be very important, the volume created headers of each message can become
significant.

All the protocol considered here are functioning on top of TCP/IP, therefore it is
considered that the overhead induced by the lower layer protocols are constant and do not
vary from a application protocol to the other.

Regarding HTTP, the protocol also always includes a set of headers that send metadata
during transfers. FTP does not send such headers. When sending small files, the headers
can be a significant part of the amount of actual data transferred. HTTP headers contain
info about things such as last modified date, character encoding, server name and version
and more. It is then left to decide whether this metadata is of use for the data exchange. If
not, the additional headers inherent to HTTP may become a source of unnecessary
volume of data transmitted. Additionally, HTTP, as a stateless protocol, has to reopen a
connection every time data has to be exchanged, which also represents additional volume
of data to be exchanged, compared to FTP for instance.

AMQP also include headers, to define properties such as priority. However, those
headers are not very numerous and their format is quite simple (boolean, int, ...).

OGC 12-163

 61

Moreover, it is possible to define default values for those headers so that they can be
omitted, as long as the receiver of the message and the sender have agreed on those
default values at session opening.

SMTP probably is the protocol with fewest header volumes, but its inability to transmit
anything but text makes this advantage insufficient compared to the other protocols.

First conclusions that can be drawn from this analysis is that comparing the classical
applications directly operating over TCP/IP (that is HTTP, FTP and SMPT), HTTP
remains the most appropriate for the operation of web services, given its advanced
capabilities for message exchange compared to SMTP and FTP (message encryption,
various formats, database querying).

FTP can be a good candidate if security is not a primary concern. It is also appropriate for
data exchange over TCP/IP, and offers possibility to exchange data in binary format. The
main advantage of FTP would be that it is slightly faster that HTTP. However the
compression and pipelining (ability to ask for the next data before the previous one
ended) functionalities of HTTP can palliate this difference.

AMQP could be an interesting option for web services, since it has the same capabilities
than HTTP, namely its capacity to support various models (SOAP, WS-Transactions, ...)
over TCP/IP, and brings new features that could be very interesting in an SOA, such as
asynchronous messaging and reliability (not covered by HTTP). As it has been shown,
being a MOM protocol, AMQP comes with the drawback that message brokers need to
be included to the architecture, which could lead to additional developing and operating
costs.

11.5 Lessons Learned

It was interesting to investigate alternatives for the omnipotent protocol HTTP for the
operation of web services on TCP/IP networks. Being generally used by a wide majority
of the network applications and web services, HTTP’s legitimacy is rarely questioned. A
short analysis showed that this choice is justified both by legacy usage of the protocol for
information exchanges over the Internet and by the fact that service architectures
developed with the together with HTTP, therefore adapting to its available features, while
HTTP was evolving to best serve those architecture in return.

From a documentation perspective, the wide usage of HTTP comes with very complete
documentation associated, previous studies and strength and weaknesses analyses
performed. Regarding the other protocols, FTP and SNMP have very closed field of
usage, and considering them as potential alternatives of HTTP is quickly proven
complicated, given the technology gaps that exists. AMQP appears as the only serious
competition, offering features comparable (and sometimes more thorough) than HTTP.
However, AMQP still needs to be proven has a serious competition, for structure of its
architecture implies gap that need to be filled to reach the level of deployability and
interoperability of HTTP, especially regarding the need of the intermediate message
broker in the architecture.

OGC 12-163

62

11.6 Future Work

Feasibility of AMQP deployment as alternative of HTTP for web services over IP needs
to be further assessed and potentially tested. The additional features brought by this
MOM architecture may be very interesting and could use further testing.

12 Data Filtering

According to the OWS-9 RFQ Annex B, the following requirements have been identified
for data filtering:

 Develop, test, and document DMS functionality for filtering information sent to
the client

 The DMS shall perform extraction of relevant information (projection)

o The DMS shall demonstrate filtering based on feature property values for
a given time interval

o The DMS shall demonstrate filtering based on any XML based content

 Perform computation of average, standard deviation, range, and trends of data
responses before being sent to the client (densification)

o The DMS shall perform filtering of data based on an average value of data

o The DMS shall perform filtering of data based on standard deviation value
of data

o The DMS shall perform filtering of data based on range of values of data

o The DMS shall perform filtering of data based on preferred provider(s) of
data

 Develop user configurable filtering parameters as described in the Systems Rules
Model

 The DMS shall perform data filtering by type of class of data, issue time, and
expiration time

 Develop, test, and document an approach to facilitate the execution of common
data filtering tasks (Note: This may be similar to WFS stored queries)

 Demonstrate the recommended DMS data filtering capabilities

OGC 12-163

 63

12.1 Scope of Work

The Data Filtering Module of the DMS will interact with the data to be sent to the client,
in order for them to correspond to a certain set of rules that are defined by the client at the
session negotiation (and can potentially be redefined at any time during the session).

The different Information Services already offer filtering options. As long as the queries
are compliant with the filter encoding rules [OGC-FES], the client is already able to
specify a set of rules to be applied at the source of the data for the delivered information
to be more specific to the client’s need. However, this filtering has limits. The
specifications for the filtering using FES are only value based. It does not allow the
modification of the structure of the document, the removal of whole sections that are not
of interest for the consumer, etc.
The approach here is to define new means of filtering, to allow the client to really tailor
the information it will receive.
During the session negotiation, the client shall have the opportunity to define a filtering
policy at the DMS. This filtering policy will then be applied to all the data that transit
through the DMS to the client.

12.1.1 Extraction

The purpose of the Extraction module is to allow the client to specify a sub set of the
information he really intends to get. The client defines this subset at the DMS during the
session negotiation, if the feature is available. Several options in the way the filtering
policy is specified can be thought of. One of them could be to use a “schemask”. A
schemask is a subset of the original document schema, where some elements have been
omitted on purpose, because the client doesn’t want / need them in the final data
received.

The idea of the schemask brings great flexibility to the client. However, since no
restrictions to its use are foreseen, it will allow the creation of dataset that are not
compliant to the original schemas they were built after, which could become problematic
for clients that perform XML validation.

The purpose is to allow the client to create a mask specifying a schema including only
what the client needs. This will have the following advantages:

 The client knows upon reception that the dataset only contains what it needs, and
therefore doesn’t have to parse useless part of the document to find the relevant
information.

 Bringing the dataset to the minimum amount of data needed by the client can
reduce the amount of information transmitted. Depending on the scarcity of the
schemask proposed by the client, this reduction can be considerable, which can
represent a very important asset in a low bandwidth environment (e.g. SatCom
media)

OGC 12-163

64

12.1.2 Recommended Approach

At the session negotiation, when the client and the DMS together define the overall data
management policy, the client shall define its extraction policy through the provision of
schemask(s).There can be different schemask for different type of data, type of features,
... The schemask(s) shall then constantly be used by the DMS, whenever it receives data
intended to the client. The DMS shall parse the data received and remove any element
(and its descendants) that is not present in the schemask.

As an example, the following XML represents a simplified version of the schema
defining an AIXM:AirspaceTimeSlice :

<element name="AirspaceTimeSlice" type="aixm:AirspaceTimeSliceType">
<complexType>
 <complexContent>
 <sequence>
 <element ref="gml:validTime"/>
 <element ref="aixm:interpretation"/>
 <element ref="aixm:sequenceNumber" minOccurs="0"/>
 <element ref="aixm:correctionNumber" minOccurs="0"/>
 <element ref="aixm:featureLifetime" minOccurs="0"/>
 <element name="designator"
type="aixm:CodeAirspaceDesignatorType" nillable="true" minOccurs="0"/>
 <element name="name" type="aixm:TextNameType" nillable="true"
minOccurs="0"/>
 <element name="geometryComponent"
type="aixm:AirspaceGeometryComponentPropertyType" nillable="true"
minOccurs="0" maxOccurs="unbounded"/>
 <element name="activation"
type="aixm:AirspaceActivationPropertyType" nillable="true"
minOccurs="0" maxOccurs="unbounded"/>
 <element name="annotation" type="aixm:NotePropertyType"
nillable="true" minOccurs="0" maxOccurs="unbounded"/>
 <element name="extension" minOccurs="0"
maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element ref="aixm:AbstractAirspaceExtension"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexContent>
</complexType>
</element>

It the following listing, that represents a potential schema, the client decided that the
annotation and extension elements were of no use for the intended usage and therefore
removed them in the schemask, that would possibly look like that:

OGC 12-163

 65

<element name="AirspaceTimeSlice" type="aixm:AirspaceTimeSliceType">
<complexType>
 <complexContent>
 <sequence>
 <element ref="gml:validTime"/>
 <element ref="aixm:interpretation"/>
 <element ref="aixm:sequenceNumber" minOccurs="0"/>
 <element ref="aixm:correctionNumber" minOccurs="0"/>
 <element ref="aixm:featureLifetime" minOccurs="0"/>
 <element name="designator"
type="aixm:CodeAirspaceDesignatorType" nillable="true" minOccurs="0"/>
 <element name="name" type="aixm:TextNameType" nillable="true"
minOccurs="0"/>
 <element name="geometryComponent"
type="aixm:AirspaceGeometryComponentPropertyType" nillable="true"
minOccurs="0" maxOccurs="unbounded"/>
 <element name="activation"
type="aixm:AirspaceActivationPropertyType" nillable="true"
minOccurs="0" maxOccurs="unbounded"/>
 <element name="annotation" type="aixm:NotePropertyType"
nillable="true" minOccurs="0" maxOccurs="unbounded"/>
 <element name="extension" minOccurs="0"
maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element ref="aixm:AbstractAirspaceExtension"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexContent>
</complexType>
</element>

Then, when the DMS will receive a dataset including an airspace time slice, it shall
automatically remove all the elements (and their descendants) that are not present in the
schema.

The level of details of the schema shall be the level of filtering required by the client, not
more. If the client want to remove elements that are for instance grand children of the
root element, if shall not go any further that down 3 levels in the tree. It shall be
considered that every element that is present in the schemask implies the presence of all
its descent. Any element that is not implies the absence of all its descent.

The combined use of Xpath and XSLT, at the DMS, should enable the filtering
possibilities proposed above.

The DMS shall deduce a XSL stylesheet from the schemask, this stylesheet shall then be
used for all data received at the DMS and intended to the client. The advantage of the

OGC 12-163

66

XSLT is its flexibility. Indeed, the style sheet can easily be modified (e.g. on client’s
request) to add/retrieve/modify filtering rules at the DMS.

12.1.3 Densification

The purpose of the Densification module is for the client to be able to specify arithmetic
computation options to be applied to the data at the DMS. To justify the need for such an
approach, we will consider here that the DMS can receive data intended for the client
from different sources. In this case, it may possible that the property value of a feature
differ from one source to the other.

Given that the client has either subscribed for or requested the data in the first place, the
DMS is to send them regardless of their “cardinality”. However, as one of the key interest
of the DMS presence is to reduce bandwidth, sending several time the same (or close to
same) feature, with only some properties slightly changing from one to the other does not
appear efficient.

The basic concept of the Densification module would be to send once all the common
properties of the given features while providing computation of the values that varies
from a source to the other.

It is considered here that we are only looking at numerical values. Geometrical or
qualitative values are left out of the scope of this study. This considered, the operations
that the DMS shall apply on a set of property values describing one feature are the
following or combinations of the following:

 The DMS calculates the mean of all the values provided, thus sending to the client
a single value that represent the trend of the property based on the different
sources.

 The DMS calculates the standard deviation of all the values provided. This
information, combined with the mean calculation, provides further information on
the dispersion of the data provided by the different sources

 The DMS provides the range of the values provided, informing the client on the
maximum offset between values provided by different sources.

Use or use of combination of those computed values provides the client with extended
information on the differences noted among the data sources while optimizing the amount
of data exchange on the data link.

12.1.4 Recommended approach

During the session opening, the client shall be able to specify which of the operation(s) it
wants to be computed and delivered in the event of concurrent data sets.

The approach recommended would be that the client would just be able to enable or
disable the following three options:

OGC 12-163

 67

 DMS computes average value (ON/OFF)
 DMS computes standard deviation (ON/OFF)
 DMS provides range of values (ON/OFF)

It is recommended that it is the role of the DMS to determine whether concurrent features
exist or are likely to happen (based on client’s subscriptions / requests).

12.1.5 Provider filtering

This sub module is designed to allow the client to define a preferred source of data, in the
event where several data provider provide concurrent data sets. The purpose here is for
the client to be able to subscribe to several data source, with potential overlap on the data
provided. In this case it is possible that for some features, two or more data sources
provide similar data sets (e.g. two data providers emitting features concerning a given
airport).

For an efficient data exchange perspective, it would be a waste of bandwidth to send
twice the same information to the client. Therefore, the DMS shall allow the client to
define a preferred data source. This way, when two data sources are in concurrence on a
similar feature, the DMS can rely on the preference policy of the client (defined during
the session negotiation) to select which dataset to be sent based on its source.

It is considered here that the client is to be aware that there may be potential overlapping
between the providers it subscribes to / queries. The client has to clearly define during
session negotiation its preferred data source in case there is concurrence.

12.1.6 Recommended approach

During the session negotiation, the client has to define the priority it gives to the
difference providers he will be fed the data from. It is recommended that every time the
client introduces a new data provider to the DMS, it assigns a priority level to it (e.g. 1
for the preferred provider, 2 for the second preferred …)

This can be done at session negotiation (the client basically provides a ordinated list of its
favorite providers) and should possibly be updated as the client introduces new data
providers. This information could then be added to the metadata going together with new
subscription for instance.

Note: This concerns only the Event Service mechanisms, where the client may subscribe
to several ES for the same type of data.

12.2 Implementation

In OWS-9, the filtering module has been implemented in a simple manner, to
demonstrate and assess the interest of bringing an additional filtering unit in an
architecture where data providers already offer certain level of filtering (Spatial filtering,
Temporal filtering, …). The DMS has been implemented with a filtering function that
allows the removal of comments within a xml document. The filtering functionality is

OGC 12-163

68

based on XPath research and removal of elements (in this case, the XPath //comment()
allows to identify and remove all comments in the document)

12.3 Lessons Learned

While tackling the filtering functionality in the Data Transmission Management, several
issues and questions were raised.

First, the relevance of such a module was questioned. Indeed, filtering options already
exist to quite an extent in other entities of the OGC architecture: Web Feature Services,
Event Services and others already offer the possibility to operate filtering on datasets.
This filtering can be spatial or temporal for instance. The question is; if more filtering
was to be provided, should this be by a third entity (like the DMS), or rather by extension
of entities that already perform filtering.

The introduction of filtering in the requirements of the Data Transmission Management is
motivated by the interest of such a feature in the frame of AAtS, where the DMS would
be an entity that interacts with more than the set of OGC Web Service Providers.
However, in a pure OGC context, the existence of this feature is questionable.

The second question is the limit that is given to filtering possibilities. Indeed, customized
filtering could represent a powerful mean to reduce information exchange between the
aircraft and the ground. This could on the one hand ensure that the subset of information
provided to the pilot is really tailored to his need, and on the other hand reduce
significantly the amount (and thus the cost) of data transmitted. However, this customized
filtering could come to the point where the final result is not schema compliant anymore.
Indeed, the final user could judge certain parts of the information irrelevant or useless for
his personal use, but it could lead to the removal of mandatory information according to
the schema. This could in turn make the job of parsers more complex, if not impossible.

12.4 Future Work

The need for further filtering possibilities, on top of what is already offered by OGC web
services, need to be further assessed.

If further filtering is considered, then the question of which entity is to perform such a
filtering need to be addressed. Should it be a new entity (such as the DMS) or should the
filtering be undertaken and extended by services that used to cover this features (web
services such as WFS or ES).

Finally, the extent of the filtering possibilities offered to the final client need defined.
Given that flexible filtering could bring important data reduction, but could also lead to
making the final document schema incompliant, tradeoffs need to be made.

OGC 12-163

 69

13 Data Validation

According to the OWS-9 RFQ Annex B, the following requirements have been identified
for data validation:

 Develop, test, and document DMS functionality for validating information
exchanged between DMS and the client described in the Systems Rules Model

 The DMS shall parse message content to determine whether data has been
delivered within its effective timeframe

 The DMS shall parse message content to determine whether data represents the
most up-to-date information

 The DMS shall parse message content to determine whether subscribed intervals
are being complied with

13.1 Scope of Work

The Data Validation Module filters, flags, and collects metrics on messages sent to the
aircraft client based on currency metadata contained in a message. Currency metadata
define a time period in which the information contained in the message is valid. The
configuration of the Data Validation Module requires the following parameters as inputs:

 Client Validity Policy describing the configuration of the DMS Currency
Validation feature

 Client Validity Policy describing the configuration of the DMS Latency
Validation feature

 Client Validity Policy describing the configuration of the DMS Subscription
Interval Validation feature

Clients configure the Data Validation Module during the client’s initial connection to the
DMS. During client – DMS profile creation, the DMS provides the aircraft client the
different validation methods and their individual configuration options. The client
responds to the DMS by defining which validation methods the DMS shall use to validate
the transmitted messages. The Validation Module has three methods that can be used by a
client:

1.) The validity of the data as received by the DMS. (Currency Validation)
2.) The validity of the data as received by the client. (Latency Validation)
3.) The validity of the data subscription interval received by the client. (Subscription
Interval Validation)

These methods are presented to the client as configurable “On” or “Off” option in the
Validation Module.

The DMS stores the client’s configuration of the Validation Module within the client’s
session profile stored in the DMS. Once configured, the DMS Validation Module

OGC 12-163

70

evaluates every incoming message addressed to the client and validates the message
currency based on the configuration of the client Validity Policy. Messages received by
the DMS in a valid state are forwarded to the client unaltered. Messages received by the
DMS in an invalid state are either flagged with a “non-current” tag or dropped to prevent
transmission to the client. The client’s Validity Policy defines how the data validation
module deals with messages containing non-current data. If currency metadata is not
found in a message, the Data Validation Module will not perform data validation and
forwards the message to the client unaltered. The currency of each message received is
recorded in a log as either “Meets Currency” or “Exceeds Currency” for future analysis
by stakeholders.

The Data Validation Module calculates the latency of the message transmission to the
client by the DMS. The latency of each message is logged by the Data Validation
Module and compared against an acceptable limit hard coded in the DMS to determine
whether the DMS transmission latency is within acceptable levels. The latency of each
successful client – DMS message transmission is recorded in a log as either “Meets
Latency Requirements” or “Exceeds Latency Requirements” and stored for future
analysis by stakeholders.

The Data Validation Module monitors the rate in which notification messages are
received from subscription based ground services. The reception rate is compared against
the subscription interval client configured in a subscription based ground service.
Disparities between the rate of received notification messages and rate configured by the
aircraft client are logged by the Data Validation Module for future analysis by
stakeholders.

13.1.1 DMS Currency Validation

The purpose of the DMS Currency Validation function is to ensure that data received by
the DMS is valid before it is transmitted to the client. To determine message validity, the
reception time of the message by the DMS is compared to currency metadata (i.e. AIXM
Time Slice) in the message. The currency metadata describes the time period in which
the message is current. Messages received outside of the time period described by the
currency metadata are considered invalid. Messages received in a invalid state are tagged
as such and either dropped or forwarded to the client, depending on the configuration of
the client validation policy. The messages that are received in a valid state are forwarded
to the client unaltered.

13.1.1.1 Recommended Approach

During session negotiation, a client will specify in its Validity Policy whether or not the
Data Validation Module is to perform the following Currency Validation:

1. Flagging non-valid messages. (ON/OFF)
2. Dropping non-valid messages. (ON/OFF)

OGC 12-163

 71

The Data Currency Validation feature searches for currency metadata in all received
messages addressed to the client. The messages are parsed by the DMS to locate
currency timestamp(s) (e.g. AIXM Time Slice) that describes the validity of the
information contained in the message. Messages containing no currency metadata are
forwarded to the client unaltered by this feature. When currency metadata is found, the
Data Currency Validation feature compares the message currency timestamp to the time
of message reception by the DMS. Messages received with currency metadata containing
a timeframe outside of the DMS reception time are considered invalid by this feature.
Invalid messages are either dropped, or an “invalid” tag is inserted into the message
SOAP header, and then forwarded to the client. What the Validation Module does with
invalid messages is dependent on the configuration of the Validity Policy set by the
client.

When the Data Validation Module is configured to drop invalid messages, invalid
messages are dropped from the transmission queue to prevent message transmission to
the client. If the Data Validation Module is configured to flag invalid messages, a
“<valid> false </valid>” tag is inserted into the SOAP messages header. This tag alerts
the client that the message received is invalid. Every message received by the Data
Currency Validation feature is recorded as being either valid or invalid in a log and stored
for future analysis by stakeholders. The contents of the log are used to generate a single
metric describing the number of invalid message received by the DMS. The metric is
generated with the following formula:

of messages received for a client minus # of out-of-valid timeframe msgs
of messages received for a client

13.1.2 Client Latency Validation

The purpose of the Client Latency Validation function is to ensure that data received by
the aircraft client is the most up to date information. DMS message transmission latency
is measured and compared to a hardcoded limit preconfigured in the DMS. If the
timestamp differential is less than the latency limit defined in the DMS, then the message
is logged as “Meets timeliness”. If the timestamp differential is outside the latency limit
defined in the DMS the currency metadata element is logged as “Exceeds timeliness”.
The log is stored for future analysis by stakeholders.

13.1.2.1 Recommended Approach

During session negotiation, a client configuring the Validity Policy in the DMS will
specify:

1. Whether or not the DMS is to perform “Latency Validation”. (ON/OFF)
2. The latency limit for message transmission between the DMS and the client.

(String)

If a client’s profile has the Latency Validation featured configured, the DMS logs the
latency of message transmission from the DMS and client. When new or updated

OGC 12-163

72

information becomes available to the DMS, and is transmitted by the DMS to the aircraft
client. The DMS logs the time of message transmission to the aircraft client. Upon
message reception, the aircraft client sends a reliable messaging acknowledgement to the
DMS. This client acknowledgement contains a timestamp describing message reception
time. The DMS compares the acknowledgement timestamp to the DMS transmission
timestamp to determine the total latency from issuance to delivery. If the transmission
latency is greater than the limit set by the client, the latency is logged as “Exceeds
timeliness”. If the transmission latency is less than the limit set by the client, the latency
is logged as “Meets timeliness”. This metric is tracked and calculated by the DMS using
the following formula (percent per 1,000 messages):

of messages sent to client minus # of msgs exceeding timeliness factor
of messages sent to client

13.1.3 Subscription Interval Validation

The purpose of the Subscription Interval Validation feature is to monitor subscription
based ground services (i.e. Event Service) notification intervals to ensure they are
occurring within a client specified frequency. To configure this module, the aircraft
client defines an acceptable range or variance from subscribed update intervals during
client validity policy creation. The DMS compares the actual reception interval of
notification messages against the update interval configured by the client in the ground
service. Published notification messages received by the DMS within the subscribed
update interval defined in the client’s Validation Profile are recorded as “Meets
subscribed interval” in a log. Published notification messages received by the DMS
outside of the subscribed interval defined in the client’s Validation Profile, are recorded
as “Exceeds subscribed interval” in a log. The log is stored for future analysis by
stakeholders.

13.1.3.1 Recommended Approach

During session negotiation, a client configuring the Validity Policy in the DMS will
specify:

1. Whether or not the DMS is to perform “Subscription Interval Validation”.
(ON/OFF)

a. The update message interval the client configured for a subscription based
service. (String)

b. The tolerated variance from client’s configured subscription based service.
(String)

During the client Validity Policy creation, the client defines the acceptable range of
variance from subscribed Event Service notification message intervals. Once the client
has configured its policy, the DMS compares received update message interval against
the interval defined in the client’s profile. When the DMS receives an update messages
within the interval defined in the client’s profile, the DMS logs the update message

OGC 12-163

 73

reception as “Meets subscribed interval”. When the DMS receives an update messages
outside of the interval defined in the client’s profile, the DMS logs the update message
reception as “Exceeds subscribed interval”. The DMS tracks the ground services
compliance with notification message intervals by the following formula:

of messages sent to client minus # of msgs subscriptions intervals missed by more than n seconds
of messages sent to client

13.2 Implementation

During session negotiation, the client contacts the DMS with a GetSessionOptions
request. The DMS responds to the client with a list of the available DMS modules and
their configuration options. To configure the Data Validation Module, the client
configures a session profile, invoking specific DMS modules. The Data Currency
Validation feature configuration options are listed below: (note: only one option can be
selected by the client)

1. Data Currency Validation
a. On/Off (Flag)
b. On/Off (Drop)

13.2.1 Currency Validation

Messages sent to a client with “Data Currency Validation” configured as “On” in their
Validity Policy will have all messages evaluated for the existence of currency metadata
(e.g. AIXM TimeSlice). The currency metadata defines a time range in which the
message is considered valid. To determine the validity of the message, the currency
metadata is compared to the time of message reception by the DMS. The DMS uses
AIXM TimeSlice XML elements found in the AIXM standard to determine the validity
of a message. Messages received by the DMS with a TimeSlice element specifying a
time range that is inclusive of the DMS message reception time, are considered to be
“valid”. Message received by the DMS with a TimeSlice element specifying a time range
is non-inclusive of the DMS message reception time, are considered to be “non-valid”.
Valid messages are transmitted to the client unaltered. Invalid messages are either
dropped or tag as “non-valid” and forwarded to the client, depend on the how the client
configured its Validity Policy.

If the client Validity Policy specifies the DMS shall drop non-valid messages, the DMS
then blocks the transmission of non-valid to the client. If the client Validity Policy
specifies the DMS shall tag non-valid messages with metadata before transmission have a
“<validity>false</validity>” tag inserted into their SOAP message header before
transmission to the client. The evaluation of timestamps by the Data Validation Module is
aided through the use of standardized XML exchange models such as AIXM and
WXXM. Schemas defining the format of these exchange models are publicly available

OGC 12-163

74

and are used by the Validation Module for the efficient identification of specific
information contained in messages such as currency metadata.

<soap:Body>
<ns2:createSession xmlns:ns2="http://triagnosys.com/dms">
<endpoint>http://localhost:8080/axis2/services/CDMS?wsdl</endpoint>
 <Module>
 <name>Validation</name>
 <option>
 <enabled>true</enabled> ---- *flag* -----
 <enabled>false</enabled> ---- *drop* -----
 </option>
 </Module>
</ns2:createSession>
</soap:Body>

13.3 Lessons Learned

The goal was to measure the latency of message transmission between the DMS and the
client. To do this required the collection of two sets of data:

1. Time of message transmission by the DMS
2. Time of message reception by the client

The latency is derived from two time values by subtracting the message transmission
time from the reception time. Because these values must be collected by the DMS and not
the client, the message reception value must be transmitted to the DMS by the client.
Using the Reliable Messaging acknowledgement message sent by the client as a way to
transport the timestamp from the client to the DMS was explored. This solution required
modification of how the client sends Reliable Messaging acknowledgement in a way that
is not supported by the Reliable Messaging standard. It was determined that the Reliable
Messaging standard should be left unaltered to prevent interoperability issues in the
future. To work around this, a solution is to move the responsibility of DMS – client
latency calculation from the DMS, to the client. Because the receiving party has direct
access to both the transmission and reception timestamp, it requires less actions to
calculate a one-way latency value by the client hen the DMS. Once the client has logged
latency values, it sends periodic reports to the Validation Module containing latency
reports for logging by the DMS.

Another challenge presented by the Latency Validation feature is the synchronization of
system clocks between the client and the DMS. If the system clocks of both parties are
not synchronized, then a measurement error will be introduced into the latency
measurement. This error causes the latency value to be skewed by the amount of time
difference between the two clocks. Use of the Network Time Protocol (NTP) could be a
potential solution and should be explored in future work.

OGC 12-163

 75

13.4 Future Work

Future research efforts should include the development of Latency and Subscription
Interval Validation features. An outline of how those features can be effectively
implemented is provided in the above Data Validation Scope of Work section. The
lessons learned during researching a working Latency Validation feature is provided in
the above Lessons Learned section. The suggested implementations where developed
from case studies performed by the DMS implementation team.

14 Data Provenance

The purpose of Data Provenance Module is to generate metadata that describes any
changes to the information contained in a message made by the DMS before it is sent to
the client.

According to the OWS-9 RFQ Annex B, the following requirements have been identified
for data provenance:

 Investigate, develop, demonstrate, and document a recommended approach for
using metadata at DMS to keep track of quality and provenance information

 The DMS shall record relevant provenance information

 The DMS should enable operators to configure what type or class of information
will have provenance associated with it

 The DMS shall provide access to recorded provenance data, or store it in the
relevant registry (e.g. metadata registry).

 The DMS coding schema shall comply with ISO19115/ISO19139, in line with the
metadata representation of AIXM and WXXM

 The DMS shall leverage and build on AIXM metadata profile currently in
development with the Aviation Domain Working Group

 Develop a proposed method to provide metadata that is compatible with
AIXM/WXXM as well as ISO and OGC standards while satisfying the AATS
interest of minimizing communications bandwidth

14.1 Scope of Work

The Data Provenance Module provides the aircraft client with provenance metadata
allowing the aircraft client to determine the authoritativeness of the data. Provenance
metadata describes the source of the data and any alterations that have been made to the
data. The DMS tracks alterations to messages created by the Filtering Module by
generating ISO19115 and ISO 19139 compliant provenance metadata that describes the

OGC 12-163

76

alterations. The provenance metadata is inserted into the SOAP message header so that
the client receiving the altered dataset can determine the authoritativeness of the data.

14.1.1 Provenance Tracking

The purpose of the Data Provenance module is to generate provenance metadata based on
the alterations made to message content made by the DMS Filtering Module. The
information contained in the metadata is used by the client to determine the
authoritativeness of the received message. If the received message is from an unapproved
source or has been altered in a way that is not approved for use by the client, the message
is ignored. Additionally, provenance metadata can be centrally stored to provide a log
that tracks the entities involved in the creation and altering of message transmitted to
clients.

14.1.2 Recommended Approach

During session negotiation, a client configuring the Validity Policy in the DMS will
specify whether or not the DMS is to perform Provenance Tracking (ON/OFF). Once
enabled, this module inserts provenance metadata into the SOAP headers of each
message. Provenance metadata is generated using the ISO 19115 and ISO 19130
standards as a common format. ISO19115/19139 provenance metadata contain elements
that describe the lineage of a dataset such as the originating source and alterations made.
In this case, the source of the dataset is provided in the message received by the DMS. If
the DMS receives a message that does not include source provenance metadata in the ISO
19115/19139 format, a LI_Source (“Source Unknown”) metadata will be inserted into the
SOAP message header by the Provenance Module. To track these changes made by the
DMS Filtering Module, the Provenance Module will generate a LI_ProcessStep metadata
element. The LI_ProcessStep metadata type is used to describe an alteration to the
message (e.g. filtering by the DMS). Once generated, the LI_ProcessStep() metadata is
inserted into the message’s SOAP header and transmitted to the aircraft client.

14.2 Implementation

If enabled, the Provenance Module tracks the provenance of messages being sent to the
client. Incoming messages are parsed to identify the presence of LI_Source metadata in
the SOAP message header. Messages containing LI_Source metadata, the metadata
generated by the Provenance Module is added as a child of the LI_Source metadata. If the
message SOAP header does not contain a LI_Source metadata, the Provenance Module
adds a LE_Lineage with a LI_Source (“Source Unknown”) child to the SOAP message
header. The DMS generates LI_ProcessStep provenance metadata for messages that have
their content altered by the Filtering Module. The LI_ProcessStep contains the XLST
string used by the Filtering Module to alter message content. Also included in the
metadata is a plain text description of the filtering type (i.e. removed whitespace). The
LI_ProcessStep metadata is then inserted into the message SOAP header as a child of the
LI_Source metadata and the message is transmitted to the client.

OGC 12-163

 77

<ns2:LI_Lineage>
 <ns2:LI_ProcessStep id="PUBLISHER">
 ...
 <ns2:description>
 <ns3:CharacterString>publication of feature
data</ns3:CharacterString>
 </ns2:description>
 ...
 <ns2:CI_ResponsibleParty>
 <ns2:organisationName>
 <ns3:CharacterString>COMSOFT GmbH</ns3:CharacterString>
 </ns2:organisationName>
 ...
 <ns2:LI_ProcessStep id="FILTER">
 <ns2:description>
 ...
 <ns2:CI_ResponsibleParty>
 <ns2:organisationName>
 <ns3:CharacterString>HarrisCorporation></ns3:CharacterString>
 </ns2:organisationName>
 ...
 <ns2:description>
 ...
 <!-- Strip white space from all elements -->
 <!-- Copy the xmlover and perform further processing below
 <!-- Remove allgml namespace nodes -->
 <!-- Remove all line breaks -->
 <!-- Remove all self closing nodes--> &
 <!-- Remove all empty nodes-->

14.3 Lessons Learned

Standardization of the metadata format and which parties are responsible for providing
specific metadata elements is important in building a complete and accurate provenance
record. It is our recommendation that the system creating the original message be
responsible for the generation of the LI_Source metadata element. All other parties
involved with the handling or alteration of the message should then add LI_ProcessStep
metadata elements under the LI_Source element. This will provide the client with the
most complete description of the message provenance.

14.4 Future Work

The creation of a centralized provenance metadata storage database that would enable the
tracking of message provenance by third party stakeholders was discussed during the
OWS-9 development. This method has many benefits including the reduction of SOAP
message header size by only including a URL link the message provenance metadata
instead of including the metadata directly in the header. The centralized metadata storage
could also act as a living record, detailing the messages where received, and possible
altered, by stakeholders. The creation of this database will require close synchronization
between stakeholders, but will benefit the end user greatly.

OGC 12-163

78

15 DMS Metadata Provisioning

According to the OWS-9 RFQ Annex B, the following requirements have been identified
for metadata provisioning:

 Investigate, test, demonstrate, and document the inclusion of arbitrary header and
metadata fields in messages exchanged between DMS and client/dispatcher

 Store information within fields to support data synchronization

 Store information within fields to support validation

 Store information within fields to support filtering

 Store information within fields to support prioritization

 Store information within fields to support security

 Store information within fields to support authoritativeness

 Store information within fields to support data link SLA provisioning

15.1 Scope of Work

Arbitrary inclusion of headers for messages exchanged between DMS and Client is
achieved through the use of SOAP as the underlying protocol. This simplifies the
specification, for instance for reliable communications, as standardized mechanisms, i.e.
WS-ReliableMessaging can be leveraged for use by the DMS.

15.1.1 Reliable Messaging Metadata

The WS-ReliableMessaging metadata are defined in the schema located at the following
URI:

http://docs.oasis-open.org/ws-rx/wsrm/200608/wsrm-1.1-schema-200608.xsd

Some message exchange examples following this schema is provided in Section 9.2.2.

15.1.2 Validation Metadata

Generation of metadata by the Validation Module occurs when a client has configured
the Validation Module to flag non-valid messages before they are transmitted to the
client. The metadata is inserted into the SOAP message headers for interception by the
client. Any example of the metadata date generated by the Validation Module is
provided below:

OGC 12-163

 79

<Valid>False</Valid> --- *Non-valid message metadata tag*

15.1.3 Provenance Metadata

The generation of provenance metadata by the Provenance Module follows the guidance
of the ISO19115/19139 standard. An example of the metadata generated by the
Provenance Module is given below:

<ns2:LI_Lineage>
 <ns2:LI_ProcessStep id="PUBLISHER">
 ...
 <ns2:description>
 <ns3:CharacterString>publication of feature
data</ns3:CharacterString>
 </ns2:description>
 ...
 <ns2:CI_ResponsibleParty>
 <ns2:organisationName>
 <ns3:CharacterString>COMSOFT GmbH</ns3:CharacterString>
 </ns2:organisationName>
 ...
 <ns2:LI_ProcessStep id="FILTER">
 <ns2:description>
 ...
 <ns2:CI_ResponsibleParty>
 <ns2:organisationName>
 <ns3:CharacterString>HarrisCorporation></ns3:CharacterString>
 </ns2:organisationName>
 ...
 <ns2:description>
 ...
 <!-- Strip white space from all elements -->
 <!-- Copy the xmlover and perform further processing below
 <!-- Remove allgml namespace nodes -->
 <!-- Remove all line breaks -->
 <!-- Remove all self closing nodes--> &
 <!-- Remove all empty nodes-->

15.1.4 Filtering Metadata

The DMS may proceed to the following actions that would require metadata provision:

 Extraction
 Densification
 Provider selection

Extraction and Densification may imply feature modifications; therefore the metadata
associated may belong to provenance metadata.

OGC 12-163

80

Regarding provider selection, the DMS shall be able to add metadata to the message,
stating the list of initial providers in concurrence and the provider that was eventually
selected based on the client’s choices.

Those have not been implemented in OWS-9 and may could be considered for future
work, if their relevance is confirmed.

16 AIXM/WXXM Metadata Compliance

The AIXM/WXXM Metadata Compliance is a requirement for the Provenance Tracking
Module and the Operator Configuration Module. The provenance metadata generated by
the Provenance Tracking Module and the Operator Configuration Module must conform
to ISO 19115 and ISO 19139 requirements which is in line with the metadata
representation of AIXM and WXXM. Developing the metadata generated by the
Provenance Tracking Module and the Operator Configuration Module to be in line with
the AIXM and WXXM metadata profile currently under development will allow for
compatibly.

17 Appendix: Systems Rules Model Analysis

This section details each of the systems rules models and the analysis behind each of the
requirements outlined in the RFQ Section 10 Appendix. The basis of analysis is from an
FAA SWIM (Harris NEMS) perspective as well as a SESAR SWIM perspective. Harris
services the FAA NAS SWIM program office through the deployment of the NAS
Enterprise Messaging Service (NEMS). The NEMS is the implementation of the SWIM
enterprise service within the NAS.

The SESAR SWIM perspective is represented by ATMOSPHERE and TriaGnoSys.

17.1 SRM 10.1 – Maintain Data Synchronization between Ground and Aircraft Users

Configuration Options Context / Description / Rationale

Send copies to the dispatch client of all
data sent to the aircraft

Ensures all parties receive the same data.

Send the type or class of data sent to the
aircraft to the dispatch client with sufficient
information to enable the dispatch client to
request the data. Could Be implemented by
sending unique “hash tag---‐like” metadata
to the dispatch client of all the data sent to
the aircraft.

Minimizes bandwidth by sending only the
types, classes, and metadata to the
dispatch client.

Send copies to the dispatch client of
selected types or classes of data sent to the

Enables the dispatch client to subscribe to
copies of the data sent to the aircraft for

OGC 12-163

 81

aircraft. discrete sets of data or data products, e.g.
NOTAMs Or weather.

17.2 SRM 10.2 – Perform Data Validation

Metric Definition(s) Requirements

Timeliness #1

Data is delivered
within its valid
timeframe

DMS and EFB software shall evaluate
message content for start and end
date/times to determine whether the
message data needs to be flagged when
sent to the aircraft or presented to the
user.

Note – applying this evaluation at the
aircraft will identify messages that are
within valid time frame when transmitted
but not when received at the aircraft.

Software shall enable the user to set a
parameter for acceptable range of
variance from valid time frame for
transmitting information to the aircraft.

 Software shall set the Data Validation
Data element appropriate valid time
frame code as noted below:

o Within valid time frame

o Outside valid time frame

 Software shall maintain percent of
failures and reports via the
Monitor/Report Network Performance
function as a percent per 1,000
messages:

 1,000 minus # of out-of-valid time frame
msgs

Divided by

1,000

OGC 12-163

82

Timeliness #2 Data represents the
most up-to-date
information

 DMS software shall track and
reference all updates using the time
they are issued (regardless of the
effective time(s) of the changes) until
the time of reception to identify the
most up-to-date information.

 DMS and EFB software shall transmit
new or updated information to the
cockpit as soon as it becomes available
at the approved source.

 User shall be enabled to set a parameter
for acceptable range of variance from
time for transmitting information to the
aircraft as measured from the issue
date/time of the message until received.

 DMS software shall populate the Data
Validation Data element code with
appropriate timeliness factor code, as
noted below:

o Meets timeliness factor

o Exceeds timeliness factor

 The network performance metric shall
be defined as communications
performance for transmission of
information from the data source to the
cockpit. This performance metric will
be defined by intended function and
operational use.

 Software shall determine whether
messages meet currency time frame
requirement as measured from issue
date / time through delivery date / time
to aircraft. Software shall maintain
percent of failures and report via the
Monitor/Report Network Performance
function:

 1,000 minus # of msgs not meeting

OGC 12-163

 83

time frame

Divided by

1,000

Timeliness #3 Subscribed update
intervals are being
complied with

 Software shall monitor update intervals
to ensure they are being complied with
using transmission date time groups
(DTGs) as the criteria for determining
the actual intervals.

 Software shall populate the Data
Validation Data element code with
appropriate timeliness factor code, as
noted below:

o Meets subscribed interval

o Exceeds subscribed interval

 User shall be enabled to set a parameter
for acceptable range of variance from
subscribed update intervals

 Software maintains percent of failures
and reports via the Monitor/Report
Network Performance function:

1,000 minus # of subscription intervals
missed by more than __seconds

Divided by

1,000

Lost Data -applies to
all modes of
operation

 Broadcast

 Demand

 Contract

Determine whether
any messages or
data sets were lost

 DMS software shall evaluate message
content and context to determine that a
message has been lost, e.g., refers to
prior content such as NOTAM, TFR
that has not been received, and
populates the lost data code in the Data
Validation Data Set.

 Software shall populate the Data
Validation Data element code with
appropriate lost data code, as noted

OGC 12-163

84

below:

o No lost data

o Previous message not received

 Software shall evaluate the frequency
at which a message refers to prior
content (e.g., NOTAM, SIGMET, TFR,
etc.) that has not been received.
Software maintains percent of failures
and reports via the Monitor/Report
Network Performance function:

1,000minus # of lost messages/data sets

Divided by

1,000

17.3 SRM 10.3 – Perform Data Filtering

Configuration Options Context / Description / Rationale
By message type or class of data Align with the Message Types from

Populate Priority and Security Data Fields

By issue time for types for data–range of
parameters

Range of parameters associated with the
Message Types

By effective time for types of data-range
of parameters

Range of parameters associated with the
Message Types

If multiple values are available, enable
selection of average value, standard
deviation value, range of values, preferred
provider(s)

For example, if multiple sensor sources are
available and provided for an area, enable
the user to select a means to reduce the
data to a relevant value, e.g., multiple
temperature sensors at an airport.

Enable selection or input of a specific geo-
reference for sensor data

For example, user might select RVR For
the eastern---‐most of two parallel runways
because the swamp outside the airport
tends to produce mist that reduces visibility
for that runway.

OGC 12-163

 85

By expiration time - Range of parameters Range of parameters associated with the
Message Types

Enable selection of any data within a geo-
referenced area, e.g. X miles either side of
route and including vertical range for a 3-
D area

The AOC can set this based on a pilot
profile and can upload to the EFB. This
geo-referenced area can also be pilot-
selectable.

Enable selection of “Trend” For a specific
event

This rule allows an operator to select a data
point, e.g. weather event, and indicate how
much history of the event is desired for a
trending display.

17.4 SRM 10.4 – Manage Subscription and Data Request Configurations

System Rule Context / Description / Rationale
DMS and EFB systems shall contain
configurable profiles for subscriptions and
data requests that are managed by both the
aircrew and the dispatcher

Subscriptions have a couple of
characteristics that have an impact:

 They publish a complete stream of
data.

 They publish updates to a data set.

In the latter case, the subscriber must
perform a data request to ensure it has a
current copy of the complete data set that
can then be updated. The Profiles
associated with this system rule enable the
user to designate which subscriptions
require a “pre---‐load” Of the complete data
set and then to request that data.

Configuration profiles shall be capable of
alignment with specific flight plans.

Configuration profiles will be used
repetitively for common routes.

Users shall be able to store profiles keyed
at least to flight or route and pilot.

Configuration profiles will be used
repetitively for common routes and pilots
may have specific needs for specific data
or different parameters, e.g., miles to either
side of the route.

Configuration profiles shall enable the
user to plan deviations from a flight plan
or establish ad hoc situations for obtaining

As part of both pre-‐flight and en route
strategic planning, dispatchers and pilots
will need to obtain data that supports these

OGC 12-163

86

needed flight planning information. planning activities.

Update interval timeframes shall be
configurable by subscription, e.g., NAS
program or other source of data

The user will establish update intervals that
support his or her need for frequency of
data.

Request-response configurations shall be
enabled for those subscriptions that
require a pre-‐load of the data when
updates only are issued with the
subscription

Data request-‐response configurations are
important because in many instances
activation of a subscription only provides
updates. In Those instances, activation of
the subscription must also be accompanied
for a data request to pre-‐load a baseline of
the data.

User shall be able to select data sets that
are not on the flight plan, e.g., select
specific items or events, or expand the
geospatial scope of the subscription.

As part of both pre-flight and en route
strategic planning, dispatchers and pilots
will need to be obtain data that support
these planning activities.

Subscription parameters associated with a
configuration profile shall be capable of
being downloaded to an EFB.

In consideration of aircrew workload,
subscription profiles need to be pre-loaded
into the EFB.

The OWS-9 RFQ CFP Annex B System Rules Model (SRM) defines the following
system rules for the Data Prioritization Module

17.5 SRM 10.5 – Populate Priority and Security Data Fields

Title System Rules Context Description /
Rationale Message
Importance

Message
Importance /
Priority

 High-importance and short-to-expire
messages shall be sent before low
importance and long-to-expire
messages.

 Software shall evaluate message
content to determine its priority and
populate the appropriate field in the
Data Validation Data Set:

o Evaluate expiration time for
less than specified number of
minutes

o Evaluate by Message Type to
set priority

In a bandwidth - restricted
environment, it is important to
identify messages that have
greater priority based on their
importance and type.

OGC 12-163

 87

o Evaluate by request priority
to set delivery priority

Message
Type

 Software shall determine type of
message from the header
information or content and assign
appropriate code as noted in the
following examples:

o Airport conditions, e.g.,
braking action, congestion

o NAS Equipment Status
o NAVAID Status
o NOTAM
o SAA Status / Schedule
o Runway configuration data
o Etc.

In order to support the
Message Importance / Priority
metric, the types of messages
need to be defined.

Security
Level

 Software shall determine how data
may be used, displayed, or
retransmitted based on the terms of
the data exchange agreement with
the data provider

 Software shall populate a security
code in the appropriate field in the
Data Validation Data set as noted in
the following examples:
o Encryption required
o Company proprietary
o Limited data redistribution
o Classified – Secret
o etc.

The data provider may impose
restrictions on the use and
redistribution of data, aviation
operators may impose
limitations on distribution and
use of their data and the
operational environment may
require additional security
restrictions.

This field may be populated by
either the DMS or the aircraft:

 DMS to accommodate the
terms of its data
distribution agreements or
the need to safeguard
company proprietary data

 Aircraft primarily to
safeguard company
proprietary data being sent
from the aircraft to the
DMS and potentially to a
NAS program.

Data Link
SLA

 DMS software shall determine the
data link that is being used to
transmit the message and populate
the field as noted in the following
examples:

o Vendor SLA1

This code expresses the terms
of the data link type that is
associated with a specific
message and represents the
SLA level for the reliability,
consistence, validity, etc.

OGC 12-163

88

o Vendor SLA2
o Vendor SLAn

 Vendor SLA1 through n – indicates
the established performance
associated with specific transmission
technologies that are being used to
transmit data to and from the
aircraft.

metrics. This is a function of
the technology and the
associated negotiated SLA
That is used for transmitting
the message.

17.6 SRM 10.6 – Data Provenance

System Rule Context / Description / Rationale
The DMS software shall include metadata
describing the authoritativeness of the
source in messages sent to the aircraft

This allows the onboard software to make
intelligent decisions about how the data is
presented to the flight crew (i.e., If the data
is not sourced with authority, inform the
crew in some manner).

The DMS software shall provide a
mechanism for recording provenance data.

There is a need for historical recall of data
and metadata sent and received from
aircraft for many purposes (e.g., Accident
investigation).

The DMS provider shall establish a method
for secure provenance between the NESG
and the aircraft.

This ensures all points on the length of the
data exchange can trust that the data
received continues to have integrity (i.e.,
lack of corruption intentional or
accidental). Additionally this ensures that
when there is a breakdown in integrity, it
can be identified where it occurred.

In this instance secure provenance refers to
providing integrity and confidentiality
guarantees to information requiring
provenance. In other words, secure
provenance means to ensure that the data
cannot be altered, and users can trace who
else has performed actions on the data.

The DMS Provider shall enable operators
to configure what type or class of
information will have provenance
associated with it.

In a bandwidth intensive environment
some operators may elect to conserve
bandwidth by limiting the types and classes
of data that has provenance associated with
it. It should be noted that some types and
classes of data may eventually become
required by regulation for security and
safety purposes.

- end of document -

