
OpenGIS® Engineering Report OGC 11-097

Copyright © 2011 Open Geospatial Consortium. 1

Open Geospatial Consortium

Date: 2011-12-19

http://www.opengis.net/doc/ows8-aixm-compression

Reference number of this document: OGC 11-097

Category: Public Engineering Report

Editor(s): Jérôme JANSOU (AtoS) / Thibault DACLA (Atmosphere)

OGC® OWS-8 AIXM 5.1 Compression Benchmarking

Copyright © 2011 Open Geospatial Consortium.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document is an OGC Public
Engineering Report created as a deliverable in an OGC Interoperability Initiative
and is not an official position of the OGC membership. It is distributed for review
and comment. It is subject to change without notice and may not be referred to as
an OGC Standard. Further, any OGC Engineering Report should not be referenced
as required or mandatory technology in procurements.

Document type: OGC® Public Engineering Report
Document subtype: NA
Document stage: Approved for public release
Document language: English

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

2

Preface

This OGC document presents the results of a compression benchmarking campaign of
various algorithms applied on AIXM 5.1 files, with a special focus on D-NOTAM 1.0
and today Datalink capacities

This document is a deliverable for the OGC Web Services 8 (OWS-8) testbed activity.
OWS testbeds are part of OGC's Interoperability Program, a global, hands-on and
collaborative prototyping program designed to rapidly develop, test and deliver proven
candidate standards or revisions to existing standards into OGC's Standards Program,
where they are formalized for public release. In OGC's Interoperability Initiatives,
international teams of technology providers work together to solve specific geoprocessing
interoperability problems posed by the Initiative's sponsoring organizations. OGC
Interoperability Initiatives include test beds, pilot projects, interoperability experiments
and interoperability support services - all designed to encourage rapid development,
testing, validation and adoption of OGC standards.

The OWS-8 sponsors are organizations seeking open standards for their interoperability
requirements. After analyzing their requirements, the OGC Interoperability Team
recommend to the sponsors that the content of the OWS-8 initiative be organized around
the following threads:

 * Observation Fusion

 * Geosynchronization (Gsync)

 * Cross-Community Interoperability (CCI)

 * Aviation

More information about the OWS-8 testbed can be found at:

http://www.opengeospatial.org/standards/requests/74

OGC Document [11-139] “OWS-8 Summary Report” provides a summary of the OWS-8
testbed and is available for download:

https://portal.opengeospatial.org/files/?artifact_id=46176

License Agreement

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 3

Permission is hereby granted by the Open Geospatial Consortium, Inc. ("Licensor"), free of charge and subject to the terms set forth
below, to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual
Property without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify,
merge, publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual
Property is furnished to do so, provided that all copyright notices on the intellectual property are retained intact and that each person to
whom the Intellectual Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this
Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable,
and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be
construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in
violation of U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction
which may impact your right to import, export or use the Intellectual Property, and you represent that you have complied with any
regulations or registration procedures required by applicable law to make this license enforceable.

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

4

Contents Page

1	
 Introduction ... 8	

1.1	
 Scope ... 8	

1.2	
 Document contributor contact points .. 9	

1.3	
 Revision history .. 9	

1.4	
 Guidelines for the reader ... 9	

1.5	
 Overview / results of the study ... 10	

1.6	
 Future work ... 11	

1.7	
 Forward ... 11	

2	
 References ... 12	

3	
 Terms and definitions ... 13	

4	
 Conventions .. 14	

4.1	
 Abbreviated terms ... 14	

4.2	
 Used parts of other documents .. 16	

5	
 Benchmarking platform settings ... 16	

5.1	
 Test system configuration ... 16	

5.1.1	
 Hardware ... 16	

5.1.1.1	
 Client side (EFB) ... 17	

5.1.1.2	
 Server side (WFS server) ... 17	

5.1.2	
 Operating System .. 18	

5.1.3	
 Versions of software / COTS .. 18	

5.2	
 Operating mode ... 19	

5.2.1	
 Japex flow ... 19	

5.2.1.1	
 Japex quick presentation .. 19	

5.2.1.2	
 Drivers .. 20	

5.2.1.3	
 Test configuration and scheduling ... 21	

5.2.1.4	
 Report generation ... 21	

5.2.1.5	
 W3C EXI test bed .. 22	

5.2.1.6	
 Flow overview ... 28	

5.2.2	
 Measurements ... 28	

5.2.2.1	
 Compaction .. 28	

5.2.2.2	
 CPU Consumption ... 29	

5.2.2.3	
 Memory consumption .. 29	

5.3	
 Candidates ... 30	

5.3.1	
 Java based ... 30	

5.3.1.1	
 Java Sax parser ... 30	

5.3.1.2	
 Fast Info Set ... 32	

5.3.1.3	
 Exificient (EXI) ... 33	

5.3.2	
 C/C++ based ... 36	

5.3.2.1	
 CWXML .. 36	

6	
 AIXM input files ... 37	

6.1	
 Families of files ... 37	

6.1.1	
 Small files (<10kB) ... 38	

6.1.2	
 Medium files (between 10kB and 1MB) .. 38	

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 5

6.1.3	
 Large files (>1MB) ... 39	

6.1.4	
 Technical files ... 39	

6.2	
 Characterization of families / files .. 40	

6.2.1	
 Statistical analysis ... 40	

6.2.2	
 Small files (<10kB) ... 41	

6.2.2.1	
 f1_restricted_area_event.xml ... 41	

6.2.2.2	
 f1_tra_ear23_active.xml .. 41	

6.2.2.3	
 f1_tra_ear23_active_cancel.xml .. 41	

6.2.2.4	
 Analysis .. 42	

6.2.3	
 Medium files (between 10kB and 1MB) .. 42	

6.2.3.1	
 f2_airspaces_all_85k.xml .. 42	

6.2.3.2	
 f2_geo_border_florida_775k.xml .. 43	

6.2.3.3	
 f2_geo_border_puerto_rico_107k.xml .. 44	

6.2.3.4	
 f2_navaids_alaska_310k.xml ... 45	

6.2.3.5	
 f2_route_alaska_50k.xml ... 46	

6.2.3.6	
 f2_runway_elements_alaska_40k.xml ... 47	

6.2.3.7	
 f2_runways_alaska_22k.xml ... 48	

6.2.3.8	
 f2_taxiway_elements_alaska_730k.xml .. 49	

6.2.3.9	
 f2_taxiways_alaska_375k.xml ... 50	

6.2.3.10	
 f2_vertical_structure_alaska_230k.xml .. 51	

6.2.3.11	
 Analysis .. 52	

6.2.4	
 Large files (>1MB) ... 54	

6.2.4.1	
 f3_airports_from_florida_2_2m.xml ... 54	

6.2.4.2	
 f3_airspaces.xml .. 56	

6.2.4.3	
 f3_estonia-ows8.xml .. 56	

6.2.4.4	
 f3_geo_borders_calif_nev_1_5m.xml ... 57	

6.2.4.5	
 f3_geo_borders_megalop_20m.xml .. 58	

6.2.4.6	
 f3_navaids_megalop_3_6m.xml .. 59	

6.2.4.7	
 f3_route_segment_florida_1_2m.xml .. 60	

6.2.4.8	
 f3_route_segment_megalop_15m.xml ... 61	

6.2.4.9	
 f3_runway_elements_all_4_4m.xml .. 62	

6.2.4.10	
 f3_runways_all_2_5m.xml ... 63	

6.2.4.11	
 f3_taxiway_elements_calif_nev_5_4m.xml ... 64	

6.2.4.12	
 f3_taxiways_calif_nev_3m.xml ... 65	

6.2.4.13	
 f3_taxiways_megalop_12m.xml .. 66	

6.2.4.14	
 f3_vertical_structure_florida_1_1m.xml .. 67	

6.2.4.15	
 f3_vertical_structure_megalop_8m.xml ... 68	

6.2.5	
 Technical files ... 69	

6.2.5.1	
 f4_all_features_from_family_2_in_disorder.xml .. 69	

6.2.5.2	
 f4_all_features_from_family_2_sorted_by_feature.xml 70	

6.2.5.3	
 doubles.xml .. 70	

6.2.6	
 Infuence of AIXM encoding schemes of the various WFS servers 70	

6.2.6.1	
 Formating ... 70	

6.2.6.2	
 NameSpace referencing ... 73	

6.2.6.3	
 BBOX .. 74	

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

6

6.2.6.4	
 GML:ID ... 74	

6.2.6.5	
 Time 76	

6.2.6.6	
 Coordinates .. 76	

6.2.6.7	
 Order of features .. 78	

7	
 Results ... 79	

7.1	
 Brute compaction performance ... 79	

7.1.1	
 Figures by family .. 79	

7.1.1.1	
 First family (D-NOTAMS) .. 79	

7.1.1.2	
 Second family .. 81	

7.1.1.3	
 Third family ... 87	

7.1.1.4	
 Thourth family ... 90	

7.1.2	
 Interpretation of results ... 92	

7.2	
 CPU consumption ... 92	

7.2.1	
 Figures by family .. 93	

7.2.1.1	
 First Family (D-NOTAMs) .. 93	

7.2.1.2	
 Second family .. 95	

7.2.1.3	
 Third family ... 97	

7.2.2	
 GZIP levels incidence for family 3 ... 100	

7.2.3	
 Projection on maximum throughput of candidates 102	

7.3	
 Memory footprint .. 103	

7.3.1	
 For initialisation of candidate (static) ... 103	

7.3.2	
 For a run (dynamic) .. 103	

7.3.2.1	
 Encoding .. 104	

7.3.2.2	
 Decoding .. 105	

7.4	
 Integration cost, ease of usage .. 105	

7.5	
 Data integrity / Safety ... 105	

7.5.1	
 Quality of code .. 106	

7.5.2	
 Complexity .. 106	

7.5.3	
 Experience return .. 106	

8	
 Perspective on real world use cases .. 107	

8.1	
 Best compaction candidate for small files or “datalink” messages 107	

8.1.1	
 Understanding onboard systems constraints and datalink limitations 107	

8.1.1.1	
 ATC Datalink “en route” ... 107	

8.1.1.2	
 AOC / AAC datalink grounded .. 107	

8.1.1.3	
 AOC datalink “en route” .. 108	

8.1.1.4	
 Cost of airborne embeded software ... 110	

8.1.1.5	
 Bandwith constraint ... 110	

8.1.1.6	
 Message size for each datalink .. 110	

8.1.2	
 Best candidate ... 111	

8.2	
 Best compaction for synchronization of databases across ground network 111	

8.2.1	
 Slow network links (<1Mbits/s) .. 111	

8.2.2	
 Fast network links (>1Mbit/s) ... 111	

8.2.3	
 High speed network links (>10Mbit/s) ... 112	

8.2.4	
 Very high speed links (~circa 1Gbps) ... 112	

9	
 Looking forward, improvements .. 112	

9.1	
 Toileting D-NOTAMs before emission .. 112	

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 7

9.2	
 Improving coordinates handling compression .. 112	

9.3	
 Getting a little more compression using simple algorithms 113	

10	
 Conclusion .. 113	

Annex B XML Schema Documents .. 115

OpenGIS® Engineering Report OGC 11-097

Copyright © 2011 Open Geospatial Consortium. 8

OGC® OWS-8 AIXM 5.1 Compression Benchmarking

1 Introduction

1.1 Scope

AIXM stands today for the de-facto standard for Aeronautical Information Publication,
used by air control service providers from Europe, USA and Australia. With version 5.1,
it reaches a level of maturity allowing the support of Digital NOTAMs, as the first
official version of these messages was published this year.

In a near future, AIXM will be carried inside WFS requests but also into notification
messages along WS event services. This last channel will be the one dedicated to D-
NOTAMs. As D-NOTAM is aimed at aircrafts pilots, their transmission to the aircraft
will use air/ground data link. Today, datalink communications lack bandwidth and future
datalink will still have a limited capacity.

Uploading D-NOTAM aboard raises the question of the pertinence of using XML voluble
message through the narrow datalink channel. The viability of AIXM through datalink
relies on how good a compression can be applied on these messages. If proof can be
made compressed AIXM doesn’t weight much more than a handmade binary
representation, AIXM should make its way onboard.

This OGC document presents the results of a compression benchmarking campaign of
various algorithms applied on AIXM 5.1 files, with a special focus on D-NOTAM 1.0
and today Datalink capacities.

The compression candidates, and input files made the object of a thorough selection and
classification in coordination with the aviation thread of OWS-8 team. AIXM inner
characteristics are studied to put light on the benchmark results and provide explanation
on the outcomes.

This OGC document also gives recommendation on how to implement compression on
client/server communication using AIXM.

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held
responsible for identifying any or all such patent rights.

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 9

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

1.2 Document contributor contact points

All questions regarding this document should be directed to the editors:

Name Organization
J. Jansou AtoS
T. Dacla Atmosphere gbmh

We also want to thank the following contributors to this benchmarking campaign, or
report writing:

Name Organization
J. Arquey AtoS
M. Aguidi AtoS
R. Jarzmik AtoS
S Vingataramin Atmosphere gbmh

1.3 Revision history

Date Release Editor Primary clauses
modified

Description

2011-06-24 V0R1 J. Jansou First draft
2011-08-26 V0R2 J. Jansou Second draft
2011-09-30 V1R0 J. Jansou First release

1.4 Guidelines for the reader

� Chapter §2 presents the reference material used to write this report

� Chapter §3 lists frequently used terms and definitions

� Chapter §4 gives conventions used along this document, in 4.1 you will find
abbreviated terms

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

10

� Chapter §5 introduces the platform used for the benchmarking, as well as the
various candidates under test with their possible configurations

� Chapter §6 enumerates the AIXM files used as input data for the benchmark

� Chapter §7 treats results obtain and proposes explanation

� Chapter §8 shows how whose results could be used for actual applications

� Chapter §9 opens ways to further work on the AIXM compression topic

� Chapter §10 finally concludes, summing up achievements and facts from this
study

1.5 Overview / results of the study

The following lines resume the work done in the study and browse conclusions for the
hurried reader.

� 3 families of AIXM files were identified and populated with AIXM files

� AIXM selected files were analyzed to show general aspects of AIXM and
specificities due to each feature available.

� Measurements were made on compaction performance, CPU consumption and
memory footprint (for both setup, encoding and decoding phases) for various
algorithms (deflate alone, FI, FI with deflate, CWXML, deflate with dictionary,
deflate with several levels of compression, EXI without schema knowledge
neither deflate, EXI without schema knowledge but with deflate, EXI with
schema knowledge but without deflate, EXI with both schema knowledge and
deflate) using the exi-ttfms platform, modified for the purpose.

Main conclusions regarding results obtain are:

� EXI is very efficient to compress small AIXM files without too much coordinates
inside. Exificient with both AIXM schema knowledge and deflate post-
compression allow to produce compressed D-NOTAMs around 700 bytes (only
13% of the original file size). The dark spot of using exificient for such data is the
huge memory footprint necessary (~100MB) and the time needed to perform
deflate post compression. This is not much a problem for a 2011 server, but will
certainly raise some issue for an EFB.

� For compaction of bigger AIXM files (>100KB), the difference of performance
between EXI and other compression algorithms decrease, and thus as you can
reach a comparable level of compaction with Fast Info Set with a CPU and
memory consumption so much lower, we strongly suggest to stick on Fast Info
Set with deflate post-compression.

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 11

1.6 Future work

Maintaining the platform:

Improvements in this document are desirable to keep the benchmark results in line with
the current state of the art in compression algorithms, specially the ones fully dedicated to
XML data. Additionally, as we brought the exi-ttfms up to date with 2011’s versions of
components, we encourage maintaining the platform in phase with latest versions of
libraries for future usage.

Improving CPU / Memory measurements for unbiased comparisons:

Also, some axis of comparison between algorithm in different languages (mostly C,C++
and Java) are not so obvious (e.g. memory foot print) and will need a fresh perspective to
be totally fair (ask the operating system an unbiased measurement). The same remark
applies for SAX, as all algorithms do not offer a native SAX interface (XML reader /
SAX parser).

Continuing following advances of EXI and benefits for AIXM or GML data:

EXI is quite a new techno, especially for open source implementations. Right now if EXI
seems the more promising XML compression techno around, it still lacks features to be
fully usable for GML data, which are by nature voluminous:

� A new way to handle floating point numbers, which is compatible with deflate
post-compression.

� Make some drastic improvement of memory consumption and CPU needed to
handle deflate post compression.

1.7 Forward

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

12

2 References

The following documents are referenced in this document. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply. For
undated references, the latest edition of the normative document referred to applies.

[AIXM_XSD] AIXM 5.1 Schemas 2010-02-01
http://www.aixm.aero/gallery/content/public/AIXM51/AIXM-5-1-20100201-xsd.zip

[AIXM_UML] AIXM 5.1 Conceptual Model 2010-02-01
http://www.aixm.aero/gallery/content/public/AIXM51/AIXM-5-1-20100201-
webview.zip

[D_NOTAM_ES] Digital NOTAM Event Specification - version 1.0 – 2011-06-08
http://www.aixm.aero/gallery/content/public/digital_notam/Specifications/Digital%20NO
TAM%20Event%20Specification%201.0.doc

[D_NOTAM_FILES] Digital NOTAM samples – version 1.0 – 2011-06-10
http://www.aixm.aero/gallery/content/public/digital_notam/Specifications/Digital%20NO
TAM%20samples%20-%20including%20Event%20Schema.zip

[DEF] RFC 1951 - DEFLATE Compressed Data Format Specification - version 1.3 –
1996-06
http://www.ietf.org/rfc/rfc1951.txt

[FIS] X.891: Information technology - Generic applications of ASN.1: Fast infoset –
2007-01-30
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.891-200505-I!!PDF-
E&type=items

[EXI] Efficient XML Interchange (EXI) Format - W3C Recommendation – version 1.0 –
2011-03-10
http://www.w3.org/TR/2011/REC-exi-20110310/

[BXML] OGC 03-002r8 - Binary-XML Encoding Specification - version 0.0.8 – 2003-05
http://www.opengis.org/techno/discussions/03-002r8.pdf

[JAPEX] JAPEX Manual - version 1.1.3 - 2007-12
http://japex.java.net/docs/manual.html

[TTFMS] Efficient XML Interchange Measurements Note
http://www.w3.org/TR/2007/WD-exi-measurements-20070725/

[TTFMS_CODE] W3C EXI Measurement Test Framework
http://www.w3.org/XML/EXI/framework/exi-ttfms.zip

[IRIDIUM_SBD] Iridium’s SBD Service explained to developers
http://www.deltawavecomm.com/prices/Iridium/Technical%20Documentation/Data%20
Notes/Iridium_SBDS_Developers_Guide.pdf

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 13

[OGC] OGC 06-121r3, OpenGIS® Web Services Common Standard

NOTE This OWS Common Specification contains a list of normative references that are also
applicable to this Implementation Specification.

3 Terms and definitions

For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Specification [OGC 06-121r3] shall apply. In addition, the following
terms and definitions apply:

3.1
Candidate
In the JAPEX context, a candidate consists of an autonomous jar archive, used by the test
sequencer of JAPEX to perform benchmarking. A candidate can be seen as a couple of 2
software components linked together:

� A library used to perform compression / decompression of data (This library can
be coded using C/C++ or Java, offer a SAX interface or not, be able to work on a
stream or just on a full memory buffer)

� An adaptation layer between Japex driver and the raw library. This layer will be
in charge of converting the high level Japex solicitations (like: initialize for
testing, run a test on such a topic (cpu, memory,…)) to concrete calls to the
library, using its own internal API. The adaptation layer use some code from the
platform that facilitate the declination of generic Japex driver into more
compression focused specific drivers (JNI, SAX,…).

3.2
Platform
The Efficient XML Interchange Working Group lead by W3C, develop an EXI test
platform to compare the performance of EXI against other algorithms. This platform
[TTFMS_CODE] was last modified in 2007 and was reused for the present
Benchmarking of AIXM. In this context, and on for the rest of this document, Platform
stands for the W3C EXI platform modified for this present AIXM Benchmark.

3.3
Compaction
Measure, expressed in percentage, of the size of data output by a compression algorithm
compared to the original size of an input data.

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

14

3.4
Data Link
Any way to exchange data messages between an aircraft and the ground when aircraft is
moving on the ground or flying.

4 Conventions

4.1 Abbreviated terms

ACARS Aircraft Communications Addressing and Reporting System
Aero-MAX WiMAX with special profile for Aeronautical usage

AIP Aeronautical Information Publication
AIS Aeronautical Information Services

AIXM Aeronautical Information Exchange Model
ANSP Air Navigation Service Provider

AOA ACARS Over AVLC
AOC Airline Operational Communication

ASN.1 Abstract Syntax Notation 1
ATC Air Traffic Control

ATM Air Traffic Management
ATN Aeronautical Telecommunications Network

BER Basic Encoding Rules
BGAN Broadband Global Area Network

COTS Commercial Off The Shelf
CPDLC Controller Pilot Datalink Communications

CPU Central Processing Unit
D-NOTAM Digital NOTAM

DVB Digital Video Broadcasting
DVB-S DVB for Satellite

DVB-RCS DVB with Return Channel via Satellite
Eurocontrol European Organisation for the Safety of Air Navigation

EFB Electronic Flight Bag
EXI Efficient XML Interchange

FAA Federal Aviation Administration
FI/FIS FastInfoSet

FLAC Free Lossless Audio Codec

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 15

FSB Front Side Bus
GEO Geostationary Earth Orbit

GML Geography Markup Language
GZIP GNU ZIP

HTTP HyperText Transfert Protocol
IETF Internet Engineering Task Force

IP Internet Protocol
ESA European Space Agency

ISO International Standards Organisation
JDK Java Development Kit

JDSL Japex Driver Standard Library
JNI Java Native Interface

JRE Java RunTime Environment
LDACS L-band Datalink Aeronautical Communication System

LEO Low Earth Orbit
MTF Move To Front

NEWSKY NEtWorking the SKY
NextGen Next Generation Air Traffic System

NOTAM Notice To Airmen
NS Name Space

OFDM Orthogonal Frequency Division Multiplexing
PC Personal Computer

PER Packed Encoding Rules
POA Plain Old ACARS

QoS Quality of Service
RAM Random-Access Memory

RFC Request For Comments
SatCom Satellite Communication

SBB SwiftBroadBand
SBD Short Burst Data (Service)

SESAR Single European Sky ATM Research program

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

16

SOAP Simple Object Access Protocol
SWIM System Wide Information Management

TCP Transmission Control Protocol
TDMA Time Division Multiple Access

VDL VHF Data Link
VDL2 VDL Mode 2

VGS VHF Ground Station
VHF Very high frequency

VM Virtual Machine
W3C World Wide Web Consortium

WiMAX Worldwide Interoperability for Microwave Access
WP Work Package

XML Extensible Markup Language

4.2 Used parts of other documents

This document use parts of other documents. To indicate to readers those quoted parts of
such a document, the copied parts are shown with a light grey background (15%). The
referenced document will be mentioned through its shortcut reference [XXX] as
described in 2

5 Benchmarking platform settings

This chapter focuses on describing the test bed used for this benchmarking campaign we
run in both AtoS Toulouse and Atmosphere Munich offices during the spring and
summer 2011. As its contains is mostly technical, and do not treat AIXM input files
neither results, maybe it will bring interest mostly to people aiming at running this test
bed by their own, or enthusiast of compression algorithms.

5.1 Test system configuration

The following lines explain the hardware and operating system of the PC used for the test
bed, with the versions of products.

5.1.1 Hardware

There is no special adherence to a specific computer or OS to run the platform. Basically
any computer able to run Java 1.6 and Netbeans 7.0 with a C compiler should be enough.
Our concern was more to propose a PC architecture as close as possible to an EFB or a
standard server.

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 17

5.1.1.1 Client side (EFB)

Consumption constraints, heat dissipation, and passive cooling oriented us to choose a
recent, but very low consumption PC.

 That’s why we chose an ASUS Eee PC 1001HA Seashell with the following
characteristics:

� Intel Atom N270 with

o 1.6 GHz single core CPU

o 512KB L2 Cache

o Only 32 bits instruction set

o 2.5W maximum power dissipation

� 533 MHz FSB

� 1 GB of SO DIMM PC2-5300 RAM, single channel

� 1 Sata-300 2.5 inches HDD of 160 GB (5400 rpm)

The idea is that any PC brought today will perform better than this one, in any area (CPU
frequency, nb of cores, L2 cache, Memory/FSB Speed,…). So the results we’ll give will
be lower bound numbers.

5.1.1.2 Server side (WFS server)

With the same idea to use a server hardware still up to date, but which can be beat by any
new 2011 server, we chose a model from 2006, based on a P4/D architecture (Dell
Precision 470):

� A dual socket motherboard with 2x Intel Xeon processor (Paxville/Netburst DP)
with

o 2.8 GHz double-core

o 2MB L2 cache on each core

o 32 bits instruction set

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

18

� 800 MHz FSB

� 4GB DDR2 RAM

� 2x73GB SCSI disk (10krpm) on SCSI ultra 320 AIC7902 controllers.

5.1.2 Operating System

Once again, the choice of the operating system is not crucial here, any OS with Java and
a C compiler will do for the benchmark.

We choose a x86 32 bits debian 5.0 “lenny” distribution mainly for stability on the client
system and a RHEL 4 on the server system

5.1.3 Versions of software / COTS

Table 1 — Version of software components used for the test bed

Software component Version of component (client)

GCC 3.4.4 (3.4)

Glibc 2.3.4 (2.7.1)

Jdk 1.6.0_24

Kernel 2.6.9-22 for 686 (2.6.26 for 486)

Make 3.80 (3.81-5)

Netbeans 7.0

Table 2 — Version of JAVA software components used for the test bed

Software component Version of component

Ant 1.7.0

japex 1.2.2 modified

jaxb-api 2.0

Jdsl (part of japex) 1.2.2

 jfreechart 1.0.12

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 19

Software component Version of component

Jsr 1.7.3

Xerces 2.9.1

5.2 Operating mode

The following chapters describe the test bed structure, how it uses Japex and the W3C
declination of Japex to produce compression benchmark for XML files.

5.2.1 Japex flow

5.2.1.1 Japex quick presentation

JAPEX is a micro benchmarking framework, allowing programmers to rapidly mount
small benchmark, without having to concentrate in developing again:

� Repetitive run of the same measurement on different drivers on different samples

� Sequencing of tests

� Loading and initializing drivers

� Run some dry-run of the test to “warm up” (mobilize the maxium amount of
cache) before running the real test

� Measure duration of a test, CPU consumption, and some memory consumption
stats

� Producing reports, including histograms, means, tables,…

Japex is support by Oracle, through the glassfish project, and is mostly the work of
Santiago Pericas-Geertsen. The documentation is scarce and not necessarily up to date
(http://japex.java.net/docs/manual.html), as the last update dates from 2007 and the last
version of the product dates from 2011.

So put apart the manual, the best way to discover Japex consist in digging into the code,
what we did.

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

20

In the beginning, Japex was created to evaluate compression performance on Fast Info
Set, then reuse for the W3C EXI performance evaluation. We don’t know any public use
of Japex apart of these 2 previous usages. Probably Japex was designed to be able to
make many things, but as it was only used for compression benchmarking, so we will
stay on this track and present only the topics already used and tested and which are used
for the present benchmark. As we modified Japex for the purpose of this benchmark, to
use some “experimental” functions we will address these modification later in this
document.

5.2.1.2 Drivers

Japex uses “drivers”. A driver is an individual java program (a jar archive) which
implements the Japex driver interface:

public interface JapexDriver extends Runnable {
 public void initializeDriver();
 public void prepare(TestCase testCase);
 public void warmup(TestCase testCase);
 public void run(TestCase testCase);
 public void finish(TestCase testCase);
 public void terminateDriver();
 }

In most cases (at least in the case of the W3C EXI test bed), the JapexDriver interface is
implemented through the inheritance of the JapexDriverBase class which implements
both the JapexDriver and Params interface.

InitializeDriver is called by Japex when the driver is loaded and terminateDriver before
the driver is destroyed. Prepare is used to let the driver prepare the consecutive runs that
will follow, for instance loading into memory, files content from disk, or doing any pre-
calculation.

Warmup is called when Japex want to proceed to a sequence of dry runs (runs without
any measurement) to warmup the VM (warmup can play on prediction schemes on the
processor, cache hits success ratio for processor L2 / L3 instruction / data caches or disk
buffering into memory for instance, even if it also “pollutes” the 3 java heaps (eden,
survivor, old), and therefore implies a random garbage collection). Some would tell
warmup could be considered as cheating, depending on the test case, but in our case, it
makes some sense if we consider that a WFS server will be processing only WFS
requests in a kind of infinite loop…

There is no real difference on the driver side between warmup and run, both methods will
trigger a “run”. Japex will make some real measurements in the “run” case, like
measuring how long the call to “run” takes.

Finish is called back by Japex once all the runs were made, in case the driver wants to
compute things by its own.

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 21

5.2.1.3 Test configuration and scheduling

Once Drivers have been developed, Japex is ready to run some tests on these drivers. A
test campaign is described through XML configuration files. The common way to use
Japex, and run a campaign, is to provide 2 files:

� A “driver group” file, gathering the list of drivers “driver name” to run and the
parameters to give to these drivers and some “global” japex parameters like
“unity” for measurements,…

� A “test suite” file, grouping “test case” items grouping a list of parameters
defining a test case. These parameters depend of the nature of the test. For our
compression test, they are mostly input files

As the number of XML files used to describe a campaign can change due to the
possibility of using Xinclude, it’s important to understand that an individual test is
characterized by:

� The selection of a driver, with parameters (let’s say EXI with schema knowledge
and post-compression with an interest on “cpu” consumption when compressing)

� The selection of a test case, in our case, an input file (for instance a notam)

When defining a driver group, with a test suite containing multiple test cases, you will
have a run corresponding for each test case by each driver. That is the main reason to
define one file for drivers (you will run them every time), and multiple files for test
suites.

5.2.1.4 Report generation

Japex generates reports in both HTML and XML. HTML pages include pictures of
histograms (in our case, but other graphs are possible). When a campaign uses multiples
drivers on multiples files, you get several graphs, including:

� One for each test case (or input file) showing the compared performance of each
driver (on histogram bar by driver)

� One global representing the average performance of each driver for all the files,
ranging for 3 different means calculation (Arithmetic, Geometric and Harmonic)

Result data are also shown in table, grouped by driver, one line for each test case (or
input file in our situation).

For % graphs (compaction for instance), the first “driver” sets the reference (100%) and
other are expressed related to the performance of the first one.

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

22

XML output is easy to post process if you plan to generate your own graphs (excel,…).

5.2.1.5 W3C EXI test bed

As said earlier, the W3C EXI test bed is built on Japex. If you download the W3C EXI
test bed, you won’t find Japex, but a special empty directory where you’re supposed to
put Japex. As the version of Japex used by the original Framework was not downloadable
anymore, we used the latest version of Japex 1.2.2 (in mars 2011).

5.2.1.5.1 Structure

The W3C EXI test bed file structure is as following:

<= japex drivers for java
 or c

<= drivers config
<= kind of test to run

<= test cases
<= XML sample data (some of them with
schema)

<= sources of the framework

<= here are the “drivers” extensions
<= datasinks (memory or network)
<= datasource (can be memory or file)

<= new params (added to japex)
<= properties depending of the topic

<= sax driver
<= japex jar to place here

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 23

5.2.1.5.2 New parameters

Basically, and to sum up, the test bed offers the following new parameters:

� driver.candidateName

o the name of the candidate, e.g. my_killer_compression_lib

� measurementProperty, to choose between:

o compactness (to perform measurement on compaction ratio (compression
alone))

o encode (to perform measurement on CPU, memory on encoding)

o decode (to perform measurement on CPU, memory on decoding)

� applicationClass which takes values between:

o neither (raw use of candidate, without additional compression)

o document (in this case a gzip compression is added on the datasink
stream, sometimes the candidate (e.g. EXI) manages itself the post-
compression)

o schema (we give the schema to the candidate to be used to improve
compression)

o both (we use both schema knowledge and post-compression, see
document)

� applicationClass.documentAnalysing.GZIP

o if set to true, GZIP is used to compress the datasink

� dataSourceSink.URI

o Supposed to be “memory:/” as the input file is loaded into memory before
feeding the datasource stream and as datasink is supposed to feed a buffer
in memory.

5.2.1.5.3 Japex drivers specialisation

Japex offers 2 classes to extend its own drivers:

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

24

� One is for java drivers (cf. 5.2.1.2): JapexDriverBase

� One is for C (and C++) drivers: JapexNativeDriver, who is brought through the
JDSL (Japex Driver Standard Library) project inside Japex (this project brings
also the latest version of FastInfoSet).

The W3C EXI test bed offers some extension of these “classes” (inside ttfs sub-
directory):

� BaseDriver extends JapexDriverBase

o SAXDriver extends BaseDriver

o CustomDriver extends BaseDriver

� BaseNativeDriver extends JapexNativeDriver

For Java drivers, we used only SAXDriver. To describe briefly what is brought by both
Base and Sax Driver to Japex:

BaseDriver:

� “Warmup” calls “Run”, making no difference between the 2 methods

� “prepare” manages parameters for driver and testcase separately, creates datasink
and datasource depending on the “measurement” choosen by the testcase
configuration. For “compactness” measurement it will perform compression /
decompression directly on the “prepare” phase by calling a transcodeTestCase
method.

� “finish” return “compaction” measure as % data to Japex when selected.

SAXDriver:

� The “run” method manages both “encode” and “decode” measurements
butnothing for “compaction” run (see prepare method of BaseDriver)

� For “encode”, SAX events read from XML input file will be passed to the SAX
handler interface instantiated by the “candidate” (SAX parser)

� For “decode”, the encoded input datasink will be given to the XML Reader
interface offered by the candidate which will generate SAX events.

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 25

It is important to understand that a candidate, using “SAXDriver” will process its
operations by directly handling “SAX events”, without seeing the raw XML at all, at least
for encode and decode measurements. For the compaction measurement, it depends on
the candidate. Some implement a “transcodeTestCase” method which directly works on
raw XML without using SAX (e.g. Jaxp), some re-use SAX (e.g. EXI to benefit from the
schema grammar).

5.2.1.5.4 To the “candidate”

As the W3C EXI test bed only reference “candidates” and no “drivers”, we need to
specify what is making a candidate. A candidate is a Japex Driver:

� extending the SAXDriver or the BaseNativeDriver, so some of the Japex calls are
directly handled by the “platform” (see below)

� using some additional parameters brought by the platform (see below)

� linked with a compression/decompression algorithm (that could be in java or
native)

� which eventually supports its own post-compression by itself (see “document”
applicationClass with applicationClass.documentAnalysing.GZIP unset)

� which handles eventually the parsing of schema

� which simply handles SAX parser for compression and SAX reader for
decompression if using the SAXDriver (this is very very simplified but gives the
idea)

The following schema show the generic candidate structure for both JNI and java bases
algorithms used:

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

26

Compression /
Decompression

C Libs (.so)

ZLib

Native C / JNI
« DRIVER »
candidate

EXI-TTFMS
COMMONS

(parameters,
…)

Java
« DRIVER »
candidate

EXI-TTFMS
JAVA SAX
« DRIVER »

JAPEX « DRIVER »

Compression /
Decompression
Java Lib (JARS)

5.2.1.5.5 Sinks and Sources

Even if the platform loads input files into memory, and store output also in memory, it
will manage input and output of encoding / decoding operations directly from/to streams.
The input stream is called the datasource and the output stream the datasink. The usage of
adaptors on these streams allows to perform additional gzip compression, and to manage
it without soliciting the candidate which still sees streams on both sides.

For instance the gzip compression alone on a file (XML neither candidate) is obtained by
using xerces to decode SAX events produced by the platform reading input file, then
applying a gzip adaptor before the datasink. The following schema explains those
transitions:

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 27

DataSink
(the output, in
memory too)

DataSink
Adaptor

(any
transformation)

AIXM input File
DataSource

(in memory for
our benchmark)

DataSource
Adaptor

(any
transformation)

Candidate
operation

processing

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

28

5.2.1.6 Flow overview

The following schema presents the exi-ttfms flow, to sum up the precedents chapters:

JFreeChart

Drivers
n

AIXM input
files

n

Test case
n

Java
candidate

n

Native C/
C++

candidate
n

Candidate
parameters
(e.g. post

compression,
schema

location,…)
n

Measurement
parameters (e.g.
compaction perf,

CPU for encoding,…)
n

JAPEX

HTML / XML
reports

n

Code

XML data

Conceptual entity

5.2.2 Measurements

The followings paragraphs give detail information about the various possible
measurements, already referenced in 5.2.1.5 through the Measurement property values.

5.2.2.1 Compaction

Compaction produces data about how much the algorithm interfaced by the client can
compress an input file. The result is in bytes or expressed in % of the raw file. The
configuration Japex lines to produce such a campaign are:

 <param name="japex.warmupIterations" value="0"/>
 <param name="japex.runIterations" value="0"/>
 <param name="japex.resultUnit" value="bytes"/>

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 29

 <param name="org.w3c.exi.ttf.measurementProperty"
value="compactness"/>
 <param name="org.w3c.exi.ttf.dataSourceSink.URI" value="memory:/"/>

Some examples are present in exi-ttfms/config/property/compaction.

5.2.2.2 CPU Consumption

CPU consumption can be monitored only on “encode” or “decode” measurements. The
measure is made on total real time (elapsed) spent inside the “run” method. As we use a
one core / no hyper-threading computer, we are not polluted by concurrent runs of other
threads (Japex allows that).

The configuration Japex lines to produce such a campaign are:

 <param name="japex.warmupTime" value="5"/>
 <param name="japex.runTime" value="5"/>
 <param name="japex.resultUnit" value="ms"/>
 <param name="org.w3c.exi.ttf.measurementProperty" value="encode"/>
 <param name="org.w3c.exi.ttf.dataSourceSink.URI" value="memory:/"/>
 <param name="org.w3c.exi.ttf.recordDecodedEvents" value="no"/>

Encode examples are in exi-ttfms/config/property/processing/encoding/java and decode
examples in exi-ttfms/config/property/processing/decoding/java

Japex allow 2 unites to be used for CPU consumption. If you are interested in duration
choose “ms” for resultUnit, else choose the default “tps” (transactions par seconds). You
can also select how many warm up iterations you want and how many real runs before
drawing a mean. We use 5 and 5, but tests can be long, so maybe shorter values (1/2) can
ease some long campaign and still give the same results as long as you don’t touch the
computer.

5.2.2.3 Memory consumption

Memory consumption was an experimental measurement in Japex, as it was not possible
to show it on a graph. We modified Japex to be able to give 2 figures:

� First: the maximum amount of memory consumed by the VM (this give a fair idea
of the pre-calculations made by some sophisticated algorithm (EXI to build its
grammar for instance)). We call it the global memory.

� Second: the dynamic maximum amount of memory taken by the candidate on a
run. It is a delta between how much memory is consumed once compressing is at
its peak and the memory used before calling the run method. As garbage

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

30

collecting can be tricky many runs are necessary if you want to get a fair figure.
Garbage collecting is called before the run, so only the “top-up” value can be a
minor figure is GC was called during the run. As GC takes some CPU to run, this
comment also works for CPU consumption.

The memory consumption is based on the sum of all banks of heap memory, so no
BSS or TXT data is taken into consideration in these memory measures.

5.3 Candidates

This chapter focused on describing the different candidates used in the benchmark and
theirs various configurations.

5.3.1 Java based

5.3.1.1 Java Sax parser

This is a SAX parser providing a SAX parser and reader, doing no compression by its
own.

5.3.1.1.1 Without compression (XMLNeither)

With no specific option, this candidate will handle SAX events provided by the platform
(a SAX parser, same for all candidates), then regenerate XML.

This particular configuration serves as a reference for other candidates as it will generate
“no compression” on any file, so it will stand for the 100% mark. Generally it’s the worst
candidate regarding “compaction” but the best for “CPU” in “encode”.

This configuration is in:

� exi-ttfms/config/drivers/sax/xml-neither.xml

…
 <param name="japex.driverClass"
value="org.w3c.exi.ttf.candidate.xml.jaxp.JAXPSAXDriver"/>
 <param name="org.w3c.exi.ttf.driver.candidateName" value="XML"/>
 <param name="org.w3c.exi.ttf.driver.isXmlProcessor" value="true"/>
 <driver name="XMLNeither" normal="true">
 <param name="description" value="XML"/>
 <param name="org.w3c.exi.ttf.applicationClass"
value="neither"/>
 </driver>
…

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 31

5.3.1.1.2 With GZIP default compression (XMLDocument)

Same as XMLNeither except a gzip compressor is connected between the output of the
SAX reader and the output stream (or datasink). This could be seen as a basic GZIP on
the raw XML file, except SAX is used.

This configuration is in:

� exi-ttfms/config/drivers/sax/xml-document.xml

…
 <param name="japex.driverClass"
value="org.w3c.exi.ttf.candidate.xml.jaxp.JAXPSAXDriver"/>
 <param name="org.w3c.exi.ttf.driver.candidateName" value="XML"/>
 <param name="org.w3c.exi.ttf.driver.isXmlProcessor" value="true"/>
 <driver name="XMLDocument" normal="true">
 <param name="description" value="XML using document analysis"/>
 <param name="org.w3c.exi.ttf.applicationClass"
value="document"/>
 <param
name="org.w3c.exi.ttf.applicationClass.documentAnalysing.GZIP"
value="true"/>
 </driver>
…

5.3.1.1.3 With GZIP compression for a given compression level (1-9)

As we modified the platform to be able to integrate a new parameter
(org.w3c.exi.ttf.applicationClass.documentAnalysing.level) to set the level for gzip
compression (default is 4 between 1 and 9), you can use it on the XML candidate also.

…
 <param name="japex.driverClass"
value="org.w3c.exi.ttf.candidate.xml.jaxp.JAXPSAXDriver"/>
 <param name="org.w3c.exi.ttf.driver.candidateName" value="XML"/>
 <param name="org.w3c.exi.ttf.driver.isXmlProcessor" value="true"/>
 <driver name="XMLDocument" normal="true">
 <param name="description" value="XML using document analysis
level 9"/>
 <param name="org.w3c.exi.ttf.applicationClass"
value="document"/>
 <param
name="org.w3c.exi.ttf.applicationClass.documentAnalysing.GZIP"
value="true"/>
 <param
name="org.w3c.exi.ttf.applicationClass.documentAnalysing.level"
value="9"/>
 </driver>
…

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

32

We didn’t want to disable gzip by just using a level 4 compression performance, so we
choose to use 9 (maximum) for all XML Document tests.

5.3.1.1.4 With GZIP compression, level and pre-loaded dictionnary

We also modified the platform for gzip to be able to use a pre-loaded dictionary
(maximum 32KB) for encode and decode. We also developed a tool to parse a specific
schema (or a set of schema files when referencing) and put the best data possible in this
dictionary to boost gzip compression. More detail about this tool is given in 9.3

As this use case is not standard, and asking some twisting of the platform and is not so
really easy to put in place in an industrial use (to uncompress, you have to read 0 bytes
before giving deflate its dictionary, then resume the reading from gzip, so it won’t match
all server environments), we give some example of performance of this method without
adding it to all campaigns.

5.3.1.2 Fast Info Set

We used Fast Info Set 1.2.9 (brought by Japex 1.2 (JSDL)), and had to modify the
candidate given with the W3C platform to be able to deal with this new version (the
original one was 1.2.2), because some method / parameters changed between these
versions.

5.3.1.2.1 Without post-compression (FastinfosetNeither)

Without gzip post compression, FIS is mostly working in locating elements, namespaces,
attributes,… and converting them into ASN.1 using PER (a token might not be aligned on
a byte but on fewer bits (or more)). FIS comes with its own way to deal with SAX giving
it an edge other a std SAX parser because its input is more compact.

This configuration is in:

� exi-ttfms/config/drivers/sax/fastinfoset-neither.xml

…
 <param name="japex.driverClass"
value="org.w3c.exi.ttf.candidate.fastinfoset.FastInfosetSAXDriver"/>
 <param name="org.w3c.exi.ttf.driver.candidateName"
value="FastInfoset"/>
 <param
name="org.w3c.exi.ttf.driver.candidate.fastinfoset.characterContentChun
kSizeLimit" value="32"/>
 <param
name="org.w3c.exi.ttf.driver.candidate.fastinfoset.attributeValueSizeLi
mit" value="32"/>

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 33

 <driver name="FastInfosetNeitherSAX">
 <param name="description" value="Fast Infoset"/>
 <param name="org.w3c.exi.ttf.applicationClass"
value="neither"/>
 </driver>
…

5.3.1.2.2 With GZIP post-compression (FastinfosetDocument)

When we add a GZIP post-compression to the output of FIS encoding, the FIS candidate
modifies the behavior or the FIS algorithm to generate byte aligned tokens, and uses BER
and not PER. The raw FIS stream is less compressed this way but can benefit from the
GZIP post compression which only works on byte aligned data (else gives random
results).

This configuration is in:

� exi-ttfms/config/drivers/sax/fastinfoset-document.xml

…
 <param name="japex.driverClass"
value="org.w3c.exi.ttf.candidate.fastinfoset.FastInfosetSAXDriver"/>
 <param name="org.w3c.exi.ttf.driver.candidateName"
value="FastInfoset"/>
 <param
name="org.w3c.exi.ttf.driver.candidate.fastinfoset.characterContentChun
kSizeLimit" value="32"/>
 <param
name="org.w3c.exi.ttf.driver.candidate.fastinfoset.attributeValueSizeLi
mit" value="32"/>
 <driver name="FastInfosetDocumentSAX">
 <param name="description" value="Fast Infoset using document
analysis"/>
 <param name="org.w3c.exi.ttf.applicationClass"
value="document"/>
 <param
name="org.w3c.exi.ttf.applicationClass.documentAnalysing.GZIP"
value="true"/>
 </driver>
…

5.3.1.3 Exificient (EXI)

The original EXI candidate from the W3C EXI test bed was the commercial product from
AgileDelta, who was a main contributor to the W3C EXI Performance campaign. We
couldn’t reuse this candidate, because the library we use (the open source Exificient 0.7
from Siemens) was quite different in its API. We didn’t buy the AgileDelta Software
product, but we had some email exchanges with them and decided to go for the open-
source product to check if the performance was compatible with the commercial product.

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

34

As results showed, the compaction performance is (we believe) similar, but maybe some
tests could be made regarding CPU and memory consumption where the AgileDelta
product seems to perform better.

As we face some slight bugs on the processing of list of floats and integers, we submitted
a bug report to the Exificient team, and got a fast fix (thanks Daniel). So the version we
used is a patch on release 0.7 and corresponds to the revision 361 from the sourceforge
svn repository (so it’s not a strait 0.7)

5.3.1.3.1 Without previous schema knowledge and “deflate” post-compression

Like FIS and its default PER encoding, EXI uses a bit stream and not a byte stream. On
this configuration without previous schema knowledge nor post-compression, the
compaction is mainly brought by XML parsing and structure recognition. It is not so
different from FIS in this mode.

This configuration is in:

� exi-ttfms/config/drivers/sax/exificient-neither.xml
…
 <param name="japex.driverClass"
value="org.w3c.exi.ttf.candidate.exificient.ExificientSAXDriver"/>
 <param name="org.w3c.exi.ttf.driver.candidateName"
value="Exificient 0.7 (Siemens EXI Java open source impl.)"/>

 <driver name="ExificientNeitherSAX">
 <param name="description" value="EXI without document analysis
or schema optimizations"/>
 <param name="org.w3c.exi.ttf.applicationClass"
value="neither"/>
 </driver>
…

5.3.1.3.2 Without previous schema knowledge but with “deflate” post-compression

As for FIS, the post-compression needs to output byte aligned symbols, and this choice is
made by the candidate when it sees the “document” application-class parameter activated.
But, contrary to FIS or JAXP, EXI manages its own “deflate” algorithm and does not use
zlib’s API. That’s why the GZIP parameter is not set in the config file.

This configuration is in:

� exi-ttfms/config/drivers/sax/exificient-document.xml

…
 <param name="japex.driverClass"
value="org.w3c.exi.ttf.candidate.exificient.ExificientSAXDriver"/>
 <param name="org.w3c.exi.ttf.driver.candidateName"
value="Exificient 0.7 (Siemens EXI Java open source impl.)"/>

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 35

 <driver name="ExificientDocumentSAX">
 <param name="description" value="EXI with deflate"/>
 <param name="org.w3c.exi.ttf.applicationClass"
value="document"/>
 </driver>
…

5.3.1.3.3 With previous schema knowledge but without “deflate” post-compression

This mode is very close to the first one, except that we give the location of schema (the
first xsd including others) to the algorithm. In the preparation phase, EXI will parse .xsd
files beginning by AIXM_BasicMessage.xsd, then will compute its grammar to apply for
encoding or decoding. The output is bit aligned.

The configuration is in:

� exi-ttfms/config/drivers/sax/exificient-schema.xml
…
 <param name="japex.driverClass"
value="org.w3c.exi.ttf.candidate.exificient.ExificientSAXDriver"/>
 <param name="org.w3c.exi.ttf.driver.candidateName"
value="Exificient 0.7 (Siemens EXI Java open source impl.)"/>

 <driver name="ExificientSchemaSAX">
 <param name="description" value="EXI with schema optimizations
but without deflate"/>
 <param name="org.w3c.exi.ttf.applicationClass" value="schema"/>
 </driver>
…

5.3.1.3.4 With previous schema knowledge and “deflate” post-compression

This mode is the merge of mode 2 (deflate) and 3 (schema knowledge), the output given
by mode 3 is byte aligned, then deflate plays its part. The overall output is bit aligned.

The configuration is in:

� exi-ttfms/config/drivers/sax/exificient-both.xml
…
 <param name="japex.driverClass"
value="org.w3c.exi.ttf.candidate.exificient.ExificientSAXDriver"/>
 <param name="org.w3c.exi.ttf.driver.candidateName"
value="Exificient 0.7 (Siemens EXI Java open source impl.)"/>

 <driver name="ExificientBothSAX">
 <param name="description" value="EXI with schema optimizations
and deflate"/>
 <param name="org.w3c.exi.ttf.applicationClass" value="both"/>
 </driver>

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

36

…

5.3.2 C/C++ based

5.3.2.1 CWXML

CubeWerck’s binary XML is very like Fast Info Set, except it doesn’t offer a PER
encoding allowing a bit stream as output. The output is byte aligned and then offers a
good entry point for deflate. CWXML use its own linking with Zlib to invoke deflate.

CWXML uses dictionary to store strings like elements name and has a special feature to
guess what is a floating point number when it encounters one and convert it to IEEE 754.

5.3.2.1.1 Without post-compression

Without deflate post-compression, CWXML can only take advantage of element name
repetition and IEEE 754 serialization of floats / doubles.

The configuration is in:

� exi-ttfms/config/property/compaction/compaction-native.xml
…
 <driver name="CWXML neither">
 <param name="libraryPath"
value="${japex.exi.ttfms.candidatesDir}/c/cwxml"/>
 <param name="libraryName" value="cwxml"/>
 <param name="org.w3c.exi.ttf.applicationClass"
value="neither"/>
 <param name="description" value="CWXML neither"/>
 </driver>
…

5.3.2.1.2 With GZIP post-compression

With deflate used as post-compression, the output is processed through a second pass
trying to reduce redundancy.

The configuration is in:

� exi-ttfms/config/property/compaction/compaction-native.xml
…
 <driver name="CWXML document">
 <param name="libraryPath"
value="${japex.exi.ttfms.candidatesDir}/c/cwxml"/>
 <param name="libraryName" value="cwxml"/>
 <param name="org.w3c.exi.ttf.applicationClass"
value="document"/>
 <param name="description" value="CWXML document"/>
 </driver>

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 37

…

6 AIXM input files

All the test cases, used for this benchmarking campaign use AIXM 5.1 input files, except
some “technical files” which can be simple XML and are just here to compare algorithm
when dealing with a specific aspect (formatting, autoclosing tags…)

In order to get a relevant sample set of AIXM data, we processed data from various
sources (mostly Snowflake, Comsoft, Luciad WFS servers, but also D-NOTAMs from
Eurocontrol) to identify characteristics from AIXM (feature by feature)

6.1 Families of files

As we collected too much data (almost 1 GB), we extracted only portions of full
databases and put these parts into files, then gathered those files into families. The files
described below could have been the result from various WFS request, mostly based on
BBOX. In fact we worked offline using full exports of features and sorted them using
tools (scripts detailed in 6.2.1)

Four families of AIXM files were identified and populated:

� A first family composed of small files (<10kB): tree D-NOTAMs from
Eurocontrol.

� A second family composed of medium sized files (between 10kB and 1MB), each
of it made from a single AIXM feature, bringing its own characteristics (for
instance airspaces, geo borders, runways and taxiways elements contains much
more coordinates than others features. Routes have simple structure (only 28
different elements taking 65% of the file) compared to airspaces (60 different
elements taking 30% of the file))

� A third family made of bigger files (>1MB), alternating both mixed features (as
the whole Estonian database or the sum of all features from family 2) or single
features to see how the performance of compression algorithms evolve along with
volume

� A fourth family made of technical files, useful to check a specific aspect against
all algorithms (influence of order, handling of autoclosing tags, drops of
comments, formatting …).

Original AIXM files (readable) are stored into exittfms/data. Normalization script works
from this path when displaying file names.

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

38

6.1.1 Small files (<10kB)

This family is very short (only 3 files), and contains the D-NOTAMs provided by
Eurocontrol and based on fake DONLON AIXM demo database:

� restricted_area_event.xml: corresponding to an Airspace Reservation (or special
activity to use FAA vocabulary) “TEMPORARY RESTRICTED AREA NORTH
OF SJAELLANDS ODDE”

� tra_ear23_active.xml: activation of EAR23 from DONLON

� tra_ear23_active_cancel.xml: cancellation, previous activation being based on
TEMPDELTA timeslice.

When put through our cleaning script, we reduced the size of original files:

./notams/restricted_area_event.xml (normalization) (8817 -> 6986 bytes)

./notams/tra_ear23_active.xml (normalization) (6019 -> 4537 bytes)

./notams/tra_ear23_active_cancel.xml (normalization) (5629 -> 4441
bytes)

6.1.2 Medium files (between 10kB and 1MB)

This family contains 10 files, all extracted from the snowflake WFS server. Each file
references only AIXM data from the same feature type.

./from_snowflake/files_between_10k_and_1m/airspaces_all_85k.xml
(normalization) (85493 -> 84360 bytes)
./from_snowflake/files_between_10k_and_1m/geo_border_florida_775k.xml
(normalization) (776717 -> 774238 bytes)
./from_snowflake/files_between_10k_and_1m/geo_border_puerto_rico_107k.x
ml (normalization) (107309 -> 106846 bytes)
./from_snowflake/files_between_10k_and_1m/navaids_alaska_310k.xml
(normalization) (314978 -> 313548 bytes)
./from_snowflake/files_between_10k_and_1m/route_alaska_50k.xml
(normalization) (50019 -> 50284 bytes)
./from_snowflake/files_between_10k_and_1m/runway_elements_alaska_40k.xm
l (normalization) (39193 -> 39024 bytes)
./from_snowflake/files_between_10k_and_1m/runways_alaska_22k.xml
(normalization) (21853 -> 21988 bytes)
./from_snowflake/files_between_10k_and_1m/taxiway_elements_alaska_730k.
xml (normalization) (730052 -> 737057 bytes)
./from_snowflake/files_between_10k_and_1m/taxiways_alaska_375k.xml
(normalization) (377145 -> 388601 bytes)
./from_snowflake/files_between_10k_and_1m/vertical_structure_alaska_230
k.xml (normalization) (233144 -> 232073 bytes)

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 39

6.1.3 Large files (>1MB)

This family contains 15 files, 13 from snowflake and remain mono-feature, 1 (Estonian
database) mixing features from Comsoft and one from Luciad (FAA airspaces).

./from_snowflake/files_over_1m/airports_from_florida_2_2m.xml
(normalization) (2170633 -> 2146231 bytes)
./from_snowflake/files_over_1m/geo_borders_calif_nev_1_5m.xml
(normalization) (1567728 -> 1563628 bytes)
./from_snowflake/files_over_1m/geo_borders_megalop_20m.xml
(normalization) (19846237 -> 19802453 bytes)
./from_snowflake/files_over_1m/navaids_megalop_3_6m.xml (normalization)
(3591108 -> 3594804 bytes)
./from_snowflake/files_over_1m/route_segment_florida_1_2m.xml
(normalization) (1207640 -> 1204582 bytes)
./from_snowflake/files_over_1m/route_segment_megalop_15m.xml
(normalization) (14485225 -> 14452017 bytes)
./from_snowflake/files_over_1m/runway_elements_all_4_4m.xml
(normalization) (4419641 -> 4434489 bytes)
./from_snowflake/files_over_1m/runways_all_2_5m.xml (normalization)
(2532075 -> 2581599 bytes)
./from_snowflake/files_over_1m/taxiway_elements_calif_nev_5_4m.xml
(normalization) (5351531 -> 5410260 bytes)
./from_snowflake/files_over_1m/taxiways_calif_nev_3m.xml
(normalization) (3048904 -> 3143078 bytes)
./from_snowflake/files_over_1m/taxiways_megalop_12m.xml (normalization)
(11704191 -> 12041044 bytes)
./from_snowflake/files_over_1m/vertical_structure_florida_1_1m.xml
(normalization) (1154738 -> 1150632 bytes)
./from_snowflake/files_over_1m/vertical_structure_megalop_8m.xml
(normalization) (7828675 -> 7802553 bytes)
./from_comsoft/estonia-ows8.xml (normalization) (4845567 -> 3761036
bytes)
/from_luciad/airspaces.xml (normalization) (10513313 -> 7036816 bytes)

6.1.4 Technical files

Technical files come from snowflake, or are generated by hand.

� config/testCases-restricted/technical_family.xml contains tests related to check
the influence of:

o indenting (as all our sample files from family 1 to 3 are cleaned, so
without indenting)

o autoclosing elements (is <a> making a difference with <a/>)

o namespace alias (does referencing a namespace “n1” makes a difference
with referencing it “my_long_namespace_name”)

./technical/auto_closing_elements_off.xml (440)

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

40

./technical/auto_closing_elements_on.xml (386)

./technical/explicit_name_spaces_off.xml (354)

./technical/explicit_name_spaces_on.xml (564)

./technical/indenting_off.xml (325)

./technical/indenting_on.xml (405)

� config/testCases-restricted/family_4.xml contains a test related to the order of
features for the same set of data.

./from_snowflake/technical/all_features_from_family_2_in_disorder.xml
(normalization) (2726759 -> 2741692 bytes)
./from_snowflake/technical/all_features_from_family_2_sorted_by_feature
.xml (normalization) (2726759 -> 2741692 bytes)

� config/testCases-restricted/technical_doubles.xml contains a test related to the
influence of coordinates on candidates. The AIXM file used contains a fake
geoborder whose coordinates are in fact all coordinates from all airports in the
Snowflake WFS server (or a gml:poslist of 22320 coordinates). So we can say this
file is made of merely only double precision data. Coordinates are unique and
sorted along their longitude (X).

./technical/doubles.xml (744963)

6.2 Characterization of families / files

The followings paragraphs detail characteristics of sample files selected for test cases.
Statistical analysis figures are provided, with (when possible) two graphs showing the
geographical distribution of features on a map (on a global scale, then zoomed on the
targeted area). The graphs are only given for family 2 and 3 and only for the data coming
from snowflake (because using BBOXs) and luciad (only FAA airspaces).

6.2.1 Statistical analysis

Here is a short list of scripts used for data selection, edition and analysis, mostly in perl
or bourne shell. They are located into the folder exi-ttfms/data/scripts:

� bbox_filter.pl: allows output only a subset of features whose BBOX are inside the
one given as parameters to the script. Allows you to dump a large set of features
from a WFS server, then sort them offline.

� bboxs_to_png.pl: generates a geographical footprint of the feature you use and
place them on a map (in our case the north east quarter of the globe based on a
satellite shot). The BBOX of each feature is added to the graph, using a gradient
color map to show the stacking level of BBOXes.

� bboxs_to_png_luciad.pl: same script as previously, but calculates BBOXes from
individual coordinates of each airspace. Works only with LUCIAD WFS server
data.

� gen_japex.pl: automatically create configuration files for japex testcase providing
AIXM input files.

� concat.pl: join AIXM files into a single one, keeping only one header

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 41

� mixer.pl: takes multiples AIXM as input and generates a merged AIXM resulting
file, mixing features from all the files in an interleaved way (opposite of
concat.pl)

� populate_families.sh: Shell script which manages the cleaning of all files from
different families, and the copy to the right directory.

� post.pl: posts a SOAP message or a form from a previously loaded page from a
WFS server. This script is useful to automate some requests on a WFS server.

� stax.pl: Stax parser which provides statistical data of AIXM parsed file (gives
figures about coordinates / date usage proper to AIXM).

� xml_cleaner.pl: Clean an XML file (unnecessary spaces, tabs, indenting including
carriage returns, DOS end of line formatting, replace autoclosing tags (<tag/>) by
a pair or tags (<tag></tag>, remove comments,…). This filter was applied to all
our AIXM files before benching.

6.2.2 Small files (<10kB)

6.2.2.1 f1_restricted_area_event.xml

total size: 6986
composition: %elems = 64.4, %att(names) = 6.8, %att(values) = 11.2,
%text/c_data = 15.5, %other = 2.0
elements: total count = 128, differents = 90, min. occ. = 1, max. occ.
= 3, avg. occ. = 1.4, avg. size = 35.2 bytes
attributes: total count = 50, avg. size = 9.5 bytes (names) & 15.6
bytes (values)
text / c_data: %coords = 11.6, %dates = 12.9, %other = 75.5

6.2.2.2 f1_tra_ear23_active.xml

total size: 4537
composition: %elems = 64.4, %att(names) = 7.9, %att(values) = 13.6,
%text/c_data = 11.7, %other = 2.4
elements: total count = 83, differents = 69, min. occ. = 1, max. occ. =
3, avg. occ. = 1.2, avg. size = 35.2 bytes
attributes: total count = 34, avg. size = 10.6 bytes (names) & 18.1
bytes (values)
text / c_data: %coords = 0.0, %dates = 15.0, %other = 85.0

6.2.2.3 f1_tra_ear23_active_cancel.xml

total size: 4441
composition: %elems = 65.9, %att(names) = 7.1, %att(values) = 13.6,
%text/c_data = 11.1, %other = 2.3
elements: total count = 82, differents = 68, min. occ. = 1, max. occ. =
3, avg. occ. = 1.2, avg. size = 35.7 bytes
attributes: total count = 32, avg. size = 9.8 bytes (names) & 18.8
bytes (values)
text / c_data: %coords = 0.0, %dates = 8.1, %other = 91.9

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

42

6.2.2.4 Analysis

From figures:

D-NOTAMs present a high number of elements (65% of file), few attributes, and few
c_data (circa 15%). As they are small, and concern generally only one event, we do not
find a lot of repetition (average of 1.2 element redundancy, let’s say all elements are
unique or near). This configuration is a favorable ground for a schema based algorithm.

From content:

There is too much redundancy on D-NOTAM, in terms of meaning. The same info is
given from different ways (Textual, field by field, and then projected on AIP database).
As this redundancy cannot be guessed by algorithm, the compression won’t be very good.

Also, the c_data is mostly free text, it’s too bad, because enumerate usage could benefit
to compression.

6.2.3 Medium files (between 10kB and 1MB)

Each file of the second family is only composed of elements from the same feature type.
This composition allows to see for each feature how performs every algorithm. From this
principle, we focus on what makes each feature unique and how the inner structure of a
feature is willing to offer a good profile for compression methods used in ours
algorithms.

6.2.3.1 f2_airspaces_all_85k.xml

total size: 84360
composition: %elems = 29.9, %att(names) = 2.5, %att(values) = 8.2,
%text/c_data = 58.7, %other = 0.7
elements: total count = 657, differents = 60, min. occ. = 1, max. occ.
= 27, avg. occ. = 10.9, avg. size = 38.4 bytes
attributes: total count = 249, avg. size = 8.3 bytes (names) & 27.8
bytes (values)
text / c_data: %coords = 93.5, %dates = 0.7, %other = 5.8

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 43

6.2.3.2 f2_geo_border_florida_775k.xml

total size: 774238
composition: %elems = 45.4, %att(names) = 4.7, %att(values) = 10.4,
%text/c_data = 38.5, %other = 0.9
elements: total count = 10109, differents = 29, min. occ. = 1, max.
occ. = 361, avg. occ. = 348.6, avg. size = 34.8 bytes
attributes: total count = 3623, avg. size = 10.1 bytes (names) & 22.3
bytes (values)
text / c_data: %coords = 89.0, %dates = 9.1, %other = 1.9

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

44

6.2.3.3 f2_geo_border_puerto_rico_107k.xml

total size: 106846
composition: %elems = 22.8, %att(names) = 2.5, %att(values) = 5.6,
%text/c_data = 68.5, %other = 0.5
elements: total count = 701, differents = 29, min. occ. = 1, max. occ.
= 25, avg. occ. = 24.2, avg. size = 34.8 bytes
attributes: total count = 263, avg. size = 10.2 bytes (names) & 22.8
bytes (values)
text / c_data: %coords = 96.7, %dates = 2.6, %other = 0.7

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 45

6.2.3.4 f2_navaids_alaska_310k.xml

total size: 313548
composition: %elems = 56.3, %att(names) = 4.9, %att(values) = 27.0,
%text/c_data = 10.8, %other = 1.0
elements: total count = 4967, differents = 42, min. occ. = 1, max. occ.
= 153, avg. occ. = 118.3, avg. size = 35.6 bytes
attributes: total count = 1565, avg. size = 9.7 bytes (names) & 54.0
bytes (values)
text / c_data: %coords = 42.8, %dates = 33.7, %other = 23.4

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

46

6.2.3.5 f2_route_alaska_50k.xml

total size: 50284
composition: %elems = 64.8, %att(names) = 6.4, %att(values) = 16.9,
%text/c_data = 10.6, %other = 1.3
elements: total count = 919, differents = 28, min. occ. = 1, max. occ.
= 34, avg. occ. = 32.8, avg. size = 35.5 bytes
attributes: total count = 319, avg. size = 10.1 bytes (names) & 26.6
bytes (values)
text / c_data: %coords = 44.4, %dates = 48.0, %other = 7.7

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 47

6.2.3.6 f2_runway_elements_alaska_40k.xml

total size: 39024
composition: %elems = 41.6, %att(names) = 4.9, %att(values) = 16.7,
%text/c_data = 35.7, %other = 1.1
elements: total count = 455, differents = 36, min. occ. = 1, max. occ.
= 14, avg. occ. = 12.6, avg. size = 35.7 bytes
attributes: total count = 197, avg. size = 9.6 bytes (names) & 33.0
bytes (values)
text / c_data: %coords = 91.6, %dates = 7.5, %other = 0.9

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

48

6.2.3.7 f2_runways_alaska_22k.xml

total size: 21988
composition: %elems = 61.7, %att(names) = 6.2, %att(values) = 20.7,
%text/c_data = 10.0, %other = 1.5
elements: total count = 361, differents = 31, min. occ. = 1, max. occ.
= 14, avg. occ. = 11.6, avg. size = 37.6 bytes
attributes: total count = 141, avg. size = 9.7 bytes (names) & 32.2
bytes (values)
text / c_data: %coords = 45.8, %dates = 47.7, %other = 6.5

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 49

6.2.3.8 f2_taxiway_elements_alaska_730k.xml

total size: 737057
composition: %elems = 37.9, %att(names) = 4.0, %att(values) = 15.7,
%text/c_data = 41.6, %other = 0.8
elements: total count = 7455, differents = 34, min. occ. = 1, max. occ.
= 231, avg. occ. = 219.3, avg. size = 37.5 bytes
attributes: total count = 3016, avg. size = 9.7 bytes (names) & 38.3
bytes (values)
text / c_data: %coords = 94.0, %dates = 5.6, %other = 0.3

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

50

6.2.3.9 f2_taxiways_alaska_375k.xml

total size: 388601
composition: %elems = 61.3, %att(names) = 5.9, %att(values) = 21.1,
%text/c_data = 10.4, %other = 1.2
elements: total count = 6238, differents = 29, min. occ. = 1, max. occ.
= 231, avg. occ. = 215.1, avg. size = 38.2 bytes
attributes: total count = 2323, avg. size = 9.9 bytes (names) & 35.4
bytes (values)
text / c_data: %coords = 35.0, %dates = 42.9, %other = 22.1

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 51

6.2.3.10 f2_vertical_structure_alaska_230k.xml

total size: 232073
composition: %elems = 58.0, %att(names) = 5.4, %att(values) = 23.9,
%text/c_data = 11.7, %other = 1.1
elements: total count = 3509, differents = 30, min. occ. = 1, max. occ.
= 125, avg. occ. = 117.0, avg. size = 38.3 bytes
attributes: total count = 1263, avg. size = 9.9 bytes (names) & 43.9
bytes (values)
text / c_data: %coords = 35.8, %dates = 34.6, %other = 29.6

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

52

6.2.3.11 Analysis

Complexity:

If we based the complexity on the number of different elements we can find in the file,
we get this chart list of complexity:

� Airspaces: 60

� Navaids: 42

� RunWays Elements: 36

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 53

� Taxiways elements: 34

� RunWays: 31

� Vertical structures: 30

� Taxiways: 29

� Geo Borders: 29

� Routes: 28

Composition:

We place in “c-data” everything not included inside elements. It’s not necessary free-text,
it could be dates, coordinates, enumerates… any type or sequence of types defined in
XSD. The composition of every XML is split into percentage of:

� Elements (tags)

� Attributes (names and values)

� C_DATA (coordinates, dates and the rest)

After analysis of composition, we made 2 groups of features:

� A group using intensively coordinates made of:

o Airspaces, Geo Borders, TaxiWays Elements, and RunWays Elements

� A second group using only few coordinates made of:

o Navaids, RunWays, TaxiWays, Routes, Vertical Structures

The first group should benefit of EXI Schema knowledge or CWXML for conversion of
float or double to binary.

Entropy:

On this axis, we consider the importance taken by elements compared to the one taken by
attributes and c_data. We notice some files with very long attributes values, sometimes
paired with a high presence of attributes in the file:

� Vertical structures and Navaid present longs attributes values, with a high ratio of
space taken by attribute in the file. This will certainly be an issue for EXI
grammar based compression.

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

54

� RunWays, Route and TaxiWays present a majority of space occupied by elements
and also a few number of different elements, short attributes, and not much
c_data. This is good for all candidates, and especially for EXI with both grammar
and post-compression.

6.2.4 Large files (>1MB)

6.2.4.1 f3_airports_from_florida_2_2m.xml

total size: 2146231
composition: %elems = 64.6, %att(names) = 5.2, %att(values) = 19.2,
%text/c_data = 9.8, %other = 1.1
elements: total count = 37444, differents = 41, min. occ. = 1, max.
occ. = 1858, avg. occ. = 913.3, avg. size = 37.0 bytes
attributes: total count = 12157, avg. size = 9.2 bytes (names) & 33.9
bytes (values)
text / c_data: %coords = 44.5, %dates = 33.4, %other = 22.1

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 55

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

56

6.2.4.2 f3_airspaces.xml

total size: 7036816
composition: %elems = 61.0, %att(names) = 3.9, %att(values) = 15.9,
%text/c_data = 18.0, %other = 1.1
elements: total count = 129511, differents = 100, min. occ. = 1, max.
occ. = 21022, avg. occ. = 1295.1, avg. size = 33.1 bytes
attributes: total count = 33058, avg. size = 8.4 bytes (names) & 33.8
bytes (values)
text / c_data: %coords = 26.0, %dates = 0.1, %other = 73.8

6.2.4.3 f3_estonia-ows8.xml

total size: 3761035
composition: %elems = 62.2, %att(names) = 4.9, %att(values) = 11.1,
%text/c_data = 20.6, %other = 1.2

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 57

elements: total count = 84910, differents = 395, min. occ. = 1, max.
occ. = 25505, avg. occ. = 215.0, avg. size = 27.5 bytes
attributes: total count = 22543, avg. size = 8.2 bytes (names) & 18.4
bytes (values)
text / c_data: %coords = 69.1, %dates = 9.5, %other = 21.4

6.2.4.4 f3_geo_borders_calif_nev_1_5m.xml

total size: 1563628
composition: %elems = 40.6, %att(names) = 4.2, %att(values) = 9.5,
%text/c_data = 44.8, %other = 0.8
elements: total count = 18220, differents = 29, min. occ. = 1, max.
occ. = 656, avg. occ. = 628.3, avg. size = 34.9 bytes
attributes: total count = 6573, avg. size = 10.1 bytes (names) & 22.6
bytes (values)
text / c_data: %coords = 90.9, %dates = 7.0, %other = 2.1

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

58

6.2.4.5 f3_geo_borders_megalop_20m.xml

total size: 19802453
composition: %elems = 38.4, %att(names) = 4.0, %att(values) = 9.0,
%text/c_data = 47.8, %other = 0.8

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 59

elements: total count = 217052, differents = 29, min. occ. = 1, max.
occ. = 7890, avg. occ. = 7484.6, avg. size = 35.0 bytes
attributes: total count = 78913, avg. size = 10.1 bytes (names) & 22.6
bytes (values)
text / c_data: %coords = 92.4, %dates = 6.2, %other = 1.4

6.2.4.6 f3_navaids_megalop_3_6m.xml

total size: 3594804
composition: %elems = 57.0, %att(names) = 5.3, %att(values) = 25.3,
%text/c_data = 11.4, %other = 1.1
elements: total count = 58183, differents = 42, min. occ. = 1, max.
occ. = 1880, avg. occ. = 1385.3, avg. size = 35.2 bytes
attributes: total count = 18934, avg. size = 10.0 bytes (names) & 48.0
bytes (values)
text / c_data: %coords = 39.4, %dates = 34.5, %other = 26.1

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

60

6.2.4.7 f3_route_segment_florida_1_2m.xml

total size: 1204582
composition: %elems = 60.3, %att(names) = 7.9, %att(values) = 17.3,
%text/c_data = 12.8, %other = 1.6
elements: total count = 20314, differents = 34, min. occ. = 1, max.
occ. = 1098, avg. occ. = 597.5, avg. size = 35.8 bytes
attributes: total count = 9895, avg. size = 9.7 bytes (names) & 21.1
bytes (values)
text / c_data: %coords = 70.5, %dates = 26.8, %other = 2.7

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 61

6.2.4.8 f3_route_segment_megalop_15m.xml

total size: 14452017
composition: %elems = 60.2, %att(names) = 7.9, %att(values) = 17.4,
%text/c_data = 12.9, %other = 1.6
elements: total count = 243424, differents = 34, min. occ. = 1, max.
occ. = 13158, avg. occ. = 7159.5, avg. size = 35.8 bytes
attributes: total count = 118435, avg. size = 9.7 bytes (names) & 21.2
bytes (values)
text / c_data: %coords = 70.6, %dates = 26.6, %other = 2.8

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

62

6.2.4.9 f3_runway_elements_all_4_4m.xml

total size: 4434489
composition: %elems = 43.4, %att(names) = 4.6, %att(values) = 16.4,
%text/c_data = 34.6, %other = 1.0
elements: total count = 53633, differents = 37, min. occ. = 1, max.
occ. = 1625, avg. occ. = 1449.5, avg. size = 35.9 bytes
attributes: total count = 21687, avg. size = 9.4 bytes (names) & 33.5
bytes (values)
text / c_data: %coords = 91.0, %dates = 7.9, %other = 1.0

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 63

6.2.4.10 f3_runways_all_2_5m.xml

total size: 2581599
composition: %elems = 63.9, %att(names) = 5.6, %att(values) = 19.4,
%text/c_data = 9.9, %other = 1.2
elements: total count = 43642, differents = 47, min. occ. = 1, max.
occ. = 1635, avg. occ. = 928.6, avg. size = 37.8 bytes
attributes: total count = 15288, avg. size = 9.4 bytes (names) & 32.8
bytes (values)
text / c_data: %coords = 44.0, %dates = 47.9, %other = 8.1

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

64

6.2.4.11 f3_taxiway_elements_calif_nev_5_4m.xml

total size: 5410260
composition: %elems = 41.6, %att(names) = 4.3, %att(values) = 17.1,
%text/c_data = 36.0, %other = 0.9
elements: total count = 60083, differents = 34, min. occ. = 1, max.
occ. = 1862, avg. occ. = 1767.1, avg. size = 37.5 bytes
attributes: total count = 24219, avg. size = 9.7 bytes (names) & 38.3
bytes (values)
text / c_data: %coords = 92.4, %dates = 7.2, %other = 0.4

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 65

6.2.4.12 f3_taxiways_calif_nev_3m.xml

total size: 3143078
composition: %elems = 61.6, %att(names) = 5.9, %att(values) = 21.0,
%text/c_data = 10.4, %other = 1.2
elements: total count = 50706, differents = 29, min. occ. = 1, max.
occ. = 1862, avg. occ. = 1748.5, avg. size = 38.2 bytes
attributes: total count = 18633, avg. size = 9.9 bytes (names) & 35.3
bytes (values)
text / c_data: %coords = 34.8, %dates = 42.7, %other = 22.4

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

66

6.2.4.13 f3_taxiways_megalop_12m.xml

total size: 12041044
composition: %elems = 61.6, %att(names) = 5.9, %att(values) = 21.0,
%text/c_data = 10.3, %other = 1.2
elements: total count = 194235, differents = 29, min. occ. = 1, max.
occ. = 7160, avg. occ. = 6697.8, avg. size = 38.2 bytes
attributes: total count = 71613, avg. size = 9.9 bytes (names) & 35.3
bytes (values)
text / c_data: %coords = 33.8, %dates = 43.4, %other = 22.8

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 67

6.2.4.14 f3_vertical_structure_florida_1_1m.xml

total size: 1150632
composition: %elems = 58.2, %att(names) = 5.4, %att(values) = 23.8,
%text/c_data = 11.5, %other = 1.1
elements: total count = 17474, differents = 35, min. occ. = 1, max.
occ. = 622, avg. occ. = 499.3, avg. size = 38.3 bytes
attributes: total count = 6235, avg. size = 9.9 bytes (names) & 44.0
bytes (values)
text / c_data: %coords = 34.8, %dates = 35.2, %other = 30.0

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

68

6.2.4.15 f3_vertical_structure_megalop_8m.xml

total size: 7802553
composition: %elems = 58.2, %att(names) = 5.4, %att(values) = 23.8,
%text/c_data = 11.5, %other = 1.1
elements: total count = 118646, differents = 35, min. occ. = 1, max.
occ. = 4222, avg. occ. = 3389.9, avg. size = 38.3 bytes
attributes: total count = 42257, avg. size = 9.9 bytes (names) & 44.0
bytes (values)
text / c_data: %coords = 34.6, %dates = 35.4, %other = 30.0

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 69

6.2.5 Technical files

Only AIXM files are analyzed here, other files are purely “technical” and do not have any
“statistical” interest.

6.2.5.1 f4_all_features_from_family_2_in_disorder.xml

total size: 2741692
composition: %elems = 47.1, %att(names) = 4.6, %att(values) = 16.3,
%text/c_data = 31.0, %other = 0.9

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

70

elements: total count = 35362, differents = 106, min. occ. = 1, max.
occ. = 1193, avg. occ. = 333.6, avg. size = 36.5 bytes
attributes: total count = 12842, avg. size = 9.9 bytes (names) & 34.8
bytes (values)
text / c_data: %coords = 85.3, %dates = 10.5, %other = 4.2

6.2.5.2 f4_all_features_from_family_2_sorted_by_feature.xml

total size: 2741692
composition: %elems = 47.1, %att(names) = 4.6, %att(values) = 16.3,
%text/c_data = 31.0, %other = 0.9
elements: total count = 35362, differents = 106, min. occ. = 1, max.
occ. = 1193, avg. occ. = 333.6, avg. size = 36.5 bytes
attributes: total count = 12842, avg. size = 9.9 bytes (names) & 34.8
bytes (values)
text / c_data: %coords = 85.3, %dates = 10.5, %other = 4.2

6.2.5.3 doubles.xml

total size: 22366
composition: %elems = 0.1, %att(names) = 0.0, %att(values) = 0.1,
%text/c_data = 99.7, %other = 0.1
elements: total count = 29, differents = 29, min. occ. = 1, max. occ. =
1, avg. occ. = 1.0, avg. size = 35.4 bytes
attributes: total count = 23, avg. size = 11.1 bytes (names) & 28.5
bytes (values)
text / c_data: %coords = 100.0, %dates = 0.0, %other = 0.0

We use quite a batch of other technical files, but we don’t mention them here because
they do not have any interest for the benchmark as they were used to investigated bugs.

6.2.6 Infuence of AIXM encoding schemes of the various WFS servers

During the phase of selection of AIXM input files to class into the 4 families, we
encountered some divergences between the way WFS servers output or “encode” AIXM,
from their internal database for similar WFS requests. The following chapters address
those differences, and how they may impact the compression performance.

The “exposition” of those differences to the various candidates are shown by some
special scenarios (inside the technical family), and results can be seen from the archive
file report_compaction_for_aixm_various_encoding.zip.

6.2.6.1 Formating

6.2.6.1.1 Indenting

An XML output is fine to read once formatted, but in general the client do not need this
human oriented formatting because it will not read directly the raw text, but will use a lib

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 71

to do it (sax, stax, dom,...). Space, carriage returns, line feeds and tabulation are
unnecessary as deflate will try to make a past reference only on a 3 bytes match, so theses
characters could cost a lot, specially if they do not occur for each element in the same
way. A past reference will cost less if it is near and not too long. So if you have for
instance <gml:pos> elements indented different ways, it will certainly cost some raw
space not to be compressed in the symbol flow. For instance:

 <gml:pos>24.7533333 59.4480556</gml:pos>
 ...
 <gml:pos>24.7533333 59.4480556</gml:pos>
 ...
 <gml:pos>22.5095889 58.2230694</gml:pos>

will cost raw white space before the second <gml:pos> line

Snowflake: generally one different line for each element, except for some shorts sequence
including C-data / text , e.g.:

<aixm:upperLimit uom="FL">179</aixm:upperLimit>
<gml:posList srsDimension="2" count="x">-99.6836111 47.4166667 ...
</gml:posList>
<gco:DateTime>2010-05-10T00:00:00.000Z</gco:DateTime>

Comsoft: same as Snowflake with additional indenting (one space per depth level) and a
double CR between features

 <aixm-message-5.1:hasMember>
 <VerticalStructure gml:id="ID000002">
 <gml:identifier codeSpace="http://www.comsoft.aero/cadas-
aimdb/caw">17b32e8d-955d-4ed5-9d26-879db3d717d9</gml:identifier>
 <timeSlice>
 <VerticalStructureTimeSlice gml:id="ID000004">
 <gml:validTime>
 <gml:TimePeriod gml:id="ID000003">
 <gml:beginPosition>2010-04-08T00:00:00.000Z</gml:beginPosition>

Luciad: Same as Comsoft but with 2 spaces instead of one and no double CR between
features

 <wfs:member>
 <ns5:Airspace gml:id="urn.uuid.55464991-797a-4ffc-85c0-
08fd9fa573c9">
 <gml:identifier codeSpace="http://www.faa.gov/nasr">55464991-
797a-4ffc-85c0-08fd9fa573c9</gml:identifier>
 <ns5:timeSlice>
 <ns5:AirspaceTimeSlice gml:id="urn.uuid.55464991-797a-4ffc-
85c0-08fd9fa573c9_1">
 <gml:validTime>

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

72

 <gml:TimePeriod gml:id="urn.uuid.55464991-797a-4ffc-85c0-
08fd9fa573c9_2">
 <gml:beginPosition>2011-03-10-05:00</gml:beginPosition>

Candidate exposition:

� GZIP: Yes

� Fast Info Set : Yes

� BXML: Yes

� EXI: No

Policy for benchmarking:

Canonization of XML, we will drop all formatting to be fair with gzip.

6.2.6.1.2 Autoclosing elements, aka <toto/>

Good for performance, but only if always used in the same way and not both

Snowflake: used for

aixm:associatedAirportHeliport
aixm:associatedRunway
aixm:associatedTaxiway
aixm:clientAirspace
aixm:EnRouteSegmentPoint (also used in the 2 tags version)
aixm:LinguisticNote (also used in the 2 tags version)
aixm:ownerOrganisation
aixm:pointChoice_fixDesignatedPoint
aixm:pointChoice_navaidSystem
aixm:routeFormed
aixm:servedAirport
aixm:serviceProvider
aixm:SurfaceCharacteristics (also used in the 2 tags version)
aixm:Timesheet (also used in the 2 tags version)
gmd:contact
gmd:identificationInfo

Comsoft: only used for gml:endPosition

Luciad: never used

Candidate exposition: (understanding to the presence of both <toto></toto> and <toto/>
tags)

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 73

� GZIP: Yes

� Fast Info Set : No

� BXML: Yes

� EXI: No

Policy for benchmarking:

Canonization of XML, we will drop all formatting to be fair with gzip.

6.2.6.2 NameSpace referencing

As allowed by W3C (http://www.w3.org/TR/xml-names/), you can use a default
namespace, scoping an element and its children. This saves some space. Also,
namespaces references in elements and attributes can use a substitution value thanks to
the xmlns:xx special attribute. For instance, both declarations are correct:

<html:html xmlns:html='http://www.w3.org/1999/xhtml'>
<html:html xmlns:h='http://www.w3.org/1999/xhtml'>

And "h" costs less space than "html"

Snowflake: namespace are always used for both elements and attributes, with their
original name

Comsoft: AIXM is the default namespace, and others ns are used with their original name

Luciad : AIXM is the default namespace and others ns are used in a short version,
generally no more than 3 chars, e.g:

default => urn:us:gov:dot:faa:aim:saa:5.1

ns0 => urn:us:gov:dot:faa:aim:saa:sua:5.1
ns1 => http://www.isotc211.org/2005/gts
ns2 => http://www.isotc211.org/2005/gco
ns3 => http://www.isotc211.org/2005/gss
ns4 => http://www.isotc211.org/2005/gsr
ns5 => http://www.aixm.aero/schema/5.1
ns6 => http://www.isotc211.org/2005/gmd

fes => http://www.opengis.net/fes/2.0

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

74

gml => http://www.opengis.net/gml/3.2
ows => http://www.opengis.net/ows/1.1
wfs => http://www.opengis.net/wfs/2.0
xlink => http://www.w3.org/1999/xlink
xsd => http://www.w3.org/2001/XMLSchema
xsi => http://www.w3.org/2001/XMLSchema-instance

Candidate exposition:

� GZIP: Yes

� Fast Info Set : Yes

� BXML: Yes

� EXI: No

6.2.6.3 BBOX

Only Snowflake server outputs boundary box gml envelope for each feature. This cost
some space because BBOXs differ between features. E.g:

<gml:boundedBy>
 <gml:Envelope srsName="urn:ogc:def:crs:OGC:1.3:CRS84">
 <gml:lowerCorner>-116.018777777778
38.5067222222222</gml:lowerCorner>
 <gml:upperCorner>-113.571555555556
40.6228888888889</gml:upperCorner>
 </gml:Envelope>
</gml:boundedBy>

6.2.6.4 GML:ID

We find some different species of GML:ID depending the WFS server. Some of them
around 50 characters will be hard to compress.

Snowflake: species / ranked by occurrence (x stand for hexadecimal character)

 41248 urn-x:owsx:snowxlxkx:VIxxxxxxx
 40001 urn-x:owsx:snowxlxkx:tsrivxrs.xxxxx
 40001 urn-x:owsx:snowxlxkx:tp:rivxrs.xxxxx
 40001 urn-x:owsx:snowxlxkx:rivxrs.xxxxx
 40001 urn-x:owsx:snowxlxkx:gxomrivxrs.xxxxx
 31246 RtxSxg_xxxxx
 22955 urn-x:owsx:snowxlxkx:RSxOxxxxxxxx
 20910 urn-x:owsx:snowxlxkx:xmxx_txxiwxy.xix-xxxxxxxx_xxxxxxxxxxx_xxxx

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 75

 20910 urn-x:owsx:snowxlxkx:twx:xmxx_txxiwxy.xix-
xxxxxxxx_xxxxxxxxxxx_xxxx
 20910 urn-x:owsx:snowxlxkx:twx:ts:xmxx_txxiwxy.xix-
xxxxxxxx_xxxxxxxxxxx_xxxx
 20910 urn-x:owsx:snowxlxkx:twx:tp:xmxx_txxiwxy.xix-
xxxxxxxx_xxxxxxxxxxx_xxxx
 20910 urn-x:owsx:snowxlxkx:twx:sx:xmxx_txxiwxy.xix-
xxxxxxxx_xxxxxxxxxxx_xxxx
 20910 urn-x:owsx:snowxlxkx:twx:gxom:xmxx_txxiwxy.xix-
xxxxxxxx_xxxxxxxxxxx_xxxx
 20910 urn-x:owsx:snowxlxkx:ts:xmxx_txxiwxy.xix-
xxxxxxxx_xxxxxxxxxxx_xxxx
 20910 urn-x:owsx:snowxlxkx:tp:xmxx_txxiwxy.xix-
xxxxxxxx_xxxxxxxxxxx_xxxx
 20910 urn-x:owsx:snowxlxkx:sx:xmxx_txxiwxy.xix-
xxxxxxxx_xxxxxxxxxxx_xxxx
 19590 GxOM_RSxVIxxxxxxx_VIxxxxxxx
 18149 urn-x:owsx:snowxlxkx:xnxxnroutxsxg:VIxxxxxxx
 18149 urn-x:owsx:snowxlxkx:stxrtxnroutxsxg:VIxxxxxxx
 15623 RtxSxg_xxxxx_RtxSxg_xxxxx
 13425 urn-x:owsx:snowxlxkx:xvxil:nxsr_xrp.xxxxx
 13425 urn-x:owsx:snowxlxkx:xonxom:nxsr_xrp.xxxxx
 13425 urn-x:owsx:snowxlxkx:xirxrxxtxhxr:nxsr_xrp.xxxxx
 13425 urn-x:owsx:snowxlxkx:usxgx:nxsr_xrp.xxxxx
 13425 urn-x:owsx:snowxlxkx:ts:nxsr_xrp.xxxxx
 13425 urn-x:owsx:snowxlxkx:tp:nxsr_xrp.xxxxx
 13425 urn-x:owsx:snowxlxkx:nxsr_xrp.xxxxx
 13425 urn-x:owsx:snowxlxkx:gxom:nxsr_xrp.xxxxx
 12064 urn-x:owsx:snowxlxkx:xity:nxsr_xrp.xxxxx
 9696 urn-x:owsx:snowxlxkx:xmxx_oxstxxlx.xix-xxxxxxxx_xxxxxxxxxxx_-
xxxx
 9696 urn-x:owsx:snowxlxkx:vs:xmxx_oxstxxlx.xix-
xxxxxxxx_xxxxxxxxxxx_-xxxx
 9696 urn-x:owsx:snowxlxkx:ts:xmxx_oxstxxlx.xix-
xxxxxxxx_xxxxxxxxxxx_-xxxx
 9696 urn-x:owsx:snowxlxkx:tp:xmxx_oxstxxlx.xix-
xxxxxxxx_xxxxxxxxxxx_-xxxx
 9696 urn-x:owsx:snowxlxkx:gxom:xmxx_oxstxxlx.xix-
xxxxxxxx_xxxxxxxxxxx_-xxxx
 9052 urn-x:owsx:snowxlxkx:VIxxxxxxxx
 9000 urn-x:owsx:snowxlxkx:tsrivxrs.xxxx
 9000 urn-x:owsx:snowxlxkx:tp:rivxrs.xxxx
 9000 urn-x:owsx:snowxlxkx:rivxrs.xxxx
 9000 urn-x:owsx:snowxlxkx:gxomrivxrs.xxxx
 9000 RtxSxg_xxxx
 8018 urn-x:owsx:snowxlxkx:xvxil:nxsr_xrp.xxxx
 8018 urn-x:owsx:snowxlxkx:xonxom:nxsr_xrp.xxxx
 8018 urn-x:owsx:snowxlxkx:xirxrxxtxhxr:nxsr_xrp.xxxx
 8018 urn-x:owsx:snowxlxkx:usxgx:nxsr_xrp.xxxx
 8018 urn-x:owsx:snowxlxkx:ts:nxsr_xrp.xxxx
 8018 urn-x:owsx:snowxlxkx:tp:nxsr_xrp.xxxx
 8018 urn-x:owsx:snowxlxkx:nxsr_xrp.xxxx
 8018 urn-x:owsx:snowxlxkx:gxom:nxsr_xrp.xxxx
 7051 urn-x:owsx:snowxlxkx:xity:nxsr_xrp.xxxx
 5741 urn-x:owsx:snowxlxkx:xnxxnroutxsxg:Vxxx_xx_x

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

76

 5741 urn-x:owsx:snowxlxkx:Vxxx_xx_x_TP
 5741 urn-x:owsx:snowxlxkx:Vxxx_xx_x
 5741 urn-x:owsx:snowxlxkx:Vxxx_xx
 5741 urn-x:owsx:snowxlxkx:stxrtxnroutxsxg:Vxxx_xx_x
 4806 urn-x:owsx:snowxlxkx:xnxxnroutxsxg:VIxxxxxxxx
 4806 urn-x:owsx:snowxlxkx:stxrtxnroutxsxg:VIxxxxxxxx
 4500 RtxSxg_xxxx_RtxSxg_xxxx
 4364 urn-x:owsx:snowxlxkx:ROxxxxxxxxROU

 …. it goes below 4000 after this point

Comsoft: gml:id are all on the form Iddddddd , with d a decimal character

Luciad: species / ranked by occurrence (x stand for hexadecimal character)

 8568 urn.uuix.xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx_x
 6450 urn.uuix.xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx_x_x
 4775 urn.uuix.xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx_xx
 952 urn.uuix.xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
 597 urn.uuix.xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx_x_xx
 5 Ix_xIRSPxxx_TIMxSHxxT_xxxx
 2 xonx_xxxlusionx
 2 Ix_xIRSPxxx_LxYxR_LxVxLS_xxxx
 and a lot more of individual namings after this point

6.2.6.5 Time

Snowflake: 2011-01-01T00:00:00.000Z format

Comsoft: 2011-01-01T00:00:00.000Z format

Luciad: 2011-01-01T00:00:00.000+01:00 format

Candidate exposition:

The dateTime type (cf. http://www.w3.org/TR/xmlschema-2/#dateTime) is only
exploited by EXI (cf. http://www.w3.org/TR/exi/#encodingDateTime). For the others,
only deflate will be able to compress the textual string representing date and time.

6.2.6.6 Coordinates

We find both use of poslist and pos, of course poslist is better

For compression issues: is double precision mandatory on wfs’s response?

Compression of floating point is hard whatever algorithm is used. As coordinates are
expressed in degrees, even for longitude, the 23 bits of mantissa permit to cover a ground
resolution of 1.7m on the equator. At +/- 180 deg (180 takes 8 bits (7 as a fractional
part), 16 bits remain to cover in worth case one degree at the equator or so 111km, so
111/2^16 is the resolution).

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 77

This resolution goes bellow 1m for most of the airports (only the ones in the pacific
(between +128 and -128 degrees) will suffer from 1.7m limitation)

Snowflake:

Usage of both pos and poslist, in double precision, also use lowerCorner and
upperCorner, eg:

<gml:posList srsDimension="2" count="14">-90.7784118652344
29.0497417449951 -90.7805099487305
<gml:pos>-102.328245555556 46.3591641666667</gml:pos>
<gml:lowerCorner>16.47888889 52.13061389</gml:lowerCorner>
<gml:upperCorner>16.72713333 52.52638889</gml:upperCorner>

Comsoft:

Only use of pos in simple precision, eg.

 <name>ESTONIA_LATVIA</name>
 <type>STATE</type>
 <border>
 <Curve gml:id="ID013845"
srsName="urn:ogc:def:crs:OGC:1.3:CRS84">
 <gml:segments>
 <gml:LineStringSegment>
 <gml:pos>27.3222222 57.5483333</gml:pos>
 <gml:pos>27.3019444 57.5513889</gml:pos>
 <gml:pos>27.2858333 57.5505556</gml:pos>
 ... and so on

Luciad:

Use of both in simple precision, also startAngle and endAngle:

<gml:pos>-118.238 36.525</gml:pos>
<gml:pos>-118.239 36.529</gml:pos>
<gml:posList>-146.2666667 64.9997222 -146.0833333 64.9997222 …
<gml:startAngle uom="deg">228.6</gml:startAngle>
<gml:endAngle uom="deg">34.94149</gml:endAngle>

Candidate exposition:

All candidates are impacted by float or double representation. BXML is impacted by both
(because they store data in IEEE-754). GZIP and FIS are less impacted because if some
digits are not used, they won’t be output in textual representation, and they basically do
not know that what they are reading is actually a floating point number. EXI uses variable
length integer encoding for both exponent and mantissa, and treats double and float as

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

78

double. This topic is more discussed in 7.1.1.4.1 where is described a test centered on
coordinates alone.

6.2.6.7 Order of features

If we request many different features on the same WFS request, are they output in ordrer
(let's say all routes, then all route_segments,...) or are they interlaced by features (a route,
then all segments for this route, then next route and so on) ?

As we only have airspaces from Luciad, a flat file containing Estonia from Comsoft, we
cannot make comparisons on this aspect. But certainly it would be predominant for
compression performance. The technical family contains one test related to order, based
on features from family 2, and result show a 5-10% improvement when we sort features
by type (only for deflate post-compression algorithms).

As histograms may look the same, we notice the following gains using ordered features :

� 8% for Fast Info Set with deflate

� 7% for deflate alone

� 4% for EXI with deflate with or without schema knowledge

Candidate exposition:

� GZIP: Yes

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 79

� Fast Info Set : Yes with deflate

� BXML: Yes with deflate

� EXI: Yes, because of post-compression which will work better if successive
tokens are the same, instead of been interlaced.

7 Results

All Japex reports can be found with this document, in HTML format. On the next
paragraph, we just present histograms, and reference figures when needed.

7.1 Brute compaction performance

These measure concern only the gain of space obtained using the compression provided
by each candidate with various options. The size of file after compression is expressed in
percentage of the original file size.

Note that for Java SAX candidates (all of Java candidates), verification is made about the
validity of compression by decompressing and comparing it with original content using
SAX parser.

7.1.1 Figures by family

AIXM sample files shown on graphs are sorted by size, growing.

7.1.1.1 First family (D-NOTAMS)

Java candidates:

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

80

EXI with both schema knowledge and deflate post-compression brings an average
reduction to 13% of the original size of the file. This level of compression allows D-
NOTAMs to lower under the 1KB level.

Native candidate CWXML:

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 81

With deflate post-compression, CWXML performs worst than bare deflate with level 9.
Maybe the CWXML output doesn’t suit deflate and the header must weight too much.

Without deflate, CWXML performs worst than FI and EXI, because it works on byte
boundaries where FIS use PER and EXI a bit output code.

Deflate with a dictionary:

Adding a 28KB dictionary to deflate provides an additional compression of 30% for D-
NOTAMS. This performance places deflate+dictionary ahead EXI without schema
knowledge but with compression and FI + deflate too.

As giving a dictionary based on AIXM schemas to deflate is a bit like providing schema
knowledge, this result is not surprising.

7.1.1.2 Second family

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

82

Java candidates:

The first good news, is that EXI performs always better than FI even without schema.
That means the default bit-encoding of EXI performs better than FI’s BER.

Without post-compression, we see that runways, routes, vertical structures, navaids and
taxiways offer a good compression ratio below 30% for FI and EXI. Looking back at

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 83

analysis, this must be due to the small presence of coordinates inside those files (cf.
6.2.3.11)

When we look at the differences between EXI with schema and without, we see a major
improvement of performance due to schema only for runways elements, taxiways
elements, geoborders, and airspaces. Analysis shows these 4 files share a huge
consumption of coordinates. So when EXI knows it deals with float / double numbers
(same for it), it compresses better. This is good, but as we are going to discover it on the
next page, this advantage annihilates itself when deflate intervene.

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

84

Java candidates with post-compression only:

As differences between non post-compress data and post-compress one is important, the
following graphs shows only “post-compress” candidates. Results are indexed on gzip -9
(100%):

The bad news is that FI or EXI only brings few extra-compression compared to gzip -9.
EXI with schema knowledge and deflate remove only 15 to 40% of the file size obtained
by pure deflate.

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 85

More surprisingly, in both cases (vertical structure and navaids), the knowledge of the
schema is a handicap for EXI which performs better without schema than with it. The
analysis already tells us those 2 files presented long attribute names. This attribute
predominance deserves EXI and its grammar because there are too few elements to get
advantage of the grammar rules. This trend was already noticeable without post-
compression, but is more visible with post-compression, FI performing better than EXI
with schema.

Regarding coordinates handling, the differences around 40% noticed between both EXI
candidates without deflate for geo borders, airspace, taxiways and runways elements is
shrunk by deflate, EXI encoded doubles aligned on byte boundaries being more difficult
to compress as their ascii counterparts.

Still this is good news, EXI without schema performs always better than FI, with or
without compression.

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

86

Native candidates:

The header thread seemed correct for CWXML which succeeded to perform better (a
little bit) than GZIP on this family. CWXML can take advantage of its dictionaries and
present to gzip data more suitable for compression. The difference between gzip and
CWXML being so small, we won’t use it for family 3. Same for dictionary based deflate
whose advantages disappear near totally for this family and the next one, as back-
references from deflate cannot go further than 32KB before, so for any file over 32KB,
the dictionary loose its edge, because impossible to reference.

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 87

7.1.1.3 Third family

Java candidates with post-compression:

As java candidates do not offer any difference on compression compared to family 2
without compression, we directly show the post-compression results:

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

88

There is no big surprise in this chart, compared to family 2. Runways, Taxiways and
Luciad Airspaces offer a good level of compaction for EXI compared to Gzip. This
confirms the efficiency of EXI for XML file using a limited set of elements and few C-
DATA (in AIXM case coordinates and dates).

Deflate level incidence:

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 89

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

90

As you can see, level 5 or 6 is sufficient in most cases; additional compression brought
by higher levels costs a lot of CPU for only few percents compaction gain.

7.1.1.4 Thourth family

7.1.1.4.1 Lot of doubles

Java candidates:

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 91

Native candidates:

Interpretation:

All candidates “without deflate” perform nearly the same when dealing with floating
point numbers except EXI with schema knowledge. When we look closely at data and
count characters, we see that a typical coordinate is:

-105.013035 40.2083175

It uses double, the whole pattern spaning on 23 characters.

� IEEE 754 (CWXML) uses 8 bytes for each double, it will take just 16 bytes to
store the raw data. If you add one additional byte for separation you reach 17
bytes compared to 23. The compression is only around 25%. IEEE 754 binary
format is made in such a way it doesn’t please deflate which needs to find at least
3 consecutive identical bytes to begin to consider placing a back-reference. For
float it’s hard because the format is not byte aligned.

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

92

 For doubles we will have 11 bits of exponent (not byte boundaries either) and
mantissa 52 bits (possible to get 6 consecutives bytes this time).

� EXI use its own way to store floating points numbers (exi:double or just Float)
which covers both xsd:float and xsd:double. The “Float” datatype representation
is two consecutive integers (signed):

o The first Integer represents the mantissa of the floating point number

o and the second Integer represents the base-10 exponent of the floating
point number

This representation relies on integer compression, which is the following:

� A Boolean for the sign (a single bit when deflate is not used, a full
byte otherwise)

� An unsigned integer (for the absolute value of the integer), which
is encoded as a sequence of bytes terminated by a byte with its
most significant bit set to 0. The value of the unsigned integer is
stored in the least significant 7 bits of the bytes as a sequence of 7-
bit bytes, with the least significant byte first.

As you see this storage using 7 real bits in 8 bits envelope can be bad for
performance when using full fractions, as 23 bits of mantissa will make 4 bytes
in EXI. So basically when using deflate on a double, the input material provided
by EXI could cost 8 bytes of mantissa, 2 bytes of exponent and 2 bytes of sign
(total 12 bytes). That means that EXI doubles could take much place as ascii data
equivalent.

7.1.2 Interpretation of results

All results points to one trend. Coordinates are difficult to swallow by all algorithms.
Even worst, GZIP is doing a bit better than competition dealing with numbers in ascii…

7.2 CPU consumption

The time of processor used by each candidate is measured just between the start end the
end of an encoding or a decoding phase. To get maximum usage of cache, we run a batch
of runs before taking the measure. Grammar computations for EXI, file loading into
memory, dictionary loading for gzip, and so on are made before the measurement. This
works for memory measurements too.

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 93

Histograms show on 2 graphs, the compaction and just below the ratio of time needed by
a specific compression/decompression algorithm compared to the first candidate
(generally raw SAX parsing for java candidates, or gzip for compressed java candidates).

7.2.1 Figures by family

As CWXML is outranged by all of java candidates, we stop giving figures for CPU and
memory for CWXML. Same idea for gzip + dictionary for families 2 and 3, because the
usage of a dictionary for files much bigger than 32KB doesn’t add any value.

7.2.1.1 First Family (D-NOTAMs)

7.2.1.1.1 Encoding

Points to notice:

� FIS without deflate is faster than raw SAX parsing

� Time of deflate (zlib based) is proportional to the inner compression of the first
stage (FIS < SAX)

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

94

� The deflate algo used by EXIficient is very long and also proportional to the input
data (20x slower than raw SAW parsing)

� EXI with schema but without deflate performs well (average of 131us for SAX,
88 for FIS, and 234 for EXI), but cannot beat FIS in the ratio compaction/time

7.2.1.1.2 Decoding

Once again FIS is the big winner, deflate impact is lesser than for compression (ratio 5 to
2), and EXI’s deflate is still very bad. For the FIS / EXI+schema match, the difference is
decreasing (78us for FIS and 142 for EXI), both offering an equivalent compaction/time
performance.

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 95

7.2.1.2 Second family

7.2.1.2.1 Encoding

� EXI deflate is digging its grave, with ratio reaching 100x the time of SAX

� Zlib deflate level 9 cost between 3 an 15x the time of SAX (average 8x)

� FIS without deflate is twice faster than SAX and fourth time slower when using
deflate level 9.

� EXI with schema is 4x slower than SAX

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

96

7.2.1.2.2 Decoding

Near the same ratio as for family 1 when comparing compression to decompression:

� FIS is 4 time faster than SAX without deflate and only twice when using deflate

� Deflate cost is only 40%

� Same metric 40% for EXI without deflate

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 97

7.2.1.3 Third family

7.2.1.3.1 Encoding

Figures are in ad equation with family 2:

� FIS is 2.4 times faster than raw SAX

� FIS with deflate and EXI with schema but without deflate performs the same, 3.4
times slower than raw SAX.

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

98

� Deflate level 9 cost is 6x compare to raw SAX

� FIS with deflate is the big winner of the ratio compaction/time:

o An overall compression of 12x on all data from family 3

o A throughput of 20MBps for input data (using SAX)

o A throughput of 1.6MBps for encoded data

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 99

7.2.1.3.2 Decoding

Here also, figures are very compatibles with the ones from family 2:

� FIS wins the prize: 5x faster than SAX, only 2.4x with deflate

� EXI with schema performs the same as GZIP and 30% slower than SAX

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

100

� Here also FIS performs very fast: read compressed data at 8MBps and output
SAX tokens for a parser at 104MBps (a gigabit link). Anyway theses figures
remain theoretical because the encoder cannot perform at this speed.

7.2.2 GZIP levels incidence for family 3

As the appreciation of gzip levels is better on large files, we give the CPU features of
GZIP only for family 3. All levels are evaluated related to level 1.

7.2.2.1.1 Encoding

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 101

As you can see, on a server, the level 9 costs only between 2 and 4 times the cost of level
1. That’s the reason why we chose to use level 9 for java candidates (rax SAX + deflate,
FIS + deflate).

Anyway level 5/6 is enough for a decent compression and avoids using too much
additional CPU for only few percents of additional compaction.

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

102

7.2.2.1.2 Decoding

The time is very slow and is roughly linked to the size of the input data (the more
compression, the smaller size of input), but globally the differences are unnoticeable.

7.2.3 Projection on maximum throughput of candidates

Based on an average value on encoding all files from family 3, we get these results:

Candidate
encoding

rate
(Mbytes/s)

output rate
of encoded

symbols
(Mbytes/s)

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 103

Candidate
encoding

rate
(Mbytes/s)

output rate
of encoded

symbols
(Mbytes/s)

XMLNeither (raw SAX) 68 68

XMLDocument (deflate level 9) 11 1

FastInfosetNeitherSAX (FIS without deflate) 163 61

FastInfosetDocumentSAX (FIS with deflate level 9) 20 1.6

EXIficientNeitherSAX (EXI without schema, without deflate) 33.5 10.9

EXIficientDocumentSAX (EXI without schema, with deflate) 1.7 0.13

EXIficientSchemaSAX (EXI with schema, without deflate) 20.1 5.2

EXIficientBothSAX (EXI with schema, with deflate) 1.9 0.15

As the server we use was excellent for 2006 but not up to date in 2011, maybe a simple
projection can give you a performance double compared to the one represented here.

7.3 Memory footprint

7.3.1 For initialisation of candidate (static)

Most of candidates do not make any preparation before processing an encoding or a
decoding step. Generally, this just load a few global data into memory, but who pass
unnoticeable compare to java behavior, and for garbage collector.

Only EXI is preparing its work by parsing the schemas of the files it will have to
compress/uncompress. This preparation phase is long (circa 5 seconds) and consumes
memory (25MB).

As AIXM schema weight around 1.6MB, the ratio between grammar and schema seems
to be around 15x.

7.3.2 For a run (dynamic)

Most of candidates do not consume any noticeable amount of memory to perform
encoding or decoding. Anyway when deflate (and level 9) add to the process, there is
always some memory consumed as deflate store the past 32KB of data, and a hashtable
with a key of any succession of 3 bytes possible and all references as values.

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

104

The following figures are all computed for family 2, to lower the incidence of the garbage
collector (works on memory banks, on blocks) and the incidence of output buffer.

7.3.2.1 Encoding

EXI is consuming a lot of memory related to other algorithms, especially grammar
handling and deflate post-compression. As the memory used by the output buffer is taken
in consideration, the raw SAX consumes more than gzip and FIS. In a network streaming
option, this would not be the case.

Anyway, EXI with schema and deflate is consuming too much:

� Around 150-200 MB for family 1,

� Around 275-300 MB for family 2,

� Around 250-500 MB for family 3

As Japex memory consumption measures are not so realistic (because the garbage
collection control is very complex, on successive runs), we will just remember the huge
memory consumption of EXI without trying to giving a law. The initial grammar
computation (25MB) doesn’t weight much compare to the one instantiated to perform
compression / decompression operations (150MB even for very small files).

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 105

7.3.2.2 Decoding

The conclusion is exactly the same as for compression, and figures for EXI remains huge,
even worse:

� Around 140-190 MB for family 1,

� Around 250-350 MB for family 2,

� Around 320-500 MB for family 3

7.4 Integration cost, ease of usage

All candidates are really easy to integrate with SAX, on a stream base, excepted
CWXML because it only supports file processing or file mapped to memory but not real
streams.

Using Schema with EXI adds a bit of complexity as you have to place in the right place
all xsd files and take care of relative links between files.

7.5 Data integrity / Safety

Deflate / GZIP:

Deflate does no offer a specific protection against corruption, and detection is generally
made on the GZIP level, where a ADER32 checksum is added. Eventually a changed bit
could pass undetected or generate an impossible sequence that will make the decoder

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

106

crash. In a flow option where decoding occurs as soon as data is received to feed SAX
parser, the data integrity cannot be 100% assured.

FIS:

As FIS use PER for encoding, an error in the bit stream could be detected if applying on a
length field or value field. In the others cases it could be missed.

EXI:

EXI does not use error correcting codes, nor detection. Event codes, like Huffman codes
can be altered without necessarily raising an error from the decoder.

All candidates suffer from poor/inexistent error detection in the compressed flow, so they
have to rely on lower layers (TCP/IP, Ethernet,…) to detect any error. For datalink,
strong checksum are generally used (like on AVLC/VDL2), so it’s not a big issue.

7.5.1 Quality of code

As deflate and FI are well spread since years, our attention is concentrated on EXI.

Exificient code lacks of comments, the only documentation around being the one
generated from javadoc.

7.5.2 Complexity

Deflate is a complex algorithm, using Huffman codes, back references with various costs,
… but as the code used by java is from zlib, where C code is quite short and was heavily
tested, we can probably consider an error in zlib like very improbable.

FI is very simple in principle, excepted the PER encoding which is quite complex, but as
the code to handle PER is supposed to be generated by an ASN.1 compiler, the
probability to face a bug is reduced.

EXI is complex as it uses a proto-grammar and reduction rules to eliminate duplicate
productions. The output module uses channels, multiplexers and blocks. Well as EXI is
not yet a mainstream library, it’s still possible to find bugs or limitations (as we made the
experience during this benchmark)

7.5.3 Experience return

We were positively surprised by the handling of schema by Exificient. It works from the
first time with all AIXM XSD (GML and so on) and intensively uses Xerces/XS API.
Anyway, we were puzzled by the time needed to build the grammar, and the memory
consumption of EXI. The deflate algorithm used by exificient is too slow. That’s a very
dark spot, because in all cases EXI without schema / deflate brings more compression
than FI for an acceptable CPU consumption. If coupled with zlib, it would be a very
interesting perspective.

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 107

FI and EXI are very easy to put in place or integrate to a SAX parser / XML reader.

8 Perspective on real world use cases

8.1 Best compaction candidate for small files or “datalink” messages

8.1.1 Understanding onboard systems constraints and datalink limitations

8.1.1.1 ATC Datalink “en route”

If cabin communications are relatively open, datalink communications between DSP and
cockpit are very structured and driven between 4 main actors: Boeing, Airbus, Arinc and
SITA. Buses between CMU (datalink user) and VDR (radio) is also very structured and
does not evolve very often. Every time a new datalink media is proposed, 10 years run
between the first running mockup and a global installation in a majority of planes. That’s
why, DataLink are never up-to-date compared to the kind of communications publicly
available (LTE, wifi, high speed internet through satellite with a dish antenna,…)

As Airframe manufacturers and DSP begin to install VDL-2 to replace POA DL, the
throughput of VDL-2 is only 31.5 kbps compared to legacy 2.4kbps ACARS. Of course
in dense area multiple frequencies can be used (up to 3) to increase the global throughput.

So it’s reasonable to think that in the next years, a bandwidth beneath 100kbps is the
maximum reachable for VHL datalink or SatCom using omni-directional antennas. New
datalinks (both VHF (LDACS1,2) and SatCom (IRIS)) are studied by SESAR, but they
are still at very early stages and won’t offer MB/s by plane throughput anyway.

As VHF bandwith is shared between all the plane of a region (radius around 100NM, and
a sender cannot use the radio channel too much time for a message regarding fairness to
other planes communications.), the time when we will be able to send big volumes of
data to a flying plane has not come yet.

8.1.1.2 AOC / AAC datalink grounded

However, when the plane is grounded or flying not too fast and near the ground, some
commercial techno can be used such as LTE, WiMax, or even Wifi. Some companies
already offer such services like Thales/GateSync or Teledyne.

Anyway theses usages as they may interest companies willing to synchronize their EFB,
or update their IFE once grounded, present no much interest for D-NOTAM updates as
they are ground based, deployed only on some planes, on some airports, for only several
companies.

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

108

8.1.1.3 AOC datalink “en route”

These AOC communications are quite new, developed to provide internet access onboard
and are mostly based on 3 media:

� Terrestrial antennas, revamping a mobile phone techno, enhanced to support plane
speed and distance (10km altitude)

� Geostationary satellite (GEO) and classical DVB/S(2) + RCS

� Low orbit satellite constellations (soon MEO too)

8.1.1.3.1 Terrestrial antennas

Actually only one such solution exists, and is called the gogo-biz (previously AirCell).
Several communication towers are installed on the US territory under major fly routes
and provide kind of ADSL like internet aboard. A special air/ground antenna has to be
installed under the plane to be able to receive and emit data.

Of course this service cannot be transposed for global ATC datalink, since it is just
present on ground on profitable airways (to oceanic coverage, isolated/remote places…)

In addition as this service operates in L-band, which is a very expansive band, and very
regulated in every country, a global use is very improbable.

8.1.1.3.2 DVB-S / RCS

Since the boeing initiative of ‘connection by boeing’ in early 2000, it was possible to get
an internet access in a plane, like a particular living in a remote place far from PSTN
DSL. This costs a special antenna on the top of the plane, very heavy, to replace the
common parabolic dish used for TV reception / internet by satellite.

Several dynamic antennas exist, using different technologies. As the plane is moving, the
antenna has to figure out how to point to the right satellite. This innovation is made
possible trough the separate usage of multiples antennas (dipoles) and a lot of software to
be able to delay / amplify differently the reception of each element to provide the
direction. Same alchemy for emission, as an antenna (even a network antenna) is always
symmetric for emission or reception.

Right now all commercial offers (row 44, matsushita, …) use Ku Band, but some antenna
already exist to use Ka Band (like the one from DLR’s Santana project) allowing even
higher bandwidth (multiple gigabits per seconds).

Those antennas are still not used for ATC, because they are heavy and cannot equip any
plane (only big ones with enough room on the roof), and their difficulty to operate on
polar routes where the angle required to point GEO is too highfor the antenna . As most
of flights between Asia and US use such airways, this is a problem.

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 109

8.1.1.3.3 Satellite constellations on GEO

Those constellations present the advantage of being seen from the ground always at the
same place in the sky. This simplifies a lot the maintenance of the link between the base
station and the satellites. A big dish can be pointed to the satellite, this latest managing all
the planes it sees on its visible half of the globe. To get a decent coverage, you need 3
satellites to avoid 90° angles on the ground. So a basic constellation just asks for 3
satellites separated from 120° from each over on GEO to offer a world coverage (with
near 90° on poles off course…). Inmarsat propose such a solution (even 4 satellites to
increased bandwidth over Europe)

 Those satellites are mostly relays between planes and the ground but are quite different
of basic TV DVB satellites as they can receive data from a plane equipped with an
omnidirectional antenna at near 40,000 km from the satellite. This asks for a lot of small
antennas, very directive with small lobes and a specific work on signal amplification and
noise reduction. Their initial usage was for mobile phone.

Some countries have this kind of satellite, not necessarily with global coverage and
global beams. Thuraya’s network covers (with 3 satellites), a part of Africa, Europe and a
part of Asia including Australia. Japan had such a program for aviation (MTSAT).

These GEO constellations are already used for ATC (SITA, ARINC) through 2400 bps
ACARS on Inmarsat SBB.

8.1.1.3.4 Satellite constellation on LEO (soom MEO)

The main problem with a low orbit constellation is their mobility. In fact such a satellite
moves so fast (an earth orbit in few hours, 100 min for Iridium), that you can see it only
for 10 minutes max, so frequent hand-off are part of the game. As those constellation
cover the whole world (including polar area), they require a lot of satellites (66 for
Iridium, 48 for Global Star) to cover the entire moving globe and not offer a moving hole.
So those constellations are very expensive. Another problem to address is the visibility
from ground, as they move fast, only one satellite is visible from a ground station at a
given time, so they have to relay the information along the constellation.

The main advantage of LEO is the proximity, as you don’t need the same power or
amplification when you deal with planes only 600 km under you (to compare to the
36000 km from GEO). That proximity allows micro satellite (under 1000 kg) with
smaller solar panels, and reduced antennas.

Iridium is already used for ATC (Arinc).

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

110

Many projects are ongoing for the next 10 years, on both LEO (Iridium Next) and MEO
(google project called O3B) and should bring high speed internet access for mobiles
using omnidirectionnal antennas (so aviation should be a target).

8.1.1.4 Cost of airborne embeded software

As software assurance level (SWAL) asked for avionic software is higher onboard than
for what you can design for ground IT service, the quality of the libraries / components
brought onboard is predominant and have to comply to ED12B and DO-178C (common
to both EUROCAE and RTCA). So compression is mandatory but not at any cost,
because you need to prove the stability and reliability of your software.

8.1.1.5 Bandwith constraint

In the case of this study, uploading a D-NOTAM on an en-route “standard” plane asks for
low bandwidth datalink and using the scarce remaining bandwidth let to AOC
communications by ATM communications

That’s the reason why compression is mandatory; the smaller will be the data to send the
better. As most of datalink techno are using frames/paquets, the goal would be to keep
data small enough to fit in one single frame/paquet/time slot.

POA: 2400 bps by frequency shared between all planes on a 100 miles radius

AOA: 31kbps by frequency shared by all plane in a 100 miles radius and with ATN.

Inmarsat BGAN: between 200 and 432 kbps by channel (up to 2) and by plane,
depending on the antenna type (active or not) (or up to four 64Kbps channel for swift 64).

Iridium: 2400 bps by plane

8.1.1.6 Message size for each datalink

As POA limits messages to a maximum of 16 blocs of 220 characters, it’s difficult to
imagine sending a message bigger than 3KB. As VHF communication is noisy, the more
frames you send, the less probable it is to retrieve all pieces.

For ATN which relies on X.25 and connected communication with detection of lost
messages, you can send bigger messages. As ATN relies on AVLC and on VDL2, burst
frames contains only 249 bytes, so the less burst you use, the better.

SatCom use slots, and as SatCom is mainly thought for phone communications, you find
small slots.

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 111

The SBB service of Inmarsat provide both IP and packet modes (ISDN), but no data is
publicly available concerning a frame size.

Iridium uses messages up to 1960 bytes (SBD) cf. [IRIDUM_SBD]

8.1.2 Best candidate

Regarding the message size data, and the result obtain for compression of D-NOTAM,
we recommend using EXI with both schema and deflate post-compression.

Anyway, even if the compression provided by this candidate is the best one around
(reduction from 5321 bytes to 711 bytes), a D-NOTAM will still span on 3 VDL2 burst
frames, or 4 POA blocs. As the probability to have a corrupted message increases with
the numbers of frames used, the goal is to fit into only one frame. D-NOTAM won’t fit in
less than 220 characters.

But this compression level is enough to send a full D-NOTAM through Iridium’s SBDS.

8.2 Best compaction for synchronization of databases across ground network

The recommendations given in this chapter uses intensively the measures of maximum
throughput of the candidates given in 7.2.3.

8.2.1 Slow network links (<1Mbits/s)

As such a low speed of 1Mbps (like an anemic DSL line), you could use almost any
algorithm of compression. If your server doesn’t serve more than 1 client at a time
(average), you could go for EXI with both schema and deflate (0.15 MBps will just make
enough to fulfill the bandwidth).

8.2.2 Fast network links (>1Mbit/s)

Between 1 and 10 Mbits/s (regular DSL line, or a rented EtherLink access with limited
bandwidth), EXI with deflate is not more an option, excepted if you have between 5 and
10 clients connected simultaneously in average and a server with a least 8 cores (HT
included) or more.

But in most cases, for regular server and a limited number of clients (with no overlap of
requests), we recommend to use Fast Info Set with deflate or simply deflate alone (with
level between 5 and 9). As this latest choice is already implemented in HTTP servers, it
will cost you nothing.

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

112

8.2.3 High speed network links (>10Mbit/s)

With a bandwidth on the 100Mbps range, closer to a LAN access, the usage of deflate is
no more possible, excepted if the server is multi-core (at least 8) and that more than 5
clients are placing requests at the same time. In this scenario, you can still use FI but
maybe you will need to reduce the level of post-compression brought by deflate to a level
1-4 (1 is doing quite some compression at a very low cost).

In a standard usage, you can consider using FI without deflate, or EXI without schema
and without deflate (who will provide a bit more compression).

If you are more in the lower bound of the 10-100Mbps range, you can also consider using
EXI with schema and without deflate

To sum up the 10-100Mbps range is difficult to address simply. You must try to stick to
deflate as much as possible as it will provide the best compression and thus allowing you
to maximize the quantity of XML sent through the same wire (even if you have to lower
the deflate level to 1). If you server cannot tolerate the CPU additional consumption, then
you have no choice and have to deal with FIS or EXI but without deflate. As those 2
formats are bit aligned, you should disable HTTP deflate compression from HTTP
negotiation, because the result will be bad and cost extra CPU for no result.

8.2.4 Very high speed links (~circa 1Gbps)

On a gigabit (or more) LAN, you will be limited by both Java (network bindings) and
SAX. That leaves only 2 choices: raw XML or FI without deflate. HTTP deflate
compression have to be inhibited in these cases.

9 Looking forward, improvements

9.1 Toileting D-NOTAMs before emission

As you could notice when looking closely to a D-NOTAM, you find the same
information in many places (features impacted + timeslices, but also in raw text). Maybe
this redundancy can be worked around.

Also a lot of GML Ids are used; maybe some of them are unnecessary for an EFB.

9.2 Improving coordinates handling compression

The bad but not so unexpected result from this ER, is that none of the evaluated candidate
is made for GML. Off course GML relies on XML, but its specificity is to handle
coordinates. And as we could notice, deflate works better on coordinates as strings than
on a sophisticated representation of them (EXI or IEEE754).

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 113

A good candidate for GML would have to cope with lists of coordinates, understand the
dimension scaling and the precision needed.

Our guess, is that if EXI would treat coordinates (gml:posList and so on) apart and give
them a specific compression layer (like the golomb/rice coding done on audio data of
both stereo channels by FLAC, coupled with a MTF algorithm to sort coordinates in the
first place), we could allow EXI to perform 50% better than today. But this candidate will
be a specific EXI for GML, so a fork of the W3C EXI main branch of specification).

Another way to bring compression would be to modify float numbers directly in the
XML file to made them more likely to be compressed by deflate (like by storing the
differences between the current couple of coordinates and the previous one read, or by
issuing a change of reference frame to reduce the size of ascii coordinates) but it
wouldn’t be as efficient.

9.3 Getting a little more compression using simple algorithms

As D-NOTAMs are short (less than 10KB), some existing algorithms could be adapted to
get an additional compression performance, enough to match a specific media (like
iridium’s SDBS). Our experiment with deflate using a previously filled dictionary based
on AIXM’s XSDs shows that we could reduce a D-NOTAM to 1272 bytes (instead of
1671 using deflate alone). That kind of arrangement permits to re-use a well known
compression algorithm with a recognized software assurance and reaching a compaction
size goal without turning to a sophisticated algorithm with no experience return and no
software assurance warranty.

10 Conclusion

EXI with schema knowledge of AIXM coupled with deflate post-treatment is very
adapted for compaction of D-NOTAMs, as D-NOTAMS do not use much coordinates in
their structure. This combination allows reducing a D-NOTAM to only 700-750 bytes, or
only 13% of their original size. Such a size makes their transfer through datalinks
possible, and will make EFB aware of the inner AIXM nature of NOTAMs.

Anyway 700 bytes are still a lot of bytes, and could make say to AIXM detractors that the
same textual NOTAM would weight less, and that they could easily figure out a binary
dedicated format to reduce this size under 100 bytes. This is certainly truth, but the goal
of D-NOTAM is to make a bridge between AIP and NOTAMs, to make NOTAMs look
friendly on a EFB screen (like showing a specific NAVAID equipment dead, a portion of
route closed, or a full airspace reserved for military usage). In this context Digital does
not mean compression, but more service.

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

114

Regarding general AIXM compression, EXI doesn’t add any specific value when dealing
with raw GML data (coordinates) or big amount of data where deflate take the lead over
EXI schema knowledge, AIXM staying too complex. As our benchmark suggests, Fast
Info Set with a selected deflate level should accommodate most of use cases and bring
both speed and low memory footprint. This conclusion could change if EXI (at least
Exificient) could improve its deflate processor, but right now it’s too slow to compete
with FIS on a WFS server side.

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 115

Annex B

XML Schema Documents

1. XML Schema for Japex test suite (from Japex 1.2.2), suitable if you want to
create your own test using the platform:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.sun.com/japex/testSuite"
 xmlns:tns="http://www.sun.com/japex/testSuite"
 elementFormDefault="qualified"
 xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
 jxb:version="2.0">

 <!-- Adds the suffix Element to avoid name clashes -->
 <xsd:annotation>
 <xsd:appinfo>
 <jxb:schemaBindings>
 <jxb:nameXmlTransform>
 <jxb:elementName suffix="Element"/>
 </jxb:nameXmlTransform>
 </jxb:schemaBindings>
 </xsd:appinfo>
 </xsd:annotation>

 <!-- Description element - typically HTML content -->
 <xsd:element name="description">
 <xsd:complexType mixed="true">
 <xsd:complexContent>
 <xsd:restriction base="xsd:anyType">
 <xsd:sequence>
 <xsd:any processContents="skip" minOccurs="0"
 maxOccurs="unbounded" namespace="##other"/>
 </xsd:sequence>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>

 <!-- Parameter and parameter groups -->
 <xsd:element name="param">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:restriction base="xsd:anyType">
 <xsd:attribute name="name" type="xsd:string"
use="required"/>
 <xsd:attribute name="value" type="xsd:string"
use="required"/>
 </xsd:restriction>

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

116

 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="paramGroup">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:group ref="tns:ParamOrParamGroup" minOccurs="1"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string"
use="required"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:group id="ParamOrParamGroup" name="ParamOrParamGroup">
 <xsd:choice>
 <xsd:element ref="tns:param"/>
 <xsd:element ref="tns:paramGroup"/>
 </xsd:choice>
 </xsd:group>

 <!-- Test cases and test case groups -->
 <xsd:element name="testCase">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:group ref="tns:ParamOrParamGroup" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string"
use="required"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="testCaseGroup">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:group ref="tns:ParamOrParamGroup" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:group ref="tns:TestCaseOrTestCaseGroup"
minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string"
use="required"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:group id="TestCaseOrTestCaseGroup"
name="TestCaseOrTestCaseGroup">
 <xsd:choice>
 <xsd:element ref="tns:testCase"/>
 <xsd:element ref="tns:testCaseGroup"/>
 </xsd:choice>
 </xsd:group>

 <!-- Drivers and driver groups -->
 <xsd:element name="driver">
 <xsd:complexType>

OGC 11-097

Copyright © 2011 Open Geospatial Consortium 117

 <xsd:sequence>
 <!-- Optional description for the driver -->
 <xsd:element ref="tns:description" minOccurs="0"/>
 <xsd:group ref="tns:ParamOrParamGroup" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string"
use="required"/>
 <xsd:attribute name="normal" type="xsd:boolean"
default="false"/>
 <xsd:attribute name="extends" type="xsd:string"
use="optional"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="driverGroup">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:group ref="tns:ParamOrParamGroup" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:group ref="tns:DriverOrDriverGroup" minOccurs="1"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string"
use="required"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:group id="DriverOrDriverGroup" name="DriverOrDriverGroup">
 <xsd:choice>
 <xsd:element ref="tns:driver"/>
 <xsd:element ref="tns:driverGroup"/>
 </xsd:choice>
 </xsd:group>

 <!-- Test suite -->
 <xsd:element name="testSuite">
 <xsd:complexType>
 <xsd:sequence>
 <!-- Optional description for the testsuite -->
 <xsd:element ref="tns:description" minOccurs="0"/>

 <!-- Zero or more params groups or params -->
 <xsd:group ref="tns:ParamOrParamGroup" minOccurs="0"
maxOccurs="unbounded"/>

 <!-- One or more driver groups or drivers -->
 <xsd:group ref="tns:DriverOrDriverGroup" minOccurs="1"
maxOccurs="unbounded"/>

 <!-- One or more test case groups or test cases -->
 <xsd:group ref="tns:TestCaseOrTestCaseGroup"
minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>

 OGC 11-097

Copyright © 2011 Open Geospatial Consortium

118

 <xsd:attribute name="name" type="xsd:string"
use="required"/>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

