

Open Geospatial Consortium

Date: 2011-11-23

Reference number of this document: OGC 11-064r3r3

Category: Engineering Report

Editor: Clemens Portele, Reinhard Erstling

OGC® OWS-8 CCI Schema Automation Engineering Report

Copyright © Open Geospatial Consortium
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document is an OGC Public
Engineering Report created as a deliverable in an OGC Interoperability Initiative
and is not an official position of the OGC membership. This document is distributed
for review and comment. It is subject to change without notice and may not be
referred to as an OGC Standard. Further, any OGC Engineering Report should not
be referenced as required or mandatory technology in procurements.

Preface

This document is a deliverable for the OGC Web Services 8 (OWS-8) testbed activity.

OWS testbeds are part of OGC's Interoperability Program, a global, hands-on and

Document type: OGC® Engineering Report
Document subtype: NA
Document stage: Approved for public release
Document language: English

OGC 11-064r3

ii Copyright © 2011 Open Geospatial Consortium

collaborative prototyping program designed to rapidly develop, test and deliver proven
candidate standards or revisions to existing standards into OGC's Standards Program,
where they are formalized for public release. In OGC's Interoperability Initiatives,
international teams of technology providers work together to solve specific geoprocessing
interoperability problems posed by the Initiative's sponsoring organizations. OGC
Interoperability Initiatives include test beds, pilot projects, interoperability experiments
and interoperability support services - all designed to encourage rapid development,
testing, validation and adoption of OGC standards.

The OWS-8 sponsors are organizations seeking open standards for their interoperability
requirements. After analyzing their requirements, the OGC Interoperability Team
recommend to the sponsors that the content of the OWS-8 initiative be organized around
the following threads:

 * Observation Fusion

 * Geosynchronization (Gsync)

 * Cross-Community Interoperability (CCI)

 * Aviation

More information about the OWS-8 testbed can be found at:

http://www.opengeospatial.org/standards/requests/74

OGC Document [11-139] “OWS-8 Summary Report” provides a summary of the OWS-8
testbed and is available for download:

https://portal.opengeospatial.org/files/?artifact_id=46176

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium iii

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, Inc. ("Licensor"), free of charge and subject to the terms set forth
below, to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual
Property without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify,
merge, publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual
Property is furnished to do so, provided that all copyright notices on the intellectual property are retained intact and that each person to
whom the Intellectual Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this
Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable,
and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be
construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in
violation of U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction
which may impact your right to import, export or use the Intellectual Property, and you represent that you have complied with any
regulations or registration procedures required by applicable law to make this license enforceable.

OGC 11-064r3

iv Copyright © 2011 Open Geospatial Consortium

Contents Page

1	
 Introduction ... 1	

1.1	
 Scope ... 1	

1.2	
 Document contributor contact points .. 1	

1.3	
 Revision history .. 1	

1.4	
 Forward ... 2	

2	
 References ... 2	

3	
 Terms and definitions ... 3	

4	
 Conventions .. 3	

4.1	
 Abbreviated terms ... 3	

4.2	
 UML notation .. 3	

5	
 OWS-8 schema automation overview .. 4	

5.1	
 General remarks .. 4	

5.2	
 XML Schema documents .. 4	

5.3	
 Schematron schema documents .. 4	

5.4	
 XSLT-Stylesheets ... 4	

6	
 XML Schema/Schematron encoding rule improvements ... 5	

6.1	
 Metadata profiles .. 5	

6.2	
 UML profile extensions for code lists and units of measurements 9	

6.3	
 XML Schema conversion rule extensions implemented in ShapeChange 11	

6.3.1	
 Example model ... 11	

6.3.2	
 Tagged value suppress .. 12	

6.3.3	
 XML Schema encoding of code list properties of features 12	

6.3.4	
 Association classes .. 13	

6.4	
 Schematron conversion rule extensions implemented in ShapeChange 15	

6.4.1	
 Tagged value suppress .. 15	

6.4.2	
 Schematron encoding of OCL constraints in metadata profiles 17	

6.4.3	
 Schematron encoding of OCL constraints on code lists in GML 3.3 18	

6.4.4	
 Support for OCL "let ... in" ... 19	

6.4.5	
 Schematron document structure improvements .. 21	

6.4.6	
 Additional assertions on code list values and constraints 23	

6.4.7	
 Additional assertions on units of measure references 26	

6.5	
 Conclusions from testing the improvements ... 26	

7	
 KML encoding rule improvements ... 27	

7.1	
 KML encoding support for different styles per feature type 27	

7.1.1	
 Overview ... 27	

7.1.2	
 Changes to the ShapeChange configuration ... 27	

7.1.3	
 Changes to the encoding rule implemented by ShapeChange 27	

7.1.4	
 Improved KML encoding rule .. 31	

7.2	
 Evaluate the use of portrayal registries within KML .. 31	

7.2.1	
 Overview and summary .. 31	

7.2.2	
 Summary ... 38	

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium v

7.2.3	
 Conceptual issues .. 38	

7.2.4	
 Implementation issues and limitations .. 42	

7.3	
 Improving the user experience by caching KML ... 43	

7.4	
 Using WFS 2.0 stored queries .. 44	

7.5	
 KML Change Request: Improve control over BalloonStyle layout 46	

7.6	
 Conclusions ... 46	

OGC® Engineering Report OGC 11-064r3r3

 1

OGC® OWS-8 CCI Schema Automation Engineering Report

1 Introduction

1.1 Scope

This OGC® document specifies improvements to the processing of information
represented in or referenced from an application schema in UML to create derived,
implementation level resources, in particular:

� XML Schema documents to represent types and their properties

� Schematron schema documents to represent constraints

� XSLT-Stylesheets to create KML instances of features

The documented improvements have been specified, implemented in the ShapeChange
tool and tested in the context of schemas developed as part of the NGA's Topographic
Data Store (TDS) schemas.

The work is a continuation of the work documented in OGC® document 10-088r2, the
OWS-7 Schema Automation Engineering Report.

1.2 Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Name Organization
Clemens Portele interactive instruments
Reinhard Erstling interactive instruments
Paul Birkel Mitre

1.3 Revision history

Date Release Editor Primary clauses
modified

Description

2011-06-29 0.0.1 CP all First draft version
2011-08-17 0.0.2 RE Clause 6, Annex A
2011-09-01 0.1.0 CP all First release
2011-09-16 0.1.2 RE Clause 6, Annex A Changes in response to review by P.Birkel;

examples
2011-09-21 0.2.0 CP Updates after tests

Examples

OGC 11-064r3

2

Copyright © 2011 Open

Copyright © 2011 Open Geospatial Consortium

changes in response to review by P.Birkel
2011-10-05 1.0.0 CP Version for publication

1.4 Forward

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

2 References

The following documents are referenced in this document. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply. For
undated references, the latest edition of the normative document referred to applies.

Geography Markup Language, Version 3.2, Open Geospatial Consortium (OGC)

Geography Markup Language, Version 3.3 (draft), Open Geospatial Consortium (OGC)

ISO/TS 19103:2005, Geographic Information – Conceptual Schema Language

ISO 19109:2004, Geographic Information – Rules for Application Schemas

ISO 19115:2003, Geographic information – Metadata

ISO 19115:2003/Corr:2006, Geographic information – Metadata – Technical
Corrigendum 1

ISO/IEC 19757-3:2006 Information technology — Document Schema Definition
Languages (DSDL) — Part 3: Rule-based validation — Schematron

KML, Version 2.2, Open Geospatial Consortium (OGC)

OMG Object Constraint Language, Version 2.2, OMG Document Number formal/2010-
02-01

W3C XML Schema Part 1: Structures Second Edition. W3C Recommendation (28
October 2004)

W3C XML Schema Part 2: Datatypes Second Edition. W3C Recommendation (28
October 2004)

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 3

3 Terms and definitions

For the purposes of this report, the definitions specified in the documents listed in Clause
2 apply.

4 Conventions

4.1 Abbreviated terms

GML Geography Markup Language

ISO International Organization for Standardization

KML formerly: Keyhole Markup Language

LTDS Local Topographic Data Store1

MDR U.S. DoD Metadata Registry2

NGA National Geospatial-Intelligence Agency

OCL Object Constraint Language

OGC Open Geospatial Consortium

OWS OGC Web Services

UML Unified Modeling Language

WFS Web Feature Service

XML eXtended Markup Language

XPath XML Path Language

4.2 UML notation

Diagrams that appear in this standard are presented using the Unified Modeling Language
(UML) static structure diagram, as described in ISO/TS 19103.

1 The Local Topographic Data Store (LTDS) specifies a set of feature types, geometries, attributes, and enumerants, as
well as their individual specifications (e.g., definition, datatype, value range) and consists primarily of topographic
features that are typically extracted and portrayed at 1:50K and 1:100K map/chart scales. See
https://nsgreg.nga.mil/TopographicTerrestrial.jsp for additional information.
2 The U.S. DoD Metadata Registry (MDR) supports the collection, storage and dissemination of structural metadata
information resources (schemas, data elements, attributes, document type definitions, style-sheets, data structures etc.).
This Web-based repository is designed to also act as a Clearinghouse through which industry and government
coordination on metadata technology and related metadata issues can be advanced. The repository is accessible at
https://metadata.ces.mil/mdr/.

OGC 11-064r3

4

Copyright © 2011 Open

Copyright © 2011 Open Geospatial Consortium

5 OWS-8 schema automation overview

5.1 General remarks

This document specifies improvements to the processing of information represented in or
referenced from an application schema in UML to create derived, implementation level
resources. The following sections provide an overview of each target.

5.2 XML Schema documents

The XML Schema documents provide an XML realization of most of the information in
the classifiers in the application schema. Encoding rules exist in GML 3.2 for application
schemas and ISO/TS 19139 for metadata elements. The rules have already been extended
to meet additional requirements.

In OWS-8, extensions focus on supporting the modeling of metadata profiles in UML and
deriving appropriate XML Schema documents and Schematron schemas (see next sub-
clause).

This topic is documented in Clause 6.

5.3 Schematron schema documents

In OWS-7 rules for the conversion of OCL to Schematron have been specified and
implemented in ShapeChange. In OWS-8 this has been extended to cover additional OCL
elements ("let") as well as additional encoding rules (GML 3.3, ISO/TS 19139).

This topic is documented in Clause 6.

5.4 XSLT-Stylesheets

In OWS-7, the KML encoding rule supported only a single KML style per feature type.
In OWS-8 this has been extended to

� derive the styling of a feature in KML based on SLD/SE feature type styles;

� access the feature type styles as well as the kml:Style information from a
portrayal registry

The transformation from GML 3.2/3.3 data to KML 2.2 data is specified as an XSLT-
stylesheet. The resulting KML placemarks directly reference kml:Style provided by the
portrayal registry.

This topic is documented in Clause 7.

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 5

6 XML Schema/Schematron encoding rule improvements

6.1 Metadata profiles

Metadata profiles are defined by means of UML classifiers, which are subtypes of the
ISO 19115 classifiers. The following cases can be distinguished:

� Pure restrictions

In this case the subtype (which may have the same local name as the supertype, but in
the package of the profile schema) is only created to associate constraints with values
of the supertype within the scope of the profile.

Figure 1 - Pure restriction case

Constraints are added as OCL constraints on properties of the supertype. Typical
constraints are:
� Restrictions on the multiplicity of a property, including excluding a property from

the profile, e.g., “property->isEmpty()”
� Restrictions on the domain of an attribute, including replacement of

CharacterString by a code list, e.g., “attribute.oclIsTypeOf(MyCodeList)”
� Excluding code list values, e.g., “attribute <> CodeList::value”

UML/OCL compatibility considerations:

In ISO/TS 19103, code list values are not subtypes of CharacterString, so restricting
the metadata properties that have a value type CharacterString to a code list is not
strictly valid. However, since this is the method foreseen in ISO 19115, there are two
possibilities. Both do not constitute sound solutions to the problem. They are mere
workarounds for problems rooted in inconsistencies of the type definitions of key ISO
standards, but may be justifiable because they are consistent with the rules for
metadata profiles in ISO 19115; however, they will not work with general UML/OCL
tools:

� Explicitly allow constraints as used above in the "pure restriction case", i.e.
"attribute <> CodeList::value" and "attribute.oclIsTypeOf(MyCodeList)"

MD_Class

MD_Class

(from Metadata – Identification Information)

OCL:
•  restricting multiplicities
•  restricting domains (no attributes

displayed)

DQ_Class
(from Metadata – Data Quality)

0..*
quality

All attributes All attributes

<<codeList>>
MyCodeList

Attributes

OGC 11-064r3

6

Copyright © 2011 Open

Copyright © 2011 Open Geospatial Consortium

� Treat code lists as subtypes of CharacterString that limit the valid string values;
i.e. explicitly allow constraints like "attribute <> 'value'" and
"attribute.oclIsTypeOf(MyCodeList)"

Since code list values are more like enumerants than free strings, it was decided to
follow the first of the two approaches in these encoding rule extensions.

The intended comparison operation

attribute<>CodeList::value

is a particularly problematic case, because equality operators such as “<>” and “=” in
OCL are permitted between any objects of any type. The data types of the two
comparands being complete unrelated (CharacterString vs. MyCodeList) the
semantics of OCL would imply that the compared objects are different and the
inequality operation (“<>”) of above expression would result in the constant true.
Not surprisingly, implementing a far-reaching exception to the rules in the
ShapeChange OCL system turned out to be difficult and dissatisfying. When the code
generator translates a token such as the “attribute” operand, is usually does not know
about the requirement that this in this special case is meant to be translated as if it
were a code list of type CodeList.

In order to avoid deterioration of comprehensibility and clarity of the ShapeChange
code is was decided to confine the rule conflict to the OCL type detection and type
casting operations by requesting that in such comparisons as above an explicit type
cast “oclAsType(CodeList)” has to be applied to the CharacterString operand. The
comparison operation must therefore be written as follows:

 attribute.oclAsType(CodeList)<>CodeList::value

Note that this solution is still invalid according to the strict rules of UML/OCL. The
type cast operation above is supposed to deliver a result value of “null”, because the
types are unrelated. The same is, of course, true for constructs employing
“oclIsTypeOf(...)”.

XML encoding considerations:

In “pure restriction” case the subtype is just a container for the constraints and in
general it is not intended to create a new object element for the subtype in the XML
representation.

I.e, the representation in Figure 1 of the blue MD_Class in XML Schema is strictly
not necessary as the Schematron rules encoding the restriction can capture all aspects
of the classifier. However, in some cases it may be desirable to represent classes that
do not add new properties in the XML Schema, too. An example might be that a
community wants to express explicitly through the namespace of the metadata
element that this is according to the profile associated with the namespace. I.e., we
need a mechanism to control the behavior of the conversion. Following the guidance

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 7

for encoding rule extensions planned for inclusion into GML 3.3, a tagged value is
used for this: A tagged value suppress with a value of 'true' attached to such pure
restriction subtypes indicates that in the XML Schema no element, type and property
type is to be created for this classifier.

Note that the use of this tagged value is only valid, if the classifier has a direct or
indirect, non-abstract supertype without this tagged value set to 'true', and no subtype
without this tagged value set to 'true'.

The meaning is that such a classifier does not appear in the XML Schema output
(suppress!) and that any constraints defined for that classifier are being attached to the
supertype.

Concerning the translation of OCL constraints to Schematron, the constraints found in
a suppressed class are translated and then attached to its direct or indirect supertype,
which is not suppressed. In this way you can import constraints into parts of the
schema, which you otherwise cannot alter (such as ISO 19115 objects encoded by
means of ISO/TS 19139).

There are two subtly different ways of thinking how the intended transfer of
restrictions contained in a suppressed class to its superclass is supposed to work.

1. In a strict UML sense, the restricting constraints dwell in the suppressed class
and only apply to instances of this class. In the mapping to XML schema the
suppressed class is mapped to its superclass, which means that the XML
instances of the superclass (and only these) are subject to the defined
restrictions.

2. Another way of thinking is that the suppressed class is just a trick, a Trojan
vehicle, to inject constraints into a class, which is otherwise unavailable to
such an operation. In this case the constraints would be treated as if they were
in reality specified in the superclass, which, of course, means that the
“injected” constraints also apply to derivations of that superclass.

Since no decision about the intended behavior had been reached in the project both
ways were implemented and made controllable via a ShapeChange configuration
option. See section 6.4.1 for this.

Note that there are still some more unsettled questions beyond the strict-UML vs.
Trojan interpretation concerning “suppress”.

What is the intended behavior, when the name of the suppressed class is used in OCL
expressions? This can happen anywhere in the model, for example in a type constant
used in oclIsTypeOf(…) or oclIsKindOf(…) or ….allInstances(). Is this being treated
as if it were the superclass? Or should the strict UML rules apply?

Lacking answers to these questions, the current implementation just rejects class
constants of suppressed classes in OCL expressions and emits appropriate error
messages.

OGC 11-064r3

8

Copyright © 2011 Open

Copyright © 2011 Open Geospatial Consortium

� Pure extensions

In this case the subtype (which again may have the same local name as the supertype,
but in the package of the profile schema) represents an intent to revise the behavior of
the supertype purely by additional properties.

New attributes, roles, and classifiers representing domains of new properties are
added.

Inherited properties are used “as is” without any constraints on them.

Figure 2 - Pure extension case

� Combinations of restrictions and extensions

This case represents a combination of the previous two cases. Additional properties
are added to the subtype in the profile as well as constraints.

Figure 3 – Combined case

To enable a consistent encoding in XML, the encoding rule of the subtype and its sub-
elements as specified in the tagged value xsdEncodingRule shall be the same as in the
supertype. This applies to all types in an application schema.

MD_Class
(from Metadata – Identification Information) DQ_Class

(from Metadata – Data Quality)
0..*

quality
All attributes All attributes

AnotherClass

0..*

friendly
Attributes MD_Class

New attributes

friender

1.*

MD_Class
(from Metadata – Identification Information)

OCL:
•  restricting multiplicities
•  restricting domains

DQ_Class
(from Metadata – Data Quality)

0..*
quality

All attributes All attributes

AnotherClass
0..*
friendly

Attributes MD_Class

New attributes

friender

1.*

<<codeList>>
MyCodeList

Attributes

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 9

6.2 UML profile extensions for code lists and units of measurements

In order to enable constraints on code list values and units of measurements that cannot
be properly encoded using OCL, additional tagged values are specified for these cases.
The tagged values are specified in the following tables.

Table 1 – Tagged values for code list value constraints

Stereotype Model
element

Tagged Value Description

codeList classifier codeList Base URI of the code list

codeListValuePattern Value access pattern for the code list, containing
the substitution points {codeList} and {value},
where {codeList} is the base URI of the code list
(replaced by the tagged value codeList) and
{value} the local identifier of the code list value.

Default: "{codeList}/{value}"

codeListRepresentation MIME type indicating the code list
representation

Valid values are:

"application/gml+xml;version=3.2" for a GML
dictionary (as currently used in the MDR)

"application/rdf+xml" for a SKOS concept
scheme (as created as part of the LTDS RDF
representation)

Default: "application/gml+xml;version=3.2"

OGC 11-064r3

10 Copyright © 2011 Open Geospatial Consortium

Table 2 – Tagged values for unit of measure value constraints

Stereotype Model
element

Tagged Value Description

schema or
application
Schema

Package uomResourceURI Base URI of the units dictionary

Example:
"http://metadata.ces.mil/mdr/ns/GSIP/uom/"

uomResourceValuePattern Access pattern for the unit, containing the
following substitution points:

� {resource}: The base URI of the units
dictionary, to be replaced by the tagged
value uomResourceURI from the schema.

� {quantity}: The quantity type of the unit, to
be replaced with the value of the tagged
value physicalQuantity (or the value
‘noncomparable’) from the property.

� {uom}: The local identifier of the unit in the
units dictionary, to be replaced with the
value of the tagged value
recommendedMeasure or
noncomparableMeasure from the property,
or a valid value from the resource that
represents the physicalQuantity.

Default: "{resource}/{quantity}/{uom}".

uomResourceRepresentation MIME type indicating the units dictionary
representation

Currently, only one value is specified:

"application/gml+xml;version=3.2" for a GML
dictionary (as currently used in the MDR)

Default: "application/gml+xml;version=3.2"

- attribute physicalQuantity Physical quantity of the referenced unit

Example: "length"

recommendedMeasure Unit recommended for use with this property.
The unit must be consistent with the
physicalQuantity value.

Example: "metre"

noncomparableMeasure Valid non-comparable unit.

Example: "flightLevel"

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 11

6.3 XML Schema conversion rule extensions implemented in ShapeChange

6.3.1 Example model

As an example we use the following UML model of a profile:

Figure 4 - Test model for ISO 19115 profiles

OGC 11-064r3

12 Copyright © 2011 Open Geospatial Consortium

6.3.2 Tagged value suppress

A classifier that has the tagged value suppress with a value of 'true' shall not be
represented in the XML Schema, i.e. no object element, no type and no property type is
created for this classifier.

If this classifier is used as a value of a property, the property type of the direct or indirect,
non-abstract supertype without this tagged value set to 'true' shall be used as the property
type of this type.

In Figure 4 the type Type1r (restriction) is 'suppressed' and thus no XML schema
component for this type is defined as part of the profile schema, while the standard XML
schema components are created for Type1e (extension) and Type1c (combination). This
shows the schema components created for Type1c:

 <element name="Type1c" substitutionGroup="b:Type1"
 type="p:Type1c_Type"/>

 <complexType name="Type1c_Type">
 <complexContent>
 <extension base="b:Type1_Type">
 <sequence>
 <element minOccurs="0" name="att5"
 type="gco:Integer_PropertyType"/>
 <element maxOccurs="unbounded" minOccurs="0" name="rel"
 type="p:Type2_PropertyType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="Type1c_PropertyType">
 <sequence minOccurs="0">
 <element ref="p:Type1c"/>
 </sequence>
 <attributeGroup ref="gco:ObjectReference"/>
 <attribute ref="gco:nilReason"/>
 </complexType>

6.3.3 XML Schema encoding of code list properties of features

There are two options how to represent code list values in GML. One is the default GML
3.2 encoding of code list values (gml:CodeType), the other is to already use the new
recommended encoding with GML 3.3 (gml:ReferenceType, i.e., an xlink:href to the
value).

In the ShapeChange implementation the parameter indicating the target GML version
determines the code list encoding rule applied.

For target version "3.2", a feature attribute "att1" that is code-list-valued is converted to

 <element name="att1" type="gml:CodeType"/>

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 13

while for target version "3.3", the same feature attribute is converted to

 <element name="att1" type="gml:ReferenceType"/>

6.3.4 Association classes

The GML 3.3 association class encoding rule has been implemented in ShapeChange.

 Figure 5 – Association class example

The model shown in the figure above is converted in XML Schema to:

 <element name="AssociationClass"
 substitutionGroup="gml:AbstractGML"
 type="t:AssociationClassType"/>

OGC 11-064r3

14 Copyright © 2011 Open Geospatial Consortium

 <complexType name="AssociationClassType">
 <complexContent>
 <extension base="gml:AbstractGMLType">
 <sequence>
 <element name="attc" type="string"/>
 <element name="role" type="t:Test2PropertyType"/>
 <element name="role2" type="t:TestPropertyType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="AssociationClassPropertyType">
 <sequence minOccurs="0">
 <element ref="t:AssociationClass"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>

 <element name="Test" substitutionGroup="gml:AbstractFeature"
 type="t:TestType"/>

 <complexType name="TestType">
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <sequence>
 <element name="att2" type="gml:MeasureType"/>
 <element name="att1" type="gml:ReferenceType"/>
 <element minOccurs="0" name="role"
 type="t:AssociationClassPropertyType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="TestPropertyType">
 <sequence minOccurs="0">
 <element ref="t:Test"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>

 <element name="Test2" substitutionGroup="gml:AbstractFeature"
 type="t:Test2Type"/>

 <complexType name="Test2Type">
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <sequence>
 <element maxOccurs="unbounded" name="role2"
 type="t:AssociationClassPropertyType"/>
 </sequence>

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 15

 </extension>
 </complexContent>
 </complexType>

 <complexType name="Test2PropertyType">
 <sequence minOccurs="0">
 <element ref="t:Test2"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>

6.4 Schematron conversion rule extensions implemented in ShapeChange

6.4.1 Tagged value suppress

As explained in section 6.1 there are two options, which control, how the transfer of OCL
content to the supertype is performed.

You choose one of these options by means of the ShapeChange targetParameter named
suppressedTypeInterpretation by selecting one of the values strictUML or trojanType as
follows:

 <targetParameter	
 name="suppressedTypeInterpretation"	
 value="strictUML"/>	
 	

or

<targetParameter	
 name="suppressedTypeInterpretation"	
 value="trojanType"/>	

Default value is strictUML.

The meaning of the options is as follows:

� strictUML: Using this option only the direct or indirect superclass (which also
must be non-abstract) will receive the Schematron assertions, which are translated
from the OCL constraints.

� trojanType: With this option the Schematron assertions are attached to the non-
suppressed superclass as if the constraints were actually denoted there. This
means that the class itself (if it is concrete) and all concrete derived subclasses
will receive the assertions.

As an example consider the UML model in Figure 4.

All types in the model depicted in Figure 4 are tagged with xsdEncodingRule
iso19139_2007. Class Type1 and derived type Type1Sub are supposed to belong to the
base types in the metadata model.

Type1r is the only class with tagged value suppress=’true’.

Result with suppressedTypeInterpretation=strictUML:

OGC 11-064r3

16 Copyright © 2011 Open Geospatial Consortium

<schema	
 xmlns="http://purl.oclc.org/dsdl/schematron"	

	
 	
 xmlns:sch="http://purl.oclc.org/dsdl/schematron">	

	
 	
 <title>Schematron	
 constraints	
 for	
 schema	
 'Profile'</title>	

	
 	
 <ns	
 prefix="sch"	
 uri="http://purl.oclc.org/dsdl/schematron"/>	

	
 	
 <ns	
 prefix="p"	
 uri="http://www.opengis.net/ows8/test/1"/>	

	
 	
 <ns	
 prefix="b"	
 uri="http://www.opengis.net/ows8/test/3"/>	

	
 	
 <pattern>	

	
 	
 	
 	
 <rule	
 context="b:Type1">	

	
 	
 	
 	
 	
 	
 <let	
 name="A"	
 value="b:att1/*[name()='p:ClassificationCode']"/>	

	
 	
 	
 	
 	
 	
 <assert	
 test="b:att1/*[name()='p:ClassificationCode']">att1IsClassificationCode:	
 att1	
 is	

	
 	
 	
 	
 	
 	
 	
 	
 restricted	
 to	
 ClassificationCode	
 values	
 </assert>	

	
 	
 	
 	
 	
 	
 <assert	

	
 	
 	
 	
 	
 	
 	
 	
 test="concat($A/@codeList,'/',$A/@codeListValue)	
 !=	

'http://metadata.ces.mil/mdr/ns/GSIP/codelist/ClassificationCode/classified'"	

	
 	
 	
 	
 	
 	
 	
 	
 >att1IsNotClassified:	
 att1	
 is	
 not	
 of	
 value	
 classified	
 </assert>	

	
 	
 	
 	
 	
 	
 <assert	
 test="not(b:att3/*)">att3IsEmpty:	
 att3	
 not	
 part	
 of	
 the	
 profile	
 </assert>	

	
 	
 	
 	
 </rule>	

	
 	
 	
 	
 <rule	
 context="p:Type1c">	

	
 	
 	
 	
 	
 	
 <let	
 name="A"	
 value="b:att1/*[name()='p:ClassificationCode']"/>	

	
 	
 	
 	
 	
 	
 <assert	
 test="b:att1/*[name()='p:ClassificationCode']">att1IsClassificationCode:	
 att1	
 is	

	
 	
 	
 	
 	
 	
 	
 	
 restricted	
 to	
 ClassificationCode	
 values	
 </assert>	

	
 	
 	
 	
 	
 	
 <assert	

	
 	
 	
 	
 	
 	
 	
 	
 test="concat($A/@codeList,'/',$A/@codeListValue)	
 !=	

'http://metadata.ces.mil/mdr/ns/GSIP/codelist/ClassificationCode/classified'"	

	
 	
 	
 	
 	
 	
 	
 	
 >att1IsNotClassified:	
 att1	
 is	
 not	
 of	
 value	
 classified	
 </assert>	

	
 	
 	
 	
 	
 	
 <assert	
 test="not(b:att3/*)">att3IsEmpty:	
 att3	
 not	
 part	
 of	
 the	
 profile	
 </assert>	

	
 	
 	
 	
 </rule>	

	
 	
 </pattern>	

</schema>

Note that there is no Schematron rule for the suppressed class Type1r.

Its constraints appear as Schematron assertions for objects of type Type1 (mapped to
element b:Type1) belonging to the base model.

Result with suppressedTypeInterpretation=trojanType:

<schema	
 xmlns="http://purl.oclc.org/dsdl/schematron"	

	
 	
 xmlns:sch="http://purl.oclc.org/dsdl/schematron">	

	
 	
 <title>Schematron	
 constraints	
 for	
 schema	
 'Profile'</title>	

	
 	
 <ns	
 prefix="sch"	
 uri="http://purl.oclc.org/dsdl/schematron"/>	

	
 	
 <ns	
 prefix="p"	
 uri="http://www.opengis.net/ows8/test/1"/>	

	
 	
 <ns	
 prefix="b"	
 uri="http://www.opengis.net/ows8/test/3"/>	

	
 	
 <pattern>	

	
 	
 	
 	
 <rule	
 context="b:Type1">	

	
 	
 	
 	
 	
 	
 <let	
 name="A"	
 value="b:att1/*[name()='p:ClassificationCode']"/>	

	
 	
 	
 	
 	
 	
 <assert	
 test="b:att1/*[name()='p:ClassificationCode']">att1IsClassificationCode:	
 att1	
 is	

	
 	
 	
 	
 	
 	
 	
 	
 restricted	
 to	
 ClassificationCode	
 values	
 </assert>	

	
 	
 	
 	
 	
 	
 <assert	

	
 	
 	
 	
 	
 	
 	
 	
 test="concat($A/@codeList,'/',$A/@codeListValue)	
 !=	

'http://metadata.ces.mil/mdr/ns/GSIP/codelist/ClassificationCode/classified'"	

	
 	
 	
 	
 	
 	
 	
 	
 >att1IsNotClassified:	
 att1	
 is	
 not	
 of	
 value	
 classified	
 </assert>	

	
 	
 	
 	
 	
 	
 <assert	
 test="not(b:att3/*)">att3IsEmpty:	
 att3	
 not	
 part	
 of	
 the	
 profile	
 </assert>	

	
 	
 	
 	
 </rule>	

	
 	
 	
 	
 <rule	
 context="b:Type1Sub">	

	
 	
 	
 	
 	
 	
 <let	
 name="A"	
 value="b:att1/*[name()='p:ClassificationCode']"/>	

	
 	
 	
 	
 	
 	
 <assert	
 test="b:att1/*[name()='p:ClassificationCode']">att1IsClassificationCode:	
 att1	
 is	

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 17

	
 	
 	
 	
 	
 	
 	
 	
 restricted	
 to	
 ClassificationCode	
 values	
 </assert>	

	
 	
 	
 	
 	
 	
 <assert	

	
 	
 	
 	
 	
 	
 	
 	
 test="concat($A/@codeList,'/',$A/@codeListValue)	
 !=	

'http://metadata.ces.mil/mdr/ns/GSIP/codelist/ClassificationCode/classified'"	

	
 	
 	
 	
 	
 	
 	
 	
 >att1IsNotClassified:	
 att1	
 is	
 not	
 of	
 value	
 classified	
 </assert>	

	
 	
 	
 	
 	
 	
 <assert	
 test="not(b:att3/*)">att3IsEmpty:	
 att3	
 not	
 part	
 of	
 the	
 profile	
 </assert>	

	
 	
 	
 	
 </rule>	

	
 	
 	
 	
 <rule	
 context="p:Type1e">	

	
 	
 	
 	
 	
 	
 <let	
 name="A"	
 value="b:att1/*[name()='p:ClassificationCode']"/>	

	
 	
 	
 	
 	
 	
 <assert	
 test="b:att1/*[name()='p:ClassificationCode']">att1IsClassificationCode:	
 att1	
 is	

	
 	
 	
 	
 	
 	
 	
 	
 restricted	
 to	
 ClassificationCode	
 values	
 </assert>	

	
 	
 	
 	
 	
 	
 <assert	

	
 	
 	
 	
 	
 	
 	
 	
 test="concat($A/@codeList,'/',$A/@codeListValue)	
 !=	

'http://metadata.ces.mil/mdr/ns/GSIP/codelist/ClassificationCode/classified'"	

	
 	
 	
 	
 	
 	
 	
 	
 >att1IsNotClassified:	
 att1	
 is	
 not	
 of	
 value	
 classified	
 </assert>	

	
 	
 	
 	
 	
 	
 <assert	
 test="not(b:att3/*)">att3IsEmpty:	
 att3	
 not	
 part	
 of	
 the	
 profile	
 </assert>	

	
 	
 	
 	
 </rule>	

	
 	
 	
 	
 <rule	
 context="p:Type1c">	

	
 	
 	
 	
 	
 	
 <let	
 name="A"	
 value="b:att1/*[name()='p:ClassificationCode']"/>	

	
 	
 	
 	
 	
 	
 <assert	
 test="b:att1/*[name()='p:ClassificationCode']">att1IsClassificationCode:	
 att1	
 is	

	
 	
 	
 	
 	
 	
 	
 	
 restricted	
 to	
 ClassificationCode	
 values	
 </assert>	

	
 	
 	
 	
 	
 	
 <assert	

	
 	
 	
 	
 	
 	
 	
 	
 test="concat($A/@codeList,'/',$A/@codeListValue)	
 !=	

'http://metadata.ces.mil/mdr/ns/GSIP/codelist/ClassificationCode/classified'"	

	
 	
 	
 	
 	
 	
 	
 	
 >att1IsNotClassified:	
 att1	
 is	
 not	
 of	
 value	
 classified	
 </assert>	

	
 	
 	
 	
 	
 	
 <assert	
 test="not(b:att3/*)">att3IsEmpty:	
 att3	
 not	
 part	
 of	
 the	
 profile	
 </assert>	

	
 	
 	
 	
 </rule>	

	
 	
 </pattern>	

</schema>

In this case all classes deriving from Type1 obtain the constraints specified in Type1r,
which is, of course, excluded, because it is suppressed. The effect is the same as if the
constraints were indeed specified in the class Type1 itself.

Note that also Type1e and Type1c receive the constraints by way of inheritance.
However, those in Type1c are overwritten with ones of identical names defined in the
class itself.

6.4.2 Schematron encoding of OCL constraints in metadata profiles

For those parts of the UML model, which represent metadata, the encoding rules of
ISO/TS 19139 apply (indicated by a tagged value xsdEncodingRule with a value of
'iso19139_2007'). These encoding rules are similar to the GML encoding rules, but
different in some details. If metadata properties are addressed in OCL constraints, these
different encoding rules have to be taken into account.

The following kinds of properties have to be encoded differently in Xpath expressions:

� Properties where the value is simple

When translating OCL syntax according to the GML encoding rules, properties
carrying simple types are mapped to an XPath expression ending in the name of the
property. However, simple type properties encoded according to ISO/TS 19139
embed an additional element, which encodes the property type. This additional

OGC 11-064r3

18 Copyright © 2011 Open Geospatial Consortium

element has to be accounted for, which is done by appending an additional /* to the
property name path as in:

metadatastring/*

� Properties where the value is a code list or enumeration

Code lists and enumerations in GML (now disregarding the changes concerning code
lists which are being made for GML 3.3) are translated like simple types, effectively
they are translated as if they were character strings. In ISO/TS 19139 this is also the
case for enumerations. However, the encoding of code lists is different. The values of
code lists are carried on an attribute named codeListValue, which resides on an
embedded element substituted for the element <CodeListValue>. So, ISO/TS 19139
code list properties have to be translated by appending /*/@codeListValue to the
property name path, such as:

metadatacodelist/*/@codeListValue

� Properties with nil values

Nil valued properties in GML encoding carry the xsi:nil attribute and, optionally, also
the nilReason attribute. The access to the reason value is therefore translated to the
property path with an additional phrase [@xsi:nil='true']/@nilReason appended. In
ISO/TS 19139 encoding xsi:nil is not employed. Instead of that the content of the
property is omitted and the property carries a gco:nilReason attribute. Therefore, for
ISO/TS 19139 access to the reason value must be translated to the property path
extended by an additional phrase [not(*)]/@gco:nilReason:

metadataproperty[not(*)]/@gco:nilReason

6.4.3 Schematron encoding of OCL constraints on code lists in GML 3.3

When using the GML 3.3 target conventions, code-list-typed properties used in OCL
comparison operations are translated under the influence of several tagged values, which
are attached to the code list class.

The following tagged values apply (see Table 1):

� codeList (mandatory)
� codeListValuePattern (optional, default is: "{codeList}/{value}")

An OCL comparison involving a code list property, such as

codelistproperty <> CodeListClass::codelistvalue

is translated as follows:

The property part codelistproperty is translated to the value of the xlink:href attribute:

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 19

codelistproperty/@xlink:href

The code list constant CodeListClass::codelistvalue is translated to the substituted
codeListValuePattern (see table above). The tagged value for codeList is substituted for
{codeList} and the code list value (“codelistvalue”) is inserted for {value}.

If the codeList tag on the class CodeListClass has the value http://server/CodeListClass,
we get

http://server/CodeListClass/codelistvalue

for the XPath equivalent of the code list constant.

So in the end the comparison will result in:

codelistproperty/@xlink:href != 'http://server/CodeListClass/codelistvalue'

6.4.4 Support for OCL "let ... in"

The OCL construct

let variable : type = expression, … in expression-using-variable(s)

permits to define and initialize variables and subsequently make use of these in an
embedded expression. The idea of let is a short-hand notation for expressions, which
contain more than one occurrences of a sub-expression. More than one variable can be
defined and initialized in one let expression. The type (including the preceding colon (:)
can be omitted. In this case the type is derived from the initializing expression.

Translating let expressions in the OCL-to-Schematron context had not been done in
OWS-7, because it was not deemed a necessary construct. Everything, which can
possibly be expressed using a let, can also be expressed without. However, the use of
OCL constraints sometimes produces quite lengthy constraints, the readability of which
benefits a lot from providing let.

Therefore the following approach (originally described in the OWS-7 Schema
Automation ER) has been implemented:

� let expressions at the outmost level of expressions are translated to the Schematon
<let> element. The <let> element definitions are evaluated by Schematron for each
object in the <rule> context, the <let> is residing in. Therefore only those parts of the
OCL expression, which translate in the context of current() may be treated in this
way.

� let expressions in deeper nesting levels, where the variable initialization explicitly or
implicitly refers to bound variables of iterators, require substitution of the translated
expression in all places, where the defined variable is used.

OGC 11-064r3

20 Copyright © 2011 Open Geospatial Consortium

The implementation of let is quite general. The let construct can be written anywhere in
an OCL expression, where an arbitrary OCL sub-expression is permitted. Exceptions to
this rule are those places in the syntax, which in the present implementation already had
to endure restrictions on OCL expression syntax due to the limitations of XPath 1. A
prominent example for such a restriction: The body of the unique() iterator. In these
places still only the restricted syntax is admissible and neither let nor a let-defined
variable can be employed.

A small example will illustrate the translation of the “let … in” construct:

Figure 6 - Model for testing "let"

Class LetTest contains the following constraints:

/*	
 att1	
 must	
 be	
 greater	
 0	
 and	
 less	
 than	
 the	
 cardinality	
 of	
 att2.	
 */	
 	

inv	
 att1PositiveAndLtSizeOfAtt2:	
 let	
 u=att1,	
 v=att2	
 in	
 u-­‐>notEmpty()	
 implies	
 0	
 <	
 u	
 and	
 u	
 <	
 v-­‐>size()	

	

/*	
 att2	
 contains	
 att1	
 and	
 is	
 unique.	
 */	

inv	
 att2ContainsAtt1AndIsUnique:	
 let	
 x=att1,y=att2	
 in	
 x-­‐>notEmpty()	
 implies	
 y-­‐>exists(z|z=x)	
 and	
 y-­‐>isUnique(z|z)	

	

/*	
 att1	
 must	
 be	
 different	
 from	
 associated	
 attx.*/	

inv	
 att1DifferentFromAttx:	
 let	
 a=att1,	
 b=att3.attx	
 in	
 a-­‐>notEmpty()	
 and	
 b-­‐>notEmpty()	
 implies	
 a<>b	

	

/*	
 There	
 need	
 to	
 exist	
 LetTest1	
 objects,	
 which	
 numerically	
 relate	
 to	
 the	
 current	
 object.*/	

inv	
 existLetTest1NumRelate:	
 let	
 a=att1	
 in	
 LetTest1.allInstances()-­‐>exists(
 x	
 |	
 let	
 b=x.attx	
 in	
 0<=b	
 and	
 b<2*a	
)	

The generated Schematron code for these two classes and the four constraints above are
as follows:

<schema	
 xmlns="http://purl.oclc.org/dsdl/schematron"	

	
 	
 xmlns:sch="http://purl.oclc.org/dsdl/schematron">	

	
 	
 <title>Schematron	
 constraints	
 for	
 schema	
 'Test'</title>	

	
 	
 <ns	
 prefix="sch"	
 uri="http://purl.oclc.org/dsdl/schematron"/>	

	
 	
 <ns	
 prefix="t"	
 uri="http://www.opengis.net/ows8/test/2"/>	

	
 	
 <pattern>	

	
 	
 	
 	
 <rule	
 context="t:LetTest">	

	
 	
 	
 	
 	
 	
 <let	
 name="A"	
 value="t:att1"/>	

	
 	
 	
 	
 	
 	
 <let	
 name="B"	
 value="t:att3/*/t:attx"/>	

	
 	
 	
 	
 	
 	
 <let	
 name="C"	
 value="t:att2"/>	

	
 	
 	
 	
 	
 	
 <assert	
 test="not($A)	
 or	
 not($B)	
 or	
 $A	
 !=	
 $B">att1DifferentFromAttx:	
 att1	
 must	
 be	
 different	

	
 	
 	
 	
 	
 	
 	
 	
 from	
 associated	
 attx.</assert>	

	
 	
 	
 	
 	
 	
 <assert	
 test="not($A)	
 or	
 0	
 <	
 $A	
 and	
 $A	
 <	
 count($C)">att1PositiveAndLtSizeOfAtt2:	

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 21

	
 	
 	
 	
 	
 	
 	
 	
 att1	
 must	
 be	
 greater	
 0	
 and	
 less	
 than	
 the	
 cardinality	
 of	
 att2.	
 </assert>	

	
 	
 	
 	
 	
 	
 <assert	

	
 	
 	
 	
 	
 	
 	
 	
 test="not($A)	
 or	
 $C[.	
 =	
 $A]	
 and	
 not($C[.	
 =	
 (preceding::*|ancestor::*)[count(.|$C)=count($C)]])"	

	
 	
 	
 	
 	
 	
 	
 	
 >att2ContainsAtt1AndIsUnique:	
 att2	
 contains	
 att1	
 and	
 is	
 unique.	
 </assert>	

	
 	
 	
 	
 	
 	
 <assert	
 test="(//t:LetTest1)[0	
 <=	
 t:attx	
 and	
 t:attx	
 <	
 2	
 *	
 $A]"	

	
 	
 	
 	
 	
 	
 	
 	
 >existLetTest1NumRelate:	
 There	
 need	
 to	
 exist	
 LetTest1	
 objects,	
 which	
 numerically	
 relate	
 to	

	
 	
 	
 	
 	
 	
 	
 	
 the	
 current	
 object.</assert>	

	
 	
 	
 	
 </rule>	

	
 	
 </pattern>	

</schema>	

let variable names are generally not preserved. They cannot be preserved because even in
one single OCL constraint the same variable name can be employed in distinct let … in
usages, each spanning a different scope.

The implementation collects all Schematron assertions for one feature type in one single
Schematron rule (see 6.4.5 for an explanation of this behavior). When doing this, all
generated <let> variable names and values are kept track of, identifying identical
expressions.

Uses of let … in referring to variables bound to iterators cannot be translated to <let>
elements, because <let> elements are executed in the context of current(), which stands
for the object, generally the feature type treated by a Schematron rule. The last one of the
examples shows this. Here x.attx	
 	
 needs to be substituted for each occurrence of b.

If let… were to be translated for a Schematron environment with XPath 2 support, it
would be possible to avoid substitution of let variables defined in deeper nesting levels.
Though XPath 2 still does not provide for a direct equivalent of an assignment, the XPath
2 for expression might be utilized to provide a similar effect.

6.4.5 Schematron document structure improvements

Experience from other project work (outside of the OWS initiatives) had shown that the
nesting of the Schematron elements <pattern>, <rule> and <assert> had not been done in
an optimal way in OWS-7. In response to this insight the change described in this section
had been established. The change is therefore not part of the OWS-8 activity, but has
been contributed additionally and in-kind. It is described here, because it constitutes a
rather large and visible intervention into the formerly known ShapeChange program
behavior.

In OWS-7 a generated Schematron schema consisted of one (big) <pattern> element,
which contained one <rule> for each translated OCL constraint. Consequently each
<rule> element contained exactly one <assert>, which carried the result of the translation
of the OCL constraint.

The following Schematron schema snippet from OWS-7 testing material exemplifies this
kind of structure.

OGC 11-064r3

22 Copyright © 2011 Open Geospatial Consortium

 <pattern>	

	
 	
 	
 	
 <rule	
 context="nas:AircraftHangar">	

	
 	
 	
 	
 	
 	
 <assert	
 test="nas:address/*">AddressReq:	
 Building</assert>	

	
 	
 	
 	
 </rule>	

	
 	
 	
 	
 <rule	
 context="nas:AircraftHangar">	

	
 	
 	
 	
 	
 	
 <assert	

	
 	
 	
 	
 	
 	
 	
 	
 test="not(nas:featureFunction/*/nas:valuesOrReason)	
 or	
 not((nas:featureFunction/*/nas:valuesOrReason)[.	
 !=	

'aircraftRepair'	
 and	
 .	
 !=	
 'airTransport'	
 and	
 .	
 !=	
 'cargoHandling'	
 and	
 .	
 !=	
 'diningHall'	
 and	
 .	
 !=	
 'dormitory'	
 and	
 .	
 !=	

'emergencyOperations'	
 and	
 .	
 !=	
 'emergencyShelter'	
 and	
 .	
 !=	
 'meetingPlace'	
 and	
 .	
 !=	
 'outPatientCare'	
 and	
 .	
 !=	

'warehousingStorage'])	
 "	

	
 	
 	
 	
 	
 	
 	
 	
 >FeatureFunction:	
 AircraftHangar</assert>	

	
 	
 	
 	
 </rule>	

	
 	
 	
 	
 <rule	
 context="nas:AircraftHangar">	

	
 	
 	
 	
 	
 	
 <assert	
 	

	
 	
 	
 	
 	
 	
 	
 	
 test="not(nas:verticalConstMaterial/*/nas:valuesOrReason)	
 or	

not((nas:verticalConstMaterial/*/nas:valuesOrReason)[.	
 !=	
 'adobeBrick'	
 and	
 .	
 !=	
 'brick'	
 and	
 .	
 !=	
 'concrete'	
 and	
 .	
 !=	

'masonry'	
 and	
 .	
 !=	
 'metal'	
 and	
 .	
 !=	
 'prestressedConcrete'	
 and	
 .	
 !=	
 'reinforcedConcrete'	
 and	
 .	
 !=	
 'steel'	
 and	
 .	
 !=	
 'wood'])	
 "	

	
 	
 	
 	
 	
 	
 	
 	
 >VertConstMaterial:	
 AircraftHangar</assert>	

	
 	
 	
 	
 </rule>	
 	

	
 	
 	
 	
 <rule	
 context="nas:AircraftHangar">	

	
 	
 	
 	
 	
 	
 <assert	
 test="nas:verticalConstMaterial/*">VertConstMaterialReq:	
 AircraftHangar</assert>	

	
 	
 	
 	
 </rule>	

	
 	
 	
 	
 ….	

	
 	
 </pattern>

As it turned out this simple structure is not optimal, because the rules of Schematron
demand that the <rule>s belonging to one <pattern> are treated in an “if … then … else if
… else if …” fashion.

In the Schematron standard you find the statements:

6.5 Order and side-effects
…
The only elements for which order is significant are the rule and let elements.
A rule element acts as an if-then-else statement within each pattern. An implementation may
make order non-significant by converting rules context expressions to elaborated rule context
expressions3.

This means that in executing a <pattern> on a single element instance, the instance
bubbles down the <rule>s of the <pattern>, until it finds a match on the context. The
<assert>s in this <rule> are executed and the rest of the remaining <rule>s are discarded.

In the way <pattern>s were structured in OWS-7, this means that for one particular
feature type (nas:AircraftHangar in the example), only the first <rule> would apply,
which is quite unfortunate.

Therefore, the Schematron <pattern> structure has been changed and has been made
available to OWS-8. In the new structure there is only one <rule> for each feature type

3 An elaborated rule context expression is one, which does not match any of the context expressions in other rules. The
“if then else if” logic does not apply to such elaborated contexts because the all match something different.

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 23

and all <assert>s (corresponding to the OCL constraints) belonging to that feature type
are now gathered in one <rule>.

The following Schematron snippet shows the difference:

	
 	
 <pattern>	

	
 	
 	
 	
 <rule	
 context="nas:AircraftHangar">	

	
 	
 	
 	
 	
 	
 <assert	
 test="nas:address/*">AddressReq:	
 Building</assert>	

	
 	
 	
 	
 	
 	
 <assert	

	
 	
 	
 	
 	
 	
 	
 	
 test="not(nas:featureFunction/*/nas:valuesOrReason)	
 or	
 not((nas:featureFunction/*/nas:valuesOrReason)[.	
 !=	

'aircraftRepair'	
 and	
 .	
 !=	
 'airTransport'	
 and	
 .	
 !=	
 'cargoHandling'	
 and	
 .	
 !=	
 'diningHall'	
 and	
 .	
 !=	
 'dormitory'	
 and	
 .	
 !=	

'emergencyOperations'	
 and	
 .	
 !=	
 'emergencyShelter'	
 and	
 .	
 !=	
 'meetingPlace'	
 and	
 .	
 !=	
 'outPatientCare'	
 and	
 .	
 !=	

'warehousingStorage'])	
 "	

	
 	
 	
 	
 	
 	
 	
 	
 >FeatureFunction:	
 AircraftHangar</assert>	

	
 	
 	
 	
 	
 	
 <assert	
 	

	
 	
 	
 	
 	
 	
 	
 	
 test="not(nas:verticalConstMaterial/*/nas:valuesOrReason)	
 or	

not((nas:verticalConstMaterial/*/nas:valuesOrReason)[.	
 !=	
 'adobeBrick'	
 and	
 .	
 !=	
 'brick'	
 and	
 .	
 !=	
 'concrete'	
 and	
 .	
 !=	

'masonry'	
 and	
 .	
 !=	
 'metal'	
 and	
 .	
 !=	
 'prestressedConcrete'	
 and	
 .	
 !=	
 'reinforcedConcrete'	
 and	
 .	
 !=	
 'steel'	
 and	
 .	
 !=	
 'wood'])"	

	
 	
 	
 	
 	
 	
 	
 	
 >VertConstMaterial:	
 AircraftHangar</assert>	

	
 	
 	
 	
 	
 	
 <assert	
 test="nas:verticalConstMaterial/*">VertConstMaterialReq:	
 AircraftHangar</assert>	

	
 	
 	
 	
 </rule>	

	
 	
 	
 	
 ….	

	
 	
 </pattern>	

In the new document structure all Schematron assertions derived from OCL constraints
for one feature type are applied to each feature instance. This is in contrast to the former
behavior where only the first rule in the pattern was effective.

6.4.6 Additional assertions on code list values and constraints

6.4.6.1 Target encoding: GML 3.3

If the code list classifier has a tagged value codeList ({codeList}) then the following
assertion is added to the Schematron schema in the context of the property:

starts-with(./@xlink:href,{codeList})

To test the existence of the code list value the following assertion is added to the
Schematron schema in the context of the property:

(not contains(@xlink:href, '#') and document(./@xlink:href)) or

(contains(@xlink:href, '#') and document(substring-
before(./@xlink:href,'#'))/id(substring-after(./@xlink:href,'#')))

In addition, we can assert that the remote resource has the correct element based on its
representation.

For "application/gml+xml;version=3.2" (the default) we expect a gml:Definition:

(not contains(@xlink:href, '#') and document(./@xlink:href)/gml:Definition) or

OGC 11-064r3

24 Copyright © 2011 Open Geospatial Consortium

(contains(@xlink:href, '#') and document(substring-
before(./@xlink:href,'#'))/id(substring-after(./@xlink:href,'#'))[local-
name()='Definiton' and namespace-uri()='http://www.opengis.net/gml/3.2'])

For "application/rdf+xml" we expect a skos:Concept (see the OWS-8 Semantic
Mediation ER):

(not contains(@xlink:href, '#') and document(./@xlink:href)/skos:Concept) or

(contains(@xlink:href, '#') and document(substring-
before(./@xlink:href,'#'))/id(substring-after(./@xlink:href,'#'))[local-
name()='Concept' and namespace-uri()='http://www.w3.org/2004/02/skos/core#'])

For example, for the property Test.att1 shown in Figure 5 the following Schematron
assertions are created:

 <rule context="t:Test">
 <assert test="starts-
with(t:att1/@xlink:href,'http://metadata.ces.mil/mdr/ns/GSIP/code
list/ClassificationCode')">Code list value URI starts with
'http://metadata.ces.mil/mdr/ns/GSIP/codelist/ClassificationCode'
</assert>
 <assert test="(not contains(t:att1/@xlink:href, '#') and
document(t:att1/@xlink:href)) or (contains(t:att1/@xlink:href,
'#') and document(substring-
before(t:att1/@xlink:href,'#'))/id(substring-
after(t:att1/@xlink:href,'#')))">Code list value exists</assert>
 <assert test="(not contains(t:att1/@xlink:href, '#') and
document(t:att1/@xlink:href)/gml:Definition) or
(contains(t:att1/@xlink:href, '#') and document(substring-
before(t:att1/@xlink:href,'#'))/id(substring-
after(t:att1/@xlink:href,'#'))[local-name()='Definiton' and
namespace-uri()='http://www.opengis.net/gml/3.2'])">Code list
dictionary is represented using GML 3.2</assert>
 </rule>

6.4.6.2 Target encoding: GML 3.2

For GML 3.2, the expressions are different as the code list information is split into the
codeSpace attribute and the text node.

To verify the codeSpace attribute, the following assertion is added to the Schematron
schema in the context of the property, if the tagged value {codeList} has been provided:

@codeSpace={codeList}

To test the existence of the code list value the following assertion is added to the
Schematron schema in the context of the property. In {codeListValuePattern} we replace
"{codeList}" by {codeList} and "{value}" by "*":

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 25

(not contains('{codeListValuePattern}', '#') and document('{codeListValuePattern}'))
or (contains('{codeListValuePattern}', '#') and document(substring-
before('{codeListValuePattern}','#'))/id(substring-after('{codeListValuePattern}','#')))

In addition, we can assert that the remote resource has the correct element based on its
representation.

For "application/gml+xml;version=3.2" (the default) we expect a gml:Definition:

(not contains('{codeListValuePattern}', '#') and document('{codeListValuePattern}')
/gml:Definition) or (contains('{codeListValuePattern}', '#') and document(substring-
before('{codeListValuePattern}','#'))/id(substring-after('{codeListValuePattern}','#'))
[local-name()='Definiton' and namespace-uri()='http://www.opengis.net/gml/3.2'])

For "application/rdf+xml" we expect a skos:Concept (see the OWS-8 Semantic
Mediation ER):

(not contains('{codeListValuePattern}', '#') and document('{codeListValuePattern}')
/skos:Concept) or (contains('{codeListValuePattern}', '#') and document(substring-
before('{codeListValuePattern}','#'))/id(substring-after('{codeListValuePattern}','#'))
[local-name()='Concept' and namespace-uri()='
http://www.w3.org/2004/02/skos/core#'])

6.4.6.3 Target encding: ISO/TS 19139

The Schematron assertions for code list values in properties encoded according to ISO/TS
19139 is similar to the GML 3.2 encoding. The differences are described in 6.4.2.

To verify the codeSpace attribute, the following assertion is added to the Schematron
schema in the context of the property, if the tagged value {codeList} has been provided:

*/@codeList={codeList}

To test the existence of the code list value the following assertion is added to the
Schematron schema in the context of the property. In {codeListValuePattern} we replace
"{codeList}" by {codeList} and "{value}" by "*/@codeListValue":

(not contains('{codeListValuePattern}', '#') and document('{codeListValuePattern}'))
or (contains('{codeListValuePattern}', '#') and document(substring-
before('{codeListValuePattern}','#'))/id(substring-after('{codeListValuePattern}','#')))

In addition, we can assert that the remote resource has the correct element based on its
representation.

For "application/gml+xml;version=3.2" (the default) we expect a gml:Definition:

(not contains('{codeListValuePattern}', '#') and document('{codeListValuePattern}')
/gml:Definition) or (contains('{codeListValuePattern}', '#') and document(substring-

OGC 11-064r3

26 Copyright © 2011 Open Geospatial Consortium

before('{codeListValuePattern}','#'))/id(substring-after('{codeListValuePattern}','#'))
[local-name()='Definiton' and namespace-uri()='http://www.opengis.net/gml/3.2'])

For "application/rdf+xml" we expect a skos:Concept (see the OWS-8 Semantic
Mediation ER):

(not contains('{codeListValuePattern}', '#') and document('{codeListValuePattern}')
/skos:Concept) or (contains('{codeListValuePattern}', '#') and document(substring-
before('{codeListValuePattern}','#'))/id(substring-after('{codeListValuePattern}','#'))
[local-name()='Concept' and namespace-uri()='
http://www.w3.org/2004/02/skos/core#'])

6.4.7 Additional assertions on units of measure references

If the schema package has the tagged value uomResourceURI ({uomResourceURI}) and
an attribute has the tagged values

Case 1: physicalQuantity ({physicalQuantity}) and recommendedMeasure
({recommendedMeasure}), or

Case 2: noncomparableMeasure ({noncomparableMeasure})

then the following assertion is added to the Schematron schema in the context of the
property.

NOTE All assertions assume the default values for the tagged values
uomResourceValuePattern and uomResourceRepresentation listed in Table 2. If these
differ, the assertions have to be adapted accordingly.

Case 1: @uom='{uomResourceURI}/{physicalQuantity}/{recommendedMeasure}'

Case 2: @uom='{uomResourceURI}/noncomparable/{noncomparableMeasure}

To test the existence of the unit the following assertion is added to the Schematron
schema in the context of the property:

Case 1/2: document(@uom)

In addition, we can assert that the remote resource has the correct element based on its
representation. I.e., for a GML representation we expect a gml:BaseUnit, gml:Derived or
gml:ConventionalUnit:

Case 1/2: $A/gml:BaseUnit|$A/gml:Derived|$A/gml:ConventionalUnit with a let
expression to set $A=document(@uom)

6.5 Conclusions from testing the improvements

The planned improvements have been specified, implemented and tested.

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 27

In implementation, the decision in ISO 19115 to allow that free text values can be
constrained in profiles to values from a code list and break UML created issues in the
implementation as ISO-19115-specific code had to be added to the underlying OCL
parser. From an implementation perspective it would be important to conform to UML.
However, this would require a change in ISO 19115.

7 KML encoding rule improvements

7.1 KML encoding support for different styles per feature type

7.1.1 Overview

The OWS-7 KML encoding rule does not support different styles per feature type. It is
required a more refined mechanism to distinguish for example different building
symbology based on building functions or conditions. This shortcoming is addressed by
the approach described in the following sub-clauses.

7.1.2 Changes to the ShapeChange configuration

The URL of the portrayal rule set in the portrayal registry for the feature type styles of
the application schema is passed to ShapeChange as a parameter in the configuration file.

<targetParameter name="portrayalRuleSetUri" value="<URI of the rule
set>"/>

Example:

<targetParameter name="portrayalRuleSetUri" value="http://ows8-
cci.carmenta.com/prs/processingservice?request=GetRules&RuleSet=10001&e
ncoding=unresolved-SE"/>

7.1.3 Changes to the encoding rule implemented by ShapeChange

In OWS-7, a tagged value was the only way to determine the reference to a kml:Style or
kml:StyleMap element. To support instance-specific styling, ShapeChange now supports
access to a portrayal rule set in the portrayal registry using the URL in the
portrayalRuleSetUri configuration parameter to retrieve the portrayal rules for the
relevant feature types and convert the rules to XSLT elements that determine the
kml:Style or kml:StyleMap URL for each instance of the feature type. The kml:Style and
kml:StyleMap URLs are provided by the portrayal registry. For additional details see the
OWS-8 Portrayal Registry Engineering Report (11-062).

As a result, the same portrayal rules are in principle used by WMS/SLD implementations
as well as the KML implementation.

The words "in principle" are used here as changes to the standard Symbology Encoding
1.1 schema are required for this. Symbology Encoding currently requires that for each
portrayal rule (se:Rule) the symbolisers (se:Symbolizer) are embedded inline. Since the
portrayal registry should also centrally host the symboliser information for KML
placemarks (kml:Style), the Symbology Encoding schema was amended to allow the de-

OGC 11-064r3

28 Copyright © 2011 Open Geospatial Consortium

coupling of se:Rule and se:Symbolizer elements. In the schema amended by OWS-8,
instead of the 1..n se:Symbolizer elements also a se:OnlineResource element is allowed,
referencing a sequence of se:Symbolizer elements or a KML document with a kml:Style
element based on the symbolisers.

Example:

A portrayal rule for tds:BuildingGeopoint features in the rule set used in OWS-8 is

<se:Rule>
<ogc:Filter xmlns:tds="http://metadata.dod.mil/mdr/ns/GSIP/3.0/tds/3
.0" xmlns:ogc="http://www.opengis.net/ogc">

<ogc:And>
<ogc:Or>

<ogc:PropertyIsEqualTo>
<ogc:PropertyName>tds:featureFunction-
1</ogc:PropertyName>
<ogc:Literal>inPatientCare</ogc:Literal>

</ogc:PropertyIsEqualTo>
<ogc:PropertyIsEqualTo>

<ogc:PropertyName>tds:featureFunction-
1</ogc:PropertyName>
<ogc:Literal>urgentMedicalCare</ogc:Literal>

</ogc:PropertyIsEqualTo>
</ogc:Or>
<ogc:PropertyIsLessThan>

<ogc:PropertyName>tds:heightAboveSurfaceLevel</ogc:Propert
yName>
<ogc:Literal>46</ogc:Literal>

</ogc:PropertyIsLessThan>
</ogc:And>

</ogc:Filter>
<se:PointSymbolizer xmlns:se="http://www.opengis.net/se">

<se:Graphic>
<se:ExternalGraphic>

<se:OnlineResource xmlns:xlink="http://www.w3.org/1999/xli
nk" xlink:type="simple" xlink:href="http://ows8-
cci.carmenta.com/symbols/hospital.svg"/>
<se:Format>image/svg+xml</se:Format>

</se:ExternalGraphic>
</se:Graphic>

</se:PointSymbolizer>
</se:Rule>

This is the representation using the unamended Symbology Encoding schema. The
amended representation is as follows:

<se:Rule>
<ogc:Filter xmlns:tds="http://metadata.dod.mil/mdr/ns/GSIP/3.0/tds/3
.0" xmlns:ogc="http://www.opengis.net/ogc">

<ogc:And>
<ogc:Or>

<ogc:PropertyIsEqualTo>
<ogc:PropertyName>tds:featureFunction-
1</ogc:PropertyName>
<ogc:Literal>inPatientCare</ogc:Literal>

</ogc:PropertyIsEqualTo>

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 29

<ogc:PropertyIsEqualTo>
<ogc:PropertyName>tds:featureFunction-
1</ogc:PropertyName>
<ogc:Literal>urgentMedicalCare</ogc:Literal>

</ogc:PropertyIsEqualTo>
</ogc:Or>
<ogc:PropertyIsLessThan>

<ogc:PropertyName>tds:heightAboveSurfaceLevel</ogc:Propert
yName>
<ogc:Literal>46</ogc:Literal>

</ogc:PropertyIsLessThan>
</ogc:And>

</ogc:Filter>
<se:OnlineResource xlink:type="simple" xlink:href="http://ows8-
cci.carmenta.com/ProcessingService/ProcessingService.axd?request=Get
Symbols&Symbol=219"/>

</se:Rule>

where the referenced symbol is

<SymbolizerList xmlns:sld="http://www.opengis.net/sld" xmlns="http://ww
w.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"xmlns:se="http
://www.opengis.net/se" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" symbolId="219"xsi:schemaLocation="http://schemas.opengis.net/
sld/1.1/StyledLayerDescriptor.xsd">

<se:PointSymbolizer xmlns:se="http://www.opengis.net/se">
<se:Graphic>

<se:ExternalGraphic>
<se:OnlineResource xmlns:xlink="http://www.w3.org/1999/xli
nk" xlink:type="simple" xlink:href="http://ows8-
cci.carmenta.com/symbols/hospital.svg"/>
<se:Format>image/svg+xml</se:Format>

</se:ExternalGraphic>
</se:Graphic>

</se:PointSymbolizer>
</SymbolizerList>

sld:SymbolizerList is not a standard SLD element, but another schema amendment of the
OWS-8 portrayal registry.

To request the KML representation from the portrayal registry processing service, a
parameter "encoding=application/vnd.google-earth.kml+xml" has to be appended to
URL. I.e.,

http://ows8-
cci.carmenta.com/ProcessingService/ProcessingService.axd?request=GetSymbols&Symb
ol=219&encoding=application/vnd.google-earth.kml+xml

returns

<kml
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.opengis.net/kml/2.2">
<Document>

OGC 11-064r3

30 Copyright © 2011 Open Geospatial Consortium

<Style id="219">
<IconStyle>

<color>FFFFFFFF</color>
<colorMode>normal</colorMode>
<scale>1</scale>
<heading>0</heading>
<Icon>

<href>http://ows8-
cci.carmenta.com/symbols/hospital.svg</href>

</Icon>
</IconStyle>

</Style>
</Document>
</kml>

When the XSLT template for a feature type is created, all portrayal rules for that feature
type in the rule set are collected and processed in reverse order (the order of rules in the
rule set follows the painters model, i.e. later rules are applied/drawn on top of the earlier
rules). After the kml:visibility element, XSLT elements are inserted to select the
appropriate kml:Style reference. For this, the Filter is converted into an Xpath expression.
The current implementation supports filter expressions that use the logical operators and
the binary comparison operators (comparison of feature properties with literal values).

Example:

For the tds:BuildingGeopoint features, the resulting XSLT elements are as follows (the
sample rule shown in the previous example is highlighted in blue):

<choose xmlns="http://www.w3.org/1999/XSL/Transform">
<when test="tds:heightAboveSurfaceLevel >= 46">

<styleUrl xmlns="http://www.opengis.net/kml/2.2">http://ows8-
cci.carmenta.com/ProcessingService/ProcessingService.axd?request=
GetSymbols%26Symbol=211%26Encoding=application/vnd.google-
earth.kml+xml#211</styleUrl>

</when>
<when test=" ((tds:featureFunction-1 = 'education' or
tds:featureFunction-1 = 'primaryEducation' or tds:featureFunction-1
= 'secondaryEducation' or tds:featureFunction-1 = 'higherEducation'
or tds:featureFunction-1 = 'vocationalEducation' or
tds:featureFunction-1 = 'institution') and
tds:heightAboveSurfaceLevel < 46) ">

<styleUrl xmlns="http://www.opengis.net/kml/2.2">http://ows8-
cci.carmenta.com/ProcessingService/ProcessingService.axd?request=
GetSymbols%26Symbol=220%26Encoding=application/vnd.google-
earth.kml+xml#220</styleUrl>

</when>
<when test=" ((tds:featureFunction-1 = 'inPatientCare' or
tds:featureFunction-1 = 'urgentMedicalCare') and
tds:heightAboveSurfaceLevel < 46) ">

<styleUrl xmlns="http://www.opengis.net/kml/2.2">http://ows8-
cci.carmenta.com/ProcessingService/ProcessingService.axd?request=
GetSymbols%26Symbol=219%26Encoding=application/vnd.google-
earth.kml+xml#219</styleUrl>

</when>
<when test="tds:heightAboveSurfaceLevel < 46">

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 31

<styleUrl xmlns="http://www.opengis.net/kml/2.2">http://ows8-
cci.carmenta.com/ProcessingService/ProcessingService.axd?request=
GetSymbols%26Symbol=210%26Encoding=application/vnd.google-
earth.kml+xml#210</styleUrl>

</when>
</choose>

This results in the appropriate kml:styleUrl being added to the kml:placemark created for
the feature.

The portrayal rule set used in OWS-8 did not contain any scale range information. As a
result, the encoding rule does not consider scale.

7.1.4 Improved KML encoding rule

The resulting encoding rule, which is a slightly amended version of the OWS-7 KML
encoding rule, is specified in Annex B.

The mapping of data conforming to an ISO 19109 conformant UML Application Schema
to a KML representation is based on a set of encoding rules. These encoding rules are
compliant with the rules for KML and ISO 19118.

Compared to the GML encoding rule specified in GML 3.2 Annex E, the KML encoding
rule is different, which reflects the different characteristics of GML and KML. In
particular, no XML Schema description is derived for the KML encoding.

The rules listed in Annex B aim at an automatic mapping from an ISO 19109 and
ISO/TS 19103 conformant UML application schema to KML. As a result of this
automation, the resulting KML does not make full use of the capabilities of KML.

The rules for the instance conversion, as documented in Annex B, are worded so that
GML data is assumed as input. This reflects the implementation where KML is an
additional output format of a Web Feature Service, which always has to support GML,
too.

The schema encoding rules are based on the general idea that all features conforming to a
feature type in the application schema are represented as KML placemarks, additional
information is represented in kml:ExtendedData elements and the style may be
determined by a portrayal rule set in an amended Symbology Encoding schema.

The encoding rule has been designed with the goal to maximize the use of standard
capabilities of KML 2.2 and of existing clients with a focus on Google Earth as the
standard client for using KML data. Extensions not supported by Google Earth or other
clients have been avoided, whenever possible.

7.2 Evaluate the use of portrayal registries within KML

7.2.1 Overview and summary

The approach documented in 7.1 has been tested with

OGC 11-064r3

32 Copyright © 2011 Open Geospatial Consortium

� the OWS-8 portrayal registry provided by Carmenta

� the OWS-8 LTDS Web Feature Service provided by interactive instruments

� the KML cache of the LTDS Web Feature Service data (see 7.3)

The XSLT stylesheet is accessed by the WFS whenever the GetFeature request uses the
outputFormat parameter with the value application/vnd.google-earth.kml+xml. The
generation of the XSLT stylesheet can be automated to occur periodically – or, if a
notification mechanism of the portrayal registry exists, whenever relevant changes occur
in the portrayal registry.

The following figures show example screenshots of the OWS-8 test data in Google Earth
and also of other data offered by Google Earth "out-of-the-box". The figures cover a
range of LTDS feature types. For buildings and roads the figures also illustrates different
styles for placemarks even though they were derived from the same LTDS feature type.

A number of issues were identified in the tests. Some issues could be improved through
refinements in the implementations or the encoding rule for the particular data set, while
some are of a conceptual nature and are general limitations of the approach. These issues
are discussed in 7.2.2, 7.2.3 and 7.2.4.

Note that the name of the features is displayed in the balloons as "no Information". The
reason is that this is the value of the name property of the source features in the data set.

Figure 7 – Overview Monterey area

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 33

Figure 8 – Information about Monterey Airport offered by Google Earth

Figure 9 – A runway, the information shown is LTDS data

OGC 11-064r3

34 Copyright © 2011 Open Geospatial Consortium

Figure 10 – An education building, height < 46, the information shown is LTDS data

Figure 11 – Another building with height < 46, the information shown is LTDS data

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 35

Figure 12 – Another building, height > 46, the information shown is LTDS data

Figure 13 – A railway, the information shown is LTDS data

OGC 11-064r3

36 Copyright © 2011 Open Geospatial Consortium

Figure 14 – Monterey bay area with Salinas (and a number of educational buildings)

Figure 15 – A road with median, the information shown is LTDS data

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 37

Figure 16 – A road without median, the information shown is LTDS data

Figure 17 – A heliport, the information shown is LTDS data

OGC 11-064r3

38 Copyright © 2011 Open Geospatial Consortium

Figure 18 – A surface waterbody, the information shown is LTDS data

7.2.2 Summary

The tests have highlighted a number of issues that are discussed in the following sub-
clauses, separated into conceptual issues and implementation issues and limitations.

One of the goals of the experiments in OWS-8 were to "evaluate and demonstrate if the
same style resources could be used for OGC Portrayal Services and KML data, i.e. KML
and SLD/SE would simply be different representations of the same resource." The
conclusion from the experiments is that this is only possible to a certain extent. In
practice this will likely only work for very simple portrayal rule sets.

7.2.3 Conceptual issues

7.2.3.1 One feature, multiple applicable rules

For the same feature instance, several rules in a portrayal rule set may apply. I.e., a
standard Symbology Encoding processor will render the same feature according to
multiple rules on a map, if several rules apply for the specific feature instance.

In KML a placemark can reference only a single style. The current implementation uses
the topmost portrayal rule that matches the feature instance (which is the last portrayal
rule in the portrayal rule set following the painters model). All other rules that would fire
are not reflected in the KML.

This does not seem to be a significant issue in the simple rule set used in OWS-8.

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 39

Example:

<se:FeatureTypeStyle>
<se:FeatureTypeName>BuildingGeopoint</se:FeatureTypeName>
<se:Rule>

<ogc:Filter xmlns:tds="http://metadata.dod.mil/mdr/ns/GSIP/3.0/td
s/3.0" xmlns:ogc="http://www.opengis.net/ogc">

<ogc:PropertyIsLessThan>
<ogc:PropertyName>tds:heightAboveSurfaceLevel</ogc:Propert
yName>
<ogc:Literal>46</ogc:Literal>

</ogc:PropertyIsLessThan>
</ogc:Filter>
<se:OnlineResource xlink:type="simple" xlink:href="http://ows8-
cci.carmenta.com/ProcessingService/ProcessingService.axd?request=
GetSymbols&Symbol=210"/>

</se:Rule>
<se:Rule>

<ogc:Filter xmlns:tds="http://metadata.dod.mil/mdr/ns/GSIP/3.0/td
s/3.0" xmlns:ogc="http://www.opengis.net/ogc">

<ogc:And>
<ogc:Or>

<ogc:PropertyIsEqualTo>
<ogc:PropertyName>tds:featureFunction-
1</ogc:PropertyName>
<ogc:Literal>inPatientCare</ogc:Literal>

</ogc:PropertyIsEqualTo>
<ogc:PropertyIsEqualTo>

<ogc:PropertyName>tds:featureFunction-
1</ogc:PropertyName>
<ogc:Literal>urgentMedicalCare</ogc:Literal>

</ogc:PropertyIsEqualTo>
</ogc:Or>
<ogc:PropertyIsLessThan>

<ogc:PropertyName>tds:heightAboveSurfaceLevel</ogc:Prop
ertyName>
<ogc:Literal>46</ogc:Literal>

</ogc:PropertyIsLessThan>
</ogc:And>

</ogc:Filter>
<se:OnlineResource xlink:type="simple" xlink:href="http://ows8-
cci.carmenta.com/ProcessingService/ProcessingService.axd?request=
GetSymbols&Symbol=219"/>

</se:Rule>
...

</se:FeatureTypeStyle>

For a BuildingGeopoint feature with tds:heightAboveSurfaceLevel with a value of 40 and
a tds:featureFunction-1 of inPatientCare, both the first and second rule would "fire" and
both symbolisers will be drawn by a WMS/SLD. In KML, the feature would only be
rendered using symbol (219) of the second rule, the topmost of the "firing" rules.

7.2.3.2 Painters model

This issue is related to the previous issue. In Symbology Encoding, a feature collection is
processed multiple times and feature instances are rendered according to the painters
model. This determines the order in which symbols are visible on the map. KML on the

OGC 11-064r3

40 Copyright © 2011 Open Geospatial Consortium

other hand has no such concept and the order in which features are rendered by a KML
client per se cannot be controlled.

An assumption might be that the features will be styled by a KML client in the order in
which they appear in a KML document, but this is not required and not something that
can be relied upon. However, let's assume for a moment that this is how all KML clients
would work. In this case two aspects would be noteworthy:

� Ordering the placemarks in a KML document in accordance with the order implied by
the portrayal rule set requires several passes through the feature collection, one for
each level in the painters model. This has performance implications, which can be
minimised, for example, by using a cache like the one described in 7.3.

� Once the processing of the rule set becomes the most complex part of the
transformation of the feature collection into KML, then it is probably more
appropriate to perform this transformation in a WMS/SLD as in this case the focus is
less on the data aspect and more on the portrayal aspect.
In OWS-7 the focus of the KML output was on representing as good as possible the
information associated with a feature in an appropriate way in a KML client. Hence,
the KML was transformed by the WFS, if the outputFormat parameter was set to the
KML MIME type. As long as processing portrayal rules is a minor part of the
transformation this still seems appropriate as the focus is on the data carried with the
KML placemarks. However, if the transformation would have to honour the painters
model, processing requires a full Symbology Encoding processing engine and as a
result this transformation should be carried out by a WMS/SLD - which might be a
component WMS/SLD (FPS) or an integrated WMS/SLD.

7.2.3.3 KML styles simpler than SE symboliser sets

Complex symboliser sets in a Symbology Encoding rule cannot be transformed entirely
into KML styles. For example, multiple line symbolisers with different width and colour
that are often used for higher category roads cannot be properly transformed into KML
styles as a KML style can include only a single line style.

Example:

The following sequence of symbolisers in a portrayal rule for tds:RoadGeocurve features
cannot be transformed properly into a kml:Style as a kml:Style may contain only a single
kml:LineStyle):

<se:LineSymbolizer xmlns:se="http://www.opengis.net/se">
<se:Name>Black_1.45mmSolidLine</se:Name>
<se:Stroke>

<se:SvgParameter name="stroke">#000000</se:SvgParameter>
<se:SvgParameter name="stroke-width">7</se:SvgParameter>

</se:Stroke>
</se:LineSymbolizer>

<se:LineSymbolizer xmlns:se="http://www.opengis.net/se">
<se:Name>Dk-Brown1815_1.15mmSolidLine</se:Name>
<se:Stroke>

<se:SvgParameter name="stroke">#782327</se:SvgParameter>
<se:SvgParameter name="stroke-width">5</se:SvgParameter>

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 41

</se:Stroke>
</se:LineSymbolizer>
<se:LineSymbolizer xmlns:se="http://www.opengis.net/se">

<se:Name>Black0_0.55mmSolidLine</se:Name>
<se:Stroke>

<se:SvgParameter name="stroke">#000000</se:SvgParameter>
<se:SvgParameter name="stroke-width">3</se:SvgParameter>

</se:Stroke>
</se:LineSymbolizer>
<se:LineSymbolizer xmlns:se="http://www.opengis.net/se">

<se:Name>PaperWhite_0.25mmSolidLine</se:Name>
<se:Stroke>

<se:SvgParameter name="stroke">#FFFFFF</se:SvgParameter>
<se:SvgParameter name="stroke-width">1</se:SvgParameter>

</se:Stroke>
</se:LineSymbolizer>

The transformed kml:Style provided by the portrayal registry is (using only the last, i.e.,
topmost se:LineSymbolizer):

<kml xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"xmlns="http://www
.opengis.net/kml/2.2">
<Document>

<Style id="214">
<LineStyle>

<color>FF000000</color>
<colorMode>normal</colorMode>
<width>1</width>

</LineStyle>
</Style>

</Document>
</kml>

As a result, the road selected in Figure 15 is in KML in a very simple style, while a
WMS/SLD would draw a more complex symbol.

7.2.3.4 KML supports interaction with the map, SE does not

One of the characteristics of KML is that it supports the interaction of the user with the
map and its content. For example, if a mouse moves over a feature (placemark), the
feature can change into a different style. As Symbology Encoding was designed with
static bitmap images in mind, interactions with the map are not supported in the
Symbology Encoding design. This is not a problem per se, but a KML representation of a
set of Symbology Encoding symbolisers does not fully exploit the capabilities of KML
and may not meet the expectation of users as the behaviour of such KML data is different
from other typical KML data. I.e., if we want to use Symbology Encoding as the basis for
portrayal rules for KML output, Symbology Encoding should be enriched to support
feature highlighting.

This could be achieved, for example, with a new rule element that is used for
highlighting, e.g. sex:RuleHighlighted. Such element could be substitutable for se:Rule
and have the same content model.

OGC 11-064r3

42 Copyright © 2011 Open Geospatial Consortium

7.2.4 Implementation issues and limitations

7.2.4.1 Overview

In the process of the interoperability testing using Google Earth as a client accessing
KML data from the LTDS WFS via the KML cache and accessing the symbols from the
portrayal registry processing service several issues were identified and resolved. They are
listed here as others might learn from these experiences, too.

7.2.4.2 Support for SVG icons

The standard icon symbols in the portrayal registry are in SVG and they need to be
converted, for example, to PNG for using them in a KML context as at least Google Earth
does not support SVG icons at the moment. An issue for this has already been registered,
see http://code.google.com/p/kml-samples/issues/detail?id=207. However, it is unclear, if
support will be added as Google Earth supports SVG only through WebKit and this
makes it difficult to support SVG in icons (see https://groups.google.com/group/kml-
support-getting-started/browse_thread/thread/ca7aefb14b2446f8).

This raises a more general issue, too, as the KML standard is unclear which formats may
be referenced from an icon element. I.e., different KML clients may support different
(and even non-overlapping) sets of image formats. If compliance testing is added for
KML as part of CITE this most likely will lead to compliance testing issues. There seems
to be an implicit assumption that the common bitmap formats (png, jpeg and gif) should
be supported.

The issue was addressed by converting the symbol from SVG to PNG in the portrayal
registry processing service.

7.2.4.3 Default styles in KML

Unlike in Symbology Encoding, a KML placemark will use a default icon and label style
(yellow pushpin and the name of the placemark) unless these are overloaded for a style or
are suppressed (e.g., using <IconStyle><scale>0</scale></IconStyle> and
<LabelStyle><scale>0</scale></LabelStyle>). This needs to be taken into account when
transforming Symbology Encoding symbolisers to KML.

7.2.4.4 Large ballons with minimal information

Since many attributes in the OWS-8 LTDS dataset contain null values in feature
properties (encoded as "No Information", "noInformation", -999999, or -
999999.0000000) the extended data shown in the balloons contains many entries and
often it is not easy to spot the real values.

To reduce the information in the balloons to the properties that are not null, the encoding
rule for the conversion has been amended to filter the LTDS-specific null value
representations.

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 43

7.2.4.5 Scale

The portrayal rule set used in OWS-8 does not contain any scale ranges for portrayal
rules (se:MinScaleDenominator and se:MaxScaleDenominator). As a result, all features
are in principle visible in all scales, which is not optimal, in particular for data sets with
features that are typically only drawn at large scales.

However, the testing showed that Google Earth still suppresses features on the map, if it
"decides" that too much information would otherwise be drawn on the screen. As a result,
this was not a real issue as the dataset was only a few MB in size. However, for a large
dataset this might become an issue, as too much data is loaded (even if it is not drawn).

7.3 Improving the user experience by caching KML

To improve performance of the access to KML instances, a cache has been implemented
on top of the Web Feature Service.

The cache provides a KML network link of the data in the Web Feature Service. The
network link returns KML regions. Whenever a region is visible in the KML client in the
appropriate level-of-detail, the client will send another request for the data in the region.
The cache may return additional regions or KML placemarks. These placemarks are
retrieved from the Web Feature Service, stored in the cache and returned to the KML
client – unless the region is already stored in the cache. In this case, the cached data is
returned directly without submitting another request to the cache.

This is illustrated in the figure below.

The lifespan of the data in the cache may be deleted after an expiry time, or if the
portrayal rules and the KML transformation script of the WFS have been updated.

OGC 11-064r3

44 Copyright © 2011 Open Geospatial Consortium

Figure 19 – Sequence diagram of the interaction between the KML client, the cache, the WFS and
the portrayal registry

This approach is similar to the existing and effective caching mechanisms for Web Map
Services (see, for example, GeoWebCache, MapProxy, or TileCache) and is relatively
simple to implement, but effective.

However, while this reduce wait time for access to KML data, the Google Earth as a
KML client becomes less smooth to work with, once a significant amount of KML data
has been downloaded to the client (several MB) and all of this visible in the current view.
I.e., it is essential to provide appropriate scale ranges with the KML data.

7.4 Using WFS 2.0 stored queries

To simplify access to the WFS, stored queries can be used to make it easier for clients to
access relevant data. Let's use a simple example where a stored query is used to access all
LTDS building features in a region. This can be extended to additional feature types by
simply adding additional wfs:Query elements and including the feature type name in the
returnedFeatureTypes attribute.

The following WFS operation creates the new query:

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 45

<wfs:CreateStoredQuery
 xmlns:wfs="http://www.opengis.net/wfs/2.0"
 xmlns:fes="http://www.opengis.org/fes/2.0"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tds="http://metadata.dod.mil/mdr/ns/GSIP/3.0/tds/3.0"
 xmlns:xml="http://www.w3.org/XML/1998/namespace"
 xsi:schemaLocation="http://www.opengis.net/wfs/2.0
 http://schemas.opengis.net/wfs/2.0/wfs.xsd"
 service="WFS" version="2.0.0">
 <wfs:StoredQueryDefinition
 id="http://metadata.ces.mil/mdr/ns/GSIP/query/1">
 <wfs:Title xml:lang="en">LTDS features In a region</wfs:Title>
 <wfs:Abstract xml:lang="en">Sample WFS 2.0 stored query that can be
used to query all relevant TDS buildings in a region</wfs:Abstract>
 <wfs:Parameter name="LLat" type="double"/>
 <wfs:Parameter name="LLon" type="double"/>
 <wfs:Parameter name="ULat" type="double"/>
 <wfs:Parameter name="ULon" type="double"/>
 <wfs:QueryExpressionText
 returnFeatureTypes="tds:BuildingGeopoint tds:BuildingGeosurface"
 language="urn:ogc:def:queryLanguage:OGC-WFS::WFS_QueryExpression"
 isPrivate="false">
 <wfs:Query typeNames="tds:BuildingGeopoint">
 <fes:Filter>
 <fes:Within>
 <fes:ValueReference>tds:geometry</fes:ValueReference>

<gml:Envelope srsName="http://metadata.ces.mil/mdr/ns
/GSIP/crs/WGS84E_2D">

<gml:lowerCorner>${LLat} ${LLon}</gml:lowerCorner>
<gml:upperCorner>${ULat} ${ULon}</gml:upperCorner>

</gml:Envelope>
 </fes:Within>
 </fes:Filter>
 </wfs:Query>
 <wfs:Query typeNames="tds:BuildingGeosurface">
 <fes:Filter>
 <fes:Within>
 <fes:ValueReference>tds:geometry</fes:ValueReference>

<gml:Envelope srsName="http://metadata.ces.mil/mdr/ns
/GSIP/crs/WGS84E_2D">

<gml:lowerCorner>${LLat} ${LLon}</gml:lowerCorner>
<gml:upperCorner>${LLat} ${LLon}</gml:upperCorner>

</gml:Envelope>
 </fes:Within>
 </fes:Filter>
 </wfs:Query>
 </wfs:QueryExpressionText>
 </wfs:StoredQueryDefinition>
</wfs:CreateStoredQuery>

Once the stored query is defined in the WFS, it the buildings in the bounding box with
lower corner (36.5,-122) and upper corner (37,-121.5) can be accessed using the
following query (special characters have not been escaped for better readability):

http://services.interactive-instruments.de/xsprojects/ows8-tds/cgi-
bin/ltds/wfs?

OGC 11-064r3

46 Copyright © 2011 Open Geospatial Consortium

SERVICE=WFS&
VERSION=2.0.0&
REQUEST=GetFeature&
STOREDQUERY_ID=http://metadata.ces.mil/mdr/ns/GSIP/query/1&
LLat=36.5&
LLon=-122&
ULat=37&
ULon=-121.5

7.5 KML Change Request: Improve control over BalloonStyle layout

If one wishes to use JavaScript scripts in a KML Balloon it is currently required to
provide the complete HTML document. This is usually undesirable, so it would be useful,
if KML would support child elements to a BalloonStyle to specify, for example, styles
and scripts.

More details on this topic can be found in the OWS-7 Schema Automation ER. As part of
OWS-8, a change request on this issue has been submitted.

7.6 Conclusions

With a combination of caching KML regions and controlling the download of placemarks
to the KML client using KML regions and level-of-detail information, access to large
datasets from KML clients is possible using OGC Web Feature Services and simple
extensions.

Using portrayal rules expressed using Symbology Encoding for KML portrayal has
significant restrictions due to the different concepts used for portrayal in KML and
Symbology Encoding. In general, the results will be satisfactory only for simple portrayal
rules and symbolizers. Also, portrayal rules specified using Symbology Encoding do not
support the interaction of the user in the KML client.

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 47

Annex A
(normative)

Conversion from OCL to Schematron

A.1 Translation principles

Translation from OCL to Schematron is performed on the basis of a ShapeChange-
internal syntax representation of OCL expressions. The representation is close to the
Concrete Syntax structure described in the OCL 2.2 standard [6].

Naturally, the syntax representation of OCL is recursive. Therefore the principles of
translation from OCL to another language can best be described using a recursive
notation. Below we describe, how some particular constructs (such as the application of
the select() iterator:

x->select(t|pred(t)))

translate to XPath 1.0, where the translation results of the constituent parts (such as x and
pred(t)) are presumed.

For a valid OCL expression x let τ(x) denote the equivalent XPath 1.0 expression. The
expression x may contain free variables (explicit or implicit), which need to be treated
when computing τ(x). One typical variable is self, which translates to current(). So,
τ(self)=current().

Note: The following table is a copy of the one prepared for OWS-7. It has been
supplemented by the new constructs and extensions of OWS-8.

Category OCL syntax In words Schematron translation
Variable
access self

self The current
object in the
context of
which the
expression
shall hold.

current()
Note: Whenever the current node happens to
be identical to current() there is no need to
explicitly generate current() for self. Relative
path syntax is to be used in these cases.

Iterator
variable
access

t defined in an
iterator used in
x(t)

t has to be
assigned a
current
value from
the path that
leads to
x(t).

If t has a realization in the path leading to x:
../../.. …/..
As many .. as are required to reach the binding
context of t.
No realization in the path (may be xlink:href):
Cannot be translated because there is no unique
XPath expression to define this.

Let variable
access

t defined in a
let construct
used in x(t)

t necessarily
has a value
from the

If t is defined in the outer (current()) context:
$id, where id is some unique <let> variable.
The let initializer is translated in the current()

OGC 11-064r3

48 Copyright © 2011 Open Geospatial Consortium

Category OCL syntax In words Schematron translation
initialize
expression.

context and initializes a Schemtron <let>
element.
Other:
The let initializer of the variable t is translated
in the current context and substitutes t.

Let
expression

let x=y in z(x) Assignment
of
expression
y to variable
x. Result is
z(x).

If x and y are defined in the outer (current())
context:
τ(z(τ(x)))
Additionally, a Schematron <let> is created.
Other:
τ(z(τ(y)))
This means we are substituting the initializers.

Integer or
real
constants

123 or 3.1415 same

Boolean
constants

true or false true() or false()

String
constants

‘xxxxx’ same

Enumeratio
n constants

Type::value ‘value’

Codelist
constants

Type::value GML 3.3 rules:
The constant is translated to an external
codelist reference according to a pattern in
tagged values in the codelist class.
Other GML version rules:
‘value’

If
expression

if x then y else
z endif

If x
evaluates to
true then the
value of the
expression
is y,
otherwise z.

If τ(y) and τ(z) are represented by nodesets:
τ(y)[τ(x)] | τ(z)[not(τ(x))]
x needs to be compiled in the tail context of
τ(y) and τ(z).
If τ(y) and τ(z) are strings:
concat(substring(τ(y),number(not(τ(x)))*string
-length(τ(y))+1),substring(τ(z),
number(τ(x))*string-length(τ(z))+1))
The trick is to concatenate substrings which
either comprise the full argument or nothing,
depending on the value of the predicate.
If τ(y) and τ(z) are numbers or Booleans:
As for strings. The result has to be converted
into the proper type.

Attribute
call

x . attname Set of
object
instances
reached
from the

If simple-typed (19136 encoding):
τ(x)/attname
If simple-typed (19139 encoding – non-
codelist):
τ(x)/attname/*

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 49

Category OCL syntax In words Schematron translation
instance or
set repre-
sented by x
by applying
attribute
attname.

If simple-typed (19139 encoding – codelist):
τ(x)/attname/*/@codeListValue
If nested and complex-typed:
τ(x)/attname/*
If realized by means of xlink:href:
*[concat(α,@gml:id,β)=τ(x)/attname/@xlink:h
ref] where α and β are constant prefixes and
postfixes surrounding the identifier proper in
the xlink:href value. The values for α and β can
be configured.
7.6.1 If the type of linkage is unknown:
A nodeset union of the expressions above.

Attribute
call
according
to
nilReason
implementa
tion pattern

x . attname .
value
x . attname .
reason

Set of
instances
reached by
attname,
respectively
by
attname/@n
ilReason

Case x . attname . value:
τ(x.attname)
Compilation as above – ‘x.attname’ is assumed
to have the type of ‘value’.
Case x . attname . reason (19136 encoding):
τ(x.attname)[@xsi.nil=’true’]/@nilReason
Case x . attname . reason (19139 encoding):
τ(x.attname)[not(*)]/@gco:nilReason

Operation
call
allInstances
()

x .
allInstances()

Set of all
object
instances of
type x.
x represents
a type-
valued
expression.

If x is a type constant:
Nodeset union (n1|…|ni), where
nk=//Tk[@gml:id] and Tk is one of the concrete
derivations of the type of x (including x).
If x is a type expression:
Cannot be translated because required schema
information is not available at run-time.

Operation
call
oclIsKindO
f()

x .
oclIsKindOf(y)

The single
object
instance x is
checked for
complying
with type y.

If y is a type constant:
boolean(τ(x)[name()=’T1‘ or … or
name()=’Ti’]), where
Tk is one of the names of the concrete
derivations of y, including y.
boolean(…) may be omitted if the argument is
known to be used by operands, which do an
implicit conversion to Boolean.
If y is a type expression:
Cannot be translated because required schema
information is not available at run-time.

Operation
call
oclIsTypeO
f()

x .
oclIsTypeOf(y
)

The single
object
instance x is
checked for
being of
type y.

If y is a type constant:
boolean(τ(x) [name()=’T‘]), where T is the
name of the type y.
If y is a type expression:
boolean(τ(x)/self::*[name()=name(τ(y))])
boolean(…) may be omitted if the argument is
known to be used by operands, which do an
implicit conversion to Boolean.

OGC 11-064r3

50 Copyright © 2011 Open Geospatial Consortium

Category OCL syntax In words Schematron translation
Note: Expression part not implemented.
Type-comparing CharacterString to code lists:
We are making an exception to the strict rules
with simple data elements which we permit
being successfully type-compared to code lists.

Operation
call
oclAsType(
)

x .
oclAsType(y)

The single
object
instance x is
downcast to
type y. The
value is
‘undefined’
if this is not
possible.

If y is a type constant:
τ(x)[name()=’T1‘ or … or name()=’Ti’], where
Tk is one of the names of the concrete
derivations of y, including y.
If y is a type expression:
Cannot be translated because required schema
information is not available at run-time.
Casting CharacterString to code lists:
We are making an exception to the strict rules
with simple data elements which we permit
being casted to code list types.

Operation
call +,-,*,/

x + y, etc. Value of
x.+(y), etc.

τ(x) + τ(y)
τ(x) - τ(y)
τ(x) * τ(y)
τ(x) div τ(y)

Operation
calls =, <>

x = y,
x <> y

Value of
x.=(y),
x.<>(y)

If x and y is are simple types:
τ(x) = τ(y)
τ(x) != τ(y)
If x and y is are objects:
generate-id(τ(x)) = generate-id(τ(y))
generate-id(τ(x)) != generate-id(τ(y))

Operation
call <, >,
<=, >=

x < y Value of
x.<(y), etc.

τ(x) < τ(y)
τ(x) > τ(y)
τ(x) <= τ(y)
τ(x) >= τ(y)

Operation
call size()

x . size() Number of
characters
in the string
instance x.

string-length(τ(x))

Operation
call
concat()

x . concat(y) String
concatenati
on of x and
y.

concat(τ(x),τ(y))
A series of concats may be joined to a multi-
argument concat invocation.

Operation
call
substring()

x .
substring(y,z)

Substring of
x running
from
position y to
position z

substring(τ(x), τ(y), τ(z)-τ(y)+1)

Operation
call and, or,
xor, implies

x and y
x or y
x xor y

Logical
combination
as indicated

τ(x) and τ(y)
τ(x) or τ(y)
boolean(τ(x))!=boolean(τ(y))

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 51

Category OCL syntax In words Schematron translation
x implies y not(τ(x)) or τ(y)

Set
operation
call size()

x -> size() Number of
objects in x.

count(τ(x))

Set
operation
call
isEmpty()

x->isEmpty() Predicate: Is
the set
represented
by x empty?

not(τ(x))

Set
operation
call
notEmpty()

x->notEmpty() Predicate: Is
the set
represented
by x not
empty?

boolean(τ(x))
boolean may be omitted if τ(x) is known to be
Boolean or is used by operands, which do an
implicit conversion to Boolean.

Iterator call
exists()

x ->
exists(t|b(t))

Predicate:
Does the set
x contain an
objects t for
which the
Boolean
expression
b(t) holds?

boolean(τ(x)[τ(b(.))])
boolean may be omitted if τ(x) is known to be
Boolean or is used by operands, which do an
implicit conversion to Boolean.

Iterator call
forAll()

x ->
forAll(t|b(t))

Predicate:
Does the set
x only
contain
objects t for
which the
Boolean
expression
b(t) holds?

count(τ(x))=count(τ(x)[τ(b(.))])

In the implementation we map forAll() to
exists(). We can do this because according to
first level logic, we have:

x->forAll(t|b(t)) = not(x->exists(t|not(b(t)))

Iterator call
isUnique()

x ->
isUnique(t|y(t)
)

Predicate:
Does the set
x only
contain
objects t for
which the
expression
y(t) creates
mutually
different
objects?

This is a hard one, which could only be solved
in a few cases:
If y is a constant, y(t)=const:
count(τ(x))<=1
If y is identity and x is object-valued, y(t)=t:
true()
This is because nodesets are sets.
If y is identity and x is a collection of basic
types, y(t)=t:
not(τ(x)[.=(preceding::*|ancestor::*)[count(.|τ(
x))=count(τ(x))]])
This means any value in τ(x) must not be
contained in the intersection of τ(x) with the
previous part of the tree.
If y is an object-valued attribute, y(t)=t.a:
count(τ(x))=count(τ(x.a))

OGC 11-064r3

52 Copyright © 2011 Open Geospatial Consortium

Category OCL syntax In words Schematron translation
This is true due to the pigeonhole principle.
Note that t.a is required to be a single value,
not a set!
If y is an attribute carrying a basic data type,
y(t)=t.b (19136 encoding):
not(τ(x)[b=(preceding::*|ancestor::*)[count(.|τ(
x))=count(τ(x))]/b])
This means the value of any b must not be
contained in the intersection of τ(x) with the
previous part of the tree. As above, t.b needs to
be a single value.
If y is an attribute carrying a basic data type,
y(t)=t.b (19139 encoding):
not(τ(x)[b/*=(preceding::*|ancestor::*)[count(.|
τ(x))=count(τ(x))]/b/*])
Note: This is again different for 19139 codelist
access. See “attribute call” row for this.
Nested attributes of either kind,
y(t)=t.a1.a2…b:
Each single step needs to be unique. Hence we
can reduce this to:
τ(x->isUnique(t|t.a1)) and τ(x.a1-
>isUnique(t|t.a2)) and … and τ(x.a1.a2…-
>isUnique(t|t.b))
Any other, particularly arbitrary expressions:
Cannot be translated because no way to
express this in XPath 1.0 has been found.

Iterator call
select()

x ->
select(t|b(t))

Compute
the set of
those
objects t in
x, for which
the
predicate
b(t) holds.

τ(x) [τ(b(.))]
Note that this is very similar to exists(), the
only difference being the Boolean
interpretation of the result in the exists() case.

Pattern
matching
function on
Strings

x . matches(
pattern)

Note: This
operation call
is an
extension. It is
not part of the
OCL standard.

Boolean
function
which
yields true
if the
pattern of
type String
matches the
String
argument.

There is no way to express matches() in XPath
1.0 except by way of using a Java extension
function or by making use of the matches
function available in XPath 2.0.
The implementation allows configuring either
the use of an extension function or of XPath
2.0 syntax. The XPath translation target is
configurable text (a function call), which
receives τ(x) and τ(pattern) as substitutes for
the strings ‘$object$’ and ‘$pattern$’, which
both have to be part of the configured function

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 53

Category OCL syntax In words Schematron translation
call.

OGC 11-064r3

54 Copyright © 2011 Open Geospatial Consortium

Annex B
(normative)

KML encoding rule

B.1 General encoding requirements

B.1.1 Application schemas

The application schema shall conform to the same UML profile specified in GML 3.2
Annex E with the following additional, optional tagged values:

Table B.1 — Tagged values

UML model element Tagged value Description

Package kmlStyleUrl an absolute URL referencing a kml:Style or kml:StyleMap
element

Class with stereotype
<<featureType>>

name a human readable name of the feature type

description a human readable description of the feature type

kmlReference an absolute URL to a resource that includes a description of
the feature type

kmlStyleUrl an absolute URL referencing a kml:Style or kml:StyleMap
element

Attribute or association end

name a human readable name of the property type

description a human readable description of the property type

kmlReference an absolute URL to a resource that includes a description of
the property type

Attribute

kmlName
if the value is set to “true”, and an instance has a value for
this property, that value is used as the name of the placemark
instance in KML

kmlTimeSpanBegin
if the value is set to “true”, and an instance has a value for
this property, that value is used as the begin of the time span
element of the placemark instance in KML

kmlTimeSpanEnd
if the value is set to “true”, and an instance has a value for
this property, that value is used as the end of the time span
element of the placemark instance in KML

kmlTimeStamp
if the value is set to “true”, and an instance has a value for
this property, that value is used as the time stamp element of
the placemark instance in KML

For the four last tagged values listed in table A.1 the following rule applies, if multiple
property types of a feature type and its super-types are tagged in this way: The property
types of the feature type itself are inspected. If one or more property types contain the
tagged value with a value of “true”, a property type is selected randomly. If none of the
property types carries such a tagged value, the process is continued per super-type

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 55

recursively until either a property type with the tagged value is found or all property
types have been inspected.

In addition, the values of spatial properties in the application schema shall conform with
version 1.2 of the OGC standard “Simple feature access - Part 1 - Common architecture”.

NOTE KML only supports linear interpolations and no sharing of geometries between
features, like the simple feature access standard.

B.1.2 Character repertoire and languages

“UTF-8” or “UTF-16” shall be used as the character encoding of all XML files (with the
associated character repertoire).

B.1.3 Exchange metadata

No specific rules for exchange metadata is specified by this encoding rule.

B.1.4 Dataset and object identification

Unique identifiers in accordance with XML's ID mechanism are used to identify
elements.

NOTE The XML ID mechanism only requires that these identifiers are unique identifiers within the
XML document in which they appear.

B.1.5 Update mechanism

The general KML mechanisms for updates apply.

B.2 Input data structure

See ISO/DIS 19118, Clause 8, for a description of the input data structure.

B.3 Output data structure

See KML 2.2 for a description of the output data structure.

NOTE In this encoding rule the namespace prefix “kml” refers to the namespace of KML, which is
“http://www.opengis.net/kml/2.2”.

B.4 Conversion rules

B.4.1 Instance conversion rules

In general, the conversion rules use data conforming to the application schema and
structured according to the generic instance model (see ISO/DIS 19118, Clause 8).
However, the following description is based on the instance model of the GML
representation of the data as this is a better known representation of the data than the

OGC 11-064r3

56 Copyright © 2011 Open Geospatial Consortium

generic instance model. If required, conversion rules using the generic instance model
might be added in a future revision.

The converted instances shall be represented in a KML document.

Every feature instance (“//schema-element(gml:AbstractFeature)”) shall be represented as
a kml:Placemark element.

The placemark element shall have the following child nodes:

- An attribute “id” with the value of “@gml:id”.

- An element “kml:name” with the following value:

o If a property type of the feature type has a tagged value “kmlName” with a
value of “true” and the feature instance has a value for this property, this
value is used. If multiple name property values exist, only the first one is
selected.

o Alternatively, if the feature instance has a “gml:name” value, this value is
used. If multiple name property values exist, only the first one is selected.

o Alternatively, if the feature type has a tagged value “name”, its value is
used.

o As a fallback, the name of the feature type is used.

- An element “kml:visibility” with a value of “1”.

- An element “kml:styleUrl” with the following value:

o If the feature type has a tagged value “kmlStyleUrl”, this value is used.

o Alternatively, if the package containing the feature type has such a tagged
value, this value is used.

o Alternatively, if the package containing that has such a tagged value and is
within the same application schema, this value is used. This is applied
recursively.

o Alternatively, if the ShapeChange configuration includes a reference to a
portrayal rule set, the rule set is retrieved and all portrayal rules for the
feature type in the rule set are collected and processed in reverse order
(due to the painters model). Each filter expression of a rule is converted
into an Xpath expression so that the first "firing" expression will result in
that the value of the se:OnlineResource of the rule is used as the value.

o If no value is found, the “kml:StypeUrl” element is omitted from the
placemark instance.

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 57

o

- An element “kml:TimeSpan/kml:begin” with the following value:

o If a property type of the feature type has a tagged value
“kmlTimeSpanBegin” with a value of “true” and the feature instance has a
value for this property, this value is used. If multiple name property values
exist, only the first one is selected.

o If no such value is found, the element is omitted from the placemark
instance.

- An element “kml:TimeSpan/kml:end” with the following value:

o If a property type of the feature type has a tagged value
“kmlTimeSpanEnd” with a value of “true” and the feature instance has a
value for this property, this value is used. If multiple name property values
exist, only the first one is selected.

o If no such value is found, the element is omitted from the placemark
instance.

- An element “kml:TimeStamp/kml:when” with the following value:

o If a property type of the feature type has a tagged value “kmlTimeStamp”
with a value of “true” and the feature instance has a value for this
property, this value is used. If multiple name property values exist, only
the first one is selected.

o If no such value is found, the element is omitted from the placemark
instance.

- An element “kml:ExtendedData” with a child element “kml:SchemaData”. That
element shall have an attribute “schemaUrl” with the value that is the concatenation
of “#”, the name of the feature type, and “Schema”.

- A child element “kml:SimpleData” with

- an attribute “name” and a value of “type"

- a CDATA block4

The CDATA block contains the following value:

o If the feature instance has a “gml:description” value, this value is used.

4 Whenever the encoding rule requires that a CDATA block is used in the KML instance document, an XML processor
may encode the CDATA block in an equivalent way, i.e. with “<” encoded as “<” and “>” encoded as “>”.

OGC 11-064r3

58 Copyright © 2011 Open Geospatial Consortium

o Alternatively, if the feature type has a tagged value “description”, its value
is used.

o Alternatively, the documentation of the feature type is used.

- For each property element of the feature that is not “gml:description”, “gml:name”, or
a geometry (“*/schema-element(gml:AbstractGeometry)”) and which is not nil,
another child element “kml:SimpleData” is added with

- an attribute “name” and the local name of the property as the value

- a CDATA block

The value of the CDATA block depends on the value type of the property:

- a number, string or enumeration type: the value (“.”).

- a date or time type: the value (“.”) styled in a human readable form.

- a measure: the value (“.”) plus the value of “@uom”.

- a code list value: If the value has a codeSpace attribute the CDATA block
contains “$[value]” where “$[codespace]” is the
code space attribute value and “$[value]” is the value of the property element.
Otherwise, the CDATA block contains just “$[value]”.

- a structured data type: a CDATA block with a table that has a row for each
property element of the structured data type that is not nil. The left column
contains the local name of the property element “<small><i>$[local-
name]</i></small>“. If the property element has no child elements, the right
column contains the value (“.”), otherwise the value is treated as another
structured data type and contains a nested table in accordance with the conversion
rules in this paragraph.

NOTE 1 This conversion rule results in a good representation in the most
common cases, where the nesting is not deep and values are generally of simple
content. However, as it is easy to construct cases where this rule will not result in
a satisfactory result, this rule may require some refinement after more experience
with a range of application schemas.

- a feature that is referenced by an Xlink: A CDATA block “$[value]” where “$[ref]” is the value of “@xlink:href”. If
“$[ref]” contains a “#” then “$[value]” is the string after the “#”, otherwise the
value is just “Reference”.

- any other type: the value (“.”).

NOTE Support for additional types will be required depending on the use of types in
application schemas and will be added to this encoding rule as needed.

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 59

Multiple values of the same property are separated by “<hr/>”.

- a “kml:Point” or “kml:MultiGeometry” depending on the spatial property:

o a “gml:Point” is converted to a “kml:Point”

o a “gml:LineString” or “gml:Curve” is converted to a
“kml:MultiGeometry” with a “kml:Point” and a “kml:LineString”. The
point is one of the control points of the curve. It is recommended to select
a control point in the middle of the curve.

o a “gml:Polygon” or “gml:Surface” is converted to a “kml:MultiGeometry”
with a “kml:Point” and a “kml:Polygon”. The point is the centroid of the
polygon.

o a “gml:MultiGeometry” is converted to a “kml:MultiGeometry”.

NOTE 3 The additional points for curves and surfaces are required for icons
and labels, if included in the style definition.

All coordinates shall be transformed to WGS84, if required.

NOTE 4 KML uses coordinate order long/lat, so coordinates in CRS
urn:ogc:def:crs:EPSG::4326 or urn:ogc:def:crs:EPSG::4979 need to be converted
with a different axis order.

All “kml:Schema” elements created by applying the Schema conversion rules shall also
be added to the KML document.

B.4.2 Schema conversion rules

The schema conversion rules define how reusable KML fragments shall be derived from
an application schema expressed in UML in accordance with ISO 19109. A number of
general rules are defined in A.2.4 to describe the mapping from a UML model that
follows the guidelines described in A.2.1.

Every feature type in the application schema shall be represented as a kml:Schema
element. The element shall have the following child nodes:

- An attribute “id” with the local name of the feature type + “Schema”.

- A child element “kml:SimpleField” with

- an attribute “name” and a value of “type”

- an attribute “type” and a value of “string”

- an element “displayName” with a CDATA block with the following value:

OGC 11-064r3

60 Copyright © 2011 Open Geospatial Consortium

o If the feature type has a tagged value “kmlReference” the CDATA
block contains “<a href=’$[kmlReference]’
title=’$[documentation]’><big><i>$[type]</i> </big>”
where “$[kmlReference]” is the value of the tagged value,
“$[documentation]” the documentation of the feature type and
“$[type]” is the local, if available human-readable, name of the feature
type. Otherwise, the CDATA block contains “<div
title=’$[documentation]’><big><i>$[type]</i>
</big></div>”.

- For each property type of the feature that does not have a local name “description” or
“name” or is a geometry, another child element “kml:SimpleField” is added with

- an attribute “name” and the local name of the property type as the value

- an attribute “type” and a value of “string”

- an element “displayName” with a CDATA block; if the property type has a
tagged value “kmlReference” the CDATA block contains “$[property]” where
“$[kmlReference]” is the value of the tagged value, “$[documentation]” the
documentation of the property type and “$[property]” is the local name of the
property type. Otherwise, the CDATA block contains “<div
title=’$[documentation]’><i>$[property]</i></div>”.

OGC 11-064r3

Copyright © 2011 Open Geospatial Consortium 61

Bibliography

[1] OGC® OWS-5 GSIP Schema Processing Engineering Report, OGC document
08-078r1

[2] OGC® OWS-6 GML Profile Validation Tool Engineering Report, OGC
document 09-038r1

[3] OGC® OWS-7 Schema Automation Engineering Report, OGC document 10-
088r2

[4] OGC® The Specification Model — Modular specifications, OGC document 08-
131r3

[5] OGC® Web Feature Service, version 2.0.0, OGC document 09-025r1 (OGC
standard)

[6] Object Constraint Language, Version 2.2, OMG Object Management Group

