

Open Geospatial Consortium

Approval Date: 2013-01-18

Pending Date: 2012-12-21

Publication Date: 2013-2-05

Reference number of this document: OGC 12-094

Reference URN for this document: http://www.opengis.net/def/doc-type/per/ows9-aviation-airm

Category: Engineering Report

Editors: Debbie Wilson, Clemens Portele

OGC® OWS-9 Aviation: AIRM Derivation

Copyright © 2013 Open Geospatial Consortium.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document is an OGC Public
Engineering Report created as a deliverable in an OGC Interoperability Initiative
and is not an official position of the OGC membership. It is distributed for review
and comment. It is subject to change without notice and may not be referred to as
an OGC Standard. Further, any OGC Engineering Report should not be referenced
as required or mandatory technology in procurements.

Document type: OGC® Engineering Report
Document subtype: NA
Document stage: Approved for public release
Document language: English

Copyright © 2013 Open Geospatial Consortium.

2

Abstract

This report describes the architecture, rules and tools developed within the OWS-9
Aviation Thread AIRM Derivation task. These rules and tools were demonstrated by
transforming the AIRM Meteorology package into a Weather Exchange Model (WXXM)
and GML/JSON implementation schema. (See also executive summary)

Keywords
ows9, ows-9, airm, aviation, wxxm, gml, json

What is OWS-9?

OWS-9 builds on the outcomes of prior OGC initiatives and is organized around the
following threads:

- Aviation: Develop and demonstrate the use of the Aeronautical Information Exchange
Model (AIXM) and the Weather Exchange Model (WXXM) in an OGC Web Services
environment, focusing on support for several Single European Sky ATM Research
(SESAR) project requirements as well as FAA (US Federal Aviation Administration)
Aeronautical Information Management (AIM) and Aircraft Access to SWIM (System
Wide Information Management) (AAtS) requirements.

- Cross-Community Interoperability (CCI): Build on the CCI work accomplished in
OWS–8 by increasing interoperability within communities sharing geospatial data,
focusing on semantic mediation, query results delivery, data provenance and quality and
Single Point of Entry Global Gazetteer.

- Security and Services Interoperability (SSI): Investigate 5 main activities: Security
Management, OGC Geography Markup Language (GML) Encoding Standard
Application Schema UGAS (UML to GML Application Schema) Updates, Web Services
Façade, Reference Architecture Profiling, and Bulk Data Transfer.

- OWS Innovations: Explore topics that represent either new areas of work for the
Consortium (such as GPS and Mobile Applications), a desire for new approaches to
existing technologies to solve new challenges (such as the OGC Web Coverage Service
(WCS) work), or some combination of the two.

- Compliance & Interoperability Testing & Evaluation (CITE): Develop a suite of
compliance test scripts for testing and validation of products with interfaces
implementing the following OGC standards: Web Map Service (WMS) 1.3 Interface
Standard, Web Feature Service (WFS) 2.0 Interface Standard, Geography Markup
Language (GML) 3.2.1 Encoding Standard, OWS Context 1.0 (candidate encoding
standard), Sensor Web Enablement (SWE) standards, Web Coverage Service for Earth
Observation (WCS-EO) 1.0 Interface Standard, and TEAM (Test, Evaluation, And

Copyright © 2013 Open Geospatial Consortium.

3

Measurement) Engine Capabilities.

The OWS-9 sponsors are: AGC (Army Geospatial Center, US Army Corps of
Engineers), CREAF-GeoViQua-EC, EUROCONTROL, FAA (US Federal Aviation
Administration), GeoConnections - Natural Resources Canada, Lockheed Martin
Corporation, NASA (US National Aeronautics and Space Administration), NGA (US
National Geospatial-Intelligence Agency), USGS (US Geological Survey), UK DSTL
(UK MoD Defence Science and Technology Laboratory).

Copyright © 2013 Open Geospatial Consortium.

4

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this
Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable,
and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be
construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in
violation of U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction
which may impact your right to import, export or use the Intellectual Property, and you represent that you have complied with any
regulations or registration procedures required by applicable law to make this license enforceable

Copyright © 2013 Open Geospatial Consortium.

5

Executive Summary

The ATM Information Reference Model (AIRM) is a consolidated logical UML model
representing the civil, military and civil-military information constructs relevant to ATM.
that is currently being developed within SESAR. While the AIRM defines the
consolidated logical data model, physical implementation models are required for data
exchange.

The Model Driven Architecture (MDA) approach advocates that physical implementation
models can be automatically derived from the logical UML model. Therefore, the AIRM
Derivation task has developed a two stage approach for generating a logical ATM
Exchange Models (UML) from which the physical implementation schemas
(GML/JSON) shall be automatically derived.

The objectives of the AIRM Derivation work were to:

1. Develop rules and tools for transforming AIRM into physical implementation
models: GML and JSON

2. Demonstrate the rules and tools by transforming the AIRM Meteorology package
into a Weather Exchange Model (WXXM)

The key outcomes were:
1. Definition of transformation rules for generating a logical ATM exchange model

(GML application schema) from the AIRM
2. Developed MDA transformation templates for Enterprise Architect
3. Defined additional mapping rules to be executed by ShapeChange to map AIRM

data types into types that can be instantiated in GML/JSON
4. Successfully demonstrated end-to-end transformation of the AIRM Meteorology

Package into WXXM and its associated GML/JSON implementation schemas
5. Identified several improvements required to the AIRM Foundation Rules to

ensure that the generated ATM exchange models comply to ISO 19109/ISO
19136 rules for application schema

The key accomplishments were:

1. Developed a simple, re-usable process for transforming AIRM packages into an
ATM exchange model.

2. Leveraged existing, industry standard software for generating implementation
schemas ensuring that the resultant implementation schemas adhere to the ISO
19109/ISO 19136 rules and increase consistency.

3. Demonstrated that the tools are highly configurable enabling the transformation
and mapping rules to be extended to meet requirements for different ATM
exchange models without needing software development.

Copyright © 2013 Open Geospatial Consortium.

6

Contents Page

1	
 Introduction ... 8	

1.1	
 Background .. 8	

1.2	
 Scope .. 8	

1.3	
 Document contributor contact points ... 9	

1.4	
 Revision history .. 9	

1.5	
 Future work .. 10	

1.6	
 Forward .. 10	

2	
 References ... 10	

3	
 Conventions .. 11	

3.1	
 UML notation ... 12	

4	
 AIRM Derivation .. 12	

4.1	
 Architecture .. 12	

4.2	
 Transformation Tools ... 12	

4.2.1	
 Enterprise Architect ... 12	

4.2.2	
 ShapeChange .. 13	

5	
 Transformation Rules .. 14	

5.1	
 MDA Transformation Rules ... 15	

5.1.1	
 Packages ... 15	

5.1.2	
 Classes .. 17	

5.1.3	
 Attributes and Association Roles ... 20	

5.1.4	
 Tagged Values ... 22	

5.2	
 UML to Implementation Model Encoding Rules ... 25	

5.2.1	
 AIRM Mapping Rules .. 28	

5.2.2	
 Encoding WXXM as GML 2.1 .. 29	

6	
 Transforming AIRM into ISO 19136 UML Profile for GML an Enterprise
Architect MDA Transformation ... 30	

6.1	
 Overview .. 30	

6.2	
 Creating the application schemas that represent an ATM exchange model 30	

6.3	
 Importing the MDA Transformation Templates .. 31	

6.4	
 Generating an ATM exchange model using the MDA Transformation

Templates ... 33	

6.4.1	
 Creating an application schema ... 34	

6.4.2	
 Adding abstract, data types and code lists ... 35	

6.4.3	
 Re-name application schema and define Tagged Values 35	

7	
 Generating WXXM implementation models using ShapeChange 36	

7.1	
 Overview .. 36	

7.2	
 ShapeChange configuration ... 37	

7.2.1	
 Overview .. 37	

Copyright © 2013 Open Geospatial Consortium.

7

7.2.2	
 General parameters .. 37	

7.2.3	
 XML Schema target ... 38	

7.2.4	
 JSON Schema target .. 40	

7.3	
 Implementation schemas .. 42	

8	
 Conclusions ... 43	

8.1	
 Issues identified when transforming the AIRM ... 43	

8.2	
 MDA Transformation template improvements .. 43	

8.3	
 Encoding Rule improvements .. 44	

8.4	
 Key Accomplishments ... 44	

8.5	
 Future Work ... 44	

Annex A Mapping Rules ... 45	

A.1	
 AIRM Mapping Rules .. 45	

Figures Page
Figure 1. Architecture for transforming AIRM packages into implementation models

(GML/JSON) ... 12	

Figure 2. MDA Transformation within Enterprise Architect .. 13	

Figure 3. Overview of ShapeChange .. 14	

Figure 4. Example of structured data types that have identity .. 18	

Figure 5. Select MDA Transformation Templates to import ... 31	

Figure 7. Model Transformation dialog ... 32	

Figure 8. Create new model view and package for ATM Exchange Models 33	

Figure 9. Transforming an AIRM package into a GML Application Schema 34	

Figure 10. Example of a transformed <<Leaf>> package .. 35	

Figure 11. Populating the tagged values for the GML application schema 36	

Tables Page
Table 1 – Parameters for processing the model ... 37	

Table 2 – Parameters of the XML Schema target ... 38	

Table 3 – Pre-defined mapping of types in the application schemas to XML Schema
components .. 38	

Table 4 – Parameters of the JSON Schema target .. 40	

Table 5 – Pre-defined mapping of types in the application schemas to JSON Schema 40	

Copyright © 2013 Open Geospatial Consortium.

8

OGC® OWS-9 Aviation: AIRM Derivation

1 Introduction

1.1 Background

The ATM Information Reference Model (AIRM) is a consolidated logical UML model
that shall be used as a common reference for the different domain applications within Air
Traffic Management that is currently being developed within SESAR1. The AIRM shall
represent civil, military and civil-military information constructs relevant to ATM.

While the AIRM defines the consolidated logical data model, physical implementation
models are required for data exchange. The Model Driven Architecture (MDA) approach
advocates that physical implementation models (e.g. XML, JSON) can be automatically
derived from the logical UML model.

SESAR Project 08.01.06 is responsible for the synchronization between the evolutions of
the AIRM managed by SESAR and the WXXM developments undertaken jointly by the
US FAA and EUROCONTROL. SESAR 08.01.06 conducted a preliminary study which
demonstrated the feasibility to derive a “lean and mean” WXXM from the AIRM; this
study delivered in particular an initial set of “AIRM to WXXM” mapping rules and a
proof-of-concept tool, developed in Java and based on the Sparx EA Java API, able to
realize a partial conversion of the AIRM into a WXXM-like model.

A complete set of “AIRM to ISO 19109 Application Schema” mapping rules and
according implementation is not yet available. Such functionality would not only enable
future derivations of the WXXM from the AIRM in the context of SESAR, but will also
enable the creation of “fit for purpose” ISO 19109 Application Schemas for other ATM
Domains, in particular those domains that do not yet have an internationally agreed “-
XM” format (like AIXM or WXXM).

1.2 Scope

The objectives of the AIRM Derivation work were to:

3. Develop rules and tools for transforming AIRM into physical implementation
models: GML and JSON

4. Demonstrate the rules and tools by transforming the AIRM Meteorology package
into a Weather Exchange Model (WXXM)

The outcome of this work shall:

1 http://www.sesarju.eu/

Copyright © 2013 Open Geospatial Consortium.

9

 Describe the corresponding configuration of the software framework

 Describe of the requirements that shall be satisfied by the input UML model

 Where required, deliver an adaptation of WXXM 1.1.3 that includes the
additional information necessary to perform the derivation

 Identify and document “WXXM 1.1.3 to GML2.1 / JSON based physical model”
derivation rules

 Provide an implementation of these rules

 Create a GML / JSON based physical model, validate and document it

Note: validation of the physical models through actual exchange of sample datasets via
the OWS-9 infrastructure did not need to be realized. The generation of instance
document examples is sufficient.

Document potential enhancements and issues identified during the realization of this
requirement in change requests against relevant OGC documents, especially Standard and
Best Practice documents.

The creation of the "UML to JSON" encoding rules is a cross-thread activity with the SSI
Thread - see OGC 12-093: OWS-9 SSI UGAS Engineering Report for further details.

1.3 Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Name Organization
Debbie Wilson (Editor) Snowflake Software Ltd
Clemens Portele Interactive Instruments

1.4 Revision history

Date Release Editor Primary clauses
modified

Description

2012/07/16 0.1 D. Wilson,
C. Portele

All Initial document template and contents

2012/11/16 0.2 D. Wilson,
C. Portele

All Final Draft version

2012/12/21 0.3 D. Wilson,
C. Portele

All Final version

Copyright © 2013 Open Geospatial Consortium.

10

1.5 Future work

The following topics should be addressed in follow-on activities:

 Address the issues identified in 9.1. and 9.2
 Encode data using the implementation schemas.
 Explore the use of JSON for aviation data.
 If needed, standardize JSON Schema implementations for ISO 19100 types.
 Evaluate the ability of the tools to generate other ATM exchange models (e.g.

AIXM, FIXM)
 Implement the MDA transformation improvements

1.6 Forward

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

2 References

The following documents are referenced in this document. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply. For
undated references, the latest edition of the normative document referred to applies.

Geography Markup Language, Version 2.1.2, Open Geospatial Consortium (OGC)

Geography Markup Language, Version 3.2, Open Geospatial Consortium (OGC)

Geography Markup Language, Version 3.3, Open Geospatial Consortium (OGC)

ISO/TS 19103:2005, Geographic Information – Conceptual Schema Language

ISO 19109:2004, Geographic Information – Rules for Application Schema

ISO 19115:2003, Geographic information – Metadata

ISO 19115:2003/Corr:2006, Geographic information – Metadata – Technical
Corrigendum 1

ISO 19156:2011, Geographic information -- Observations and measurements

Copyright © 2013 Open Geospatial Consortium.

11

ISO/IEC 19757-3:2006 Information technology — Document Schema Definition
Languages (DSDL) — Part 3: Rule-based validation — Schematron

JSON Schema, IETF Draft 3, http://tools.ietf.org/html/draft-zyp-json-schema-03

OMG Object Constraint Language, Version 2.2, OMG Document Number formal/2010-
02-01

OGC 11-091: 2011 OWS-8 Review of the WXXS exchange schemas

OGC 12-093: OWS-9 SSI UGAS Engineering Report

SESAR 08.01.03 D05: AIRM Primer

SESAR 08.01.03 D05: AIRM Foundation Rulebook

W3C XML Schema Part 1: Structures Second Edition. W3C Recommendation (28
October 2004)

W3C XML Schema Part 2: Datatypes Second Edition. W3C Recommendation (28
October 2004)

In addition to this document, this report includes several XML Schema Document files as
specified in Annex A.

3 Conventions

AIRM Aeronautical Information Reference Model

AIXM Aeronautical Information Exchange Model

FIXM Flight Information Exchange Model

GML Geography Markup Language

ISO International Organization for Standardization

JSON JavaScript Object Notation

OCL Object Constraint Language

OGC Open Geospatial Consortium

OWS OGC Web Services

UML Unified Modeling Language

WXXM Weather Information Exchange Model

Copyright © 2013 Open Geospatial Consortium.

12

XML eXtended Markup Language

XPath XML Path Language

3.1 UML notation

Diagrams that appear in this standard are presented using the Unified Modeling Language
(UML) static structure diagram, as described in ISO/TS 19103.

4 AIRM Derivation

4.1 Architecture

Transforming the AIRM subject field packages and their related data types and code lists
into a physical implementation model shall be a two stage approach (Figure 1):

Stage 1. Generate a logical UML model representing the ATM exchange model
from the AIRM that conforms to the ISO 19136 UML Profile for GML
using MDA Transformations within Enterprise Architect

Stage 2. Transform the UML model into a physical implementation model using
a UML to GML Application Schema (UGAS) tool

Figure 1. Architecture for transforming AIRM packages into implementation models (GML/JSON)

4.2 Transformation Tools

Two tools were selected for the AIRM Derivation:

 Enterprise Architect
 ShapeChange

4.2.1 Enterprise Architect

Enterprise Architect is a comprehensive UML analysis and design tool for modelling
business, software and systems. Enterprise Architect was selected as the UML tool for
developing the AIRM within SESAR. Enterprise Architect contains in built model

Copyright © 2013 Open Geospatial Consortium.

13

transformation capabilities that provide a configurable method for converting model
elements and model fragments from one domain to another. This typically involves
converting Platform-Independent Model (PIM) elements to Platform-Specific Model
(PSM) elements (Figure 2).

Figure 2. MDA Transformation within Enterprise Architect

This MDA Tranformation capability shall be used to generate a logical ATM exchange
model based on the ISO 19136 UML Profile for GML which can then be transformed by
the UGAS tool (ShapeChange) to generate the physical implementation models: GML
and JSON.

4.2.2 ShapeChange

ShapeChange2 is a Java tool that takes application schemas constructed according to ISO
19109 from a UML model and derives implementation representations. The most
commonly used target representation is XML Schema (GML, ISO/TS 19139, SWE
Common), however other implementation models are supported such as JSON Schema,
RDF.

In addition to the generation of XML Schema documents, ShapeChange can
automatically generate:

 Schematron documents that implement validation rules defined as OCL
constraints in the UML model.

 Feature catalogues (ISO 19110) that describe the model in XML and HTML,

 RDF schemas,

 Code list dictionaries in GML and SKOS.

To transform the UML Model, ShapeChange can either directly access an Enterprise
Architect model via the EA Java API or can read an export model (XMI 10).

2 http://shapechange.net/. The source code of ShapeChange is available under the GNU General Public License.

Copyright © 2013 Open Geospatial Consortium.

14

Figure 3. Overview of ShapeChange

ShapeChange supports a range of standardized encoding rules for converting UML to
GML application schemas:

 ISO 19136 / GML 3.2 encoding rule for GML application schemas

 ISO/CD 19136-2 / GML 3.3 extensions

 ISO/TS 19139 encoding rule

 SWE Common 2.0 Data Model encoding rule

 INSPIRE encoding rule

 GSIP encoding rule

 ShapeChange extensions
These standardized encoding rules have been used for converting the transformed PSM
exchange models into GML and JSON implementation models.

5 Transformation Rules

Transforming the AIRM is a two-stage process therefore two sets of transformation rules
are required:

1. MDA Transformation Rules: these define how the AIRM UML model shall be
converted into a logical model conforming to the ISO 19136 UML Profile

2. Encoding Rules: for transforming ISO TC 211 and AIRM types into GML and
JSON types

Copyright © 2013 Open Geospatial Consortium.

15

5.1 MDA Transformation Rules

MDA transformation rules have been defined to convert the consolidated logical AIRM
model into a logical model that implements the ISO 19136 UML Profile for GML
application schemas. Therefore, the resulting UML model creates realizations of the
AIRM types as the AIRM is at a different level of abstraction from a logical model
developed using the ISO 19136 UML Profile.

To transform the AIRM into the ISO 19136 UML profile shall require two types of
transformation:

 Model constructs (Packages, Classes, Attributes, Associations) to be assigned
ISO 19136 UML Stereotypes and associated tagged values

 Multiplicity transformation: to apply the default AIRM Multiplicity Rules

The following sections shall describe the MDA Transformation Rules applied to
transform the AIRM model constructs into ISO 19136 UML Profile model constructs.

NOTE: additional model transformations to transform AIRM types into types that are
instantiated in GML or JSON were defined within ShapeChange (6.2 and 8.2).

5.1.1 Packages

Within the AIRM, the common and subject field packages differ in their complexity:
some contain two or more sub packages, others no packages.

The ISO 19109 Rules for Application Schema require that a package can only contain
one level of nested sub-packages. The parent package shall be assigned a stereotype
<<Application Schema>> and the sub packages shall be assigned a stereotype of
<<Leaf>>. NOTE: Leaf packages cannot contain sub packages.

The structure of the AIRM adds further complexity to the transformation as the exchange
model may be comprised of model elements from the subject field packages and several
data types packages. Therefore, the MDA Transformation must support the ability to
include model elements from different packages in the AIRM.

Another issue encountered was understanding how to transform and re-use common data
types, particularly those that have already been defined in an existing ATM exchange
model (e.g. AIXM 5.1).

GOVERNANCE ISSUE: Common Types

There are types such as AIRM geometry types (Point, Curve, Surface) that shall
be used in many ATM exchange models. There are two possible approaches for
managing these common types within the ATM exchange models:

Copyright © 2013 Open Geospatial Consortium.

16

1. If an AIRM type has already been defined in an existing ATM Exchange
Model (e.g. AIXM), develop encoding rules to re-use them.

2. If an AIRM type is used in multiple ATM Exchange Models, develop an
AIRM exchange model that is imported by any domain specific ATM
exchange model.

In the short to medium term option 1 is most appropriate, as this would require no
major change to existing exchange models3. However, this approach has long-
term governance constraints if external application domain requires the common
type to be updated. This may not be possible if the maintenance of the two
exchange models is not in sync.

Option 2 could be considered as a long-term approach for managing common
types as these can have a more agile governance mechanism.

The following table summarises the MDA transformation rules that were used for
transforming packages:

Rule Description
Packages
Rule 1 If the AIRM subject field is a simple package containing no sub

packages then the transformed package shall be:
 Contained within a generic UML package called GML

Application Schema.
 The transformed AIRM package shall be assigned the

stereotype <<ApplicationSchema >> and the associated GML
tagged values for that class stereotype.

Rule 2 If the AIRM subject field is a complex package containing sub
packages:

 The selected AIRM package shall form the parent package
 This package shall be assigned the name GML Application

Schema4 and the stereotype: <<ApplicationSchema>> with
the associated GML tagged values for that class stereotype

 Each sub package shall retain its original name and be

3 NOTE: Both options were tested in the development of the tools: Option 1 was adopted for geometry types already
defined within AIXM, Option 2 was adopted for complex data types.
4 There is a limitation in Enterprise Architect when using the packageName macro which sets the package name to the
root package name: AIRM rather than the name of the subject field package. NOTE: There are advantages to assigning
the package name to the default "GML Application Schema" for a complex AIRM subject field. If the exchange model
must include type or code list classes from the common packages these can be added automatically within leaf
packages.

Copyright © 2013 Open Geospatial Consortium.

17

assigned the stereotype <<Leaf>> and the associated GML
tagged values for that class stereotype.

Rule 3 Selected type and code list classes that are specific to the resulting
ATM exchange model shall be added within <<Leaf>> packages.

5.1.2 Classes

The AIRM Foundation Rules defines the following rules for classes:

1. Only classes representing an enumeration shall be assigned a stereotype
2. The class name shall be used to distinguish between different classes:

a. Features: The class name shall have no prefix or suffix
b. Code lists: The class name shall be prefixed by "Code" and suffixed with

"Type" (e.g. CodePrecipitationType)
c. Types: The class name shall be suffixed with "Type" (e.g. BearingType).

These rules could be used to develop an MDA transformation to add the correct
stereotype and tagged values to classes, however due to the complex structuring of the
AIRM, a simpler transformation approach was undertaken based on which package the
classes were contained within.

The AIRM has been structured so that:

1. Subject Field packages only contain classes representing features
2. Data Types packages contain classes representing either data types or code lists.

Based on these rules MDA transformations were developed to add the correct stereotype
and tagged values to classes based on which package they were contained within. The
only exception was with developing an MDA transformation to programmatically assign
the correct stereotype and tagged values to Type classes.

Within the ISO 19136 UML Profile, type classes can be divided into two types:

 Data Type: A structured data type without identity [ISO/TS 19103] and with no
operations whose primary purpose is to hold the information [ISO 19136], or;

 Type: Structured data types with identify and may have may have zero or more
operations (these are not mapped to the GML application schema), attributes or
associations.

Most AIRM type classes are Data Types however, there are instances where the type
classes should be assigned the Type stereotype. Based on the AIRM Foundation Rules,
they should all be suffixed with "Type", but some of the Type classes do not follow this
convention. For example: ElevatedPoint, Curve, Surface (Figure 4).

Copyright © 2013 Open Geospatial Consortium.

18

Figure 4. Example of structured data types that have identity

Therefore, the naming convention for structured data types is not reliable due to the
AIRM still being in development. Due to the inability to programmatically distinguish
between feature, type and data type classes in the AIRM, the MDA transformation tool
has been designed to allow s the modeller to manually determine which classes should be
transformed into which ISO 19136 class type.

Recommendation: Extend AIRM Foundation Rules to distinguish between
structured data types with or without identity

The current version of the AIRM Foundation Rules does not sufficiently
distinguish between the two types of structured data type. It is intended that in the
future versions of AIRM model, classes that represent an item of interest shall be
assigned the stereotype <<Entity>>.

If an Entity is intended to represent a domain object rather than an information
object then this will make it easy to identify the classes that should be represented
as a <<FeatureType>>.

Therefore it would be easy to extend the naming convention rules for data types
to state that:

1. A structured data type without identity and no operations whose primary
purpose is to hold the information shall be assigned no stereotype and the
class name shall end with “Type”.

Copyright © 2013 Open Geospatial Consortium.

19

2. A structured data type that may have may have zero or more operations
attributes or associations and identity shall be assigned no stereotype.

This would allow the definition of transformation rules to automatically transform
the AIRM classes into the relevant ISO 19136 UML Profile classes.

Rule Description
Classes
Rule 1 An AIRM class assigned the stereotype <<enumeration>> shall retain

its stereotype but be assigned the GML tagged value xsdEncoding=
iso19136_2007.

Rule 2 If a class is contained within a Subject Field Package and does not
carry the stereotype <<enumeration>> it shall be assigned the
stereotype <<FeatureType>> and its associated tagged values.

Rule 3 If the class is contained within the Data Types/Codelists package it
shall be assigned the stereotype <<Codelist>> and its associated
tagged values

Rule 4 If a code list is only used in a single ATM exchange model it shall
belong to that exchange model only.

Rule 5 If a code list is used in multiple ATM exchange model it shall either
belong to the first exchange model in which it was encoded or belong
to a generic AIRM application schema

Rule 6 If a class is contained within any of the other packages within the
Data Types package it shall only be encoded if it represents a
complex property (e.g. BearingType, PercentageRangeType, Curve).
If the class represents a simple data type such as a measure or
CharacterString for which there is a corresponding type in
GML/JSON, then these shall not be transformed into the
implementation model.
Instead a UML to GML mapping rule shall be defined to map the
AIRM simple type to the corresponding GML simple type.

Rule 7 A class shall be assigned the stereotype <<Type>> and its associated
tagged values when the class:

 Extends from an external class assigned the stereotype
<<Type>> (e.g. Point, Curve and Surface extend ISO 19107
<<Type>> Classes).

 Represents an information object that should carry identify.
These shall be manually identified and transformed on a case-by-case
basis.

Copyright © 2013 Open Geospatial Consortium.

20

5.1.3 Attributes and Association Roles

The AIRM Foundation Rules state that all attributes and association roles are assigned a
default multiplicity unless there is an operation constraint to define an alternate
multiplicity:

 Attributes shall be represented with a multiplicity of [0..1] (zero to one), by
default. If an operational constraint has been identified then multiplicities should
be chosen to reflect such constraints (AIRM Foundation Rule 22).

 Association roles shall be represented with a multiplicity of [0..*] (zero to many),
by default. If an operational constraint has been identified then multiplicities
should be chosen to reflect such constraints.

Modelling Recommendation 1: Modelling default attribute multiplicities

In the current version of the AIRM, it is intended that if a multiplicity is not
explicitly shown on the diagram that the multiplicity is the default 0..1. However,
in Enterprise Architect all attributes are automatically assigned a multiplicity of 1
when they are created but this is not visible on the diagram.

This poses a technical issue for generating the MDA Transformation. Although a
generic rule can be defined to state when the multiplicity lowerBound =1 then
transform it to 0 there may be instances when there is an operational constraint
for the multiplicity to be 1. Therefore it will be transformed in error.

Enterprise Architect does not support the ability to set the multiplicity
lowerBound and upperBound values to null. Therefore, it would be better if all
attributes to be represented by the default multiplicity are assigned the correct

Copyright © 2013 Open Geospatial Consortium.

21

multiplicity of 0..1.

There is also a discrepancy between the AIRM Foundation Rules and the ISO 19109
Rules for Application Schema. In the AIRM, if an association is navigable it shall be
assigned a multiplicity but it is not required to have a name. This rule is at odds with ISO
19109 that requires all navigable association roles to be assigned both a multiplicity and a
name. If an association role is not assigned a name it will be ignored and shall not be
encoded in the physical implementation model.

While a modeller can manually update the transformed ISO 19136 UML Profile model to
assign role names to the model, this means that the model is different to the original
AIRM model.

Recommendation: Constrain AIRM Foundation Rule for Association Role
Names

Amend the AIRM Foundation Rules to require all navigable associations to be
assigned a name.

The MDA transformation rules for attributes and association roles do not assign tagged
values to attributes or association roles. The default encoding rules for attributes and
association roles applied by ShapeChange.

There may be a future requirement for the MDA transformation to automatically assign
tagged values to all association roles assigned a name and multiplicity. In AIXM, all
association roles are encoded as byReference, only. This requirement is not currently
defined in the AIRM Foundation Rules, therefore all associations shall be encoded as
inlineOrByReference.

Copyright © 2013 Open Geospatial Consortium.

22

5.1.4 Tagged Values

The ISO 19136 UML Profile requires specific tagged values to be applied to specific
model constructs. These tagged values are required to successfully execute specific
encoding rules when transforming the UML model into a physical implementation model
such as GML.

The MDA Transformation shall automatically assign the required set of tagged values to
model elements. Mandatory tagged values shall be assigned a default value, optional
tagged vales will have no value. If the default value is set to FIXME these must be
manually edited to assign them a relevant value. This must be undertaken prior to
transforming the UML model into an implementation models using the UGAS tool
otherwise, the transformation may fail. If a tagged value has been defined default value
these can be manually edited to change the value to an allowable alternate value.

5.1.4.1 Tagged values assigned to <<ApplicationSchema>> packages

Tag Tag Description Default Value
gmlProfileSchema URL of the schema location of a GML profile

(optional)

version Current version of the application schema FIXME
targetNamespace Target XML namespace of the application

schema.
This should be defined as a HTTP URI. For
example:
http://www.wxxm.aero/schema/wx/1.1

FIXME

xmlns Namespace prefix to be used as short form of
the target namespace.
For example: wx

FIXME

xsdDocument Name of an XML Schema document to create
representing the content of this package.
For example: wx.xsd
NOTE: the file extension .xsd must be
included

FIXME

xsdEncoding Encoding rule to be executed by the UGAS
tool to generate the XML schema.

iso19136_2007

5.1.4.2 Tagged values assigned to <<Leaf>> packages

Tag Tag Description Default Value

xsdDocument

Name of an XML Schema document to create
representing the content of this package.
NOTE: the file extension .xsd must be

PackageName

Copyright © 2013 Open Geospatial Consortium.

23

included (e.g. packageName.xsd).
The package name shall be automatically
generated but this needs to be manually
updated to add the file extension ".xsd".

xsdEncoding Encoding rule to be executed by the UGAS
tool to generate the XML schema.

iso19136_2007

5.1.4.3 Tagged values assigned to <<FeatureType>> classes

The following default tagged values are applied when the classes are transformed to
<<FeatureType>> classes. These tagged values can be changed on a case-by-case basis:

Tag Definition Default Value
noPropertyType Suppress creation of a standard

property type that supports inline
or by-reference encoding [ISO
19136].
If set to true then the property shall
support inline encoding only. If set
to false both inline or by-reference
encoding is supported.

false

byValuePropertyType Create a property type that requires
that the instance is encoded inline
[ISO 19136].
Should usually be set to false.

false

isCollection Identifies the type as a collection
[ISO 19136].

false

xmlSchemaType If the type has a canonical XML
Schema encoding the XML
Schema typename corresponding to
the data type shall be given as the
value [ISO 19136].

xsdEncoding Encoding rule to be executed by
the UGAS tool to generate the
XML schema.

iso19136_2007

5.1.4.4 Tagged values assigned to <<Type>> classes

Tag Definition Default Value
noPropertyType Suppress creation of a standard

property type that supports inline
or by-reference encoding [ISO
19136].
If set to true then the property shall

false

Copyright © 2013 Open Geospatial Consortium.

24

support inline encoding only. If set
to false both inline or by-reference
encoding is supported.

byValuePropertyType Create a property type that requires
that the instance is encoded inline
[ISO 19136].
Should usually be set to false.

false

isCollection Identifies the type as a collection
[ISO 19136].

false

xsdEncoding Encoding rule to be executed by
the UGAS tool to generate the
XML schema.

iso19136_2007

5.1.4.5 Tagged values assigned to <<DataType>> classes

The following default tagged values are applied when the classes are transformed to
<<DataType>> classes. These tagged values do not need to be changed.

Tag Definition Default Value
noPropertyType Suppress creation of a standard property type

that supports inline or by-reference encoding
[ISO 19136].
For data types only inline encoding is
supported.

false

xsdEncoding Encoding rule to be executed by the UGAS
tool to generate the XML schema.

iso19136_2007

5.1.4.6 Tagged values assigned to <<CodeList>> classes

The following default tagged values are applied when the classes are transformed to
<<CodeList>> classes.

Tag Definition Default Value
asDictionary If the value is 'false' the code list will be

encoded with the pre-defined
enumerants as values in the schema, if
'true' all enumerants will only be
maintained in external dictionaries.
The default depends on the encoding
rule used [ISO 19136, GML 3.3].

true

codeSpace The URI of the default dictionary that
contains code list [ISO 19136].
It is recommended that the URI is a

Copyright © 2013 Open Geospatial Consortium.

25

Tag Definition Default Value
HTTP URI (e.g.
http://[Domain]/codelist//[CodelistName
]
Example:
http://www.wxxm.aero/codelist/CodeW
eatherIntensityType

xsdEncoding Encoding rule to be executed by the
UGAS tool to generate the XML
schema.

iso19136_2007

The tagged value “asDictionary” has been assigned the default value “true”. It is
recommended that code lists are maintained externally to the implementation model
within a code list register within the SESAR Registry. This will allow the code lists to be
governed at a more agile maintenance frequency.

When ShapeChange processes the ISO 19136 UML Profile model it shall generate a
GML dictionary for each code list that can be inserted into a code list registry.

If an alternate code list encoding is required then this could be developed in future
versions of ShapeChange as the requirement arises.

5.2 UML to Implementation Model Encoding Rules

Once the AIRM model constructs have been converted into the ISO 19136 UML Profile
(see the general encoding requirements stated in GML 3.2.1 / ISO 19136:2007, sub-
clause E.2.1.1), the resulting Application Schema packages can be transformed by
ShapeChange into the implementation schemas: GML application schemas (XML
Schema) and JSON schemas (JSON Schema).

ShapeChange is a powerful tool for generating implementation schemas from the UML
models as it is highly configurable allowing users to:

 Support alternate stereotypes to the ISO 19136 stereotypes by defining aliases
 Extend the standard ISO/TC 211 mapping rules to support external application

schemas or encoding rules
 Develop bespoke encoding rules building upon the standardized ISO 19136

schema conversion rules.

ShapeChange implements the following mapping and schema conversion rules5:

5 These mapping rules can be found: http://shapechange.net/resources/config/

Copyright © 2013 Open Geospatial Consortium.

26

Mapping Rules:

Data Specification Description

ISO 19136 Mappings for structural data types defined in ISO
19103, ISO 19136 and ISO 19118 (e.g. strings,
numerics, measures, date/times)

ISO 19107 Mappings for geometry types

ISO 19108 Mappings for temporal types

ISO 19111 Mappings for Spatial referencing by coordinates

ISO 19115 Mappings for metadata types

ISO 19123 and gmlcov Mappings for coverage types

ISO 19156 Mappings for observation types

sweCommon Mappings for types used sweCommon

GSIP Mappings for GSIP types

JSON Mappings between ISO 19103 and ISO 19107
types and JSON Schema

Encoding Rules (built-in):

Encoding Rule Description

iso19136_2007 The GML 3.2 (ISO 19136:2007) Annex E encoding rule. If
not encoding rule is specified, this is the default encoding
rule.

gml33 The GML 3.2 encoding rule (iso19136_2007) plus extensions
for association classes and code lists.

iso19139_2007 The ISO/TS 19139 encoding rule.

sweCommon The SWE Common Data Model 2.0 encoding rule.

Copyright © 2013 Open Geospatial Consortium.

27

These standardized encoding rules are fixed as part of the Java code of ShapeChange.
The standardized encoding rules build on a common set of schema conversion rules6.
While the GML 3.2 and GML 3.3 encoding rules have been specified in the context of
these specific versions of GML, the encoding rules can also be applied – with limitations
– with a target version of GML 2.1 or GML 3.1.

In addition to these standardized encoding rules, ShapeChange also supports a range of
extension rules that can be used to extend the basic iso19136_2007 and gml33 rules. To
develop a custom set of encoding rules for the AIRM this can be configured using the
ShapeChange mechanism for specifying custom encoding rules (see, e.g., the set of rules
in use with some communities that use ShapeChange and which are provided with the
ShapeChange distribution7).

The current version of the AIRM Foundation Rules does not state any requirements that
would use the ShapeChange extended encoding rules, therefore the default
iso19136_2007 encoding rules were used.

Encoding Rule Recommendation: Develop an AIRM extension encoding rule

While the current version of the tool met the requirements for developing the
WXXM exchange model, it does not support all of the requirements for other
ATM exchange models such as AIXM 5.x.

The transformation tools should be tested to develop other exchange models such
as AIXM 5.x to identify additional encoding rules that should be supported.

For example, in AIXM 5.1 all attributes assigned the default multiplicity of 0..1
should also be nillable, in conformance to the AIXM Temporality Model.
ShapeChange supports various tagged values that can be assigned to attributes to
indicate they are nillable (e.g. <<voidable>>, <<nillable>>).

For a full list of supported extension rules and tagged values see:

 http://shapechange.net/app-schemas/uml-profile/

 http://shapechange.net/targets/xsd/basics/

6 http://shapechange.net/targets/xsd/basics/
7 http://shapechange.net/resources/config/StandardRules.xml

Copyright © 2013 Open Geospatial Consortium.

28

5.2.1 AIRM Mapping Rules

To simplify the generation of the AIRM exchange models the following mapping rules
were developed (See 7.2 and Annex A for details on the ShapeChange configuration file
that applies these rules):

Rule Description

Rule 1 If an AIRM type class was already implemented in an existing
exchange model (e.g. AIXM 5.1) then a mapping rule would be
developed to re-use the existing encoding.

Rule 2 If an AIRM type class represented a simple measure type, then it shall
not undergo MDA transformation into the ISO 19136 UML profile
but an AIRM mapping rule shall be developed to map it to the
relevant GML type (e.g. gml:MeasureType).

Rule 3 If an AIRM type class represents a complex measure type (e.g.
PercentageRangeType) then this shall undergo MDA transformation
and an AIRM data type shall be developed.

Rule 4 All code list and type classes shall be encoded in an AIRM
Application Schema unless already implemented in an existing
exchange model.

In addition to these generic rules, a set of mapping rules were developed to correct
erroneous types that have been used on the AIRM models for which there is no
corresponding mapping to GML and JSON elements.

Rule Description

Rule 1 Use of geometry types which are not directly instantiated in GML or
JSON:

 DirectPosition shall be mapped to a Point

 GM_PointArray shall be mapped to a MultiPoint

NOTE: DirectPosition and GM_PointArray are used as the type of a
property with the intention to provide location context. However,
these types are not geometries and not one of the types identified in
ISO 19109 for spatial attributes in application schemas. See ISO
19109, sub-clause 8.7, spatial rules.

Rule 2 The geometry class ExtentOf was originally defined as a <<Union>>
of several geometry types to encode the approximate bounding extent

Copyright © 2013 Open Geospatial Consortium.

29

of a feature. The use of <<Union>> classes is not allowed in the
AIRM Foundation Rules.
A simple implementation rule was defined to map the ExtentOf type
to a Surface, only.
In the resulting GML, the gml:boundedBy property can be used to
optionally encode the extent as an Envelope or the airm:extentOf
property can be used to encode the extent as a Surface.

NOTE: one of the geometry types defined in the class is not an
geometry type: CircleByCentrePoint.

Rule 3 Use of temporal types which are not directly instantiated in GML or
JSON:

 TM_PeriodDuration shall be mapped to TimePeriod

5.2.2 Encoding WXXM as GML 2.1

One of the requirements was to demonstrate the ability to encode WXXM as GML 2.1
rather than GML 3.2.1. While ShapeChange can generate WXXM as GML 2.1 this
results in an incomplete schema. Many of the types used in the WXXM classes use
ISOTC211 types that were not implemented in GML 2.1:

 ISO 19103 Measure types
 ISO 19108 Temporal types
 ISO 19115 Metadata types
 ISO 19123 Coverage types
 ISO 19156 Observations types

Also if the intended GML encoding version is GML 2.1 it is not possible to re-use
existing AIRM types such as ElevatedSurface that have already been encoded within an
ATM Exchange model such as AIXM 5.1. While it would be possible to mix and match
GML 2.1 and GML 3.2 schema components within a GML application schema and
instance documents, this is uncommon and may not be supported by software.

Copyright © 2013 Open Geospatial Consortium.

30

6 Transforming AIRM into ISO 19136 UML Profile for GML an Enterprise
Architect MDA Transformation

6.1 Overview

The AIRM is intended to be a consolidated logical model that represents all of the ATM
application areas. Various ATM exchange models shall be derived from this consolidated
logical model. These ATM exchange models represent a subset of the AIRM logical
model for a specific ATM application area:

 AIXM: management and distribution of Aeronautical Information Services (AIS)
data

 WXXM: Aeronautical Meteorology
 FIXM: Flight Information

Before the required AIRM model constructs can be converted into an implementation
schema, the corresponding ATM exchange model application schema must be generated.

This transformation step involves two processes:

1. Merging AIRM model constructs defined within the Abstract, Data Type and
Subject Field packages into one or more application schema that shall represent
the ATM exchange model (e.g. WXXM)

2. Adding the relevant stereotypes, tagged values and multiplicities to the model
constructs

6.2 Creating the application schemas that represent an ATM exchange model

To create an ATM exchange model application schema, the Enterprise Architect MDA
Transformation tool shall be used to copy the relevant model constructs into the relevant -
-XM application schema package and add the relevant stereotypes, tagged values and
multiplicities.

Five MDA Transformation templates were developed to transform AIRM model
constructs into an ATM exchange model:

MDA Transformation Name Description

AIRM2GML(Simple) Transforms the contents of an AIRM package that no sub
packages into an application schema.

AIRM2GML(Complex) Transforms the contents of an AIRM package into an
application schema containing sub packages

AIRM2GML(CodeLists) Transforms selected code list classes into a <<Leaf>> sub

Copyright © 2013 Open Geospatial Consortium.

31

package within an application schema

AIRM2GML(DataTypes) Transforms selected structural data type classes into a
<<Leaf>> sub package within an application schema

AIRM2GML(Types)

Transforms selected identifiable structural data type classes
into a <<Leaf>> sub package within an application schema

6.3 Importing the MDA Transformation Templates

The Enterprise Architect MDA Transformation Templates are available as an .xmi file8.
These must be imported into the AIRM Enterprise Architect project.

To import the AIRM MDA Transformation Templates into the AIRM model Select
Project --> Model Import/Export --> Import Reference Data

Figure 5. Select MDA Transformation Templates to import

In the Import Reference Data dialog, open Select File and navigate to the directory where
the tool is located. Select all five datasets and Import.

8 http://wiki.snowflakesoftware.com/display/LAB/OWS-9+Aviation%3A+AIRM+Derivation

Copyright © 2013 Open Geospatial Consortium.

32

Figure 6. Import MDA Transformation Templates

Finally, hit OK in the Import complete dialog. To check to ensure that all of the MDA
Transformation Tools were imported successfully Select Tools --> Model Transformation
(MDA) --> Transform Current Package

The list of Transformations should now include:

 AIRM2GML (Simple)
 AIRM2GML (Complex)
 AIRM2GML (CodeLists)
 AIRM2GML (DataType)
 AIRM2GML (ObjectType)

Figure 7. Model Transformation dialog

Copyright © 2013 Open Geospatial Consortium.

33

6.4 Generating an ATM exchange model using the MDA Transformation Templates

The first step in generating the logical model for an ATM exchange model is to create a
new class view, which shall be the destination for the transformed exchange models. In
the project browser, right-click the model root and select Add à Add View and assign
the view a name (e.g. ATM Exchange Models).

The next step is to create a new package that shall represent the exchange model within
the view.

Figure 8. Create new model view and package for ATM Exchange Models

Before transforming any AIRM model constructs or elements, the structure of the
application schema should be defined:

 Will the exchange model be comprised of multiple application schemas? If so
how will this be structured?

For example, WXXM 1.1.3 is comprised of two application schemas: WX and AVWX
which represent specific domain sub-divisions of the model. Whereas, AIXM 5.1 is
comprised of 2 application schema: AIXM and Message

Depending on how the exchange model is to be structured will determine the process
steps involved in generating the application schema. The first step shall be to generate the
application schema package using either the AIRM2GML(Simple) or
AIRM2GML(Complex) MDA transformation.

Most application schema will be comprised of modular sub-packages to ensure that
implementation models are manageable, therefore use the AIRM2GML(Complex) MDA
transformation.

Copyright © 2013 Open Geospatial Consortium.

34

6.4.1 Creating an application schema

To generate an application schema, select a relevant package from the subject field, right-
click and select Transform Current Package (Ctrl + Shift + H). This will open the Model
Transformation dialog.

Select the AIRM2GML(Complex) transformation and it will require the destination
package to be set. So navigate to the WXXM package created in the ATM Exchange
Model class view. Finally, select the Include Child Packages and this will list all of the
classes contained within the selected package.

Figure 9. Transforming an AIRM package into a GML Application Schema

NOTE: If specific classes should not be included in the exchange model application
schema then these can be de-selected from the list of classes to be transformed.

Finally hit Do Transform. This shall create a new package named “GML Application
Schema” in the WXXM package.

Copyright © 2013 Open Geospatial Consortium.

35

Figure 10. Example of a transformed <<Leaf>> package

NOTE: If the selected package contained sub-packages containing packages, the package
shall be moved up a level and shall become a <<Leaf>> package in the application
schema.
6.4.2 Adding abstract, data types and code lists

If the application schema should include domain specific data types from the Abstract
and Data Types packages, then these can be transformed in two ways:

1. Transform the package and select only the relevant classes to be included
2. If the classes are included in a diagram in the subject field package, then select the

classes on the diagram and right-click and select Transform.

These classes shall be added to a <<Leaf>> package within the application schema.

6.4.3 Re-name application schema and define Tagged Values

Once the relevant model constructs and elements have been added to the exchange model
application schema, the final task is to rename the application schema and define the
tagged values. The only tagged values that need to be edited are:

1. Update <<ApplicationSchema>> package tagged values set to FIXME
2. Update <<Leaf>> package tagged value xsdEncoding to add “.xsd” otherwise the

XML schema shall not be assigned a file extension.

Copyright © 2013 Open Geospatial Consortium.

36

Figure 11. Populating the tagged values for the GML application schema

Once this is complete, repeat the process for each application schema that shall be
included in the exchange model.

7 Generating WXXM implementation models using ShapeChange

7.1 Overview

The objective of the work described in this clause is to investigate the programmatic
derivation of WXXM into two implementation schemas for Aviation Meteorology:

 XML-based implementation schema based on GML 3.2,
 JSON-based implementation schema.

The original plan was to use GML 2.1 as the basis for the XML Schema implementation.
For the reasons stated in 5.2.2 GML 3.2 was used instead.

Initially the current version of the WXXM model (version 1.1.3) was used to explore
potential issues of the automatic conversion of WXXM to implementation schemas. The
issues detected in this process have been used to improve the transformation from the
AIRM to the application schemas as well as the mapping to existing XML Schema and
JSON Schema components.

The JSON encoding rule specified in OWS-9 and documented in the OWS-9 SSI UGAS
Engineering Report.

Copyright © 2013 Open Geospatial Consortium.

37

Sub-clause 7.2 contains a description of the ShapeChange configuration for the derivation
of the XML Schema and JSON Schema implementations from the WXXM model.

Sub-clause 7.3 provides links to the generated schemas and other documents.

7.2 ShapeChange configuration

7.2.1 Overview

The ShapeChange version used to derive the WXXM implementation schemas is
available on http://shapechange.net/.

The ShapeChange configuration used in the conversion has the parameters listed in this
sub-clause in addition to the standard aliases, map entries, XML namespaces and
encoding rules.

7.2.2 General parameters

Table 1 – Parameters for processing the model

Parameter Value Comment

inputModelType EA7 Enterprise Architect

inputFile AIRM_DEMO.eap Link to WXXM model

appSchemaNamespaceRegex ^http://www\.
opengeospatial\.
org/ows9/.*

Convert all application
schemas with a target
namespace that matches this
pattern, in this case the
AIRM data types, WX and
AVWX schemas

publicOnly true Only convert public elements
(standard behaviour)

checkingConstraints disabled OCL constraints in the model
will not be validated

sortedSchemaOutput true The classes in each
application schema will be
processed in ascending order
of the class names

addTaggedValues jsonBaseURI,
jsonDirectory,
jsonEncodingRule,

Tagged values used by the
JSON encoding rule, but
which have not yet included
in the list of standard tagged

Copyright © 2013 Open Geospatial Consortium.

38

jsonLayerTableURI values

7.2.3 XML Schema target

Table 2 – Parameters of the XML Schema target

Parameter Value Comment

outputDirectory wxxm/xsd Directory in
which the XML
Schema
documents are
written

defaultEncodingRule iso19136_2007 A WXXM-
specific
encoding rule
extending the
standard GML
encoding rule is
applied

xsdMapEntries/
XsdMapEntry

see Table 3 see 5.2.1

Table 3 – Pre-defined mapping of types in the application schemas to XML Schema components

Application schema
type

XML type XML
element

Property type

AbstractFeature gml:AbstractFeature
Type

gml:Abstract
Feature

gml:FeatureProperty
Type

DirectPosition gml:PointType gml:Point gml:PointProperty
Type

ExtentOf gml:Abstract
GeometryType

gml:Abstract
Geometry

gml:Geometry
PropertyType

TM_PeriodDuration gml:TimePeriod
Type

gml:TimePeriod gml:TimePeriod
PropertyType

GM_PointArray gml:MultiPointType gml:MultiPoint gml:MultiPoint
PropertyType

Copyright © 2013 Open Geospatial Consortium.

39

AshConcentration gml:MeasureType n/a gml:MeasureType

HorizontalDistance gml:LengthType n/a gml:LengthType

HorizontalVisibilityDistance gml:LengthType n/a gml:LengthType

VerticalVisibilityDistance gml:LengthType n/a gml:LengthType

VerticalDistance gml:LengthType n/a gml:LengthType

DistanceType gml:LengthType n/a gml:LengthType

Depth gml:LengthType n/a gml:LengthType

PercentageType gml:MeasureType n/a gml:MeasureType

QPressure gml:MeasureType n/a gml:MeasureType

RVRDistance gml:LengthType n/a gml:LengthType

ValPercentType gml:MeasureType n/a gml:MeasureType

ValPressureType gml:MeasureType n/a gml:MeasureType

PressureType gml:MeasureType n/a gml:MeasureType

ValSpeedType gml:SpeedType n/a gml:SpeedType

WindGust gml:MeasureType n/a gml:MeasureType

WindSpeed gml:MeasureType n/a gml:MeasureType

TemperatureType gml:MeasureType n/a gml:MeasureType

WindDirection gml:MeasureType n/a gml:MeasureType

Point aixm:PointType aixm:Point n/a

ElevatedPoint aixm:ElevatedPoint
Type

aixm:Elevated
Point

n/a

Curve aixm:CurveType aixm:Curve n/a

ElevatedCurve aixm:ElevatedCurve
Type

aixm:Elevated
Curve

n/a

Surface aixm:SurfaceType aixm:Surface n/a

ElevatedSurface aixm:Elevated
SurfaceType

aixm:Elevated
Surface

n/a

Copyright © 2013 Open Geospatial Consortium.

40

7.2.4 JSON Schema target

Table 4 – Parameters of the JSON Schema target

Parameter Value Comment

outputDirectory wxxm/json or wxxm/jsonext Directory in which the
JSON Schema
documents are written

defaultEncodingRule geoservices or
geoservices_extended

Both encoding rules
have been used

jsonBaseURI http://shapechange.net/
tmp/ows9/wxxm/json or
http://shapechange.net/
tmp/ows9/wxxm/jsonext

Base URI of all JSON
schema documents

mapEntries/mapEntry see Table 5 see 5.2.1

Table 5 – Pre-defined mapping of types in the application schemas to JSON Schema

Application schema type JSON schema
(geoservices)

JSON schema
(geoservices_extended)

AbstractFeature http://schemas.opengis.net/gsr/1.0/feature.json

ExtentOf http://schemas.opengis.net/gsr/1.0/geometry.json

TM_PeriodDuration integer

AshConcentration number http://shapechange.net/tmp/
ows9/json/measure.json

HorizontalDistance number http://shapechange.net/tmp/
ows9/json/measure.json

HorizontalVisibilityDistance number http://shapechange.net/tmp/
ows9/json/measure.json

VerticalVisibilityDistance number http://shapechange.net/tmp/
ows9/json/measure.json

VerticalDistance number http://shapechange.net/tmp/
ows9/json/measure.json

DistanceType number http://shapechange.net/tmp/
ows9/json/measure.json

Depth number http://shapechange.net/tmp/

Copyright © 2013 Open Geospatial Consortium.

41

ows9/json/measure.json

PercentageType number http://shapechange.net/tmp/
ows9/json/measure.json

QPressure number http://shapechange.net/tmp/
ows9/json/measure.json

RVRDistance number http://shapechange.net/tmp/
ows9/json/measure.json

ValPercentType number http://shapechange.net/tmp/
ows9/json/measure.json

ValPressureType number http://shapechange.net/tmp/
ows9/json/measure.json

PressureType number http://shapechange.net/tmp/
ows9/json/measure.json

ValSpeedType number http://shapechange.net/tmp/
ows9/json/measure.json

WindGust number http://shapechange.net/tmp/
ows9/json/measure.json

WindSpeed number http://shapechange.net/tmp/
ows9/json/measure.json

TemperatureType number http://shapechange.net/tmp/
ows9/json/measure.json

WindDirection number http://shapechange.net/tmp/
ows9/json/measure.json

Point ref:http://schemas.opengis.net/gsr/1.0/point.json

ElevatedPoint ref:http://schemas.opengis.net/gsr/1.0/point.json

Curve http://schemas.opengis.net/gsr/1.0/polyline.json

ElevatedCurve http://schemas.opengis.net/gsr/1.0/polyline.json

Surface http://schemas.opengis.net/gsr/1.0/polygon.json

ElevatedSurface http://schemas.opengis.net/gsr/1.0/polygon.json

Note: that some of the mapped JSON representations are incomplete as no suitable JSON
schema exists that could be referenced. For example, the geometries or the time period
information does not represent all the information in the conceptual schema.

Copyright © 2013 Open Geospatial Consortium.

42

In addition, there are types used in the application schemas without an implementation in
JSON. This is the same issue as the one discussed with respect to GML 2.1 (see 6.2.2).
However, unlike the GML case, no alternate encoding of these types in JSON Schema
exists. In the schema conversion, a warning is issued. The type in JSON Schema used in
these cases is "string" in the geoservices" and "object" in the "geoservices_extended"
encoding rule. While this represents such properties in the implementation schema, these
parts of the schema may be of limited use.

7.3 Implementation schemas

The GML 3.2 application schemas, the JSON schemas for both the extended and simple
GeoServices JSON encoding, the code list dictionaries, and a feature catalogue derived
from the application schemas, as well as the associated ShapeChange configuration file
are available at http://shapechange.net/tmp/ows9/wxxm.

Copyright © 2013 Open Geospatial Consortium.

43

8 Conclusions

8.1 Issues identified when transforming the AIRM

The following table contains a summary of some of the issues identified when
transforming the AIRM into an ISO 19136 UML Profile

No Issue Fix

1 Some WXXM attributes
still contain the stereotype
<<property>>

Continue to clean up the AIRM to remove ISO
19136 stereotypes

2 Use of types that are not
instantiated in GML or
JSON

Change the types to use types that can be
directly instantiated in the physical
implementation models. See 6.2.1.

3 One directional association
roles defined in the reverse
direction are not encoded
correctly in the resulting
GML schema

Update corresponding association roles to
ensure that they are defined in the direction of
the association so that the association role
values are encoded on the target role end.

4 Un-named directional
association roles are
ignored by ShapeChange

Update the AIRM Foundation Rules to require
all directional association roles to be assigned a
role name.

5 The model uses an old
version of the ISOTC211
foundation schema and has
deleted several key
packages (e.g. ISO 19103
and ISO 19156 (draft).

Connect to one of the official ISOTC211
model repositories to ensure that the AIRM
uses the latest versions of the foundation
models and can remain in-sync.

8.2 MDA Transformation template improvements

The following improvements have been identified for the MDA Transformation
templates:

1. Addition of tagged values to association roles to constrain the encoding rules to
byReference only, if required

Copyright © 2013 Open Geospatial Consortium.

44

2. Define transformation rules to assign class stereotypes based on the Class Naming
convention

3. Include package dependencies associations in the transformation
4. Improve ability to transform multiplicities of attributes and associations if AIRM

continues to ignore Enterprise Architect multiplicities.

8.3 Encoding Rule improvements

No need for encoding rule improvements have been identified as part of the work. The
GML and JSON encoding rules specified in GML 3.2 and OWS-9 SSI UGAS
Engineering Report respectively have been sufficient for converting the application
schemas derived from AIRM.

8.4 Key Accomplishments

The key accomplishments achieved within the AIRM Derivation work were:

4. Developed a simple, re-usable process for transforming AIRM packages into an
ATM exchange model GML application schema following ISO 19109 and ISO
19136 rules.

5. This process was designed to be transferable to any ATM exchange model and is
extensible to support more complex requirements for specific ATM exchange
models.

6. Leveraged existing, industry standard software for generating implementation
schemas from the UML model rather than bespoke scripts or tools. This ensures
that the resultant implementation schemas adhere to the ISO 19136 rules for GML
application schema encoding and rules for JSON, ensuring consistency.

7. Demonstrated that the tools are highly configurable enabling the transformation
and mapping rules to be extended to meet requirements for different ATM
exchange models without needing software development.

8.5 Future Work

The following topics should be addressed in follow-on activities:

 Address the issues identified in 9.1. and 9.2 to update and clean the AIRM UML
model

 Encode data using the implementation schemas.
 Explore the use of JSON for aviation data.
 If needed, standardize JSON Schema implementations for ISO 19100 types.
 Evaluate the ability of the tools to generate other ATM exchange models (e.g.

AIXM, FIXM)
 Implement the MDA transformation improvements

Copyright © 2013 Open Geospatial Consortium.

45

Annex A

Mapping Rules

A.1 AIRM Mapping Rules

To execute the additional mapping rules defined within section 6.2.1 and 8.2 map entries
have been specified in the ShapeChange configuration
(http://shapechange.net/tmp/ows9/wxxm/config_wxxm.xml).

XML Schema target

<xsdMapEntries>
 <XsdMapEntry type="AbstractFeature" xsdEncodingRules="iso19136_2007 gml33"
xmlType="gml:AbstractFeatureType" xmlElement="gml:AbstractFeature"
xmlPropertyType="gml:FeaturePropertyType"/>
 <XsdMapEntry type="DirectPosition" xsdEncodingRules="iso19136_2007 gml33" xmlType="gml:PointType"
xmlElement="gml:Point" xmlPropertyType="gml:PointPropertyType"/>
 <XsdMapEntry type="ExtentOf" xsdEncodingRules="iso19136_2007 gml33"
xmlType="gml:AbstractGeometryType" xmlElement="gml:AbstractGeometry"
xmlPropertyType="gml:GeometryPropertyType"/>
 <XsdMapEntry type="TM_PeriodDuration" xsdEncodingRules="iso19136_2007 gml33"
xmlType="gml:TimePeriodType
" xmlElement="gml:TimePeriod" xmlPropertyType="gml:TimePeriodPropertyType"/>
 <XsdMapEntry type="GM_PointArray" xsdEncodingRules="iso19136_2007 gml33"
xmlType="gml:MultiPointType" xmlElement="gml:MultiPoint" xmlPropertyType="gml:MultiPointPropertyType"/>
 <!-- NOTE: where the types have been encoded in an existing exchange model such as AIXM 5.1 these shall
be used -->
 <!-- AIRM Value Types -->
 <XsdMapEntry type="AshConcentration" xsdEncodingRules="iso19136_2007 gml33"
xmlPropertyType="gml:MeasureType" xmlType="gml:MeasureType" xmlTypeContent="simple"
xmlTypeNilReason="false"/>
 <XsdMapEntry type="HorizontalDistance" xsdEncodingRules="iso19136_2007 gml33"
xmlPropertyType="gml:LengthType" xmlType="gml:LengthType" xmlTypeContent="simple"
xmlTypeNilReason="false"/>
 <XsdMapEntry type="HorizontalVisibilityDistance" xsdEncodingRules="iso19136_2007 gml33"
xmlPropertyType="gml:LengthType" xmlType="gml:LengthType" xmlTypeContent="simple"
xmlTypeNilReason="false"/>
 <XsdMapEntry type="VerticalVisibilityDistance" xsdEncodingRules="iso19136_2007 gml33"
xmlPropertyType="gml:LengthType" xmlType="gml:LengthType" xmlTypeContent="simple"
xmlTypeNilReason="false"/>
 <XsdMapEntry type="VerticalDistance" xsdEncodingRules="iso19136_2007 gml33"
xmlPropertyType="gml:LengthType" xmlType="gml:LengthType" xmlTypeContent="simple"
xmlTypeNilReason="false"/>
 <XsdMapEntry type="DistanceType" xsdEncodingRules="iso19136_2007 gml33"
xmlPropertyType="gml:LengthType" xmlType="gml:LengthType" xmlTypeContent="simple"
xmlTypeNilReason="false"/>
 <XsdMapEntry type="Depth" xsdEncodingRules="iso19136_2007 gml33"
xmlPropertyType="gml:LengthType" xmlType="gml:LengthType" xmlTypeContent="simple"
xmlTypeNilReason="false"/>
 <XsdMapEntry type="PercentageType" xsdEncodingRules="iso19136_2007 gml33"
xmlPropertyType="gml:MeasureType" xmlType="gml:MeasureType" xmlTypeContent="simple"
xmlTypeNilReason="false"/>
 <XsdMapEntry type="QPressure" xsdEncodingRules="iso19136_2007 gml33"
xmlPropertyType="gml:MeasureType" xmlType="gml:MeasureType" xmlTypeContent="simple"
xmlTypeNilReason="false"/>
 <XsdMapEntry type="RVRDistance" xsdEncodingRules="iso19136_2007 gml33"
xmlPropertyType="gml:LengthType" xmlType="gml:LengthType" xmlTypeContent="simple"
xmlTypeNilReason="false"/>

Copyright © 2013 Open Geospatial Consortium.

46

 <XsdMapEntry type="ValPercentType" xsdEncodingRules="iso19136_2007 gml33"
xmlPropertyType="gml:MeasureType" xmlType="gml:MeasureType" xmlTypeContent="simple"
xmlTypeNilReason="false"/>
 <XsdMapEntry type="ValPressureType" xsdEncodingRules="iso19136_2007 gml33"
xmlPropertyType="gml:MeasureType" xmlType="gml:MeasureType" xmlTypeContent="simple"
xmlTypeNilReason="false"/>
 <XsdMapEntry type="PressureType" xsdEncodingRules="iso19136_2007 gml33"
xmlPropertyType="gml:MeasureType" xmlType="gml:MeasureType" xmlTypeContent="simple"
xmlTypeNilReason="false"/>
 <XsdMapEntry type="ValSpeedType" xsdEncodingRules="iso19136_2007 gml33"
xmlPropertyType="gml:SpeedType" xmlType="gml:SpeedType" xmlTypeContent="simple"
xmlTypeNilReason="false"/>
 <XsdMapEntry type="WindGust" xsdEncodingRules="iso19136_2007 gml33"
xmlPropertyType="gml:MeasureType" xmlType="gml:MeasureType" xmlTypeContent="simple"
xmlTypeNilReason="false"/>
 <XsdMapEntry type="WindSpeed" xsdEncodingRules="iso19136_2007 gml33"
xmlPropertyType="gml:MeasureType" xmlType="gml:MeasureType" xmlTypeContent="simple"
xmlTypeNilReason="false"/>
 <XsdMapEntry type="TemperatureType" xsdEncodingRules="iso19136_2007 gml33"
xmlPropertyType="gml:MeasureType" xmlType="gml:MeasureType" xmlTypeContent="simple"
xmlTypeNilReason="false"/>
 <XsdMapEntry type="WindDirection" xsdEncodingRules="iso19136_2007 gml33"
xmlPropertyType="gml:MeasureType" xmlType="gml:MeasureType" xmlTypeContent="simple"
xmlTypeNilReason="false"/>
 <!-- AIRM Geometry Types -->
 <XsdMapEntry type="Point" xsdEncodingRules="iso19136_2007 gml33" xmlType="aixm:PointType"
xmlElement="aixm:Point" xmlPropertyType="_P_" />
 <XsdMapEntry type="ElevatedPoint" xsdEncodingRules="iso19136_2007 gml33"
xmlType="aixm:ElevatedPointType" xmlElement="aixm:ElevatedPoint" xmlPropertyType="_P_" />
 <XsdMapEntry type="Curve" xsdEncodingRules="iso19136_2007 gml33" xmlType="aixm:CurveType"
xmlElement="aixm:Curve" xmlPropertyType="_P_" />
 <XsdMapEntry type="ElevatedCurve" xsdEncodingRules="iso19136_2007 gml33"
xmlType="aixm:ElevatedCurveType" xmlElement="aixm:ElevatedCurve" xmlPropertyType="_P_" />
 <XsdMapEntry type="Surface" xsdEncodingRules="iso19136_2007 gml33" xmlType="aixm:SurfaceType"
xmlElement="aixm:Surface" xmlPropertyType="_P_" />
 <XsdMapEntry type="ElevatedSurface" xsdEncodingRules="iso19136_2007 gml33"
xmlType="aixm:ElevatedSurfaceType" xmlElement="aixm:ElevatedSurface" xmlPropertyType="_P_" />
</xsdMapEntries>

JSON Schema target

<mapEntries>
 <MapEntry type="AbstractFeature" rule="*" targetType="ref:http://schemas.opengis.net/gsr/1.0/feature.json" param=""/>
 <MapEntry type="TM_PeriodDuration" rule="*" targetType="integer" param=""/>
 <MapEntry type="ExtentOf" rule="*" targetType="ref:http://schemas.opengis.net/gsr/1.0/geometry.json"
param="geometry"/>
 <!-- AIRM Value Types -->
 <MapEntry type="AshConcentration" rule="geoservices" targetType="number" param=""/>
 <MapEntry type="AshConcentration" rule="geoservices_extended"
targetType="ref:http://shapechange.net/tmp/ows9/json/measure.json" param=""/>
 <MapEntry type="HorizontalDistance" rule="geoservices" targetType="number" param=""/>
 <MapEntry type="HorizontalDistance" rule="geoservices_extended"
targetType="ref:http://shapechange.net/tmp/ows9/json/measure.json" param=""/>
 <MapEntry type="HorizontalVisibilityDistance" rule="geoservices" targetType="number" param=""/>
 <MapEntry type="HorizontalVisibilityDistance" rule="geoservices_extended"
targetType="ref:http://shapechange.net/tmp/ows9/json/measure.json" param=""/>
 <MapEntry type="VerticalVisibilityDistance" rule="geoservices" targetType="number" param=""/>
 <MapEntry type="VerticalVisibilityDistance" rule="geoservices_extended"
targetType="ref:http://shapechange.net/tmp/ows9/json/measure.json" param=""/>
 <MapEntry type="VerticalDistance" rule="geoservices" targetType="number" param=""/>
 <MapEntry type="VerticalDistance" rule="geoservices_extended"
targetType="ref:http://shapechange.net/tmp/ows9/json/measure.json" param=""/>
 <MapEntry type="DistanceType" rule="geoservices" targetType="number" param=""/>
 <MapEntry type="DistanceType" rule="geoservices_extended"
targetType="ref:http://shapechange.net/tmp/ows9/json/measure.json" param=""/>

Copyright © 2013 Open Geospatial Consortium.

47

 <MapEntry type="Depth" rule="geoservices" targetType="number" param=""/>
 <MapEntry type="Depth" rule="geoservices_extended"
targetType="ref:http://shapechange.net/tmp/ows9/json/measure.json" param=""/>
 <MapEntry type="PercentageType" rule="geoservices" targetType="number" param=""/>
 <MapEntry type="PercentageType" rule="geoservices_extended"
targetType="ref:http://shapechange.net/tmp/ows9/json/measure.json" param=""/>
 <MapEntry type="QPressure" rule="geoservices" targetType="number" param=""/>
 <MapEntry type="QPressure" rule="geoservices_extended"
targetType="ref:http://shapechange.net/tmp/ows9/json/measure.json" param=""/>
 <MapEntry type="RVRDistance" rule="geoservices" targetType="number" param=""/>
 <MapEntry type="RVRDistance" rule="geoservices_extended"
targetType="ref:http://shapechange.net/tmp/ows9/json/measure.json" param=""/>
 <MapEntry type="ValPercentType" rule="geoservices" targetType="number" param=""/>
 <MapEntry type="ValPercentType" rule="geoservices_extended"
targetType="ref:http://shapechange.net/tmp/ows9/json/measure.json" param=""/>
 <MapEntry type="ValPressureType" rule="geoservices" targetType="number" param=""/>
 <MapEntry type="ValPressureType" rule="geoservices_extended"
targetType="ref:http://shapechange.net/tmp/ows9/json/measure.json" param=""/>
 <MapEntry type="PressureType" rule="geoservices" targetType="number" param=""/>
 <MapEntry type="PressureType" rule="geoservices_extended"
targetType="ref:http://shapechange.net/tmp/ows9/json/measure.json" param=""/>
 <MapEntry type="ValSpeedType" rule="geoservices" targetType="number" param=""/>
 <MapEntry type="ValSpeedType" rule="geoservices_extended"
targetType="ref:http://shapechange.net/tmp/ows9/json/measure.json" param=""/>
 <MapEntry type="WindGust" rule="geoservices" targetType="number" param=""/>
 <MapEntry type="WindGust" rule="geoservices_extended"
targetType="ref:http://shapechange.net/tmp/ows9/json/measure.json" param=""/>
 <MapEntry type="WindSpeed" rule="geoservices" targetType="number" param=""/>
 <MapEntry type="WindSpeed" rule="geoservices_extended"
targetType="ref:http://shapechange.net/tmp/ows9/json/measure.json" param=""/>
 <MapEntry type="TemperatureType" rule="geoservices" targetType="number" param=""/>
 <MapEntry type="TemperatureType" rule="geoservices_extended"
targetType="ref:http://shapechange.net/tmp/ows9/json/measure.json" param=""/>
 <MapEntry type="WindDirection" rule="geoservices" targetType="number" param=""/>
 <MapEntry type="WindDirection" rule="geoservices_extended"
targetType="ref:http://shapechange.net/tmp/ows9/json/measure.json" param=""/>
 <!-- AIRM Geometry Types, should be to AIXM types, but we do not have them, so this is the best we can do -->
 <MapEntry type="Point" rule="*" targetType="ref:http://schemas.opengis.net/gsr/1.0/point.json" param="geometry"/>
 <MapEntry type="ElevatedPoint" rule="*" targetType="ref:http://schemas.opengis.net/gsr/1.0/point.json"
param="geometry"/>
 <MapEntry type="Curve" rule="*" targetType="ref:http://schemas.opengis.net/gsr/1.0/polyline.json" param="geometry"/>
 <MapEntry type="ElevatedCurve" rule="*" targetType="ref:http://schemas.opengis.net/gsr/1.0/polyline.json"
param="geometry"/>
 <MapEntry type="Surface" rule="*" targetType="ref:http://schemas.opengis.net/gsr/1.0/polygon.json"
param="geometry"/>
 <MapEntry type="ElevatedSurface" rule="*" targetType="ref:http://schemas.opengis.net/gsr/1.0/polygon.json"
param="geometry"/>
</mapEntries>

