
Interoperability Program Report - Engineering Specification OGC 03-003r10

© OGC 2003 – All rights reserved

Open GIS Consortium Inc.

Date: 30-OCT-2003

Reference number of this OpenGIS® Project Document: OGC 03-003r10

Version: 0.0.10

Category: OpenGIS® OGC Interoperability Program Report-Engineering Specification

Editor: Panagiotis (Peter) A. Vretanos (CubeWerx Inc.)

Level 0 Profile of GML3 for WFS

Copyright notice

This OGC document is copyright-protected by OGC. While the reproduction of
drafts in any form for use by participants in the OGC Interoperability Program is
permitted without prior permission from OGC, neither this document nor any
extract from it may be reproduced, stored or transmitted in any form for any other
purpose without prior written permission from OGC.

Warning

This document is not an OGC Standard or Specification. This document presents a
discussion of technology issues considered in an Interoperability Initiative of the
OGC Interoperability Program. The content of this document is presented to create
discussion in the geo-spatial information industry on this topic; the content of this
document is not to be considered an adopted specification of any kind. This
document does not represent the official position of the OGC nor of the OGC
Technical Committee. It is subject to change without notice and may not be
referred to as an OGC Standard or Specification. However, the discussions in this
document could very well lead to the definition of an OGC Implementation
Specification.

Recipients of this document are invited to submit, with their comments, notification
of any relevant patent rights of which they are aware and to provide supporting
documentation.

Document type: OpenGIS® Interoperability Program Report-Engineering Specification
Document subtype: Critical Infrastructure Protection Initiative, Phase-1.2 (CIPI1.2)
Document stage: Final
Document language: English

 © OGC 2003– All rights reserved

2

Contents

i. Preface...5

ii. Submitting organizations ..5

Document Contributor Contact Points..6

iii. Revision history..6

iv. Changes to the OpenGIS® Abstract Specification..7

v. Changes to the OpenGIS® Implementation Specifications7

Foreword...8

Introduction..9

1 Scope..12

2 Conformance ..13

3 Normative references...13

4 Terms and definitions ..13

5 Conventions ..13
5.1 Requirement levels...14

6 Requirements..14
6.1 Relationship to other OGC activities ...14
6.1.1 Geography mark-up language (GML)...14
6.1.2 Web feature server (WFS) ..14
6.2 Usage Scenarios..18
6.2.1 Simple desktop or browser based map viewer ..18
6.2.2 Get a collection of features using spatial and non-spatial constraints18
6.2.3 "Value-add" editor (edit geometry and other attribute values)......................18
6.3 General requirements..19
6.3.1 No changes to software ..19
6.3.2 Valid XML output..19
6.3.3 Valid GML3 output ...19
6.3.4 Simple clients..19
6.3.5 Well known structural view ..20
6.3.6 Implementations must be testable for conformance...20
6.3.7 Language bindings ...20
6.3.8 Simple and sufficient..20
6.3.9 XML Schema Interpretation ..21
6.4 Detailed requirements ...21
6.4.1 Validity of output ...21
6.4.2 Supported geometries ..21
6.4.3 Simple feature structure..22
6.4.4 Homogeneous feature collections..22

© OGC 2003 – All rights reserved

3

6.4.5 Feature references..22
6.4.6 Simple relationships...22
6.4.7 2.5D geometry support ..22
6.4.8 GML3 restrictions..23
6.4.9 WFS restrictions...23
6.4.10 CRS Support...24

7 A rigid coding pattern for GML application schemas24
7.1 Introduction..24
7.2 Root element ...24
7.3 Importing the GML3 schemas..25
7.4 Response container ..25
7.5 Coding pattern for feature types ..26
7.5.1 Introduction..26
7.5.2 Basic data types ..26
7.5.3 Defining feature types..30
7.6 Comments and annotations...31
7.7 Property Order...31
7.7.1 Example ..31
7.8 Examples...32
7.8.1 News item example...32
7.8.2 ROAD_BTS example from the CIPI1.2 testbed..34

ANNEX A – Conformance Testing ..37

ANNEX B – Future Work...45

ANNEX C – Usage Narrative..46

Bibliography ...48

 © OGC 2003– All rights reserved

4

i. Preface

The OpenGIS Consortium (OGC) is an international industry consortium of more than
220 companies, government agencies, and universities participating in a consensus
process to develop publicly available geo-processing specifications. This Interoperability
Program Report (IPR) is a product of the OGC Critical Infrastructure Protection
Initiative, Phase-1 (CIPI1).

The OGC Critical Infrastructure Protection Initiative, Phase 1, is part of the OGC’s
Interoperability Program: a global, collaborative, hands-on engineering and testing
program designed to deliver prototype technologies and proven candidate specifications
into the OGC’s Specification Development Program. In OGC Interoperability Initiatives,
international teams of technology providers work together to solve specific geo-
processing interoperability problems posed by Initiative sponsors.

ii. Submitting organizations

This draft Interoperability Program Report – Engineering Specification is being
submitted to the OGC Interoperability Program by the following organizations:

CubeWerx Inc.
200 rue Montcalm, Suite R-13
Gatineau, QC J8Y 3B5
Canada

Galdos Inc.
Suite 200, 1155 West Pender St.
Vancouver, BC V6E 2P4
Canada

© OGC 2003 – All rights reserved

5

Document Contributor Contact Points

All questions regarding this submission should be directed to the editor or the submitters:

Panagiotis (Peter) A. Vretanos
CubeWerx Inc.
pvretano@cubewerx.com

Aleksander Milanovic
Galdos Inc.
amilanovic@galdosinc.com

iii. Revision history

Date Release Description

23-DEC-2003 0.0.11 • Incorporate Simon Cox comment about using
lowerCamelCase for property names and upperCamelCase
for feature names.

30-OCT-2003 0.0.10 • Integrate John Davidson final comments (very minor
changes)

26-SEP-2003 0.0.9 • Integrate final Galdos comments.
• Remove previous review comment ANNEX’s.

25-SEP-2003 0.0.8 • Final scrub
• Indicate that clients should be prepared to deal with

properties in any order.
• Include ROAD_BTS example in the examples clause
• Address P.Daisy comments.
• Indicate that only GML3 geometry elements are valid. That

is that a compliant schema cannot use deprecated GML2
elements.

• Describe the CubeWerx schema validator in ANNEX A –
the conformance annex.

• Add a future work annex.

28-JUL-2003 0.0.7 • Add conformance testing annex
• Make minOccurs and maxOccurs attributes optional
• Moved clause v. (changes to implementation specifications)

to clause 6.1.2.
• Editorial and content changes to section 6.1.2.

10-JUN-2003 0.0.6 • Integrate round 2 comments from Galdos
• Integrate comments from John Davidson

 © OGC 2003– All rights reserved

6

mailto:pvretano@cubewerx.com
mailto:amilanovic@galdosinc.com

22-May-2003 0.0.5 • Migrate document to support GML3
• Incorporate comments from Galdos

29-Mar-2003 0.0.4 • add requirements section based on JohnD email
• put Galdos comments into Appendix
• comment on Galdos comments
• make changes based on Galdos comments

22-Mar-2003 0.0.4 Remove references to Option 1 and Option 3.

11-Feb-2003 0.0.3 Add normative references

02-Feb-2003 0.0.2 E.K. review comments

17-Jan-2003 0.0.1 Initial version

iv. Changes to the OpenGIS® Abstract Specification

None.

v. Changes to the OpenGIS® Implementation Specifications

Implementor should refer to clause 6.1.2 for a list of changes they will have make,
relative to the Web Feature Service Implementation Specification (02-058) and the
Filter Encoding Specification (02-059), in order to implement a Level 0 capability.

© OGC 2003 – All rights reserved

7

Foreword

Attention is drawn to the possibility that some of the elements of this part of OGC 03-
003r10 may be the subject of patent rights. Open GIS Consortium Inc. shall not be held
responsible for identifying any or all such patent rights.

This is the ninth revision of this document.

 © OGC 2003– All rights reserved

8

Introduction

The Web Feature Service Implementation Specification [2] was initially proposed nearly
two years ago and defines a web service that supports query and transactional operations
on features stored in web accessible data-stores. The specific operations defined in the
WFS specification are: GetCapabilities, DescribeFeatureType, GetFeature,
GetFeatureWithLock, LockFeature and Transaction.

The typical sequence of operations for interacting with a WFS is shown in figure 1.

Figure 1 – Typical Interaction with a WFS

A client issues a GetCapabilities request to determine the list of feature types that a WFS
offers. Then, the client issues a DescribeFeatureType request in order to obtain a
description of one or more feature type(s). Finally, the client uses the description of the
feature type(s) to formulate GetFeature, GetFeatureWithLock, LockFeature and/or
Transaction requests in order to retrieve or modify feature instances.

According to the WFS specification [2], feature types must be described using GML [1]
and XML-Schema [3]. This implies that the client application must be able to parse and
interpret schemas expressed in XML-Schema.

XML-Schema is a large and complex specification designed to satisfy a large set of
requirements. As a result, implementing a parser that is able to read and interpret an
XML-Schema document represents a significant implementation hurdle.

When dealing with XML-Schema, a client application builder has two options:

© OGC 2003 – All rights reserved

9

1. Use an existing XML-Schema parser.

2. Build an XML-Schema parser from scratch.

Coding an XML-Schema parser from scratch represents a significant investment in time
and resources before one even gets to the point of coding an actual WFS client. For
many organizations, the effort required may be too expensive.

A reasonable number of open source and commercial tools that can manipulate XML
Schema documents are currently available. However, the following issues still exist1:

1. Many of the existing XML-Schema parsers do not fully support the XML-
Schema specification and thus lack the ability to correctly process GML
application schemas.2

2. Most of the available XML-Schema parsers simply validate XML instance
documents against XML-Schema documents. They lack the necessary API
for interpreting XML-Schema document instances.3

3. Typically, the only language binding available is Java. While it is possible to
invoke Java routines from other languages using the Java Native Interface
(JNI), this approach introduces another set of technical issues to deal with.

In addition, as a programming language Java is not suitable for all geo-
processing requirements. Performance limitations and operations using array
processing of geographic coordinates are a good examples of the limitations
of Java.

4. The reliability, accuracy and stability of the available XML-Schema parsers
reflect the maturity of the XML Schema specification, which is still evolving.

Despite these issues, a number of WFS clients have been built and successfully tested in
OGC testbeds. Although very little has been accomplished regarding interoperability
across WFS’s. However, the main issue presented here is not whether a WFS client can
be built but what is the minimum effort required to build a simple4 WFS client. At the
moment, the effort is too high and this is hindering WFS interoperability, limiting the
availability of WFS clients and limiting the adoption of GML3. This document proposes
lowering the “implementation bar” for any organization that may want to commit time
and resources for developing an interoperable and simple OGC WFS client application.
This proposal does not in any way restrain usage of commercial XML-Schema parsers or
eliminate the need for consensus building from Information Communities on XML-

1 Castor, Xerces, Oracle XDK, MSParser, XmlSpy, XSV, Extensibility, JBind
2 Specifically, the parsers do not support substitution groups that are mandatory for processing GML schemas.
3 Xerces and Castor provide the necessary API for interpreting an XML-Schema document but neither is well
documented and a using them represents a significant learning curve. A fair amount of trial and error is required to
figure out how to use these APIs. There is a limited set of language bindings.
4 A simple WFS client is one that can interact with a WFS to query features and then manipulate them (e.g. for display,
transactions, etc…)

 © OGC 2003– All rights reserved

10

Schemas but promotes the idea that OGC should not only rely on those elements to
promote and achieve interoperability with WFS services.

Data provider organizations, especially organizations supporting simple geographic data
models with less resource capabilities, would rollout WFS-based geo-processing
applications a lot faster by using, for example, GML application schemas generated using
well-known and well-defined XML-Schema coding patterns.

Thus the goal of this document is one of making it easier to build clients that can interact,
without modifying client code, with any conformant WFS. This document further asserts
that this goal can be achieved by describing schema coding rules for GML3 application
schemas that define a simplified representation of geographic features, albeit with limited
expressiveness. The hypothesis is that defining a basic schema coding pattern that
handles say 80% of the needs of WFS clients to access geographic features/geometry,
significantly lowers the bar for implementing clients and fosters the "up-take" of GML,
WFS and other OGC-adopted specifications in the marketplace.

© OGC 2003 – All rights reserved

11

Interoperability Program Report - Engineering Specification OGC 03-003r10

© OGC 2003 – All rights reserved

Level 0 Profile of GML3 for WFS

1 Scope

The purpose of this document is to define a set of basic schema encoding rules that allow
GML3 applications schemas to be created that define how to represent simple feature data in
XML.

At a high level, this document describes:

1. Rigid rules for the use of a subset of XML Schema constructs (XML Schema profile)

2. Rigid rules for the use of a subset of GML constructs (GML profile)

3. Optional changes and enhancements to the WFS 1.0.0 interface required to support
this specification.

The intent is to specify the encoding of application schemas sufficiently so that WFS client
implementations do not need to deal with the entire scope of XML-Schema and GML but
only need to understand a restricted subset of both specifications in order to be able interpret
schema documents generated in response to a DescribeFeatureType request.

By doing so, it is expected that exchanging feature instances between web feature services5
and building WFS clients become a less onerous task even if the proposed solutions should
be viewed as a partial solution towards interoperability of web feature services. Issues
regarding semantics of Geographic features are out of scope for this document

This document is NOT intended to supersede or impede the progress of GML in any way.
The OGC GML Special Interest Group has demonstrated over the years the benefits and
flexibility of GML for encoding geographic features including the ability to support very
complex data models. In addition the OGC GML specification goes far beyond the encoding
capability and the scope of this document by defining methods and apparatus for handling
geo-processing needs from topology to dynamic features. In fact, it is hoped that by lowering
the effort required to manipulate XML encoded feature data, organizations will be enticed to
invest more time and effort with GML.

5 Of course in exchanging feature instances between web feature services, the WFS sending the features, is in-fact a WFS
client.

03-003r10

© OGC 2003 – All rights reserved

13

2 Conformance

Not required in an IP, DIPR, IPR or Discussion Paper.

3 Normative references

The following normative documents contain provisions that, through reference in this text,
constitute provisions of this Interoperability Program Report. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply. However,
parties to agreements based on this document (OGC 03-003r10) are encouraged to investigate
the possibility of applying the most recent editions of the normative documents indicated
below. For undated references, the latest edition of the normative document referred to
applies.

[1] OGC, OpenGIS® Geography Markup Language (GML) Implementation Specification,
version 3.0, http://www.opengis.org/techo/documents/02-023r4.pdf, 2002

[2] OGC Document 02-058, OpenGIS Web Feature Service Implementation Specification
version 1.0, http://www.opengis.org/techno/specs/02-058.pdf, 2002

[3] W3C, Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation,
6 October 2000, http://www.w3.org/TR/REC-xml

[4] W3C, XML Schema Part 1: Structures, http://www.w3.org/TR/xmlschema-1

[5] W3C, XML Schema Part 2: Datatypes, http://www.w3.org/TR/xmlschema-2

[6] OGC Document 02-004, Patterns in GML,
http://member.opengis.org/tc/archive/arch02/02-004.pdf, 2002

[10] OGC Document 01-025, Simple GML: Geography Markup Language (GML) 2.0
Implementation Profile, http://member.opengis.org/tc/archive/arch01/01-025.pdf, 2001

4 Terms and definitions

T.B.D.

5 Conventions

T.B.D.

http://www.opengis.org/techno/specs/02-058.pdf
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2
http://member.opengis.org/tc/archive/arch02/02-004.pdf
http://member.opengis.org/tc/archive/arch01/01-025.pdf

03-003r10

 © OGC 2003– All rights reserved

14

5.1 Requirement levels

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this
document are to be interpreted as described in RFC 2119 [1].

6 Requirements

6.1 Relationship to other OGC activities

6.1.1 Geography mark-up language (GML)

This document defines a profile of GML3. As such, it should have no direct effect on the
definition of GML3 itself, but should track changes to GML3 in order to ensure that schemas
that conform to this specification are also valid GML3 application schemas.

6.1.2 Web feature server (WFS)

Generating an application schema that conforms to this specification is an optional capability.
A WFS instance may support the GML3L0 profile and other GML3 profiles and application
schemas.

In the event that a WFS does support this specification, then the following changes will need
to be implemented:

General Changes:

This specification recommends that format values in the WFS specification be changed from
opaque strings to MIME types. Using MIME types will allow the WFS to be explicit about
the format, version and profile being specified in a request.

The general form of such MIME types should be x-application/format:version[:profile].
Thus the currently defined format value of GML2 would, instead, be specified as x-
application/gml:2.

GetCapabilities response:

The current WFS specification defines two elements, <SchemaDescriptionLanguage> and
<ResultFormat>, that are used to indicate the supported output formats for the
DescribeFeatureType and GetFeature operations.

These elements are defined to contain sub-elements that represent the supported output
formats. For example, the element <GML2> is used to indicate an output format of GML2.

03-003r10

© OGC 2003 – All rights reserved

15

The problem with this approach is the each time you add a new output format, either the
capabilities response schema must be updated to define the additional new elements or some
awkward XML-Schema constructs, involving element substitution, must be used.

A better approach is to define the <SchemaDescriptionLanguage> and <ResultFormat>
elements as lists of strings. Thus, new formats can be easily added without the need to
redefine the capabilities response schema or use awkward XML-Schema constructs.

These revised definitions of the <SchemaDescriptionLanguage> and <ResultFormat>
elements should be changed to:

 <xsd:element name="SchemaDescriptionLanguage"
 type="wfs:OutputFormatListType"/>
 <xsd:element name="ResultFormat"
 type="wfs:OutputFormatListType"/>
 <xsd:simpleType name="OutputFormatListType">
 <xsd:list itemType="xsd:string"/>
 </xsd:simpleType>

In addition, the previous practice of using arbitrary strings to represent the various output
formats should be abandoned and MIME types should be defined (in accordance to MIME)
for the supported output formats.

DescribeFeatureType request:

The values of outputFormat attribute of the DescribeFeatureType request must be changed
to reflect the fact that a web feature service may be able to generate schemas that conform to
more that one specification. Currently, the only defined value for the outputFormat
attribute is XMLSCHEMA, indicating that a GML2 application schema must be generated
in response to the request.

The accepted values for the outputFormat attribute for the DescribeFeatureType request
should be changed to:

Table 1 – Values for outputFormat attribute of DescribeFeatureType request

Parameter Value Description

XMLSCHEMA This value is kept for backward compatibility
and is used to indicate that a GML2
application schema must be generated.

x-application/gml:2 Same as XMLSCHEMA.

x-application/gml:3 This value indicates that a GML3 application
schema must be generated. It may be a
GML3 application schema that conforms to
this specification but if that is the only
schema that the WFS can generate.

03-003r10

 © OGC 2003– All rights reserved

16

x-application/gml:3:0 This value indicates that a GML3 application
schema that conforms to the coding patterns
laid out in this document must be generated.

GetFeature request

The values of outputFormat attribute of the GetFeature request must be changed to reflect
the fact that a web feature service may be able to generate instance documents that conform
to more that one version and/or profile of GML. Currently, the only defined value for the
outputFormat attribute is GML2 indicating that an instance document that validates against
a GML2 application schema must be generated.

The accepted values for the outputFormat attribute for the GetFeature request should be
changed to:

Table 2 – Values for outputFormat attribute of GetFeature request

Parameter Value Description

GML2 This value is kept for backward compatibility
and indicates that an XML instance
document must be generated that validates
against a GML2 application schema.

x-application/gml:2 Same as GML2.

x-application/gml:3 This value indicates that an XML instance
document must be generated that validates
against a GML3 application schema. The
XML instance document may validate
against a GML3 application schema that
conforms to this specification is that is the
only schema a WFS can handle.

x-application/gml:3:0 This value indicates that an XML instance
document must be generated that validates
against a GML3 application schema that
conforms to the coding patterns laid out in
this specification.

Transaction request:

03-003r10

© OGC 2003 – All rights reserved

17

Currently, the WFS specification assumes that the structure of features on input (i.e. Insert
and Update operations) is defined by a schema document generated using the
DescribeFeatureType request.

Since a WFS may potentially support features encoded using a number of different
vocabularies (GML2, GML3, GML3-LEVEL0), there is a need to define an inputFormat
attribute to allow a WFS to unambiguously determine how feature instances are encoded on
input. The inputFormat attribute will need to be defined on the <Insert> and <Update>
elements.

The following schema fragments redefine the <Insert> and <Update> elements accordingly:

 <xsd:element name="Insert" type="wfs:InsertElementType" />
 <xsd:complexType name="InsertElementType">
 <xsd:sequence>
 <xsd:element ref="gml:_Feature" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="handle" type="xsd:string" use="optional"/>
 <xsd:attribute name="inputFormat" type="xsd:string" use="required"/>
 </xsd:complexType>

 <xsd:element name="Update" type="wfs:UpdateElementType" />
 <xsd:complexType name="UpdateElementType">
 <xsd:sequence>
 <xsd:element ref="wfs:Property" maxOccurs="unbounded" />
 <xsd:element ref="ogc:Filter" minOccurs="0" maxOccurs="1" />
 </xsd:sequence>
 <xsd:attribute name="handle" type="xsd:string" use="optional"/>
 <xsd:attribute name="typeName" type="xsd:QName" use="required"/>
 <xsd:attribute name="inputFormat" type="xsd:string" use="required"/>
 </xsd:complexType>

The following table defines possible default values for the inputFormat attribute:

Table 3 – Values for inputFormat attribute for Insert and Update operations

Parameter Value Description

x-application/gml:2 This value indicates that the input feature
must validate against a GML2 application
schema.

x-application/gml:3 This value indicates that the input feature
must validate against a GML3 application
schema. The input feature may validate
against a GML3 application schema that
conforms to this specification.

x-application/gml:3:0 This value indicates that the input feature
must validate against a GML3 application
schema that conforms to the coding patterns
laid out in this document

03-003r10

 © OGC 2003– All rights reserved

18

Changes to the Filter Encoding Specification (02-059):

The BBOX operator defined in the filter encoding specification should be changed so that the
<propertyName> element is optional. The following XML-Schema fragment shows how
the BBOX element should be re-defined:

 <xsd:element name="BBOX"
 type="ogc:BBOXType"
 substitutionGroup="ogc:spatialOps"/>

 <xsd:complexType name="BBOXType">
 <xsd:complexContent>
 <xsd:extension base="ogc:SpatialOpsType">
 <xsd:sequence>
 <xsd:element ref="ogc:propertyName" minOccurs="0"/>
 <xsd:element ref="gml:Envelope"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

In the event that the <propertyName> element is not specified, a WFS must determine
which property of a feature is the spatial key and apply the BBOX operator accordingly. For
a feature type that has a single spatial property, this is a trivial matter. In the case where a
feature has multiple spatial properties, the WFS either knows which property is the spatial
key or it generates an exception indicating that the feature contains multiple spatial properties
and the <propertyName> element must be specified. Of course, a client application always
has the option of avoiding the exception by using the DescribeFeatureType request to get a
description of the feature type being queried.

6.2 Usage Scenarios

6.2.1 Simple desktop or browser based map viewer

Allow users to select a collection of features for access and subsequent visualization by client
application.

6.2.2 Get a collection of features using spatial and non-spatial constraints

In this scenario, a client application is able to process a schema description of the features
that a WFS serves sufficiently to be able to generate a valid and meaningful query, that uses
spatial and non-spatial constraints, to obtain one or more feature instances.

6.2.3 "Value-add" editor (edit geometry and other attribute values)

Allow users to augment geo-spatial information supplied by a data producer with data of their
own, creating new features or modifying existing features.

03-003r10

© OGC 2003 – All rights reserved

19

6.2.3.1 Create feature instances of specified type or id

In this scenario, a client application is able to process a schema description of the features
that a WFS serves sufficiently to be able to generate a valid, new feature instances that may
then be inserted into the feature store using a WFS Transaction request.

6.2.3.2 Update features with modified geometry and/or attribute values

In this scenario, a client application is able to process a schema description of the features
that a WFS serves sufficiently to understand the type of each attribute of a feature and be able
to generate a valid Transaction request that change the values of one or more properties on a
feature. The properties may be spatial or non-spatial.

6.3 General requirements

6.3.1 No changes to software

Application client software must be able to access, without software modification, more than
one WFS (T) to retrieve geographic feature data regardless of their intended use, semantic,
native structure, source or quality.

6.3.2 Valid XML output

Geographic feature data must be returned from WFS encoded as correct XML as defined in
the Extensible Markup Language (XML) 1.0 (Second Edition) [3] specification.

6.3.3 Valid GML3 output

Geographic feature data must be returned from WFS encoded as GML3 that validates against
a GML3 application schema that conforms to this specification.

6.3.4 Simple clients

Relatively unsophisticated client applications (e.g., a simple desktop application or browser
applet/plug-in for map display) should be able to:

1. request a feature description and be able to parse that description so that the
application can determine the names and types of all the properties of the feature

2. inspect the value of feature properties of a particular feature (or set of features)

3. manipulate feature instances locally for whatever purpose including display
geographic features retrieved from WFS as elements of a portrayed map

03-003r10

 © OGC 2003– All rights reserved

20

6.3.5 Well known structural view

Provide a common ("well known") structural view of geo-spatial vector data, encoded as
GML3, regardless of their underlying semantic, information or storage models. The
approach that this document takes is to define a GML3 profile6 that:

• handles a wide variety of spatial data models but not all possible models

• defines a profile of the base GML3 spec, including:

1. restrictions and requirements for use of specific spatial types (e.g., geometry)

2. restrictions and requirements for use of GML3 modules, constructs and types

3. naming conventions for modules and types

4. use of XML and XML Schema encoding specs, including allowable facets

6.3.6 Implementations must be testable for conformance

It must be possible to define methods and/or apparatus to test the validity of a GML3
application schema that claims to conform to this specification7.

6.3.7 Language bindings

GML3 application schemas that conform to this specification should be implementable and
supported by multiple vendors for multiple platforms, tools and programming languages
(e.g., Web Service, browser, desktop, Visual Basic/C/C++/C#/Java)

6.3.8 Simple and sufficient

A level 0 compliant schema must be able to adequately represent geographic objects for basic
display and attribute inspection with minimum of encoding/decoding overhead and
complexity.

An addition minimum sufficiency requirement is that a level 0 schema must be able to
represent simple features as described in the OGC simple feature implementation
specifications (99-049, 99-050).

6 see: SDTS spec (http://mcmcweb.er.usgs.gov/sdts/profile.html), ISO TC/211 19106 (Geographic information - Profiles)
and OGC 02-023r3.
7 See ANNEX A for conformance clause.

03-003r10

© OGC 2003 – All rights reserved

21

6.3.9 XML Schema Interpretation

As stated in clause 6.3.2 and 6.3.3, a schema that conforms to this specification must be valid
XML and a valid GML3 application schema and as such may be processed using available
XML-Schema parsers and interpreters.

However, the goal of this specification is to describe methods and apparatus so that there is
no need to process any of the more advanced features of XML-Schema. One simply needs to
locate the definition for a feature type(s) of interest, and scan the property-name/simple-data-
type pairs in order to interpret the schema. A rigid profile makes processing XML Schema as
easy as scanning a simple list of these data pairs

6.4 Detailed requirements

6.4.1 Validity of output

A schema document that conforms to this specification must be valid with respect to XML
[3], and GML3 [1].

6.4.2 Supported geometries

The following GML3 geometry property types must be supported:

Table 4 – Supported GML Geometric Property Types
GML Geometric Property Type Defined in GML Schema File Restrictions

gml:PointPropertyType geometryBasic0d1d.xsd none

gml:CurvePropertyType geometryBasic0d1d.xsd only LineString allowed as value

gml:SurfacePropertyType geometryBasic2d.xsd only Polygon allowed as value

gml:MultiCurvePropertyType geometryAggregates.xsd only MultiLineString allowed as
value

gml:MultiSurfacePropertyType geometryAggregates.xsd MultiPolygon and MultiSurface
allowed as value; MultiSurface
can use only linear
(sub)geometries

gml:LinearRingPropertyType geometryBasic2d.xsd this was missing in GML-2 and
has justifiably been added to
GML-3

gml:RingPropertyType geometryPrimitives.xsd only LinearRing or Ring with
LineStrings can appear as value

03-003r10

 © OGC 2003– All rights reserved

22

Additional requirements for Geometry include:

• Handle simple geometric shapes 0-2.5 D. Don't need 3D solids

• Only LineString type curves (CurveSegments) must be supported. All others must not
be supported

• Allow a feature to have any number of geometric properties

• In instance documents, all geometries are to have srsName attributes

• The use of deprecated, GML2 geometry constructs (e.g. innerBoundaryIs), is not
supported.

6.4.3 Simple feature structure

Features must be defined using a "well-known" and simplified feature model that doesn't
require multiple nesting (inheritance) levels, substitution groups, choices, unions, etc…
except as prescribed in this specification.

This specification is concerned with the 'basic' schemas for use with relatively simple
systems, such as those that use features that are represented (at least conceptually) by a single
database table. That is, they have a flat list of feature properties and the properties are of
simple types like Number, String, and Boolean and there may be more than one property of a
concrete Geometry type.

Systems that are more complex than this can use full-blown, unrestricted GML.

6.4.4 Homogeneous feature collections

Feature collections must be homogeneous with respect to the coordinate reference system
used.

6.4.5 Feature references

References to local and remote resources may be made using Xlink.

6.4.6 Simple relationships

Must support simple relationships in which relationships do not carry properties.

6.4.7 2.5D geometry support

This specification must support "2.5D" geometry

03-003r10

© OGC 2003 – All rights reserved

23

6.4.8 GML3 restrictions

Compliant schemas must not use constructs for handling/encoding topology, metadata,
dictionaries, temporal features, dynamic features, styles, coverages, and observations.

6.4.9 WFS restrictions

6.4.9.1.1 Introduction

This section outlines restrictions that arise because of this specification on WFS operations.

6.4.9.1.2 GetCapabilities request

See clause 6.1.2.

6.4.9.1.3 DescribeFeatureType request

See clause 6.1.2.

6.4.9.1.4 GetFeature / GetFeatureWithLock requests

See clause 6.1.2.

Also, to comply with this specification, a WFS must generate a single feature collection as
defined in clause 7.4.

The feature collection is, itself, not considered a feature but is simply a container for the
response to a GetFeature/GetFeatureWithLock request. This implies that the feature
collection cannot be queried as a feature.

6.4.9.1.5 LockFeature request

None.

6.4.9.1.6 Transaction request

6.4.9.1.6.1 Insert operation

See clause v.

6.4.9.1.6.2 Update operation

See clause v.

6.4.9.1.6.3 Delete operation

See clause v.

03-003r10

 © OGC 2003– All rights reserved

24

6.4.10 CRS Support

A WFS that implements this specification must support the coordinate reference system for
Geographic/WGS84 using decimal degrees to encode latitude and longitude8. All other CRS
definitions are optional.

7 A rigid coding pattern for GML application schemas

7.1 Introduction

Clause 7 describes a rigid coding pattern for GML application schemas. The main
motivation behind this pattern is to limit the set of XML-Schema and GML3 features that
may be used to code a GML application schema. This in turn should simplify the task of
building WFS clients that can ingest schema documents that conform to this coding pattern
and understand the structure of the feature types defined within.

In the following clauses, schema fragments defined may be combined to create a complete
GML3 application schema.

The schema fragments must be structurally encoded exactly as presented in the document.
This means that all mandatory elements and attributes presented in the fragment must be
included as shown even if they are optional in XML-Schema. Furthermore, no other optional
elements or attributes that might be defined in XML-Schema or GML3 may be used unless
specified in this document.

Please note, that these requirements have absolutely nothing to do with the formatting of the
XML fragments. They are structural and syntactic requirements, not formatting
requirements. White spaces can be used freely to format the generated schema documents in
any way.

7.2 Root element

The following XML fragment shows how to encode the GML application schema
document’s root element:

1 <xs:schema
2 targetNamespace="target_name_space"
3 xmlns:prefix="target_name_space"
4 xmlns:xs="http://www.w3.org/2001/XMLSchema"
5 xmlns:gml="http://www.opengis.net/gml"
6 elementFormDefault="qualified"
7 version="0.0.7">

The attributes shown for the <schema> element can be specified in any order.

8 Within OGC, EPSG:4326 has incorrectly been used to represent this coordinate system definition. The problem is that
EPSG:4326 is defined in degrees, minutes and seconds rather than decimal degrees. When this issue is resolved within the
OGC, the correct EPSG reference will be supplied.

03-003r10

© OGC 2003 – All rights reserved

25

Line 2 declares the target namespace for the elements defined in the schema document. The
value target_name_space is a placeholder for an actual namespace value.

Line 3 defines a prefix for the target namespace. The value prefix is a placeholder for an
actual prefix value.

Line 4 declares the prefix for the XML-Schema namespace, which contains all the elements
used to define a schema. In this document, the prefix xs is used to represent the namespace
for the XML-Schema elements. However, a schema document that conforms to this
specification may set the prefix to have any desired value as long as it is correctly bound to
the XML-Schema namespace (http://www.w3.org/2001/XMLSchema). A conformant
schema may also declare the XML-Schema namespace as the default namespace in which
case not prefix is defined at all.

Line 5 declares the prefix gml for the GML namespace.

Line 6 sets the default value for the form attribute for elements to qualified. This indicates
that locally defined elements are added to the target namespace.

Finally, the version attribute should be set to reflect the version of the schema document
being generated. The fragment uses version 0.0.7, which is the version of this document, but
it can be any value that has meaning to the entity or organization creating the schema
document.

7.3 Importing the GML3 schemas

The following XML fragment imports the GML feature schema:

<xs:import namespace="http://www.opengis.net/gml"
schemaLocation="http://<…schema repository…>/schemas/gml/3.0.0/feature.xsd"/>

The value of the namespace attribute must match the GML namespace declaration in the root
element.

The value of the schemaLocation attribute must be a URI that resolves to the contents of the
GML3 schema file feature.xsd [1]. The schema fragment above shows a URL that points to
the physical file, feature.xsd, but any URI may be used (e.g. an HTTP GET request that
resolved to a schema).

7.4 Response container

The <wfs:FeatureCollection> element, as defined in the WFS specification[2], must be
used as the container for the response to GetFeature/GetFeatureWithLock requests. This
feature collection shall not be queryable, but simply act as a container for the query response.

http://www.w3.org/2001/XMLSchema

03-003r10

 © OGC 2003– All rights reserved

26

7.5 Coding pattern for feature types

7.5.1 Introduction

In GML, a feature is encoded as an XML element whose name is the feature type according
to some classification. The feature instance contains feature properties, each encoded as an
XML element whose name is the property name. Each of these contains another element
whose name is the type of the property value or instance; this produces a "layered" syntax in
which properties and instances are interleaved.

Following the GML lexical convention, this specification uses UpperCamelCase for the
XML element names representing instances of Feature Types, and lowerCamelCase for the
XML element names representing properties9. This provides a visual clue distinguishing the
two "layers" within long instance documents, and thus assists inspection of instances by
developers.

7.5.2 Basic data types

XML-Schema defines a rich set of basic data types that can be used to define XML
documents. However, since data served by a WFS can originate from any number of data
sources (all of them having a different set of supported basic types), this document limits the
set of available basic types to a smaller subset. The rational being that a smaller common set
of supported basic data types is likely to be more interoperable.

The list of supported basic data types is:

1. Integers of a specified precision

2. Reals of a specified precision and scale

3. Character strings of a specified maximum length

4. Date

5. Boolean

6. Binary data

7. Geometric property types supported by GML and specified in clause 6.4.2.

The following clauses present XML fragments that act as templates for defining elements
whose content type corresponds to one of the seven basic types supported by this
specification. Unless otherwise specified, all elements and attributed presented in the
templates, and only those element and attribute, must be specified.

9 Although the use of the GML lexical convention is strongly recommended by this specification, it is not mandated in order
to be compliant GML3 L0 schema.

03-003r10

© OGC 2003 – All rights reserved

27

7.5.2.1 Null values

In this specification, if minOccurs=0 is specified for an element, this shall be interpreted as
meaning that the corresponding property may have a NULL value.

In instance documents, an element that is not specified shall be interpreted as meaning that
the corresponding property has a NULL value.

7.5.2.2 Defining elements with integer content

The following XML-Schema fragment shows how to define an element with integer content:

 <xs:element name="propertyName" minOccurs="0|N" maxOccurs="0|N|unbounded">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:totalDigits value="nDigits"/>
 </xs:restriction>
 </xs:simpleType>`
 </xs:element>

The value of the mandatory name attribute, propertyName, is a placeholder for the name of
the element being defined which should match the name of feature property being encoded.

The attributes minOccurs and maxOccurs may be specified and indicate the minimum and
maximum number of times that the element must appear in an instance document. If these
attributes are omitted, then they are assumed to have the default values defined in XML-
Schema for these facets – one (1).

A value of zero for the minOccurs attribute shall be used to indicate that a property may
have a null value in an instance document.

An element with integer content (or an integer-valued property) must be derived from the
base XML-Schema type xs:integer.

The maximum number of digits that the integer may have must be specified using the value
attribute on the <totalDigits> element. The value nDigits in the XML fragment is a
placeholder for the value representing the maximum number digits in the integer.

7.5.2.3 Defining elements with real content

The following XML-Schema fragments show how to define elements with real content in a
GML application schema that conforms to this specification10:

<xs:element name="propertyName" minOccurs="0|N" maxOccurs="0|N|unbounded">
 <xs:simpleType>
 <xs:restriction base="xs:decimal">
 <xs:totalDigits value="nDigits"/>

10 Only one of the three patterns presented should be used to define any given property. However, a conformant schema
document may have multiple real valued properties defined in multiple feature types with each definition using a different
pattern.

03-003r10

 © OGC 2003– All rights reserved

28

 <xs:fractionDigits value="nDigits"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

- or -

<xs:element name="propertyName"
 type="xs:float|xs:double"
 minOccurs="0|N" maxOccurs="0|N|unbounded"/>

The value of the mandatory name attribute, propertyName, is a placeholder for the name of
the element being defined which should match the name of feature property being encoded.

The use of the attributes minOccurs and maxOccurs is described in section 7.5.2.2.

A real-valued property (or an element with real content) may be of type xs:float or xs:double
or may be derived, by restriction, from the base XML-Schema type, xs:decimal.

In the case where the element definition is derived from the type xs:decimal, the maximum
number of digits that the real may have must be specified using the value attribute on the
<totalDigits> element. The value nDigits, in the XML fragment, is a placeholder for the
value representing the maximum number digits in the real.

The maximum number of digits to the right of the decimal point must be specified using the
value attribute on the <fractionDigits> element. The value nDigits, in the XML fragment, is
a placeholder for the value representing the maximum number of digits to the right of the
decimal point.

7.5.2.4 Defining elements with character content

The following XML-Schema fragment shows how to define an element with character
content:

<xs:element name="propertyName" minOccurs="0|N" maxOccurs="0|N|unbounded">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="nCharacters"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

The value of the mandatory name attribute, propertyName, is a placeholder for the name of
the element being defined which should match the name of feature property being encoded.

The use of the attributes minOccurs and maxOccurs is described in section 7.5.2.2.

A character string-valued property (or an element with character content) must be derived, by
restriction, from the base XML-Schema type xs:string.

The nCharacters value of the value attribute of the <maxLength> element must be used to
indicate the maximum number of characters that the string may contain. Note that this value
may not be the same as the maximum length in bytes of the character string. The length of

03-003r10

© OGC 2003 – All rights reserved

29

the string in bytes may be longer than the nDigits value if a multi-byte character set is being
used.

7.5.2.5 Defining elements with date content

The following XML-Schema fragment shows how to encode an element with date content:

<xs:element name="propertyName"
 type="xs:date|xs:dateTime"
 minOccurs="0|N" maxOccurs="0|N|unbounded"/>

The value of the mandatory name attribute, propertyName, is a placeholder for the name of
the element being defined which should match the name of feature property being encoded.

The use of the attributes minOccurs and maxOccurs is described in section 7.5.2.2.

An element that contains date content can be of type xs:date or xs:dateTime depending on
whether time is important or not. The actual instances of date values must be encoded
according to the ISO8601 standard.

7.5.2.6 Defining elements with Boolean content

The following XML-Schema fragment shows how to define an element with Boolean content
in a GML application schema that conforms to this specification:

<xs:element name="propertyName"
 type="xs:boolean"
 minOccurs="0|N" maxOccurs="0|N|unbounded"/>

The value of the mandatory name attribute, propertyName, is a placeholder for the name of
the element being defined which should match the name of feature property being encoded.

The use of the attributes minOccurs and maxOccurs is described in section 7.5.2.2.

The value space of boolean content is {true, 1, false, 0}.

7.5.2.7 Defining elements with binary content

The following XML-Schema fragment shows how to define an element with binary content
in a GML application schema that conforms to this specification:

 <xs:element name="propertyName" minOccurs="0|N" maxOccurs="0|N|unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:base64Binary|xs:hexBinary">
 <xs:attribute name="url" type="xs:anyURI" use="optional"/>
 <xs:attribute name="mimeType" type="xs:string" use="required"/>
 <xs:attribute name="role" type="xs:string" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>

03-003r10

 © OGC 2003– All rights reserved

30

The value of the mandatory name attribute, propertyName, is a placeholder for the name of
the element being defined which should match the name of feature property being encoded.

The use of the attributes minOccurs and maxOccurs is described in section 7.5.2.2.

Binary content can either be referenced from an external URI or encoded inline in base64 or
hex format.

When binary data is referenced from an external URI, the url attribute must be used to point
to the location of the data. The mimeType attribute must also be specified to indicate the
type or format of binary data that is being referenced. Finally, the optional role attribute can
be used to assign a user-define role to the data. The role attribute allows complex binary
formats like HDF/EOS, which contains multiple independent binary components, to be
supported.

When binary data in encoded inline, the mimeType attribute must be specified to indicate the
type or format of the binary data. The optional role attribute can also be specified to assign a
user-defined role to the data. In lined binary data is either encoded in base64 format
(indicated by defining the type of the element as xs:base64Binary) or hex (indicated by
defining the type of the element as xs:hexBinary).

7.5.2.8 Defining elements with geometric content

The following XML-Schema fragment shows how to define an element with geometric
content:

<xs:element name="propertyName"
 type="gml_geometric_property_type"
 minOccurs="0|N" maxOccurs="0|N|unbounded">

The value of the mandatory name attribute, propertyName, is a placeholder for the name of
the element being defined which should match the name of feature property being encoded.

The use of the attributes minOccurs and maxOccurs is described in section 7.5.2.2.

The value gml_geometric_property_type for the type attribute is a placeholder for one of the
geometric property types defined in Table 1, clause 6.4.2.

7.5.3 Defining feature types

In clause 7.5.2, XML fragments are presenting for encoding the property values of a feature
type in XML. This clause now shows how to combine these fragments to encode feature
types in a valid GML application schema.

The following XML-Schema fragment shows how to define a feature type in a GML
application schema that conforms to this specification:

 1 <xs:element name="FeatureTypeName"
 2 type="prefix:FeatureTypeName_Type"
 3 substitutionGroup="gml:_Feature"/>

03-003r10

© OGC 2003 – All rights reserved

31

 4
 5 <xs:complexType name="FeatureTypeName_Type">
 6 <xs:complexContent>
 7 <xs:extension base="gml:AbstractFeatureType">
 8 <xs:sequence>
 9
 10 … one or more element definitions as described in sec. 7.5.2 …
 11
 12 </xs:sequence>
 13 </xs:extension>
 14 </xs:complexContent>
 15 </xs:complexType>

The root element of the feature type is defined in line 1. The value FeatureTypeName is a
placeholder for the actual name of the feature type. The root element must be defined to be
of type FeatureTypeName_Type11 and must be a substitution element for a GML feature.

Line 5 begins the definition of the XML type that defines the feature type, type. The
complex type must be an extension of the GML abstract feature type and must contain one or
more element definitions that represent the properties of the feature type. Clauses 7.5.2
describes how to code elements of the various supported content types.

7.6 Comments and annotations

XML comments and annotations, using the <annotation> element, may be used freely in an
application schema that conforms to this specification wherever they are legally allowed by
XML-Schema and GML.

7.7 Property Order

Schemas that comply with this specification may define properties in any order. Thus,
generic client applications should be prepared to process schema (and by extension instance)
documents that define properties in any order.

However, attention is drawn to the fact that in XML, and thus GML, property order does
make a difference. Identical property lists defined in differing order result in different feature
type definitions. If property order is significant for a particular application, then this ordering
may need to be defined ahead of time.

7.7.1 Example

In the CIPI1.2 tested, the source data was converted from SHAPE files. SHAPE is a multi-
file format with separate files used to store the spatial and non-spatial properties. Non-spatial
properties are stored in DBF format files and their order is fixed. The order of the non-spatial
property, however, is not defined.

As a result, the two servers involved in the CIPI1.2 test bed defined almost identical schemas
based on this specification differing only in the order of the spatial property. One server

11 The name of the XML type for a feature type must be composed of the name of the feature type and the suffix _Type.

03-003r10

 © OGC 2003– All rights reserved

32

defined the spatial property first, the other last. This had no effect on the test bed since the
client was able to handle properties in any order. However, the point of this example is to
illustrate the fact that the input file format may not completely define the order of properties
and if property order is important, it may have to be defined ahead of time.

7.8 Examples

7.8.1 News item example

The following is a GML application schema that defines two features types, Reporter and
NewsItem and complies with the coding patterns described in this document:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xs:schema
 targetNamespace="http://www.cubewerx.com/cw"
 xmlns:cw="http://www.cubewerx.com/cw"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:gml="http://www.opengis.net/gml"
 elementFormDefault="qualified"
 version="1.0">

 <xs:import namespace="http://www.opengis.net/gml"
 schemaLocation="http://schemas.cubewerx.com/schemas/gml/3.0.0/feature.xsd"/>

 <!-- ===
 define feature types
 === -->
 <xs:element name="Reporter"
 type="cw:Reporter_Type"
 substitutionGroup="gml:_Feature"/>

 <xs:complexType name="Reporter_Type">
 <xs:complexContent>
 <xs:extension base="gml:AbstractFeatureType">
 <xs:sequence>
 <xs:element name="reporterId">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="9"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="firstName"
 minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="20"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="lastName"
 minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="20"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="organization"
 minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="50"/>
 </xs:restriction>

03-003r10

© OGC 2003 – All rights reserved

33

 </xs:simpleType>
 </xs:element>
 <xs:element name="email"
 minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="50"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="age"
 minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:totalDigits value="10"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="photo"
 minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:base64Binary">
 <xs:attribute name="url"
 type="xs:anyURI" use="optional"/>
 <xs:attribute name="mimeType"
 type="xs:string" use="required"/>
 <xs:attribute name="role"
 type="xs:string" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:element name="NewsItem"
 type="cw:NewsItem_Type"
 substitutionGroup="gml:_Feature"/>

 <xs:complexType name="NewsItem_Type">
 <xs:complexContent>
 <xs:extension base="gml:AbstractFeatureType">
 <xs:sequence>
 <xs:element name="location"
 type="gml:PointPropertyType"
 minOccurs="1" maxOccurs="1"/>
 <xs:element name="reporterId"
 minOccurs="1" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="9"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="eventDate"
 type="xs:dateTime"
 minOccurs="1" maxOccurs="1"/>
 <xs:element name="byLine"
 minOccurs="1" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="30"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="details"
 minOccurs="1" maxOccurs="1">

03-003r10

 © OGC 2003– All rights reserved

34

 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="20000"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="images"
 minOccurs="0" maxOccurs="5">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:base64Binary">
 <xs:attribute name="url"
 type="xs:anyURI" use="optional"/>
 <xs:attribute name="mimeType"
 type="xs:string" use="required"/>
 <xs:attribute name="role"
 type="xs:string" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>

7.8.2 Roads_bts example from the CIPI1.2 testbed

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema elementFormDefault="qualified"
 targetNamespace="http://www.opengis.org/cipi1.2/level0/bts"
 xmlns:bts="http://www.opengis.org/cipi1.2/level0/bts"
 xmlns:gml="http://www.opengis.net/gml"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:appinfo source="urn:x-bts-roads_bts.xsd:schema:roads-bts:v0.96">roads_bts.xsd v0.96
2003-09</xs:appinfo>
 <xs:documentation>roads_bts schema.</xs:documentation>
 </xs:annotation>
 <xs:import namespace="http://www.opengis.net/gml"

schemaLocation="http://wfs.galdosinc.com:8045/wfs/http?request=GetSchema&urn=urn%3Aopengi
s%3Aspecification%3Agml%3Aschema-xsd%3Agml%3Av3.00"/>
 <xs:element name="FeatureCollection"
 substitutionGroup="gml:_FeatureCollection"
 type="bts:FeatureCollectionType"/>
 <xs:complexType name="FeatureCollectionType">
 <xs:complexContent>
 <xs:extension base="gml:AbstractFeatureCollectionType"/>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="Roads_bts" substitutionGroup="gml:_Feature"
 type="bts:Roads_btsType"/>
 <xs:complexType name="Roads_btsType">
 <xs:complexContent>
 <xs:extension base="gml:AbstractFeatureType">
 <xs:sequence>
 <xs:element maxOccurs="1" minOccurs="1" name="Objectid_1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:totalDigits value="10"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element maxOccurs="1" minOccurs="1" name="Objectid">
 <xs:simpleType>

03-003r10

© OGC 2003 – All rights reserved

35

 <xs:restriction base="xs:integer">
 <xs:totalDigits value="10"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element maxOccurs="1" minOccurs="1" name="FNode_">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:totalDigits value="10"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element maxOccurs="1" minOccurs="1" name="TNode_">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:totalDigits value="10"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element maxOccurs="1" minOccurs="0" name="LPoly_">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:totalDigits value="10"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element maxOccurs="1" minOccurs="0" name="RPoly_">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:totalDigits value="10"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element maxOccurs="1" minOccurs="0" name="Length">
 <xs:simpleType>
 <xs:restriction base="xs:decimal">
 <xs:totalDigits value="27"/>
 <xs:fractionDigits value="8"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element maxOccurs="1" minOccurs="1" name="Bdt_roads_">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:totalDigits value="10"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element maxOccurs="1" minOccurs="1" name="Bdt_roads1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:totalDigits value="10"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element maxOccurs="1" minOccurs="0" name="Prefix">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="2"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element maxOccurs="1" minOccurs="0" name="Name">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="30"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element maxOccurs="1" minOccurs="0" name="Type">

03-003r10

 © OGC 2003– All rights reserved

36

 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="4"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element maxOccurs="1" minOccurs="0" name="Suffix">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="2"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element maxOccurs="1" minOccurs="1" name="Fcc">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="3"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element maxOccurs="1" minOccurs="1" name="Fips">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="11"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element maxOccurs="1" minOccurs="0" name="Shape_len">
 <xs:simpleType>
 <xs:restriction base="xs:decimal">
 <xs:totalDigits value="30"/>
 <xs:fractionDigits value="15"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element maxOccurs="1" minOccurs="0" name="Geometry"
 type="gml:CurvePropertyType"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>

03-003r10

© OGC 2003 – All rights reserved

37

ANNEX A – Conformance Testing

A.0 Introduction

This annex outlines how a GML3 application schema can be tested for compliance to this
specification.

It is assumed that a method exists for lexically scanning the application schema being tested
in order to access all the elements and attributes contained therein.

The following description is only concerned with interpreting the schema definition in order
to ascertain if the schema is compliant with this specification.

The best way to test a GML3 application schema for compliance to this specification is to
build an XML-Schema interpreter that checks all the elements and attributes defined in the
application schema for compliance.

The following clauses present each of the XML-Schema fragments/templates defined in this
specification and describe how to test them for conformance.

A.1 Elements to ignore

All XML comments may be ignored. All XML-Schema annotation elements and sub-
elements may be ignored.

Attention is drawn to the fact that in this annex, as in the specification, the namespace prefix
xs is used for the XML-Schema namespace. This is purely for illustrative purposes and the
prefix xs should be considered a placeholder for the actual prefix defined in any particular
schema instance.

A.2 General Conformance Rules

Only the elements and attributes defined or discussed in this specification may appear in a
compliant schema regardless of the implicit elements and attributes that may be defined in
XML-Schema or GML.

The order in which element are defined in not important except where the order matters with
regard to XML-Schema or GML.

Only opening tags or elements are described in this annex. It is assumed that the schema is
well formed and the corresponding closing tags exist.

The order in which attributes appear in opening elements is not important. The order chosen
in this document is purely for clarities sake.

03-003r10

 © OGC 2003– All rights reserved

38

A.3 Root element

A compliant application schema must be a valid GML3 application schema, which means
that is must be a valid XML-Schema document. The following fragment defines the root
element of a compliant XML-Schema document:

1 <xs:schema
2 targetNamespace="target_name_space"
3 xmlns:prefix="target_name_space"
4 xmlns:xs="http://www.w3.org/2001/XMLSchema"
5 xmlns:gml="http://www.opengis.net/gml"
6 elementFormDefault="qualified"
7 version="0.0.7">

Conformance Rules:

a) the root eleme xs:schema (line 1) nt must be
b) the attribute targetNamespace must be present (line 2)

• its value is user defined
c) the attribute xmlns:prefix must be present (line 3)

• the value of prefix is user defined
• the namespace value must be same as target namespace(line 2)

d) the attribute xmlns:xs must be present (line 4)
• its value must be 'http://www.w3.org/2001/XMLSchema'

e) the attribute xmlns:gml must be present (line 5)
• its value must be 'http://www.opengis.net/gml'

f) the attribute elementFormDefault must be present
• its value must be 'qualified'

g) the attribute version must be present
• its value is user defined

A.4 Importing the GML3 feature schema

All features in a compliant application schema must be substitutable for gml features and
their definition must be derived from the GML abstract feature definition.

This implies that a compliant application schema must import the GML3 feature schema.
The following element must appear in a compliant application schema document:

1 <xs:import
2 namespace="http://www.opengis.net/gml"
3 schemaLocation="http://…/schemas/gml/3.0.0/feature.xsd"/>

Conformance Rules:

a) an xs:import element must be present
b) the attribute namespace must be present

• its value must he 'http://www.opengis.net/gml'
c) The attribute schemaLocation must be present

• its value must be a valid URI reference to feature.xsd

03-003r10

© OGC 2003 – All rights reserved

39

A.5 Feature types

A.5.1 Root element

A compliant application schema must define one or more feature types by defining one or
more root elements for those feature types.

The root element for a feature type is defined by the following XML-Schema fragment:

1 <xs:element name="FeatureTypeName"
2 type="prefix:FeatureTypeName_Type"
3 substitutionGroup="gml:_Feature"/>

Conformance Rules:

a) an xs:element element must be present for each feature type defined in
the application schema

b) the attribute name must be present
• its value is user defined and represents the name of the feature type

c) the attribute type must be present
• its value must be the name of a complex type defined elsewhere in the

document
• the value must follow the following pattern:

'prefix:FeatureTypeName_Type'
• the prefix must match the target namespace prefix defined in

the root element of the schema document
• the FeatureTypeName is the same as the value of the name

attribute
• the suffix must be the literal '_Type'

d) the attribute substitutionGroup must be present
• its value must be 'gml:_Feature'

A.5.2 Complex type

A complex type must be defined that correspond to the value of the type attribute in the
definition of the root element of each feature type.

1 <xs:complexType name="FeatureTypeName_Type">
2 <xs:complexContent>
3 <xs:extension base="gml:AbstractFeatureType">
4 <xs:sequence>
5
6 …one or more element definitions as described in sec. 7.5.2 …
7
8 </xs:sequence>
9 </xs:extension>
10 </xs:complexContent>
11 </xs:complexType>

Conformance Rules:

03-003r10

 © OGC 2003– All rights reserved

40

a) a complexType element must be present to define the XML type of each
feature type

b) the attribute name must be present
• the value must follow the pattern in validation rule A.5.1(c)

c) the element xs:complexContent must be present
d) the element xs:extension must be present
e) the attribute base must be present

• its value must be ‘gml:AbstractFeatureType’
f) the element xs:sequence must be present
g) one or more property definitions must follow

A.5.3 Properties

A.5.3.1 Integer valued properties

Each integer valued property must be defined using the following XML-Schema fragment:

1 <xs:element name="propertyName"
2 minOccurs="0|N" maxOccurs="0|N|unbounded">
3 <xs:simpleType>
4 <xs:restriction base="xs:integer">
5 <xs:totalDigits value="nDigits"/>
6 </xs:restriction>
7 </xs:simpleType>`
8 </xs:element>

Conformance Rules:

a) the element xs:element must be present (line 1)
b) the attribute name must be present (line 1)

• it value is user defined and represent the name of property
c) the attribute minOccurs may be present (line 2)

• if it is present, its value must be 0 or some integer N
• if it is not present, the default value is 1

d) the attribute maxOccurs may be present (line 2)
• if it is present, its value must 0 or some integer N or 'unbounded'
• if it is not present, the default value is 1

e) the element xs:simpleType must be present (line 3)
f) the element xs:restriction must be present (line 4)
g) the attribute base must be present (line 4)

• its value must be 'xs:integer'
h) the element xs:totalDigits must be present (line 5)
i) the attribute value must be present (line 5)

• its value is user defined and represent the number of digits in the
int

A.5.3.2 Real valued properties

1 <xs:element name="propertyName"
2 minOccurs="0|N" maxOccurs="0|N|unbounded">
3 <xs:simpleType>
4 <xs:restriction base="xs:decimal">
5 <xs:totalDigits value="nDigits"/>

03-003r10

© OGC 2003 – All rights reserved

41

6 <xs:fractionDigits value="nDigits"/>
7 </xs:restriction>
8 </xs:simpleType>
9 </xs:element>

Conformance Rules:

a) the element xs:element must be present (line 1)
b) the attribute name must be present (line 1)

• it value is user defined and represent the name of property
c) the attribute minOccurs may be present (line 2)

• if it is present, its value must be 0 or some integer N
• if it is not present, the default value is 1

d) the attribute maxOccurs may be present (line 2)
• if it is present, its value must 0 or some integer N or 'unbounded'
• if it is not present, the default value is 1

e) the element xs:simpleType must be present (line 3)
f) the element xs:restriction must be present (line 4)
g) the attribute base must be present (line 4)

• its value must be 'xs:decimal'
h) the element xs:totalDigits must be present (line 5)
i) the attribute value must be present (line 5)

• its value is user defined and represent the number of digits in the
real

j) the element xs:fractionDigits must be present (line 6)
• its value is user defined and represent the number of digits to the

right of the decimal point

A.5.3.3 Character valued properties

1 <xs:element name="propertyName"
2 minOccurs="0|N" maxOccurs="0|N|unbounded">
2 <xs:simpleType>
3 <xs:restriction base="xs:string">
4 <xs:maxLength value="nCharacters"/>
5 </xs:restriction>
6 </xs:simpleType>
7 </xs:element>

a) the element xs:element must be present (line 1)
b) the attribute name must be present (line 1)

• it value is user defined and represent the name of property
c) the attribute minOccurs may be present (line 2)

• if it is present, its value must be 0 or some integer N
• if it is not present, the default value is 1

d) the attribute maxOccurs may be present (line 2)
• if it is present its value must 0 or some integer N or 'unbounded'
• if it is not present the default value is 1

e) the element xs:simpleType must be present (line 3)
f) the element xs:restriction must be present (line 4)
g) the attribute base must be present (line 4)

• its value must be 'xs:string'
h) the element xs:maxLength must be present (line 5)

03-003r10

 © OGC 2003– All rights reserved

42

i) the attribute value must be present (line 5)
• its value is user defined and represent the max number of chars

A.5.3.4 Date valued properties

1 <xs:element name="propertyName"
2 type="xs:date|xs:dateTime"
3 minOccurs="0|N" maxOccurs="0|N|unbounded"/>

Conformance Rules:

a) the element xs:element must be present (line 1)
b) the attribute name must be present (line 1)

• it value is user defined and represents the name of property
c) the attribute type must be present (line 2)

• it value must be xs:date OR xs:dateType
d) the attribute minOccurs may be present (line 3)

• if it is present, its value must be 0 or some integer N
• if it is not present, the default value is 1

e) the attribute maxOccurs may be present (line 3)
• if it is present, its value must 0 or some integer N or 'unbounded'
• if it is not present, the default value is 1

A.5.3.5 Boolean valued properties

1 <xs:element name="propertyName"
2 type="xs:boolean"
3 minOccurs="0|N" maxOccurs="0|N|unbounded"/>

Conformance Rules:

a) the element xs:element must be present (line 1)
b) the attribute name must be present (line 1)

• it value is user defined and represent the name of property
c) the attribute type must be present (line 2)

• it value must be xs:boolean
d) the attribute minOccurs may be present (line 3)

• if it is present, its value must be 0 or some integer N
• if it is not present, the default value is 1

e) the attribute maxOccurs may be present (line 3)
• if it is present, its value must 0 or some integer N or 'unbounded'
• if it is not present, the default value is 1

A.5.3.6 Binary valued properties

1 <xs:element name="propertyName" minOccurs="0|N" maxOccurs="0|N|unbounded">
2 <xs:complexType>
3 <xs:simpleContent>
4 <xs:extension base="xs:base64Binary|xs:hexBinary">
5 <xs:attribute name="url" type="xs:anyURI" use="optional"/>
6 <xs:attribute name="mimeType" type="xs:string" use="required"/>
7 <xs:attribute name="role" type="xs:string" use="optional"/>
8 </xs:extension>
9 </xs:simpleContent>

03-003r10

© OGC 2003 – All rights reserved

43

10 </xs:complexType>
11 </xs:element>

Conformance Rules:

a) the element xs:element must be present (line 1)
b) the attribute name must be present (line 1)

• it value is user defined and represent the name of property
c) the attribute minOccurs may be present (line 1)

• if it is present, its value must be 0 or some integer N
• if it is not present, the default value is 1

d) the attribute maxOccurs may be present (line 1)
• if it is present, its value must 0 or some integer N or 'unbounded'
• if it is not present, the default value is 1

e) the element xs:complexType ust be present (line 2) m
f) the element xs:simpleContent must be present (line 3)
g) the element xs:extension must be present (line 4)
h) the attribute base must be present (line 4)

• its value must one or xs:base64Binary or xs:hexBinary
i) the element xs:attribute must be present (line 5)
j) the attribute name must be present (line 5)

• its value must be 'url'
k) the attribute type must be present (line 5)

• its value must be 'xs:anyURI'
l) the attribute use must be present (line 5)

• its value must be 'optional'
m) the element xs:attribute must be present (line 6)
n) the attribute name must be present (line 6)

• its value must be 'mimeType'
o) the attribute type must be present (line 6)

• its value must be 'xs:string'
p) the attribute use must be present (line 6)

• its value must be 'required'
q) the element xs:attribute must be present (line 7)
r) the attribute name must be present (line 7)

• its value must be 'role'
s) the attribute type must be present (line 7)

• its value must be 'xs:string'
t) the attribute use must be present (line 7)

• its value must be 'optional'

A.5.3.7 Geometry value properties

1 <xs:element name="propertyName"
2 type="gml_geometric_property_type"
3 minOccurs="0|N" maxOccurs="0|N|unbounded">

Conformance Rules:

a) the element xs:element must be present (line 1)
b) the attribute name must be present (line 1)

• it value is user defined and represent the name of property
c) the attribute type must be present (line 2)

03-003r10

 © OGC 2003– All rights reserved

44

• it value must be one of: gml:PointPropertyType,
gml:CurvePropertyType, gml:SurfacePropertyType,
gml:MultiCurvePropertyType, gml:MultiSurfacePropertyType,
gml:LinearRingPropertyType,
gml:RingPropertyType

d) the attribute minOccurs may be present (line 3)
• if it is present, its value must be 0 or some integer N
• if it is not present, the default value is 1

e) the attribute maxOccurs may be present (line 3)
• if it is present, its value must 0 or some integer N or 'unbounded'
• if it is not present, the default value is 1

A.6 Schema Validator

A schema validation tool has been built by CubeWerx Inc., which checks schemas for
conformance to this specification. The URL of the tool is:

http://demo.cubewerx.com/gml3l0/cwgml3l0.cgi

The schema validator accepts the following parameters:

Table 5 – Parameters for CWGML3L0 Schema Validator

PARAMETER M/O DESCRIPTION

SERVER

(mutually exclusive with URI)

M This is the URL to a compliant WFS. The validator
will automatically generate a DescribeFeatureType
request using this URL to obtain a description of all
feature types using x-application/gml:3:0 as the
outputFormat.

URI

(mutually exclusive with SERVER)

M This is the URI to a resource that is a compliant GML3
level 0 schema. This may be a reference to a flat file
or a service that generates the schema, etc… In this
instance, the service will use the URI as is and does
not modify it in any way.

03-003r10

© OGC 2003 – All rights reserved

45

ANNEX B – Future Work

1. Need to update NULL handling to reflect what is being done in GML3.

03-003r10

 © OGC 2003– All rights reserved

46

ANNEX C – Usage Narrative

Fred T. Programmer has 5 years of for-hire programming experience and is a wizard at
writing easy-to-use, easy-to-maintain graphical applications in Visual Basic. He brings to the
project an extensive set of VB widgets for graphic object display and manipulation. He is
familiar with maps and has moderate experience writing applications that deal with digital
vector data (e.g., SDTS, Shape, DGN, MapObjects, etc). He has read a lot about XML and
XML tools but has never written an application that manipulates XML documents. He has
experience writing code to access services on the Web via HTTP GET/POST. He has read
the WFS 1.0 Implementation Specification. He has not read the GML2 or GML3
specifications.

Fred is contracted to write, in 3 days(!), a general-purpose map viewer client application
called "Planet3" that is designed to allow users to:

• display geometry for any GML-encoded geographic features it gets its hands on,

• label the graphic representations of features with the name of the feature types and/or
the value of any of their attributes

• interactively assign symbols (marker, line, fill) to individual features or sets of
features for local display,

• point to a graphic representation of a feature instance with an input device and view a
report of its attribute names, types and values.

• modify the attribute value (including geometry) of one or more feature instances and
commit the changes back to the source

Fred must not make assumptions about the potential data sources, data models, feature types,
semantics, geographic extent, CRS, quality or fitness-for-use of the data that may ultimately
be manipulated by users of his program. Initially, the application program must be able to
access (for use as described above and without modification to code or client configuration)
data from three different WFSTs. Each web feature service is serving transportation data`
(i.e., road, airfield, railroad, transit features) encoded as GML that, in their native stores,
conform to the data product specifications for USGS DLG "7.5 minute", US Census
TIGER/Line and NIMA/DIGEST VPF0, respectively. Planet3, must also support other
unknown themes and data “products”, again without modification to code, as they come
online (e.g., political boundaries, hydrography, cadastral themes from local, state, national,
international and commercial providers).

Assumption: for purposes of "entry-level" data transfer and simple map display by their
customers, all data providers will agree to serve, via WFSTs, their data products using the
proposed "Level 0 GML Profile". They may of course also choose to support serving the

03-003r10

© OGC 2003 – All rights reserved

47

same data, represented using "high-value" community- or use-specific GML application
schema, for use by applications that are more sophisticated and customers.

Our premise: Fred the programmer is totally focused on writing a useful and user-friendly
application that, regardless of the source of the data, will satisfy all the functional behaviours
described above. As new data sources/products come online, Fred must not have to modify
his code. Rather than writing code that can flawlessly handle all possible ways in which these
data can be structured and encoded in GML for specialized purposes, the objective of this
CIPI1.2 work item is to define a common "Level 0" profile of GML3 that specifies a simple
and sufficient data model, structure and/or set of encoding rules that the programmer can
assume will be supported by all WFSTs his application will access. In this way, Fred can
focus on the important functional parts of the "Planet3" application rather than on
interoperability issues with data encodings and service access.

03-003r10

 © OGC 2003– All rights reserved

48

Bibliography

[7] OGC Document 99-049, OpenGIS® Simple Features Specification for SQL, Revision 1.1,
http://www.opengis.org/techno/specs/99-049.pdf, May 1999.

[8] IETF RFC 1521, N. Borenstein, et al., MIME (Multipurpose Internet Mail Extensions)
Part One: Mechanisms for Specifying and Describing the Format of Internet Message
Bodies, http://www.ietf.org/rfc/rfc1952.txt, September 1993.

[9] W3C, David C. Fallside (ed.), XML Schema Part 0: Primer,
http://www.w3.org/TR/xmlschema-0/, May 2001.

	1 Scope
	2 Conformance
	3 Normative references
	4 Terms and definitions
	5 Conventions
	5.1 Requirement levels

	6 Requirements
	6.1 Relationship to other OGC activities
	6.1.1 Geography mark-up language (GML)
	6.1.2 Web feature server (WFS)

	6.2 Usage Scenarios
	6.2.1 Simple desktop or browser based map viewer
	6.2.2 Get a collection of features using spatial and non-spatial constraints
	6.2.3 "Value-add" editor (edit geometry and other attribute values)
	6.2.3.1 Create feature instances of specified type or id
	6.2.3.2 Update features with modified geometry and/or attribute values

	6.3 General requirements
	6.3.1 No changes to software
	6.3.2 Valid XML output
	6.3.3 Valid GML3 output
	6.3.4 Simple clients
	6.3.5 Well known structural view
	6.3.6 Implementations must be testable for conformance
	6.3.7 Language bindings
	6.3.8 Simple and sufficient
	6.3.9 XML Schema Interpretation

	6.4 Detailed requirements
	6.4.1 Validity of output
	6.4.2 Supported geometries
	6.4.3 Simple feature structure
	6.4.4 Homogeneous feature collections
	6.4.5 Feature references
	6.4.6 Simple relationships
	6.4.7 2.5D geometry support
	6.4.8 GML3 restrictions
	6.4.9 WFS restrictions
	6.4.9.1.1 Introduction
	6.4.9.1.2 GetCapabilities request
	6.4.9.1.3 DescribeFeatureType request
	6.4.9.1.4 GetFeature / GetFeatureWithLock requests
	6.4.9.1.5 LockFeature request
	6.4.9.1.6 Transaction request
	6.4.9.1.6.1 Insert operation
	6.4.9.1.6.2 Update operation
	6.4.9.1.6.3 Delete operation

	6.4.10 CRS Support

	7 A rigid coding pattern for GML application schemas
	7.1 Introduction
	7.2 Root element
	7.3 Importing the GML3 schemas
	7.4 Response container
	7.5 Coding pattern for feature types
	7.5.1 Introduction
	7.5.2 Basic data types
	7.5.2.1 Null values
	7.5.2.2 Defining elements with integer content
	7.5.2.3 Defining elements with real content
	7.5.2.4 Defining elements with character content
	7.5.2.5 Defining elements with date content
	7.5.2.6 Defining elements with Boolean content
	7.5.2.7 Defining elements with binary content
	7.5.2.8 Defining elements with geometric content

	7.5.3 Defining feature types

	7.6 Comments and annotations
	7.7 Property Order
	7.7.1 Example

	7.8 Examples
	7.8.1 News item example
	7.8.2 Roads_bts example from the CIPI1.2 testbed

