

Open Geospatial Consortium, Inc.

Date: 2011-11-16

Reference number of this document: OGC 11-114

Category: Public Engineering Report

Editor(s): David Danko, Lance Shipman, Paul Ramsey

OGC® OWS 8 Bulk Geodata Transfer with File Geodatabase

Copyright © 2011 Open Geospatial Consortium.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document presents a discussion of
technology issues considered in an initiative of the OGC Interoperability Program.
This document does not represent an official position of the OGC. It is subject to
change without notice and may not be referred to as an OGC Standard. However,
the discussions in this document could very well lead to the definition of an OGC
Standard. Recipients of this document are invited to submit, with their comments,
notification of any relevant patent rights of which they are aware and to provide
supporting documentation.

Document type: OGC® Public Engineering Report
Document subtype: NA
Document stage: Approved for public release
Document language: English

OGC 11-114

ii Copyright © 2011 Open Geospatial Consortium.

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, Inc. ("Licensor"), free of charge and subject to the terms set forth
below, to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual
Property without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify,
merge, publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual
Property is furnished to do so, provided that all copyright notices on the intellectual property are retained intact and that each person to
whom the Intellectual Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this
Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable,
and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be
construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in
violation of U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction
which may impact your right to import, export or use the Intellectual Property, and you represent that you have complied with any
regulations or registration procedures required by applicable law to make this license enforceable.

OGC 11-114

Copyright © 2011 Open Geospatial Consortium. iii

Preface

This document describes the File Geodatabase API and documents interoperability
testing performed during OWS-8 Geosyn-Bulk data transfer testing. It also documents
how the File Geodatabase API addresses the requirements specified in the OWS 8-RFQ-
CFP.

Suggested additions, changes, and comments on this draft report are welcome and
encouraged. Such suggestions may be submitted by email message or by making
suggested changes in an edited copy of this document.

This is the first version without track changes. The changes to be made in this document
version should be tracked by Microsoft Word. If you choose to submit suggested changes
by editing this document, make your suggested changes with change tracking on.

OGC 11-114

iv Copyright © 2011 Open Geospatial Consortium.

Contents Page

1	
 Introduction ... 1	

1.1	
 Scope .. 1	

1.2	
 Document contributor contact points ... 1	

1.3	
 Revision history .. 1	

1.4	
 Future work .. 1	

1.5	
 Forward .. 2	

2	
 References ... 2	

3	
 Terms and definitions ... 2	

4	
 Conventions .. 3	

4.1	
 Abbreviated terms .. 3	

5	
 ER Topic overview ... 3	

6	
 File Geodatabase API for Bulk Transfer .. 3	

6.1	
 Introduction .. 3	

6.1.1	
 Benefits .. 4	

6.2	
 OWS-8 Bulk transfer requirements .. 5	

6.3	
 File Geodatabase and RFQ requirements ... 6	

6.3.1	
 Summary .. 6	

6.3.2	
 Topology rules ... 6	

6.3.3	
 Metadata ... 7	

6.3.4	
 Physical API vs Document API ... 8	

6.4	
 File Geodatabase Compression .. 8	

6.5	
 Check sum investigation .. 9	

7	
 File Geodatabase Interoperability testing and Implementation 9	

7.1	
 Introduction .. 9	

7.2	
 Implementation ... 10	

7.3	
 Implementation Issues .. 11	

7.3.1	
 Date Start/Ends .. 12	

7.3.2	
 UTF16 vs UTF8 ... 12	

7.3.3	
 Field Order ... 12	

7.3.4	
 FeatureClass Extent ... 12	

7.3.5	
 Long Start-up Times .. 12	

7.3.6	
 Geometry Precision .. 13	

7.3.7	
 Spatial Reference Systems ... 14	

7.3.8	
 Type Mappings .. 14	

7.3.9	
 Geometry Mappings ... 15	

7.3.10	
 FGDB SubTypes .. 16	

7.3.11	
 FGDB Relationships .. 16	

7.3.12	
 Using OGR ... 16	

Bibliography ... 17	

OpenGIS® Engineering Report OGC 11-114

Copyright © 2011 Open Geospatial Consortium. 1

OGC® OWS 8 Bulk Geodata Transfer with File Geodatabase

1 Introduction

1.1 Scope

This document provides an overview of the File Geodatabase API and documents the
testing performed in the OWS 8 Testbed.

1.2 Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Name Organization
David Danko Esri
Lance Shipman Esri
Paul Ramsey OpenGeo

1.3 Revision history

Date Release Editor Primary clauses
modified

Description

2011-07-28 0.0.1 DD,LS,P
R

All- Initial creation

2011-08--
18

0.01 DD,LS,P
R

7. Added: File Geodatabase Interoperability
testing and Implementation Clauses

2011-09-06 0.01 DD 6 Updated material

1.4 Future work

This initial IP program tested the interoperability of using the File Geodatabase API to
transfer bulk data between to independent platforms. Future work is required to address
the remaining requirements in the OWS-8 RFQ-CFP namely the use of topology rules
and ISO 19139 metadata.

OGC 11-114

2

Copyright © 2011 Open

Copyright © 2011 Open Geospatial Consortium.

1.5 Forward

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

2 References

The following documents are referenced in this document. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply. For
undated references, the latest edition of the normative document referred to applies.

OGC OWS-8 RFQ/CFP Annex B OW-8 Architecture

ISO 19115:2003
http://www.iso.org/iso/catalogue_detail.htm?csnumber=26020

ISO/TS 19139
http://www.iso.org/iso/catalogue_detail.htm?csnumber=32557

NSG Metadata Foundation (NMF) - Part 1 (v2.0.0)
https://www.gwg.nga.mil/protected/focus_groups/mfg/documents/NMF_%20v1.5.pdf

NSG Metadata Implementation Specification (NMIS) - Part 2 (v2.0.0)
https://www.gwg.nga.mil/protected/focus_groups/asfe/documents/NMIS_Part_2_v1.5.0_
draft.pdf

North American Profile of ISO19115:2003 - Geographic information – Metadata (NAP –
Metadata, version 1.2.1), http://www.fgdc.gov/standards/projects/incits-l1-standards-
projects/NAP-Metadata

DGIWG profile of ISO 19107 – ref

3 Terms and definitions

For the purposes of this report, the definitions specified in OpenGIS® Abstract
Specification Topic (w ISO 19107) shall apply. In addition, the following terms and
definitions apply.

OGC 11-114

Copyright © 2011 Open Geospatial Consortium. 3

3.1
Application program interface
set of rules ('code') and specifications that software programs can follow to communicate
with each other

4 Conventions

4.1 Abbreviated terms

7zip an open source file archiver with a high compression ratio
API Application Program Interface

FGDB File Geodatabase
ZIP Windows Zip utility for file compression, file sharing, file encryption, and
data backup

5 ER Topic overview

This ER Topic addresses the use of Esri’s widely used File Geodatabase and the newly
developed, openly available, unencumbered File Geodatabase API for “Bulk Geodata
Transfer.” The File Geodatabase and the open API seemed a perfect fit with the
requirements laid out in the OWS-8 RFQ. It provides a compact and efficient technology
for transmitting very large datasets, along with extensive metadata and topology rules (if
provided) to guarantee logical consistency and an interoperable understanding of the
transmitted data. File Geodatabases can be segmented into multiple datasets and support
indexing as called for in the RFQ. The testbed provided an opportunity to test the new
open API for interoperability outside of the Esri community.

6 File Geodatabase API for Bulk Transfer

6.1 Introduction

A File Geodatabase is a collection of GIS datasets held in a file system folder. An API is
a specified application that a software program uses to access and make use of the
resources provided by another application that implements that API. The File
Geodatabase API provides a non-proprietary means by which anyone can work with File
Geodatabases. The File Geodatabase API is C++ based and provides the ability to
perform the following tasks:

� Create, Open and Delete file geodatabases

� Read the schema of the geodatabase

o All content within a geodatabase can be opened for read access

� Create schema for objects within the simple feature model

OGC 11-114

4

Copyright © 2011 Open

Copyright © 2011 Open Geospatial Consortium.

o Tables

o Point, Line, and Polygon feature classes

o Feature datasets

o Domains

o Subtypes
� Read the contents of datasets in a geodatabase

o All dataset content within a geodatabase can be read

� Insert, Delete and Edit the contents of simple datasets:

o Tables

o Point, Line, Polygon, Multipoint, and Multipatch feature classes

� Perform attribute and (limited) spatial queries on datasets

o Spatial queries will be limited to the envelope-intersects operator

� Navigate relationships and work with Attachments
Data in a File Geodatabase can be optionally stored in a read-only compressed format to
reduce storage and transmission requirements.

6.1.1 Benefits

The goals of the File Geodatabase are to do the following:

� Provide a widely available, simple, and scalable geodatabase solution for all
users.

� Provide a portable geodatabase that works across operating systems.

� Scale up to handle very large datasets.

� Provide excellent performance and scalability, for example, to support individual
datasets containing well over 300 million features and datasets that can scale beyond 500
GB per file with very fast performance.

� Use an efficient data structure that is optimized for performance and storage. File
geodatabases use about one-third of the feature geometry storage required by shapefiles
and personal geodatabases. File geodatabases also allow users to compress vector data to
a read-only format to reduce storage requirements even further.

OGC 11-114

Copyright © 2011 Open Geospatial Consortium. 5

� Outperform shapefiles for operations involving attributes and scale the data size
limits way beyond shapefile limits.

6.2 OWS-8 Bulk transfer requirements

The requirements for Bulk Transfer are outlined in the OWS-8 RFP/CFP Annex B and
summarized here: “Evaluate, investigate and demonstrate a method for distributing
geospatial data from a source system via a mechanism enabling that data to be efficiently
ingested in another system. In this scenario, the geospatial data is typically stored in a
native format geospatial database, and the mechanism for transfer will either be a WFS
response, a data file, or a file system-like folder or container. The geospatial data may
either be transmitted "in bulk" over a communications infrastructure or distributed via
hard media using "sneaker-net" methods. The communications infrastructure may be
either high-bandwidth or very constrained bandwidth - including frequent unreliable
connectivity.”

Key technical requirements include:

1. the ability to represent a maximal amount of the source geospatial content with no
loss in translation to the content-exchange format/container

2. segmentation of the content-exchange format/container to allow different types
of content-components to be extracted or ignored

3. effective file-size minimization of the content-exchange format/container
(including employing compression technology as appropriate)

4. the assurance of integrity in content transmission.”

The RFQ also addresses investigating the following requirements for the bulk transfer of
data:

 ISO 19115 conformant metadata describing the data incorporated in the transfer. In
particular the NSG Metadata Foundation (NMF) Part 1 and NSG Metadata
Implementation Specification (NMIS) Part 2;

 The use of check-sum to support data integrity assurance during transfer

 Topology- preferable based on the DGIWG Profile of ISO 19107

 Indexing capability allowing for direct random access to individual item of content

OGC 11-114

6

Copyright © 2011 Open

Copyright © 2011 Open Geospatial Consortium.

6.3 File Geodatabase and RFQ requirements

6.3.1 Summary

� The primary goal of the testbed was to show the ability to represent a maximal
amount of the source geospatial content with no loss in translation to the
content-exchange format/container

o Although on the initial execution of the openGeo utility there were some
minor discrepancies working together in the testbed these were fixed and
final transfers of data through a round trip were examined and no
discrepancies were found. (see 7 below).

� segmentation of the content-exchange format/container to allow different types
of content-components to be extracted or ignored

o A File Geodatabase can contain multiple feature, raster, and attribute
datasets. It also supports metadata at the database level, the dataset level
for each dataset, and the feature class level (see metadata below)

� effective file-size minimization of the content-exchange format/container
(including employing compression technology as appropriate)

o File Geodatabases are fairly efficient before additional compression for
example fgdb use only 1/3 of the storage for geometry than shapefiles for
example. With the File Geodatabase API all coordinate strings are
automatically compressed making it extremely efficient for datasets with
large numbers of linear and polygonal features.

o The testbed looked into commonly used compression routines to even
further reduce file size with excellent results (see 6.4 below)

� the assurance of integrity in content transmission.”
o The use of checksum was discussed. The testbed determined that 7-ZIP

provided checksum as well as efficiently compressing the data.
o The use of topology or topology rules help maintain data integrity if there

is any movement of features in the transmission of the data; if the
relationship between features and their ranking (which feature should be
adjusted) is known they can be adjusted back to their proper relationship.

6.3.2 Topology rules

One of the requirements in the RFQ was the ability to incorporate topology in the transfer
files primarily for the purposes of ensuring data integrity. The File Geodatabase API does
not provide for the exchange of explicit topology; it does, however, provide for the
transfer of the topology rules for the feature classes in the dataset. This provides for huge
efficiency in file size for the exchange of data, as well as still providing the topology
information and ensuring the integrity of the information. The topology rules for
associated feature types are carried within in the File Geodatabase.

During the testbed the following was discussed:

The File Geodatabase API provides access to the topology rules. The function
"getRelatedDataSets()" will return all topology information for a feature data set
(including topology rules).

OGC 11-114

Copyright © 2011 Open Geospatial Consortium. 7

Although the round trip in this testbed did not modify/drop any, or corrupt the data,
sometimes not all transfers will do as well due to round-off error, system, hardware, and
software differences. In this case sometimes a feature might be moved slightly (still
within accuracy tolerances) putting their relationship with other features in doubt. In this
case the use of topology or topology rules helps; if the relationship between features and
their ranking (which feature should be adjusted) is known they can be adjusted back to
their proper relationship.

One of the issues that developed during the testbed was that the feature classes to which
the topology rules apply were identified by a unique identifier (GUID) and not by feature
class name (“transportation curves” for example). A routine was developed which
mapped the GUIDs to feature class names and created a separate XML document. A
sample XML file for the Topology information for the LTCDS_3_0wTopoRules is
provided here https://portal.opengeospatial.org/files/?artifact_id=43811

There is also the capability to provide more information on the topology and feature class
relationships; Esri’s Defense Mapping product generates an xml file with the topology
rules, cluster tolerances, and ranking (which feature class can move vs another in a
relationship). In this particular case the tolerances, ranking and topology rules are based
on the NGA LTDS extraction rules (and some common sense rules). So if a Vegetation
FC overlapped a coastline the vegetation should be adjusted because it is the more
ambiguous feature.

Topology rules used by the FileGeodatabase are provided at:
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//001t000000sp000000.htm and;
http://help.arcgis.com/en/arcgisdesktop/10.0/help/001t/pdf/topology_rules_poster.pdf

6.3.3 Metadata

Geographic information, of course, is only as good as what users know about it; using
data without knowing its accuracy, its currency (date of validity), where it came from,
who produced it and how, etc can be disastrous. All data used for important decisions
should be well documented with metadata. This metadata should be included with the
data so that it travels with the data and is always available. Incorporating standardized
metadata with the bulk data transfer is one of the requirements in OWS-8. File
Geodatabase supports carrying full metadata at the Database level, Dataset Level, and at
the Feature Class Level. The metadata is carried as an integral part of the data in ArcGIS
Metadata XML. ArcGIS Metadata is a simple XML format incorporating all the
combined metadata elements required to support multiple metadata standards and
profiles. The File Geodatabase API is designed to read and write whatever xml metadata
is provided. This metadata can then be viewed through a style sheet in whatever standard
form the user desires as long as the particular metadata elements of interest have been
stored in the metadata. The metadata XML in a File Geodatabase does not have to be
ArcGIS Metadata – it can be FGDC XML, ISO 19139 XML, or in any XML format – the
FileGeodatabase will transfer it. This testbed only looked at the transfer of ArcGIS
metadata, and viewing it in an ISO 19115 styling. Future testbeds may want to investigate
the adaption of the API, adding an XSLT to “translate” the metadata from ArcGIS

OGC 11-114

8

Copyright © 2011 Open

Copyright © 2011 Open Geospatial Consortium.

metadata to ISO 19139 metadata or into storing the metadata in ISO 19139 directly in the
File Geodatabase.

6.3.4 Physical API vs Document API

The File Geodatabase API is provided as a freely available run-time application that
software developers can use to provide their products the ability to read, write, or create a
File Geodatabase. Most OGC API specifications are documents which state the
requirements and identify objects developers must develop/use to create a proper
interface. These written instructive requirements are subject to misinterpretation. The
software encoded instructions perform the same no matter who is implementing them.

To help developers meet requirements the written specifications come with conformance
tests to help developers understand if they have met the requirements. However as we
have found out in OGC just because two products implementing a specification and pass
the conformance test doesn’t guarantee they well be able to interoperate with each other
without a lot of direct interaction to work out the different interpretations of the
specification. With a runtime API when two developers meet conformance tests they are
more likely to interoperate.

6.4 File Geodatabase Compression

Currently ArcGIS file geodatabase compressed data is not supported by the File
Geodatabase API. There are plans to support reading compressed data in a future release.
Writing file geodatabase compressed data has never been part of the API design and may
be difficult. ArcGIS File geodatabase compression is at the file level. The file
geodatabase is still a collection of files on disk, not a zipped folder. You don’t write to a
compressed file geodatabase table, you compress an existing table. Compressed data can
be drawn and queried. It cannot be edited.

However, with the File Geodatabase API all coordinate strings are automatically
compressed improving the efficiency for datasets with large numbers of linear and
polygonal features. The API uses the Coordinate reference/projection, resolution/scale
information to create coordinate off-sets rather than carrying complete coordinates for all
vertices.

In the testbed we used 7ZIP to compress and package the file geodatabase. This is a
better alternative than using File Geodatabase compression. We found that7ZIP
compresses File Geodatabases efficiently. Some results during the testbed:

File name Original ZIP 7z

LTDS_3_0wTopoFeotypical.gdb 21.5 MB 3.2 MB (ZIP) 2.32.MB (7z)

MX_TDS_3_Data (four Levels TDS data) 98.1 MB 14.6 MB (ZIP) 8.8 (7z)

*GTDS_3_0.gdb 2.58 MB 0.32 MB ((ZIP) 0.28MB (7z)

**NHDH_21006.gdb 1.7G 568M (ZIP)

OGC 11-114

Copyright © 2011 Open Geospatial Consortium. 9

* this dataset had a lot of empty feature classes and didn’t benefit as much from coordinate string
compression.

**Loading the whole thing into PostGIS took about 15 minutes
And there were some very big layers in there, adding up to about 7.5M features:

NHDFlowlineVAA 1248452
NHDFeatureToMetadata 1887691
NHDReachCode_ComID 864996
NHDReachCrossReference 1205044
NHDFlowline 1248452
NHDWaterbody 1246000

6.5 Check sum investigation

The File Geodatabase API is designed to provide Read/write/query access to simple
features in a file geodatabase. It does not currently include any utilities for data
validation. Data validation can be achieved through the use of a check sum. We did an
investigation and found that none of the archival software packages included a checksum
internally in their zip files. 7zip allows the generation of a checksum of a folder. Since
File Geodatabases can contain hundreds of files per dataset it was determined in this case
it would be best to perform a checksum at the folder level as opposed to, for example, for
just the file containing the coordinate information. A checksum at the folder level would
be able to identify any corruption in the transmission of the data. Since 7zip has great
compression it can be used to generate a check sum then use 7zip to verify that the
correct data was received following a transmission. The checksum value would have to
travel separately to provide effective security. Alternately a checksum could be generated
using a standalone open source program like “FileVerifier++” which can be used to
generate a checksum at both ends. Since we are modifying the data as part of our demo,
the check sum would not match the data used in the round trip. It could be used to verify
that the data that Esri sent to openGeo arrived correctly and that the data sent by openGeo
correctly made it to Esri.

7 File Geodatabase Interoperability testing and Implementation

7.1 Introduction

The File Geodatabase API (FGDB-API) was tested for interoperability by building a tool
for loading and unloading data from an FGDB file into a PostgreSQL/PostGIS spatial
database server. The goal was to produce a new FGDB file, as the result of converting the
data from FGDB, to PostGIS, and back again. The exercise required understanding the
details of FGDB construction and exercised the FGDB-API in terms of providing
sufficient access to low/level read and write controls to produce a perfect copy.

OGC 11-114

10 Copyright © 2011 Open Geospatial Consortium.

Rather than writing the utility directly using just the FGDB-API and the PostgreSQL
client API (libpq), we wrote the utility using an extra abstraction layer, the OGR1 simple
features library. Using the OGR library made some of the development simpler, by
providing existing utilities for working with spatial reference systems (SRS) and binary
formats, as well as a mature framework for manipulating PostgreSQL/PostGIS data. And
it made some of the development more complex, by superimposing an extra abstraction
layer between the FGDB data model and the PostGIS data model.

However, the primary benefit of carrying out the development using the OGR library is
that the work done to support better FGDB reading and to implement FGDB writing in
OGR became part of the widely used OGR library. During development, third parties
unconnected with OWS-8 (primary US Army Corps CERL staff and contractors) tested
the work in progress and provided valuable feedback. The work completed for OWS-8
will be used by others and improved upon over time, which would be far less likely if the
development had been done as a single-purpose FGDB-to-PostGIS toolset

7.2 Implementation

The development effort had two streams: creating the postgis2fgdb and fgdb2postgis
command-line programs; and, upgrading the OGR FGDB driver to the point where it
could fulfill the mandate of a perfect round-trip from FGDB to PostGIS to FGDB.

The OGR upgrade was the heart of the work. At the start of the project, the FGDB driver
included basic read support, but was extremely slow to start up on a complex file. The
OGR development included the implementation of

A new layer reading method to more quickly list the FeatureClasses inside an FGDB file

� A DataSource::CreateLayer method
� A Layer::CreateField method
� A Layer::CreateFeature method

1 http://www.gdal.org/ogr

OGC 11-114

Copyright © 2011 Open Geospatial Consortium. 11

� Assorted utility methods (StringToWString, WStringToString, Layer::GetTable,
Layer::GetLayerXML, Layer::GetLayerMetadataXML, etc)

The primary work was in the CreateLayer and CreateFeature methods.

CreateLayer required generating an appropriate XML layer definition to feed the FGDB-
API, which meant working back from the example XML files to the minimum XML file
necessary to successfully create an FGDB table. Finding the correct permutations took
some time.

CreateFeature required adding code to the core OGR library to generate the FGDB
ShapeBuffer, which is a binary geometry representation common to a number of ESRI
formats (shape files, personal geodatabases, file geodatabases). While OGR already had
some ShapeBuffer generation code in the shape file handler, it was not generalized, so a
new implementation was added to match the existing implementation for reading the
shape buffers.

When the core writing code was working sufficiently for testing, the OGR build chain
was updated to allow the FGDB driver to be easily built using the standard GNU tools.
At this point third parties began testing the driver more heavily. It has now been tested
using both command-line tools such as ogr2ogr and ogrinfo as well as web services like
MapServer.

The command-line utilities, postgis2fgdb and fgdb2postgis were straight-forward
implementations of an OGR translator, with a few exceptions.

� The PostgreSQL driver is created with extra options to ensure the geometry
columns, fid columns, and column name cases are written with fidelity to the
original file.

� The fgdb2postgis utility, in addition to looping through the OGR layers and
features and writing them across, also writes an fgdb_metadata table directly into
the database, reading the table XML from the FGDB file and storing it in
PostgreSQL.

� The postgis2fgdb utility, in addition to looping through the OGR layers and
features and writing them across, reads from the fgdb_metadata table (if it
exists) and uses that information to preserve the geometry precision model of the
original file (more on that below).

7.3 Implementation Issues

Through development of the round-trip utilities, and pushing the data through the OGR
library, some issues received extra attention because they weren’t expected or showed up
as inconsistencies when testing the output data.

OGC 11-114

12 Copyright © 2011 Open Geospatial Consortium.

7.3.1 Date Start/Ends

The FGDB-API Row.GetDate and Row.SetDate methods operate on a struct tm (from
time.h) filling out the tm fields. As documented in time.h, the tm year is stored as an
offset from 1900 and the month number is zero-based. As a result, the OGR driver has to
add 1900 to the year, and 1 to the month to fit the time into the OGR model of time
before returning (and do the reverse when writing).

7.3.2 UTF16 vs UTF8

The OGR internal model for strings was originally undefined (yes really), but has moved
recently to a UTF8 standard. The FGDB-API states that the internal model for FGDB is
strictly UTF16 (except for XML documents, which are UTF8). So all column names and
string data have to be pushed through a transcoding. This is accomplished with the
StringToWString and WStringToString utility methods, which just wrap existing
transcoders in the OGR library.

7.3.3 Field Order

Both OGR and FGDB-API will respect the field order generated by repeated calls to their
respective field adding methods. In testing the output of the process it was discovered
that the output had mis-ordered fields. This was eventually tracked back to the field
reading code in the OGR PostgreSQL driver, and patched2.

7.3.4 FeatureClass Extent

When writing to an FGDB file, the extent of the feature class is not necessarily
automatically updated. The postgis2fgdb utility works around this problem with a call to
the Table.LoadOnlyMode method at the start and end of writing. This seems to cause the
extent to be generated (perhaps as a side effect of updating the spatial index).

7.3.5 Long Start-up Times

Users of the OGR FGDB driver will find that the initial time to connect to an FGDB file
with a large number of layers seems quite high. That is because the connection not only
opens the file handle, but under the covers in OGR reads out what layers are available
inside the file. The reading of datasets in the FGDB file is slow at the FGDB-API level.
Calling the GeoDatabase.GetChildDatasets method on a file with a large number of
FeatureClasses can take several seconds. This effect was only observed on the Linux 32-
bit platform, other platforms were not tested.

Other aspects of the FGDB-API performed very well. The fgdb2postgis tool was used in
on separate OpenGeo project to load a multi-million record USGS NHD file into PostGIS
and did so in only a few minutes.

2 http://trac.osgeo.org/gdal/ticket/4194

OGC 11-114

Copyright © 2011 Open Geospatial Consortium. 13

7.3.6 Geometry Precision

The greatest mystery exposed during development was around coordinate precision. The
first prototype could round-trip the data, but the coordinates were being returned with
slightly different values than the originals.

Coordinates are stored in PostGIS in full double-precision, and the coordinates in
PostGIS exactly matched the coordinates in the source FGDB file. However, the
coordinates in the target FGDB file did not match. That implied that either the export
from PostGIS was altering them, or that the writing to FGDB was altering them. The
answer was the latter.

Though FGBD stores coordinates in double precision, they are not written unaltered.
Every coordinate is conditioned by a precision model, which is attached to the spatial
reference system of the FeatureClass.

<SpatialReference xsi:type="esri:ProjectedCoordinateSystem">
 <XOrigin>-16987000</XOrigin>
 <YOrigin>-8615900</YOrigin>
 <XYScale>10000</XYScale>
 <ZOrigin>-100000</ZOrigin>
 <ZScale>10000</ZScale>
 <XYTolerance>0.001</XYTolerance>
 <ZTolerance>0.001</ZTolerance>
 <HighPrecision>true</HighPrecision>
 <WKID>54030</WKID>
</SpatialReference>

The model defines an origin point (XOrigin, YOrigin, ZOrigin), and a rounding factor
(XYScale, XScale). The scales are inverses of the precision, so a scale of 100 implies a
precision of 0.01. The model also defines values for tolerance, which are not used
directly by FGDB, but are used by ESRI tools (ArcMap, etc) to control things like
snapping in editing or topology tests.

In order to write an output FGDB file with coordinates that exactly match those of the
inputs, the model information needed to be stored in the PostGIS database. Since there is
no slot for this information in the existing OGC SFSQL standard that PostGIS
implements, we created a table to hold the extra FGDB information.

CREATE TABLE fgdb_metadata (
 tablename varchar primary key,
 table_xml varchar,
 metadata_xml varchar
)

FGDB expects table names to be unique, so we can use table name as the primary key.
There are slots to hold: the table XML definition, which includes all the field information
as well as the spatial reference system and precision model; and, the metadata XML,
which holds the optional FeatureClass metadata (name, description, provenance, etc).

OGC 11-114

14 Copyright © 2011 Open Geospatial Consortium.

The information from fgdb_metadata is used to create the new FeatureClasses in the
FGDB file to exactly match the ones in the source file. In the event that there aren’t rows
in the metadata for a table (if, for example, a new table was created in PostGIS that didn’t
exist in the source file) the new FeatureClass is created with default precision values that
try to retain as much of the full double precision as possible.

7.3.7 Spatial Reference Systems

FGDB FeatureClasses are very good about having spatial reference system (SRS)
definitions. The SRS definitions use well-known text (WKT) and/or well-known
identifiers. The identifiers are from the ESRI collection, which match the EPSG numbers
for the lower ones, but include ESRI specific numbers in a higher range. Since PostGIS
uses a similar scheme of aping the EPSG numbers, the identifiers are just mapped straight
across in our utilities.

The ESRI well-known text deviates from the OGC standard in a few places (some
parameter names, some projection names) but the OGR library infrastructure includes a
facility for flipping back and forth between the representations (the morphFromESRI()
and morphToESRI() methods on the SRS object) which we use in the conversion process.

7.3.8 Type Mappings

The FGDB type model is mapped to the OGR type model in the table below (the
preferred ESRI types when converting from OGR are noted with an *). Note that many
ESRI types are mapped to the same OGR type. The implication is that in a round-trip,
exact type fidelity will be lost as, for example, an esriFieldTypeSmallInteger is mapped
to an OFTInteger on the way into OGR and back to an esriFieldTypeInteger on the way
out.

ESRI Type OGR Type

esriFieldTypeSmallInteger OFTInteger

esriFieldTypeInteger* OFTInteger

esriFieldTypeSingle OFTReal

esriFieldTypeDouble* OFTReal

esriFieldTypeGUID OFTString

esriFieldTypeGlobalID OFTString

esriFieldTypeXML OFTString

esriFieldTypeString* OFTString

esriFieldTypeDate* OFTDateTime

esriFieldTypeBlob* OFTBinary

esriFieldTypeOID OFTInteger

esriFieldTypeGeometry* OGRGeometry

OGC 11-114

Copyright © 2011 Open Geospatial Consortium. 15

esriFieldTypeRaster N/A

In general the ESRI field type definitions are more granular than the OGR types. The
OGR types that cannot be converted into ESRI types are arrays of the simple types:
OFTIntegerList, OFTRealList, OFTStringList.

7.3.9 Geometry Mappings

The OGR geometry model is a full simple features (SFS) model, with the basic types
(POINT, LINESTRING, POLYGON) and the aggregate types (MULTIPOINT,
MULTILINESTRING, MULTIPOLYGON) and an anonymous aggregate type
(GEOMETRYCOLLECTION).

The FGDB model is the same as the original ESRI shape model3, with extensions4 added
since for higher dimensionality and patches. There is a Point, a MultiPoint, a PolyLine,
and a Polygon (and dimensional Z/M variants of each). There are also new
GeneralPolyLine, GeneralPolygon, GeneralPoint, and GeneralMultipoin variants that
support curved interpolations as well as simple ones.

The OGR implementation only supports the original types, or general types that do not
include curved components.

The ESRI FGDB Polygon is actually, in SFS terms, a MULTIPOLYGON, so when
converting from OGR to FGDB, the non-aggregates are fluffed into single-member
aggregates. When converting from FGDB to OGR, it is only possible to create SFS
aggregate types.

ESRI Type SFS Type

esriGeometryPoint POINT

esriGeometryMultiPoint MULTIPOINT

esriGeometryLine LINESTRING

esriGeometryPolyline MULTILINESTRING

esriGeometryPolygon POLYGON

esriGeometryPolygon MULTIPOLYGON*

N/A GEOMETRYCOLLECTION

3 http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
4 http://www.giser.net/wp-content/uploads/2011/01/extended-shapefile-format.pdf

OGC 11-114

16 Copyright © 2011 Open Geospatial Consortium.

7.3.10 FGDB SubTypes

The FGDB table definitions include the concept “sub-types”, enumerations that can
restrict the values in a column. In the PostgreSQL database these would be modeled as
either foreign-key tables or possibly (for cases with fewer values) domains. However,
since the OGR abstraction has no concept of sub-types or domains, sub-types are not
handled in the fgdb2postgis or postgis2fgdb translation utilities.

7.3.11 FGDB Relationships

Similarly, the FGDB includes the concept of “relationships” between tables, which are
similar to the PostgreSQL foreign key constraints. There are probably sufficient
differences that not all FGDB relationships could be encoded in the database, but many
could. However, since the OGR abstraction has no concept of relationships or foreign
keys, so they are not handled in the fgdb2postgis or postgis2fgdb translation utilities.

7.3.12 Using OGR

In the end, the abstraction layer of OGR was limited to simple features (SFS) so not all
the information in the FGDB could be copied across to PostgreSQL. However, the
benefit of doing this work in OGR in terms of seeding the community of third party
applications that can use FGDB files is well worth it. With this work, FGDB will be
usable by MapServer, Mapnik, QGIS, and any other application that uses OGR for GIS
file access.

OGC 11-114

Copyright © 2011 Open Geospatial Consortium. 17

Bibliography

[1] Guidelines for Successful OGC Interface Standards, OGC document 00-014r1

