OGC 11-125

OGC 11-125

OGC 11-125

Open Geospatial Consortium

Date: 2011-09-12
Reference number of this OGC® project document: OGC 11-125

Version: 1.0
Category: OGC® Best Practice
Editor: Panagiotis (Peter) A. Vretanos

OWS-8 - GeoSynchronization Best Practices
Copyright 2011

Warning

This document defines an OGC Best Practice on a particular technology or approach related to an OGC standard. This document is not an OGC Standard and may not be referred to as an OGC Standard. It is subject to change without notice. However, this document is an official position of the OGC membership on this particular technology topic.

Document type:

OGC® Best Practice
Document subtype:
Engineering Report
Document stage:
Draft
Document language:
English
Contents

ivi.
Preface

vii.
Submitting organizations

viii.
Submission contact points

viv.
Revision history

viv.
Changes to the OGC® Abstract Specification

vivi.
Patent Information

viiForeword

viiiIntroduction

11
Scope

12
Conformance

13
Normative references

14
Terms and definitions

55
Conventions

55.1
Symbols (and abbreviated terms)

65.2
UML Notation

76
WFS initialization for GSS

76.1
Introduction

76.2
CreateSchema operation

76.3
Geodata Bulk Transfer format

86.4
Putting all together

86.5
Clients

86.5.1
Introduction

96.5.2
Web client

96.5.3
Mobile client

107
GSS work flow without validation

107.1
Introduction

107.1
Current GSS work flow

117.2
No-validation work flow

117.3
Short circuit No-validation work flow

128
Replication

149
GSS specification issues

149.1
Introduction

149.2
Issue 1 – Need more metadata in replication feed to support better filtering

159.3
Issue 2 – Ambiguity with SearchTerms parameter

159.4
Issue 3 – Change Feed Encoding

179.5
Issue 4 – GetEntries ambiguities

i. Preface

T.B.D.

ii. Submitting organizations

The following organizations submitted this Best Practice to the Open Geospatial Consortium Inc.:

1. Carbon Project
2. OpenGeo.org

3. CubeWerx Inc.

iii. Submission contact points

All questions regarding this submission should be directed to the editor or the submitters:

	CONTACT
	COMPANY

	Panagiotis (Peter) A. Vretanos
	CubeWerx Inc.

	Jeff Harrison
	Carbon Project

	Mark Mattson
	Carbon Project

	Chris Holmes
	Opengeo.org

	Gabriel Roldan
	

	
	

	
	

iv. Revision history

	Date
	Release
	Author
	Paragraph modified
	Description

	2011-09-06
	1.0
	PAV
	All
	Initial revision

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

v. Changes to the OGC® Abstract Specification

The OGC® Abstract Specification does not require changes to accommodate this OGC® standard.
vi. Patent Information

TBD

Foreword

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights (see above patent statement). Open Geospatial Consortium Inc. shall not be held responsible for identifying any or all such patent rights. However, to date, no such rights have been claimed or identified.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property rights of which they may be aware that might be infringed by any implementation of the Best Practice set forth in this document, and to provide supporting documentation.
Introduction

The following document contains a summary of work performed in GSS thread for the OWS8 test bed.

GeoSynchronization Best Practice Engineering Report

1
Scope

This document discusses the following topics with respect to Geosynchronization

a. Initialization of WFS for the purpose of GeoSynchronization

b. The GSS work flow without performing a validation step.

c. Replication between two WFS's

d. Issue with the GSS specification that were encountered during the OWS8 test bed.
2
Conformance
Not required.

3
Normative references

OGC 10-069r2, OWS 7 Engineering Report -- Geosynchronization service
4
Terms and definitions

4.0

attribute

name-value pair contained in an element

category document

documents that describe the categories allowed in Collection

change feed

collection of ATOM entries that describe changes to a data store expressed using the WFS Transaction syntax (see OGC 04-094)

client

software component that can invoke an operation from a server

collection

resource that contains a set of member resources

NOTE
In this candidate standard, collection are implemented as ATOM feeds (see IETF 4287).

collector

a person or entity that proposes changes to data

coordinate

one of a sequence of n numbers designation the position of a point in n-dimensional space

coordinate reference system

coordinate system that is related to an object by datum

element

basic information item of an XML document containing child element, attribute and character data

entry resource

members of a collection that are represented as ATOM entry documents (see IETF RFC 4287)

event

any detectable or discernable occurrence that has significance for the management of an SDI

feature

abstraction of real work phenomena

feature identifier

identifier that uniquely designates a feature instance

filter expression

predicate expression encoded in XML (see OGC 04-095)

follower

person or process that accesses or subscribes to the replication feed of a GSS for the purpose of data synchronization

integrator

person or process that reviews proposed data changes and then makes a determination (based on established criteria) if the proposed change is acceptable or not

interface

named set of operations that characterize the behaviour of an entity

local resource

resource that is under the direct control of a system

member resource

resource whose IRI is listed in a Collection with a atom:link element with a relation of "edit" or "edit-media"

Multipurpose Internet Mail Extensions (MIME) type

media type and subtype of data in the body of a message that designates the native representation (canonical form) of such data

namespace

collection of names, identified by a URI reference which are used in XML documents as element names and attribute names

operation

specification of a transformation or query that an object may be called to execute

property

facet or attribute of an object, referenced by name

publisher

synonym for collector (see 4.6)

remote resource

a resource that is not under the direct control of a system

replication feed

collection of ATOM entries containing a log of changes that have been applied to a data store that can be used for the purpose of replicating or synchronizing with that data store

representation

entity included with a request or response (see IETF RFC 2616)

request

invocation of an operation by a client

resolution feed

collection of ATOM entries describing the disposition of proposed changes listed in a change feed

resource

asset or means that fulfils a requirement

NOTE
In this candidate standard a resource is a network-accessible data object or service identified by an IRI, as defined in [RFC2616]

response

result of an operation returned from a server to a client

reviewer

synonym for integrator (see 4.15)

schema

format description of a model

schema

<XML Schema>
collection of schema components within the same target namespace

server

particular instance of a service

service

distinct part of the functionality that is provided by an entity through an interface

service metadata

metadata describing the operations and information available at a server

service document

XML document that describes the location and capabilities of one or more Collections grouped into Workspaces

topic

collection of ATOM entries that satisfy some query predicates

NOTE: this is also referred to as a filtered feed because a topic is generated by querying a base feed and applying some predicate; for example a topic could consist of all the entries that lie within some defined boundary

Uniform Resource Identifier

unique identifier for a resource, structured in conformance with IETF RFC 3986

NOTE
The generate syntax is <scheme>::<scheme-specified-part>. The hierarchical syntax with a namespace is <scheme://<authority><path>?<query>

Workspace

named group of collections

5
Conventions

5.1
Symbols (and abbreviated terms)

CGDI

Canadian Geospatial Data Infrastructure

CRS

Coordinate reference system

DCP

Distributed Computing Platform

EPSG

European Petroleum Survey Group

FES

Filter Encoding Specification

GML

Geography Markup Language

GSS

GeoSynchronization Service

HTTP

Hypertext Transfer Protocol

HTTPS

Secure Hypertext Transfer Protocol

IETF

Internet Engineering Task Force

KVP

Keyword-value pairs

MIME

Multipurpose Internet Mail Extensions

OGC

Open Geospatial Consortium

OWS

OGC Web Service

SDI

Spatial Data Infrastructure

URI

Uniform Resource Identifier

URL

Uniform Resource Locator

URN

Uniform Resource Name

VSP

Vendor Specific Parameter

WNS

Web Notification Service

WFS

Web Feature Service

XML

Extensible Mapkup Language

5.2 UML Notation

Not Applicable

6 WFS initialization for GSS

6.1
Introduction
One of the capabilities of a GeoSynchronization server is to PUSH data changes made to a source WFS to one or more target WFS's. In order for synchronization to commence it is often desirable to seed or initialize the target WFS's with data from source servers. This clause describes technologies developed during OWS-8 that support WFS initialization for the purpose of Geosynchronization using the WFS API.

Two distinct operations need to be performed in order to initialize a target WFS. First, feature types need to be created on the target server, into which data will be copied. Second, the data needs to be transferred from the source to the target environment and inserted into the target feature types via the WFS API. This transfer can happen electronically or physically (i.e. sneaker net) in cases where a network does not exist or is not reliable enough or fast enough.

6.2
CreateSchema operation

The first step to initialize a target WFS is to create the feature types into which data will be copied. The current WFS specification (see OGC 09-025r1) does not support an operation to create new feature types in the data store of a WFS so one was developed in the OWS-7 test bed and refined during the OWS-8 test bed. This operation is called CreateSchema and it allows one or more new features types to be created in the data store of a WFS. There is also a corresponding DropFeatureType operation that allows feature types to be dropped from the data store of a WFS.
The details of the CreateSchema and DropFeatureType operations can be found in the document titled "WFS 2.0 Change Proposal from OWS-8 – Add CreateSchema and DropFeatureType operations." (see OGC 11-087).

6.3
Geodata Bulk Transfer format
The second step to initializing a target WFS from a source WFS is to transfer feature data from the source environment to the target environment. There, it will be inserted into the feature types created by the CreateSchema operation (see 6.2). In order to support this step of the initialization process a new, open-standards-based bulk data transfer format was defined called Geodata Bulk Transfer format or GBT. A GBT file is a zip file containing the schema, data and optionally metadata for one or more feature types. The schema of each feature type is encoded as a GML application schema. The data (both spatial and non-spatial) for each feature type is encoded using GML and the metadata, if available, is encoded using ISO19115. All these files are packed into a zip archive that also includes a manifest of what feature types are contained in the GBT file.
The details of the GBT format are detailed in the document titled "OWS-8 Bulk Geodata Transfer" (see OGC-11-085).

6.4
Putting all together

Figure 1. illustrates how the CreateSchema operation and GBT files are used to initialize a target WFS with data from a source WFS:

[image: image1.png]Source WFS Target WFS

GBT Client (Import)

10111001010

GBT Client (Export)

1010011011010

Intranet / Internet

Figure 1 – Exporting and import feature data using GBT with a network
For each feature type to be exported, a GBT initialization client reads the schema (1) and feature data (2) from a source WFS and writes it out to a GBT file.

The GBT file is transferred to the target WFS. This can be done electronically as shown in Figure 1 or physically on some media as shown in Figure 2.
[image: image2.png]‘ Source WFS] ‘ Target WFS]

Figure 2 – Exporting and import feature data using GBT without a network
At the target WFS, for each feature type in the GBT file, the GBT initialization client uses the CreateSchema operation (3) to create feature types in the data store of the target WFS and then uses a WFS transaction (4) to insert the corresponding feature data from the GBT into the feature type.
6.5
Clients

6.5.1
Introduction

During the OWS-8 test bed three GBT initialization clients were developed. There was a web-based GBT initialization client, a desktop GBT initialization client and a mobile client for the Android platform.
6.5.2
Web client

Figure 3 illustrated the web-based GBT initialization client developed during the OWS-8 test bed.
[image: image3.png]illa Firef

Ble Edit View History Bookmarks Tools Help

CubeWerx® Stratos™ Web Serv... | 4 v
B B @ httpiicubewerx.com/dermo/cubeserv/stratos/ v ® @[3 Q@
IMost Visited #7: Hacker's Diet [G] Oracle Enterprise Ma... @!Shutle Tickets 1] XSV Validator E30GC Twikisv EJonline News Papersv EgBanksv Ejoraclev EgNetscapev »
- Server Instance | GlaballaionalLevel
atos B!

EB SERVICES CLOUD MANAGER

(Create newinstance] [Delete his instaiGe} Help)
neral | Configuration | Content

Instance Content Data Store - Global and National Level WFS

5 Add NewStore §§ Refresh 5 Delete Store. [=% % BukExport & Bulk Import

5 Global and National Level WFS

interactive .
eature e ! Store name: Global and National Level WFS
(o Feature Sete Sinstruments

[omiAbstractFeature pe: 0GC® Web Feature Service interface (Connection veriiied)

tip/senvices interactive-instruments deisprojectslows8-tds/cgi-bin/lidshs?

5] s ArerattiangarGeopaint [sou

[sAircratHangarGeosurtac|

[

[E] tdsAmphitheatrsGeosurtac

[E] tdsApronGeosurtace i

B tasBridgeGeocunve [AcdiEi Keywords]

] wsBrushGeosurtace
— Hote: Some datastoes provide much of the above information natvely. Use ths nterface to overide orsupplement thatinformation s required

[E] tdsBuildingGeopoint

[wsBuildingGeosurtace
[E] s BuildingGeosurtac Geopata Bulk Export =

B s BuitUpAreaGeosuriace

SelectFeatures

[tds:CableGeocune

[E] tds:CampsiteGeosurtace Selectthe features you wantto export Enter your email address and click NEXT for options of EXTRACT to exract
[tds:CaravanParkGeosurtace the selected features.

[E] tds:CemsteryGeopoint

Available Feature Sets
AircraftHangarGeopoint - tds: AircraftHang
AircraftHangarGeosurface - tds:AircraftHar
AmphitheatreGeosurface - tds:Amphitheat
BridgeGeocurve - tds:BridgeGeocurve
BrushGeosurface - tds:BrushGeosurface
BulldingGeosurface - tds:BuildingGeosurfac
BuiltUpAreaGeosurface - tds:BuiltUpAreaGe
CableGeocurve - tds:CableGeocurve
CampsiteGeosurface - tds:CampSiteGeosu
CaravanParkGeosurface - tds:CaravanParkt
CemeteryGeopoint - tds: CemeteryGeopoint
CemeteryGeosurface - tds:CemeteryGeosu
CisternGeopoint - tds: CisternGeopoint
ControlTowerGeopoint - tds: ControlTowerGe
ControlTowerGeosurface - tds: ControlTower
CropLandGeosurface - tds:CropLandGeosu
B tasDitchGeosurtace CulvertGeocurve - tds:CulvertGeocurve

[r—N———

[tasEmbankmentGeocurve . B
[tasEmbankmentGeosurface

Selected Feature Sets

B tas:cemet

yGeosurface nGec
BuildingGe:

TaxiwayG:

5] tos:CistemGeapoint
5] tés:ControlTowerGeopoint
5] tés:ControlTowerGeostriace
5 tos CropLandGeosurtace
5] tos:CuhertGeocure

5] tésDamGeosriace

5] s DishaeriaGeopoint

5] s DisposalsiteGeosurtace

[s DitchGeocune

5] tas:ExractionhineGeopoint

[tdsExractionhineGeosurtac,

E——— >

Ready

011 CubeWenxnc.

Figure 3 – CubeWerx web-based GBT initialization client
6.5.3
Desktop client

Figure 3 illustrates the desk top GBT initialization client developed during the OWS-8 test bed developed by the Carbon Project.

[image: image4.png]GBT WFS /. Q

File: C:\data\tds.gbt Urt: http://portal.cubewerx.com/cubewerx/projects/owsB/cubeserv.cgi?DATASTOR
Title: tds GBT Version: 11.0

Abstract: Geodata Bulk Transfer (GBT) file of *tds" dat| Security: False

yGeosurface

Figure 3 – Carbon Project desktop GBT initialization client

6.5.4
Mobile client

Figure 4 shows a GBT initialization client for the Android mobile platform developed during the OWS-8 testbed by the Carbon Project.

[image: image5.png]Eul]

tds:CampGeopoint (29)

> Submi

=¥ Select Layer

tds:RoadGeocurve
tds:BuildingGeosurface

tds:CampGeopoint

Properties Clear Geometry ~ Cancel

oy

tting...

Submit

Figure 4 – Carbon Project mobile GBT initialization client for Android

7 GSS work flow without validation
7.1
Introduction

One of the main functions of a GSS is to act as a mediator between data publishers (i.e. the crowd) and a WFS. In order to ensure good data quality, the GSS work flow includes a validation step whereby data entered by the "crowd" is reviewed and validated before being applied to a WFS. This validation step is a black-box for the GSS; it may be a manual process or automated – the only information the GSS needs to know is whether a particular change should be applied to a WFS or not.

In this clause we discuss the use case where the validation step in the work flow is not required. This may, for example, be because the data publisher has established a trust relationship with the GSS provider.
7.1
Current GSS work flow
The following sequence describes the GSS work flow defined in 10-069r1 for processing changes:

1. A data publisher logs onto a GSS server.

2. The data publisher posts an entry to the Change Feed proposing that some change be made to a feature(s).

3. A data reviewer (human or algorithm) takes a look at the proposed change and decides whether the change is acceptable or not.

4. If the change is NOT acceptable, the GSS posts an entry to the RESOLUTION feed indicating that the change was rejected and why.

5. If the change is ACCEPTED, the change is applied to the target feature. An entry is posted to the RESOLUTION feed indicating that the change was accepted and applied to the feature. Entries are also posted to the REPLICATION feed so that any subscribers can be notified of the change(s).
7.2
No-validation work flow

The normal GSS work flow includes a validation step (see 6.1, Step 3) where a proposed change is evaluated against fitness criteria to determine if the change should be applied to a feature. In some cases however, a data publisher may be a TRUSTED publisher and validation does not need to take place. The change is accepted automatically because the publisher is TRUSTED. The work flow in this case is identical to the one described above except that the validation algorithm is to simply accept all proposed changes from the TRUSTED users. A revised work flow for this use case would be:

1. A TRUSTED data publisher logs onto a GSS server. How the trust relationship is established between the publisher and the GSS is out of scope -- suffice it to say that it is established and the GSS is aware that the data publisher is TRUSTED.

2. The data publisher posts an entry to the CHANGE feed proposing that some change(s) be made to a feature(s).

3. The change is automatically ACCEPTED and applied to the feature. An entry is posted to the RESOLUTION feed indicating that the change was accepted and applied to the feature. Entries are also posted to the REPLICATION feed so that any subscribers can be notified of the change(s).

7.3
Short circuit No-validation work flow

One variation of the no-validation work flow presented in sub-clause 6.2 would be to not put an entry in the RESOLUTION feed. The purpose of the RESOLUTION feed is to provide a notification mechanism to inform data publishers of the disposition of their proposed changes. Trusted data publishers, however, know that their proposed changes will always be accepted and thus no notification is required.

The work flow from sub-clause 6.2 can thus be simplified even further to:
1. The data publisher posts a proposed change to the CHANGE feed.

2. The change is applied to the feature(s) and entries are posted to the REPLICATON feed so that any subscribers are notified of the change(s).

8 Replication-only GSS
For the GSS portion of the OWS-8 test bed OpenGeo worked to implement a Replication-only scenario of the GeoSynchronization Service. The goal was to be able to replicate data between two trusted WFS Servers, with the GSS fully integrated with the WFS Server. This means that the 'proposed change' and 'resolution' feeds were not utilized, we assume that the WFS itself has other means of accomplishing the same goal of vetting changes. The use case focused on is for a second Web Feature Service to replicate the changes of the first, in a completely trusted scenario, like where one WFS serves as the master and the slave replicates.

The GSS implementation was coded as a plug-in for GeoServer, backed by a new project called GeoGit. GeoGit is an alternate approach to storing history and geospatial collaboration, started for OWS-8. GSS provides a history feed and a sandbox for proposed changes and their approval, by automatic or manual means. The core of GeoGit aims to eventually provide additional functionality, like advanced querying and visualization of 'diffs', branching and merging of different streams of data, and distributed versioning. But GSS provides an excellent first specification for web bindings for the GeoGit core.

GeoGit is based on Git, a distributed revision control system. It was designed and developed by Linus Torvalds and used to manage Linux's source. Distributed revision control means that every copy of the code managed by Git is a full-fledged repository with complete history and full revision tracking capabilities, not dependent on network access or a central server.

GeoGit adapts the core concepts of Git to geospatial data, storing revisions of features instead of source code. Most of the core concepts of Git have been adapted to geospatial data. At its core both store a Directed Acyclic Graph (DAG) of objects. There are just a handful of different types of objects, and all are stored compressed and identified by a SHA-1 hash. The GeoGit implementation can work with any source of data that provides stable feature ID's. For the OWS-8 test bed PostGIS was used, but with minimal work Oracle, SQL Server, ArcSDE or DB2 could be used, as they already have GeoTools/GeoServer implementations. It should also be compatible with versioning back ends like ArcSDE or Oracle Workspace manager, treating them as smarter back ends, with the ability to mirror their revisions in the GeoGit repository (similar to how one can use Git to mirror SVN servers and also do more). The source code for the GeoGit implementation can be found at https://github.com/opengeo/GeoGit The GSS implementation is on several branches of Gabriel Roldan's copy of GeoServer at https://github.com/groldan/geoserver_trunk These will eventually be merged in to the main GeoServer repository.

Functionality was added in GeoServer, so that a user can select any existing configured vector layer and make it a 'versioned layer'. This process creates a canonical copy of the data that's in the database, stored in Binary XML with Well Known Binary for the geometries. This canonical copy is then the start of the DAG, that gets added to with every change to the data, enabling quick diffs and history.

The GSS implementation will list all of the versioned layers in GeoServer. Once versioned all WFS Transactions to the layer are recorded and made a part of the GSS replication feed. GeoGit could be leveraged to back the Proposed Changes and Resolution Feeds by creating an alternate branch for changes to go to, and successful pulls of changes would then be reported in the Replication feed. This was out of scope for OpenGeo's contribution to OWS-8. In the future alternate workflows will be investigated, as full distributed repositories of feature data, tracked against users, opens up a number of possibilities for large scale collaboration around geospatial information.

OpenGeo also implemented the ability for a GeoServer to function as a GSS replicating 'client'. A GeoServer module was added with a GSS data store, that could be configured to point at a replication feed and copy all the changes over. The client implementation was also done with GeoGit, so both server and client keep a history of changes. The client side was implemented to poll for changes instead of using the GSS subscribe functionality, as this seemed more robust in low and intermittent bandwidth scenarios. A push from the GSS Server could miss if the client side is offline. But if the client is polling it can ask for changes since its last update.

The GSS client communication was additionally implemented in Binary XML, for more efficient communication. The client GeoServer data store can be configured with a polling interval set for how often to pull changes down. Implementing this involved creating a GSS parser for GeoTools/GeoServer, that could understand BXML.

One other piece of work of interest that took place during the course of OWS-8 was a WFS 2.0 implementation, including its Versioning functionality. GeoGit was also successfully used to back the versioning needed by WFS. So GeoGit will back both GSS and WFS 2.0 Versioning, as well as potentially a more complete web services API to expose its diffs, branching and merging.

There has also been a bit of work to have the javascript client GeoExplorer work with GeoGit, performing WFS Transactions whose revisions get stored in the GeoGit repository and exposed as GSS and able to be replicated.

A few sources of additional information:

https://github.com/opengeo/GeoGIT/wiki

https://github.com/opengeo/GeoGIT/wiki/Project-proposal

And I wrote up http://geoserver.org/display/GEOS/GeoGit+approach but it may have some small bits wrong as Gabriel hasn't corrected yet.
9 GSS specification issues
9.1
Introduction

This clause describes problems encountered interpreting or implementing the GSS specification (see OGC 10-068r2). The issues are presented in the form of a problem statement and then as response. In many cases an issue number is cited. This is an issue number from the issue tracker that the GSS SWG maintains on the OGC portal.
9.2
Issue 1 – Need more metadata in replication feed to support better filtering
Problem:
My (Gabriel Roldan) use case is that I want to set up a geoserver instance to replicate feature types from an upstream instance by means of the GeoSync protocol.

To that end, the use case goes something like:

1. Set up versioned feature types in the central node

2. Set up a replicated node that configures itself based on the central node GSS capabilities

3. Based on the server capabilities, decide which synchronization method (subscription or polling) and transfer protocol to use (*)

4. Select which FeatureTypes to replicate (**)

5. Initialize replicated FeatureTypes (***)

(*) The spec mentions mailto:, xmpp:, and sync: as synchronization protocols. I'm not sure about xmpp, an example would be good to have, but as of sync: it indicates the server pushes changes to a target (client) WFS. Now, I think a third synchronization protocol should be in place, which would be GSS itself, so like in this case, where the "client" is just another GSS, it'd be natural to have the server pushing to the remote REPLICATIONFEED instead of relying on a remote WFS directly. And this way it would be easier for the replicating client to preserve some useful information found on the feed's entries that's not available through plain WFS, like author, updated timestamp, and even entry id.

As for (**) and (***), I don't see in the spec how a GSS client could figure out which feature types are available through GSS and where they come from. I think it'd be good if the GSS capabilities document included a list of feature type names and a pointer to the WFS where each resides. This way it would be easier to set up a replicating client so that it can initialize the replicated schemas by performing WFS DescribeFeatureType WFS requests against the GSS exposed types. And also it would be nice if it were possible/easier to "subscribe" to replicate a subset of the GSS FeatureTypes. My understanding is that right now a subscription Topic can filter out one of the three main feeds by means of a "generalized" Filter, but there's no easy way to limit that topic to a subset of the available FeatureTypes.

So in practice, a GSS client that's interested in only a subset of the available FeatureTypes could just ignore events that apply to any other FeatureType, but that seems hacky at least. It would be just easier if a Topic could be restricted to one or more specific FeatureTypes.
Response (entered as Issue 620 and 622):
More metadata needs to be added to replication feed to allow for better filter of the feed including the ability to filter on a specific feature type from a specific server. Created new issue about adding a new sync protocol (i.e. GSS).
9.3
Issue 2 – Ambiguity with SearchTerms parameter
Problem:
The spec says at page 64 that "The gss:SearchTerms element may be used to encode one or more search terms that the server should look for in each entry.". Now, it's not clear to me, given more than one search term (like in SEARCHTERMS=Moved,Building) whether a matching entry is one that contains all or any of the query search terms?
Response (entered as Issue 614):
The intent is that a matching entry is one that contains any of the query search terms. Do you think this behaviour should be user selectable? In other words the user can indicate in the request whether valid results are those that contain any of the search terms or those that contain all of the search terms?

Follow-up:
ANY is ok. I don't think the behaviour should be user selectable. IMHO it would only add more complexity with little benefit.

9.4
Issue 3 – Change Feed Encoding
Problem:
** Change Feed entry/content: It would be good if the description of the content element in table 8 makes it clear that the contents would be a wfs:Transaction element instead of just pointing out they could be GML (I'm assuming that from previous conversations, though I didn't find an example response to the change feed in the spec). Also, the transaction example in page 129 sets the type attribute to "application/gml+xml" whilst table 8 says the type of the content element for a change feed entry shall be "text/xml;subtype=gml/3.1.1/profiles/gmlsf/1.0.0/0". It would be good if the MIME Type were the same.

Response (entered as issue 616):
I'll check the GML and GMLSF specification to make sure that we are using the official MIME types.

As for the content section, the original GSS idea, the one developed in the CGDI pilot, was a little less strict about the content of a change feed. The pilot envisioned that it could be GML BUT it could also simply be a narrative describing the proposed change (e.g. "Move the pole 10m to the north). Of course GML makes machine processing of proposed changes easy. A narrative, on the other had, would require a human reviewer. This is why Table 8 is not so solid about using GML ... I was trying to accommodate both use cases. However, I don't think any implementation of GSS has actually uses a narrative description of a change so I will tighten up the language in Table 8.
Problem:
** Change Feed entry/link[2]: In Table 8, page 46, the second link element for a change feed entry (the one with rel="targetFeature") is a multi-valued one (there SHALL be one or more, one per changed feature). Now, requiring one link per changed feature is a bit confusing to me due to the following:

· For any feature proposed to be inserted there'll be no such feature at the target server. Now, if I read the following statement correctly: "There shall be one link for each feature changed in the proposed change", it is not like there should be one link per "affected" feature (including inserts), but just for any pre-existing one that would get changed? But instead it seems contradictory with the first statement "There shall be one or more link elements...", because the change proposal may be all inserts?

· The server will have to execute all the filters in any of the Insert/Update/Delete wfs:Transaction elements in the proposed change in order to gather the feature ids of the affected features and write them down as part of the link elements, which could be quite an overhead.

Response (entered as issue 616):
Yes, I see the problem. I will need to review the relevant sections in the specification to be sure but I think the intent is to say that if you are proposing a change to an existing feature then you should include a link to that feature. A new feature, as you point out, would not have a link since it does not yet exist.

Problem:
** Change Feed entry/georss:where: Again from Table 8, I'm not certain if one and only one georss:where element shall be included or it could be multi-valued. Thing is, I'm having trouble to ensure the robustness of the responses for certain "edge" cases. Say the change proposal affects features in different CRS's and it's not easy or just impossible to transform the envelope of one feature to the CRS of another one in order to encode a single gml:Envelope with a unified CRS. Or similarly, a Feature whose envelope crosses the date line is changed, but the response envelope shall be in urn:ogc:def:crs:EPSG::4326 rather than its native CRS to account for changes in another features (possibly from different FeatureTypes). May be this situation could be handled by either allowing multiple georss:where elements, or rather allowing georss:where to contain a multi geometry. Though the later wouldn't comply to the georss schema as it doesn't allow multi geometries.
Response (entered as issue 616):
Hmm... not sure about this one. I don't have a problem allowing more that one georss:where but I thought that the pseudo-UML in the GeoRSS white paper had a 1:1 relationship between feed entries and georss:where. I would also not be opposed to simply allowing a georss:where to have "multi" geometries in it either. Anyone else have thoughts about this? An atom entry element definition allows multiple extension elements (like georss:where): <http://tools.ietf.org/html/rfc4287#page-13>
9.5
Issue 4 – GetEntries ambiguities

Problem:
I am currently implementing the GetEntries response encoding for the replication feed, and while trying to understand what the spec implies at section 9.2.4.1/9.2.4.2, page 48, it looks like I would need some clarification, so any help will be much appreciated. My understanding of it is that a replication feed response should:

1. Contain an entry for each an every single Feature;

2. That entry's content is a WFS Transaction action, one Insert, Update, or Delete, for that single Feature;

3. The entry has a (uuid) id that's provided by the change originator or generated by the server

4. The "summary" element "May contain a short description about the change. Similar to a log entry someone might put into an svn or cvs log."

5. The "link" element, if present, addresses the feature instance at the "version" described by the entry

So as for 1)- and 2)-, I'm not sure if a wfs:Transaction inside an entry inside a gss:Transaction shall relate to a single feature, or it can affect multiple features. My understanding is the wfs:Transaction can affect multiple features AND contain both wfs:Insert, wfs:Update, and wfs:Delete elements, as any wfs:Transaction would. Maybe I'm too biased on thinking git like, but in my mind an "entry" would be similar to a source code management system's "commit", in which it has an author, date, id, commit message, and can affect multiple "features"? Otherwise, if an entry shall only refer to a single Feature, how would we handle changes that "atomically" refer to more than one feature? Like in a topology the fix is to make adjacent polygons touch by modifying both geometries.

Response (entered as Issue 591):
The replication feed is an event channel that describes the state changes (i.e. the events) of features from one state to the next. As such, each entry should only describe the change for a single feature.

The fact that a particular change has to be handled atomically is not relevant for the replication feed but is very relevant for the change feed -- where proposed changes are made. There is no single-feature restriction on the proposed change feed so someone/something could propose a transaction to a WFS that inserts/update/deletes multiple features and that transaction would be processed atomically by the WFS when the GSS applies it. Once the proposed change has been successfully applied to the target WFS, however, the GSS would log the changes made to each individual feature in the replication feed.

The main reason for doing it this way is that "followers" subscribe to the replication feed to following features. The way they identify which features they wish to follow is by including a filter in their subscription request. That filter can be anything ... it can identify sets of features temporally, spatially or even individually. So it is conceivable, for example, to follow a single feature ... like the boundary polygon on an oil slick for example. If the entries in the replication feed are based on "commits", rather than individual features it becomes difficult to isolate particular features of interest. Besides, the WFS model is feature based so it makes sense that the GSS model would be feature based as well.

Problem:
Which brings me to the next point of confusion wrt 3)/4) above: When you query a feed, you can say give me the changes between dates A and B, or any other predicate, for instance. Now, those changes may encompass multiple "entries" (a.k.a, commits). So say changes between dates A and B encompass change sets/entries/commits #1, #2, and #3. At #1, there were no features in the dataset, at #2 there were 1000 features, and at #3 there are only 500 features. Does querying the feed this way mean the result should be the full set of changes, including the 1000 feature inserts that happened at #2, to then get the change sets of #3 that include deleting 500 features? Or should it work more like a "diff", and get just the new 500 features from #1 to #3?

Response:
You should get 1500 entries in all -- the 1000 inserts and the 500 deletes.

Problem:
As for 5), I guess including the link only makes sense in the case of a feature update? Like in if it's an insert, it'd be redundant. If it's a delete, there'd be no feature at that version, so it would only make sense having a handle to the full feature instance in the case of an update, as the update. And again, the link being part of the "entry" element seems to imply an "entry" may only refer to a single Feature?

Response:
Yes, this is correct. The link only makes sense for updates and it should only point to a single feature.

	
	

	vi
	Copyright © 2007-2011 Open Geospatial Consortium

	Copyright © 2007-2011 Open Geospatial Consortium
	

19

