

Open Geospatial Consortium

Publication Date: 2014-04-15

Approval Date: 2014-03-30

Submission Date: 2012-10-1

External identifier of this OGC® document: http://www.opengis.net/doc/er/ows7/schema-automation

Reference number of this document: OGC 10-088r3

Category: Engineering Report

Editor: Clemens Portele

OGC® OWS-7 Schema Automation Engineering Report

Copyright © 2014 Open Geospatial Consortium.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document is an OGC Public
Engineering Report created as a deliverable in an OGC Interoperability Initiative
and is not an official position of the OGC membership. This document is distributed
for review and comment. It is subject to change without notice and may not be
referred to as an OGC Standard. Further, any OGC Engineering Report should not
be referenced as required or mandatory technology in procurements.

Document type: OGC® Public Engineering Report
Document subtype: NA
Document stage: Approved for public release
Document language: English

OGC 10-088r3

ii Copyright © 2014 Open Geospatial Consortium

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this
Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable,
and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be
construed to be a waiver of any rights or remedies available to it.

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium iii

Abstract

The capabilities of OGC’s KML 2.2 as a format for exchange and visualization of U.S.
National System for Geospatial Intelligence (NSG) Application Schema (NAS) data is
explored.

Keywords

ogcdoc, ows7, nas, kml

Preface

Suggested additions, changes, and comments on this draft report are welcome and
encouraged. Such suggestions may be submitted by email message or by making
suggested changes in an edited copy of this document.

Forward

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

OGC 10-088r3

iv Copyright © 2014 Open Geospatial Consortium

Contents Page

1	
 Introduction ... 1	

1.1	
 Scope .. 1	

1.2	
 Document contributor contact points ... 2	

1.3	
 Revision history .. 2	

1.4	
 Future work .. 2	

2	
 References ... 3	

3	
 Terms and definitions ... 4	

4	
 Conventions .. 4	

4.1	
 Abbreviated terms .. 4	

4.2	
 UML notation ... 4	

5	
 KML as a format for exchange and visualization of NAS data 5	

5.1	
 Identifying the appropriate representation of NAS data in KML 5	

5.1.1	
 Encoding Options ... 5	

5.1.2	
 Behaviour in KML clients ... 8	

5.1.3	
 Conclusions .. 13	

5.2	
 KML encoding rule .. 13	

5.2.1	
 General concepts .. 13	

5.2.2	
 Display of tooltips .. 14	

5.3	
 Role of styles .. 15	

5.3.1	
 Styles in the context of OGC Portrayal Services ... 15	

5.3.2	
 Styles and portrayal registries in the context of KML data 15	

5.4	
 Implementation ... 16	

5.4.1	
 ShapeChange .. 16	

5.4.2	
 Implementation in ShapeChange ... 16	

5.5	
 Accessing KML data from a Web Feature Service .. 19	

5.5.1	
 Introduction .. 19	

5.5.2	
 Accessing large datasets .. 19	

5.5.3	
 Representation in the “Places” tree in the Google Earth client 20	

6	
 Constraints expressed using Schematron .. 23	

6.1	
 Overview .. 23	

6.2	
 Comprehensive conversion rules OCL to Schematron 23	

6.3	
 Implementation in ShapeChange .. 23	

6.4	
 Validation using the NAS model .. 24	

6.5	
 Extensions implemented during the validation process 24	

6.5.1	
 Nested error messages .. 24	

6.5.2	
 Identity comparisons between items of non-basic type 25	

6.5.3	
 Inheritance of constraints ... 25	

6.5.4	
 Support of types derived from ISO 19103 basic types 26	

6.5.5	
 Mapping of enumeration and codelist values .. 26	

6.6	
 Issues found in need of explanation during validation 28	

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium v

6.6.1	
 Uses of the size operator .. 28	

6.6.2	
 The use of isEmpty, notEmpty ... 28	

6.6.3	
 Testing collections of objects ... 28	

6.6.4	
 The use of isUnique ... 29	

6.6.5	
 The effects of navigabilty .. 29	

6.6.6	
 Equivalence and antivalence .. 30	

6.6.7	
 String matching and REGEX language ... 30	

6.6.8	
 The necessity of guard preconditions .. 31	

6.7	
 Open issues ... 31	

6.7.1	
 Full treatment of xlink:href .. 31	

6.7.2	
 Implementation of let expressions ... 33	

6.7.3	
 Consideration of enclosed ISO 19139 encodings .. 33	

6.7.4	
 The treatment of nillable attributes with cardinality > 1 33	

6.7.5	
 The use of XPath 2.0 functionality .. 36	

A.1	
 General encoding requirements .. 38	

A.1.1	
 Application schemas ... 38	

A.1.2	
 Character repertoire and languages .. 39	

A.1.3	
 Exchange metadata ... 39	

A.1.4	
 Dataset and object identification .. 39	

A.1.5	
 Update mechanism ... 39	

A.2	
 Input data structure ... 39	

A.3	
 Output data structure .. 39	

A.4	
 Conversion rules ... 40	

A.4.1	
 Instance conversion rules ... 40	

A.4.2	
 Schema conversion rules .. 43	

A.5	
 Example <informative> .. 44	

B.1	
 Translation principles ... 49	

B.2	
 Configuring the matches() operation .. 54	

B.3	
 Configuring xlink:href reference syntax .. 55	

B.4	
 Examples .. 56	

B.4.1	
 Complex example with combined logic and forAll() iterators 56	

B.4.2	
 Translating isUnique() .. 59	

OGC® Public Engineering Report OGC 10-088r2

Copyright © 2014 Open Geospatial Consortium 1

OGC® OWS-7 Schema Automation Engineering Report

1 Introduction

1.1 Scope

One work item of the OWS-7 initiative was to further the development and
interoperability of application schemas. Using the U.S. National System for Geospatial
Intelligence (NSG) Application Schema (NAS) as a case study two improvements to the
automation of schema development have been addressed:

- The capabilities of OGC’s KML 2.2 as a format for exchange and visualization of
NAS data were explored. This involved several sub-topics:

o exploring how NAS-conformant data could be represented in KML to
achieve an appropriate visualization in KML clients, in particular Google
Earth;

o defining a KML encoding rule for a UML application schema and its
accompanying GML-based schema to allow for an automated conversion
of GML instance data into KML data;

o enhancing ShapeChange by implementing the KML encoding rule as an
XSLT stylesheet that can be applied to GML instance documents of the
same application schema to generate a KML document;

o testing the approach with NAS-conformant data accessed via the WFS
interface as either GML 3.2 or KML 2.2 data

- OWS-5 and OWS-6 have started to investigate the use of Schematron to represent
OCL constraints from the application schema to enable the validation of GML
instance data beyond the syntactic validation possible using XML Schema. It was
found that the general approach was feasible and useful. Building upon these results,
OWS-7 aimed at a more comprehensive approach. The following items were
addressed:

o OCL 2.2 constraints have been added to the NAS UML model;

o comprehensive rules for the conversion of OCL constraints to Schematron
assertions have been developed;

o these conversion rules have been implemented in ShapeChange;

OGC 10-088r3

2

Copyright © 2014 Open Geospatial Consortium

o the conversion rules have been tested using the enriched UML model of
the NAS.

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

1.2 Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Name Organization
Clemens Portele (editor) interactive instruments GmbH
Reinhard Erstling interactive instruments GmbH
Remi Koblenzer interactive instruments GmbH
Dave Wesloh NGA
Paul Birkel MITRE

1.3 Revision history

Date Release Editor Primary
clauses

modified

Description

2010-05-27 0.0.1 C. Portele all
2010-06-10 0.0.2 C. Portele

P. Birkel
R. Erstling

Future work
5.3
5.4
5.5
Annex B

2010-10-21 0.0.3 R. Erstling 1.4, 6.4,
6.5, 6.6, 6.7,
B.1, B.4

1.4 Future work

The following items for future work have been identified:

- Display of tooltips: If one wishes to use JavaScript scripts in a KML Balloon it is
currently required to provide the complete HTML document. This is usually
undesirable, so it would be useful, if KML would support child elements to a
BalloonStyle to specify, for example, styles and scripts. See 5.2.2.

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 3

- Encoding rule improvements to support fine-grained styles. See 5.3.2.

- The role of portrayal registries for both KML and SLD needs further investigation.
See 5.3.2.

- Investigation of performance improvements: The encoding of KML data directly
from the source data without generating GML as an intermediate step as well as the
caching of data in KMZ files. See 5.5.

- In the OCL-to-Schematron translation the treatment of Xlink-based references may be
improved. As currently implemented, the reference targets have to be contained in the
document being tested. It would be useful to investigate, how reference targets in
external documents might be drawn on. See 6.7.1 for a full discussion.

- There are language elements in OCL, which are not really necessary, but greatly
increase the comfort in use. These have not been covered in the implementation. The
let construct of OCL (see 6.7.2) and many operations and iterators of OCL’s build-in
types belong to this class.

- Full support for ISO 19139 encoding rules should be added to the OCL-to-
Schematron translation to support embedded metadata. See 6.7.3.

- There had been a discussion on how to best represent nillable data, which has
cardinality > 1. See 6.7.4 for a full discussion.

- The XPath 1.0 language, which is the basis of the ISO Schematron standard, has a
rather limited functionality, which sets hard limits on the OCL, which can effectively
be translated. XPath 2.0 does not have these limitations, but is currently not part of
Schematron. See 6.7.5 for that.

2 References

The following documents are referenced in this document. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply. For
undated references, the latest edition of the normative document referred to applies.

Geography Markup Language, Version 3.2, Open Geospatial Consortium (OGC)

ISO/TS 19103:2005, Geographic Information – Conceptual Schema Language

ISO 19109:2004, Geographic Information – Rules for Application Schemas

ISO/IEC 19757-3:2006 Information technology — Document Schema Definition
Languages (DSDL) — Part 3: Rule-based validation — Schematron

KML, Version 2.2, Open Geospatial Consortium (OGC)

OMG Object Constraint Language, Version 2.2, OMG Document Number formal/2010-

OGC 10-088r3

4

Copyright © 2014 Open Geospatial Consortium

02-01

W3C XML Schema Part 1: Structures Second Edition. W3C Recommendation (28
October 2004)

W3C XML Schema Part 2: Datatypes Second Edition. W3C Recommendation (28
October 2004)

3 Terms and definitions

For the purposes of this report, the definitions specified in the documents listed in Clause
2 apply.

4 Conventions

4.1 Abbreviated terms

GML Geography Markup Language

ISO International Organization for Standardization

KML formerly: Keyhole Markup Language

NGA National Geospatial-Intelligence Agency

OCL Object Constraint Language

OGC Open Geospatial Consortium

OWS OGC Web Services

UML Unified Modeling Language

WFS Web Feature Service

XML eXtended Markup Language

XPath XML Path Language

4.2 UML notation

Diagrams that appear in this standard are presented using the Unified Modeling Language
(UML) static structure diagram, as described in ISO/TS 19103.

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 5

5 KML as a format for exchange and visualization of NAS data

5.1 Identifying the appropriate representation of NAS data in KML

5.1.1 Encoding Options

5.1.1.1 Overview

KML 2.2 offers the kml:ExtendedData element that enables the inclusion of additional
data elements in a KML placemark. The kml:ExtendedData element offers three
mechanisms for adding user-defined data to a feature. These mechanisms are:

- adding arbitrary untyped name/value data pairs using the kml:Data element

- adding instances of typed fields defined in the user-defined kml:Schema element, plus
additional elements in some other namespace

- including any XML content defined in namespaces other than the KML namespace

A simple KML file with three polygon features was used to test which extended data is
presented in clients - and how. Each option was encoded in one feature as discussed
below.

5.1.1.2 Building-1: Using kml:Data

In this example, five data elements are included in the ExtendedData element. These are
just name-value-pairs without any differentiation of types. An optional display name can
be provided with HTML tag to show how the data element should be presented. The use
of the CDATA wrapper ensures that HTML formatting elements are preserved for use by
the client inside of the KML placemark “balloon” presentation.

<ExtendedData>
 <Data name="type">

<displayName><![CDATA[Type]]></displayName>
<value>

<![CDATA[

Building
]]>

</value>
</Data>

 <Data name="height">
<displayName><![CDATA[Height]]></displayName>
<value>54 ft</value>

</Data>
 <Data name="stories">

<displayName><![CDATA[Stories]]></displayName>
<value>3</value>

</Data>
 <Data name="building type">

<displayName>
<![CDATA[

OGC 10-088r3

6

Copyright © 2014 Open Geospatial Consortium

Educational facility type

]]>

</displayName>
<value>

<![CDATA[
School
Building-3
]]>

</value>
</Data>

</ExtendedData>

Advantages:

- no schema required

- easy to parse

- display information available for KML clients (CDATA-wrapped)

Disadvantages:

- only simple types

- display names have to be repeated for every feature instance

- no type information

5.1.1.3 Building-2: Test feature using kml:Schema and kml:SchemaData

Similar four data elements to the ones in Bulding-1 above have been specified, in
addition some elements which are in the substitution group of kml:SchemaDataExtension
(in the instance) or kml:SchemaExtension (in the schema description) are added. These
are just name-value-pairs without any differentiation of types. An optional display name
can be provided with HTML tag to show how the data element should be presented.

<ExtendedData>
 <SchemaData schemaUrl="#BuildingTypeId"

xmlns:test="http://www.opengis.net/ows7/test">
 <SimpleData name="type">

<![CDATA[
Building
]]>

</SimpleData>
 <SimpleData name="height">54 ft</SimpleData>
 <SimpleData name="stories">3</SimpleData>
 <SimpleData name="building type">

<![CDATA[
School
Building-3
]]>

</SimpleData>
 <test:element1>Test</test:element1>
 <test:element2 attribut="test"/>

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 7

 <test:element3>
<test:element4 uom="m">45.2</test:element4>

</test:element3>
 <test:ref>http://www.opengeospatial.org/</test:ref>
 </SchemaData>
</ExtendedData>

where the schema referenced from schemaUrl is specified as

<Schema name="Building" id="BuildingTypeId"

 xmlns:test="http://www.opengis.net/ows7/test">
 <SimpleField type="string" name="type">

<displayName><![CDATA[Type]]></displayName>
</SimpleField>

 <SimpleField type="string" name="height">
<displayName><![CDATA[Height]]></displayName>

</SimpleField>
 <SimpleField type="double" name="stories">

<displayName><![CDATA[Stories]]></displayName>
</SimpleField>

 <SimpleField type="string" name="building type">
<displayName>

<![CDATA[
Educational

facility type
]]>

</displayName>
</SimpleField>

 <test:TestField name="element1"/>
 <test:TestField name="element2"/>
 <test:TestField name="element3"/>
 <test:TestField name="ref"/>
</Schema>

Advantages:

- no external schema required

- display information only needs to be provided once (in kml:Schema)

- easy to parse

- display information available for KML clients (CDATA-wrapped)

- can be extended

Disadvantages:

- only simple types

- limited type information

5.1.1.4 Building-3: Test feature using predefined elements

Finally, we encoded XML elements from an existing schema in an instance:

<ExtendedData xmlns:test="http://www.opengis.net/ows7/test">
 <test:element1>Test</test:element1>

OGC 10-088r3

8

Copyright © 2014 Open Geospatial Consortium

 <test:element2 attribute="test"/>
 <test:element3>

<test:element4 uom="m">45.2</test:element4>
<test:element5>some text</test:element5>

</test:element3>
 <test:ref>http://www.opengeospatial.org/</test:ref>
</ExtendedData>

Advantages:

- existing schema can be reused

- structured can be encoded properly

Disadvantages:

- requires additional schema

- no generic display information available for KML clients

5.1.2 Behaviour in KML clients

5.1.2.1 Overview

This section illustrates how the different kinds of extended data sections are visualised in
selected KML clients.

5.1.2.2 Google Earth

Google Earth displays all information that is in elements in the KML namespace
(kml:Data and kml:Schema/kml:SimpleData). It uses the displayName information. All
information in other namespaces is ignored.

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 9

Building-1:

Building-2:

OGC 10-088r3

10 Copyright © 2014 Open Geospatial Consortium

Building-3:

5.1.2.3 Gaia

Gaia ignores the extended data information including in its info tool. Gaia also seems to
ignore the style information.

Building-1:

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 11

Building-2:

Building-3:

5.1.2.4 ArcGIS Explorer

ArcGIS Explorer uses the style information and displays kml:Data elements (@name and
value pairs in a table). Other extended data options are not displayed.

OGC 10-088r3

12 Copyright © 2014 Open Geospatial Consortium

Building-1:

Building-2:

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 13

Building-3:

5.1.3 Conclusions

Use of XML elements in other namespaces is not supported by any existing client and
should be avoided for the encoding of UML application schema (e.g., NAS-conformant)
instance data as it is the goal that the data should be viewable in standard KML clients, in
particular Google Earth.

The advantage of kml:SchemaData over kml:Data is less repetition of styling information
(relevant if a significant number of features with a lot of extended data is encoded).

5.2 KML encoding rule

5.2.1 General concepts

Based to conclusions of the tests above, the KML encoding rule in Annex A has been
specified.

The mapping of data conforming to an ISO 19109 conformant UML Application Schema
to a KML representation is based on a set of encoding rules. These encoding rules are
compliant with the rules for KML and ISO 19118.

Compared to the GML encoding rule specified in GML 3.2 Annex E, the KML encoding
rule is different, which reflects the different characteristics of GML and KML. In
particular, no XML Schema description is derived for the KML encoding.

The rules listed in Annex A aim at an automatic mapping from an ISO 19109 and
ISO/TS 19103 conformant UML application schema to KML. As a result of this
automation, the resulting KML will not make full use of the capabilities of KML.

OGC 10-088r3

14 Copyright © 2014 Open Geospatial Consortium

The rules for the instance conversion, as currently documented in Annex A, are worded
so that GML data is assumed as input. This reflects the planned use of KML as output of
a Web Feature Service, which always has to support GML, too.

The schema encoding rules are based on the general idea that all features conforming to a
feature type in the application schema are represented as KML placemarks and additional
information is represented in kml:ExtendedData elements.

The encoding rule has been designed with the goal to maximize the use of standard
capabilities of KML 2.2 and of existing clients with a focus on Google Earth as the
standard client for using KML data. Extensions not supported by Google Earth or other
clients have been avoided, whenever possible.

5.2.2 Display of tooltips

There are differences in how balloons are styled in different clients and also how the
same client behaves on different operating systems.

A particular issue that was recognized during testing was that tooltips are rendered
differently in Google Earth 5 on OS X and on Windows – even though WebKit is used as
the rendering engine on both platforms. The behaviour in most current web browsers
seems to be to preserve blanks and line breaks (e.g. in Chrome on OS X and Windows,
Safari on OS X, IE on Windows); only Firefox on OS X preserved blanks, but no line
breaks. On OS X, blanks and line breaks are preserved, but not on Windows, which
makes longer documentation fields hard to read.

A possibility to overcome this issue would be creating custom tooltips. This would
require the use of JavaScript and CSS. This is possible in KML in general, but would
require that the complete HTML document shown in the balloon is specified in the
BalloonStyle element in the referenced style. I.e., this would require that the tables which
a rendered from the elements in kml:ExtendedData would have to be explicitly processed
in the BalloonStyle, which has severe disadvantages:

- More custom code to create and manage, less out-of-the-box behaviour (and no
automatic benefit from further development of KML client software as its behaviour
would be overridden).

- All styles would become type dependent and would have to be created and managed
as part of the encoding rule. This would make the entire process more fragile and also
would require that other styling information like colours become part of the UML
model - something that seems counterproductive.

- The typical default behaviour just omits rows where the KML instance has no value.
This is not so easy to accomplish, if the encoding rule would have to create complete
balloon HTML documents.

Therefore, this has not been considered an option.

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 15

Another approach would be a (future) KML extension that would add child elements to a
BalloonStyle for styles and scripts.

5.3 Role of styles

5.3.1 Styles in the context of OGC Portrayal Services

OGC Portrayal Services rely on a portrayal registry where portrayal rules are represented
using SLD & SE. These are accessed by web services implementing the OGC WMS/SLD
interface.

There is no standard for the service interface to access items in the portrayal registry. In
the aviation thread of OWS-7 the CSW ebRIM interface was used, but any other interface
or implementation could probably be used as well as long as it supports the following
requirements:

- Definitions of layers and their styles can be requested in a <StyledLayerDescriptor>
representation as specified by WMS/SLD.

- A set of layers and styles required in a single GetMap request can be accessed from
the registry using a single URL.

- Once published, such URLs must remain active forever - or at least as long as anyone
might reference the particular set of layers/styles.

5.3.2 Styles and portrayal registries in the context of KML data

KML does not have a concept of layers and styles associated with these layers. Instead,
each feature references the style in which it should be rendered.

This results in a different way how styles work in SLD/SE and KML. In SLD/SE a filter
identifies the features of a feature type to which a specific style applies (data and
portrayal are separated). In KML, however, the applicable style is part of the feature
itself. In the encoding rule in Annex A a relatively simple mechanism is supported: all
features of a particular feature type are rendered using the same style. This may be too
simple in many cases and might require a more refined mechanism in the future, e.g. to
distinguish in the symbology different building functions or conditions.

As rendering of KML data usually is done by the client (and not the server as in the case
of an OGC Portrayal Service) there are also functional differences. In particular, KML
styling natively supports a different rendering of features that are selected/highlighted by
the user.

In principle, the requirements on a portrayal registry supporting KML data are similar to
a portrayal registry supporting OGC Portrayal Services:

- Definitions of styles can be requested in a <kml> representation with <Style> and/or
<StyleMap> child elements as specified by KML.

OGC 10-088r3

16 Copyright © 2014 Open Geospatial Consortium

- Styles can be accessed from the registry using a URL with a fragment identifier to
reference the particular Style/StyleMap element in the KML document.

- Once published, such URLs must remain active forever - or at least as long as anyone
might reference the particular style(s).

In general, it would be optimal, if the same style resources could be used for OGC
Portrayal Services and KML data, i.e. KML and SLD/SE would simply be different
representations of the same resource. There are, however, a few open issues, which are
items for future work:

- KML features references styles, OGC Portrayal Service requests reference SLD
(containing a set of layers with one or more styles). I.e., these are different resources
that would need to be managed consistently in the registry.

- The current KML encoding rule does not support different styles per feature type. A
similar filtering mechanism as in SLD/SE would need to be supported by the
encoding rule to achieve the styling of features on the same level of granularity.

5.4 Implementation

5.4.1 ShapeChange

ShapeChange is a framework for processing UML models containing application
schemas according to ISO 19109. Initially the main output of ShapeChange were GML
application schemas, automatically derived from the UML model. While this is still a key
output of ShapeChange, additional outputs have been added over time including feature
catalogues, code list dictionaries, constraint representations, etc.

ShapeChange is implemented in Java and the core framework is available under the Gnu
Public License.

5.4.2 Implementation in ShapeChange

A new target output class has been implemented in ShapeChange that implements the
KML encoding rule so that an XSLT stylesheet is derived from the application schema
that - applied to GML data of the same application schema - generates a KML document.

A shortened sample of the XSLT stylesheet generated by ShapeChange for the
BuildingGeopoint feature type of the NAS OWS-7 profile used in the example in Annex
A:

<stylesheet
xmlns="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:kml="http://www.opengis.net/kml/2.2"
xmlns:tds="http://metadata.dod.mil/mdr/ns/GSIP/2.0/tds/2.0"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xs="http://www.w3.org/2001/XMLSchema"

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 17

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0">

 <output indent="yes" method="xml"/>
 <template match="/">
 <kml xmlns="http://www.opengis.net/kml/2.2">
 <Document>
 <open>0</open>
 <if xmlns="http://www.w3.org/1999/XSL/Transform"

 test="//tds:BuildingGeosurface">
 <Schema xmlns="http://www.opengis.net/kml/2.2"

id="BuildingGeosurfaceSchema">
 <SimpleField name="type" type="string">
 <displayName>

<![CDATA[
<a href='https://nsgreg.nga.mil/as/view?i=100083'

title='Building Geospatial Surface: A free-standing self-
supporting construction that is roofed, usually walled, and is
intended for human occupancy (for example: a place of work or
recreation) and/or habitation. [desc] For example, a dormitory, a
bank, and a restaurant.'><big><i>Building Geospatial
Surface</i></big>

]]>
</displayName>

 </SimpleField>
 <SimpleField name="conditionOfFacility" type="string">
 <displayName>

<![CDATA[
<a href='https://nsgreg.nga.mil/as/view?i=100083'

title='Condition of Facility: The state of planning,
construction, repair, and/or maintenance of the structures and/or
equipment comprising a facility and/or located at a site, as a
whole.'><i>Condition of Facility</i>

]]>
</displayName>

 </SimpleField>
 ...
 <SimpleField name="uniqueEntityIdentifier" type="string">
 <displayName>

<![CDATA[
<a href='https://nsgreg.nga.mil/as/view?i=100083'

title='Unique Entity Identifier: The globally unique and
persistent identifier of an entity (for example: feature or
event) instance as specified by a Uniform Resource Name (URN) in
accordance with the Internet Engineering Task Force (IETF)
RFC2396 and RFC2141. [desc] It is based on the Uniform Resource
Identifier (URI), a compact string of characters for identifying
an abstract or physical resource. The term Uniform Resource Name
(URN) refers to the subset of URI that are required to remain
globally unique and persistent even when the resource ceases to
exist or becomes unavailable. The URN is drawn from one of a set
of defined namespaces, each of which has its own set name
structure and assignment procedures.'><i>Unique Entity
Identifier</i>

]]>
</displayName>

 </SimpleField>
 </Schema>
 </if>
 ...
 <!--Call styling template for each feature type-->
 <for-each xmlns="http://www.w3.org/1999/XSL/Transform"

select="//tds:BuildingGeosurface">
 <call-template name="BuildingGeosurface"/>
 </for-each>

OGC 10-088r3

18 Copyright © 2014 Open Geospatial Consortium

 ...
 </Document>
 </kml>
 </template>
 <!--Styling templates for each feature type-->
 <template name="BuildingGeosurface">
 <Placemark xmlns="http://www.opengis.net/kml/2.2">
 <attribute xmlns="http://www.w3.org/1999/XSL/Transform" name="id">
 <value-of select="@gml:id"/>
 </attribute>
 <choose xmlns="http://www.w3.org/1999/XSL/Transform">
 <when test="tds:geoNameCollection.memberGeoName.fullName">
 <name xmlns="http://www.opengis.net/kml/2.2">
 <value-of xmlns="http://www.w3.org/1999/XSL/Transform"

select="./tds:geoNameCollection.memberGeoName.fullName[1]"/>
 </name>
 </when>
 <when test="gml:name">
 <name xmlns="http://www.opengis.net/kml/2.2">
 <value-of xmlns="http://www.w3.org/1999/XSL/Transform"

select="./gml:name[1]"/>
 </name>
 </when>
 <otherwise>
 <name xmlns="http://www.opengis.net/kml/2.2">Building Geospatial
Surface</name>
 </otherwise>
 </choose>
 <visibility>1</visibility>
 <if xmlns="http://www.w3.org/1999/XSL/Transform"

test="tds:geointAssuranceMetadata.currencyDateTime">
 <TimeStamp xmlns="http://www.opengis.net/kml/2.2">
 <when>
 <value-of xmlns="http://www.w3.org/1999/XSL/Transform"

select="./tds:geointAssuranceMetadata.currencyDateTime[1]"/>
 </when>
 </TimeStamp>
 </if>
 <styleUrl>http://portele.de/styles.kml#s1</styleUrl>
 <ExtendedData>
 <SchemaData schemaUrl="#BuildingGeosurfaceSchema">
 <SimpleData name="type">
 <choose xmlns="http://www.w3.org/1999/XSL/Transform">
 <when test="gml:description">
 <value-of select="./gml:description"/>
 </when>
 <otherwise>A free-standing self-supporting construction that is
roofed, usually walled, and is intended for human occupancy (for example: a
place of work or recreation) and/or habitation. [desc] For example, a
dormitory, a bank, and a restaurant.</otherwise>
 </choose>
 </SimpleData>
 <if xmlns="http://www.w3.org/1999/XSL/Transform"

test="(count(tds:conditionOfFacility) -
count(tds:conditionOfFacility[@xsi:nil='true']))>0">

 <SimpleData xmlns="http://www.opengis.net/kml/2.2"
name="conditionOfFacility">

 <for-each xmlns="http://www.w3.org/1999/XSL/Transform"
select="tds:conditionOfFacility">

 <if test="position()>1"><![CDATA[<hr/>]]></if>
 <value-of select="."/>
 </for-each>
 </SimpleData>
 </if>

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 19

 ...
 <if xmlns="http://www.w3.org/1999/XSL/Transform"

test="(count(tds:uniqueEntityIdentifier) -
count(tds:uniqueEntityIdentifier[@xsi:nil='true']))>0">

 <SimpleData xmlns="http://www.opengis.net/kml/2.2"
name="uniqueEntityIdentifier">

 <for-each xmlns="http://www.w3.org/1999/XSL/Transform"
select="tds:uniqueEntityIdentifier">

 <if test="position()>1"><![CDATA[<hr/>]]></if>
 <value-of select="."/>
 </for-each>
 </SimpleData>
 </if>
 </SchemaData>
 </ExtendedData>
 <apply-templates xmlns="http://www.w3.org/1999/XSL/Transform"

select="*/gml:Polygon|*/gml:LineString|*/gml:Point"/>
 </Placemark>
 </template>
 ...
</stylesheet>

5.5 Accessing KML data from a Web Feature Service

5.5.1 Introduction

The Web Feature Service interface supports a simple mechanism to access another output
format than the default GML encoding. Using a different MIME type advertised in the
service metadata in the outputFormat parameter returns the selected features not in GML,
but in the requested format. For KML output, the applicable MIME type is

application/vnd.google-earth.kmz

which returns the KML data in a compressed archive.

Example http://services.interactive-instruments.de/ows7-kml/cgi-bin/ows7dev-kml?
 version=1.1.0&
 service=WFS&
 request=getfeature&
 typename=tds:BuildingGeopoint,tds:BuildingGeosurface,tds:CampGeosurface&
 outputformat=application/vnd.google-earth.kmz&
 bbox=18.53,-72.32,18.57,-72.28

5.5.2 Accessing large datasets

For small datasets, links like the one shown above may be added directly in Google
Earth. However, for datasets with a larger area and a large number of features this
quickly becomes a problem as Google Earth will access a large volume of data and not
provide the performance / user experience expected by the user.

The natural mechanism provided by KML to address such issues are KML regions. That
is, the area of the dataset is tesselated into smaller regions which are only loaded, if the
region is visible in Google Earth in a certain size range. I.e., instead of registering a
GetFeature request URL as in the example above, a KML document is provided that
contains the regions, each with a KML network link to a WFS GetFeature request for the
features in the region.

OGC 10-088r3

20 Copyright © 2014 Open Geospatial Consortium

This approach also introduces potential performance issues (or requires a high-
performance WFS). If the regions are small then often many will be visible at the same
time, resulting in potentially a large number of parallel requests to the WFS. On the other
hand, if the regions are large, a single request may take too long and degrade the user
experience.

5.5.3 Representation in the “Places” tree in the Google Earth client

The Topographic Data Store (TDS) application schema consists of a large number of
feature types (>100). Typically, a user may simply want to select a subset of all feature
types to be visible. Considering that the TDS contains a two-level package hierarchy of
the features types, the natural solution would be mapping the UML packages to KML
folders. A shorted example of the resulting KML structure:

<kml xmlns="http://www.opengis.net/kml/2.2">
 <Document>
 <name>NAS Profile OWS-7 Haiti Geodatabase Schema</name>
 <visibility>1</visibility>
 <open>1</open>
 <description>This geodatabase schema defines the logical content for
Topographic Feature Data in the U.S. National System for Geospatial-
Intelligence (NSG). [desc] It specifically addresses selected ISO standards for
modeling features and surfaces (coverages), drawing on relevant military
standards, specifications and profiles established by the Defence Geospatial
Information Working Group (DGIWG).</description>
 <Snippet maxLines="0"/>
 <Folder>
 <name>Cultural</name>
 <visibility>1</visibility>
 <open>0</open>
 <description>Information about features on the landscape that have been
constructed by man. [desc] Excepted are the view groups 'Transportation',
'Ports and Harbours', 'Population', and their related features.</description>
 <Snippet maxLines="0"/>
 <Folder>
 <name>Power Generation and Transmission Facilities</name>
 <visibility>1</visibility>
 <open>0</open>
 <description>The buildings, non-building structures, and equipment
necessary for the production and distribution of electric power. [desc] The
power plant converts fuel to mechanical energy, which drives generators and
produces electricity. The main methods of generation are thermal energy (using
steam driven turbines), hydroelectric (using water pressure to drive turbo
generators) and internal combustion (direct conversion of mechanical to
electrical energy). The power distribution grid starts at the power plant and
ends with the subscriber. Networks of power transmission lines, carried on
transmission line pylons, transmit the electricity from the power plants
through the substations and transformer yards to the customer.</description>
 <Snippet maxLines="0"/>
 <NetworkLink>
 <name>Tiles</name>
 <visibility>1</visibility>
 <open>0</open>
 <refreshVisibility>0</refreshVisibility>
 <flyToView>0</flyToView>
 <Region>
 <LatLonAltBox>
 <north>20.0</north>
 <south>17.0</south>
 <east>-65.0</east>

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 21

 <west>-75.0</west>
 </LatLonAltBox>
 <Lod>
 <minLodPixels>512</minLodPixels>
 <maxLodPixels>-1</maxLodPixels>
 </Lod>
 </Region>
 <Link>
 <href>http://services.interactive-instruments.de/ows7-
kml/kml2/wfskml.php</href>
 <viewRefreshMode>onRegion</viewRefreshMode>

<viewFormat>BBOX=[bboxWest],[bboxSouth],[bboxEast],[bboxNorth]&LOOKAT=[look
atLon],[lookatLat],[lookatRange],[lookatTilt],[lookatHeading]&CAMERA=[camer
aLon],[cameraLat],[cameraAlt]&LOOKATTERR=[lookatTerrainLon],[lookatTerrainL
at],[lookatTerrainAlt]&VIEW=[horizFov],[vertFov],[horizPixels],[vertPixels]
,[terrainEnabled]</viewFormat>

<httpQuery>CLIENTINFO=[clientVersion];[kmlVersion];[clientName];[language]&
TYPENAME=tds:PowerStationGeosurface,tds:PowerStationGeopoint</httpQuery>
 </Link>
 </NetworkLink>
 </Folder>
 <Folder>
 <name>General Structures</name>
 <visibility>1</visibility>
 <open>0</open>
 <description>Buildings and their components, non-building structures
and man-made barriers (for example: walls and fences). [desc] They are
geographically widespread and may be located in rural, urban and/or industrial
settings.</description>
 <Snippet maxLines="0"/>
 <NetworkLink>
 <name>Tiles</name>
 <visibility>1</visibility>
 <open>0</open>
 <refreshVisibility>0</refreshVisibility>
 <flyToView>0</flyToView>
 <Region>
 <LatLonAltBox>
 <north>20.0</north>
 <south>17.0</south>
 <east>-65.0</east>
 <west>-75.0</west>
 </LatLonAltBox>
 <Lod>
 <minLodPixels>512</minLodPixels>
 <maxLodPixels>-1</maxLodPixels>
 </Lod>
 </Region>
 <Link>
 <href>http://services.interactive-instruments.de/ows7-
kml/kml2/wfskml.php</href>
 <viewRefreshMode>onRegion</viewRefreshMode>

<viewFormat>BBOX=[bboxWest],[bboxSouth],[bboxEast],[bboxNorth]&LOOKAT=[look
atLon],[lookatLat],[lookatRange],[lookatTilt],[lookatHeading]&CAMERA=[camer
aLon],[cameraLat],[cameraAlt]&LOOKATTERR=[lookatTerrainLon],[lookatTerrainL
at],[lookatTerrainAlt]&VIEW=[horizFov],[vertFov],[horizPixels],[vertPixels]
,[terrainEnabled]</viewFormat>

<httpQuery>CLIENTINFO=[clientVersion];[kmlVersion];[clientName];[language]&
TYPENAME=tds:BuildingGeopoint,tds:BuildingGeosurface</httpQuery>
 </Link>

OGC 10-088r3

22 Copyright © 2014 Open Geospatial Consortium

 </NetworkLink>
 </Folder>
 <Folder>
 <name>Burial Sites</name>
 <visibility>1</visibility>
 <open>0</open>
 <description>A structure within which a corpse is entombed or an area
of ground in which the dead are buried. Also includes the buildings and
services used in the preparation and disposal of the dead and related
activities. [desc] It may be either a site where remains of ancient
civilizations have been discovered or a modern day facility.</description>
 <Snippet maxLines="0"/>
 <NetworkLink>
 <name>Tiles</name>
 <visibility>1</visibility>
 <open>0</open>
 <refreshVisibility>0</refreshVisibility>
 <flyToView>0</flyToView>
 <Region>
 <LatLonAltBox>
 <north>20.0</north>
 <south>17.0</south>
 <east>-65.0</east>
 <west>-75.0</west>
 </LatLonAltBox>
 <Lod>
 <minLodPixels>512</minLodPixels>
 <maxLodPixels>-1</maxLodPixels>
 </Lod>
 </Region>
 <Link>
 <href>http://services.interactive-instruments.de/ows7-
kml/kml2/wfskml.php</href>
 <viewRefreshMode>onRegion</viewRefreshMode>

<viewFormat>BBOX=[bboxWest],[bboxSouth],[bboxEast],[bboxNorth]&LOOKAT=[look
atLon],[lookatLat],[lookatRange],[lookatTilt],[lookatHeading]&CAMERA=[camer
aLon],[cameraLat],[cameraAlt]&LOOKATTERR=[lookatTerrainLon],[lookatTerrainL
at],[lookatTerrainAlt]&VIEW=[horizFov],[vertFov],[horizPixels],[vertPixels]
,[terrainEnabled]</viewFormat>

<httpQuery>CLIENTINFO=[clientVersion];[kmlVersion];[clientName];[language]&
TYPENAME=tds:CemeteryGeopoint,tds:CemeteryGeosurface</httpQuery>
 </Link>
 </NetworkLink>
 </Folder>
 </Folder>

...
</Document>
</kml>

However, the results have not been satisfactory. With about 30 leaf packages this results
in many parallel connections to the WFS per region. Considering that in a single view
several regions may be visible this quickly turns into several hundreds of parallel WFS
requests for a single client. As a result this approach does not scale very well – or at least
it requires a high-performance server architecture.

There are several measures that could be made to considered to make this work in an
operational context, too:

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 23

- Higher aggregation. Instead of using the leaf packages, maybe just use the first
package layer to reduce the number of KML folders (ie. parallel requests)

- Improved implementation. For the testing purposes we converted the encoding rule
into XSLT scripts that convert a GML file from the WFS to its associated KML file.
Since the model is quite big this results in a large XSLT script (upto 2MB) which is
invoked in every request. While further improvements to the XSLT execution are
possible, for a real fit-for-purpose implementation the KML should be encoded
directly by the WFS instead of the "detour" via GML.

- For data that does not change too often, the KML for a tile/region could be stored as a
KMZ file so that only a file access is necessary. These KMZ files could be derived
directly from the WFS as a cache and placed in the file system by a periodic process,
if needed.

6 Constraints expressed using Schematron

6.1 Overview

OWS-5 and OWS-6 have started to investigate the use of Schematron to represent OCL
constraints from the application schema to enable the validation of GML data beyond the
syntactic validation using XML Schema. It was found that the general approach was
feasible and useful. Building upon these results, OWS-7 aimed at a more comprehensive
approach. The following items were addressed:

6.2 Comprehensive conversion rules OCL to Schematron

In contrast to the implementation in OWS-5 and OWS-6, which was based on the
recognition of a selected set of expression patterns, the new “OCL to Schematron”
compilation has been based on a general translation process. Basic OCL 2.2 language
constructs are transformed into equivalent schema constructs. Nevertheless, there are still
some limitations as

- the new ShapeChange OCL does not comprise the full language definition, and

- not everything, which can be written down in OCL, can be also expressed in XPath
1.0 and Schematron.

The conversion rules and the XPath1.0-caused limitations of the translation process are
documented in Annex B.

6.3 Implementation in ShapeChange

The existing XML Schema target output class that is implemented in ShapeChange has
been enhanced with the OCL to Schematron conversion rules. This makes use of an OCL
2.2 parser that recently has been implemented in ShapeChange. The XML Schema target

OGC 10-088r3

24 Copyright © 2014 Open Geospatial Consortium

class has been supplemented with additional code to perform the Schematron code
generation on the basis of an OCL syntax tree generated by the new OCL 2.2 parser.

6.4 Validation using the NAS model

The OCL-to-Schematron translation process has been extensively tested on the NAS
model. Following the necessary adaption of the already existing OCL constraints to the
OCL 2.2 standard, many new OCL constraints have been added. These new OCL
constraints cover nearly all of the cases in Annex B.

New requirements have been detected during the validation process and have been
implemented accordingly. The generated output documents, including error messages and
Schematron code have been carefully reviewed and discussed by the participants.

However, lacking corresponding GML instance documents of NAS data, neither the
XML Schema representation nor the Schematron code has been tested against data
instances.

6.5 Extensions implemented during the validation process

The validation process brought forward a couple of additional functional requirements.
Most of these could be treated by extending the implementation of the OCL-to-
Schematron translation in ShapeChange.

6.5.1 Nested error messages

The analysis of OCL invariants by the new OCL parser of ShapeChange frequently
generates more than one error message for one OCL invariant.

In the pre-OWS-7 version of ShapeChange this had been handled by first emitting an
introductory message identifying the constraint and the class context, followed by one or
more messages explaining the exact nature of the problems detected.

Example:

<Error>One	
 or	
 more	
 errors	
 encountered	
 in	
 OCL	
 constraint	
 in	
 class	
 Installation	
 :	
 LengthValMeta	
 ...</Error>	

<Error>Line/column(s)	
 6/362:	
 Unrecognized	
 syntax	
 [!]	
 encountered	
 and	
 ignored.</Error>	

<Error>Line/column(s)	
 6/483:	
 Identifier,	
 literal	
 or	
 bracketed	
 expression	
 expected	
 preceding	
 operator	
 "="	

token.	
 Invalid	
 assumed.</Error>	

<Error>Line/column(s)	
 6/485-­‐502:	
 Closing	
 bracket	
 ')'	
 expected	
 preceding	
 identifier	

"VoidNumValueReason"	
 token,	
 assumed.</Error>	

<Error>Line/column(s)	
 6/485-­‐502:	
 Extra	
 tokens	
 following	
 OCL	
 expression	
 ignored,	
 starting	
 with	
 'identifier	

"VoidNumValueReason"'.</Error>	

	

In analyzing the error reports from the OCL attached to NAS classes this format was
deemed not sufficiently comprehendible.

It was changed to a nested format as follows:

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 25

<Error	
 message="One	
 or	
 more	
 errors	
 encountered	
 in	
 OCL	
 constraint	
 in	
 class	
 Installation	
 :	
 LengthValMeta	
 ...">	

	
 	
 	
 	
 <Detail	
 message="Line/column(s)	
 6/362:	
 Unrecognized	
 syntax	
 [!]	
 encountered	
 and	
 ignored."/>	

	
 	
 	
 	
 <Detail	
 message="Line/column(s)	
 6/483:	
 Identifier,	
 literal	
 or	
 bracketed	
 expression	
 expected	
 preceding	
 operator	

"="	
 token.	
 Invalid	
 assumed."/>	

	
 	
 	
 	
 <Detail	
 message="Line/column(s)	
 6/485-­‐502:	
 Closing	
 bracket	
 ')'	
 expected	
 preceding	
 identifier	

"VoidNumValueReason"	
 token,	
 assumed."/>	

	
 	
 	
 	
 <Detail	
 message="Line/column(s)	
 6/485-­‐502:	
 Extra	
 tokens	
 following	
 OCL	
 expression	
 ignored,	
 starting	
 with	

'identifier	
 "VoidNumValueReason"'."/>	

</Error>	

6.5.2 Identity comparisons between items of non-basic type

As it turned out it was necessary to provide support for equality comparisons on object-
valued items. This had initially been ruled out, because it is hard to compile to XPath 1.0.

The following invariant expresses that the current feature of type SoundingMetadata
requires that there is an associated HydroVertDimMeta object.

This would usually have been expressed by an invariant such as

inv SoundingMetadata_ValidUse: hydroVertDimMeta->notEmpty()

where hydroVertDimMeta points to the associated HydroVertDimMeta object.

However, this hydroVertDimMeta role had been marked non-navigable in the model,
which disallows its use in the constraint. So this had to be re-formulated “from the other
side” using the allInstances() operation.

inv SoundingMetadata_ValidUse:
 HydroVertDimMeta.allInstances().soundingMetadata->exists(sm|sm=self)

To do the translation of the sub-expression sm=self, equality comparisons had to be
implemented also for objects. The implementation was added for comparison arguments,
which have identity (such as FeatureTypes) and results in the use of the XPath function

generate-id(node)

on the arguments. The function derives a unique string identifier from an element.

Note that this is an XSLT-extension to XPath and not a native XPath 1.0 one. This might
lead to problems on Schematron implementations, which are not based on XSLT.

Comparisons between class instances, which do not carry identity (such as DataTypes),
are still refused in the Schematron code generation.

6.5.3 Inheritance of constraints

The implementation provided no support for inheriting constraints attached to the classes
in the model, because it was not clear whether inheritance was indeed needed and how
constraints were supposed to override.

OGC 10-088r3

26 Copyright © 2014 Open Geospatial Consortium

As it turned out, inheritance of constraints was indeed a requirement.

The implementation permits to override constraints by their name. The name of an OCL
invariant is specified following the inv reserved word.

Example:

inv SoundingMetadata_ValidUse:
 HydroVertDimMeta.allInstances().soundingMetadata->exists(sm|sm=self)

The name of this invariant constraint is “SoundingMetadata_ValidUse”.

6.5.4 Support of types derived from ISO 19103 basic types

There is currently no specification contained in ISO 19103, which would put into order
how the basic types defined in there (such as CharacterString) relate to the built-in OCL
data types (such as String). Lacking proper definitions, the new OCL parser makes
reasonable assumptions about a correspondence between ISO 19103 types and those
built-in in OCL. ISO 19103 types are generally mapped to built-in types in a non-
surprising way.

This allows to write a comparison such as someProperty='xxx' for a CharacterString
someProperty. Without that mapping such a comparison would result in the constant
value false.

As it turned out, the implemented mechanism was too weak. The NAS model specializes
the basic ISO 19103 types and uses the derived types in its data declarations, which had
previously not been foreseen.

So, general support for types derived from the basic types of ISO 19103 had to be added.

6.5.5 Mapping of enumeration and codelist values

There is a mismatch between the modeling of “reasons” for missing data in the NAS
model and in GML 3.2.1.

The different reason vocabularies map as follows:

GSIP Reason Integer gml:NilReasonType GML 3.2.1 definition

noInformation -
999999

missing the correct value is not readily available
to the sender of this data. Furthermore, a
correct value may not exist

valueSpecified 995

notApplicable 998 inapplicable there is no value

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 27

GSIP Reason Integer gml:NilReasonType GML 3.2.1 definition

other 999 other:other other brief explanation, where text is a
string of two or more characters with no
included spaces

The first column describes the values used in the model, the third column describes the
values as expected in GML documents representing the data. OCL constraints would
refer to the values in the first column, while the generated Schematron code need to use
the values in the third column.

So, some translation mechanism is required, which allows to map the values, while
performing the OCL to Schematron translation.

In GML the type definition is

<simpleType	
 name="NilReasonType">	
 	

	
 	
 	
 	
 <union	
 memberTypes="gml:NilReasonEnumeration	
 anyURI"/>	

</simpleType>	

where gml:NilReasonEnumeration contains the values missing, inapplicable, other:other.

Concerning the anyURI part of the union GML 3.2.1 is states:

“anyURI which should refer to a resource which describes the reason for the
exception”

This opens up the possibility to choose to assign more detailed semantics to the standard
values provided. The URI method enables a specific or more complete explanation for
the absence of a value to be provided elsewhere and indicated by-reference in an instance
document.

It has been decided to go this way. These are the URIs employed:

noInformation: http://metadata.dod.mil/mdr/ns/GSIP/codelist/VoidValueReason/noInformation
valueSpecified: http://metadata.dod.mil/mdr/ns/GSIP/codelist/VoidValueReason/valueSpecified
notApplicable: http://metadata.dod.mil/mdr/ns/GSIP/codelist/VoidValueReason/notApplicable
other: http://metadata.dod.mil/mdr/ns/GSIP/codelist/VoidValueReason/other

The implementation has been carried out by providing another tagged value named

resourceURI

for that purpose. If applied to the values of enumerations or codelists, the Schematron
code generator simply uses the values of those tagged values in place of the original
values if the former are present and not empty.

OGC 10-088r3

28 Copyright © 2014 Open Geospatial Consortium

6.6 Issues found in need of explanation during validation

6.6.1 Uses of the size operator

Let placeName be a String.

A reference to its length (limiting it to 20 characters) is expressed as follows:

placeName.size() <= 20

To refer to the cardinality of placeName and compare it to the constant 3, you write:

placeName->size() = 3

This would test, whether placeName refers to exactly three object instances.

6.6.2 The use of isEmpty, notEmpty

Checking a if a property is set or not set or not is done with isEmpty or notEmpty,
respectively, regardless whether the property has a cardinality ≤ 1 or > 1.

 property->isEmpty()

evaluates to true if property contains no value and is therefore equivalent to

 property->size()=0

Though OCL treats objects with a cardinality ≤ 1 as single objects, it automatically
promotes these single objects to a collection, whenever the -> operator is applied.

6.6.3 Testing collections of objects

While objects with a cardinality ≤ 1 can be directly used in comparisons or with other
operators as in

inv: identification.entityIdentifierType<>EntityIdentifierType::VerticalObstIdentifier

Objects with a cardinality > 1 always need an iterator such as exists or forAll being
employed, depending on the intended quantification semantics.

If identification in the example above were of cardinality > 1, and you need that all
instances of it are different from the given codelist value, then the following formulation
would be effective:

inv: identification->forAll(x |
 x.entityIdentifierType <> EntityIdentifierType::VerticalObstIdentifier)

Of course, the latter construct can also be applied if the cardinality is ≤ 1.

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 29

6.6.4 The use of isUnique

isUnique is a special iterator. As with all iterators its left-hand operand (its self) is a
collection. An expression on the members of that collection is tested for uniqueness,
which means that the values of that expression must not repeat.

The implementation of isUnique in the OCL to Schematron translator is rather restricted
and only allows property references as the possible syntax for expressions. See B.1 for a
discussion of these issues.

General format:

x->isUnique(y|expr(y))

In the case of basic-type values with a cardinality > 1, which are being tested for
uniqueness, the expression in the iterator body typically is identity.

For example, in

 inv: featureFunction.valuesOrReason.values->isUnique(x|x)

the property featureFunction has a property valuesOrReason, which is a Union, one
property of which is values, which has cardinality > 1 and is of a basic type.

The phrase isUnique(x|x) needs to be written as shown (of course with any other variable
identifier in place of x). It is not possible to abbreviate this to isUnique().

It is also not possible to rephrase the example above to

inv: featureFunction.valuesOrReason->isUnique(x|x.values)

This expresses wrong semantics, because the “collection” valuesOrReason only has one
member, which means that the concept of uniqueness does not make any sense.
Moreover, this would also be rejected, because there is a restriction in the translation
process. This is because the expression x.values leads to a collection, and no sensible way
to compare collection valued items had been found, which could be expressed in XPath
1.0.

6.6.5 The effects of navigabilty

Properties, which designate a non-navigable role of an association, cannot be used in
OCL constraints.

ISO 19103 D.7.2: "If this is important to the model, the association should be two-way
navigable to make enforcement of the constraint more tenable. In other words, a one-way
relation implies a certain “don’t care” attitude towards the non-navigable end."

It is usually possible to express the required invariant “from the other side” (from the
instances of the referenced objects) by using the allInstances function. See 6.5.2 for an
example.

OGC 10-088r3

30 Copyright © 2014 Open Geospatial Consortium

6.6.6 Equivalence and antivalence

Equivalence and antivalence are usually hard to express using the standard logic particles
and, or and not. These expressions usually require that the operands need to be written
more than once, which is unfortunate, if the operands themselves are expressions.

For example equivalence of the logical items a and b can be expressed by:

(a and b) or (not a and not b)

and antivalence by:

(a and not b) or (not a and b)

Fortunately, OCL also supports the logical xor particle, which directly corresponds to
antivalence. So, antivalence can be directly written as:

a xor b

This allows denoting equivalence as:

not a xor b ≡ a xor not b ≡ not (a xor b)

Equivalence, however, can also be directly expressed in OCL by using the equality
operator = between Boolean expressions. Thus, equivalence can also be written as:

 a = b

Of course, antivalence can also be expressed by the <> operator.

6.6.7 String matching and REGEX language

The implemented matches function is an extension to OCL 2.2. See B.2 for further
details.

Signature:

matches(pattern:String) : Boolean

By means of the ShapeChange configuration matches can be either mapped to Java
java.util.regex.Pattern.matches or to the XPath 2.0 function fn:matches.

Of course, the specific details of the REGEX language to be used in the pattern are as in
the environment which is to be used. The individual differences between the REGEX
languages realized by Java and XPath 2.0 have not been investigated in depth, and have
not been compared to the REGEX variant of XML Schema’s pattern facet.

It can be expected that all three REGEX languages are quite similar.

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 31

6.6.8 The necessity of guard preconditions

It is usually necessary to account for the multiplicity of properties when formulating OCL
constraints.

This is usually enforced by the syntax and semantics of OCL, whenever properties
display a cardinality > 1 – you need to apply iterators such as exists or forAll or similar
constructs, depending on the quantification semantics you have in mind.

However, the need to honor the multiplicity of properties is also required for the case of
cardinality ≤ 1, where OCL permits to address the property without any surrounding
iterator construct.

Let width own a cardinality ≤ 1. If you have an OCL invariant such as

inv: width < 17

and the self instance carries an empty width instance, then in OCL width assumes the
value null, which is an instance of OclVoid. Comparing null with the “<” operator (which
is actually a width.<(17) operation call) will result in the value invalid, which is an
instance of OclInvalid.

The result of the expression is therefore invalid (of type OclInvalid), which is clearly
different from true (of type Boolean), so the invariant will fail. However, this is most
probably not the intended semantics.

Therefore, you will need to guard the intended invariant against the absence of width with
an implies particle:

inv: width->notEmpty() implies width < 17

In this formulation you will get a true result, if width has no value. The check against 17
is only effective if a value is indeed present.

The guard can only be left away, if the cardinality of width is known to be exactly = 1.

Please note that the formulation

inv: width->forAll(x | x < 17)

which would have been used for cardinality > 1, can also be used in the case of
cardinality ≤ 1. It has the same effect as the formulation using implies above. The
invariant is fulfilled if width has no value.

6.7 Open issues

6.7.1 Full treatment of xlink:href

The OCL invariant

OGC 10-088r3

32 Copyright © 2014 Open Geospatial Consortium

inv: self.runway->notEmpty()

is currently translated into

//*[concat('#',@gml:id)=current()/agoas:runway/@xlink:href

This picks those elements from the GML instance document, each of which carries a
gml:id attribute, the value of which, when prefixed by # happens to be identical to the
xlink:href attribute on at least one of the property agoas:runway instances on the current
feature. If the nodeset of elements picked this way is not empty, then the XPath
expression is finally converted to the Boolean true, which means that the assertion holds.

This translation reflects the semantics of OCL. The expression self.runway in OCL means
the set of objects referenced by the runway property and this is just, what the
corresponding //*[…] expression in XPath finds.

The translation is under the assumption that xlink:href references prefix the id with a #.
The implementation permits to configure other prefixes and postfixes if required.

The open problem is that the GML document to be checked also requires the referenced
objects to be contained.

There are two possible solutions to deal with this:

1. For the notEmpty() operator less than the above could be checked. We could for
example check whether the property is there, or perhaps the property together with
@xlink:href is there. In this case we would simply translate to

agoas:runway/@xlink:href

However, this is not a general solution, because it must be restricted to special
operators. notEmpty(), isEmpty(), size() might work this way, because they need
nothing but the number of items. Definitely self.runway->select(t|someexpression(t))
or any use of the exists() or forAll() iterators does not work, because it requires access
to the contents of the objects.

2. It might also be possible to extend the test into external documents.

For this the XPath 1.0 function document() might be employed, which, if supplied
with a set of URLs (of XML documents) delivers a nodeset of root nodes of the
documents addressed by these URLs.

The problem to solve here is how to extract the URL of an referenced GML instance
document (presumably created on the fly by some service invocation) from an
@xlink:href value. Supposed this could be done by some magic hrefToURL()
function, then the notation would be straightforward as follows:

document(hrefToURL(agoas:runway/@xlink))
 //*[concat('#',@gml:id)=current()/agoas:runway/@xlink:href

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 33

Though this will probably work in principle, its usefulness in practice still needs to be
proven, because the performance of such a construct might be quite low.

6.7.2 Implementation of let expressions

The OCL construct

let variable : type = expression, … in expression-using-variable

permits to define and initialize variables and subsequently make use of these in an
embedded expression. The idea is a short-hand notation for expressions, which contain
more than one occurrences of a sub-expression.

Translating let expressions in the OCL-to-Schematron context would be possible in
principal, but has not been done, because it is not a necessary construct. Everything,
which can possibly be expressed using a let, can also be expressed without.

As it turned out, however, the use of OCL constraints in the NAS model produced quite
lengthy constraints, the readability of which would benefit a lot from providing let.

A general translation of let to Schematron and XPath 1.0 can be done:

 let expressions at the outmost level of expressions are relatively simple to translate,
because Schematron syntax itself provides a let construct.

 let expressions in deeper nesting levels, where the variable initialization or the
expression in the body refers to bound variables of iterators, require substitution of
the translated expression in all places, where the variable is used.

With XPath 2.0 instead of XPath 1.0 a complete translation is possible.

6.7.3 Consideration of enclosed ISO 19139 encodings

Currently the Schematron code generation supports only the 19136 encoding rule where
simple values are a text node child of the property element.

The extra element level from the 19139 encoding rule and the 19139 code list type are
not supported, so there is additional work required to make this work with metadata
profiles.

6.7.4 The treatment of nillable attributes with cardinality > 1

This problem is not an OCL issue in the first place. It is mainly concerned with the UML-
to-GML mapping of attributes, which are supposed to be both nillable and multiple.

Example:

OGC 10-088r3

34 Copyright © 2014 Open Geospatial Consortium

In ShapeChange this is currently translated to XML Schema by attaching the multiplicity
of the absorbed values attribute to valuesOrReason, which is made nillable and which
gets an additional nilReason attribute.

This is implemented by the following XML Schema fragment:

<element	
 name="valuesOrReason"	
 nillable="true"	
 maxOccurs="unbounded">	

	
 	
 	
 	
 <complexType>	

	
 	
 	
 	
 	
 	
 	
 	
 <simpleContent>	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 <extension	
 base="nas:FloatingDryDockStructMatTypeType">	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 <attribute	
 name="nilReason"	
 type="gml:NilReasonType"/>	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 </extension>	

	
 	
 	
 	
 	
 	
 	
 	
 </simpleContent>	

	
 	
 	
 	
 </complexType>	

</element>	

This is according to the encoding rule extension that has been agreed in earlier OWS
phases. It applies the normal mapping for the values property (just that it is mapped to the
valuesOrReason property element which in addition is made nillable). Property values in
the GML encoding rules are generally represented by elements.

Instance document are supposed to represent either a “normal” GML property, where
multiplicity is applied by repeating the element, as in the following snippet:

<nas:structMatType>	

	
 	
 	
 	
 <nas:FloatingDryDockStructMatCodeMeta>	

	
 	
 	
 	
 	
 	
 	
 	
 <nas:valuesOrReason>steel</nas:valuesOrReason>	

	
 	
 	
 	
 	
 	
 	
 	
 <nas:valuesOrReason>wood</nas:valuesOrReason>	

	
 	
 	
 	
 </nas:FloatingDryDockStructMatCodeMeta>	

</nas:structMatType>	

Or alternatively, if the property is nil, one instance of the property with xsi:nil and
nilReason applied:

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 35

<nas:structMatType>	

	
 	
 	
 	
 <nas:FloatingDryDockStructMatCodeMeta>	

	
 	
 	
 	
 	
 	
 	
 	
 <nas:valuesOrReason	
 xsi:nil=”true”	
 nilReason="missing"/>	

	
 	
 	
 	
 </nas:FloatingDryDockStructMatCodeMeta>	

</nas:structMatType>

The problem with this is that it is only an agreement; it is not enforced automatically by
any constraint mechanism. XML Schema provided with the schema fragment above
would allow mixed representations, such as:

<nas:structMatType>	

	
 	
 	
 	
 <nas:FloatingDryDockStructMatCodeMeta>	

	
 	
 	
 	
 	
 	
 	
 	
 <nas:valuesOrReason>steel</nas:valuesOrReason>	

	
 	
 	
 	
 	
 	
 	
 	
 <nas:valuesOrReason	
 xsi:nil=”true”	
 nilReason="missing"/>	

	
 	
 	
 	
 </nas:FloatingDryDockStructMatCodeMeta>	

</nas:structMatType>

There is no XML schema constraint, which would guarantee that only the agreed variants
can be applied. However a Schematron constraint could enforce this:

context nas:FloatingDryDockStructMatCodeMeta
 inv: nas:valuesOrReason/@xsi:nil=true implies count(nas:valuesOrReason)=1

Such an invariant needs not be explicitly specified. It can be generated out of the
information contained UML schema.

The point discussed and which eventually needs to be decided was whether the mapping
agreed in earlier OWS phases and currently applied has been defined correctly.

The argument is:

Since the multiplicity is on the values attribute of the <<union>> (see UML diagram
above), it should go directly into the type of values. This means that nas:valuesOrReason
would receive a list type.

In this case the value and nil instance examples would look like this:

<nas:structMatType>	

	
 	
 	
 	
 <nas:FloatingDryDockStructMatCodeMeta>	

	
 	
 	
 	
 	
 	
 	
 	
 <nas:valuesOrReason>steel	
 wood</nas:valuesOrReason>	

	
 	
 	
 	
 </nas:FloatingDryDockStructMatCodeMeta>	

</nas:structMatType>	

	

<nas:structMatType>	

	
 	
 	
 	
 <nas:FloatingDryDockStructMatCodeMeta>	

	
 	
 	
 	
 	
 	
 	
 	
 <nas:valuesOrReason	
 xsi:nil=”true”	
 nilReason="missing"/>	

	
 	
 	
 	
 </nas:FloatingDryDockStructMatCodeMeta>	

</nas:structMatType>	

OGC 10-088r3

36 Copyright © 2014 Open Geospatial Consortium

The good thing in this representation is that it would be syntactically enforced by XML
Schema alone. Since the multiplicity is expressed in the type of nas:valuesOrReason the
element itself needs to occur only once. There cannot be a mix of representations.

There are counterarguments, however:

 In the GML encoding rule multiplicity is expressed by maxOccurs on the element,
which stands for the property, and

 if an exception to this rule would be made, it could only be made for simple data.
According to GML encoding rules it is not an option to use multiple instances of
complex data constructs in a property.

 OCL rules, which would refer to the list data type, could not be properly translated to
XPath 1.0 and Schematron. See explanations below.

XPath 1.0 does not possess the functionality to process lists in the extent required for
expressing the agreed subset of OCL. Though there are a few functions in XPath 1.0,
which allow doing elementary operations such as split a string at a certain position, there
is no vehicle to combine these operation into functions, which would realize OCL
operations like unique(), exists(), etc. You can define and call parameterized templates in
XSLT, but you cannot do this in XPath alone and by using the language items of
Schematron.

We would need to implement each single OCL operation in Java extension code. Things
are very different in XPath 2.0. XPath 2.0 (which is not the basis of standard Schematron)
would offer all the functionality necessary to process lists and more.

6.7.5 The use of XPath 2.0 functionality

The current implementation of OCL-to-Schematron in ShapeChange targets the ISO
Schematron standard (ISO/IEC 19757-3), which is based on XPath 1.0.

Though XPath 1.0 looks like a powerful language at the first glance, it does by far not
allow expressing all OCL constructs, and those which it allows expressing sometimes
require a bag of tricks – tricks which often lead to constraint code of low performance.
See B.4.2 as an example of the latter.

XPath 2.0 is much more capable than XPath 1.0. None of the difficulties discussed in B.1
would occur, when we would have to translate to XPath 2.0 expressions. The true limits
of XPath 2.0 still have to be investigated, but from the first view it appears as if OCL
might be possible to translate to XPath 2.0 completely.

Though currently XPath 1.0 is the basis of ISO Schematron, there are already a few
implementations (such as SAXON 9), which permit to use XPath 2.0 expressions in
Schematron schemas.

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 37

Moreover, there is a revision of ISO Schematron underway that allows Schematron to be
used with XPath 2.0. The revised version of the standard has already successfully gone
through its first ballot at ISO. It can be expected to come out in early 2011.

OGC 10-088r3

38 Copyright © 2014 Open Geospatial Consortium

Annex A
(normative)

KML encoding rule

A.1 General encoding requirements

A.1.1 Application schemas

The application schema shall conform to the same UML profile specified in GML 3.2
Annex E with the following additional, optional tagged values:

Table A.1 — Tagged values

UML model element Tagged value Description

Package kmlStyleUrl an absolute URL referencing a kml:Style or kml:StyleMap
element

Class with stereotype
<<featureType>>

name a human readable name of the feature type

description a human readable description of the feature type

kmlReference an absolute URL to a resource that includes a description of
the feature type

kmlStyleUrl an absolute URL referencing a kml:Style or kml:StyleMap
element

Attribute or association end

name a human readable name of the property type

description a human readable description of the property type

kmlReference an absolute URL to a resource that includes a description of
the property type

Attribute

kmlName
if the value is set to “true”, and an instance has a value for
this property, that value is used as the name of the placemark
instance in KML

kmlTimeSpanBegin
if the value is set to “true”, and an instance has a value for
this property, that value is used as the begin of the time span
element of the placemark instance in KML

kmlTimeSpanEnd
if the value is set to “true”, and an instance has a value for
this property, that value is used as the end of the time span
element of the placemark instance in KML

kmlTimeStamp
if the value is set to “true”, and an instance has a value for
this property, that value is used as the time stamp element of
the placemark instance in KML

For the four last tagged values listed in table A.1 the following rule applies, if multiple
property types of a feature type and its super-types are tagged in this way: The property

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 39

types of the feature type itself are inspected. If one or more property types contain the
tagged value with a value of “true”, a property type is selected randomly. If none of the
property types carries such a tagged value, the process is continued per super-type
recursively until either a property type with the tagged value is found or all property
types have been inspected.

In addition, the values of spatial properties in the application schema shall conform with
version 1.2 of the OGC standard “Simple feature access - Part 1 - Common architecture”.

NOTE KML only supports linear interpolations and no sharing of geometries between
features, like the simple feature access standard.

A.1.2 Character repertoire and languages

“UTF-8” or “UTF-16” shall be used as the character encoding of all XML files (with the
associated character repertoire).

A.1.3 Exchange metadata

No specific rules for exchange metadata is specified by this encoding rule.

A.1.4 Dataset and object identification

Unique identifiers in accordance with XML's ID mechanism are used to identify
elements.

NOTE The XML ID mechanism only requires that these identifiers are unique identifiers within the
XML document in which they appear.

A.1.5 Update mechanism

The general KML mechanisms for updates apply.

A.2 Input data structure

See ISO/DIS 19118, Clause 8, for a description of the input data structure.

A.3 Output data structure

See KML 2.2 for a description of the output data structure.

NOTE In this encoding rule the namespace prefix “kml” refers to the namespace of KML, which is
“http://www.opengis.net/kml/2.2”.

OGC 10-088r3

40 Copyright © 2014 Open Geospatial Consortium

A.4 Conversion rules

A.4.1 Instance conversion rules

In general, the conversion rules use data conforming to the application schema and
structured according to the generic instance model (see ISO/DIS 19118, Clause 8).
However, the following description is based on the instance model of the GML
representation of the data as this is a better known representation of the data than the
generic instance model. If required, conversion rules using the generic instance model
might be added in a future revision.

The converted instances shall be represented in a KML document. The document may be
packaged with other documents (e.g., styles) into a KMZ document.

NOTE In order to support self-contained KMZ files it may be appropriate to support two
different style URLs, one absolute and one relative within a KMZ file. To be decided
after implementation experience.

Every feature instance (“//schema-element(gml:AbstractFeature)”) shall be represented as
a kml:Placemark element.

The placemark element shall have the following child nodes:

- An attribute “id” with the value of “@gml:id”.

- An element “kml:name” with the following value:

o If a property type of the feature type has a tagged value “kmlName” with a
value of “true” and the feature instance has a value for this property, this
value is used. If multiple name property values exist, only the first one is
selected.

o Alternatively, if the feature instance has a “gml:name” value, this value is
used. If multiple name property values exist, only the first one is selected.

o Alternatively, if the feature type has a tagged value “name”, its value is
used.

o As a fallback, the name of the feature type is used.

- An element “kml:visibility” with a value of “1”.

- An element “kml:styleUrl” with the following value:

o If the feature type has a tagged value “kmlStyleUrl”, this value is used.

o Alternatively, if the package containing the feature type has such a tagged
value, this value is used.

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 41

o Alternatively, if the package containing that has such a tagged value and is
within the same application schema, this value is used. This is applied
recursively.

o If no value is found, the “kml:StypeUrl” element is omitted from the
placemark instance.

- An element “kml:TimeSpan/kml:begin” with the following value:

o If a property type of the feature type has a tagged value
“kmlTimeSpanBegin” with a value of “true” and the feature instance has a
value for this property, this value is used. If multiple name property values
exist, only the first one is selected.

o If no such value is found, the element is omitted from the placemark
instance.

- An element “kml:TimeSpan/kml:end” with the following value:

o If a property type of the feature type has a tagged value
“kmlTimeSpanEnd” with a value of “true” and the feature instance has a
value for this property, this value is used. If multiple name property values
exist, only the first one is selected.

o If no such value is found, the element is omitted from the placemark
instance.

- An element “kml:TimeStamp/kml:when” with the following value:

o If a property type of the feature type has a tagged value “kmlTimeStamp”
with a value of “true” and the feature instance has a value for this
property, this value is used. If multiple name property values exist, only
the first one is selected.

o If no such value is found, the element is omitted from the placemark
instance.

- An element “kml:ExtendedData” with a child element “kml:SchemaData”. That
element shall have an attribute “schemaUrl” with the value that is the concatenation
of “#”, the name of the feature type, and “Schema”.

- A child element “kml:SimpleData” with

- an attribute “name” and a value of “type"

OGC 10-088r3

42 Copyright © 2014 Open Geospatial Consortium

- a CDATA block1

The CDATA block contains the following value:

o If the feature instance has a “gml:description” value, this value is used.

o Alternatively, if the feature type has a tagged value “description”, its value
is used.

o Alternatively, the documentation of the feature type is used.

- For each property element of the feature that is not “gml:description”, “gml:name”, or
a geometry (“*/schema-element(gml:AbstractGeometry)”) and which is not nil,
another child element “kml:SimpleData” is added with

- an attribute “name” and the local name of the property as the value

- a CDATA block

The value of the CDATA block depends on the value type of the property:

- a number, string or enumeration type: the value (“.”).

- a date or time type: the value (“.”) styled in a human readable form.

- a measure: the value (“.”) plus the value of “@uom”.

- a code list value: If the value has a codeSpace attribute the CDATA block
contains “$[value]” where “$[codespace]” is the
code space attribute value and “$[value]” is the value of the property element.
Otherwise, the CDATA block contains just “$[value]”.

- a structured data type: a CDATA block with a table that has a row for each
property element of the structured data type that is not nil. The left column
contains the local name of the property element “<small><i>$[local-
name]</i></small>“. If the property element has no child elements, the right
column contains the value (“.”), otherwise the value is treated as another
structured data type and contains a nested table in accordance with the conversion
rules in this paragraph.

NOTE 1 This conversion rule results in a good representation in the most
common cases, where the nesting is not deep and values are generally of simple
content. However, as it is easy to construct cases where this rule will not result in
a satisfactory result, this rule may require some refinement after more experience
with a range of application schemas.

1 Whenever the encoding rule requires that a CDATA block is used in the KML instance document, an XML processor
may encode the CDATA block in an equivalent way, i.e. with “<” encoded as “<” and “>” encoded as “>”.

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 43

- a feature that is referenced by an Xlink: A CDATA block “$[value]” where “$[ref]” is the value of “@xlink:href”. If
“$[ref]” contains a “#” then “$[value]” is the string after the “#”, otherwise the
value is just “Reference”.

- any other type: the value (“.”).

NOTE Support for additional types will be required depending on the use of types in
application schemas and will be added to this encoding rule as needed.

Multiple values of the same property are separated by “<hr/>”.

- a “kml:Point” or “kml:MultiGeometry” depending on the spatial property:

o a “gml:Point” is converted to a “kml:Point”

o a “gml:LineString” or “gml:Curve” is converted to a
“kml:MultiGeometry” with a “kml:Point” and a “kml:LineString”. The
point is one of the control points of the curve. It is recommended to select
a control point in the middle of the curve.

o a “gml:Polygon” or “gml:Surface” is converted to a “kml:MultiGeometry”
with a “kml:Point” and a “kml:Polygon”. The point is the centroid of the
polygon.

o a “gml:MultiGeometry” is converted to a “kml:MultiGeometry”.

NOTE 3 The additional points for curves and surfaces are required for icons
and labels, if included in the style definition.

All coordinates shall be transformed to WGS84, if required.

NOTE 4 KML uses coordinate order long/lat, so coordinates in CRS
urn:ogc:def:crs:EPSG::4326 or urn:ogc:def:crs:EPSG::4979 need to be converted
with a different axis order.

All “kml:Schema” elements created by applying the Schema conversion rules shall also
be added to the KML document.

A.4.2 Schema conversion rules

The schema conversion rules define how reusable KML fragments shall be derived from
an application schema expressed in UML in accordance with ISO 19109. A number of
general rules are defined in A.2.4 to describe the mapping from a UML model that
follows the guidelines described in A.2.1.

Every feature type in the application schema shall be represented as a kml:Schema
element. The element shall have the following child nodes:

OGC 10-088r3

44 Copyright © 2014 Open Geospatial Consortium

- An attribute “id” with the local name of the feature type + “Schema”.

- A child element “kml:SimpleField” with

- an attribute “name” and a value of “type”

- an attribute “type” and a value of “string”

- an element “displayName” with a CDATA block with the following value:

o If the feature type has a tagged value “kmlReference” the CDATA block
contains “<a href=’$[kmlReference]’
title=’$[documentation]’><big><i>$[type]</i> </big>”
where “$[kmlReference]” is the value of the tagged value,
“$[documentation]” the documentation of the feature type and
“$[type]” is the local, if available human-readable, name of the feature
type. Otherwise, the CDATA block contains “<div
title=’$[documentation]’><big><i>$[type]</i>
</big></div>”.

- For each property type of the feature that does not have a local name “description” or
“name” or is a geometry, another child element “kml:SimpleField” is added with

- an attribute “name” and the local name of the property type as the value

- an attribute “type” and a value of “string”

- an element “displayName” with a CDATA block; if the property type has a
tagged value “kmlReference” the CDATA block contains “$[property]” where
“$[kmlReference]” is the value of the tagged value, “$[documentation]” the
documentation of the property type and “$[property]” is the local name of the
property type. Otherwise, the CDATA block contains “<div
title=’$[documentation]’><i>$[property]</i></div>”.

A.5 Example <informative>

Example of a KML document based on a NAS-conformant application schema for
topographic data and one building feature:

<kml xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:kml="http://www.opengis.net/kml/2.2"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns="http://www.opengis.net/kml/2.2">
 <Document>
 <open>0</open>

 <Schema id="BuildingGeosurfaceSchema">
 <SimpleField name="type" type="string">

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 45

 <displayName><a href='https://nsgreg.nga.mil/as/view?i=100083'
title='Building Geospatial Surface: A free-standing self-supporting construction
that is roofed, usually walled, and is intended for human occupancy (for
example: a place of work or recreation) and/or habitation. [desc] For example, a
dormitory, a bank, and a restaurant.'><big><i>Building
Geospatial Surface</i></big></displayName>
 </SimpleField>
 <SimpleField name="conditionOfFacility" type="string">
 <displayName><a href='https://nsgreg.nga.mil/as/view?i=100083'
title='Condition of Facility: The state of planning, construction, repair,
and/or maintenance of the structures and/or equipment comprising a facility
and/or located at a site, as a whole.'><i>Condition of
Facility</i></displayName>
 </SimpleField>
 <SimpleField name="controllingAuthority" type="string">
 <displayName><a href='https://nsgreg.nga.mil/as/view?i=100083'
title='Controlling Authority: The controlling authority responsible for a
facility or site. [desc] Controlling authorities may be distinguished by
organizational level (for example: national, sub-national, or military district)
and/or type (for example: private or public).'><i>Controlling
Authority</i></displayName>
 </SimpleField>
 <SimpleField name="featureFunction-1" type="string">
 <displayName><a href='https://nsgreg.nga.mil/as/view?i=100083'
title='Feature Function [1]: The purpose(s) of, or intended role(s) served by,
the feature.'><i>Feature Function
[1]</i></displayName>
 </SimpleField>
 <SimpleField name="featureFunction-2" type="string">
 <displayName><a href='https://nsgreg.nga.mil/as/view?i=100083'
title='Feature Function [2]: The purpose(s) of, or intended role(s) served by,
the feature.'><i>Feature Function
[2]</i></displayName>
 </SimpleField>
 <SimpleField name="geointAssuranceMetadata.currencyDateTime"
type="string">
 <displayName><a href='https://nsgreg.nga.mil/as/view?i=100083'
title='Currency Date and Time: The date and, optionally, time assigned to a data
set (for example: the digital representation of a single feature or a set of
features) as a whole that provides an overall assessment of its currency. [desc]
Often known as the as of date, the overall currency of a data set is affected by
knowledge of the source(s) and processes used to define the location, geometry,
and other properties (attributes and associations) of the digital
representation.'><i>Currency Date and
Time</i></displayName>
 </SimpleField>
 <SimpleField
name="geointAssuranceMetadata.processStep.processStepDescription" type="string">
 <displayName><a href='https://nsgreg.nga.mil/as/view?i=100083'
title='Process Step Description: A narrative or other textual description of a
process step, including related processing parameters and/or tolerances. [desc]
A process step is an event or transformation in the life of a dataset that is
used to define, review and/or update the digital representation of a feature
and/or attribute. No restriction is placed on the length of the
description.'><i>Process Step
Description</i></displayName>
 </SimpleField>
 <SimpleField
name="geointAssuranceMetadata.processStep.processStepProcessor" type="string">
 <displayName><a href='https://nsgreg.nga.mil/as/view?i=100083'
title='Process Step Processor: The identity of, and means of communication with,
person(s) and/or organisation(s) associated with a process step. [desc] A
process step is an event or transformation in the life of a dataset that is used
to define, review and/or update the digital representation of a feature and/or

OGC 10-088r3

46 Copyright © 2014 Open Geospatial Consortium

attribute.'><i>Process Step
Processor</i></displayName>
 </SimpleField>
 <SimpleField
name="geointAssuranceMetadata.processStep.processStepRationale" type="string">
 <displayName><a href='https://nsgreg.nga.mil/as/view?i=100083'
title='Process Step Rationale: A narrative or other textual description of the
requirement or purpose for a process step. [desc] A process step is an event or
transformation in the life of a dataset that is used to define, review and/or
update the digital representation of a feature and/or attribute. No restriction
is placed on the length of the rationale.'><i>Process Step
Rationale</i></displayName>
 </SimpleField>
 <SimpleField
name="geointAssuranceMetadata.processStep.source.sourceDescription"
 type="string">
 <displayName><a href='https://nsgreg.nga.mil/as/view?i=100083'
title='Source Description: A description of the data set that was used to define
the digital representation of the feature or data set. [desc] No restriction is
placed on the length of the description.'><i>Source
Description</i></displayName>
 </SimpleField>
 <SimpleField name="geoNameCollection.memberGeoName.fullName"
type="string">
 <displayName><a href='https://nsgreg.nga.mil/as/view?i=100083'
title='Full Name: A complete name that is used to designate the entity as that
designation would normally be written by the originating culture on a map or
chart. [desc] It is generally considered to consist of a specific part, a
generic part, and any articles or prepositions. The order of the parts may vary
with the generic part appearing at the beginning, middle or
end.'><i>Full Name</i></displayName>
 </SimpleField>
 <SimpleField name="highestElevation" type="string">
 <displayName><a href='https://nsgreg.nga.mil/as/view?i=100083'
title='Highest Elevation: The elevation from a specified vertical datum to the
highest point on a feature. [desc] In the case of multiple features that may be
stacked on each other (for example: a railway on a bridge, a superstructure on a
building, or an aerial on a tower) the highest elevation is that of the entire
feature stack. For example, the highest elevation of a church is that of its
steeple and not that of the roof of the church itself. The church itself may
have a height above surface level that excludes the additional height of the
steeple superstructure located on the church roof.'><i>Highest
Elevation</i></displayName>
 </SimpleField>
 <SimpleField name="note.memorandum" type="string">
 <displayName><a href='https://nsgreg.nga.mil/as/view?i=100083'
title='Memorandum: A narrative or other textual description that records
observation(s) and/or event(s) associated with a particular subject (for
example: a data instance, a data set or a data processing activity). [desc] No
restriction is placed on its
length.'><i>Memorandum</i></displayN
ame>
 </SimpleField>
 <SimpleField name="religiousInfo.religiousFacilityType" type="string">
 <displayName><a href='https://nsgreg.nga.mil/as/view?i=100083'
title='Religious Facility Type: The type of a facility, building, structure or
site that is designed and designated to be used for religious activities, based
on its structure and/or the principal activity for which it was
designed.'><i>Religious Facility
Type</i></displayName>
 </SimpleField>
 <SimpleField name="roofShape-1" type="string">
 <displayName><a href='https://nsgreg.nga.mil/as/view?i=100083'
title='Roof Shape [1]: The configuration(s) and/or appearance(s) of a

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 47

roof.'><i>Roof Shape
[1]</i></displayName>
 </SimpleField>
 <SimpleField name="roofShape-2" type="string">
 <displayName><a href='https://nsgreg.nga.mil/as/view?i=100083'
title='Roof Shape [2]: The configuration(s) and/or appearance(s) of a
roof.'><i>Roof Shape
[2]</i></displayName>
 </SimpleField>
 <SimpleField name="specifiedEnumerants" type="string">
 <displayName><a href='https://nsgreg.nga.mil/as/view?i=100083'
title='Specified Enumerant(s): One or more intended attribute enumerant values
for one or more enumerated attributes that are not currently valid members
of their respective attribute ranges. [desc] The actual attribute enumerant
values may have been previously, or may become in the future, valid members of
the attribute enumerant range.'><i>Specified
Enumerant(s)</i></displayName>
 </SimpleField>
 <SimpleField name="uniqueEntityIdentifier" type="string">
 <displayName><a href='https://nsgreg.nga.mil/as/view?i=100083'
title='Unique Entity Identifier: The globally unique and persistent identifier
of an entity (for example: feature or event) instance as specified by a Uniform
Resource Name (URN) in accordance with the Internet Engineering Task Force
(IETF) RFC2396 and RFC2141. [desc] It is based on the Uniform Resource
Identifier (URI), a compact string of characters for identifying an abstract or
physical resource. The term Uniform Resource Name (URN) refers to the subset of
URI that are required to remain globally unique and persistent even when the
resource ceases to exist or becomes unavailable. The URN is drawn from one of a
set of defined namespaces, each of which has its own set name structure and
assignment procedures.'><i>Unique Entity
Identifier</i></displayName>
 </SimpleField>
 </Schema>

 <Placemark id="BuildingGeosurface.256">
 <name>École Privée</name>
 <visibility>1</visibility>
 <styleUrl>http://portele.de/styles.kml#s1</styleUrl>
 <ExtendedData>
 <SchemaData schemaUrl="#BuildingGeosurfaceSchema">
 <SimpleData name="type">A free-standing self-supporting
construction that is roofed, usually walled, and is intended for human occupancy
(for example: a place of work or recreation) and/or habitation. [desc] For
example, a dormitory, a bank, and a restaurant.</SimpleData>
 <SimpleData name="conditionOfFacility">NoInformation</SimpleData>
 <SimpleData
name="controllingAuthority">NoInformation</SimpleData>
 <SimpleData name="featureFunction-1">Education</SimpleData>
 <SimpleData name="featureFunction-2">NoInformation</SimpleData>
 <SimpleData
name="geointAssuranceMetadata.processStep.processStepDescription">No
Information</SimpleData>
 <SimpleData
name="geointAssuranceMetadata.processStep.processStepProcessor">No
Information</SimpleData>
 <SimpleData
name="geointAssuranceMetadata.processStep.processStepRationale">ETL from
amenity_s</SimpleData>
 <SimpleData
name="geointAssuranceMetadata.processStep.source.sourceDescription">No
Information</SimpleData>
 <SimpleData name="geoNameCollection.memberGeoName.fullName">École
Privée</SimpleData>

OGC 10-088r3

48 Copyright © 2014 Open Geospatial Consortium

 <SimpleData name="highestElevation">-999999</SimpleData>
 <SimpleData name="note.memorandum">No Information</SimpleData>
 <SimpleData
name="religiousInfo.religiousFacilityType">NoInformation</SimpleData>
 <SimpleData name="roofShape-1">NoInformation</SimpleData>
 <SimpleData name="roofShape-2">NoInformation</SimpleData>
 <SimpleData name="specifiedEnumerants">No
Information</SimpleData>
 <SimpleData name="uniqueEntityIdentifier">48681370</SimpleData>
 </SchemaData>
 </ExtendedData>
 <MultiGeometry>
 <Point>
 <coordinates>-72.69982910156267,19.110290527344</coordinates>
 </Point>
 <Polygon>
 <tessellate>1</tessellate>
 <altitudeMode>clampToGround</altitudeMode>
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>-72.699890136719,19.110290527344 -
72.699707031250,19.110290527344 -72.699890136719,19.110290527344</coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </MultiGeometry>
 </Placemark>
 <!-- more placemarks -->
 </Document>
</kml>

In Google Earth, the placemark and its extended data would appear as follows:

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 49

Annex B
(normative)

Conversion from OCL to Schematron

B.1 Translation principles

Translation from OCL to Schematron is performed on the basis of a ShapeChange-
internal syntax representation of OCL expressions. The representation is close to the
Concrete Syntax structure described in the OCL 2.2 standard [5].

Naturally, the syntax representation of OCL is highly recursive. Therefore the principles
of translation from OCL to another language can best be described using a recursive
notation. We will describe, how some particular constructs (such as the application of the
select() iterator: x->select(t|pred(t))) translate to XPath 1.0, where the translation results
of the constituent parts (such as x and pred(t)) are presumed.

For a valid OCL expression x let τ(x) denote the equivalent XPath 1.0 expression. The
expression x may contain free variables (explicit or implicit), which need to be treated
when computing τ(x). One typical variable is self, which translates to current(). So,
τ(self)=current().

Category OCL syntax In words Schematron translation
Variable
access self

self The current
object in the
context of
which the
expression
shall hold.

current()
Note: Whenever the current node happens to
be identical to current() there is no need to
explicitly generate current() for self. Relative
path syntax is to be used in these cases.

Free
variable
access,
other than
self

t used in x(t) t has to be
assigned a
current
value from
the path that
leads to
x(t).

If t has a realization in the path leading to x:
../../.. …/..
As many .. as are required to reach the binding
context of t.
No realization in the path (may be xlink:href):
Cannot be translated because there is no unique
XPath expression to define this.

Integer or
real
constants

123 or 3.1415 same

Boolean
constants

true or false true() or false()

String
constants

‘xxxxx’ same

Enumeratio Type::value ‘value’

OGC 10-088r3

50 Copyright © 2014 Open Geospatial Consortium

Category OCL syntax In words Schematron translation
n constants
If
expression

if x then y else
z endif

If x
evaluates to
true then the
value of the
expression
is y,
otherwise z.

If τ(y) and τ(z) are represented by nodesets:
τ(y)[τ(x)] | τ(z)[not(τ(x))]
x needs to be compiled in the tail context of
τ(y) and τ(z).
If τ(y) and τ(z) are strings:
concat(substring(τ(y),number(not(τ(x)))*string
-length(τ(y))+1),substring(τ(z),
number(τ(x))*string-length(τ(z))+1))
The trick is to concatenate substrings which
either comprise the full argument or nothing,
depending on the value of the predicate.
If τ(y) and τ(z) are numbers or Booleans:
As for strings. The result has to be converted
into the proper type.

Attribute
call

x . attname Set of
object
instances
reached
from the
instance or
set repre-
sented by x
by applying
attribute
attname.

If simple-typed:
τ(x)/attname
If nested and complex-typed:
τ(x)/attname/*
If realized by means of xlink:href:
*[concat(α,@gml:id,β)=τ(x)/attname/@xlink:h
ref] where α and β are constant prefixes and
postfixes surrounding the identifier proper in
the xlink:href value. The values for α and β can
be configured, see B.3
If the type of linkage is unknown:
A nodeset union of the expressions above.

Attribute
call
according
to
nilReason
implementa
tion pattern

x . attname .
value
x . attname .
reason

Set of
instances
reached by
attname,
respectively
by
attname/@n
ilReason

Case x . attname . value:
τ(x.attname)
Compilation as above – ‘x.attname’ is assumed
to have the type of ‘value’.
Case x . attname . reason:
τ(x.attname)[@xsi.nil=’true’]/@nilReason

Operation
call
allInstances
()

x .
allInstances()

Set of all
object
instances of
type x.
x represents
a type-
valued
expression.

If x is a type constant:
Nodeset union (n1|…|ni), where
nk=//Tk[@gml:id] and Tk is one of the concrete
derivations of the type of x (including x).
If x is a type expression:
Cannot be translated because required schema
information is not available at run-time.

Operation
call
oclIsKindO

x .
oclIsKindOf(y)

The single
object
instance x is

If y is a type constant:
boolean(τ(x)[name()=’T1‘ or … or
name()=’Ti’]), where

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 51

Category OCL syntax In words Schematron translation
f() checked for

complying
with type y.

Tk is one of the names of the concrete
derivations of y, including y.
boolean(…) may be omitted if the argument is
known to be used by operands, which do an
implicit conversion to Boolean.
If y is a type expression:
Cannot be translated because required schema
information is not available at run-time.

Operation
call
oclIsTypeO
f()

x .
oclIsTypeOf(y
)

The single
object
instance x is
checked for
being of
type y.

If y is a type constant:
boolean(τ(x) [name()=’T‘]), where T is the
name of the type y.
If y is a type expression:
boolean(τ(x)/self::*[name()=name(τ(y))])
boolean(…) may be omitted if the argument is
known to be used by operands, which do an
implicit conversion to Boolean.
Note: Expression part not implemented.

Operation
call
oclAsType(
)

x .
oclAsType(y)

The single
object
instance x is
downcast to
type y. The
value is
‘undefined’
if this is not
possible.

If y is a type constant:
τ(x)[name()=’T1‘ or … or name()=’Ti’], where
Tk is one of the names of the concrete
derivations of y, including y.

If y is a type expression:
Cannot be translated because required schema
information is not available at run-time.

Operation
call +,-,*,/

x + y, etc. Value of
x.+(y), etc.

τ(x) + τ(y)
τ(x) - τ(y)
τ(x) * τ(y)
τ(x) div τ(y)

Operation
calls =, <>

x = y,
x <> y

Value of
x.=(y),
x.<>(y)

If x and y is are simple types:
τ(x) = τ(y)
τ(x) != τ(y)
If x and y is are objects:
generate-id(τ(x)) = generate-id(τ(y))
generate-id(τ(x)) != generate-id(τ(y))

Operation
call <, >,
<=, >=

x < y Value of
x.<(y), etc.

τ(x) < τ(y)
τ(x) > τ(y)
τ(x) <= τ(y)
τ(x) >= τ(y)

Operation
call size()

x . size() Number of
characters
in the string
instance x.

string-length(τ(x))

Operation
call

x . concat(y) String
concatenati

concat(τ(x),τ(y))
A series of concats may be joined to a multi-

OGC 10-088r3

52 Copyright © 2014 Open Geospatial Consortium

Category OCL syntax In words Schematron translation
concat() on of x and

y.
argument concat invocation.

Operation
call
substring()

x .
substring(y,z)

Substring of
x running
from
position y to
position z

substring(τ(x), τ(y), τ(z)-τ(y)+1)

Operation
call and, or,
xor, implies

x and y
x or y
x xor y
x implies y

Logical
combination
as indicated

τ(x) and τ(y)
τ(x) or τ(y)
boolean(τ(x))!=boolean(τ(y))
not(τ(x)) or τ(y)

Set
operation
call size()

x -> size() Number of
objects in x.

count(τ(x))

Set
operation
call
isEmpty()

x->isEmpty() Predicate: Is
the set
represented
by x empty?

not(τ(x))

Set
operation
call
notEmpty()

x->notEmpty() Predicate: Is
the set
represented
by x not
empty?

boolean(τ(x))
boolean may be omitted if τ(x) is known to be
Boolean or is used by operands, which do an
implicit conversion to Boolean.

Iterator call
exists()

x ->
exists(t|b(t))

Predicate:
Does the set
x contain an
objects t for
which the
Boolean
expression
b(t) holds?

boolean(τ(x)[τ(b(.))])
boolean may be omitted if τ(x) is known to be
Boolean or is used by operands, which do an
implicit conversion to Boolean.

Iterator call
forAll()

x ->
forAll(t|b(t))

Predicate:
Does the set
x only
contain
objects t for
which the
Boolean
expression
b(t) holds?

count(τ(x))=count(τ(x)[τ(b(.))])

In the implementation we map forAll() to
exists(). We can do this because according to
first level logic, we have:

x->forAll(t|b(t)) = not(x->exists(t|not(b(t)))

Iterator call
isUnique()

x ->
isUnique(t|y(t)
)

Predicate:
Does the set
x only
contain
objects t for
which the

This is a hard one, which could only be solved
in a few cases:
If y is a constant, y(t)=const:
count(τ(x))<=1
If y is identity and x is object-valued, y(t)=t:
true()

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 53

Category OCL syntax In words Schematron translation
expression
y(t) creates
mutually
different
objects?

This is because nodesets are sets.
If y is identity and x is a collection of basic
types, y(t)=t:
not(τ(x)[.=(preceding::*|ancestor::*)[count(.|τ(
x))=count(τ(x))]])
This means any value in τ(x) must not be
contained in the intersection of τ(x) with the
previous part of the tree.
If y is an object-valued attribute, y(t)=t.a:
count(τ(x))=count(τ(x.a))
This is true due to the pigeonhole principle.
Note that t.a is required to be a single value,
not a set!
If y is an attribute carrying a basic data type,
y(t)=t.b:
not(τ(x)[b=(preceding::*|ancestor::*)[count(.|τ(
x))=count(τ(x))]/b])
This means the value of any b must not be
contained in the intersection of τ(x) with the
previous part of the tree. As above, t.b needs to
be a single value.
Nested attributes of either kind,
y(t)=t.a1.a2…b:
Each single step needs to be unique. Hence we
can reduce this to:
τ(x->isUnique(t|t.a1)) and τ(x.a1-
>isUnique(t|t.a2)) and … and τ(x.a1.a2…-
>isUnique(t|t.b))
Any other, particularly arbitrary expressions:
Cannot be translated because no way to
express this in XPath 1.0 has been found.

Iterator call
select()

x ->
select(t|b(t))

Compute
the set of
those
objects t in
x, for which
the
predicate
b(t) holds.

τ(x) [τ(b(.))]
Note that this is very similar to exists(), the
only difference being the Boolean
interpretation of the result in the exists() case.

Pattern
matching
function on
Strings

x . matches(
pattern)

Note: This
operation call
is an
extension. It is

Boolean
function
which
yields true
if the
pattern of
type String

There is no way to express matches() in XPath
1.0 except by way of using a Java extension
function or by making use of the matches
function available in XPath 2.0.
The implementation allows to configure either
the use of an extension function or of XPath
2.0 syntax. The XPath translation target is

OGC 10-088r3

54 Copyright © 2014 Open Geospatial Consortium

Category OCL syntax In words Schematron translation
not part of the
OCL standard.

matches the
String
argument.

configurable text (a function call), which
receives τ(x) and τ(pattern) as substitutes for
the strings ‘$object$’ and ‘$pattern$’, which
both have to be part of the configured function
call.
See the following section B.2 for more
information about the implemented
ShapeChange configuration options.

B.2 Configuring the matches() operation

The OCL operation described here is currently not part oft the OCL 2.2 standard.
However, discussions covering this topic found in the Internet seem to point to the
expectation that the functionality is required and will probably arrive with OCL 3.0.

The expected and implemented signature of the required functionality is:

matches(pattern:String) : Boolean

matches() operates on an object self, which must be of type String. The result is of
type Boolean and indicates whether self complies to the String argument pattern
according to REGEX semantics.

There is no way to express matches() in XPath 1.0 except by way of using a Java
extension function. XPath 2.0 indeed possesses an appropriate function. So, if the
Schematron environment to be employed is capable of executing XPath 2.0 expressions,
the translation process should preferably lead there.

Two configuration parameters have been added to the XmlSchema target of the
ShapeChange configuration document. They control naming, namespace and arguments
of the employed Java extension function, or XPath 2.0 function, respectively.

1. Configuring for use of the standard Java function matches():

<targetParameter
name="schematronExtension.matches.namespace"
value="java:java"/>

<targetParameter
name="schematronExtension.matches.function"
value="java.util.regex.Pattern.matches($pattern$,$object$)"/>

	

From

self.matches('\w+')

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 55

this will generate:

java:java.util.regex.Pattern.matches('\w+',.)

Additionally a namespace definition

<ns prefix="java" uri="java"/>

will be added to the Schematron schema document.

Though the exact way, how extension functions are to be added to XPath/XSLT
environments, is not really standardized, this can be expected to work with most
implementations. The namespace parameter may require specification of XPath/XSLT
processor specific URLs.

2. Configuring for use of XPath 2.0:

<targetParameter
name="schematronExtension.matches.namespace"
value="fn:http://www.w3.org/2005/xpath-functions"/>

<targetParameter
name="schematronExtension.matches.function"
value="matches($object$,$pattern$)"/>

	

Here

self.matches('\w+')

will generate:

fn:matches(.,'\w+')

Additionally the namespace definition

<ns prefix="fn" uri="http://www.w3.org/2005/xpath-functions"/>

will be added to the Schematron schema document.

B.3 Configuring xlink:href reference syntax

The Schematron schema code generated from OCL invariants accompanies the
ShapeChange-generated GML application schema and enables the validation of GML
data beyond the syntactic validation using XML Schema.

This includes referential associations beween features, which are expressed using GML’s
use of simple links according to the Xlink schema. The source and target of an

OGC 10-088r3

56 Copyright © 2014 Open Geospatial Consortium

association, which is expressed by means of the xlink:href attribute construct has to be
part of the same GML instance document.

The target point an association, which emanates from a property element carrying
xlink:href is an object, which carries the gml:id attribute.

The attribute value used in the xlink:href attribute and the value in gml:id are usually not
identical, because gml:id carries a label and xlink:href carries an XPointer construct,
which references such a label.

The implemented translation process for xlink:href does not support XPointer. It also
assumes that the source and the target of the link reside in the same document. The
implementation assumes that the label contained in gml:id is somehow contained in the
xlink:href reference in a fixed format. You can configure a prefix and a postfix, which is
assumed to surround the label proper.

The defaults for prefix and postfix are as follows:

 Prefix: #

 Postfix: (empty)

This corresponds to document relative bare name syntax.

Other prefixes or postfixes may be specified by using configuration options of the
XmlSchema target of the ShapeChange configuration document.

<targetParameter name="schematronXlinkHrefPrefix" value="xxx"/>
<targetParameter name="schematronXlinkHrefPostfix" value="yyy"/>

This would establish a prefix of “xxx” and a postfix of “yyy”.

B.4 Examples

This section contains examples for OCL to Schematron translations, which have been
thoroughly discussed during the validation process.

B.4.1 Complex example with combined logic and forAll() iterators

The following complex OCL constraint has been manually formatted by inserting
additional line breaks and indentation to achieve a better readability.

inv MaritimeBottomCharacterValTriples: /*Beach*/
(
 maritimeBottomCharacter.valuesOrReason.values->forAll
 (x |
 (

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 57

 x.materialQualityOrReason.value->isEmpty()
 implies
 (
 x.materialQualityOrReason.reason->notEmpty()
 and
 x.materialQualityOrReason.reason <> VoidValueReason::valueSpecified
)
)
 and
 (
 x.materialQualityOrReason.value->notEmpty()
 implies
 x.materialQualityOrReason.reason = VoidValueReason::valueSpecified
)
)
)
and
(
 maritimeBottomCharacter.valuesOrReason.values->forAll
 (x |
 (
 x.materialTypeOrReason.value->isEmpty()
 implies
 (
 x.materialTypeOrReason.reason->notEmpty()
 and
 x.materialTypeOrReason.reason <> VoidValueReason::valueSpecified
)
)
 and
 (
 x.materialTypeOrReason.value->notEmpty()
 implies
 x.materialTypeOrReason.reason = VoidValueReason::valueSpecified
)
)
)
and
(
 maritimeBottomCharacter.valuesOrReason.values->forAll
 (x |
 (
 x.sedimentColourOrReason.value->isEmpty()
 implies
 (
 x.sedimentColourOrReason.reason->notEmpty()
 and

OGC 10-088r3

58 Copyright © 2014 Open Geospatial Consortium

 x.sedimentColourOrReason.reason <> VoidValueReason::valueSpecified
)
)
 and
 (
 x.sedimentColourOrReason.value->notEmpty()
 implies
 x.sedimentColourOrReason.reason = VoidValueReason::valueSpecified
)
)
)

This constraint is translated into the following Schematron rule:

<rule	
 context="nas:Beach">	

	
 	
 	
 	
 <assert	
 test=”	

	
 	
 	
 	
 	
 	
 	
 	
 not((nas:maritimeBottomCharacter/*/nas:valuesOrReason/*)[

	
 	
 	
 	
 	
 	
 	
 	
 not(nas:materialQualityOrReason)	
 and	
 	

	
 	
 	
 	
 	
 	
 	
 	
 (not(nas:materialQualityOrReason[@xsi:nil='true']/@nilReason)	
 or	
 	

	
 	
 	
 	
 	
 	
 	
 	
 nas:materialQualityOrReason[@xsi:nil='true']/@nilReason	
 =	
 'valueSpecified')	
 or	
 	

	
 	
 	
 	
 	
 	
 	
 	
 nas:materialQualityOrReason	
 and	
 	

	
 	
 	
 	
 	
 	
 	
 	
 nas:materialQualityOrReason[@xsi:nil='true']/@nilReason	
 !=	
 'valueSpecified']	

	
 	
 	
 	
 	
 	
 	
 	
)	
 and	
 	

	
 	
 	
 	
 	
 	
 	
 	
 not((nas:maritimeBottomCharacter/*/nas:valuesOrReason/*)[

	
 	
 	
 	
 	
 	
 	
 	
 not(nas:materialTypeOrReason)	
 and	
 	

	
 	
 	
 	
 	
 	
 	
 	
 (not(nas:materialTypeOrReason[@xsi:nil='true']/@nilReason)	
 or	
 	

	
 	
 	
 	
 	
 	
 	
 	
 nas:materialTypeOrReason[@xsi:nil='true']/@nilReason	
 =	
 'valueSpecified')	
 or	
 	

	
 	
 	
 	
 	
 	
 	
 	
 nas:materialTypeOrReason	
 and	
 	

	
 	
 	
 	
 	
 	
 	
 	
 nas:materialTypeOrReason[@xsi:nil='true']/@nilReason	
 !=	
 'valueSpecified']	

	
 	
 	
 	
 	
 	
 	
 	
)	
 and	

	
 	
 	
 	
 	
 	
 	
 	
 not((nas:maritimeBottomCharacter/*/nas:valuesOrReason/*)[

	
 	
 	
 	
 	
 	
 	
 	
 not(nas:sedimentColourOrReason)	
 and	
 	

	
 	
 	
 	
 	
 	
 	
 	
 (not(nas:sedimentColourOrReason[@xsi:nil='true']/@nilReason)	
 or	
 	

	
 	
 	
 	
 	
 	
 	
 	
 nas:sedimentColourOrReason[@xsi:nil='true']/@nilReason	
 =	
 'valueSpecified')	
 or	
 	

	
 	
 	
 	
 	
 	
 	
 	
 nas:sedimentColourOrReason	
 and	
 	

	
 	
 	
 	
 	
 	
 	
 	
 nas:sedimentColourOrReason[@xsi:nil='true']/@nilReason	
 !=	
 'valueSpecified'])"	

	
 	
 	
 	
 	
 	
 	
 	
 >MaritimeBottomCharacterValTriples:	
 Beach</assert>	

</rule>	

A short discussion to make this translation plausible:

First of all, the constraint is defined in the context of class Beach, which is reflected in
the context attribute of the rule. The name of the constraint (the text between the
introducing inv keyword and the colon ‘:’) appears as the content of the assert element.
The content of any comments found in the OCL constraint is appended, this can be used
to create readable descriptions of assertions.

As can be easily seen, the outmost structure of the constraint is a logical and operation
with three operands, each of which starts with a forAll() iterator on the property path
maritimeBottomCharacter.valuesOrReason.values. You see this reflected in the XPath

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 59

expression, which on its outmost level is also a 3-operand and. It will suffice to analyze
one of the three operands, to understand the full expression. We will take the first one.

Now:

x->forAll (t | expr(t))

is not translated directly. We do it by transforming it to the equivalent expression:

not (x->exists (t | not (expr(t))))

The outmost not() resulting from this primary step you can directly see in the result.

So, we need to negate the body of the forAll().

We first replace A implies B by not(A) or B and subsequently apply De Morgan’s law to
achieve the negation. The result is:

 (
 x.materialQualityOrReason.value->isEmpty()
 and
 (
 x.materialQualityOrReason.reason->isEmpty()
 or
 x.materialQualityOrReason.reason = VoidValueReason::valueSpecified
)
)
 or
 (
 x.materialQualityOrReason.value->notEmpty()
 and
 x.materialQualityOrReason.reason <> VoidValueReason::valueSpecified
)

If you compare this to the generated XPath expression, you will immediately detect the
corresponding parts, which appear in exactly the same order.

B.4.2 Translating isUnique()

This example is a shortened one, which is actually larger and uses isUnique() in some
logic context. However, eventually this additional logic is only connected by means of an
and and only obscures the view on the isUnique() subject. These parts have therefore
been left away and replaced by ellipses.

inv VertConstMaterial: /*AircraftHangar*/
… and
verticalConstMaterial.valuesOrReason.values->isUnique(x|x)

OGC 10-088r3

60 Copyright © 2014 Open Geospatial Consortium

This translates to the following XPath rule:

	
 	
 	
 	
 <rule	
 context="nas:AircraftHangar">	

	
 	
 	
 	
 	
 	
 <let	
 name="A"	
 value="nas:verticalConstMaterial/*/nas:valuesOrReason"/>	

	
 	
 	
 	
 	
 	
 <assert	
 test="…	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 and	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 not($A[.	
 =	
 (preceding::*|ancestor::*)[count(.|$A)=count($A)]])"	

	
 	
 	
 	
 >VertConstMaterial:	
 AircraftHangar</assert>	

	
 	
 	
 	
 </rule>	

The translation of isUnique() is a border case with XPath 1.0. A full implementation,
where arbitrary expression are supported in the body of the isUnique() iterator, seems
fully out of reach. Even the constructs supported for identity and simple attribute
evaluation are quite tricky and actually rather inefficient.

Given the general form

x -> isUnique (t | y(t))

the case at hand evidently seems to be of the form y(t)=t, which means identity. y can
also be characterized to be a collection of basic types (actually codelist values).

In the general form we translate this into the XPath expression:

not(τ(x)[.=(preceding::*|ancestor::*)[count(.|τ(x))=count(τ(x))]])

In this expression – as was defined in B.1 – τ(x) stands for the generated code for x.

x is evidently verticalConstMaterial.valuesOrReason.values, which means τ(x) (the
compiled x) is nas:verticalConstMaterial/*/nas:valuesOrReason.

The latter phrase is defined on a Schematron variable $A by means of a let element of the
rule, and you can see that the constructed assertion is exactly as planned in the general
form.

Now, why does this expression assert uniqueness?

The overall construct is a not($A[….]), which means that the assertion is fulfilled, if
$A[…] is the empty nodeset.

$A is the nodeset containing the collection of basic type instances which are to be proven
being unique. So, the expression would be right, if the predicate rejects all elements in $A
if and only if $A is unique.

The predicate compares each element (“.”) with a specially constructed nodeset, which
comprises the “left” part of the InfoSet from the start of the XML document up to but not
including the current element (“.” = the current basic type instance).

OGC 10-088r3

Copyright © 2014 Open Geospatial Consortium 61

The “left” part of the InfoSet is (preceding::*|ancestor::*), which of course also contains
many elements we do not want to compare “.” to. We have to reduce the “left” part to
what remains, if we intersect it with $A. There is no “intersect” operation in XPath 1.0, so
we use the well-known count-comparison trick (you can find this in any XPath
cookbook).

The trick is as follows: We compare the cardinality of $A with the cardinality of $A
united (“|”) with “.”. Note that “.” here stands for the current element of the left part of
the InfoSet. If “.” is not in $A these counts will be different.

So we end up with the intersection of $A with the left part of the InfoSet. And that’s what
we compare to the current basic type instance. Nodeset comparisons have existence
quantification, so this “=” will be true, if we find “.” in the “left part of $A”. Which
means that “.” is identical to another instance in $A and which is exactly the opposite of
uniqueness.

Please note that, though this construct works, it can be supposed to be quite slow.
Reason: Any value is compared to the left part of the tree, which is of quadratic order.
And additionally we have the trick providing the intersection operation, which is also
quadratic. This further increases the order to O(n4).

OGC 10-088r3

62 Copyright © 2014 Open Geospatial Consortium

Bibliography

[1] OGC® OWS-5 GSIP Schema Processing Engineering Report, OGC document
08-078r1

[2] OGC® OWS-6 GML Profile Validation Tool Engineering Report, OGC
document 09-038r1

[3] OGC® The Specification Model — Modular specifications, OGC document 08-
131r3

[4] OGC® Web Feature Service, version 1.1.0, OGC document 04-094 (OGC
standard)

