

Open Geospatial Consortium

Date: 2011-12-19

Reference number of this document: OGC 11-093r2

http://www.opengis.net/doc/ows8-aviation-architecture

Category: Public Engineering Report

Editor: Johannes Echterhoff

OGC® OWS-8 Aviation Architecture Engineering Report

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights Reserved.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document is an OGC Public
Engineering Report created as a deliverable in an OGC Interoperability Initiative
and is not an official position of the OGC membership. It is distributed for review
and comment. It is subject to change without notice and may not be referred to as
an OGC Standard. Further, any OGC Engineering Report should not be referenced
as required or mandatory technology in procurements.

Document type: OpenGIS® Engineering Report
Document subtype: NA
Document stage: Approved for public release
Document language: English

OGC 11-093r2

ii Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

Preface

This document is a deliverable of the OGC Web Services (OWS) Initiative - Phase 8
(OWS-8). It describes the architecture that was implemented in the OWS-8 Aviation
thread.

This document is a deliverable for the OGC Web Services 8 (OWS-8) testbed activity.
OWS testbeds are part of OGC's Interoperability Program, a global, hands-on and
collaborative prototyping program designed to rapidly develop, test and deliver proven
candidate standards or revisions to existing standards into OGC's Standards Program,
where they are formalized for public release. In OGC's Interoperability Initiatives,
international teams of technology providers work together to solve specific geoprocessing
interoperability problems posed by the Initiative's sponsoring organizations. OGC
Interoperability Initiatives include test beds, pilot projects, interoperability experiments
and interoperability support services - all designed to encourage rapid development,
testing, validation and adoption of OGC standards.

The OWS-8 sponsors are organizations seeking open standards for their interoperability
requirements. After analyzing their requirements, the OGC Interoperability Team
recommend to the sponsors that the content of the OWS-8 initiative be organized around
the following threads:

 * Observation Fusion

 * Geosynchronization (Gsync)

 * Cross-Community Interoperability (CCI)

 * Aviation

More information about the OWS-8 testbed can be found at:

http://www.opengeospatial.org/standards/requests/74

OGC Document [11-139] “OWS-8 Summary Report” provides a summary of the OWS-8
testbed and is available for download:

https://portal.opengeospatial.org/files/?artifact_id=46176

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

iii

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, Inc. ("Licensor"), free of charge and subject to the terms set forth
below, to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual
Property without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify,
merge, publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual
Property is furnished to do so, provided that all copyright notices on the intellectual property are retained intact and that each person to
whom the Intellectual Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this
Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable,
and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be
construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in
violation of U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction
which may impact your right to import, export or use the Intellectual Property, and you represent that you have complied with any
regulations or registration procedures required by applicable law to make this license enforceable.

OGC 11-093r2

iv Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

Contents Page

1	
 Introduction ... 1	

1.1	
 Scope .. 1	

1.2	
 Document contributor contact points ... 2	

1.3	
 Revision history .. 2	

1.4	
 Future work .. 3	

1.5	
 Foreword .. 5	

2	
 References ... 6	

3	
 Terms and definitions ... 7	

4	
 Abbreviated terms ... 8	

5	
 OWS-8 Aviation Architecture - Overview ... 11	

6	
 Workflows ... 12	

7	
 Component Descriptions ... 15	

7.1	
 AIXM 5.1 WFS-T .. 15	

7.1.1	
 Snowflake .. 15	

7.1.1.1	
 Components Overview .. 15	

7.1.1.2	
 Component functionality .. 16	

7.1.1.3	
 Data available via the components ... 17	

7.1.1.4	
 Accomplishments .. 17	

7.1.1.5	
 Challenges ... 17	

7.1.2	
 Comsoft .. 18	

7.1.2.1	
 Overview ... 18	

7.1.2.2	
 Purpose in OWS-8 .. 18	

7.1.2.3	
 WFS 2.0 conformance .. 19	

7.1.2.4	
 New and specific functionality and other contributions to OWS-8 19	

7.1.2.5	
 Digital NOTAM generation .. 21	

7.1.2.6	
 Metadata support ... 21	

7.1.3	
 Luciad .. 21	

7.1.4	
 WFS Service Capabilities - Summary ... 21	

7.2	
 WXXM 1.1 WCS 2.0 ... 24	

7.2.1	
 GMU .. 24	

7.3	
 FPS ... 24	

7.3.1	
 Carmenta .. 24	

7.3.2	
 Envitia .. 25	

7.3.2.1	
 Introduction ... 25	

7.3.2.2	
 Standard Functionality .. 25	

7.3.2.3	
 Specific/new Functionality ... 25	

7.3.2.4	
 Available Data .. 25	

7.3.2.5	
 Component Configuration .. 26	

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

v

7.3.2.6	
 Challenges Faced .. 26	

7.3.2.7	
 OWS-8 Accomplishments .. 26	

7.3.3	
 Luciad .. 27	

7.4	
 Event Service .. 28	

7.4.1	
 UM-IfGI ... 28	

7.4.1.1	
 Interfaces ... 28	

7.4.1.2	
 Changes to the Event Service Implementation ... 29	

7.4.2	
 IDS ... 30	

7.4.2.1	
 Architecture ... 30	

7.4.2.2	
 Services Description ... 31	

7.4.2.3	
 Configuration .. 32	

7.5	
 Registry Service ... 32	

7.5.1	
 Galdos .. 32	

7.5.1.1	
 Key features .. 33	

7.6	
 Aviation Client ... 33	

7.6.1	
 Luciad .. 33	

7.6.1.1	
 Challenges & Accomplishments ... 37	

7.6.2	
 Frequentis ... 38	

7.7	
 WXXM Client .. 41	

7.7.1	
 Atmosphere .. 41	

7.8	
 AIXM 5.1 Validation Tools ... 42	

7.8.1	
 Lisasoft ... 42	

7.8.1.1	
 Schematron Rules ... 43	

7.8.1.2	
 Use in OWS-8 ... 43	

7.9	
 AIXM Performance Assessment Tools .. 44	

7.9.1	
 AtoS ... 44	

7.9.1.1	
 The EXI-TTFMS framework .. 44	

7.9.1.2	
 Test cases .. 45	

7.9.1.3	
 Results ... 45	

7.9.1.4	
 Future work ... 46	

7.10	
 Access Control System ... 46	

7.10.1	
 TUM ... 46	

8	
 Access Control System within the OWS-8 Aviation Architecture 48	

8.1	
 Service-oriented Security Architecture .. 48	

8.2	
 Initiation of the Access Control Process .. 48	

8.3	
 Architecture of XACML based Access Control Systems 50	

9	
 Aviation Event Architecture ... 53	

9.1	
 Encoding of Aviation Events ... 53	

9.1.1	
 Digital NOTAM ... 53	

9.1.1.1	
 Temporality and Uniqueness .. 53	

9.1.1.2	
 Spatial Extent .. 54	

9.2	
 Web Service Notification and SOAP ... 54	

9.3	
 Eventing Components and Dataflow .. 55	

9.3.1	
 Determining Data of Interest ... 56	

OGC 11-093r2

vi Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

9.3.2	
 Data Provision .. 57	

9.3.3	
 Data Processing .. 58	

9.4	
 Dynamic Filtering ... 58	

9.4.1	
 Creation of a Dynamic Spatial Filters .. 59	

9.4.2	
 Provision of Aircraft Position Data .. 62	

9.4.3	
 Processing of Position Data ... 62	

9.5	
 Observed Issues and Drawbacks .. 62	

9.5.1	
 Dealing with the AIXM Temporality Model ... 63	

9.5.1.1	
 Event Service Conformance Classes .. 63	

9.5.1.2	
 WFS Support for Dynamic Features ... 63	

9.5.2	
 Interoperability between Event Services ... 64	

9.5.3	
 Additional Observations .. 64	

10	
 Lessons Learned .. 66	

10.1	
 AIXM / Temporality Model ... 66	

10.1.1	
 Clarify Snapshot Definition ... 66	

10.1.1.1	
 Problem Statement and Description .. 66	

10.1.1.2	
 Recommendation .. 68	

10.1.2	
 Clarify Snapshot Encoding for Feature Property with Schedule 68	

10.1.3	
 Extract - Extending the Snapshot Concept .. 73	

10.1.3.1	
 Introduction ... 73	

10.1.3.2	
 Use Case .. 74	

10.1.3.3	
 Computation .. 75	

10.1.3.4	
 Encoding ... 79	

10.1.3.5	
 Summary ... 83	

10.1.4	
 Reconsider Rules for Handling Changes to Multi Occurring Properties 84	

10.1.4.1	
 Delta for multi-occurring property with schedule 84	

10.1.4.2	
 Temporary change of multi-occurring property that overlaps a

permanent change .. 84	

10.1.4.3	
 Recommendation .. 89	

10.1.5	
 Incorporate Extension Property Handling ... 90	

10.1.6	
 Temporality Model as Standalone Specification ... 96	

10.1.6.1	
 Purpose of the Temporality Model ... 96	

10.1.6.2	
 Why the Temporality Model should become a Standalone Concept 96	

10.1.6.3	
 What is needed? .. 97	

10.2	
 SOAP/WSDL support in OWS .. 102	

10.2.1	
 SOAP Complexity ... 102	

10.2.2	
 Bootstrapping a SOAP based OWS ... 103	

10.2.3	
 SOAP Version .. 104	

10.2.4	
 Security .. 105	

10.2.5	
 Message Size .. 105	

10.2.6	
 Conclusion ... 106	

10.3	
 Unit of Measure Handling in Filter Expressions .. 106	

10.3.1	
 Background .. 106	

10.3.2	
 Enabling automated Unit of Measure Conversion 107	

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

vii

10.3.3	
 Conclusion ... 109	

11	
 Scenarios ... 109	

12	
 Accomplishments .. 111	

13	
 Annex A – Detailed Scenario Descriptions .. 113	

13.1	
 Dispatch and Planning .. 113	

13.2	
 Increasing Situational Awareness for Flight Planners, Pilots and

Operation Centers ... 114	

13.3	
 Probabilistic Weather in Decision Making ... 114	

Figures Page
Figure 1 – OWS-8 Aviation Architecture – High-Level Overview .. 11	

Figure 2 – Common component interactions to retrieve and disseminate data 12	

Figure 3 – Component interactions to portray data .. 13	

Figure 4 – Overview of the Snowflake aviation component architecture 15	

Figure 5 – Dataflow of Event Notifications .. 30	

Figure 6 – IDS Event Service Architecture .. 31	

Figure 7 – Styling based on availability and contamination type .. 35	

Figure 8 – Class-based ICAO airspace styling ... 35	

Figure 9 – Integrated data browser .. 36	

Figure 10 - 3D visualization ... 36	

Figure 11 – Using Domain Specific Query (DSL) expressions to perform queries with FES
2.0 filter expressions at WFS .. 39	

Figure 12 – Retrieved EEVI data in the client front-end .. 39	

Figure 13 – Creating selection on map with Carmenta FPS Airport layer enabled 40	

Figure 14 – Guidance TAF visualizer - Pilot View .. 41	

Figure 15 – Guidance TAF visualizer - Scientific View .. 42	

Figure 16 – DuckHawk Testing Framework – Overview ... 43	

Figure 17 – Candidate components for the initialization of the access control process 49	

Figure 18 – Architecture of an XACML based Access Control System 51	

Figure 19 – AIXMBasicMessage transporting a Digital NOTAM ... 53	

Figure 20 – Components involved in OWS-8 Eventing .. 55	

Figure 21 – Data flow between components of the Event Architecture 56	

Figure 22 – Dynamic buffer of a flight route ... 59	

OGC 11-093r2

viii Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

Figure 23 – State tracking of the dynamic spatial buffer ... 61	

Figure 24 – Snapshot with Baseline and Tempdelta ... 67	

Figure 25 - Snapshot with Baseline, Tempdelta and new Permdelta without according
Baseline update .. 68	

Figure 26 – State of an AIXM feature defined via its timeslices and time of interest of an
Extract of that feature .. 76	

Figure 27 –State of an AIXM feature defined via its timeslices - timeslices relevant for the
Extract with given time of interest are depicted in purple. ... 78	

Figure 28 –Timeslices relevant for an Extract (depicted in purple) whose time of interest is
partially outside the feature lifetime. .. 79	

Figure 29 – Extract whose time of interest is during the feature lifetime - encoded as a list of
Snapshots ... 80	

Figure 30 – Extract whose time of interest overlaps the feature lifetime - encoded as a list of
Snapshots ... 81	

Figure 31 – Extract including temporary changes by schedule - encoded as a list of
Snapshots ... 83	

Figure 32 – Permanent change of a multi occurring feature property occurring during the
valid time of a temporary change of that property .. 85	

Figure 33 – Handling the delta overlap issue for a multi-occurring property without
schedule .. 86	

Figure 34 – Options for solving the delta overlap issue for a multi-occurring property with
schedule .. 87	

Figure 35 – Solving the delta overlap issue for a multi-occurring property with schedule via
the schedule itself ... 88	

Figure 36 – Solving the delta overlap issue for a multi-occurring property with schedule by
encoding the temporary change via two Tempdeltas ... 89	

Figure 37 – Special Use Airspace Feature extension (for AIXM 5.1) 90	

Figure 38 – Special Activity Airspace extension (for AIXM 5.1) ... 91	

Tables Page
Table 1 – WFS Service and Operation Capabilities .. 21	

Table 2 – WFS Filter Capabilities ... 22	

Listings Page
Listing 1 – XPath subscription .. 57	

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

ix

Listing 2 – FES 2.0 subscription .. 57	

Listing 3 – Example digital NOTAM Notification ... 58	

Listing 4 – Generic restrictive view .. 60	

Listing 5 – Update for the position of an aircraft .. 62	

Listing 6 – Subscribe response .. 64	

Listing 7 – Airspace with activation based on schedule .. 69	

Listing 8 – Airspace Snapshot with full schedule .. 71	

Listing 9 – Airspace Snapshot with single value without schedule .. 72	

Listing 10 – AIXM Airspace Baseline with both SUA and SAA extension elements 92	

Listing 11 – AIXM Airspace Permdelta with changed SUA extension element 94	

OpenGIS® Engineering Report OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

1

OGC® OWS-8 Aviation Architecture Engineering Report

1 Introduction

1.1 Scope

This OGC® document describes the architecture implemented in the OWS-8 Aviation
thread, including general workflows. The document contains a summary description of
the various components within the architecture. An introduction to the Access Control
System is provided. Furthermore, the document describes relevant aspects of handling
events and notifications. Lessons learned – for example regarding the AIXM Temporality
Model – as well as scenarios and accomplishments are documented as well.

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

OGC 11-093r2

2 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

1.2 Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Name Organization
Costantino Saponaro
Luca Giallombardo

IDS

Daniel Tagesson Carmenta
David Burggraf Galdos
Debbie Wilson Snowflake
Jan Hermann TUM
Jeroen Dries Luciad
Jérôme Jansou AtoS
Jim Groffen Lisasoft
Johannes Echterhoff (editor) iGSI

Matthes Rieke IfGI

Nadine Alameh OGC
Rob Atkinson CSIRO
Simon Cox CSIRO
Simon Merrick Envitia
Thibault Dacla Atmosphere
Timo Thomas
Ulrich Berthold

Comsoft

Yuqi Bai GMU
Zdenek Farana Frequentis

1.3 Revision history

Date Release Editor Primary
clauses

modified

Description

2011-08-24 0.1 Johannes
Echterhoff

all initial word version

2011-09-09 0.2 Johannes
Echterhoff

throughout integrated a number of contributions and
completed various sections

2011-09-30 1.0 Johannes
Echterhoff

throughout final version

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

3

1.4 Future work

The following items were identified for consideration in future initiatives:

� Data validation via WPS - The work performed on validating the Digital
NOTAM Event Specification (DNES) revealed that integrating a validation tool
to check DNOTAM business rules on given dnotam:Event instances into the
Aviation service infrastructure can be facilitated by encapsulating the validation
process in a web service.

Development of a WPS profile for validation of XML instances against their
respective schema and possibly existing business rules appears to be a valuable
effort - not only for the Aviation domain but also for the general OGC community
- see future work item “Invocation of validation tools” in the DNOTAM ER for a
more detailed discussion of this idea

� Testing and integration of automatic unit of measure conversion
functionality - Automated UoM conversion as described in section 10.3 would
improve the filter capabilities of OGC Web Services. Especially when the UoM
of a feature property is not constant, the mechanism helps to perform meaningful
comparison operations. The discussion performed in OWS-8 on this topic did not
cover all relevant aspects (see section 10.3 for further details). Therefore, a future
activity should further develop the automatic UoM conversion mechanism,
integrate it into actual OGC Web Service implementations (like WFS and Event
Service that support OGC Filter Encoding Specification) and test it. Eventually,
the mechanism can then be integrated in or become an extension of the OGC
Filter Encoding Specification.

� Investigate, improve and provide guidance on service bootstrapping – During
OWS-8 participants made experience with bootstrapping of SOAP based web
services. Apparently there is a need for additional experience and guidance both
for web service providers and clients on bootstrapping to such services. While the
traditionally used OGC service bindings – HTTP GET (KVP) and HTTP POST –
are sufficiently described via an OGC service’s Capabilities document, this is not
the case for SOAP based web services. Here, the WSDL document provides
additional information that has not been considered for an OWS Capabilities
document (such as SOAP version and operation action identifiers). Section 10.2.2
explains the issue and possible solutions in more detail.

Future work should consider testing the various options with different types of
OGC web services and generic clients. Guidance should be developed regarding
the way that clients can readily start interacting with a SOAP based OGC web
service and also the information that needs to be contained in the metadata of that
service. Ultimately, this work would help integrating and using OGC services –
but also clients that want to interact with these services – in environments that
apply standards and technologies from the more general IT world. Such an
environment would be, for example, an Enterprise Service Bus (ESB) with OGC

OGC 11-093r2

4 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

services deployed on it.

Work on SOAP and WSDL for OGC Web Services has been performed in
previous OGC initiatives (see OGC 08-009r1). This work should be reviewed and
updated/extended to take into account IT standards such as WS-Addressing,
WSDL 2.0 and the WS-I BasicProfiles.

� Temporality Model as standalone specification and better support for time
varying data in OGC/ISO standards – The AIXM Temporality Model defines
encoding as well as business rules that enable applications to keep track of time
varying data, in this case of AIXM features and their properties. Refactoring the
Temporality Model into a standalone specification/standard would be beneficial
for the following reasons: a) enable re-use of the concepts defined by the
Temporality Model in other domains that deal with time varying data, b)
improved maintenance/governance of the Temporality Model itself, c) improved
interoperability and usability when handling and managing time varying data via
(web) services. Section 10.1.6 explains this in more detail. The ideas and
suggestions presented in that section should be considered in the future. Improved
usability and interoperability in model design and encoding as well as
management and access of time varying information are key benefits of the
suggested refactoring. Section 10.1.6 also outlines how this could be achieved by
revising/extending a set of OGC and ISO standards.

� Aviation Event Architecture
o Dynamic spatial filtering – Future work on the dynamic spatial filter

should cover processing as well as (architecture) modeling and interface
definition aspects. A combination of temporal filters and dynamic spatial
filters is imaginable. For instance, an SAA in a near upcoming part of the
flight route may be activated but the start time of the activation is three
hours from now. Obviously, a pilot or dispatcher is not interested in such
an Event as the airplane will have passed this airspace already three hours
before the activation takes place (given that the route segment can be
traversed in three hours). Missing such events because of application of
dynamic filtering must be regarded from a security aspect as well;
however, this mechanism can help clients to receive and act only upon
those events that are of interest. Additionally, the design of the EML
should be improved to reduce the current complexity. This accompanies a
general review of the EML model with respect to dynamic event patterns
and parameters. In general, alternative approaches to using EML could be
investigated.

o Simplification of subscription methods – Specific requirements from a
client perspective should be included in the design of subscriptions. This
includes the simplification of interfaces as a client should not deal with
such complex markup languages if only a rather small and specific subset
of the given functionality is used. This concerns the way that filter
statements are created. Various options to improve the situation should be

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

5

discussed such as domain specific filter functions and stored subscriptions
in Event Services. Work topics could cover the development of interfaces
as well as general investigations on contents for such stored subscriptions.

o Provision of aircraft position updates – in the case that the receipt of
aircraft positions using ADS-B is considered as appropriate several
architectural aspects need to be taken into consideration. From an Event
Service point of view receiving a vast amount of position updates from
different aircrafts is problematic due to performance limitations. The event
architecture could benefit from some sort of broker service for position
updates. An Event Service receiving a subscription for a specific flight
route (with an assigned CallSign) could then subscribe at such a broker
service for position updates of the aircraft with this call sign. Thus, an
Event Service only receives those position updates which are relevant for
the currently registered subscriptions. In general, it may also be reasonable
to hide such a broker architecture behind the façade of a possible
authoritative Event Service which would provide a global interface for
subscribing to DNOTAMs.

o Conceptual work on enrichment of thin events within an Event
Service – during this testbed the developed enrichment design has been
applied while processing events. What is currently missing is the
conceptual integration of this feature into the overall model of the Event
Service. Future work on the enrichment of thin events should consider the
integration into the service metadata. A client using the Event Service
would then be able to determine if it is capable of pulling additional
information from a (WFS) data store, thus being able to define appropriate
subscription filters. This would also imply the definition if an Event
Service supports the retrieval of AIXM feature Extracts for a certain
period of time (see section 10.1.3 for further details on “Extract”).

1.5 Foreword

This document is a deliverable of the OGC Web Services (OWS) Initiative - Phase 8
(OWS-8). It describes the general architecture that was implemented in the OWS-8
Aviation thread. It also contains summaries of the components developed for and used in
OWS-8 Aviation. Furthermore, it documents issues, lessons learned as well as
accomplishments and scenarios that were of general interest in the Aviation thread. More
detailed information on specific aspects considered in OWS-8 Aviation, such as WFS
usage, performance benchmarking and ICAO based portrayal can be found in dedicated
Engineering Reports developed in OWS-8 (see chapter 2).

OGC 11-093r2

6 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

2 References

The following documents are referenced in this document. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply. For
undated references, the latest edition of the normative document referred to applies.

OWS-8 Engineering Reports:

� [OGC 11-061] OWS-8 AIXM Metadata Guidelines Engineering Report
� [OGC 11-072] OWS-8 Aviation - WXXM Interim Engineering Report
� [OGC 11-073] OWS-8 Aviation: Guidance for retrieving AIXM 5.1 data via an

OGC WFS 2.0
� [OGC 11-086] OWS-8 Aviation Thread – Authoritative AIXM Data Source

Engineering Report
� [OGC 11-089] OWS-8 Engineering Report - Guidelines for ICAO portrayal using

SLD/SE
� [OGC 11-091] OWS-8 WXXM/WXXS Schema Validation Results
� [OGC 11-092] OWS-8 Report on Digital NOTAM Event Specification
� [OGC 11-097] OWS-8 AIXM Compression Performance Benchmarking ER
� [OGC 11-106] OWS-8 Digital NOTAM Refactoring Report
� [OGC 11-107] OWS-8 Domain Modeling Cookbook

Other OGC Documents:

� [OGC 08-009r1] OWS 5 SOAP/WSDL Common Engineering Report
� [OGC 10-079r3] OWS-7 Aviation Architecture ER
� [OGC 10-195] Requirements for Aviation Metadata
� [OGC 10-196r1] Guidance on the Aviation Metadata Profile
� [OGC 11-060] Use of GML in aeronautical data
� [OGC 11-055] SAA Pilot Study Engineering Report

Aviation Documents:

� Digital NOTAM Event Specification, ed. 1.0 (Proposed Release), online at
http://www.aixm.aero/public/standard_page/digital_notam_specifications.html

� AIXM - Temporality Model v1.0, online at
http://www.aixm.aero/public/standard_page/download.html

� AIXM - AIXM Application Schema Generation, online at
http://www.aixm.aero/public/standard_page/download.html

� AIXM - UML to XML Schema Mapping v1.1, online at
http://www.aixm.aero/public/standard_page/download.html

Other Documents:

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

7

� The Unified Code for Units of Measure (UCUM), online at
http://aurora.regenstrief.org/~ucum/ucum.html

3 Terms and definitions

For the purposes of this report, the following terms and definitions apply.

3.1
Extract
Information on the complete status of an AIXM feature during a given time interval.

3.2
Dynamic property
Synonyms: dynamic data, time varying property, time varying data
Property of a feature type, type or data type whose value(s) and value changes are tracked
according to the AIXM Temporality Model.

OGC 11-093r2

8 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

4 Abbreviated terms

ACARS Aircraft Communications Addressing and Reporting System

ACS Access Control System
ADR Authorization Decision Request

ADS-B Automatic Dependent Surveillance-Broadcast
AIM Aeronautical Information Management

AIP Aeronautical Information Publication
AIRAC Aeronautical Information Regulation and Control

AIXM Aeronautical Information Exchange Model
AIXM-TM AIXM Temporality Model

AOA ACARS over AVLC
ATC Air Traffic Control

ATN Aeronautical Telecommunication Network
AVLC Aviation VHF Link Control

BBOX Bounding Box
CEP Complex Event Processing

COTS Commercial Off the Shelf
CRS Coordinate Reference System

CSW Catalog Service for the Web
DCMI Dublin Core Metadata Initiative
DGIWG Digital Geographic Information Working Group

DNES Digital NOTAM Event Specification
DNOTAM Digital NOTAM

DSL Domain Specific Language
ebRIM Electronic Business Registry Information Model

EFB Electronic Flight Bag
EML Event Pattern Markup Language

ES Event Service
ESB Enterprise Service Bus

EXI Efficient XML Interchange
FAA Federal Aviation Administration

FES Filter Encoding Specification

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

9

FPS Feature Portrayal Service
GeoJSON Geographic JavaScript Object Notation

GFM General Feature Model
GML Geography Markup Language

HTTP Hypertext Transfer Protocol
HTTPS HTTP Secure

IATA International Air Transport Association
ICAO International Civil Aviation Organization

ISO International Organization for Standardization
JSON JavaScript Object Notation

JVM Java Virtual Machine
KML Keyhole Markup Language

METAR Meteorological Aerodrome Report (may vary)
NAWX North American Weather extension to WXXM

NOTAM Notice to Airmen
OASIS Organization for the Advancement of Structured Information Standards

OGC Open Geospatial Consortium
OWS OGC Web Service

PAP Policy Administration Point
PDP Policy Decision Point

PEP Policy Enforcement Point
PIP Policy Information Point

POA Plain Old ACARS
RIA Rich Internet Application

SAA Special Activity Airspace
SE Symbology Encoding

SES Sensor Event Service
SIGMET Significant Meteorological Information

SLD Styled Layer Descriptor
SOA Service Oriented Architecture

SSL Secure Sockets Layer
SUA Special Use Airspace

SWIM System Wide Information Management

OGC 11-093r2

10 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

TAF Terminal Aerodrome Forecast
TLS Transport Layer Security

UCUM Unified Code for Units of Measure
UoM Unit of Measure

URI Uniform Resource Identifier
URL Uniform Resource Locator

VHF Very High Frequency
W3C World Wide Web Consortium

WCS Web Coverage Service
WFS Web Feature Service

WFS-T WFS-Transactional
WMS Web Map Service

WPS Web Processing Service
WS-A Web Services Addressing

WSDL Web Services Description Language
WS-I Web Services Interoperability Organization

WS-N Web Services Notification
WXXM Weather Information Exchange Model

XACML Extensible Access Control Markup Language
XML Extensible Markup Language

XPath XML Path Language

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

11

5 OWS-8 Aviation Architecture - Overview

The OWS-8 Aviation thread architecture can be separated into three tiers (see Figure 1):

� The Client Tier contains the client applications.
� The Business Process Tier contains components that offer services on top of the

Access Tier: discovery, portrayal, authentication and authorization, validation and
publish/subscribe

� The Access Tier contains Web Feature Services serving AIXM 5.1 data as well as
WFSs and Web Coverage Services serving WXXM and other data.

Figure 1 – OWS-8 Aviation Architecture – High-Level Overview

Figure 1 shows the links between the tiers and the general functionality that is invoked. It
also shows which participants provided which components. Some components are not
represented in the figure as they were not included in the service architecture, for
example the AIXM Performance Assessment tool provided by AtoS. A summary
description of the components is provided in chapter 7.

OGC 11-093r2

12 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

6 Workflows

This section provides a high-level overview of the common interactions between client
and service components in the OWS-8 Aviation service infrastructure.

The following sequence diagram shows common interactions for retrieving and
disseminating data that is of interest to a client.

Figure 2 – Common component interactions to retrieve and disseminate data

The interactions shown in Figure 2 have the following purpose:

1.0: The client retrieves feature data from the WFS (e.g. via the GetFeature operation).
The client can request general information, for example on airspaces and airports. Using
specific filter criteria it can also query the WFS to identify suitable alternate/diversion
airports (e.g. by searching for airports that have a passenger terminal, re-fueling facilities,
a hard-surface runway of certain required minimum length etc). Weather data formatted
as METARs and TAFs can also be served by and requested from a WFS.

2.0: The client creates a subscription at an Event Service to automatically be notified
whenever the Event Service received new data that matches the subscriptions filter
criteria. The subscription can for example be used to receive DNOTAMs for airports (e.g.
the destination and alternates) and airspaces (e.g. activations). In this step, only the
subscription is created and the interaction ends. Actually publishing new data is handled
in a separate step – see step 3.0.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

13

3.0: Whenever a WFS detects a relevant change in its feature data (for example that an
airspace got a new activation or that a runway was closed) it generates a notification that
represents the change (for example encoded as a DNOTAM) and sends it to the Event
Service.
3.1: The Event Service processes the content of the notification and matches it against all
subscriptions to detect matches.
3.2: If the data matches a given subscription, then the Event Service notifies the recipient
defined for the subscription (here it is the client).

4.0: The client processes the data that it either retrieved from a WFS or received from an
Event Service and usually displays it. Portrayal of the data is performed according to
some style.

Various options exist how the portrayal of data according to styles can be achieved in the
Aviation Architecture. These options are described in the following sequence diagram.

Figure 3 – Component interactions to portray data

OGC 11-093r2

14 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

The interactions shown in Figure 3 have the following purpose:

1.0: A client that is capable of performing style based data portrayal may first have to
retrieve suitable styles from the Registry.
1.1: With style information being available, the client can then portray the data and
display it.

2.0: Some clients may not be capable of creating style based portrayals themselves. These
clients can use the Feature Portrayal Service to perform the job for them.
2.1: First of all, the FPS retrieves the necessary feature data from the WFS – either a
WFS that is set for a pre-configured layer or a WFS chosen by the client.
2.2: If the client requested that the portrayal is performed with a certain style that is
stored in a Registry, the FPS retrieves it.
2.3: Finally, the FPS portrays the data according to the styling instructions and returns the
result to the client.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

15

7 Component Descriptions

7.1 AIXM 5.1 WFS-T

7.1.1 Snowflake

7.1.1.1 Components Overview

Snowflake Software’s GO Publisher commercial off-the shelf (COTS) product is
comprised of a series of flexible, scalable components capable of supporting the
transformation and data exchange requirements of aeronautical information systems (see
Figure 4).

Figure 4 – Overview of the Snowflake aviation component architecture

Aeronautical data were received from a wide range of sources and integrated into a
consolidated database. The consolidated database schema is an AIXM 5.1 schema storing
BASELINE, TEMPDELTA and PERMDELTA timeslices. Supporting metadata were
also defined based on user scenarios defined in the metadata guidelines document. The
Snowflake Software component architecture consisted of three components that were
used in the authoritative data source, event architecture and flight planning scenarios.

7.1.1.1.1 WFS 2.0 (read-only)

Three different instances of the read-only WFS 2.0 were established to investigate how
different methods for configuring the WFS could be applied to address the key issue of
retrieving features containing only those timeslices that correspond to the filter criteria
contained in a request:

OGC 11-093r2

16 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

� Current History WFS: within this configuration a single feature is published
representing each real world object. Each feature contains only BASELINE and
TEMPDELTA timeslices that are valid now and in the future.

� Full History WFS: within this configuration a single feature is published
representing each real world object. Each feature contains all BASELINE and
TEMPDELTA timeslices that have ever been published.

� 1 Feature – 1 Timeslice WFS: within this configuration multiple features are
published that represent the real world objects. Each feature contains only one
timeslice: BASELINE, TEMPDELTA or PERMDELTA that representing the
state of the real world object or an event that resulted in permanent or temporary
change to the feature over a specified time period.

7.1.1.1.2 WFS-T 2.0 (transactional)

A separate transactional WFS 2.0 instance was established to support the authoritative
data source and event architecture threads. The WFS-T was established to support the
insert of features containing TEMPDELTA timeslices representing i) SAA Activation
Schedules (create, modify, approve, disapprove), ii) Navaid Unservicable, iii) Runway
Closure and iv) Airport Surface Contamination.

The WFS-T was integrated into the data maintenance architecture for the consolidated
database. On insert of a Feature containing a TEMPDELTA timeslice a series of
processes are then triggered to auto generate additional information to publish the data
via the WFS and Event Publisher in real-time.

7.1.1.1.3 Event Publisher

The Event Publisher is composed of two components:

� GO Publisher Agent: a server-side bulk data publishing system that generates
event messages

� Event Pusher: this registers with one or more event services as an event source
and pushes the messages generated to the event service brokers

Publication of events is triggered by the insertion of a timeslice into the database. GO
Publisher Agent generates a Digital NOTAM Event which is published into a directory
on the server. The Event Pusher polls this directory and on receipt of an Event message, it
then pushes the message to the Event Service Brokers.

7.1.1.2 Component functionality

No new component functionality was developed for either GO Publisher WFS or the
Event Publisher during OWS-8. GO Publisher WFS currently implements a large
proportion of the OGC WFS 2.0 specification (Table x) and the Event Publisher
continues to have sufficient functionality to connect to the IfGI and IDS Event Services.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

17

Within OWS-8, the aim was to further evaluate the effectiveness of the basic mandatory
WFS 2.0 operations and full filter encoding (FE 2.0) to retrieve AIXM 5.1 data for the
various flight planning and dispatch scenarios identified.

7.1.1.3 Data available via the components

The OWS-8 consolidated database consists of data containing BASELINE and
TEMPDELTA timeslices from the following sources:

� EANS: the EANS AIXM 5.1 was made accessible via the Comsoft WFS. Some
of the feature types relevant for the scenario were harvested and loaded into the
consolidated database using GO Loader.

� Eurocontrol/LFV/ FAA Airports GIS data and AMDB Obstacles data: these
data provided for use within OWS-6 and 7 were published from the original
project databases as AIXM 5.1 and loaded into the consolidated database using
GO Loader.

� Eurocontrol Digital Snowtam Trial 2011: A global dataset of AirportHeliport
AIXM 5.1 features were harvested on an ad hoc basis from the WFS established
for the Digital Snowtam trial.

� FAA NASR Subscriber data: pre-operational data feed providing access to
AIXM 5.0 SAA messages updated every 56 days inline with the AIRAC cycle.
These were loaded into initially into an SAA 5.0 database then published out as
AIXM 5.1 and loaded into the consolidated database using GO Loader.

� FAA SAMS SUA Data feed: operational data feed providing access to SAA
Activation schedules (.csv) updated every minute.

� Test Events: a set of example test events were created to support the various
scenarios that were inserted into the consolidated database via the WFS-T 2.0

7.1.1.4 Accomplishments

Several key accomplishments were developed within OWS-8 within the data
maintenance and publication architecture developed by Snowflake:

� Consolidated data from multiple sources, published using different AIXM 5.1
extension schemas into a single authoritative database and provided access to
these data via the WFS 2.0 and Event Publisher

� Extended the database to include some example reverse associations for
AirportHeliport, Runway, Runway Element and Airspace features and tested the
benefits of reverse associations for improved data retrieval

� Configured the WFS-T to support the authoritative data source and flight planning
scenarios enabling users to insert TEMPDELTA timeslices (create, authorize,
modify, cancel/disapprove) into the database. On insert additional processes were
triggered to auto generate additional properties (i.e. sequenceNumber,
correctionNumber, gml:id) for publication via Event Publisher and WFS

7.1.1.5 Challenges

Two key challenges were identified with retrieving AIXM features from the WFS 2.0.

OGC 11-093r2

18 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

1. Simplifying data retrieval requiring multiple queries

Although GO Publisher WFS implements many of the optional query parameters and
filter expressions defined in the WFS specification however, it emerged that to
successfully retrieve AIXM 5.1 data based on the scenarios requires the implementation
of: i) Local resolve and wfs:valueOf() and ii) join query predicates. Both of these query
parameters enable users to place queries that traverse properties containing xlink
references to generate the response. Such queries are important in AIXM 5.1 as the
relationships between features are one-directional so they should remove the requirement
for reverse associations. It should also remove the requirement to submit multiple
requests to obtain a result.

2. Retrieving specific timeslices

The WFS specification supports versioning which enable users to retrieve specific
versions of a feature from within a data store, however, it does not support the ability to
support the retrieval of specific timeslices from dynamic features. This is currently a
serious issue; proposals for the support of timeslice retrieval are being developed in the
WFS Guidance ER.

7.1.2 Comsoft

7.1.2.1 Overview

COMSOFT’s Aeronautical Information Management Database (CADAS-AIMDB) is a
fully featured AIXM 5 database. It has been especially developed to natively support all
concepts of AIXM 5. It is designed to serve as a base for integrating AIM products and
components such as electronic AIP, Charting, NOTAM Office, or Briefing with a central
Aeronautical Database.

A design principle is the interoperability with other systems. As the database is the core
of any integrated AIM solution an open interface that can be used independently from
any platform and programming language is one of the key features. For an optimal
support of AIXM 5 CADAS-AIMDB provides the CAW-interface. In OWS-7, support for
the emerging WFS 2.0 standard was added and further improved in OWS-8.

7.1.2.2 Purpose in OWS-8

In OWS-8, the CADAS-AIMDB is used as WFS data store and DNOTAM event source.
As a WFS data store, it hosts static (BASELINE and PERMDELTA time slices) and
dynamic data (TEMPDELTA time slices). Time slices can be retrieved from and stored
to the WFS. The retrieval operations support complex filters built of logical, spatial,
temporal and comparison operators.

When TEMPDELTA time slices are inserted, corresponding DNOTAM events are
created and sent to interested parties by a Web Service message.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

19

7.1.2.3 WFS 2.0 conformance

One objective of OWS-8 is to stress the WFS 2.0 standard and to apply it on AIXM 5.1
data. During this project, not all features of WFS 2.0 could be linked to a use case.
Instead of reaching a maximum of WFS 2.0 conformance, COMSOFT focused on the
implementation of the actual features used in the demo scenarios.

A detailed list of the supported WFS operations and capabilities can be found in Table 1.

7.1.2.4 New and specific functionality and other contributions to OWS-8

Basic WFS support for CADAS-AIMDB was developed in OWS-7. In OWS-8, the
support was extended and new features were implemented.

7.1.2.4.1 Support for advanced GML objects

In the document "Use of GML for aviation data", version 0.3, a detailed explanation of
the usage of GML in the aviation domain is given together with implementation hints.
The following table lists the compliance of CADAS-AIMDB with that document:

Section Support in
CADAS-
AIMDB

Details

3.1) Use of
srsName

Yes

3.2) Use of
global srsName

Partially No inheritance from gml:boundedBy. Developed for
OWS-8.

4) Positions Yes
5) Lines and
Surfaces

Yes Geodesic interpolation is always used. The
"gml:Geodesic" element is not supported.

5.1) Encoding
parallels

Yes Only EPSG:4326 and CRS:84 are supported.

5.2.3) Arc by
edge

Yes Developed for OWS-8

5.2.4) Arc by
centre point

Yes Developed for OWS-8

5.2.5) Circle by
center point

Yes

6) Point
references

No The specification is not yet clear about how to implement
and interpret references at geometry level as this is a
deviation from the general AIXM principle of having
xlink:href associations towards the feature level only.
References based on gml:ids cannot take the temporality
of the information into account as gml:ids are linked to a

7) Geographical
border
references

No

OGC 11-093r2

20 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

specific property in a specific time slice.

7.1.2.4.2 Challenges in the support for advanced GML objects

Common spatial databases do not natively support curved geometries. They support
points, straight lines and complex geometries built upon them only (e.g. line strings,
polygons). Curved geometries can only be stored in an approximated form by dividing
them into straight lines. While implementing advanced GML objects for OWS-8,
COMSOFT discovered the need for a precision parameter to spatial query operators.
These findings are documented in OGC 11-073, chapter “Precision of spatial filters”.

7.1.2.4.3 Generation and retrieval of SNAPSHOT time slices

SNAPSHOT time slices can be seen as virtual properties of a feature. This is because
they can be calculated from BASELINE, PERMDELTA and TEMPDELTA time slices.
The SNAPSHOT generation involves a complex merge process, in which time slices
have to be ordered, overlaid and filtered.

CADAS-AIMDB already supported the retrieval and filtering of SNAPSHOT time slices
through its CAW interface. In OWS-8, COMSOFT made the SNAPSHOT support
available for the WFS 2.0 interface. As SNAPSHOTs play a central role in the AIXM
temporality model, this work included effort in the domain of extending the WFS
specification to support it, which can be found in OGC 11-073, chapter "Configuring a
WFS 2.0 to serve AIXM 5.1”. CADAS-AIMDB also already supports a proposed extension
of the SNAPSHOT definition which is SNAPSHOTs for time periods. See sections
10.1.3 and 10.1.3.4.1 for details.

7.1.2.4.4 Advancement of the AIXM profile for WFS 2.0

COMSOFT contributed to the work on the proposed AIXM profile for WFS 2.0, which
benefitted from its operational experience. This included a proposal for a new temporal
query type as an alternative to the complex extensions needed otherwise to enable a WFS
to serve AIXM 5.1 data. This alternative interface is derived from COMSOFT’s CAW
interface which proved its value in productive systems. Details can be found in OGC
11-073 chapter “Use case oriented approach to time slice retrieval with WFS 2.0”.

Further conceptual work was done in the fields of

� gml:id uniqueness (see OGC 11-073 chapter “Guidelines for ensuring gml:id
uniqueness”)

� reverse associations (see OGC 11-073 chapter “Implications of Reverse
Associations”)

� excluding of optional properties (see OGC 11-073 chapter “Excluding of optional
properties”)

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

21

7.1.2.5 Digital NOTAM generation

CADAS-AIMDB supports the generation of DNOTAM events following the
specification given in the document "Digital NOTAM Event Specification, Proposed
Release, Increment 1". When TEMPDELTA time slices are inserted via the Transaction
operation, DNOTAMs with digital encoding are created and sent to interested parties by a
Web Service message. In OWS-8 these are event brokers that themselves categorize,
forward and distribute events to registered clients on a subscriber-publisher basis.

In the current implementation, only a basic support for DNOTAMs is available. No
scenario identification or validation of business rules is performed.

7.1.2.6 Metadata support

In OWS-8, support for the storage and retrieval of metadata on time slice level was added
to CADAS-AIMDB.

7.1.3 Luciad

Luciad provided an OGC Web Feature Service to retrieve Special Activity Airspace
(SAA) data provided by the FAA. The WFS supports filtering on properties, spatial
filtering (for instance, to retrieve airspaces that potentially affect a flight route), and basic
temporal filtering.

One of the challenges with serving the SAA data is the handling of the separate airspace
components that are combined using constructive geometry operations, such as unions
and subtractions. The Luciad WFS supports the additional processing required for exact
spatial queries on such complex airspaces. This allows you to evaluate exactly whether a
point lies inside or outside of a particular airspace.

The supplied data also contained links between features, for instance from an air traffic
control service to the airspace for which it provides a traffic separation service. These
links pose additional issues when they are encountered by client applications. This issue
is avoided by the WFS by automatically converting all links to local links to features that
were included with the response.

7.1.4 WFS Service Capabilities - Summary

A Web Feature Service supports a certain set of functionality, for example operations,
operation parameters, feature types, filter operations as well as operands. This section
provides a summary of the respective capabilities for each WFS that is introduced in the
previous sections.

Table 1 – WFS Service and Operation Capabilities

 Snowflake GO
Publisher
WFS

Comsoft
CADAS-
aimdb-WFS

Luciad WFS

Service
Version

1.0 ü û Compliancy
tested

OGC 11-093r2

22 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

 Snowflake GO
Publisher
WFS

Comsoft
CADAS-
aimdb-WFS

Luciad WFS

1.1 ü û Compliancy
tested

2.0 ü ü ü

DCP HTTP GET ü û ü

HTTP POST ü ü ü

WSDL ü ü
Operations GetCapabilities ü ü ü

DescribeFeatureType ü ü ü

GetFeature* ü ü ü

GetPropertyValue* ü û û

ListStoredQueries ü û û

DescribeStoredQueries ü û û

CreateStoredQueries ü û û

DropStoredQueries ü û û

Transaction ü ü ü

GetFeatureWithLock* û û ü

LockFeature û û ü

Operation
Constraints

Implements Basic WFS ü ü ü

Implements Transactional WFS û ü ü

Implements Locking WFS û û ü

KVP Encoding ü û ü

XML Encoding ü û ü

SOAP Encoding ü ü û

Implements Inheritance û û û

Implements Remote Resolve û û û

Implements Result Paging û û û

Implements Standard Joins û û û

Implements Spatial Joins û û û

Implements Temporal Joins û û û

Implements Feature Versioning û û û

Manage Stored Queries ü û û

* None of the WFS components support the “resolve” parameter specified in clause 7.6.4 of OGC 09-025r1
/ ISO/DIS 19142

Table 2 – WFS Filter Capabilities

 Snowflake GO
Publisher WFS

Comsoft CADAS-
aimdb-WFS

Luciad WFS

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

23

 Snowflake GO
Publisher WFS

Comsoft CADAS-
aimdb-WFS

Luciad WFS

Conformance
Constraints

Ad Hoc Query ü ü ü

Extended Operators û û û

Functions û û ü

Minimum Spatial
Filter

ü ü ü

Min Standard Filter ü ü ü

Min Temporal
Filter

ü ü ü

Query ü ü ü

Sorting û û ü

Spatial Filter ü ü ü

Standard Filter ü ü ü

Temporal Filter ü ü ü

Version Navigation û û û

ID
Capabilities

ResourceId ü û ü

Logical Operators ü (all) ü (all) ü (all)

Comparison Operators ü (all) ü (except for
PropertyIsBetween)

ü

Spatial
Capabilities

Geometry Operands gml:Envelope
gml:Point
gml:LineString
gml:Polygon
gml:Arc
gml:Circle

gml:Envelope
gml:Point
gml:LineString
gml:GeodesicString
gml:Curve
gml:Polygon
gml:Surface
gml:ArcString
gml:Arc
gml:ArcByCenterP
oint
gml:CircleByCenter
Point

gml:Envelope
gml:Point
gml:LineString
gml:GeodesicString
gml:Curve
gml:Polygon
gml:Surface
gml:ArcString
gml:Arc
gml:ArcByCenterPoint
gml:CircleByCenterPoi
nt
gml:Multi*
gml:ArcByBulge

BBOX ü ü ü

Equals ü û ü

Disjoint ü û ü

Intersects ü û ü

Touches ü û ü

Crosses ü û ü

Within ü ü ü

Contains ü û ü

OGC 11-093r2

24 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

 Snowflake GO
Publisher WFS

Comsoft CADAS-
aimdb-WFS

Luciad WFS

Overlaps ü û ü

Beyond ü û ü

DWithin ü ü ü

Temporal
Capabilities

Temporal Operand gml:TimePeriod gml:TimePeriod
gml:TimeInstant

gml:TimePeriod
gml:TimeInstant

Temporal Operators ü (all) ü (all) ü (all)

7.2 WXXM 1.1 WCS 2.0

7.2.1 GMU

The NOAA GOES Wind Products WCS for OWS-8 Aviation is providing access to the
NOAA GOES satellite derived high density Wind products: Cloud Drift Wind and Water
Vapor Wind.

These products consist of point-based measurements about the air temperature, air
pressure, wind direction and wind speed, along with the exact geo-location where the
measurement was performed.

This WCS exposes GetCapabilities, DescribeCoverage and GetCoverage operations. For
the GetCoverage operation, users may define the bounding box and temporal range that is
of interest. The range subset on a specific field can also be defined. There are two formats
that this WCS can return: WXXM and KML.

For more detailed information about this WCS, go to:
http://geobrain.laits.gmu.edu/ows8/aviationWCS.html

7.3 FPS

7.3.1 Carmenta

The Carmenta FPS is built on Carmenta Server, which is an OGC-compliant geoserver
implementing WMS, WFS and CSW interfaces. In OWS-8 it is used as an FPS for
portrayal of ICAO symbology using SLD/SE.

Within OWS-8 support for AIXM 5.1 has been implemented by building a generic XML
reader identifying GML-features.

Within OWS-8 Carmenta has successfully implemented support for AIXM and used it for
portrayal of aeronautical features according to ICAO standards.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

25

7.3.2 Envitia

7.3.2.1 Introduction

The Envitia FPS comprises an implementation of the WMS specification. Versions 1.0.0,
1.1.1 and 1.3.0 are supported. The FPS functionality is provided by a plugin to the
Envitia Web Services WMS component. The purpose of this Envitia FPS is to support the
OWS-8 Aviation demonstration participants in creating their demonstrations.

The available data and capabilities of the component can be explored by visiting the
Envitia Services website1 and following the Services link (top right corner) to the FAA
Demonstrator2. This demonstrator has been configured as the OWS-8 Aviation Demo
portal. The portal is best viewed in Mozilla Firefox.

7.3.2.2 Standard Functionality

Interaction with this component is exclusively via KVP-encoded HTTP GET requests.
The FPS connects to the available WFS components to obtain AIXM data. The data is
then rendered using an FPS client specified SLD. The SLDs are stored in a portrayal
registry.

7.3.2.3 Specific/new Functionality

In addition to the standard WMS capabilities, the Envitia FPS component also allows
clients to request terrain and airspace profiles or “cross sections” as they are named in the
Envitia Services portal. This can be seen by browsing to the OWS-8 Aviation Demo
portal. Simply open any of the Common Operating Pictures available, select the Cross
Section tab and then use the XZ tool to select a start and end point for the profile query.

No new FPS functionality was added to Envitia’s components as part of this project.

7.3.2.4 Available Data

Snowflake, Luciad and COMSOFT WFS have been consumed and are available as
rendered WMS layers from the FPS when a valid SLD is specified in the WMS request.

The data has been filtered loosely to the areas of interest, namely Estonia and Hawaii.
Also available are supporting background raster images for these areas. Available
imagery can be discovered by browsing the Envitia OWS-8 Aviation Demo portal.

1 http://services.envitia.com
2 http://services.envitia.com/FAASAA

OGC 11-093r2

26 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

Feature types available from the FPS are:

� Airspaces
� Airports / Heliports
� Navaids
� Runways
� Routes
� Taxiways

7.3.2.5 Component Configuration

Envitia’s ChartLink application is the nucleus of the system. It is running on the server
and is accessed via the Envitia Web Services WMS component in order to service
requests.

The data from the source WFSs provided by Luciad, COMSOFT and Snowflake has been
pre-processed and cached.

7.3.2.6 Challenges Faced

One of the main challenges faced with Envitia’s approach was matching up third party
SLDs with the internal storage format of the cached data in ChartLink. ChartLink
provides the images required in servicing FPS/WMS requests and is therefore responsible
for rendering using SLDs. Its internal storage method is not synonymous with the GML
and XPath aspects related to the usage of the SLD and WFS standards.

Due to the complexity of some of the portrayal issues, and to the lack of support for some
of the optional WFS capabilities, such as XPath resolution and join predicates, most of
them were not possible to display in the demonstration portal.

Other issues identified have been articulated in the Aviation Portrayal ER (see OGC
11-089).

7.3.2.7 OWS-8 Accomplishments

A number of the more complex portrayal issues were explored with the use of this
component. This supported the significant contribution to the Aviation Portrayal
Engineering Report from Envitia.

One of the benefits to Envitia’s approach of caching the WFS data was that it permits
Envitia control over the data itself, which enabled modification of key attribute values.
This is instrumental in being able to ensure that the different symbols and symbology
challenges can be exercised. As a simple example, this has meant that Envitia can ensure
that there are runways with UNSERVICABLE status within the areas of interest.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

27

7.3.3 Luciad

Luciad provides an OGC Feature Portrayal Service (FPS) to portray GML data. An FPS
service takes away the burden of parsing and visualizing raw GML data served by a
WFS. It remotely loads and renders data, and returns the result as an image that can be
shown by any modern web browser.

The FPS was provided as an in-kind contribution because it entirely relied on standards
and did not need any code specific to the project. In fact, the same setup is also used in
other OGC projects.

Using an FPS in an application consists of the following high-level steps:

1. Determine the WFS server that is to be contacted by the FPS
2. Construct a query for the WFS server to select the required data
3. Create a Symbology Encoding (SE) feature type style to render the data from the

WFS server
4. Wrap the WFS query together with the SE style in a request and send it to the FPS

The major drawback of this scenario is that it does not allow for caching of the data on
the server, mainly because it cannot be predicted what data will be requested by the user.
To circumvent this, the FPS can also offer layers, much like a traditional WMS, and
allow dynamic styling of those layers. This is also supported by our FPS component.

One other possible improvement would be an FPS that shares a data store with a WFS.
This would allow advanced querying and styling capabilities, but would not support
interaction with multiple WFS services.

Another useful enhancement would be support for vector-based output formats, such as
KML and GeoJSON. This could also benefit map display performance, as the client
application would no longer need to request new images every time a user zooms or pans.

Technical specifications

The FPS was built using the OGC-compliant web service components provided by
Luciad. The most important features include:

� Support for OGC WMS/FPS versions 1.1.1 and 1.3.0, including GET and POST
requests

� Support for OGC WFS versions 1.0, 1.1 and 2.0, including SOAP requests
� Support for OGC SLD/SE versions 1.0 and 1.1
� Support for any kind of GML application schema, such as WXXM and AIXM.
� Full support to work with AIXM 5.0 / 5.1, including the temporality model

OGC 11-093r2

28 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

7.4 Event Service

7.4.1 UM-IfGI

The implementation of the Event Service (ES) provided by the Institute for
Geoinformatics is based on the OGC Sensor Event Service discussion paper (OGC 08-
133). The source code is maintained and provided in collaboration with the 52°North
Initiative for Geospatial Open Source Software GmbH. Following the Publish/Subscribe
paradigm of OASIS’ Web Service Notification (WS-N) family of standards it acts as a
notification broker. The IfGI ES has been used in aviation threads of former OGC
initiatives such as OWS-6, OWS-7 and the FAA SAA Dissemination Pilot.

7.4.1.1 Interfaces

The ES consists of three endpoints. The PublisherRegistrationManager can be used to
register data providers at the ES instance but is not used in this testbed and hence not
described.

Endpoint Available Methods URL
SesPortType – broker
endpoint

GetCapabilities,
Notify, Subscribe,
GetCurrentMessage

http://v-tml.uni-
muenster.de:8080/EventService/services/
SesPortType

SubscriptionManager Unsubscribe,
PauseSubscription,
RenewSubscription

http://v-tml.uni-
muenster.de:8080/EventService/services/
SubscriptionManagerContextPath

To enable SOAP bootstrapping both endpoints provide a WSDL description (see section
10.2.2) using HTTP Get method (<endpoint-url>?wsdl).

Besides the GetCapabilities method, all available methods are defined by OASIS WS-N.
The methods used in this testbed are described in the following table.

Method Description involved OWS-8
Component

Notify Used to push a NotificationMessage to the ES. The
contents are Digital NOTAM Events or position update
messages of an aircraft (sent by clients for demo
purposes) and separated into different topics
(NOTAM-Topic, AircraftPosition-Topic). This method
does not use request-response communication, as
notifications are pushed to the ES.

WFS providers,
Clients (for demo
purposes)

Subscribe Used to define a subset of all incoming notifications. A
subset can be defined using Topic filters, XPath
Expressions and FES 2.0 filters. A
SubscriptionReference is returned to the client,
enabling the management of it. A Subscription can
have an InitialTermination time (encoded as a period
or a date time) to define its lifetime.

Clients

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

29

Unsubscribe Used to cancel a Subscription (e.g. when the flight has
arrived).

Clients

7.4.1.2 Changes to the Event Service Implementation

Compared to the ES used in the latest OGC testbeds some major improvements have
been made during this testbed. All the subsequently described features are demonstrated
in the OWS-8 Aviation scenarios including the use of digital NOTAM event encoding
and enrichment of these, position updates of the aircraft, multiple concurrent
subscriptions, subscription lifetime handling and use of the Unsubscribe operation.

7.4.1.2.1 Enrichment of Thin Events

To enable filtering on all properties of a Digital NOTAM with regard to the Temporality
Model of AIXM the thin Events received by the ES need to be enriched (see section
9.5.1.1). The approach is one of the major changes to the ES compared to the former
testbeds and is described in the following; see also Figure 5.

In a first step the Event is processed and the necessary information (gml:identifier, type
of AIXM feature) is pushed to a dedicated enrichment component. As the ES does not
always know where the data originated the enrichment component iterates over the
registered WFS instances and requests the feature using a wfs:GetFeature request with
the according feature type and gml:identifier in the fes:Filter. This iteration is stopped
when the feature has been successfully retrieved to avoid redundancy. The response is
then parsed and the original event is enriched with the additional information. The
original Digital NOTAM stays untouched and is forwarded to the clients in the same
format as received.

OGC 11-093r2

30 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

Figure 5 – Dataflow of Event Notifications

7.4.1.2.2 Dynamic Subscriptions

The dynamic filter functionality as described in section 9.4 has been implemented
prototypically within this testbed. Besides the enrichment of events, this is another major
change in the ES compared to OWS-7. Using the EML patterns the ES recognizes the
subscription as a dynamic one and takes - in addition to the digital NOTAMs - the
AircraftPositionUpdates into consideration for internal filtering. The internal
representation of the subscription is continuously updated according to the retrieved
positions. Thus, only those events matching the remaining flight route are forwarded to
the clients.

7.4.2 IDS

The Event Service is provided by IDS Ingegneria dei Sistemi S.p.A. It is being developed
in the context of OWS-8. The IDS Event Service allows distributing AIXM messages to
interested clients. Clients can filter messages by message topic or by geometry. In
addition to a push mode, the IDS Event Service also offers a pull mode, so that clients
can retrieve messages even if not being continuously connected to the network.

7.4.2.1 Architecture

The IDS Event Service implements the OASIS WS-Brokered Notification specification.
The entities involved are as follows:

ü Publisher: A Publisher is an entity that produces Notifications (AIXM messages
in this scenario) and sends it to a Broker. A Publisher can specify on what topics
it wishes to publish a notification.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

31

ü Broker: The Broker is the entity in charge of disseminating notifications on behalf
of Publishers to Consumers. Its role is routing Notifications (created by
Publishers) to Consumers who own a matching subscription.

ü Consumer: A Consumer is an endpoint designated to receive Notifications
produced by a Publisher, delivered by a Broker as a result of a subscription. A
Subscription represents the relationship between a Consumer and the Broker,
including any filtering parameters such as Topic and spatial filter expressions.

All communication with the IDS Event Service is done via SOAP messages over HTTP.
The IDS Event Service architecture is described in Figure 6.

Figure 6 – IDS Event Service Architecture

In the OWS8 scenario, the IDS Event Service implements a Notification Broker;
publishers are AIXM message producers; consumers are the client applications.

7.4.2.2 Services Description

The operations offered by the IDS Event Service are:

Notify: This is the basic method to send notifications (e.g. digital NOTAMs) from a
notification producer to the Event Service and from the Event Service to a Notification
Consumer (e.g. the clients). No response is expected from the Event Service and
Notification Consumer upon receipt of this message.

OGC 11-093r2

32 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

Subscribe: Using this method a Notification Consumer can express its interest to receive
a subset of notifications. Such a subscription may include a filter statement to specify the
subset of notifications of interest. The implemented filters are by Topic and OGC Filter
expression.

GetCurrentMessage: This method returns the last message that was posted to a specific
topic.

RegisterPublisher/DestroyRegistration: These methods are used to register/unregister a
notification producer at the Event Service. These methods are not mandatory to be used
in the OWS-8 scenario, so these functionalities are not implemented in the IDS Event
Services.

Renew: This method allows changing the subscription’s termination time in advance.

Unsubscribe: This method cancels a specific subscription.

PauseSubscription/ResumeSubscription: These methods allow a Notification Consumer
to suspend/resume its interest to receive notifications.

CreatePullPoint/DestroyPullPoint: These methods allow a Notification Consumer to
create/cancel a PullPoint resource. A PullPoint is an endpoint that accumulates
Notification Messages and allows a Notification Consumer to retrieve accumulated
Notification Messages.

GetMessages: This method is used by the Notification Consumer to retrieve accumulated
Notification Messages in the PullPoint resource previously created.

7.4.2.3 Configuration

The IDS Event Service is provided as a web application deployable under a Web Server
(it is tested under Apache Tomcat). It needs a data base to store incoming messages and
to save a report about sent messages result.

7.5 Registry Service

7.5.1 Galdos

Galdos INdicio™ is a Web Registry Service (WRS) that implements the Open Geospatial
Consortium (OGC) ebRIM profile of the Catalogue Service for the Web, 2.0.2
specification (CSW-ebRIM 1.0.1, OGC doc 07-110r4). Galdos refers to this service as
WRS for shorthand notation. The OGC Catalogue Service (OGC document 07-006r1) is
an abstract catalogue standard that defines the basic notion of Record and has multiple
profiles.

The INdicio Web Registry was used in OWS-8 for hosting Styling information encoded
using the OGC Styled Layer Descriptor (SLD) standard that are used mainly by
component Feature Portrayal Services (FPS) in OWS-8, namely by the following
participants: Carmenta, Luciad, Envitia. The participants used Insert/Update transactions

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

33

to create User accounts and to publish styling resources. GetRecord was then used to
retrieve the resources by users and the FPS components. No issues were encountered
during the OWS-8 initiative.

Unlike conventional geographic catalogues, INdicio™ is highly configurable and can be
readily deployed to manage a wide variety of objects.

7.5.1.1 Key features

� Open standards-based
� Easy installation and configuration
� Easy management and monitoring capabilities
� Secure and flexible interface
� Supports multilingual application domains
� Support for large transactions

INdicio™ ships with a CSW-ebRIM Basic Extension Package which provides a variety
of useful objects for geospatial applications including:

� Services taxonomy (source: ISO 19119 “Geographic information – Services”)
� Country codes (source: ISO 3166-1 “Codes for the representation of names of

countries and their subdivisions – Part 1: Country codes”)
� Geographical regions (source: UN Statistics Division)
� Feature codes (source: DGIWG FDD)
� Property categories based on Dublin Core (source: DCMI metadata terms)

INdicio™ is inherently extensible and can be adapted to multiple application
requirements by using OGC CSW layered on top of ebRIM. Galdos Systems Inc. is
constantly developing new extension packages, such as the CRS Extension Package, as
well as custom extension packages on request.

� The Flexible and secure query interface:
� Supports spatial queries using GML 3.1.1
� Supports XACML specification
� Supports role-based access control
� Full text search of XML resources

7.6 Aviation Client

7.6.1 Luciad

Luciad contributed a client application to access aviation data through the various OGC
services used in the project. The application is built with the LuciadMap software suite,
offering a number of OGC-standards based components and an application framework
for rapid application development. The following sections highlight the features of the
client application relevant for the project.

OGC 11-093r2

34 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

The application provides its users with flexible means for efficient queries to WFS, FPS,
and WCS services for aeronautical and weather data. These queries can be based on a
geographical region and/or a time interval. Additionally, an interface to the Event Service
guarantees that the user is kept informed of any updates.

The most important feature is the ability to support flight planning and dispatch
operations through the use of aeronautical data in the AIXM format and weather data in
the WXXM format, both delivered by WFS services. Both data types contain time
dependent information that can be used by the client to adapt the visualization to the
relevant time. This increases the situational awareness, either in-flight or during pre flight
planning.

One of our focus points in the project was the visualization of AIXM and WXXM data
using the OGC Symbology Encoding (SE) standard. This resulted in a change request for
SE which can be considered an absolute necessity to make the use of SE for complex data
models feasible. By implementing the proposed changes, we were able to show some
promising results. Figure 7 shows an airport layout with runways and aprons respectively
styled according to their availability and their contamination condition. Figure 8 shows
airspace styling according to the airspace class, corresponding to the ICAO Annex 4
airspace styling guidelines.

In this respect we also had a close look at the work that is being done for the next SE
version. This showed that SE 1.2 will certainly allow using more advanced styling
options. For instance, we will be able to describe a hatching pattern for areas, without
having to encode it as an image.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

35

Figure 7 – Styling based on availability and contamination type

Figure 8 – Class-based ICAO airspace styling

OGC 11-093r2

36 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

Figure 9 – Integrated data browser

Figure 10 - 3D visualization

Other noticeable features in the application are an integrated data browser, illustrated in
Figure 9, and 3D visualization capabilities, illustrated in Figure 10. The data browser
enables accessing the properties of a given AIXM or WXXM feature in a way that is
similar to a web browser. Users can simply follow a link from top level features to nested
features or from one feature to a linked feature. Properties that are changed during the
simulation of a flight are automatically updated during browsing. The 3D visualization
capabilities enable the user to visualize the AIXM and WXXM data in a full 3D

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

37

environment, together with a terrain consisting of elevation data and satellite imagery.
The features available for the 2D map, such as SE styling and flight simulation, are also
supported in 3D, to ensure that all views are consistent.

Finally, the application also includes support for the OGC Web Coverage Service (WCS)
standard, next to WFS and WMS/FPS. The WCS standard was used in the project to
serve weather data in the WXXM format. Although basic interaction with WCS services
was demonstrated, further investigation is needed to fully explore and evaluate the
capabilities of the WCS standard in a flight planning and dispatch context.

7.6.1.1 Challenges & Accomplishments

The main challenge for a client application is to properly support interaction with the
various services. This is partially caused by the use of the latest standards, which are
generally not yet fully supported, but also by parts of the standard that are optional or
simply not fully specified yet and thus open to interpretation. Compliancy tests and
reference implementations can be very helpful tools for implementers to assess the
interoperability of their products.

Retrieving the relevant data for a given flight scenario from a WFS is another challenge.
Our client supports the full AIXM temporality model which allows fusion of incoming
events together with pre-loaded data. This means that during the pre-flight planning
phase, the dispatcher wants to assemble all AIXM data that applies to the time period of
the flight by sending a query to a WFS. At the moment, the WFS 2.0 specification does
not allow for such a query.

The heavy use of links between AIXM 5 features in an OGC web services environment is
also an area that needs further investigation, to optimally support resolving links at the
client. The WFS 2.0 standard offers some optional features that can help with this, but
they are not yet in widespread use. This includes the use of wfs:valueOf and
automatically including linked features in WFS responses.

Our use of the WXXM format also exposed some issues when working with WXXM
data. Most important, there seem to be very little tools to ensure data quality of generated
WXXM data sets. Compared to the AIXM 5 schema, WXXM allows for a lot more
flexibility; this also brings a potential difficulty regarding interoperability when working
with data from various sources. Schema validation is a first step, but is not a guarantee in
any way that a client will be able to use the data. It also appears that some of the provided
XML samples were a bit misguiding.

To visualize both AIXM and WXXM data, the client uses styles defined according to the
OGC Symbology Encoding (SE) standard. This proved to be an interesting approach, but
also showed that care should be taken to create styles that actually work for different
applications. We have not been able to use styles created by others, sometimes due to
basic errors against standards, but also due to differences in interpretations.

OGC 11-093r2

38 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

We also enhanced the use of SOAP by our client in an effort to increase interoperability.
This was only a partial success as there seem to be some open questions on what a
SOAP-based service and client should support to allow for basic interaction.

Finally, we investigated the feasibility of integrating WCS 2.0 services in our client, as
there was no time left to do a complete integration. This revealed that the descriptions of
coverages offered by all services were lacking the metadata that is required for the client
to really understand what the server is offering. This is also a problem with older WCS
services that are in use today, but can be considered an important issue.

7.6.2 Frequentis

Frequentis develops and markets communication and information solutions for safety-
critical applications. It offers its control centre solutions, products and services world-
wide to a broad range of customers acting in various mission-critical fields - civil air
traffic management, defense, public safety, public transport and maritime. Frequentis
participates in development and evaluation of various existing or emerging standards
such as AIXM. Frequentis also participated in OWS-7, delivering an aviation client that
was presented at several demos and the AIXM conference.

Frequentis classifies the client as EFB Class I Type B/C hybrid. It fetches data from other
OWS components. The front-end is a lightweight RIA (Rich Internet Application)
targeting tablet or smartphone devices such as iPad. It runs directly in a browser, hence
no additional setup is needed at the user side. It is written in HTML5, jQuery and jQuery
Mobile with a map component provided by OpenLayers. The user can use it with all his
data even if he is disconnected from the Internet (the back-end). The back-end is written
in Scala. Scala language uses JVM and it is seamlessly interoperable with Java. In order
to minimize data going to the front-end it translates all data into JSON format.

The Frequentis Aviation Client can retrieve AIXM and WXXM data from WFS 2.0
compliant servers. It supports both the KVP and SOAP binding. It can use either stored
queries (if available) or custom queries. In order to make querying the data easier,
Frequentis has developed a very basic external DSL (Domain Specific Language) draft
within OWS-8.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

39

Figure 11 – Using Domain Specific Query (DSL) expressions to perform queries
with FES 2.0 filter expressions at WFS

The DSL expressions resemble natural language and therefore can be easily used by
flight dispatchers or pilots. Such expressions are translated into FES 2.0 (see the diagram
above). The main obstacle preventing such DSL from being widely adopted is what WFS
providers accept in queries. If they do not support join queries, reverse associations
and/or local resolve (wfs:valueOf(..) function), it is not possible to express complex
filters (e.g. filters containing references) using only one WFS query. Hence a cascade of
WFS queries has to be created and the DSL parser is not suitable.

Figure 12 – Retrieved EEVI data in the client front-end

OGC 11-093r2

40 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

The client retrieves the basic data (departure, destination and alternate aerodromes) as
SNAPSHOTs (currently supported only by COMSOFT). This data can be updated by
events later. All the data retrieved by the client can be added to the package. Package is a
concept related to the Preflight Information Briefing bulletin.

The client also integrates with Event Services. The user can subscribe for various types of
events such as DNOTAM or weather data. The received events are dispatched to the user
and displayed in the front-end. Such events can also affect stored data in the package and
change its properties if required. The client can send dynamic filtering subscription which
is very useful because it does not have to care about subscribing events along the flight
route.

Spatial constraints for both retrieving WFS data and creating event subscriptions can be
created via a selection tool in the map component.

The client does not have its own portraying component; it relies solely on Feature
Portrayal Services. It can display layers exposed by FPS or portray data with custom
SLDs. However, what is important is that FPS does not accept custom WFS data, only
custom SLDs. If the client retrieves data for airport runways, it cannot send them to the
FPS to be portrayed. Instead, the client calls the FPS with a custom SLD on the specified
BBOX containing the runways. Then the FPS retrieves data from the WFS again and
portrays it. This slightly decreases the value of the FPS as the only portraying component
the client uses.

The client supports WCS coverages in KML format in a basic way – it displays them as
the markers in the map.

Figure 13 – Creating selection on map with Carmenta FPS Airport layer enabled

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

41

7.7 WXXM Client

7.7.1 Atmosphere

The Guidance TAF visualizer provided by ATMOSPHERE is an application able to
display the probabilistic TAF in a graphical way from the Guidance TAF NAWX files
provided by the NOAA WFS. NAWX is the FAA-built North American Weather
extension to the WXXM standard.

The purpose of this component is three fold:

� Propose graphical methods to provide information usually presented in text form
(e.g. in regular TAF files)

� Obtain feedback from pilots regarding the portrayal options and iterate with them
to obtain a satisfactory portrayal policy. This feedback is aimed to demonstrate air
users’ interest in guidance TAF and to enhance their presentation to suit their
needs/expectations.

� Demonstrate the usability of the Guidance TAF and give a tool to analyze them.

The Guidance TAF visualizer is integrated within a moving-map client, where the
airports are selectable and give access to the corresponding Guidance TAF, when
available.

The component implements the portrayal of the Guidance TAFs. The final goal is to
achieve retrieval and displaying of the guidance TAFs in the frame of a given scenario.

Through the feedback of air users (pilots), the visualizer has been enriched with an
alternate view for the data. Indeed, it appears that pilots need are much more focused on
direct usability of the information (see Figure 14), whereas scientific/meteorological need
is more focused on exhaustive provision of the information (see Figure 15).

Figure 14 – Guidance TAF visualizer - Pilot View

OGC 11-093r2

42 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

Figure 15 – Guidance TAF visualizer - Scientific View

The Guidance TAF visualizer has been developed in C++. The graphical interface has
been realized with Qt (set of C++ libraries for HMIs). The client is able to show any
NAWX guidance TAF file in graphical.

The main challenges faced during the development of the TAF visualizer were:

� Getting access to the data through KVP queries from the WFS.
� Finding a proper way to display data to meet both meteorologist and pilot

expectations. This has eventually been done by a segregation of the views

During the OWS-8 testbed, ATMOSPHERE has achieved the development of a Guidance
TAF visualizer that encompasses both the pilot and the scientific perspective with regard
to portrayal and display of Guidance Forecasts. The visualizer is now equipped with a
comparison function, allowing to compare different TAF / airports with regard to a
specific parameter. This, according to the pilot, could allow better selection of:

� Best time for starting time / duration / ending time of a flight.
� Best destination / alternate airport.

7.8 AIXM 5.1 Validation Tools

7.8.1 Lisasoft

DuckHawk is an open source testing framework that enables the development of
automated reliability, load, performance, stress, error-handling and conformance tests. It
can be used to automatically test any web service or application.

DuckHawk is written in Java and built upon JUnit 3. Using JUnit test runner functionality
allows the framework to integrate with most commonly used build systems such as
Maven and Ant and be used for continuous integration testing during product
development. The tests themselves are also written in Java and use a design similar to

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

43

JUnit 3 tests. DuckHawk allows configuring the test parameters through simple
configuration files, increasing the flexibility of the developed test systems.

DuckHawk can perform various types of testing (e.g., performance, reliability, etc.), but
also provides modules for conformance testing (XML schema validation). Tests using the
conformance testing module send requests to the target server and validate the returned
XML response documents against an XML Schema.

DuckHawk collects all test results and passes them on to test listeners, which can perform
processing, analysis, and generate reports. At the moment two main implementations of
test listeners exist; an XML-report generator and a human readable HTML-report
generator.

7.8.1.1 Schematron Rules

Included in the DuckHawk WFSValidator module are several Schematron files
containing generic rules for validating the responses of the target servers. Some of these
rules are part of OGC standards and some are written to validate general parts of an XML
document (e.g., validation of dictionaries).

Figure 16 – DuckHawk Testing Framework – Overview

7.8.1.2 Use in OWS-8

For the OWS-8 testbed, the WFS Validator was preconfigured to perform validation of
Digital NOTAM Events. To achieve this, the validator comes bundled with the Digital
NOTAM schematron file developed during the testbed, as well as the latest XML schema
files.

OGC 11-093r2

44 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

A new feature added to the validation tool in this testbed was to test local files as well as
responses from a WFS. Included in the bundle are sample Digital NOTAM events
developed to test the schematron file.

Currently the validation tool needs to be manually invoked, requiring user intervention. A
proposal to encapsulate the validation tool functionality in a WPS service has been
proposed in the Digital NOTAM Event Specification Engineering Report (see OGC
11-092). This would allow for automatic invocation of the validation tool, allowing for
greater automation and interoperability.

7.9 AIXM Performance Assessment Tools

7.9.1 AtoS

The EXI-TTFMS platform, developed by W3C to compare the compression performance
of EXI (Efficient XML Interchange) against other compression algorithms was the
starting point of the AIXM benchmarking platform developed by AtoS. Analysis scripts
were used to qualify data and for display purposes.

7.9.1.1 The EXI-TTFMS framework

7.9.1.1.1 Audience

This framework, developed upon Japex (micro-benchmarking platform developed by
Oracle), is a key tool for a developer willing to:

� Appreciate the level of compaction reachable for an XML file through various
existing and open source compression algorithms (Deflate, Fast Info Set,
CWXML, EXI) using several options. The memory and CPU consumption is also
communicated, given your specific hardware and the operating system.

� Develop a new AIXM compression algorithm, based on raw data or upon a SAX
API, and check how it performs compared to existing ones.

� Modify an existing algorithm or tune specific parameters.
� Benefit from a large set of AIXM data files, from different sizes and nature,

whose selection is the result of an analysis willing to identify the inner aspects of
the AIXM structure.

7.9.1.1.2 Usage made simpler

We faced some difficulties to get a running framework, so we took care of providing a
turn-key platform easy to use for a new “java” developer willing to add new AIXM files
to the benchmark or a new algorithm. Components and candidates were updated to the
latest versions publicly available (Japex, Fast Info Set, Xerces).

7.9.1.1.3 Improvements / replacements

The EXI commercial implementation of AgileDelta, was replaced by Siemens’s
Exificient open-source EXI implementation

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

45

The framework has been modified to process raw Deflate instead of GZIP, with the
possibility to use a pre-loaded dictionary and specify the compression level from 1 to 9.

CWXML (C library) is now supported through the JNI adapter of Japex.

Japex was modified to be able to generate graph including maximum memory
consumption.

7.9.1.2 Test cases

Four families of AIXM files were identified and populated:

� A first family composed of small files (<10kB) : tree Digital Notice To AirMen
(DNOTAMs)

� A second family composed of medium sized files (between 10kB and 1MB), each
made from a single AIXM feature, bringing its own characteristic (for instance
airspaces, geo borders, runways and taxiways elements contains much more
coordinates than other features, routes have simple structure (only 28 different
elements taking 65% of the file) compared to airspaces (60 different elements
taking 30% of the file))

� A third family made of bigger files (>1MB), alternating both mixed features (like
the whole Estonian database or the sum of all features from family 2) or single
features to see how the performance of compression algorithms evolve along with
volume

� A fourth family made of technical files, useful to check a specific aspect against
all algorithms (influence of order, handling of autoclosing tags, dropping
comments, formatting …).

7.9.1.3 Results

To sum up the results of the AIXM Compression ER (see OGC 11-097), we can conclude
saying:

� EXI, using both schema knowledge and deflate post compression reduces a D-
NOTAM to 13% of the size of the original file (with no more indenting and
comments). This compression level provides DNOTAMs under 1KB, which
allows their transmission using Very High Frequency (VHF) datalink (4 messages
in Plain Old ACARS (POA), 1 single Aviation VHF Link Control (AVLC)
default frame for Aeronautical Telecommunication Network (ATN) or ACARS
over AVLC (AOA)).

� The building of the grammar is slow (seconds) and consumes memory (MBs), but
is done only once at startup.

� The deflate post-compression implemented (in java) in Exificient is slow and can
be improved.

� When the file size grows, EXI performance decays compared to other algorithms.
Depending on the structure of the file (complexity, presence of free text,
coordinates) it performs better than deflate only in a 20-50% range. This poor

OGC 11-093r2

46 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

performance in the long run, is due to AIXM Schema who offers too much free
text and to the handling of floating points number by EXI (once converted in IEE
754 binary format, float and double are less likely to be compressed again by
deflate in a second pass).

� Fast Info Set (FI) with deflate post-compression is the best value when we look
closely at the ratio compression performance / CPU consumption. FI allows a
faster SAX parsing. Its usage for WFS client/server interactions over a high speed
ground network could be suitable.

� Surprising good performance (30% additional compression for DNOTAMs) was
obtained by simply adding a dictionary based on AIXM XSD files to deflate. This
could be a cheap way to get a decent compression performance using the well
known Zlib compression layer.

7.9.1.4 Future work

Some aspects of WFS serialization are studied in the AIXM Performance Assessment
ER, and some recommendation can be made to improve the action of compression:

� Sort output by feature when multiple features are requested
� Try to reduce the size of IDs
� Try to limit coordinates to float, and use double only when very necessary
� Remove BBOX from features
� Remove formatting, comments, …

To get further, maybe a subset of AIXM (profile) could be used to reduce EXI grammar
and boost performance of DNOTAMs compression. However a perfect GML
compression library would have to cope with coordinates and treat them apart
(considering the dimension and order). A BZIP2 MTF kind of algorithm could be used
with a differential encoding (like in FLAC) to get a real compression on coordinates
without loss of precision.

7.10 Access Control System

7.10.1 TUM

The Policy Enforcement Point (PEP) – see section 8.3 for further details – is
implemented as an Apache 2 Web Server configured as a Reverse Proxy. As such, it
intercepts HTTP requests for a given URI (e.g. /service/WFS) and forwards the request to
the appropriate Apache 2 Module.

The Context Handler is implemented as an Apache 2 Module which is loaded at Apache
startup and executed if the Apache intercepts a WFS request on a given URI. In
correspondence with the XACML information flow, the Context Handler creates the
XACML Authorization Decision Request which is sent to the GeoPDP. The Context
Handler is implemented according to the requirement classes &xop;/RC/1.2,
&xop;/RC/1.3(&WFS:2.0;), &xop;/RC/1.4(&WFS:2.0;), &xop;/RC/1.9(&WFS:2.0;),
&xop;/RC/1.11(&WFS:2.0;) defined in the XACML v2.0 OGC Web Service profile. For
OWS-8, the Context Handler and the PIP are an instance for AIXM and as such

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

47

understands to resolve “Missing Attributes” for “aixm:controllingAgency” and
“aixm:usingAgency”.

The GeoPDP is a Web Service that returns XACML Authorization Decision(s) upon an
XACML Authorization Decision Request. The GeoPDP involved in OWS-8 is a
GeoXACML v1.0 BASIC implementation including extensions A+B.

Next to the access control system components two demo clients have been implemented
that show various access restrictions for the Snowflake and Comsoft Authoritative Data
Store (also see the OWS-8 Aviation Thread - Authoritative AIXM Data Source
Engineering Report - OGC 11-086).

OGC 11-093r2

48 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

8 Access Control System within the OWS-8 Aviation Architecture

8.1 Service-oriented Security Architecture

Separating security aspects as much as possible from the implementation of OGC Web
Services allows securing existing OWS instances without security related code changes.
This separation of concerns further enables leveraging available IT-security concepts and
implementations.

When externalizing security functionalities it is advantageous to provide the security
capabilities through separate security services (e.g. authentication, authorization and audit
services). Security services can be flexibly combined and can be used in different
configurations for several geo-processing services3. Each of these security services can
itself be composed of further services.

Advantages of a modular security architecture approach are e.g.:

� Splitting the security solution into separated functional components reduces the
associated development and maintenance complexity.

� The solution is fully scalable and easy to upgrade. New security services can be
easily inserted and existing services can be upgraded without affecting the others.

Because of the mentioned advantages we use a service-oriented security architecture.

8.2 Initiation of the Access Control Process

During the design and development of an Access Control System (ACS) for an OWS
based architecture one needs to address the question where to initiate the access control
process in the overall system architecture. Figure 17 shows components (see ACS boxes)
in which the access control process could be initiated.

3 for further details, see Service Oriented Security Architecture applied to Spatial Data Infrastructures. Cristian
OPINCARU, Munich 2008.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

49

Figure 17 – Candidate components for the initialization of the access control process

No assumptions on the client side software configuration

In OWS based architectures one cannot assume that subjects interact with OWS instances
through client programs with specific built-in security functionalities. It can e.g. be the
case that subjects interact with services through ordinary web browsers. The consequence
of this situation is that the access control process cannot be initiated and enforced in
components labeled 1 and 2.

Access rights cannot be controlled “behind” services

Enforcing access rights in the components 6 to 12 implies that the access control process
operates on the sub-requests and/or the corresponding responses. This is problematic in
cases where the required authorization semantics can only be enforced based on the
messages exchanged between the interacting subject and the service (e.g. GetCapabilities
or WPS Execute operation requests). Next to this problem the post-service access control

Proxy

Client

ServiceClient-
Implementation

ACS

ACS ACS

Service-
Implementation

ACS

ACS

ACSACS

Server

1

2 3 4 5 6

7

Proxy

ACS
8

Service-
Implementation

ACS

ACS

ACS

Server

10 11

12

ACS
9

OGC 11-093r2

50 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

approach is not realizable if the components 8 to 12 belong to other, independent
administrative domains.

Independency of enforceable rights of the used service implementations

OWS implementations used in SOAs are usually proprietary, from different vendors and
have no or variably powerful built-in access control capabilities. It cannot be assumed
that all service implementations provide sufficiently expressive access control
functionalities. Hence the access control process cannot be realized in the components 5
and 10.

The requirements listed above clearly reduce the number of suitable components and
imply that the access control process can only be enforced in the components 3 or 4. This
implies that an appropriate rights model must support the definition of rights that (next to
others) refer to the intercepted messages. Whether component 3 (i.e. a dedicated proxy
server) or component 4 (i.e. a server-side proxy component) is more suitable is dependent
on the characteristics and requirements of the given use case. Component 4 could e.g. be
in favor as it allows local calls of the access control system and thus implies certain
performance advantages. In contrast, the initialization of the access control process in
component 3 can result in scalability and availability advantages.

8.3 Architecture of XACML based Access Control Systems

Figure 18 shows the architecture of the proposed rule- and role-based access control
system and gives a rough impression of the internal information flow. The access control
system serves as a proxy component that intercepts messages exchanged between
subjects and WFS instances.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

51

Figure 18 – Architecture of an XACML based Access Control System

The Policy Enforcement Point (PEP) is the entry point in the access control process.
Based on an intercepted WFS request or response, the PEP generates an authorization
decision request in an implementation specific (or already XACML compliant) format
and sends it to the Context Handler.

When receiving an authorization decision request from a PEP the Context Handler
generates an XACML authorization decision request (XACML ADR) based on the
information already included in the received request and - if required - based on
additional information that can be queried from external information sources through the
Policy Information Point (PIP).

The Context Handler forwards the generated XACML ADR to the Policy Decision Point
(PDP). The PDP evaluates the incoming ADR by searching for applicable rules defined
in the currently loaded XACML policy. The effects of all rules that evaluate to ‘true’ or
‘indeterminate’ under the given ADR are combined and an XACML authorization
decision response is returned to the Context Handler.

The Context Handler interprets the result returned by the PDP and acts correspondingly.
In the end the Context Handler translates the XACML encoded authorization decision
response back into the application specific authorization decision request/response
language (if this is not XACML) and will then forward the response to the PEP. The PEP
will in turn act according to the result of the access control process.

PEP

PDP

Context Handler PIP

PAP

WFS-T 2.0
Client

XACML Policy Repository

Autorisation Decision
Request

XACML Autorisation
Decision Request

XACML Autorisation
Decision Response

WFS request/response WFS request/response
WFS-T 2.0

Autorisation Decision
Response

queries to external
data sources

XACML based Access Control System

OGC 11-093r2

52 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

The Policy Administration Point (PAP) is the component that allows policy
administrators to retrieve, insert, update, delete, test and analyze XACML encoded access
rights. Additionally the PAP can be used by the PDPs to query relevant parts of XACML
policies.

It is important to highlight that the presented architecture of rule-based access control
systems is very flexible. Each of the introduced components can be replicated and
distributed as required. In addition, certain components can be aggregated into one
component. For example, one can implement a PEP that consolidates the PEP and
Context Handler functionality.

More detailed information on the information flow within XACML based access control
systems and on the implementation of the various components of the access control
system can be found in the OWS-8 Aviation Thread - Authoritative AIXM Data Source
Engineering Report (OGC 11-086).

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

53

9 Aviation Event Architecture

This section describes the architecture for the dynamic processing of digital NOTAM
events used in OWS-8. This includes the description of the used event encodings as well
as the involved components. An overview on achieved innovations, namely the dynamic
spatial filtering of DNOTAMs and the enrichment of thin DNOTAMs with unchanged
information, will be presented in this section. In addition, the issues and drawbacks which
have been observed during OWS-8 are summarized.

9.1 Encoding of Aviation Events

The communication between the involved components makes use of two concepts.
Temporal changes to the AIXM features contained in the WFS data stores are encoded
and published using the dedicated Event extension of AIXM 5.1 as specified by the
Digital NOTAM Event Specification 1.0. As the Event Service is based on the OASIS
Web Services Notification (WS-N) standards family the components involved in the
Event Architecture use these standards as the transportation protocol. The latter is
described in section 9.2 in more detail.

9.1.1 Digital NOTAM

The Event Architecture of OWS-8 Aviation follows the guidance of the Digital NOTAM
Event Specification 1.0 on encoding NOTAM events. The AIXMBasicMessage element
is used as a container for the Event feature itself and the affected AIXM features. Figure
19 shows an Event affecting an Airspace contained in such a message container. The
Event defines the time at which the happening is valid. The Airspace element contains
one or more timeslices with the changed information as well as the link to the Event
using the ‘theEvent’ element defined by the DNES.

Figure 19 – AIXMBasicMessage transporting a Digital NOTAM

9.1.1.1 Temporality and Uniqueness

The architecture is capable of handling data which is produced in due consideration to the
specifications of the AIXM 5.1 Temporality Model by defining the interpretations of
Events as pairs of Baseline/Permdelta or Tempdelta timeslices. As opposed to OWS-7, in
OWS-8 only the data which is changed is provided by the Events (see also section 9.5.1).

Similar to other AIXM features an Event uses the gml:identifier element as a unique
identifier. Identifying an Event is necessary for cases when an Event has to be canceled

OGC 11-093r2

54 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

or updated due to informational errors. This was one of the encoding recommendations of
the OWS-7 Aviation Architecture Engineering Report (OGC 10-079) and has also been
documented as a recommendation in the OWS-8 Report on Digital NOTAM Event
Specification (OGC 11-092).

9.1.1.2 Spatial Extent

Similar to the previous testbeds the geometries of AIXM features are – besides their
actual spatial extent – encoded using the gml:boundedBy element. As most of AIXM
features have a specific or potentially no geometry at all, the workaround as established
in OWS-6 and OWS-7 has been used in this testbed as well. Here, bounding boxes have
been created by the service provider explicitly and included in the DNOTAM. The
bounding box was then used for spatial filtering. The WFS data stores are responsible for
computing the relevant geometry for every feature to enable spatial filtering of digital
NOTAMs using the Event Service. There are several issues (e.g. collections of or
multiple geometries per feature; as discussed in OGC 10-079) which have not been
addressed during this testbed. For most cases spatial filtering is performed using the
computed bounding box (e.g. of an Airspace) or special geometry forms such as
DirectPositions (e.g. aixm:ElevatedPoint for a Navaid) of an AIXM feature.

9.2 Web Service Notification and SOAP

For transmission of Events the WS-N communication patterns are used. This results from
the fact that the Event Service – acting as an intermediary component for data filtering
(see section 7.4) – is based on the OASIS Web Services Notification (WS-N) standards
family. SOAP version 1.2 was applied as the protocol binding for the involved WS-N
components. Within this testbed version SOAP 1.2 has been used in combination with
WSDL 1.1 descriptions of the Event Services to enable SOAP bootstrapping (see section
10.2.2). WS-N defines a set of roles for components of a distributed service architecture
and message protocol. In particular, these roles are Publishers, NotificationProducers,
NotificationConsumers and NotificationBrokers which are briefly described in the
following:

- A Publisher is responsible for formatting a Notification and disseminating it to a
NotificationProducer

- A NotificationConsumer must provide an interface for receiving
NotificationMessages

- A NotificationProducer must provide an interface for subscribing to a subset of
messages and must be capable to deliver these subsets of NotificationMessages to
the subscribing NotificationConsumer

- A NotificationBroker combines the tasks of a NotificationProducer and a
NotificationConsumer and acts as an intermediary distributor.

The message protocol defines a NotificationMessage carrying the contents of an event
(such as a DNOTAM) in a dedicated message element. Examples of request/response
communication as well as push-based communication are presented in the following
section.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

55

A NotificationMessage can also define a topic for its contents. The Event Architecture
makes use of these topics for grouping similar events as recommended in the OWS-7
Aviation Architecture Engineering Report (OGC 10-079). The following topics (also called
channels) were used in the testbed:

� dNOTAM-Events
� AircraftPositionUpdates.

Thus, a NotificationConsumer can easily subscribe for a subset of similar events
disseminated on the same channel.

9.3 Eventing Components and Dataflow

This section describes the components involved in the event architecture and their roles
in detail. In general, the architecture can be separated into three tiers as done in chapter 5.
The Event Architecture only uses the Event Services for processing and disseminating
DNOTAM data. Their role can be summarized as an information broker within the
general OWS-8 Aviation Architecture.

Figure 20 – Components involved in OWS-8 Eventing

Figure 20 depicts the components used in the eventing parts of OWS-8 (based on the
corresponding figure in chapter 5. Figure 21 gives a high-level overview on the
interaction patterns between the components.

OGC 11-093r2

56 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

Figure 21 – Data flow between components of the Event Architecture

9.3.1 Determining Data of Interest

The client components are responsible for defining the digital NOTAMs that are of
interest. They act as WS-N NotificationConsumers and thus must provide a valid
NotificationConsumer endpoint to which an Event Service can deliver digital NOTAMs.
For the definition of reasonable subsets of all digital NOTAMs the clients make a
subscription using the following filters:

� XPath 1.0
� Topic or channel filter
� OpenGIS Filter Encoding Specification (FES) 2.0
� Event Pattern Markup Language (see section 9.4).

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

57

Listing 1 – XPath subscription

Listing 1 shows a subscription to select all digital NOTAMs concerning features with the
designator set to 'LAX' using an XPath expression. The subscription is additionally
restricted to only select messages posted on the 'dNOTAM-Events' channel. This
example shows that multiple filters are allowed in one subscription. Multiple filters are
combined using a logical AND.

Listing 2 – FES 2.0 subscription

The subscription shown in Listing 2 makes use of a FES 2.0 spatial filter. All digital
NOTAMs with an included or related geometry within a 500 nautical mile buffer around
the specified flight route are selected by this filter. Additionally, this subscription defines
a maximum lifetime of 5 hours. This allows the clients to automatically schedule the
termination of each subscription (e.g. terminate the subscription at the end of the
estimated flight time). Time durations (as xsd:duration) as well as date times (as
xsd:dateTime, following chapter 5.4 of ISO 8601) are valid arguments.

Using EML for defining a subset of Events is described in section 9.4.

9.3.2 Data Provision

The Event Architecture is based on the provision of digital NOTAMs as described in the
previous sections. The (transactional) WFS instances provide all digital NOTAM events

<wsnt:Subscribe xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <wsnt:ConsumerReference>
 <wsa:Address>{client-url}</wsa:Address>
 </wsnt:ConsumerReference>
 <wsnt:Filter>
 <wsnt:TopicExpression Dialect="http://docs.oasis-open.org/wsn/t-
1/TopicExpression/Simple">
 dNOTAM-Events
 </wsnt:TopicExpression>
 <wsnt:MessageContent Dialect="http://www.w3.org/TR/1999/REC-xpath-19991116">
 //aixm:designator="LAX"
 </wsnt:MessageContent>
 </wsnt:Filter>
</wsnt:Subscribe>	

<wsnt:Subscribe xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <wsnt:ConsumerReference>
 <wsa:Address>{client-url}</wsa:Address>
 </wsnt:ConsumerReference>
 <wsnt:Filter>
 <wsnt:MessageContent Dialect="http://www.opengis.net/ses/filter/level2">
 <fes:Filter xmlns:fes="http://www.opengis.net/fes/2.0">
 <fes:DWithin>
 <fes:ValueReference>{path_to_dnotam_geometry}</fes:ValueReference>
 <gml:LineString gml:id="flight_route_OWS-8_A"
srsName="urn:ogc:def:crs:OGC:1.3:CRS84" xmlns:gml="http://www.opengis.net/gml/3.2">
 <gml:coordinates decimal="." cs="," ts=" ">
 -105.873,45.559 -105.963,45.543
 </gml:coordinates>
 </gml:LineString>
 <fes:Distance uom="[nmi_i]">500</fes:Distance>
 </fes:DWithin>
 </fes:Filter>
 </wsnt:MessageContent>
 </wsnt:Filter>
 <wsnt:InitialTerminationTime>PT5H</wsnt:InitialTerminationTime>
</wsnt:Subscribe>	

OGC 11-093r2

58 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

and act as WS-N Publishers. Such events are pushed to the Event Services when they
become available at the WFSs. The WFS servers also act as a static repository for
retrieval of AIXM features and snapshots as described in section 9.5.1.

Listing 3 – Example digital NOTAM Notification

Listing 3 populates a “Navaid unservicable” DNOTAM using a Tempdelta. It uses the
NavaidExtension to link to the Event feature contained in the same XML document.

9.3.3 Data Processing

The actual processing is done by the Event Services. All incoming digital NOTAMs are
checked against subscriptions (more specifically: the filters they define) created by the
clients. If a filter matches for a certain subscription the originally received DNOTAM is
pushed to the client without modifying it. This must also be the case if the Event Service
applied enrichment of thin events (see section 9.5.1).

9.4 Dynamic Filtering

The OWS-7 Aviation Architecture Engineering Report (OGC 10-079, Section 8.4.5)
introduced the concept of a dynamic filter for DNOTAM events. During OWS-8 the

<wsnt:Notify xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2">
 <wsnt:NotificationMessage>
 <wsnt:Message>
 <msg:AIXMBasicMessage gml:id="gmlID14726"
 xmlns:msg="http://www.aixm.aero/schema/5.1/message"
xmlns:gml="http://www.opengis.net/gml/3.2" xmlns:aixm="http://www.aixm.aero/schema/5.1"
xmlns:dnotam="http://www.aixm.aero/schema/5.1/event">
 <msg:hasMember>
 <dnotam:Event>
 <gml:identifier codeSpace="urn:uuid:">BCB4F904-9AEA-4F2E-97AE-
2D4A4344BD6C</gml:identifier>
 <dnotam:timeSlice>
 ...
 </dnotam:timeSlice>
 </dnotam:Event>
 </msg:hasMember>
 <msg:hasMember>
 <aixm:Navaid gml:id="gmlID14730">
 <gml:identifier codeSpace="urn:uuid:">BCB4F904-9AEA-4F2E-97AE-
2D4A4344BD6D</gml:identifier>
 <aixm:timeSlice>
 <aixm:NavaidTimeSlice gml:id="gmlID14731">
 ...
 <aixm:interpretation>TEMPDELTA</aixm:interpretation>
 <aixm:sequenceNumber>1</aixm:sequenceNumber>
 <aixm:correctionNumber>5000</aixm:correctionNumber>
 ...
 <aixm:availability>
 <aixm:NavaidOperationalStatus gml:id="gmlID14734">
 <aixm:operationalStatus>UNSERVICEABLE</aixm:operationalStatus>
 </aixm:NavaidOperationalStatus>
 </aixm:availability>
 <aixm:extension>
 <dnotam:NavaidExtension gml:id="gmlID14735">
 <dnotam:theEvent xlink:href="urn:uuid:BCB4F904-9AEA-4F2E-97AE-
2D4A4344BD6C"/>
 </dnotam:NavaidExtension>
 </aixm:extension>
 </aixm:NavaidTimeSlice>
 </aixm:timeSlice>
 </aixm:Navaid>
 </msg:hasMember>
 </msg:AIXMBasicMessage>
 </wsnt:Message>
 </wsnt:NotificationMessage>
</wsnt:Notify>	

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

59

details for such a concept have been developed and implemented prototypically. Figure
22 illustrates the idea of this concept.

Figure 22 – Dynamic buffer of a flight route

As illustrated in this example a client receives a notification about the activation of an
Airspace (Time B). Later (Time C) another Airspace is activated and the formerly
activated Airspace gets inactive again. The clients do not receive notifications for these
events as the buffer (used as filter geometry) is updated dynamically using the position
updates received by the aircraft.

By updating a dynamic subscription using position data a client does not have to manage
multiple subscriptions for each route portion and no further request/response
communication to update the filter geometry is needed. In addition, another advantage of
such a subscription is that no unnecessary information is delivered to the clients. Hence
bandwidth is not wasted and the pilot or dispatcher is not distracted by irrelevant
DNOTAMs.

9.4.1 Creation of a Dynamic Spatial Filters

The support for dynamic subscriptions in the Event Service in general can be realized
using the Event Pattern Markup Language (EML). EML is currently a discussion paper at
OGC (OGC 08-132) and several improvements happened to it since its submission. The
concept is based on Complex Event Processing (CEP) to define patterns of Events.

OGC 11-093r2

60 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

In this testbed the dynamic spatial filter is realized using an extension of the original
EML. A generic restrictive view has been introduced in the EML model. This generic
view enables the dynamic adjustment of a pattern using a defined set of variable
parameters. Listing 4 illustrates the generic view used in this testbed.

Listing 4 – Generic restrictive view

<wsnt:Filter>
 <wsnt:MessageContent Dialect="http://www.opengis.net/ses/filter/level3">
 <eml:EML xmlns:fes="http://www.opengis.net/fes/2.0"
xmlns:eml="http://www.opengis.net/eml/0.0.2"
xmlns:swe="http://www.opengis.net/swe/1.0.1">
 <eml:SimplePatterns>
 <eml:SimplePattern patternID="select_aircraft_updates">
 ...
 <eml:PropertyRestrictions>
 <!-- use the CallSign to determine the needed position updates -->
 <eml:PropertyRestriction>
 <eml:name>dynamic_filter_stream/callSign</eml:name>
 <eml:value>OWS-8_A</eml:value>
 </eml:PropertyRestriction>
 </eml:PropertyRestrictions>
 ...
 </eml:SimplePattern>
 ...
 </eml:SimplePatterns>
 <eml:ComplexPatterns>
 <eml:ComplexPattern patternID="dynamic_buffer_using_aircraft_positions">
 <!-- select function to select the current and former aircraft position-->
 <eml:SelectFunctions>
 <eml:SelectFunction newEventName="geometry_in_dynamic_buffer"
outputName="geometry_in_dynamic_buffer_stream">
 <eml:UserDefinedSelectFunction name="SelectGeometryInDynamicBuffer">
 <eml:FunctionParameters>
 <!-- set the former_position = current_position -->
 <eml:FunctionParameter>
 <eml:UserParameterName>former_position</eml:UserParameterName>
 <eml:UserParameterValue>current_position</eml:UserParameterValue>
 </eml:FunctionParameter>
 <!-- set the current_position = new position input -->
 <eml:FunctionParameter>
 <eml:UserParameterName>current_position</eml:UserParameterName>

<eml:UserParameterValue>aircraftPositionStream/gml:pos</eml:UserParameterValue>
 </eml:FunctionParameter>
 </eml:FunctionParameters>
 </eml:UserDefinedSelectFunction>
 </eml:SelectFunction>
 </eml:SelectFunctions>
 <!-- the Gerenic view -->
 <eml:View>
 <eml:GenericView>
 <eml:ParameterDefinitions>
 <!-- which parameters affect the view? -->
 <eml:ParameterDefinition>
<eml:ParameterIdentifier>aircraftPositionStream/aircraftPosition</eml:ParameterI
dentifier>
 </eml:ParameterDefinition>
 <eml:ParameterDefinition>
 <eml:ParameterIdentifier>allData/geometry</eml:ParameterIdentifier>
 </eml:ParameterDefinition>
 </eml:ParameterDefinitions>
 <eml:InsertCriteria>
 <eml:InsertCriterion>
 <fes:Filter>
 <fes:DWithin>
 <fes:ValueReference>//schema-
element(gml:AbstractGeometricPrimitive)</fes:ValueReference>
 <!-- the static flight route -->
 <gml:Curve gml:id="ls1" srsName="urn:ogc:def:crs:OGC:1.3:CRS84">
 <gml:segments>
 <gml:GeodesicString>
 <gml:posList>24.8242444289068 59.41329527536156 -87.90381968189912
41.97626011616167 -157.91798998500212 21.322043902734308</gml:posList>
 </gml:GeodesicString>
 </gml:segments>

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

61

The generic view defines the parameters which affect the state of the filter using the
ParameterDefinitions element. Additionally, the Event Service should not process any
incoming aircraft position updates but only those which affect the appropriate flight. To
ensure this, the incoming position updates are restricted using the PropertyIsEqualTo
filter to only match updates of aircrafts with a CallSign “OWS-8_A”.

A client interested in a dynamic spatial filter can use this EML markup as a filter in the
subscription (see section 9.3.1). The subscription using EML builds the external interface
and an Event Service implementation can determine that a subscription uses input
parameters to update the state of its geometry (see following figure).

Figure 23 – State tracking of the dynamic spatial buffer

 </gml:Curve>
 <fes:Distance uom="[nmi_i]">500</fes:Distance>
 </fes:DWithin>
 </fes:Filter>
 </eml:InsertCriterion>
 </eml:InsertCriteria>
 ...
 </eml:GenericView>
 </eml:View>
 <eml:OR/>
 <eml:FirstPattern>
 <eml:PatternReference>select_aircraft_updates</eml:PatternReference>
 <eml:SelectFunctionNumber>0</eml:SelectFunctionNumber>
 </eml:FirstPattern>
 <eml:SecondPattern>
 <eml:PatternReference>select_all_data</eml:PatternReference>
 <eml:SelectFunctionNumber>0</eml:SelectFunctionNumber>
 </eml:SecondPattern>
 </eml:ComplexPattern>
 </eml:ComplexPatterns>
 <eml:TimerPatterns/>
 <eml:RepetitivePatterns/>
 </eml:EML>
 </wsnt:MessageContent>
</wsnt:Filter>

OGC 11-093r2

62 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

9.4.2 Provision of Aircraft Position Data

For demo purposes the OWS-8 clients simulate the broadcasting of the aircraft position
using a dedicated encoding defined particularly for this purpose (see Listing 5). In a
realistic scenario in the future the dynamic spatial filter could use the ADS-B4 messages
as input for aircraft position updates.

Listing 5 – Update for the position of an aircraft

This encoding covers all data items necessary for demoing the dynamic spatial filter. The
call sign of an aircraft is defined by the CallSign element and the current position of the
aircraft is encoded using the GML DirectPositionType “gml:pos”. There is an additional
optional element to assign the time of creation. This time element can be used to ensure a
certain level of temporal ordering of the incoming position updates. This can be helpful
for the correct computation of the spatial filter (see section 9.4.3) as well as determining
transportation delay and for logging purposes.

9.4.3 Processing of Position Data

In addition to the external interface an Event Service supporting dynamic spatial filters
must be able to update the internal state, namely the spatial buffer area, of subscription
filters. During OWS-8 several issues and open questions were identified that need to be
addressed in future work:

� As probably the flight route is calculated in an approximated way inside an Event
Service implementation (e.g. LineString) an appropriate way of “deactivating”
route segments is needed. This could be achieved by calculating distances to route
segment points and corresponding comparison to previously calculated distances.
If the distance increases (the plane has passed the segments endpoint), the route
segment could be deactivated. Additionally, an airplane never passes a flight route
perfectly exact. Thus, position updates or the flight route should incorporate some
sort of tolerance radius to avoid erroneous deactivation of a flight route portion.

� If an airplane swings off the planned route for some reason, how should the
dynamic spatial filter react? Should the complete subscription be canceled? Or
should it be paused until the airplane is back on the planned route?

9.5 Observed Issues and Drawbacks

During OWS-8 several issues occurred within the Event Architecture. This section
describes these issues and illustrates possible solutions.

4 http://www.eurocontrol.int/cascade/public/subsite_homepage/homepage.html,
http://www.faa.gov/nextgen/portfolio/trans_support_progs/adsb/

<AircraftPositionUpdate xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <CallSign>OWS8 A</CallSign>
 <Position>
 <gml:pos srsName="urn:ogc:crs:epsg:4326">58.04 0.454</gml:pos>
 </Position>
</AircraftPositionUpdate>	

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

63

9.5.1 Dealing with the AIXM Temporality Model

In the OWS-7 testbed a workaround was applied to provide all data to the Event Service
needed for applying filtering. In particular, the geometries of features were included in
DNOTAMs (containing delta timeslices), although the geometries themselves did not
change. This is not conform to the intention of the AIXM Temporality Model and
treating events published to an Event Service this way should be avoided as emphasized
by the Digital NOTAM Event Specification. Still, Event Service instances should be able
to do filtering and complex processing on any property of a feature to support more
complex filtering. To overcome this issue an approach has been discussed within this
testbed. It is described in the following sections.

9.5.1.1 Event Service Conformance Classes

Conformance classes define the level of information needed by an Event Service to apply
appropriate filters. Three conformance classes have been defined for the Event Service:
basic, snapshot and full-info.

� Basic means that an Event Service can only filter on the data provided by (thin)
DNOTAM events following the AIXM Temporality Model. In particular, only the
changed data is available for filtering.

� Full-info means that an Event Service has enrichment capabilities. The Event
Service is aware of an appropriate (WFS) data store and requests all needed data
for an (AIXM) feature of a thin DNOTAM.

� Snapshot is a conformance class in between the former two. An event publisher
should provide snapshots of features to the Event Service who can then support
subscriptions that access all properties of an AIXM feature at a given time
(though only at the time instant represented by that snapshot).

The communication patterns for the “Snapshot” conformance class do not follow the
AIXM Temporality Model as event publishers would provide information which does not
change. But still there are use cases (probably beyond AIXM) where such Snapshots can
be used in an Event Architecture. Within OWS-8 the Event Services either implemented
the Full-info class or stuck to the Basic class.

9.5.1.2 WFS Support for Dynamic Features

To support the Full-info conformance class a WFS data store must support the retrieval of
all information of an AIXM feature (e.g. Snapshot). The support for snapshots has been
discussed and implemented within this testbed. Details can be found in the OWS-8
Aviation: Guidance for Retrieving AIXM 5.1 data via an OGC WFS 2.0 Engineering
Report (OGC 11-073). Nevertheless, it has to be analyzed if a single snapshot is
sufficient for such use cases. An event has a time period as its validTime. Hence, a single
snapshot does not always represent every possible state of a feature for the time period of
an event. An Event Service should therefore be able to request all states of the feature and
based on these states decide if an Event matches certain filter criteria. A general solution
is needed for such decisions (e.g. an Event matches if there exists one state of the feature
for which the criteria match).

OGC 11-093r2

64 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

9.5.2 Interoperability between Event Services

Another issue which came up during the integration of both the IfGI and IDS Event
Service into the client applications was the different way of handling subscription
resources. Such resources were required to enable management of subscriptions on the
client-side (e.g. pausing or removing a subscription).

Listing 6 – Subscribe response

Listing 6 depicts the way both Event Services designate the resource of the subscription.
The WS-N standards family does explicitly define a way how to designate subscription
resources by using service-specific parameters and because the Event Services is based
on these standards using a proprietary element to identify resources is valid. During
OWS-8 the management of subscription resources on the client-side led to some minor
problems as both Event Services used different namespaces for the ResourceId element.
This was probably due to first-time application of WS-A specific policies in an OWS
service architecture. As a workaround both Event Services used the same namespace.
However, such a restriction is not necessary and may complicate the integration of
additional services into the Event Architecture as these would need to apply domain-
specific policies on a domain-unspecific environment such as WS-A.

Two possible approaches have been discussed and can be applied in future testbeds. One
approach would be to stay with the current design and delegate the responsibility of
managing the different namespaces to the clients which could address the complexity
issues with existing software libraries and components. The other solution would be
URL-based resource management (e.g. one specific URL for managing each
subscription). This would foster the interoperability among different Event Service
implementations, but would also imply a modification of the underlying communication
binding at the Event Service.

9.5.3 Additional Observations

The Digital NOTAM Event Specification states that “Missing a Digital NOTAM may be
safety critical”. Regarding the Event Architecture there can be cases that a client who
receives DNOTAMs using subscriptions at an Event Service misses a DNOTAM due to
the filter of the subscription. For instance, an Event had been published to create an ad-
hoc restricted airspace and the included spatial extent does not match the spatial filter
criteria of the subscription. Due to a mistake in the definition of the spatial extent of this

<wsnt:SubscribeResponse xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <wsnt:SubscriptionReference>
 <wsa:Address>http://v-tml.uni-
muenster.de:8080/EventService/services/SubscriptionManagerContextPath</wsa:Address>
 <wsa:ReferenceParameters>
 <es-wsa:ResourceId xmlns:es-
wsa="http://www.opengeospatial.org/projects/initiatives/ows-8/es">
 Resource-7
 </es-wsa:ResourceId>
 </wsa:ReferenceParameters>
 </wsnt:SubscriptionReference>
 <wsnt:CurrentTime>2011-08-17T12:47:33+02:00</wsnt:CurrentTime>
 <wsnt:TerminationTime>2011-08-17T13:47:33+02:00</wsnt:TerminationTime>
</wsnt:SubscribeResponse>	

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

65

Event an additional Event for correcting the geometry is being created. The corrected
geometry now matches the filter criteria of the client’s subscription but the client cannot
resolve the reference to the former published ad-hoc airspace feature. Although this
situation presumably is a rare case the issue should be discussed and a feasible solution
needs to be developed within the Event Architecture as the issue can affect security.

OGC 11-093r2

66 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

10 Lessons Learned

10.1 AIXM / Temporality Model

10.1.1 Clarify Snapshot Definition

10.1.1.1 Problem Statement and Description

Section 2.5 of the Temporality Model defines a Snapshot as follows:

“SNAPSHOT = A kind of Time Slice that describes the state of a feature at a time instant,
as result of combining the actual BASELINE Time Slice effective at that time instant with
all TEMPDELTA Time Slices that are effective at that time instant.”

This definition does not mention Permdeltas. Section 2.6 of the Temporality Model states
the following:

“From a conceptual point of view, a PERMDELTA Time Slice occurs at the edge between
any two consecutive BASELINE Time Slices and it contains values strictly for the
changed properties. [...] Conceptually, there exists a direct dependence between
PERMDELTA and BASELINE Time Slices. However, this does not mean that the
BASELINE Time Slice needs to be effectively instantiated after each PERMDELTA. In an
implementation, it is possible, for example, to “accumulate” PERMDELTA Time Slices.
The instantiation of a new BASELINE might occur, for example, after each third
PERMDELTA affecting a feature.”

Apparently, the Temporality Model allows the static property values given in a Baseline
to be superseded by changes introduced through Permdeltas, also during the validTime of
the Baseline.

Consider the following figure.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

67

Figure 24 – Snapshot with Baseline and Tempdelta

The figure shows a Snapshot that takes into account property values as defined by both a
Baseline and a Tempdelta timeslice. The current Snapshot definition of the Temporality
Model covers this situation. Now consider the next figure.

OGC 11-093r2

68 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

Figure 25 - Snapshot with Baseline, Tempdelta and new Permdelta without
according Baseline update

A new Permdelta changes the value of property P2. However, no new Baseline is
established to take this event into account and the validity end of Baseline 1 is not
updated. This situation is not covered by the current Snapshot definition. It therefore
misses an important aspect: the Permdeltas that may occur without according Baselines
being established.

10.1.1.2 Recommendation

The definition for Snapshots should be revised to take relevant Permdeltas into account.
Relevant Permdeltas are those that have a validTime that is not before or after the
validTime of the Baseline that is effective at the time requested for the Snapshot.

Ideally, the order of section 2.5 and 2.6 in the Temporality Model document is switched
so that Permdeltas are introduced before Snapshots.

10.1.2 Clarify Snapshot Encoding for Feature Property with Schedule

The Temporality Model does not define in sufficient detail how a PropertyWithSchedule
should be encoded in a Snapshot. Two options were discussed during the testbed:

1. Encode the full schedule information for the property.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

69

2. Encode just the applicable value that the PropertyWithSchedule has for the
requested point in time, without providing any schedule information.

The following three listings show the difference between these options. Given the
following Airspace feature:

Listing 7 – Airspace with activation based on schedule

<aixm:Airspace ... gml:id="tmp">
 <gml:identifier
codeSpace="http://www.example.org">i32823jk2823983298</gml:identifier>
 <aixm:timeSlice>
 <aixm:AirspaceTimeSlice gml:id="Airspace1_TS_1">
 <gml:validTime>
 <gml:TimePeriod gml:id="Airspace1_TS_1_TP">
 <gml:beginPosition>2011-01-
01T00:00:00.000Z</gml:beginPosition>
 <gml:endPosition indeterminatePosition="unknown"/>
 </gml:TimePeriod>
 </gml:validTime>
 <aixm:interpretation>BASELINE</aixm:interpretation>
 <aixm:sequenceNumber>1</aixm:sequenceNumber>
 <aixm:correctionNumber>0</aixm:correctionNumber>
 <!-- other feature properties omitted for brevity -->
 <aixm:activation>
 <aixm:AirspaceActivation gml:id="Airspace1_AACT">
 <aixm:timeInterval>
 <aixm:Timesheet gml:id="Airspace1_AACT_TIMESHEET">
 <aixm:timeReference>UTC+2</aixm:timeReference>
 <aixm:startDate>01-01</aixm:startDate>
 <aixm:endDate>31-12</aixm:endDate>
 <aixm:day>ANY</aixm:day>
 <aixm:startTime>00:00</aixm:startTime>
 <aixm:endTime>23:59</aixm:endTime>
 </aixm:Timesheet>
 </aixm:timeInterval>
 <aixm:activity>MILOPS</aixm:activity>
 <aixm:status>AVBL_FOR_ACTIVATION</aixm:status>
 <!-- other AirspaceActivation properties omitted for brevity
-->
 </aixm:AirspaceActivation>
 </aixm:activation>
 </aixm:AirspaceTimeSlice>
 </aixm:timeSlice>
 <aixm:timeSlice>
 <aixm:AirspaceTimeSlice gml:id="Airspace1_TD1">
 <gml:validTime>
 <gml:TimePeriod gml:id="Airspace1_TD1_TP">
 <gml:beginPosition>2011-06-
01T00:00:00.000Z</gml:beginPosition>
 <gml:endPosition>2011-06-05T00:00:00.000Z</gml:endPosition>
 </gml:TimePeriod>
 </gml:validTime>
 <aixm:interpretation>TEMPDELTA</aixm:interpretation>

OGC 11-093r2

70 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

 <aixm:sequenceNumber>1</aixm:sequenceNumber>
 <aixm:activation>
 <aixm:AirspaceActivation gml:id="Airspace1_TD1_AACT">
 <!-- no schedule info, thus aixm:status = ACTIVE applies to
the whole validTime of the Tempdelta -->
 <aixm:activity>MILOPS</aixm:activity>
 <aixm:status>ACTIVE</aixm:status>
 <!-- other AirspaceActivation properties omitted for brevity
-->
 </aixm:AirspaceActivation>
 </aixm:activation>
 </aixm:AirspaceTimeSlice>
 </aixm:timeSlice>
 <aixm:timeSlice>
 <aixm:AirspaceTimeSlice gml:id="Airspace1_TD2">
 <gml:validTime>
 <gml:TimePeriod gml:id="Airspace1_TD2_TP">
 <gml:beginPosition>2011-07-
01T00:00:00.000Z</gml:beginPosition>
 <gml:endPosition>2011-07-15T23:59:59Z</gml:endPosition>
 </gml:TimePeriod>
 </gml:validTime>
 <aixm:interpretation>TEMPDELTA</aixm:interpretation>
 <aixm:sequenceNumber>2</aixm:sequenceNumber>
 <aixm:activation>
 <aixm:AirspaceActivation gml:id="Airspace1_TD2_AACT1">
 <aixm:timeInterval>
 <aixm:Timesheet gml:id="Airspace1_TD2_TS1">
 <aixm:timeReference>UTC+2</aixm:timeReference>
 <aixm:day>ANY</aixm:day>
 <aixm:startTime>00:00</aixm:startTime>
 <aixm:endTime>05:59</aixm:endTime>
 </aixm:Timesheet>
 </aixm:timeInterval>
 <aixm:activity>MILOPS</aixm:activity>
 <aixm:status>INACTIVE</aixm:status>
 <!-- other AirspaceActivation properties omitted for brevity
-->
 </aixm:AirspaceActivation>
 </aixm:activation>
 <aixm:activation>
 <aixm:AirspaceActivation gml:id="Airspace1_TD2_AACT2">
 <aixm:timeInterval>
 <aixm:Timesheet gml:id="Airspace1_TD2_TS2">
 <aixm:timeReference>UTC+2</aixm:timeReference>
 <aixm:day>ANY</aixm:day>
 <aixm:startTime>06:00</aixm:startTime>
 <aixm:endTime>17:59</aixm:endTime>
 </aixm:Timesheet>
 </aixm:timeInterval>
 <aixm:activity>MILOPS</aixm:activity>
 <aixm:status>ACTIVE</aixm:status>
 <!-- other AirspaceActivation properties omitted for brevity
-->
 </aixm:AirspaceActivation>
 </aixm:activation>
 <aixm:activation>

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

71

 <aixm:AirspaceActivation gml:id="Airspace1_TD2_AACT3">
 <aixm:timeInterval>
 <aixm:Timesheet gml:id="Airspace1_TD2_TS3">
 <aixm:timeReference>UTC+2</aixm:timeReference>
 <aixm:day>ANY</aixm:day>
 <aixm:startTime>18:00</aixm:startTime>
 <aixm:endTime>23:59</aixm:endTime>
 </aixm:Timesheet>
 </aixm:timeInterval>
 <aixm:activity>MILOPS</aixm:activity>
 <aixm:status>INACTIVE</aixm:status>
 <!-- other AirspaceActivation properties omitted for brevity
-->
 </aixm:AirspaceActivation>
 </aixm:activation>
 </aixm:AirspaceTimeSlice>
 </aixm:timeSlice>
</aixm:Airspace>

then the first option for a Snapshot at time 2011-07-02T03:15:00+02:00 would look like
this:

Listing 8 – Airspace Snapshot with full schedule

<aixm:Airspace ... gml:id="tmp">
 <gml:identifier
codeSpace="http://www.example.org">i32823jk2823983298</gml:identifier>
 <aixm:timeSlice>
 <aixm:AirspaceTimeSlice gml:id="Airspace1_TS">
 <gml:validTime>
 <gml:TimeInstant gml:id="Airspace1_TS_TI">
 <gml:timePosition>2011-07-
02T03:15:00+02:00</gml:timePosition>
 </gml:TimeInstant>
 </gml:validTime>
 <aixm:interpretation>SNAPSHOT</aixm:interpretation>
 <!-- other feature properties omitted for brevity -->
 <aixm:activation>
 <aixm:AirspaceActivation gml:id="Airspace1_TD2_AACT1">
 <aixm:timeInterval>
 <aixm:Timesheet gml:id="Airspace1_TD2_TS1">
 <aixm:timeReference>UTC+2</aixm:timeReference>
 <aixm:day>ANY</aixm:day>
 <aixm:startTime>00:00</aixm:startTime>
 <aixm:endTime>05:59</aixm:endTime>
 </aixm:Timesheet>
 </aixm:timeInterval>
 <aixm:activity>MILOPS</aixm:activity>
 <aixm:status>INACTIVE</aixm:status>
 <!-- other AirspaceActivation properties omitted for brevity
-->
 </aixm:AirspaceActivation>
 </aixm:activation>
 <aixm:activation>
 <aixm:AirspaceActivation gml:id="Airspace1_TD2_AACT2">

OGC 11-093r2

72 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

 <aixm:timeInterval>
 <aixm:Timesheet gml:id="Airspace1_TD2_TS2">
 <aixm:timeReference>UTC+2</aixm:timeReference>
 <aixm:day>ANY</aixm:day>
 <aixm:startTime>06:00</aixm:startTime>
 <aixm:endTime>17:59</aixm:endTime>
 </aixm:Timesheet>
 </aixm:timeInterval>
 <aixm:activity>MILOPS</aixm:activity>
 <aixm:status>ACTIVE</aixm:status>
 <!-- other AirspaceActivation properties omitted for brevity
-->
 </aixm:AirspaceActivation>
 </aixm:activation>
 <aixm:activation>
 <aixm:AirspaceActivation gml:id="Airspace1_TD2_AACT3">
 <aixm:timeInterval>
 <aixm:Timesheet gml:id="Airspace1_TD2_TS3">
 <aixm:timeReference>UTC+2</aixm:timeReference>
 <aixm:day>ANY</aixm:day>
 <aixm:startTime>18:00</aixm:startTime>
 <aixm:endTime>23:59</aixm:endTime>
 </aixm:Timesheet>
 </aixm:timeInterval>
 <aixm:activity>MILOPS</aixm:activity>
 <aixm:status>INACTIVE</aixm:status>
 <!-- other AirspaceActivation properties omitted for brevity
-->
 </aixm:AirspaceActivation>
 </aixm:activation>
 </aixm:AirspaceTimeSlice>
 </aixm:timeSlice>
</aixm:Airspace>

while the second option for a Snapshot at time 2011-07-02T03:15:00+02:00 would look
like this:

Listing 9 – Airspace Snapshot with single value without schedule

<aixm:Airspace ... gml:id="tmp">
 <gml:identifier
codeSpace="http://www.example.org">i32823jk2823983298</gml:identifier>
 <aixm:timeSlice>
 <aixm:AirspaceTimeSlice gml:id="Airspace1_TS">
 <gml:validTime>
 <gml:TimeInstant gml:id="Airspace1_TS_TI">
 <gml:timePosition>2011-07-
02T03:15:00+02:00</gml:timePosition>
 </gml:TimeInstant>
 </gml:validTime>
 <aixm:interpretation>SNAPSHOT</aixm:interpretation>
 <!-- other feature properties omitted for brevity -->
 <aixm:activation>
 <aixm:AirspaceActivation gml:id="Airspace1_SN_AACT">
 <aixm:activity>MILOPS</aixm:activity>

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

73

 <aixm:status>INACTIVE</aixm:status>
 <!-- other AirspaceActivation properties omitted for brevity
-->
 </aixm:AirspaceActivation>
 </aixm:activation>
 </aixm:AirspaceTimeSlice>
 </aixm:timeSlice>
</aixm:Airspace>

Clarification of encoding PropertiesWithSchedule in Snapshots has already been
requested on the AIXM Forum5. The request has been accepted and will be incorporated
in the next version of the Temporality Model. At the same time, users were invited to
suggest further improvements. A summary of the OWS-8 discussions regarding this
clarification is therefore provided in this document.

Both options have their advantages and disadvantages - depending on the given use case.
The first option is useful for encoding an Extract as a list of Snapshots (see section
10.1.3.4.3). However, simple clients need to evaluate schedules themselves just to find
out what the value of a PropertyWithSchedule really is at a given point in time. With the
second option, the service that generates the Snapshot is responsible for computing this
information and the client can easily read it from the Snapshot. For the encoding of an
Extract as a list of Snapshots, the second option causes a significant increase of the size
of the resulting representation.

According to the result of the discussion on the AIXM Forum, the second option is
preferred and is going to be the default way of encoding a PropertyWithSchedule in a
Snapshot. This supports the intent of introducing the Snapshot: supporting simple clients
by moving the complex evaluation of timeslices and timesheets to the service.

Supporting the first option - to include full schedule information in Snapshots - can
nevertheless be considered as optional service functionality. With option 2. being the
default for generating Snapshots, option 1. could be supported via an explicit request.

An additional aspect of encoding a PropertyWithSchedule in a Snapshot is that the value
of that property may be undefined at the requested point in time. According to section 2.7
of the Temporality Model, this is possible (but not recommended). If a Snapshot is
requested for such a time, then the property shall completely be omitted in the result.

10.1.3 Extract - Extending the Snapshot Concept

10.1.3.1 Introduction

The Temporality Model recognizes the need to communicate the status of an AIXM
feature at a given moment in time. In such a situation, it is efficient - and convenient for

5 See the AIXM Forum thread with subject “AIXM Temporality Concept document
version 1.0” from October 2010.

OGC 11-093r2

74 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

the recipient - to encode the information as a feature with a single Snapshot timeslice.
The Snapshot contains information on the value of all feature properties for the given
time. This information is aggregated from all applicable timeslices (see section 2.5 of the
Temporality Model as well as section 10.1.1 and section 10.1.2 in this document for
further details).

During OWS-8, the need to get information on the state of an AIXM feature not only for
a given point in time but during a given time interval was discussed. This new concept
was called Extract to better differentiate it from the concept of a Snapshot. The following
sections describe the use case for Extracts, how an Extract is computed and how it can be
encoded.

10.1.3.2 Use Case

During OWS-8 and previous testbeds, clients subscribed at a standalone Event Service to
automatically be notified when updates to aeronautical data were performed. The clients
expressed interest in specific updates via filter criteria defined for their subscription.

The AIXM Temporality Model facilitates efficient communication of aeronautical data.
Value changes of AIXM feature properties can be modeled and encoded in Permdelta and
Tempdelta timeslices which only include the updated properties (together with some
timeslice metadata).

However, this efficient encoding is problematic for system entities (like the Event
Service) which do not store the complete AIXM feature information themselves.

A subscription filter may for example express interest in activations of airspaces along6
the route of a (maybe just planned) flight. An AIXM AirspaceActivation does not carry
the geographic extent of the airspace concerned (just information on the vertical extent of
the activation). An Event Service cannot determine if a new activation event is along the
flight route if it receives the Airspace feature with just a timeslice that contains the
activation update. The airspace geometry is missing and either has to be added to the
update before it is sent to the Event Service or the service must retrieve the geometry
itself.

Let us assume that the service retrieves the data from an authoritative datastore itself. Let
us further assume that the subscription filter is more complex in that it not only requires
knowledge of airspace geometry but of further airspace property values - or values
thereof in case of properties with complex type. The service could retrieve the required
information for a given point in time - for example the validity start of the activation
timeslice - from the data store by requesting snapshots for that time. But how should the
service determine which of the possibly changing values of a feature property that is
targeted by a filter expression are important? Ideally, the subscriber explicitly states this
in the subscription filter. The approach to have an evaluateDuring filter function to take

6 A specific geospatial relationship is not of interest here. What matters is that any spatial relationship can be
determined based upon the geometry of the airspace and the flight route.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

75

the dynamic aspect of feature properties for filtering into account was developed in the
SAA Pilot and OWS-8 and is documented in [OGC 11-073]. As the properties of an
AIXM feature can change their value during the feature lifetime, a user may also need to
consider the feature state over a period of time. The evaluateDuring operation thus allows
for both the provision of a time instant and time period as parameter for determining
which feature data is relevant for filtering. In case that a time instant is provided the
Event Service can retrieve a Snapshot of the relevant AIXM feature. Otherwise, it needs
to extract the feature information that is relevant for the given period of time.

An “Extract” thus is the equivalent of a Snapshot, just that it provides complete
information on the state of a feature for a given period of time, not a point in time. The
feature timeslices - Baselines, Permdeltas and Tempdeltas - contain this information. A
subset of these timeslices usually already suffices to represent the requested information.
Thus it is unnecessary to retrieve the complete feature information from the authoritative
data store.

In addition to the “Eventing” use case just described, another use of an “Extract” may be
caching. A client may want to explore the state of an AIXM feature for given point in
time but the application already automatically retrieves feature state information for
adjacent periods of time in a background process. This would speed up browsing through
the data and is similar to mapping clients which cache map tiles that are adjacent to the
current view as well as zoom level.

An approach for retrieving an AIXM feature with just the desired subset of timeslices is
documented in [OGC 11-073]. The following sections describe which timeslices are
needed for an Extract and the options for encoding it.

10.1.3.3 Computation

An Extract is computed by identifying the timeslices of an AIXM feature that are relevant
for the time of interest assigned to the Extract, i.e. the time period for which the state of
an AIXM feature shall be determined. It is tempting to say that only those timeslices are
relevant that are not before and not after the time of interest. In addition, one might think
that only Baselines and Tempdeltas are of interest. Although both assumptions cover
most cases, they are not entirely sufficient. Consider the following figure.

OGC 11-093r2

76 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

Figure 26 – State of an AIXM feature defined via its timeslices and time of interest
of an Extract of that feature

The Temporality Model allows that Permdeltas are not accompanied by an according
Baseline - see section 10.1.1. In Figure 26, Permdelta two and four fall into this category.
They permanently change the values of properties P2 and P3 respectively. Permdeltas
therefore need to be taken into account as well for computing an Extract.

The following list defines which timeslices are relevant for an Extract:

1. Baselines which are not before and not after the time of interest of the Extract are
relevant.

2. Permdeltas which are not after the time of interest of the Extract are relevant,
unless:

a. they have a valid time which equals the start of the valid time of one of the
Baselines identified in the previous step (in that case, the Baseline
incorporates the state change that such a Permdelta represents)

b. a Baseline exists whose valid time is not before or after the start of the
time of interest of the Extract and the valid time of the Permdelta is before
the valid time of that Baseline (the Baseline overrides or incorporates all
state changes that such Permdeltas represent)

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

77

3. Tempdeltas which are not before and not after the time of interest of the Extract
are relevant.

The following notes apply:

� Timeslices that have been corrected by another one are irrelevant for the Extract.
� Timeslices that have been cancelled (see Temporality Model section 3.6 for

further details) are irrelevant for the Extract.
� A further optimization by detecting Tempdeltas whose state changes are

overwritten through Tempdeltas with higher sequence number (see Temporality
Model section 3.8 “Overlapping TimeSlices and corrections” for further details)
would be complex and is thus not considered in the identification of relevant
timeslices. The optimization would need to determine that the temporary state
changes communicated by a given Tempdelta are completely - i.e., for the whole
valid time of that Tempdelta - superseded through Tempdeltas with higher
sequence number. The possible stacking of such Tempdeltas complicates matters,
as well as the fact that a Tempdelta may contain temporary values for more than
one AIXM feature property.

The following figure shows which timeslices are relevant for the extract in the example
shown in Figure 26.

OGC 11-093r2

78 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

Figure 27 –State of an AIXM feature defined via its timeslices - timeslices relevant
for the Extract with given time of interest are depicted in purple.

The previous figures show an AIXM feature which is defined for the whole time of
interest of an Extract. In the general case, one or more property of an AIXM feature -
even the whole feature - may not be defined for that time. Therefore, information on the
feature state may be missing - partially or completely - for an Extract. An example is
shown in the following figure. The encoding of an Extract needs to take this into account.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

79

Figure 28 –Timeslices relevant for an Extract (depicted in purple) whose time of
interest is partially outside the feature lifetime.

Note that an Extract contains information on the feature state only for its defined time of
interest and neither the time before or after that period of time. Figure 28 exemplifies
this. There, Tempdelta 2 is of relevance to the Extract, but Tempdelta 3 is not as it is after
the time of interest. Only the information in Tempdelta 2 is encoded in the extract, not
that of Tempdelta 3. It is important to understand that any changes that occur after the
time of interest are not considered by the computation instructions defined in this section.
An Extract therefore does not enable clients to make any assumption on the state of an
AIXM feature before or after the time of interest.

10.1.3.4 Encoding

Once the timeslices relevant for an Extract have been identified, the information on the
feature state that these timeslices represent needs to be encoded so that it can be
communicated to a client. Two options were discussed during the testbed. They are
described in the following sections.

10.1.3.4.1 Snapshot List

The state of a feature at a given point in time can be represented by a Snapshot timeslice.
An Extract contains information on the state of an AIXM feature for a period of time and

OGC 11-093r2

80 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

thus the feature state may change during that time. A Snapshot timeslice as defined by the
Temporality Model has a validTime that is represented by a time instant. However, the
state of a feature usually does not change so frequently that the resolution of system
clocks would not be able to represent each change as a different point in time. The state
of an AIXM feature therefore is most often constant over a certain period of time - which
can last seconds, minutes, hours or days, depending on the scenario. This period of time
in which the feature state is constant can be represented in the validTime of a Snapshot.
An Extract can thus be represented by a list of these Snapshots.

From the list of relevant timeslices, an application needs to compute the feature state at
the start and end of the time of interest as well as all state changes in between. For the
example shown in Figure 27, a list of seven Snapshots (see the following figure) would
be used to encode the information of the relevant timeslices.

Figure 29 – Extract whose time of interest is during the feature lifetime - encoded as
a list of Snapshots

The validTime of the first/last Snapshot begins/ends at the start/end of the time of interest
(if the feature state is defined for these points in time). This takes into account that an
Extract does not provide information about the state of an AIXM feature before or after
the time of interest.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

81

As discussed before, the time of interest of an Extract may not be contained within the
lifetime of an AIXM feature. Accordingly, the list of Snapshots may not cover the whole
time of interest or may even be empty7. For the example shown in Figure 28, a list of
Snapshots as shown in the following figure would be created.

Figure 30 – Extract whose time of interest overlaps the feature lifetime - encoded as
a list of Snapshots

The start of the validTime of Snapshot S1 equals the beginning of the feature lifetime,
taking into account that the feature state is undefined before that point in time.

10.1.3.4.2 Feature Subset

Once the relevant timeslices for an Extract have been identified, a straightforward way to
encode them is to simply add them to the feature and to return it.

This automatically takes into account the situations in which the feature state is undefined
at the beginning/end of the time of interest. If the feature is completely undefined for the
time of interest, then no timeslices are found for the Extract and the feature should
completely be omitted in the response.

7 The XML encoding of AIXM feature has to contain at least one timeslice. Therefore, the response to a request of a
feature Snapshot that is outside the lifetime of the feature should omit the feature altogether.

OGC 11-093r2

82 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

Note that even though some timeslices may be valid before or after the time of interest of
the Extract (as explained in section 10.1.3.3), the information from these timeslices does
not necessarily suffice to represent the complete feature state during the validTime of
these timeslices. For example, in Figure 28 Tempdelta 3 is not a relevant timeslice but
changes the feature state during the validTime of Tempdelta 2.

10.1.3.4.3 Comparison

Both encoding approaches are of interest to clients.

Simple clients that usually consume Snapshots - for example to monitor state changes
(like traffic management and flight plan processing systems as mentioned in the
Temporality Model) - may prefer to receive a list of Snapshots. This can be especially
useful in situations in which such a system did not receive state change information for a
certain period of time, for example because it was offline. In that case the system can
request an Extract for that period of time and thus get the Snapshots that it missed.

Clients that support dynamic features according to the Temporality Model and thus
represent and determine feature state based upon Baselines, Permdeltas and Tempdeltas
will prefer an Extract that is encoded via the relevant timeslices. The example in which a
client did not receive information on state changes of a feature is applicable here as well.
Such changes may usually have been communicated according to the Digitial NOTAM
specification. Missing information can be retrieved from the authoritative datastore as an
Extract and the resulting timeslices directly incorporated into the client’s internal
representation of the feature.

The efficiency of both encoding approaches with respect to the size of the resulting
representation has not been investigated in detail. However, some relevant aspects were
discussed.

� Snapshots contain values for all feature properties (unless they are undefined
at/during the Snapshot validTime). Feature property values that do not change in
two consecutive Snapshots will still need to be represented in a Snapshot list.
Referencing property values via xlink:href may be used to reduce the amount of
data that is caused by the repeated encoding of such unchanging property values.

� In case that a client wanted to find out which information actually changed
between two consecutive snapshots - which is different to just determining the
value that is applicable at a given point in time - it would have to compare the
whole list of properties. Usage of xlink:href may help in this task as a client can
more easily determine if the values of a feature property from two Snapshots refer
to the same object.

� The number of Snapshots used to encode an Extract should not be significantly
higher than the number of the relevant timeslices. However, if the value of a
PropertyWithSchedule was encoded as multiple Snapshots - see section 10.1.2 for
further details - then the approach to encode an Extract as a list of Snapshots is

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

83

less efficient. Figure 31 illustrates the issue. There, the value of property P3 is
changed temporarily, based on a schedule. The number of Snapshots required to
encode the complete feature state is significantly higher than in the situation
without changes by schedule (see Figure 29). The situation would get worse in
case of different properties with overlapping schedules. Allowing Snapshots with
property values defined by schedule would avoid this issue.

Figure 31 – Extract including temporary changes by schedule - encoded as a list of
Snapshots

10.1.3.5 Summary

The Extract is a logical extension of the Snapshot concept defined in the Temporality
Model. It provides information on the full state of a feature not only at a given point in
time but during a period of time. This is useful in situations in which the full history of a
feature is not required, instead only a well defined period of time is of interest for
computations (e.g. filtering and portrayal). Instructions for computing an Extract by
identifying the relevant timeslices have been provided in section 10.1.3.3. Two
approaches for encoding an Extract have been explained and discussed - see section
10.1.3.4.

OGC 11-093r2

84 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

10.1.4 Reconsider Rules for Handling Changes to Multi Occurring Properties

Section 3.5 in the AIXM Temporality Model explains how multi occurring properties
should be handled when one or more of their values changes (permanently or
temporarily). The issues that the section addresses is that simple UML <<object>>s are
not identifiable (in the XML encoding they do not have a gml:identifier). Recognizing
which value of a multi-occurring property changed is not possible. Therefore, the
Temporality Model states that “in a PERMDELTA or TEMPDELTA Time Slice, multi-
occurring properties shall be provided with all occurrences included”. This statement
does not exactly define which value occurrences shall be included, which is likely due to
the simplicity of the chosen example. Section 3.5 appears to only cover properties
without schedule. Furthermore, it does not appear to take into account a specific edge
case. This is problematic as will be explained in the following paragraphs.

10.1.4.1 Delta for multi-occurring property with schedule

Let us consider the case of an Airspace which can be activated at certain times. An
“activation” is a multi occurring property of an Airspace that has a schedule (and thus is
valid for certain time(s)). Furthermore, it is a simple <<object>>, not a <<feature>>.
Therefore, strictly following the rule from the Temporality Model section 3.5, whenever
a change in the activation schedule (either changing the regular schedule or performing
an exceptional activation - such as when some military activity is taking place) of the
Airspace occurs, the delta timeslice would need to incorporate all activation objects from
the applicable static information, even those whose schedule is before or after the valid
time of the new activation.

This is not necessarily an issue in situations where a permanent change is communicated.
In such a situation, all activations that were applicable in the past can be omitted in the
new Permdelta/Baseline. These activations would still be stored in the history of
timeslices of the Airspace feature and thus can be queried if necessary. Furthermore,
permanent changes in Airspace activations usually concern a change of the regular
schedule and do not incorporate exceptional activations. Exceptional activations are
communicated via Tempdeltas (see the Digital NOTAM Event Specification for further
details). For exceptional activations, however, the rule for multi-occurring properties as it
is currently defined in the Temporality Model is not ideal.

If the status of an exceptional activation is constant throughout the valid time of a
Tempdelta then that Tempdelta would only need a single activation value. However,
according to the current rule, it looks like the Tempdelta needs to include all other
Airspace/activation values that are contained in Permdeltas/Baselines that are not before
and not after the valid time of the Tempdelta. This definitely would be unnecessary
overhead as in this situation a single activation object suffices to fully define the state of
the activation property throughout the valid time of the Tempdelta.

10.1.4.2 Temporary change of multi-occurring property that overlaps a permanent change

A Permdelta that changes the value of a multi occurring AIXM feature property may
have a valid time that is during the valid time of the Tempdelta - see the following figure.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

85

Figure 32 – Permanent change of a multi occurring feature property occurring
during the valid time of a temporary change of that property

Here, property P2 is multi occurring. Its static set of values ({1,2,3} in Baseline 1) is
changed permanently (via Permdelta 2 to {1,4,5}). However, a temporary change is
applied to the property (via Tempdelta 1 – adding value ‘6’) and its valid time contains
the valid time of the permanent change.

This situation is not explicitly described in the AIXM Temporality Model. As it is not
forbidden, it may occur8. In such a situation it does not matter whether the multi
occurring property (P2) does or does not have a schedule - either way it is unclear how
the Tempdelta should incorporate the unchanged property values from the static
information (Baseline 1 and 2). Should all unchanged values be incorporated? As the set
of values for P2 changes permanently via Permdelta 2, the values that would be
incorporated from the Baselines 1 and 2 in Tempdelta 1 following the current rule from

8 If this situation is not allowed to happen then the AIXM-TM should explicitly state this.

OGC 11-093r2

86 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

the Temporality Model would not be valid throughout its validTime (in Figure 32, only
value’1’ would be valid throughout the validTime of Tempdelta 1) – although that should
be the contract for a Tempdelta. Furthermore, the value of P2 in Tempdelta 1 does not
even need to contain such values as long as the value of P2 is fully defined throughout
the valid time of P2 (see Temporality Model section 2.7 for further details).

During OWS-8, different options for solving this issue were developed, depending on
whether the multi-occurring property is or is not a PropertyWithSchedule (again, see
Temporality Model section 2.7 for further details).

If P2 is a property without schedule, then a solution is to model the temporary change via
two Tempdeltas as shown in the following figure.

Figure 33 – Handling the delta overlap issue for a multi-occurring property without
schedule

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

87

As we can see, the validTime of the Permdelta equals the end time of Tempdelta 1.1 and
the start time of Tempdelta 1.2. By splitting the temporary change, the information can
easily be merged with the baseline information that is still valid.

If P2 is a property with schedule, then there are two options for solving the issue – see
Figure 34.

Figure 34 – Options for solving the delta overlap issue for a multi-occurring
property with schedule

In this example, the schedule of P2 in Baseline 1 defines that the set of valid values for
P2 alternates between {1} and {2,3}. The permanent change introduced by Permdelta 2
changes the schedule so that the set of valid values for P2 alternate between {1} and
{4,5}. The temporary change would now add the value ‘6’ to the set of valid values – for
the purpose of this example let us assume that this value is not constant but valid at the
same time that the value sets {2,3} and {4,5} are valid. This can be modeled and encoded
in two ways. On the one hand, the schedule can be adapted to take the additional value
into account (see Figure 35). On the other hand, the temporary change can again be
modeled via two distinct Tempdeltas (see Figure 36).

OGC 11-093r2

88 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

Figure 35 – Solving the delta overlap issue for a multi-occurring property with
schedule via the schedule itself

By appropriately encoding the schedule via property values with according timesheets,
the valid sets of values for P2 can correctly be represented throughout the validTime of a
single Tempdelta.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

89

Figure 36 – Solving the delta overlap issue for a multi-occurring property with
schedule by encoding the temporary change via two Tempdeltas

10.1.4.3 Recommendation

Section 3.5 in the Temporality Model should be revised. On the one hand, it needs to take
changes for multi-occurring properties with schedule into account. On the other hand, it
needs to account for the edge case of a permanent change to a multi occurring property
that occurs during a temporary change of that property. For the latter, a recommendation
to handle the situation by encoding two distinct Tempdeltas should be added. This
appears to be the easiest solution which works for multi-occurring properties with and
without schedule. However, being able to model the temporary change as a single
Tempdelta may be useful for multi-occurring properties with schedule. This should
therefore not be prohibited by the Temporality Model.

OGC 11-093r2

90 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

10.1.5 Incorporate Extension Property Handling

During the FAA SAA Dissemination Pilot (see OGC 11-055) the handling of AIXM
feature and object extension properties was discussed. More specifically, the correct
handling according to the rules defined in the AIXM Temporality Model. The discussion
quickly revealed that the Temporality Model itself does not clearly specify how extension
properties are to be handled. This section summarizes the result of the discussion. The
Temporality Model should be revised to incorporate the instructions for handling AIXM
extension properties.

The following diagram shows an extension of the AIXM 5.1 Airspace feature that was
used to add Special Use Airspace (SUA) information to that feature type in the SAA
Pilot.

Figure 37 – Special Use Airspace Feature extension (for AIXM 5.1)

Another extension (shown in the following figure) adds Special Activity Airspace (SAA)
information to an AIXM 5.1 Airspace feature.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

91

Figure 38 – Special Activity Airspace extension (for AIXM 5.1)

The extensions add additional properties to the Airspace feature. We will use these
extension models in the examples of this section.

The following listing contains an XML example of an AIXM Airspace Baseline timeslice
that incorporates extension values from both extension models. Note that each extension
value is a complex AirspaceExtension element within its own namespace.

OGC 11-093r2

92 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

Listing 10 – AIXM Airspace Baseline with both SUA and SAA extension elements

<aixm:Airspace gml:id="xyz_0"
xmlns:aixm="http://www.aixm.aero/schema/5.1"
xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sua="urn:us:gov:dot:faa:aim:saa:sua:5.1"
xmlns:saa="urn:us:gov:dot:faa:aim:saa:5.1">
 <gml:identifier
codeSpace="http://www.faa.gov/nasr">xyz</gml:identifier>
 <aixm:timeSlice>
 <aixm:AirspaceTimeSlice gml:id="urn.uuid.xyz_1">
 <gml:validTime>
 <gml:TimePeriod gml:id="urn.uuid.xyz_2">
 <gml:beginPosition>2011-03-10-05:00</gml:beginPosition>
 <gml:endPosition
indeterminatePosition="unknown"></gml:endPosition>
 </gml:TimePeriod>
 </gml:validTime>
 <aixm:interpretation>BASELINE</aixm:interpretation>
 <aixm:sequenceNumber>1</aixm:sequenceNumber>
 <!-- other AIXM Airspace feature properties omitted for brevity
-->
 <aixm:extension>
 <saa:AirspaceExtension gml:id="urn.uuid.xyz_10">
 <saa:saaType>SUA</saa:saaType>
 <saa:administrativeArea>NORTH
CAROLINA</saa:administrativeArea>
 <saa:city xsi:nil="true" nilReason="inapplicable"/>
 <saa:legalDefinitionType>HUMAN</saa:legalDefinitionType>
 <saa:timeAhead xsi:nil="true" nilReason="inapplicable"/>
 </saa:AirspaceExtension>
 </aixm:extension>
 <aixm:extension>
 <sua:AirspaceExtension gml:id="urn.uuid.xyz_11">
 <sua:suaType>RA</sua:suaType>

<sua:separationStandard>UNSPECIFIED</sua:separationStandard>
 </sua:AirspaceExtension>
 </aixm:extension>
 </aixm:AirspaceTimeSlice>
 </aixm:timeSlice>
 </aixm:Airspace>

The following rules apply for handling changes to extension properties.

AIXM feature extensions do not follow the rule for multi-occurring properties as
defined in section 3.5 of the Temporality Model.

Explanation

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

93

The purpose of the rule for multi-occurring feature properties in delta timeslices was to
avoid ambiguity. Following the example in section 3.5 of the Temporality Model, if an
AirportHeliport had several cityServed in its Baseline and upon a change of this property
just the new value was put into the delta timeslice, then it would be unclear which ones
from the Baseline remain valid. This is not the case for AIXM feature extensions,
because the child elements of each <aixm:extension> always have a different namespace
(event, sua, saa, etc.) and there can only be a single extension element per namespace.
This is implicitly defined by the rules for extending AIXM features/objects as detailed in
the “AIXM - Application Schema Generation” and “AIXM - UML to XML Schema
Mapping” documents.

Note: that there can only be one extension element per XML namespace (assigned to a specific AIXM
extension model, for example the SUA or SAA extensions) and per AIXM feature/object should be
explicitly stated in both the “AIXM - Application Schema Generation” and “AIXM - UML to XML
Schema Mapping” documents.

Therefore, there is no risk for ambiguity and we can safely say that an AIXM feature
extension can be excepted from the rule for multi occurring feature properties. Each
extension is semantically different, it does not make sense to treat them as normal multi
occurring feature properties, because they are not.

The advantage of this approach is that a value change in an AIXM feature extension does
not require all unchanged extensions from the baseline data (and from different extension
models) to be included in the timeslice that represents the change.

A Permdelta that changes the SUA type for the Airspace example from Listing 10
therefore does not need to include the saa:AirspaceExtension. The following listing
shows an example of the resulting Permdelta.

OGC 11-093r2

94 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

Listing 11 – AIXM Airspace Permdelta with changed SUA extension element

<aixm:Airspace gml:id="xyz_0"
xmlns:aixm="http://www.aixm.aero/schema/5.1"
xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sua="urn:us:gov:dot:faa:aim:saa:sua:5.1"
xmlns:saa="urn:us:gov:dot:faa:aim:saa:5.1">
 <gml:identifier
codeSpace="http://www.faa.gov/nasr">xyz</gml:identifier>
 <aixm:timeSlice>
 <aixm:AirspaceTimeSlice gml:id="urn.uuid.xyz_1">
 <gml:validTime>
 <gml:TimePeriod gml:id="urn.uuid.xyz_2">
 <gml:beginPosition>2011-03-15-05:00</gml:beginPosition>
 <gml:endPosition
indeterminatePosition="unknown"></gml:endPosition>
 </gml:TimePeriod>
 </gml:validTime>
 <aixm:interpretation>PERMDELTA</aixm:interpretation>
 <aixm:sequenceNumber>1</aixm:sequenceNumber>
 <aixm:extension>
 <sua:AirspaceExtension gml:id="urn.uuid.xyz_11">
 <sua:suaType>WA</sua:suaType>

<sua:separationStandard>UNSPECIFIED</sua:separationStandard>
 </sua:AirspaceExtension>
 </aixm:extension>
 </aixm:AirspaceTimeSlice>
 </aixm:timeSlice>
 </aixm:Airspace>

Note: <<feature>> extensions are treated as a dynamic feature property according to the Temporality
Model. This is not the case for <<object>> extensions.

AIXM feature extensions shall be treated as complex properties as defined in section
3.4 of the Temporality Model (“Delta” for complex properties”).

Explanation

At the time that extension handling was discussed, there was no business need for
treating each property of an AIXM feature extension independently. If one of these
properties (e.g. suaType in a sua:AirspaceExtension) changes, then it was assumed that
there are good chances that the other properties of the extension (e.g. separationStandard
in a sua:AirspaceExtension) change as well (which would be represented in the same
delta). A suggestion was made that if the AIXM feature properties in a specific extension
model really are independent then they should be included in different namespaces and
thus result in different extension elements (e.g. sua1:AirspaceExtension for the suaType
property and sua2:AirspaceExtension for the separationStandard property).

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

95

The advantage of treating AIXM feature extension properties as complex properties is
that the handling of extensions is relatively simple.

A disadvantage of this approach is that the properties added to a feature via a single
extension model are not treated as individual properties. In our example, the value of the
timeAhead property in an SAA Airspace cannot be changed without also including the
valid values for all other SAA Airspace extension properties (saaType,
administrativeArea, city and legalDefinitionType) - following the rules defined in section
3.4 of the Temporality Model. This could be solved by treating the properties of an
AIXM feature extension class – defined in a single AIXM extension model (like the
AIXM SAA extension) – as if they belonged directly to the AIXM feature itself (so
ignoring the aixm:extension/myns:AIXMFeature_Extension step in the XML encoding),
rather than just being an additional complex property of the feature. A change of the
UML to XSD mapping and application schema generation rules does not seem to be
required to support this solution.

An AIXM object extension is handled according to the rules defined in section 3.4 of
the Temporality Model.

Explanation

<<object>> extensions are different from <<feature>> extensions. <<feature>>
extensions have a certain degree of individuality because properties added to an AIXM
feature via separate extension models (e.g. the SUA and SAA extension models that
extend airspace information) are truly handled as separate feature properties. Their values
can be changed individually following the Temporality Model without the need to also
include the values for other feature extension properties (added through other extension
models) in the delta timeslice that represents the change. In our example, the SUA
Airspace extension value can change without the need to repeat the SAA Airspace
extension value.

<<object>> extensions, on the other hand, just extend the information contained in the
<<object>>. However, an <<object>> is still treated as a complex property and thus
always has to include the whole information. If, for example, just the value of the
“reservationPhase” property of a SUA AirspaceActivation extension (see Figure 37)
changes, then the complete AirspaceActivation has to be updated by including the
changed extension value and all unchanged other properties.

The following has not been explicitly covered in the discussion performed on extension
handling, but it seems to be a useful observation nonetheless: there is no need to define a
specific rule for handling corrections to timeslices that contain extension data because the
information in a correction timeslice fully replaces the information in the corrected

OGC 11-093r2

96 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

timeslice - including the extension data. The data originator needs to ensure that all
relevant property values are included in such a correction timeslice.

10.1.6 Temporality Model as Standalone Specification

This section describes reasons for refactoring the AIXM Temporality Model into a
standalone standard. It also provides suggestions on which OGC/ISO standards need to
be revised/extended to support that goal.

10.1.6.1 Purpose of the Temporality Model

In the aeronautical domain there is a desire to model a feature in a way that allows
applications to determine the current and future state of a given feature property. This is
relevant for flight planning, flight conduction and in general for aeronautical information
management. For a review of past proceedings, the feature history is also relevant.
Keeping track of feature property values through time is achieved via the encodings –
timeslices as well as properties with schedule – and rules defined by the AIXM
Temporality Model (AIXM-TM). The concept of timeslices to express time varying
feature properties has its origins in GML itself (see OGC 07-036 section D.3.11).

Due to the way that aeronautical data is managed, different entities may manage different
features or feature properties. For example, one authority may assign airspaces with their
relevant properties (such as type and extent). Other users like the military then make
requests to activate the airspace. As this is an exceptional situation (although expected),
the reservation/activation - if granted - results in a temporary change to the otherwise
static definition of the airspace. Keeping track of temporary property value changes is
supported in the AIXM-TM via the different types of timeslices – in this case
Tempdeltas. Reservations/activations may also take place based upon a specified
schedule – which defines in detail for which times the property has which values. To
support such scheduled changes, the AIXM-TM supports the concept of
PropertiesWithSchedule. This concept can be applied to complex properties. Being able
to keep track of possibly frequent AIXM feature property value changes – with such
feature properties likely also changing their values independently – is another reason why
the AIXM-TM was designed the way it is.

10.1.6.2 Why the Temporality Model should become a Standalone Concept

The aviation domain is pioneering the use of dynamic feature properties in an OGC web
service based Service Oriented Architecture. Other domains may benefit from this work
as well. In order to not have a strong dependency on a standard defined by the aviation
domain the general concepts of the AIXM-TM should be factored out into independent
specifications. Having an independent Temporality Model would benefit
maintenance/governance of it. Furthermore, all domains that like to express time varying
feature properties as well can more easily incorporate a standalone Temporality Model.

Facilitating this re-use of the Temporality Model would also improve interoperability,
especially in the way that dynamic features / dynamic feature properties are handled and

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

97

managed via (web) services. Improved support by OGC/ISO standards for models that
are based on the Temporality Model would also greatly benefit its usability.

10.1.6.3 What is needed?

There are various aspects to consider. On the one hand, current model design and
encoding practices need to be extended to support the Temporality Model. On the other
hand, standards for managing time varying data need to be extended to better support this
type of data. Relevant aspects are described in more detail in the following subsections.

10.1.6.3.1 Model design and encoding

Currently, application schemas that deal with static information only are modeled
following the General Feature (meta) Model (see ISO 19109). The model uses
stereotyped facets – like the <<FeatureType>>, <<Union>> and <<CodeList>>
stereotypes for UML classes – to indicate the specific purpose of each facet. ISO 19103,
ISO 19109 and ISO 19136 define a set of basic stereotypes that are used in Application
Schema modeling and also define the theory that belongs to these stereotypes. ISO 19136
defines rules for encoding such a model in XML Schema. Each relevant stereotype has its
specific encoding rules (see Annex E in ISO 19136). A designer can thus capture the
intention of each model facet by choosing the appropriate stereotype for it. Encodings
(also called physical models) of the conceptual model can then automatically be
generated9. The OWS-8 Domain Modeling Cookbook (OGC 11-107) provides further
guidelines on application schema modeling.

At the moment, AIXM designers just stereotype classes as <<feature>> or <<object>>
which governs the encoding. In addition, for <<objects>> that change their value based
upon a defined schedule an explicit inheritance relationship to the abstract type
PropertyWithSchedule is included in the conceptual model.
A designer of a conceptual model that involves time varying properties should be able to
explicitly mark which properties are time varying and which are not10. This can be
achieved via specific stereotypes defined for that purpose. Such stereotypes can also be
used to indicate if a type can change its values based on a defined schedule (thus
preventing the need to explicitly model the inheritance relationship to
PropertyWithSchedule). Encoding rules can then be defined to support these new
stereotypes. The OWS-8 AIXM 5.1 Refactoring Report (OGC 11-106) describes the use of
stereotypes and options to support dynamic properties in conceptual models and the
encoding into a physical model in more detail.

Having explicit encoding rules would further benefit the modeling work. By stereotyping
(feature) types and their properties, the designer can concentrate on the relevant domain
aspects – for example on which feature properties always have to be available to
applications (even though they may not always be encoded, for example in Tempdeltas).

9 This may require the definition of specific tagged values for the components of the conceptual model.
10 Note that this is only relevant for feature types, types and data types but not for code lists or unions.

OGC 11-093r2

98 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

The designer would also be able to more readily document the relevant types (feature
type, type, data type), their properties (with intended cardinalities11), and relationships
between types.

The components of a “normal” application schema can be implemented as usual in object
oriented programming. Additional rules would need to be documented for handling
application schema that incorporate components with dynamic properties (managed
according to the Temporality Model). For example, this includes rules for determining
the state of a feature (property) at a given point in time or how to handle cancellation of
property value changes.

The following paragraphs outline which revisions / additions are needed in the
aforementioned OGC/ISO standards to support the Temporality Model as a standalone
concept.

ISO 19103 - Conceptual schema language

Stereotypes commonly used in application schema modeling are defined in ISO 19103.
An extension to ISO 19103 should introduce the stereotypes required to generally support
time varying properties. Such an extension would not need to be performed by revising
ISO 19103 if the standard explicitly allowed that new stereotypes can be introduced by
other standards.

ISO 19136 - Geography Markup Language

Rules for encoding time varying properties and other facets of a conceptual model that
specifically follow the Temporality Model should be added to ISO 19136. More
specifically, there should be an encoding rule for each new stereotype introduced to
support the concepts of the Temporality Model in application schema.

Current work on ISO 19136 involves the introduction of a well-defined way for
extending the encoding rules defined in ISO 19136. Once this change is available,
encoding rules for the new stereotypes can also be documented outside of ISO 19136.
This could for example be an extension to ISO 19136.

ISO 19109 – Rules for Application Schema

11 This may still require that in the encoding a property – if it is time varying – is optional. The cardinality would then
have to be checked by the application.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

99

An extension - for example as a “part 2” - should be created for ISO 19109 to introduce
the basic theory that is behind the Temporality Model (what are time varying properties,
what types of changes exist, etc.) and which would be included in application schema via
the new stereotypes. Rules – like those currently contained in the AIXM-TM – can then
be documented in detail in an OGC standard. This specification could also include the
new encoding rules as mentioned before, thus forming a standalone OGC standard that
contains the implementation of the new aspects added to ISO standards to support the
Temporality Model as a standalone concept.

Incorporating support for time varying properties in ISO 19109 would provide the
foundation for uptake in other standards that deal with features, such as FES and WFS.
These two standards are discussed in the following section.

10.1.6.3.2 Managing and accessing time varying data

The Web Feature Service (WFS) provides an interface for managing feature data. The
specification is designed to support the current General Feature Model (GFM, defined in
ISO 19109). The Filter Encoding Specification (FES) – that is used by the WFS but also
other OGC services like the Sensor Observation Service (SOS) and Event Service –
defines how filter expressions (possibly involving functions) are defined. The FES was
also designed to support the current GFM.

Various issues were encountered and solved – at least to a certain extent, see the reports
from previous initiatives and the report OWS-8 Guidance for Retrieving AIXM 5.1 data
via an OGC WFS 2.0 (OGC 11-073) for further details – with accessing and managing
AIXM data via the WFS/FES standards. The fact that the XML encoding of a feature no
longer follows a simple object/property/value structure but rather an
object/timeslice/property/value approach complicated the way that queries need to be
written by clients. This is primarily caused by the fact that WFS services to date do not
automatically support the business logic for dealing with time varying properties that
follow the AIXM-TM. Clients therefore need to deal with the detection of the right
timeslices (handling timeslice succession, correction and cancellation) themselves.

Service interface standards like WFS - including standards used by them, like FES – need
to be designed to provide simple structures (like operations and functions) to manage and
access the type(s) of data they are intended to support. The following paragraphs outline
which revisions / additions are needed in the WFS and FES standards to improve the
usability of time varying data that follows the Temporality Model.

Filter Encoding Specification

The FES should be extended to support functions for accessing time varying properties in
value references without the need to be concerned with the actual encoding via
timeslices.

OGC 11-093r2

100 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

The idea is that value references are still used as usual to identify a certain property in the
conceptual model of an application schema. However, just like the function
wfs:valueOf(CharacterString propertyName) : Sequence<Any> can be used12 to
automatically resolve property values that are (possibly) given by (xlink) reference,
specific functions would enable the handling of time varying properties.

Examples of such functions are:

1. getValues(CharacterString propertyName, TimeInstant time) : Sequence<Any> –
to get the value(s) of a (multi-occurring) property at a given point in time (i.e.
past, now or future). This resembles the concept of creating a Snapshot, just that
here the value of exactly one property is returned and not the whole feature.

2. getValues(CharacterString propertyName, TimePeriod time) :
Sequence<Sequence<Any>> – to get the sequence of value(s) of a (multi-
occurring) property that are valid during a given period of time. This resembles
the concept of Extract described in section 10.1.3, just that here the result is
restricted to the sequence of values for one specific property. Note that the result
would be a collection of values – depending on whether the property changed its
value during the requested period of time or not. In fact, the result is a sequence of
sequences to account for situations in which the property is multi-occurring.

If none of these functions was applied – so simply the name of a time varying property is
given in a value reference – then the default behavior could be to get the current value of
the property, i.e. to use the first function with time=now.

On top of these functions, the FES needs to extend/revise its matching semantics. FES
2.0 already defines the matchAction parameter to specify how a comparison predicate
shall be evaluated for a collection of values. This is in support of non time-varying but
multi-occurring properties. However, the parameter is only defined for some comparison
operators (the binary comparison operators). It should be defined for all filter operators
(excluding logical operators).

Examples of queries with specific matching requirements:

1. Get features where the value of a specific property equals a given value
throughout a given time period – example: determine if a given aerodrome is
closed completely in the next two hours. For this we could use the “All”
matchAction value defined by FES 2.0. However, as the query involves
comparison of a time varying property with a given one it is likely that function
two from above would be used, resulting in a sequence of sequences (at least for
multi-occurring properties). The semantics for the matchAction may thus need to
be revised (to cover this case as well), although the default behavior could be that
really all values in the result match the filter (operator).

12 Unfortunately the function is only defined in WFS, not in FES itself. This requires other standards that use FES to
define a similar function. The function should therefore be supported by FES in general.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

101

2. Get features where the value of a specific property equals a given value at least
once during a given time period – example: determine if an airspace is going to be
active in the next two hours. This matching semantic appears to be covered by the
“Any” matchAction value defined by FES 2.0. However, again the semantics of
the match action may need to be revised to cover a value reference result that is a
sequence of sequences.

More functions and match actions may be of interest for dealing with time varying
properties. One should also consider the case in which the given filter operator value
itself is time varying. This can for example happen when both values of a binary filter
operator reference time varying properties of the model.

A filter encoded in FES 2.0 for the query to determine if an aerodrome is closed
completely during a given time period may look as follows:

<fes:Filter>
 <fes:PropertyIsEqualTo matchAction="All">
 <fes:ValueReference>aixm:AirportHeliport/fes-
ext:getValues(aixm:availability,2011-09-08T15:00:00+02:00,2011-08-
08T17:00:00+02:00)/aixm:AirportHeliportAvailability/aixm:operationalSta
tus</fes:ValueReference>
 <fes:Literal>CLOSED</fes:Literal>
 </fes:PropertyIsEqualTo>
</fes:Filter>

Another example encoded in FES 2.0 to determine if an aerodrome is closed at a given
point in time may look like this:

<fes:Filter>
 <fes:PropertyIsEqualTo>
 <fes:ValueReference>aixm:AirportHeliport/fes-
ext:getValues(aixm:availability,2011-09-
08T16:00:00+02:00)/aixm:AirportHeliportAvailability/aixm:operationalSta
tus</fes:ValueReference>
 <fes:Literal>CLOSED</fes:Literal>
 </fes:PropertyIsEqualTo>
</fes:Filter>

Details of using the proposed functions in value references of filters as well as the
semantics of the matchAction parameter need to be discussed in the future. For example,
one point for discussion could be how to deal with properties with schedule. However,
these examples already show that the usability of querying time varying data based upon
the FES standard can be improved significantly if FES provided the according support
(either directly or via an extension).

Web Feature Service

WFS implements an interface for managing and querying features. Non-dynamic
features, i.e. those that follow the current GFM, can easily be instantiated, updated,

OGC 11-093r2

102 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

deleted and queried. This should also be the case for features with time varying
properties.

The instantiation of a feature with dynamic properties should be straightforward. Feature
deletion should be easy as well13. Updating and querying time varying data, however, is
more complicated. Both actions use the current FES which does not readily support time
varying data. To improve the usability of the operations, WFS would need to support an
extension/revision of FES as outlined before. The WFS business logic thereby also has to
be able to automatically deal with the intricacies of the Temporality Model. This means
that the service needs to automatically take timeslice sequencing, correction, cancellation
as well as the validTime and schedules into account. Work has been done in the domain
of temporal database systems14 and WFS implementations may leverage this knowledge
– or even use built-in support of the database implementation used by the service.

Also note that work on improving the functionality offered by WFS has been performed
in previous initiatives and also during OWS-8. See for example the OWS-8 Guidance for
Retrieving AIXM 5.1 data via an OGC WFS 2.0 report (OGC 11-073) for further details.

10.2 SOAP/WSDL support in OWS

Client implementers that were working with one of the WFSs provided for the OWS-8
Aviation thread reported difficulties in binding to that service, as it only supported SOAP
based access at that time. While the service now also supports other bindings, the results
of the discussion that ensued are worth being documented here, especially because they
are not only related to WFS but in general to all web services used in OWS-8 Aviation.

10.2.1 SOAP Complexity

The actual structure of a web service operation request and response is specifically
defined for that given type of web service. The specification and documentation of the
service contains all information required to implement the relevant operation. For
example, the WFS specifies the GetFeature operation request and response structures and
relevant operation semantics so that a client can retrieve feature data from the service.

For OWS, the according structures are usually encoded in XML and possibly also KVP
encoded requests as well as XML encoded responses. The protocol usually used to
interact with another service is HTTP. A service that requires SOAP based
communication expects that an operation request is XML encoded and at least wrapped
in a SOAP envelope with body element. The additional complexity introduced by
wrapping XML encoded requests in a SOAP envelope and unwrapping them again was
considered to be unnecessary complexity.

13 Note that the AIXM Temporality Model does not define/use feature deletion operations. AIXM features usually
simply run out of “lifetime”. For applications that use the envisioned standalone Temporality Model, however, such
operations may be relevant.
14 for example, see http://en.wikipedia.org/wiki/Temporal_database for further details

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

103

There was general agreement in the group that such a simple use of SOAP indeed just
creates overhead and should be avoided. At the same time, there was consensus that the
complexity of dealing with SOAP from an implementation perspective can be mitigated
by using available software solutions (also available as open source).

Furthermore, usage of SOAP was accepted to be beneficial when support for common
web service functionality - orthogonal to the functionality defined by a specific OWS
type - is required. SOAP supports composability of a specific web service standard like
WFS or WCS with various WS-* standards such as WS-ReliableMessaging, WS-Security
and WS-Addressing. The mentioned standards enable reliable, secure and asynchronous
message exchanges between service endpoints in a transport independent and
interoperable way. The standards themselves have a varying degree of complexity.
Again, existing frameworks and middleware can help reducing the efforts required to
implement them. Furthermore, once the required software is in place it can be reused to
enable the same functionality when interacting with other web service types.

In theory, SOAP also is a transport independent protocol. So for the rare occasions where
HTTP is not available for interacting with a service, an appropriate SOAP binding can be
used15. However, until recently there was only a standardized SOAP binding for HTTP.
Recently, W3C standardized a SOAP JMS binding16. Other transports are supported by
various toolsets but are not standardized yet.

10.2.2 Bootstrapping a SOAP based OWS

Clients usually start interacting with an unknown OWS by performing a KVP encoded
GetCapabilities request sent via HTTP GET to the service. The Capabilities document
contained in the response provides information for subsequent interactions, for example
about the supported operations, specific endpoints for invoking these operations, allowed
operation parameters, supported filter functionality etc.

In the testbed, a WFS initially only supported SOAP based interactions. This required
clients to send XML encoded operation requests to the service, wrapped in a SOAP
envelope. Information on the correct web service endpoint and SOAP version to use was
encoded in a WSDL document. Retrieving this information from the WSDL was deemed
unnecessarily complex for such a simple task as retrieving the Capabilities document of
an OWS. This relates to the fact that a generic client has to perform a quite detailed
investigation of the WSDL document to find out which service endpoint actually realizes
the desired operation in case that the WSDL lists more than one service element, which
appears to be valid.

One way to approach the problem of bootstrapping OWSs that support different bindings
is described in the following:

15Although HTTP is ubiquitous, it may not always be feasible to use it due to domain and/or application specific
requirements.
16Note that JMS is an API and does not define full end to end service interoperability.

OGC 11-093r2

104 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

� Whenever an OGC Web Service supports KVP encoded requests via HTTP GET
and/or plain XML encoded requests via HTTP POST, the use of the well known
GetCapabilities request can be used for bootstrapping because all the required
information is contained in the Capabilities document. For each network endpoint
indicated by a URL, the use of either the HTTP GET or POST method is given, in
addition to other parameters as defined by OWS Common

� However, if SOAP is required then the Capabilities document does not carry
enough information. The use of SOAP may involve a particular format to include
security related metadata into the headers. Different OASIS standards such as
WS-Policy or WS-SecurityPolicy exist that allow encoding constraints to indicate
what the service expects in terms of security metadata when a clients tries to
execute it. Other information, such as the required use of HTTP headers such as
SOAPAction, cannot be specified in the Capabilities document. Therefore, the
bootstrapping of an OWS that requires SOAP should be done by a WSDL
document that describes in more detail the requirements to "get going" with the
service.

� In terms of publish-find-bind, it is up to the service provider to publish the
appropriate bootstrapping mechanism in a registry or catalogue. For HTTP GET
and POST OWS this should be the Capabilities document and for SOAP OWS it
should be the WSDL document. Both can be provided via a simple online
document and do not require the client to perform an additional service request.
This relaxes the opportunities for bootstrapping a protected OWS. Access to the
Capabilities or the WSDL document can always be unprotected. In case that the
service is protected and the user does not have the required rights, he will find out
after the first service execution attempt.

In the end, the group agreed to not use SOAP during the testbed for WFS interactions as
the additional features that it could have supported were not required there. The WFS
service that initially only supported SOAP was enhanced to also support KVP and XML
based operation invocations.

10.2.3 SOAP Version

When talking about SOAP and support for it by a given web service, it is important to
acknowledge that there are two versions of SOAP: 1.1 and 1.2. Communities may require
support for SOAP 1.1 or 1.2 or both or any one of them while allowing the other. There
may be different reasons for doing so, such as backwards compatibility or integration
with existing systems. Therefore, OWS standards should be SOAP version agnostic even
though usually more options are not favorable for achieving interoperability.

The Sensor Web Enablement 2.0 standards are written in a SOAP version agnostic way.
They rely on OWS Common 1.1, which does not specify any requirement regarding
SOAP. In addition, they do not have any requirement that prevents a SWE service from
using a particular SOAP version. Other OWS standards used in the OWS-8 Aviation
thread are not SOAP version agnostic:

� WCS 2.0 builds upon OWS Common 2.0, which requires SOAP 1.2.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

105

� WFS 2.0 builds on OWS Common 1.1 which - as said before - does not define
SOAP in any way, but the WFS 2.0 specification itself requires SOAP 1.1.

Apparently some harmonization is needed. Until that is achieved, aviation clients may
need to support both versions of SOAP in a SOAP based service environment.

10.2.4 Security

The use of SOAP - as a particular format for XML messages exchanged with a network
endpoint - provides hooks for enabling metadata with the actual information exchanged
in an interoperable way. One useful way is to use these hooks for including message
based security metadata to cope with Integrity, Confidentiality and potentially
Authenticity for the XML encoded information (enclosed by the SOAP message tags).

This is important in architectures where there is no direct connection between the service
itself and the client that executes the service, because lower ISO/OSI stack security
measures such as SSL or TLS only provide a secure communication channel between two
machines and not between the actual applications running on it.

Therefore, in a workflow or a real message based system such as an Enterprise Service
Bus (e.g. SWIM) it is important to provide a method that enables securing the exchanged
information (the message) from one application to another (end-to-end). This is achieved
by explicitly encrypting a message before it is delivered via the network to the recipient.

However, in an architecture where a Web Browser or a desktop client executes one or
multiple services according to the transparent chaining pattern (OGC Topic 12), the use
of SOAP does not seem to bring any advantages compared to using an HTTPS (HTTP +
SSL/TLS) connection, because the difference between point-to-point and end-to-end is
not meaningful here. It actually tends to be more complex for application and service
developers, because the use of secured SOAP messages requires to encrypt and decrypt
each individual request/response inside the application compared to simply using the
security features that are already provided and automatically handled by the transport
protocol (HTTPS).

As encryption based security was not required in OWS-8, the use of SOAP was not
necessary. This was also beneficial for the access control use cases, as the PEP did not
need to perform addition processing to unwrap the actual request contained in a SOAP
message.

10.2.5 Message Size

Implementers reported a doubling of size of exchanged web service messages when
SOAP was used - for example for GetCapabilities requests. Some observations regarding
the statement are listed in the following:

� A very basic GetCapabilities request encoded in XML can be very small. The
same can be true for other OWS operations. In these cases simply wrapping the
request with a SOAP envelope and body element indeed represents overhead that

OGC 11-093r2

106 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

is seldom necessary. However, the structure of these requests allows for more
detailed parameterization of the request, thus essentially increasing the size of the
core request. In such a case, the ratio of core request size to SOAP wrapper size
changes. The size of a complex request is often multiple times bigger than the
SOAP envelope that surrounds it.

� The application of compression techniques that were investigated in the testbed
can significantly decrease the size of a request, so that the size increase of a
SOAP request is diminished.

� As outlined before, SOAP enables common web service functionality that is
orthogonal to the core operations of the given OWS. The advantage of being able
to support this functionality in a common way for any OWS operation appears to
outweigh the disadvantage of potentially doubling the request size.

10.2.6 Conclusion

Using SOAP based OWS interactions is more complex than using a KVP and/or plain
XML based operation encoding. At the same time, SOAP can be useful to avoid re-
inventing the wheel to enable common web service functionality such as secure and
reliable message exchanges. Service infrastructures may not have a need for such
functionality. If that is the case, SOAP should not be used.

10.3 Unit of Measure Handling in Filter Expressions

10.3.1 Background

Clients often query AIXM features by filtering on feature properties that are quantities,
i.e. which have a value provided in a certain unit of measure (UoM). For example, the
length of a runway can be stated in meter, kilometer but also in foot or yards.

The numerical value of runway length changes based upon UoM it is provided in.
Filtering AIXM data based upon simple value comparison of quantities against given
numbers therefore only makes sense if the client knows the “native” UoM of the property
that the comparison operator is applied upon. In that case, the client can ensure that the
comparison value provided in the query is given in the same UoM. However, if the UoM
for a given feature property is not defined as a constant in a GML Application Schema
(such as AIXM) then clients would need to determine the actual UoM of a given AIXM
feature property first before being able to perform a meaningful query that involves a
comparison operator on this property.

A much more convenient solution for this issue would be to have the queried service
automatically convert quantities - both in feature properties and ad-hoc queries with filter
expressions contained in client requests - into their base units and then perform
comparison operators. Such a conversion is of course not necessary if the UoM of both
values is the same.

Example:

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

107

If the length of a specific runway was provided in foot then the runway length value
could be converted to meters by simply multiplying the original value with 0.30479976 (a
foot being 12 inches and an inch being 0.02539998 m as defined by UCUM). Likewise, a
quantity given as comparison value may be given in meters. Let us say that a client is
interested in finding airports with runways with a length bigger than or equal to 3000
meters (e.g. for landing). If a given runway had a length of 8000 feet then the naive
number comparison without UoM conversion would result in a match, although the
runway is in fact shorter than 2500 meters. With automatic UoM conversion, the service
would know that runway length had to be bigger than or equal to ~9842.53 feet to
produce a match.

10.3.2 Enabling automated Unit of Measure Conversion

Querying features at a WFS is performed via a GetFeature request which supports query
elements that include filter expressions according to the OGC Filter Encoding
Specification (FES). Comparison operators in FES filter expressions reference the feature
property that the operator shall be applied to and either provide the comparison value as
literal directly or reference it. The following paragraphs discuss how automatic UoM
conversion can be enabled at a WFS17.

First of all, we need to identify how a service can know the UoM that a feature property
and comparison value is given in. There are different options:

� UoM is constant - this would be defined in the GML Application Schema of a
given feature type; note that in case that the comparison value is given by
reference, the service would need to determine the feature type that the referenced
property belongs to

� UoM is known to be given in base units - this would be a requirement for the
given domain, but is probably hard to enforce; in addition, the domain would need
to agree on the base units (though following the definition of base units provided
by UCUM appears to be beneficial)

� UoM is explicitly provided - either in the dataset (e.g. as additional column in the
database of the service) or in the filter expression.

Explicitly providing the UoM of a comparison value in a filter expression was discussed
during the testbed. The participants agreed that explicitly adding the UoM information to
the literal representation of the comparison value is the best option.

17 WFS 2.0 explicitly states that it “does not define any support for handling conversions
between unit of measure” - see section 7.9.2.5.3.5 “Units of measure handling” in OGC
09-025r1 / ISO/DIS 19142

OGC 11-093r2

108 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

<fes:PropertyIsGreaterThanOrEqualTo>

<fes:ValueReference>aixm:Runway/aixm:timeSlice/*/aixm:lengthStrip</fes:
ValueReference>
 <fes:Literal>
 <gml:measure uom="m">3000</gml:measure>
 </fes:Literal>
</fes:PropertyIsGreaterThanOrEqualTo>

Note 1: the Sensor Event Service (OGC 08-133) introduced a similar way to perform
UoM conversion. The difference there was that the comparison literal includes an
element of the GML ScalarValue group, i.e. a gml:Boolean, gml:Count, gml:Category or
gml:Quantity - the latter of which is of type gml:MeasureType and thus has the uom
attribute attached to it. This approach allows even more explicit indication of the type
that the Literal is given in. The “type” attribute that can be added to an fes:Literal could
be used to indicate the type of the fes:Literal content. This is useful for primitive content,
such as a boolean value (in which case the type attribute could be set to “xs:boolean”) but
not so useful for element content where the element usually follows a global element
definition.

Note 2: The discussion how to represent the UoM of a comparison value also included
discussion of the case that the UoM is given in. It was suggested to set the “matchCase”
parameter of a comparison operator to false in order to ensure that the request is fulfilled
regardless of whether the UoM is defined as, for example, ‘M' or 'm'. However,
discussion of this revealed issues with this approach. Sticking to the example where
meter is the UoM, "Mm" (megameter) and "mm" (millimeter) both use case sensitive
UCUM symbols ("s" second vs. "S" Siemens is another example without prefixes). The
same with case insensitive symbols (see UCUM for further details) would be "MAM"
and "MM" (with "mAm", "mam", "Mam" etc and "mM", "Mm", "mm" being equivalents
because of case insensitivity). Ignoring case would be dangerous when case sensitive
symbols are used - one would compare otherwise incompatible uoms or confuse their
actual value (by misinterpreting the prefix). If a domain chooses to use only case
sensitive uoms, then this needs to be clearly documented. GML does not seem to restrict
case sensitivity on the UomSymbol type. As UCUM states, the use of case insensitive
symbols may be the greatest common denominator.

Now that the various ways to provide the UoM for feature property and comparison value
have been discussed, we need to identify the different situations in which UoM
conversion can or cannot be performed:

UoM in feature property
known (either constant,
explicitly provided or

known to be given in base
units)

UoM in comparison value known
(either constant [if known for the

feature type of the referenced value],
explicitly provided or known to be

given in base units)

UoM
conversion
possible

yes yes yes

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

109

yes no no

no yes no

no no no

Automatic UoM conversion can only be performed if the UoM for both the feature
property value and the comparison value is known. Otherwise, the service would need to
resort to perform direct number comparison.

10.3.3 Conclusion

Automated UoM conversion as described in this section would improve the filter
capabilities of OGC Web Services. Especially when the UoM of a feature property is not
constant, the mechanism helps to perform meaningful comparison operations.

Eventually, the mechanism should be integrated in or become an extension of the OGC
Filter Encoding Specification.

The discussion performed in OWS-8 on this topic did not cover all relevant aspects. A
proper specification of automated UoM conversion would need to define:

� how to identify UoMs (of both the feature property targeted by a comparison
operator and the comparison value itself) - this has been discussed in OWS-8 (see
previous section)

� the behavior in case that UoM conversion is not possible - this was not discussed
during the testbed

� how to advertise that the service supports UoM conversion and which UoM
definitions it understands - this was also not discussed during the testbed, but the
SES (OGC 08-133) has some information on this that may be useful (essentially,
the filter capabilities are extended to indicate UoM conversion capabilities)

� how to handle precision errors in comparison operations caused by value
conversion - rounding errors may be introduced through the conversion process,
which may or may not be relevant for a given application; this was not discussed
during the testbed

� how case sensitivity of UoM symbols is handled - this has been discussed to a
certain extent (see previous section)

11 Scenarios

Several realistic scenarios were developed for the OWS-8 Aviation thread. The
demonstration of the OWS-8 Aviation thread was inspired by these scenarios – detailed
scenario information is provided in chapter 0.

The scenarios provided a fictitious but realistic context for testing the developed
functionality. They prompted the exercising of interfaces, components, tools and services
as well as the use of encodings. This includes exercising a variety of web services

OGC 11-093r2

110 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

utilizing AIXM and WXXM encodings (including digital NOTAMs, information about
field conditions and relevant meteorological information).

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

111

12 Accomplishments

The OWS-8 Aviation thread demonstrated the successful coordination and cooperation of
20 diverse organizations in testing and advancing OGC, Aviation and other standards in a
rapid prototyping environment. As such, the major accomplishments of OWS-8 Aviation
include:

� A basic Authoritative Data Source Architecture was developed. It provides the
foundation for ensuring integrity and confidentiality of aeronautical data in a
service oriented architecture based on OGC standards. – For further details, see
OGC 11-086.

� Practical guidelines to domain modeling following a series of best practices were
documented and applied towards improving the efficiency and reusability of the
AIXM model. – For further details, see OGC 11-107.

� Suggestions were developed and documented for refactoring AIXM (and more
specifically the Digital NOTAM Event model) to improve the overall model
quality and to better align the AIXM model with the OGC/ISO standards baseline.
– For further details, see OGC 11-106.

� Recommendations for improving the overall support of time varying feature data
(following the AIXM Temporality Model) within the OGC/ISO standards
baseline were identified. The recommendations are intended to considerably
improve the usability of time varying data with respect to model design and
encoding as well as data management and access – not only in the Aviation
domain but in all domains that have a need to deal with time varying data. – For
further details, see 10.1.6 in this document as well as OGC 11-106.

� Suggestions for enhancing the AIXM Temporality Model but also for solving
identified issues were developed and documented. – For further details, see
section 10.1 in this document.

� Initial guidance for configuring and using a WFS 2.0 for managing and serving
AIXM data have been drafted. Such guidance is intended to support consistent
implementation of WFS 2.0 in the Aviation community. – For further details, see
11-073.

� The suitability of OGC standards for portraying aeronautical data with ICAO
symbology was investigated. Issues were identified and recommendations for
solving them were provided in the form of change requests to OGC standards. –
For further details, see OGC 11-089.

� A number of compression algorithms were investigated. All of them provide a
good overall performance for compression of AIXM, allowing the usage of
AIXM over data link connections. – For further details, see OGC 11-097.

OGC 11-093r2

112 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

� The Event Architecture developed in previous OGC initiatives was further
advanced to support the accurate delivery of digital NOTAMs. Three new features
and concepts were developed and tested: event enrichment, dynamic filtering and
pull support. In addition, OWS-8 is the first OGC initiative where two
independent Event Service implementations were available which benefited
interoperability testing considerably. – For further details, see chapter 9 in this
document.

� OWS-8 participants performed a detailed review of the Digital NOTAM Event
Specification version 1.0. The specification was validated through both a
thorough conceptual review as well as the implementation of a suite of executable
schematron tests. Identified issues were documented and recommendations for
addressing them in the next version of the specification were provided. – For
further details, see OGC 11-092.

� Work was performed on advancing the use of WXXM and Weather Concepts in
the Aviation domain. The applicability and suitability of WXXM in providing
accurate weather data and serving it via OGC Web Coverage Services was
investigated and demonstrated. – For further details, see OGC 11-072.

� An audit of the WXXM XML Schema was performed, revealing a number of
issues regarding the compliancy with encoding rules defined in ISO 19136. The
audit results will be useful in revising the WXXM schema to improve compliancy
with the OGC/ISO standards baseline. – For further details see OGC 11-091.

� Guidelines on using ISO metadata in AIXM 5.1 were further documented, in
compliance with the requirements and recommendations on metadata within the
Aviation domain. – For further details, see OGC 11-061.

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

113

13 Annex A – Detailed Scenario Descriptions

This Annex provides detailed information on the scenarios developed for the OWS-8
Aviation thread. The scenarios revolve around the following themes:

� Continued support for dispatch and planning activities,
� Increasing situational awareness,
� Demonstration of the use of probabilistic information in weather data in decision-

making applications.

13.1 Dispatch and Planning

This scenario is based upon the OWS-7 Dispatch scenario18. That scenario was developed
to demonstrate the use of OGC web services in providing flight dispatchers and pilots
with an alternative source for much of the information that is needed in the flight
planning, pre-flight briefing and flight following processes. The underlying transmission
methods for web services were assumed to exist. Participants in these processes are flight
crew, ground controllers, custodians and providers of aeronautical information (and
information updates), and custodians and providers of weather information. The role of
ATC was de-emphasized in the scenario, but it may be assumed that all in-flight
operations are carried out in concert with ATC authorities.

Web services were used to deliver aeronautical information encoded in AIXM and
weather information encoded in WXXM to flight dispatcher workstations and pilots
portable devices. The flight dispatcher retrieves aeronautical data and weather data
pertinent to the planned routes of proposed flights when preparing flight-briefing
packages. Shortly prior to a flight or when the pilot is at the departure gate or in the
cockpit, the pilot could download the flight-briefing package to his Electronic Flight Bag
(EFB) using web services. The pilot could also use web services enabled in his EFB to
update the aeronautical and weather information in the briefing package or to obtain
additional information, e.g. about features that are not covered or are insufficiently
covered in the briefing.

The following list describes the sequence of steps of the Tsunami scenario developed for
OWS-8. Selected steps of this scenario were demonstrated in the final OWS-8
demonstration.

1. The flight dispatcher checks into work and finds that he is responsible for
providing preflight briefing packages and flight following services for a flight
from Tallinn (IATA code: TLL) to Honolulu (IATA code: HNL) via Chicago
(IATA code: ORD) due to depart within the next 8 hours.

2. The dispatcher retrieves information relevant for the planned flight:

18 More information on the scenario can be found in the OWS-7 RFQ Annex B, section 4.4.5
(http://portal.opengeospatial.org/files/?artifact_id=36132&format=pdf).

OGC 11-093r2

114 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

a. Weather information: SIGMETs (icing, turbulence, etc.) along the flight
route as well as METARs and TAFs (wind, precipitation, visibility etc) for
destination and possible diversion and alternate airports.

b. Airport information: information for identification of diversion and
alternate airports (available passenger terminal, re-fueling facilities, hard-
surface runway of certain required minimum runway length etc).

c. Additional aeronautical information: for example airspace activation
information along the flight route.

3. The dispatcher visualizes and inspects all information on its client to check the
planned flight.

4. The dispatcher selects a flight route as well as diversion and alternate airports.
5. The dispatcher subscribes to be automatically notified of any changes in weather

conditions or aeronautical features relevant for the flight (such as airports and
airspaces).

6. The dispatcher puts all relevant information into the preflight briefing package
and sends it to the pilot before takeoff.

7. The flight takes off as planned.
8. While the flight is over the United States, the dispatcher receives several SAA

activation NOTAMs. The dispatcher visualizes the new data and determines that
the activations do not affect the flight.

9. An earthquake occurs near Japan, causing a tsunami that approaches Hawaii.
10. A digital NOTAM informs the dispatcher about the total aerodrome closure of the

alternate airport (the alternate airport is not operational).
11. The dispatcher searches for another alternate airport (checking weather and

aeronautical information for potential candidates), finds one and changes the
flight plan to use the new alternate airport.

12. A digital NOTAM informs the dispatcher about a runway closure at the
destination airport.

13. The dispatcher displays the runway information for Honolulu airport and
determines that another runway is still available and can be used for landing. The
dispatcher updates the flight plan accordingly.

14. Plane lands successfully in Honolulu.

13.2 Increasing Situational Awareness for Flight Planners, Pilots and Operation Centers

Another scenario was developed to demonstrate how application clients can use real-time
weather information to enable an increased level of situational awareness for flights
planners, pilots and operation centers. The data is gathered by the NASA Global Hawk
UAS on equatorial flights of extended (30 hour) duration and made accessible via OGC
Web Services. Unfortunately, delays in getting sample data resulted in this scenario not
being exercised or demonstrated in OWS-8.

13.3 Probabilistic Weather in Decision Making

The use and visualization of Probabilistic TAFs in application clients was exercised and
demonstrated in OWS-8. The demonstrations were inspired by the following scenario

OGC 11-093r2

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

115

using probabilistic weather information in flight planning operations of a parcel shipping
company.

A parcel shipping company uses a fleet of Boeing 727-200 aircraft daily to deliver its
packages. Using a "hub-and-spoke" sort and distribution system, meteorologists must
forecast weather conditions at several airport hubs at critical early morning hours, 14 to
16 hours in advance. Cost/Loss analysis indicates that it is better for the company to
increase staffing and send flights to alternate hubs when the risk of LIFR condition at the
primary hub is 40% or greater.

On 26 January 2011, at the primary hub airport, KBNA, Nashville, TN, a stationary front
lies just to the south. MVFR and occasional IFR conditions at the airport are expected to
persist for 24 to 36 hours. Precipitation is expected within the next 12 to 18 hours.
Current TAF for the primary hub airport has a PROB group of IFR ceilings and
rain/snow during the overnight hours. LAMP guidance for the same time period indicates
high probability of IFR conditions and snow with possibility of freezing precipitation as
well. As each hour passes with each LAMP guidance update, and as the critical decision
period approaches, LIFR and freezing precipitation probabilities at the hub airport
steadily increases for the nighttime period. At decision time, probability of LIFR
condition at the hub airport reaches 37% with 44% chance of freezing rain and/or sleet.
The dispatcher, examining the current LAMP probability trends, decides to send more
than half its planes to alternate hubs.

Probabilistic weather information is also important for pilots. The following list briefly
describes three possible scenarios.

1. Vacation on 26 August 2010, initial flight plan: Gulfstream JetProp Commander
980 @ 25kft from KLAX to KJAC, alternate KDIJ. Departure 9:30 LT. Flight
time 3:30 h.

a. Get latest TAF for destination airport and alternate (issued at 11:20Z).
Notes thunderstorms forecasted for KJAC and KDIJ in afternoon.

b. Query and get the latest LAMP probabilities of thunderstorms & IFR
conditions at arrival time (16Z-18Z) at KJAC. Based on latest guidance
available, decides to proceed and files plan for KJAC.

2. Business meeting on 15 August 2009, private plane, initial flight plan: Cessna
172S @ 10kft flying VFR from KBWI to KCRW. Departure 09:30Z. Flight time
1:20 h.

a. Retrieves latest official TAF for KCRW (issued 05:34Z). Notes MVFR
conditions (5SM) at KCRW due to light fog (BR) at 11Z (arrival time)
with improving conditions thereafter.

b. At 09Z, pilot queries the latest LAMP probabilities of MVRF, IFR
conditions at arrival time (10Z to 12Z) and decides the IFR probabilities
are too high and delays departure.

c. Shortly after 09Z, METAR SPECI observations indicate the development
of significant restriction in visibility due to rapid development of fog. The
official TAF for KCRW is amended at 09:20Z.

OGC 11-093r2

116 Copyright © 2011 Open Geospatial Consortium, Inc. All Rights
Reserved.

d. At 10Z and 11Z LAMP guidance continues to indicate high IFR
probabilities for the next few hours. A new KCRW TAF issued at 11:20Z
indicates that the 1SM BR condition will dissipate by 14Z at KCRW. Pilot
schedules departure at 13:30Z

3. Winter vacation beginning 26 February 2011, private plane, initial flight plan:
Beechcraft KingAir B100 @ 24kft from KLVS to KSUN. Departure 15:30Z.
Flight time 3:45 h.

a. Gets latest TAF for KSUN. Pilot notes IFR conditions at KSUN due to
ceilings beginning at 20:00Z. Queries LAMP probabilities for Low IFR at
KSUN for which aircraft is not equipped. LIFR probabilities are low, also
notes that LAMP guidance is forecasting at least 23 knot gusts beginning
in the afternoon, much of it direct crosswind (Rwy 13/31), which are not
in the official TAF. Pilot decides to depart for KSUN.

b. While en route, pilot subscribes for observations and updates to TAF and
LAMP guidance for KSUN. As each hour passes, updated LAMP
guidance increases the probability of Low IFR conditions, and wind
speeds and gusts expected at KSUN around arrival time (19Z-20Z).

c. One hour and fifteen minutes prior to arrival (17:54Z METAR), light
snow begins to fall at KSUN with 33kt gusts. Pilot files updated flight
plan indicating KPIH as an alternate. Thirty-five minutes before arrival,
KSUN TAF is updated indicating IFR conditions both in ceiling and
visibility and strong winds, occasional LIFR condition due to snow
reducing visibility and ceilings. Pilot decides to fly to alternate destination,
KPIH which remains MVFR.

