

Open Geospatial Consortium, Inc.

Date: 2010-09-09

Reference number of this document: OGC 10-079r3

Category: Public Engineering Report

Editor: Thomas Everding

OGC
®
 OWS-7 Aviation Architecture Engineering Report

Copyright © 2010 Open Geospatial Consortium, Inc.

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document is an OGC Public

Engineering Report created as a deliverable in an OGC Interoperability Initiative

and is not an official position of the OGC membership. It is distributed for review

and comment. It is subject to change without notice and may not be referred to as

an OGC Standard. Further, any OGC Engineering Report should not be referenced

as required or mandatory technology in procurements.

Document type: OpenGIS
®

Engineering Report

Document subtype: NA

Document stage: Approved for public release

Document language: English

http://www.opengeospatial.org/legal/

OGC 10-079r3

ii Copyright © 2010 Open Geospatial Consortium, Inc.

Preface

This public Engineering Report (ER) is a deliverable of the Open Geospatial Consortium

(OGC) Interoperability Program Open Web Service (OWS) Testbed phase 7 (OWS-7).

The document describes the architecture that was implemented in the Aviation thread of

OWS-7. The document provides an overview of the architecture and describes the

implemented components. In addition it discusses “eventing” and notification techniques

relevant for the aviation domain.

This work was supported by the European Commission through the GENESIS project (an

Integrated Project, contract number 223996).

Suggested additions, changes, and comments on this draft report are welcome and

encouraged. Such suggestions may be submitted by email message or by making

suggested changes in an edited copy of this document.

The changes made in this document version, relative to the previous version, are tracked

by Microsoft Word, and can be viewed if desired. If you choose to submit suggested

changes by editing this document, please first accept all the current changes, and then

make your suggested changes with change tracking on.

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. iii

Contents Page

1 Introduction ..1

1.1 Scope ...1

1.2 Document contributor contact points ..2

1.3 Revision history ...2

1.4 Future work ...3

1.5 Forward ...5

2 References ..6

3 Terms and definitions ..8

4 Conventions ...8

4.1 Abbreviated terms ...8

5 OWS-7 Aviation Architecture overview ...10

6 Workflows..11

6.1 Basic Workflow ...11

6.2 Portrayal Workflow ...12

7 Component Descriptions ..14

7.1 Snowflake AIXM WFS ...14

7.1.1 AIXM WFS-T 2.0 ...15

7.1.1.1 GO Publisher WFS 2.0 Query Operations ...16

7.1.2 AIXM WFS-T and Event Publisher ..18

7.1.3 Inserting AIXM 5.1 timeslices via WFS-T 2.0 ...20

7.1.4 WXXM WFS 2.0 ..20

7.1.5 SWIM Components ..20

7.1.6 Data Loading ...21

7.1.6.1 Aeronautical data ...21

7.1.6.2 WXXM Data Loading...25

7.2 Comsoft AIXM WFS ..27

7.2.1 Overview ...27

7.2.2 WFS 2.0 conformance ..27

7.2.3 Selecting AIXM 5 data with the GetFeature function27

7.2.4 Data modification with the Transaction function ...28

7.2.5 User management..29

7.3 Meteo France WXXM WFS ..29

7.3.1 Context ..29

7.3.2 Scope ...29

7.3.3 Software Architecture ...30

7.3.4 Limitations ..30

7.4 GMU Severe Weather Detection WFS ...31

7.4.1 Background ...31

7.4.2 Data flow ...32

7.4.3 WFS 2.0 / WXXM 1.1 ..32

OGC 10-079r3

iv Copyright © 2010 Open Geospatial Consortium, Inc.

7.4.4 Interaction with the OWS-7 clients...32

7.4.5 Access ...34

7.5 Envitia AIXM / WXXM FPS ..34

7.6 Alticode WXXM FPS ...36

7.6.1 Context ..36

7.6.2 Software Architecture ...36

7.6.3 Limitations ..37

7.6.4 Scope ...37

7.6.5 Efficiency ..37

7.6.6 Robustness ..37

7.7 Galdos INdicio™ Registry ..38

7.7.1 Key features of INdicio™ ...38

7.7.2 Technical summary ...39

7.7.3 Supported specifications ...39

7.8 52°North Event Service ...39

7.8.1 Service Description ...39

7.8.2 Changes to the Service ..41

7.9 Frequentis Dispatch Aviation Client and EFB Client41

7.9.1 Component functions ..42

7.9.2 Component architecture ..43

7.9.3 Technologies used ...43

7.10 Luciad EFB Client ...43

7.10.1 Luciad introduction ...43

7.10.2 Software Architecture ...44

7.10.3 Usage of a Feature Portrayal Service ..45

7.10.4 Technical Notes ..45

7.11 Atmosphere WXXM Handheld Client ..46

7.11.1 Context ..46

7.11.2 Software Architecture ...46

7.11.3 Limitations ..47

7.11.4 Perspective of evolution ..47

8 Aviation Event Architecture ..49

8.1 AIM Specifics: Event Encodings ..49

8.1.1 AIXM ..49

8.1.1.1 AIXM 5.1 basic message / dnotam event ..49

8.1.1.2 Correction of Event Information ..53

8.1.1.3 Reverse Associations Extension for Event Filtering53

8.1.1.4 Handling of event properties given inline and byReference60

8.1.2 WXXM ...61

8.2 Aviation Event Channels ...62

8.3 AIM Events and Subscriptions ..62

8.4 Spatial Filtering of Aeronautical and Weather Events65

8.4.1 Introduction ...65

8.4.2 Filtering using Bounding Boxes ...66

8.4.3 Filtering using Generic Event Properties ..66

8.4.4 Filtering of AIXM Events in a Standalone Service67

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. v

8.4.5 Filtering of Events Based on Aircraft Position – Dynamic Spatial

Filters ..68

8.4.6 Summary ...69

9 Description of OGC Web Services 7.0 ..72

Sensor Fusion Enablement (SFE) ...72

Feature / Decision Fusion (FDF) ...72

Aviation Thread ..73

Figures Page

Figure 1 - Overview of the components 10

Figure 2 - Sequence of the basic workflow 11

Figure 3 - Overview of the portrayal components 12

Figure 4 - Sequence of the portrayal workflow 13

Figure 5 - Overview of the Snowflake aviation component architecture 14

Figure 6 - Generation of events triggered by insertion of time slices 19

Figure 7 - Sequence Diagram summarizing the GO Publisher event source architecture 20

Figure 8 - Translating aviation data into AIXM 5.1: initial translation of non AIXM 5.1

data to publish into OWS-7 AIXM database 22

Figure 9 - Translating aviation data into AIXM 5.1: initial load of AIXM 5.1 data into

OWS-7 AIXM database 23

Figure 10 -Issues with om:result when loading WXXM 1.1 data 26

Figure 11 - Structure of the Meteo France architecture 30

Figure 12 - MODIS Image Detection Result 31

Figure 13 - GOES Test Image 32

Figure 14 - WFS Outputs shown in the Luciad’s Aviation Client (1) 33

Figure 15 - WFS Outputs shown in the Luciad’s Aviation Client (2) 33

Figure 16 - WFS Outputs shown in the Luciad’s Aviation Client (3) 34

Figure 17 - Feature Portrayal Service Architecture 35

Figure 18 - Layer structure of the Alticode FPS 36

Figure 19 - Luciad EFB and Dispatch Aviation Client 44

Figure 20 - Model of a Reverse Association from Route to Airspace 54

Figure 21 - Schema for a Route’s Reverse Associations Extension 54

Figure 22 - DNOTAM Event with route and reverse associations 55

Figure 23 - Modeling reverse associations – common extension type and explicit

specializations 58

OGC 10-079r3

vi Copyright © 2010 Open Geospatial Consortium, Inc.

Figure 24 - Using the different reverse association model – UML object diagram 59

Figure 25 - Modeling reverse associations – soft-typed approach 60

Figure 26 - DNOTAM Event model – hasMember property given inline and byReference

(optional) 61

Figure 27 - Buffer around flight path, used for spatial filtering - dynamic updates to avoid

past events 69

Tables Page

Table 1 - Summary of operations and functions supported by GO Publisher WFS 2.0 within

OWS-7 15

Table 2 - ISO/DIS 19143 Filter Encoding query expressions supported by GO Publisher

WFS 2.0 16

Table 3 - Datasets received and transformed for publication via Snowflake WFS-T 2.0 23

Table 4 - Subscriptions in the Aviation Scenarios 62

Table 5 - Unsubscriptions in the Aviation Scenarios 64

Table 6 - Notifications in the Aviation Scenarios 64

OpenGIS
®
 Engineering Report OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 1

OGC
®
 OWS-7 Aviation Architecture Engineering Report

1 Introduction

1.1 Scope

This OGC™ document describes the architecture used for the implementation of the

OWS-7 Aviation scenarios. This includes an overview of the implemented components

and workflows followed by a short description of each component.

This OGC™ document also contains a discussion about eventing and notification related

techniques and problems that were faced during the OWS-7 testbed and are relevant to

the aviation domain.

This OGC™ document does not describe the OWS-7 Aviation scenarios in large detail.

Please refer to the according separate Engineering Report.

This OGC™ document does not describe the OWS-7 Aviation portrayal work in large

detail. Please refer to the according separate Engineering Report.

Attention is drawn to the possibility that some of the elements of this document may be

the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held

responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of

any relevant patent claims or other intellectual property rights of which they may be

aware that might be infringed by any implementation of the standard set forth in this

document, and to provide supporting documentation.

OGC 10-079r3

2 Copyright © 2010 Open Geospatial Consortium, Inc.

1.2 Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Name Organization

Thomas Everding

(editor)

Institute for Geoinformatics (IfGI),

University of Münster, Germany

Johannes Echterhoff

Ingo Simonis

International Geospatial Services Institute

GmbH (iGSI)

Bruno Simmenauer ALTICODE

Nadine Alameh OGC

Debbie Wilson,

Daniel Hardwick

Snowflake Software

Jan Vanacek Frequentis

Alex Brooker Envita

Robin Houtmeyers,

Jeroen Dries

Luciad

Yuqi Bai George Mason University

Ulrich Berthold Comsoft

Leif Stainsby Galdos

Sébastien Geindre Meteo France

Thibault Dacla Atmosphere

1.3 Revision history

Date Release Editor Primary clauses
modified

Description

17.03.2010 0.0.0 TE all Initial draft

27.05.2010 0.1.0 TE all Release version for pending documents

31.05.2010 0.1.1 TE 7.3.2 Added ALTICODE contribution

09.06.2010 0.1.2 TE 7 and 8 Added contributions from Envita, Luciad,

Snowflake and Frequentis, included final

version of chapter 8 from iGSI

10.06.2010 0.1.3 TE 7 Added contributions from GMU, Meteo

France, Comsoft and Galdos

11.06.2010 0.2.0 TE all Finalization

01.07.2010 0.2.0 TE 7.11 Added Atmosphere contribution

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 3

1.4 Future work

The following future work items for the aviation domain were identified in OWS-7:

 Filtering of Aviation Events

o Well defined event channels yield the opportunity to get significant

performance gains in an AIM Event Architecture. Instead of only doing

content based filtering to get events of interest, channels can be defined

that provide events that are commonly requested. For example, event

channels could be defined that contain events from specific airports or for

geographic regions. Best practices should be developed in the aviation

domain for defining aviation event channels and the publication as well

as subscription to these channels.

o The process of subscribing for relevant aviation events needs to be

simplified. This concerns both the representation of data that needs to be

queried (e.g. the spatial extent of an event but also the full event data in

dnotam Events) and the way filter statements are created. Various options

to improve the situation are discussed in this report, among which are

domain specific filter functions and stored queries in services (WFS but

also Event Service)

o The accuracy of subscription filters needs to be improved in order to

further reduce the amount of uninteresting events matching a subscription.

One interesting mechanism is to use dynamic spatial filters.

o Minimum filter capabilities and minimum content requirements for

dnotam events need to be evaluated and defined. This helps to create a

specification for dnotam events that reduces the event size as much as

possible but still enables sophisticated event filtering.

 Subscription Management Strategies – The lifecycle of subscriptions used in

the testbed was rather simple. A subscription was created before the flight and

explicitly terminated by the pilot and dispatcher at a given point in time. To

facilitate the management of subscriptions, available functionality that was not

used in the testbed should be tested (like automatic termination of subscriptions at

given points in time). In addition, rules can be developed to automatically remove

subscriptions for example when an airport is no longer within certain distance to

the remaining flight path of an aircraft.

 Feature Revision Mechanism – GML features have standard properties, some of

which are labels or a feature’s identifier. AIXM time slices show that the

provision of the correction number for the representation of certain data is a

valuable mechanism. Dnotam events should also incorporate a mechanism to

indicate possible revisions. This mechanism should also be considered as an

extension to the standard GML feature properties.

OGC 10-079r3

4 Copyright © 2010 Open Geospatial Consortium, Inc.

 Define Previous Event Semantics – A dnotam event can point to a previous

event. If the relationship between a given event and its previous event can have

different semantics in the aviation domain, the dnotam event model should be

extended to indicate the exact semantics to avoid the need to infer them.

 Rules to Define Spatial Extent Computation for given Feature Type – A

feature often has a spatial extent. This extent is encoded in one or more of a

feature’s properties. It may be necessary to perform complex computations to get

the features extent from these properties. Rules should be developed to encode the

information necessary to compute the spatial extent for features of a given type in

the definition of the according feature type. Such rules, if they were machine

readable, would enable automatic computation of the spatial extent for any given

feature by an Event Service. Problems that arise because of the heterogeneity of

feature type definitions as well as the leeway given to data providers in populating

the boundedBy properties of features could be solved with such a mechanism.

 Clarify Semantics of Sequence Number Property – Like time slices, a dnotam

event may have sequence numbers. The purpose of the sequence number in an

event needs to be clarified especially with respect to duplication of functionality

provided by messaging middleware / standards that support reliable delivery of a

sequence of events.

 Publish-subscribe based extensions for Feature Portrayal Services should be

tested in order to allow the FPS to cache the feature data and automatically stay

up-to-date to improve the portrayal speed even when using volatile data.

 Investigation of common subscription mechanisms for different clients should

be investigated. Such mechanisms could guarantee that all notifications received

by the dispatcher are also sent to the pilot automatically. Frequentis did some test

in this direction already, another approach could be to make use of ad-hoc event

channels as discussed in the Event Architecture ER (10-060) in section 6.2.2.8.

 Client side caching of aeronautical feature has to be investigated with a special

focus on updating strategies. In case of an update (e.g. NOTAM received via the

Event Service) the cached features could be updated or released from the cache in

order to reload the current state from a WFS when accessed.

 The scope of the data coverage of WFS instances should be made

transparent. In OWS-7 there was one instance serving U.S. data (Snowflake) and

another serving European data (Comsoft). To avoid that clients need to know

which from which instance the data has to be requested sufficient catalogues or

aggregating WFSs that would delegate requests to those instances serving the data

should be used.

 It is recommended that for future release of WXXM, that feature types

extended from observation feature types should extend from specialized

observation feature types classified by their result type as recommended in

ISO/DIS 19156 Geographic information – Observations and Measurements. This

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 5

will enable generic tools such as GO Loader to parse and load the result

properties.

1.5 Forward

Attention is drawn to the possibility that some of the elements of this document may be

the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held

responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of

any relevant patent claims or other intellectual property rights of which they may be

aware that might be infringed by any implementation of the standard set forth in this

document, and to provide supporting documentation.

OGC 10-079r3

6 Copyright © 2010 Open Geospatial Consortium, Inc.

2 References

The following documents are referenced in this document. For dated references,

subsequent amendments to, or revisions of, any of these publications do not apply. For

undated references, the latest edition of the normative document referred to applies.

OGC 03-105r1, OpenGIS
®

 OpenGIS Geography Markup Language (GML) Encoding

Specification

OGC 04-094, OpenGIS
®

 Web Feature Service Implementation Specification

OGC 04-094, OpenGIS
®

 Filter Encoding Implementation Specification

OGC 05-077r4, OpenGIS
®

 Symbology Encoding Implementation Specification

OGC 05-078r4, OpenGIS
®

 Styled Layer Descriptor profile of the Web Map Service

Implementation Specification

OGC 06-042, OpenGIS
®

 Web Map Server Implementation Specification

OGC 06-121r3, OpenGIS
®

 Web Services Common Standard

OGC 07-006r1, OpenGIS
®

 Catalogue Services Specification

OGC 07-036, OpenGIS
®

 Geography Markup Language (GML) Encoding Standard

OGC 07-067r5, OpenGIS
®

 Web Coverage Service (WCS) Implementation Standard

OGC 07-110r4, OpenGIS
®

 CSW-ebRIM Registry Service - Part 1: ebRIM profile of CSW

OGC 08-132, OpenGIS
®

 Event Pattern Markup Language (EML)

OGC 08-133, OpenGIS
®

 Sensor Event Service Interface Specification

OGC 09-025, OpenGIS
®

 Web Feature Service Implementation Specification 2.0 as sent

to the ISO Central Secretariat for issuing as Draft International Standard

OGC 09-026, OpenGIS
®

 Filter encoding 2.0, as sent to the ISO Central Secretariat for

issuing as Draft International Standard

OGC 09-032, OpenGIS
®

 OWS-6 SWE Event Architecture Engineering Report

OGC 09-050r1, OpenGIS
®

 OWS-6-AIM Engineering Report

OGC 10-060, OpenGIS
®

 OWS-7 Event Architecture Engineering Report

OGC 10-127, OpenGIS
®

 OWS-7 Aviation Portrayal Engineering Report

OGC 10-131, OpenGIS
®

 OWS-7 Aviation – AIXM Assessment Report

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 7

OGC 10-132, OpenGIS
®

 OWS-7 Aviation – WXXM Assessment Engineering Report

OASIS OASIS/ebXML Registry Information Model v3.0

OASIS Web Services Base Notification 1.3

OASIS Web Services Brokered Notification 1.3

OASIS Web Services Reliable Messaging TC WS-Reliability 1.1

OASIS Web Services Topics 1.3

ISO 19115 (all parts), Geographic information – Metadata

ISO 19119, Geographic information - Services

ISO 19139, Geographic information - Metadata - XML schema implementation

ISO 19143, Geographic information - Filter encoding

ISO 19156, Geographic information – Observations and Measurements

ISO 3166-1, Codes for the representation of names of countries and their subdivisions –

Part 1: Country codes

OGC 10-079r3

8 Copyright © 2010 Open Geospatial Consortium, Inc.

3 Terms and definitions

Please refer to the OWS-6 Event Architecture Engineering Report (09-032) and the

OWS-6 AIM Engineering Report (09-050r1).

4 Conventions

4.1 Abbreviated terms

AC Aviation Client

AIM Aeronautical information Management

AIXM Aeronautical Information Exchange Model

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

ATC Air Traffic Control

ATM Air Traffic Management

CDC Change Data Capture

CEP Complex Event Processing

COTS Commercial Off-The-Shelf

CRS Coordinate Reference System

CSW Catalog Service – Web

ebRIM Electronic Business Registry Information Model

ebXML Electronic Business Extensible Markup Language

EFB Electronic Flight Bag

EML Event Pattern Markup Language

ER Engineering Report

ESB Enterprise Service Bus

ESP Event Stream Processing

FE Filter Encoding

FES Filter Encoding Specification

FPS Feature Portrayal Service

FTP File Transfer Protocol

GML Geography Markup Language

HTTP HyperText Transport Protocol

ISO International Standardization Organization

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 9

METAR METeorological Aerodrome Report (may vary)

NOTAM NOTice To AirMen

OGC Open Geospatial Consortium

OS Operating System

OWS OGC Web Services

OWS-7 OWS testbed phase 7

PIREP Pilot REPort

RDBMS Relational Data Base Management System

SE Symbology Encoding

SES Sensor Event Service

SIGMET SIGnificant METeorological phenomena

SLD Styled Layer Descriptor

SQL Structured Query Language

SWE Sensor Web Enablement

SWIM System Wide Information Management

UI User Interface

UML Unified Modeling Language

WCS Web Coverage Service

WFS Web Feature Service

WFS-T WFS-Transactional

WMS Web Map Service

WS-N Web Services - Notification

WXXM Weather Information Exchange Model

XACML Extensible Access Control Markup Language

XML Extensible Markup Language

XSL Extensible Stylesheet Language

OGC 10-079r3

10 Copyright © 2010 Open Geospatial Consortium, Inc.

5 OWS-7 Aviation Architecture overview

The architecture and the involved components used in the OWS-7 Aviation thread can be

separated in three tiers (see Figure 1):

 The Access Tier contains the various Web Feature Services serving the base data

but also the 4D Weather Data Cube and other aviation infrastructure components

like SWIM services.

 The Client Tier contains the client applications.

 The Business Process Tier lies between the other tiers. Components in this tier do

not serve data but offer additional services for the clients on top of the Access

Tier like discovery, portrayal, data handling and notification mechanisms.

Figure 1 - Overview of the components

Descriptions of the components can be found in section 7.

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 11

6 Workflows

This section describes the most important workflows performed in the OWS-7 Aviation

thread. The first describes the basic actions that are commonly executed in the

demonstration scenarios. The second workflow shows the general interaction with the

Portrayal Service.

6.1 Basic Workflow

Figure 2 gives an overview of the basic workflow steps. The first group shows how data

is requested, the second how a subscription in made and the third how updates to the data

are made.

Figure 2 - Sequence of the basic workflow

1.0 and 1.1: In these steps data is requested from Web Feature Services. In the aviation

scenarios this happens multiple times for instance when loading base data or requesting

features with specific properties.

OGC 10-079r3

12 Copyright © 2010 Open Geospatial Consortium, Inc.

2.0 and 2.1: In this step a subscription for notifications is made at the Event Service. A

subscription usually contains a filter statement identifying the notifications of interest.

This may for instance be digital NOTAMs regarding a specific airport or weather

information for a specific region.

2.2 and 2.3: These steps are similar to 1.0 and 1.1 as also data is requested from a WFS.

Here it is performed in order to get the most recent state of the data. This should be done

after each subscription. Otherwise it is possible to miss important information if it is

published after the last data request but before the subscription for notifications.

3.0: In this step an update of the base data is posted to the WFS. This may for instance be

a change in the AIXM baseline or a new weather forecast.

3.1: Besides adding the update to the underlying database the WFS generate a notification

containing the new information.

3.2: The notification is forwarded to the Event Service for further publication.

3.3: From the perspective of the WFS the update is handled completely. Thus, it closes

the communication with the authority entity that started the update process.

3.4: The Event Service filters the received notifications against the criteria given within

the subscriptions made.

3.5: If a notification matches the subscription criterion of a client the notifications is

forwarded.

3.6: The client handles the received notification e.g. displaying the new information.

6.2 Portrayal Workflow

The basic workflow describe above can be enriched by using Portrayal Services. These

services allow requesting a rendered map that is generated on request using feature user

defined features. Figure 3 gives an overview of the components used for the portrayal.

Figure 3 - Overview of the portrayal components

The workflow in detail is shown in Figure 4:

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 13

Figure 4 - Sequence of the portrayal workflow

1.0 and 1.1: The Client discovers datasets that shall be rendered by the portrayal service.

1.2 and 1.3: The Client discovers the available portrayal services.

2.0: The Client requests the portrayal at the selected portrayal service.

2.1 and 2.2: The Portrayal Service requests the necessary styles and symbols that shall be

used at the catalog.

2.3 and 2.4: The Portrayal Service requests the features that shall be rendered from a Web

Feature Service.

2.5: With all necessary information available, the Portrayal Service renders the map.

2.6: The map is returned to the Client.

Additional workflows and further information on portrayal and its use in the OWS-7

Aviation thread can be found in the separate OWS-7 Aviation Portrayal ER (OGC 10-

127).

OGC 10-079r3

14 Copyright © 2010 Open Geospatial Consortium, Inc.

7 Component Descriptions

7.1 Snowflake AIXM WFS

Snowflake Software’s GO Publisher commercial off-the shelf (COTS) product is

comprised of flexible, scalable components capable of supporting the transformation and

data exchange requirements of aeronautical and weather information systems (Figure 5).

Figure 5 - Overview of the Snowflake aviation component architecture

Aeronautical and weather data are published using GO Publisher via four components:

1. WFS 2.0: this provides read-only access to AIXM 5.1 and WXXM 1.1 data by

the aviation decision support clients: Dispatch Client and Electronic Flight Bag

(EFB)

2. WFS-T 2.0: this allows aviation clients (create/edit) authorized to update the data

store to post inserts of time slices to the Snowflake AIXM 5.1 data store

3. Event Publisher: creates events such as digital NOTAMs or WXXM events from

the source database which are pushed to an event service

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 15

4. Event Pusher: is a java application that is registered at the Event Service via

SOAP messages. It then runs as a background process polling the FTP directory

for new NOTAMs which it then pushes to the Event Service within a SOAP

container. The sent NOTAMs are then saved to an archive folder.

7.1.1 AIXM WFS-T 2.0

GO Publisher WFS-T 2.0 supports the following mandatory and optional operations /

functions as specified by ISO/DIS 19142 Geographic information -Web Feature Service

and ISO/DIS 19143 Geographic Information -Filter Encoding specifications (Table 1).

Based on experience gained from OWS-6 and the Eurocontrol Digital Snowtam trials,

our aim was to provide a comprehensive implementation of the WFS 2.0 specification

and to test the new operations and functions to improve retrieval of AIXM features and

properties. See the 10-131 OWS-7 Aviation - AIXM Assessment Report for further

details.

Table 1 - Summary of operations and functions supported by GO Publisher WFS 2.0 within OWS-7

WFS 2.0 Conformance Levels

Feature Simple Basic Transactional Locking

GO
Publisher
WFS 2.0

Service Metadata Get Capabilities

 WSDL

 Describe Feature
Type

Retrieval Get Feature

 Get Property Value

Stored Queries Describe Stored
Queries

 List Stored Queries

Manage Stored
Queries

Create Stored
Queries
Drop Stored
Queries

Transactions Transaction

 Lock Feature
 Get Feature With

Lock
Filter Encoding
(ISO 19143)

Minimal FE Spatial
Filter (BBOX)

Spatial Filter

Temporal Filter

Standard Filter

Version Navigation

Sorting

Stored Query

Ad hoc Query

OGC 10-079r3

16 Copyright © 2010 Open Geospatial Consortium, Inc.

WFS 2.0 Conformance Levels

Feature Simple Basic Transactional Locking

GO
Publisher
WFS 2.0

Binding HTTP GET

HTTP POST

SOAP

7.1.1.1 GO Publisher WFS 2.0 Query Operations

Within OWS-7 two typical scenarios were developed to demonstrate how aviation clients

such as dispatch clients and EFBs will access and use AIXM 5.1 and WXXM 1.1 data

through a web feature service via the GetFeature request/response operation. Within both

scenarios, both the dispatch client and EFB must retrieve data from the WFS during pre-

flight dispatch and en-route workflows. These data requests range from:

 Simple Queries: where the user posts a request for all instances of specified

feature types and optionally for a specific time and location

Example: Dispatcher or Pilot – select all feature types representing the specified

destination airport for the flight (e.g. EETN)

(NOTE the AIXM temporality model requires that the selection includes a filter

selecting the time slices for each feature in effect when a flight is scheduled to

land at the destination airport)

 Complex Queries: where the user posts a query requesting only data that meet

specific criteria.

Example: Dispatcher identifying alternate destination airports for a flight – select

all airports located within US airspace and within 200 nautical miles of route that

has:

o A runway that is at least 7,000 ft and has a hard surface

o Passenger facilities

o Re-fueling facilities

o Must not have a scheduled closing time between 15:00 and 23:00

To support both simple and complex queries that will be required, GO Publisher WFS 2.0

supports a comprehensive set of ISO/DIS 19143 filter encoding query expressions (Table

2).

Table 2 - ISO/DIS 19143 Filter Encoding query expressions supported by GO Publisher WFS 2.0

Query Expression Category Query Expression

Comparison Expressions Equal to, Not equal to, Less than, Greater than, Less than or
equal to, Greater than or equal to, Like, Is null and Between

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 17

Logical Expressions And, Or, Not

Spatial Filter Expressions Equals, Disjoin, Touches, Within, Overlaps, Crosses, Intersects,
Contains, DWithin, Beyond, BBOX

Temporal Filter Expressions After, Before, Begins, BegunBy, TContains, During, TEquals,
TOverlaps, Meets, OverlappedBy, MetBy, EndedBy

The WFS 2.0 specification also has extended the mechanisms for retrieving data through

the inclusion of an additional request operation: GetPropertyValue. The

GetPropertyValue operation enables the retrieval and of specific property values only in

the query response rather than the whole feature that contains the property values.

Therefore, the GetPropertyValue request will be important in the scenario where a

dispatcher or pilot only wants to be presented with a list of suitable diversion airports.

GO Publisher WFS has been configured to support both ad-hoc and stored queries.

 Ad-hoc queries: are specified on demand by the user and are not known by the

service before they are executed

 Stored queries: are pre-configured queries that are stored within the WFS that

can be executed by simply using the query’s identifier and inputting only the

query variable value

The inclusion of stored query within WFS 2.0 offer significant benefits for aviation

clients retrieving AIXM data. The most significant benefits of stored queries will be the

simplification of complex HTTP POST queries by parameterizing queries to be invoked

via HTTP GET queries.

GO Publisher WFS 2.0 shall support the two mandatory stored query operators:

 ListStoredQueries: which returns a list of available stored queries offered by the

WFS

 DescribeStoredQueries: which provides information describing the a stored

query

 CreateStoredQueries: which enables users to create a stored query

The remaining stored query operations: and DropStoredQueries have not been

implemented. However, stored queries can be dropped by the WFS administrator.

Stored query expressions enable complex filter encoding expressions to be encoded as

more concise key-value pairs (KVP). To investigate how stored queries can be used to

simplify the queries for retrieving AIXM 5.1 data, particularly to support generation of

efficient queries for retrieving time slices, Snowflake configured four stored queries in

addition to the mandatory GetFeatureByID stored query:

OGC 10-079r3

18 Copyright © 2010 Open Geospatial Consortium, Inc.

 urn:ogc:def:query:OGC-WFS:GetFeatureById (Mandatory): the

GetFeatureByID stored query enables the client to request features based on their

gml:ID.

 urn:snowflake:def:query:AirportHeliportTemporalBufferQuery: This stored

query accepts the parameters: "beginPosition","endPosition", "lineString" and

"distance" to return AirportHeliports within a buffer distance of a linestring or

point

 urn:snowflake:def:query:OGC-WFS:AirportHeliportByDesignatorQuery:

this stored queries accepts the parameter “designator” to return all AirportHeliport

features containing the requested designator (e.g. KJFK, KBOS)

 urn:snowflake:def:query:gmlIdentifierTemporalQuery: this stored query aims

to simplify a long HTTP POST query requesting timeslices for a specified

validTime range for specific AirportHeliports based on their gml:ID.

 urn:snowflake:def:query:PropertyIsEqualToQuery: this stored query will

return AirportHeliport features based on their path length.

For a detailed summary of the applicability of stored queries to effectively retrieve AIXM

data see 10-131 OWS-7 Aviation – AIXM Assessment Report.

7.1.2 AIXM WFS-T and Event Publisher

The creation of events re-used the Event Source Publication architecture developed

within OWS-6. The Event Source Publication system is based on GO Publisher Agent

which is a command-line bulk data publishing system. This system has been extended by

the development of an event pusher, which posts the events created by GO Publisher

Agent to the event service.

To enable publication of events based on the insertion of a time slice into the database, a

Change Detection Module or Change Data Capture (CDC) module sits on the database

side and uses APIs or triggers to identify these inserts.

As Oracle 11g was used as the AIXM 5.1 RDBMS, a CDC API was used. The

implementation in this AIM thread uses database triggers to alert an agent that creates the

Digital NOTAMs via a WFS request.

Triggers on the database tables populate a GO Publisher Agent queue database table. GO

Publisher Agent reads the queue and constructs the NOTAM including a bounding box

For NOTAM updates for non-geographic features GO Publisher Agent extracts the

geometries from related features and constructs a bounding box.

Events are pushed to the Event Service via and Event Pusher.

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 19

The information flow diagram in Figure 6 shows the message exchange in the pre-flight

and in-flight conditions and inter-operations between the Clients, WFS and the Event

Service.

Figure 6 - Generation of events triggered by insertion of time slices

The updating of the AIXM database causes a trigger to create an update alert that is

written to an Alert Queue. The alert queue is monitored by the NOTAM Agent and a

NOTAM event is populated via a WFS request providing the feature ID of the changed

AIXM feature and then sent to the NOTAM queue from where it is fetched by a

Publisher service that pushes the NOTAM event to the Event Service for subscription

matching and propagation to matching subscribers as is shown in Figure 7.

OGC 10-079r3

20 Copyright © 2010 Open Geospatial Consortium, Inc.

Figure 7 - Sequence Diagram summarizing the GO Publisher event source architecture

7.1.3 Inserting AIXM 5.1 timeslices via WFS-T 2.0

The GO Publisher WFS-T combines the loading and schema translation and capability of

GO Loader alongside the translation and publication capabilities of GO Publisher WFS.

It only supports the INSERT transaction operation for adding new features to the

database. It has been assumed that as AIXM 5.1 data does not require the baseline data to

be modified or edited. When changes to the state of an aeronautical feature occur or

correction are made these are inserted as new features.

7.1.4 WXXM WFS 2.0

For the Snowflake GO Publisher WXXM WFS2.0 sample WXXM1.1 data was obtained

from the Meteo France WFS1.1 which included icing and volcanic ash SIGMET features.

GO Loader was used to load this WXXM 1.1 GML into the main data stored. GO

Publisher was then configured and deployed to serve this data via a WFS 2.0 interface.

7.1.5 SWIM Components

The Snowflake Software SWIM architecture consists of these main components:

 Red Hat Enterprise Linux Server

 FUSE ESB 4.2

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 21

 GO Publisher WFS

 Oracle 11g Database

The server the used to host the technology is a 64bit Intel powered system running Red

Hat Enterprise Linux version 5.2. Running on this server is FUSE ESB 4.2 which is used

to deploy the GO Publisher WFS. The final piece in the architecture is an Oracle database

that GO Publisher will query in order to provide data from where the response to the

WFS requests originates.

7.1.6 Data Loading

Snowflake Software acquired aeronautical and meteorological data from a wide range of

providers and services and re-used AIXM 5.0 data from OWS-6. These data were

supplied as XML or harvested from existing WFS. As AIXM 5.1 and WXXM 1.1 are

new specifications, few datasets were available conforming to these application schemas.

Consequently, most data received were encoded according to a wide range of existing

application schema.

Although this a significant challenge to overcome, Snowflake’s commercial off-the-shelf

(COTS) products: GO Loader and GO Publisher have generic schema parsing and

transformation functionality that enabled these data to be transformed into AIXM 5.1 and

WXXM 1.1 within days of receipt. This enabled AIXM 5.1 and WXXM WFS to be

deployed and made available to support the development of the dispatch clients and

Electronic Flight Bags (EFB) early in the test bed to maximize client productivity.

The ability to use generic schema translation technologies that did not require the need to

write bespoke transformation scripts to support each of source datasets (which would

have taken months to develop instead of days of configuration) enabled the test bed to

have access to and use a comprehensive dataset necessary to support the proposed

scenarios.

7.1.6.1 Aeronautical data

Aeronautical data made available to OWS-7 were supplied in a wide range of application

schema (Table 3). To create an OWS-7 AIXM 5.1 data store, Snowflake transformed

these disparate aeronautical datasets into AIXM 5.1 prior to loading into the Snowflake

OWS-7 data store (Figure 8). GO Loader was used to automatically generate the AIXM

5.1 database schema from the AIXM 5.1 application schema and any datasets supplied in

AIXM 5.1 were loaded directly into the OWS-7 AIXM 5.1 data store.

Datasets were initially loaded into an Oracle 11g staging database using GO Loader. GO

Loader was used to automatically generate database schemas aligned to the source

application schema. Once the database tables were created, the XML data were

transformed and loaded into the database. This process was repeated for each non AIXM

5.1 dataset. Datasets that were

OGC 10-079r3

22 Copyright © 2010 Open Geospatial Consortium, Inc.

Once all of the data were loaded into the staging database, GO Publisher Desktop was

connected to the database and used to define the schema translations required to

transform the data into AIXM 5.1. Once configured, GO Publisher Desktop was used to

publish AIXM 5.1 files from the staging database which were then loaded into the OWS-

7 AIXM 5.1 data store using GO Loader (Figure 9).

Figure 8 - Translating aviation data into AIXM 5.1: initial translation of non AIXM 5.1 data to

publish into OWS-7 AIXM database

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 23

Figure 9 - Translating aviation data into AIXM 5.1: initial load of AIXM 5.1 data into OWS-7 AIXM

database

Table 3 - Datasets received and transformed for publication via Snowflake WFS-T 2.0

Provider Data Source Application
Schema

FeatureTypes
extracted

Comments

Aeronautical Data

OGC 10-079r3

24 Copyright © 2010 Open Geospatial Consortium, Inc.

Provider Data Source Application
Schema

FeatureTypes
extracted

Comments

FAA AMDB WFS AMDB
GML 3.1.1.

 amdb:amdb_

runway

 amdb:amdb_

taxiway

 nasr:nasr_arp

 nasr:nasr_

navigation_aid

 amdb:amdb_

navaid

 amdb:amdb_

control_tower

 amdb:amdb_

obstacle

 geography:

states

 geography:

rivers

AMDB sample data while
similar did not exactly match the
AIXM5.1 structure. For
example a single amdb_runway
feature type was used to create
both the AIXM Runway and
RunwayElement features types.

Special Use
Airspace
(SUA)

AIMS 5.0 Airspace

 GeoBorder

 AirTraffic

ControlService

FAA SUA AIXM5.0 data was
manually modified to replace
ArcbyCentrePoint,
CirclebyCentrePoint and href
geometries with geometries
types supported by Oracle
Spatial to enable the data to be
loaded.

Although we were provided
with several SUA datasets we
only loaded the datasets
applicable to scenario 2 due to
the overhead involved in
manually transforming the data.

Euro-
control

Snowtam Trial
(TempDelta)

AIXM 5.1 aixm:Airport

Heliport

 aixm:Runway

 aixm:Taxiway

ESMS
Scheduled
Availability
(Baseline)

AIXM 5.1 aixm:Airport

Heliport

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 25

Provider Data Source Application
Schema

FeatureTypes
extracted

Comments

LFV DAIM
Baseline

DAIM GML
2.1

 DAIM_BASEL

INE.AM_

AERODROME

REFERENCE

POINT

 DAIM_BASE

LINE.AM_

RUNWAY

ELEMENT

 DAIM_BASE

LINE.AM_

TAXIWAY

ELEMENT

DAIM sample data while similar
did not exactly match the
AIXM5.1 structure. For
example a single Runway
feature type was used to create
both the Runway and
RunwayElement features types.

OWS-6 OWS-6 AIXM
Oracle
Database
(Baseline)

AIXM 5.0 aixm:Route

 aixm:Route

Segment

OWS6 data was added to
provide an example of how the
proposed MTT information
would be encoded.

EANS Estonia AIXM 5.1 All AIXM 5.1
features contained
in data

Estonia data was provided from
Comsoft for inclusion within our
AIXM 5.1 data to ensure that the
services had a consistent dataset
to meet the requirements of the
scenarios

Weather Data

Meteo
France

Meteo France
WFS1.1

WXXM1.1 avwx:SIGMET Sample WXXM1.1 data was
obtained from the Meteo France
WFS1.1 which included icing
and volcanic ash SIGMET
features.

Issues with data loading

Issues were encountered loading datasets which contained complex geometry types:

ArcByCentrePoint, CircleByCenterPoint and geometries encoded ByReference. For

example, the Special Use Airspace data received from FAA contained features containing

ArcbyCentrePoint, and CirclebyCentrePoint geometries. GO Loader was unable to load

these geometries as these geometries are not included in the Simple Features for SQL

specification and therefore not supported by Oracle Spatial or other mainstream

databases. Consequently, manual transformation steps had to be performed as the data to

convert the data into supported geometry types which were then loaded into the database.

7.1.6.2 WXXM Data Loading

To demonstrate that the web services have the flexibility to support both AIXM 5.1 and

WXXM 1.1, Snowflake Software also provided a WXXM WFS 2.0. However, access to

OGC 10-079r3

26 Copyright © 2010 Open Geospatial Consortium, Inc.

weather data was much more limited. Therefore, Snowflake harvested WXXM 1.1 data

from the Meteo France WFS 1.1 which included icing and volcanic ash SIGMET

features. As the data was available in WXXM 1.1, GO Loader was used to automatically

generate a WXXM database schema, translate and load the WXXM 1.1 data into the

main OWS-7 Oracle 11g database.

Issues with data loading

GO Loader provides the functionality to automatically configure the schema translations

required to translate the data into the database schema. However, the WXXM 1.1 schema

does not substitute the anyType data type for om:result property for a specified data type

(e.g. the different WXXM features. This means GO Loader cannot automatically define

the database schema for these properties and discards the property (Figure 10). Manual

intervention was needed to configure the load and schema generation of this property.

Figure 10 -Issues with om:result when loading WXXM 1.1 data

It is recommended that for future release of WXXM, that feature types extended from

observation feature types should extend from specialized observation feature types

classified by their result type as recommended in ISO/DIS 19156 Geographic information

– Observations and Measurements. This will enable generic tools such as GO Loader to

parse and load the result properties.

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 27

7.2 Comsoft AIXM WFS

7.2.1 Overview

One design principle of CADAS-AIMDB is the interoperability with other systems. As the

database is the core of any integrated AIM solution an open interface that can be used

independently from any platform and programming language is one of the key features.

On the other side the interface has to fit the special use cases of aeronautical data without

restricting the access to a limited set of pre-defined functions. For an optimal support of

AIXM 5 CADAS-AIMDB provides the CAW-interface. However, after some

modifications (see Section "Issues Encountered") also the WFS 2.0-T standard can be

used for accessing AIXM 5 data.

7.2.2 WFS 2.0 conformance

Functions of the Simple WFS, the Basic WFS and the Transaction WFS conformance

class are provided: Mainly two functions as described below are intended to work on the

actual AIXM data:

1. The GetFeature function provides various possibilities to retrieve AIXM 5.1

features. Thereby one or more feature of the same or of different types can be

selected. Selection is done by applying various filter criteria. For these filter

criteria special attention has to be taken on the constraints implied by the AIXM

specification. CADAS-AIMDB enforces these constraints when querying any

AIXM data.

2. Modification of AIXM data is done by the Transaction function. For this function

the special semantic of modifying AIXM data has to be considered: E.g.

modification of data in AIXM 5 is done by inserting specialized Time Slice,

called Correction. But on the level of database functionalities this is also an insert

operation. CADAS-AIMDB thus restricts the operations that are available here

depending on the current use case.

Automatic data locking is used for this operation, thus the client is not required to lock

any data before modifying. For this reason also, no locking functions are provided by

CADAS-AIMDB.

7.2.3 Selecting AIXM 5 data with the GetFeature function

The GetFeature function is the central place to retrieve AIXM 5 compliant data in the

form of Time Slices. Retrieving only certain properties of a feature is available. Thereby

the correctness of the result against the AIXM schema is ensured. This means that all

properties are placed in correct Time Slice data structures and that any object relations

are fully expressed.

Selecting the data is done by specifying one or more filter criteria according to the AIXM

constraints. All these filter criteria a expressed in the query syntax as defined by ISO

19143. All available filters can be differentiated into the following classes:

OGC 10-079r3

28 Copyright © 2010 Open Geospatial Consortium, Inc.

 Basic selection rules are provided by the AIXM Filter Criteria that restrict the

queries to one or more AIXM feature types and that provides simple expressions

to search for specific Time Slice types. This filter also provides the type Snapshot

that creates an aggregation of multiple Time Slices representing a specific feature

state at a point in time or during a time period (see the AIXM specification for an

exact definition of Snapshot Time Slices).

 The Temporal Filter Criteria address the core of all AIXM data which is the

inherent temporality of all kinds of information. These criteria provide a bi-

temporal selection using either single time stamps or time periods. The bi-

temporality is expressed in a Functional Time ("when are the information valid")

and a Technical Time ("since when do we know about that information ").

 The Property Filter Criteria provide a simple selection on the values by arbitrary

feature properties. All AIXM data types together with the respective comparison

operators are supported. Property filter can be applied on the properties on the

Time Slice level as well as on the Object level.

 A specialized version of the Property Filter Criteria exist for geospatial

information in form, the so called Geospatial Filter Criteria. With these criteria all

AIXM 5 features can be searched that have a location assigned (in the form of a

point or boundary). They provide the capabilities of the proprietary geospatial

database extension as standardized WFS queries to all clients and users.

Geospatial comparison operators depending on the actual data type as defined in

ISO 19143 are supported.

 Join Filter Criteria are used to traverse the linking between multiple AIXM 5.1

features. Thereby only references that are defined in the AIXM specification can

be used. This is ensured by specifying the association that creates the link as

defined in the AIXM. Only stating the feature types that should be joined is not

sufficient for AIXM data and is thus not supported. When using a Join Filter

Criteria always all affected features are returned by the GetFeature function.

7.2.4 Data modification with the Transaction function

The Transaction method provides all operations for manipulating the contents of

CADAS-AIMDB. Data manipulation is always done by means of AIXM data structures.

For inserting data into the database the Insert operation is provided. This operation is the

standard way to insert new AIXM 5 Time Slices. With this operation Time Slices for

both event types (permanent and temporary delta) can be inserted. Also corrections and

cancellations can be issued. By inserting respective Time Slices, the commissioning and

decommissioning of AIXM 5 features is handled too.

As AIXM 5 defines the Time Slice types Baseline and Snapshot as aggregations of

multiple permanent or temporary deltas these Time Slices types cannot be inserted

directly. Instead the respective deltas have to be inserted.

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 29

7.2.5 User management

All functions of the WFS interface are integrated into the user management of CADAS-

AIMDB. A fine grained configuration of user rights on the data contents and on the

functions is provided:

 Defining user rights on the AIXM data: AIXM data can be classified by special

tags and attributes to customize the user rights. Thus it is possible to define the

rights on features sets or on single features regardless of any AIXM constraints.

Particularly, it is not required to have the same rights for all features of one

feature type. This assignment of user rights depending on special classification

allows the use of CADAS-AIMDB for data of multiple organizations and or

countries.

 Functional user rights: Function rights define the operation a user is allowed to

use. This is independent from the data they are executed on. Functional rights are

defined for each operation that is provided by the WFS interface and that operate

on the actual user data. Functions that are used to retrieve meta data about the

interface itself are restricted by any user rights.

The actual permission to execute a specific function or operation is evaluated by the

combination of the function that is executed and the data which are affected. This allows

the definition of access rights in a use-case oriented way.

On the other side an abstraction from the single users into user roles is implemented. This

defines a grouping of the user corresponding to their scope of work. According to the

use-case oriented view of the user management, the actual user rights are always defined

on these roles. User and user roles are associated by a n to m relation, which means that

each user can participate in multiple roles and that each role can have one or more users.

7.3 Meteo France WXXM WFS

7.3.1 Context

Meteo France participates to the OWS-7 with two others companies, Alticode and

Atmosphere Service. The objective was to implement a full stack of interoperability from

the EFB client to the WFS server through the FPS portrayal.

Meteo France WFS server should be able to serve volcanic ash SIGMET in WXXM 1.1

format which could be considered as a complex feature. Volcanic Ash SIGMETs

provided by the WFS Meteo France will be ”drawn” by the Alticode FPS and handled by

EFB type client, designed by Atmosphere.

7.3.2 Scope

The Meteo France WFS …

 serves WXXM 1.1 SIGMETs based on GML 3.2

OGC 10-079r3

30 Copyright © 2010 Open Geospatial Consortium, Inc.

 supports requests using a subset of the OGC Filter Encoding on WXXM 1.1

7.3.3 Software Architecture

Meteo France does not have its own implementation of WFS server. So they had to build

an architecture on available components.

Geoserver1 has been chosen as reference implementation of WFS 1.1. Geoserver serves

simple features, so to be able to serve WXXM 1.1, we wrapped it with Cocoon2

component which makes the translation from simple features to complex features.

Schematically, the applicative structure of the component can be seen as a simple layered

one, as depicted in Figure 11:

Apache

Cocoon

XML pipeline with XSL

GeoServer

PostGIS

Figure 11 - Structure of the Meteo France architecture

The translation between simple features served by Geoserver to complex features as

WXXM is done by XML transformation with XSL build upon the Cocoon framework.

Also the filter encoding statements are transformed using the Cocoon framework.

Geoserver and PostGIS3 are used to store volcanic ash SIGMETs and to serve them as

simple features. These two components are deployed in Tomcat container, the HTTP

protocol is handled by Apache.

7.3.4 Limitations

Directly linked to the constraints of the architecture, the limitations are many. The WFS

of Meteo France is based on a WFS 1.1 associated with GML 3.1. It uses data based on

the WXXM 1.1 format which is based on GML 3.2.

One limitation is that the Filter Encoding queries based on XPath expressions that cannot

be translated in a generic way to adapt the pattern of WXXM 1.1. Thus, only a small set

were taken into account.

Other limitations are reported in the OWS-7 Aviation WXXM Assessment Engineering

Report (OGC 10-132).

1 http://geoserver.org/

2 http://cocoon.apache.org/

3 http://postgis.refractions.net/

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 31

7.4 GMU Severe Weather Detection WFS

7.4.1 Background

Center for Spatial Information Science and Systems (CSISS) at George Mason University

has been collaborated with scientists at NASA Goddard Space Flight Center (GSFC),

University of Wisconsin, and National Severe Storms Laboratory in developing

techniques and systems for the detection and tracking of satellite image features

associated with extreme physical events for Sensor Web targeting observing through a

NASA-funded project.

One of the research results is a prototype system which is capable of processing NOAA

GOES data or NASA MODIS data, driving the underlying detection model, and

generating satellite image features that are associated with extreme physical events. The

front end of this system is a WFS 1.1.

Figure 12 - MODIS Image Detection Result

As shown in Figure 12, the generated satellite image features (couplets) are shown in

lines in red and green. The red box shows Storm Prediction Center storm report within 20

minutes of the image time. As we can see from this image, the generated features match-

up with the store reports nicely.

OGC 10-079r3

32 Copyright © 2010 Open Geospatial Consortium, Inc.

In support of OWS-7 aviation thread, CSISS staffs have further wrapped this service to

be compliant with WFS 2.0, and transformed the generated satellite image features into

WXXM 1.1 elements.

7.4.2 Data flow

The data flow within this system begins from NOAA GOES data or NASA MODIS data,

followed by detection model output, the legacy WFS output, and finally the new WFS 2.0

outputs. The generated satellite image features were encoded as sensor observation

elements and now are converted into WXXM 1.1.

7.4.3 WFS 2.0 / WXXM 1.1

This service wraps the model outputs into three types of service outputs: peak point

feature, sink point feature and thermal couplet feature. These features are encoded as

"wx:Observation" elements, which are further wrapped by "wx:featureMember"

elements. Each feature has its unique geo-location in latitude/longitude pair, and its

temporal signature. This service supports GetCapabilities, DescribeFeatureType, and

GetFeature operations.

7.4.4 Interaction with the OWS-7 clients

This service’s output has been successfully retrieved and visualized in the Aviation client

developed by Luciad. The GOES test image is shown in Figure 13, and the generated

satellite image features (peak point, sink point, couplet), which are encoded as WXXM

1.1 elements, are visualized in the Luciad’s Aviation Client, as shown in Figure 14,

Figure 15 and Figure 16.

Figure 13 - GOES Test Image

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 33

Figure 14 - WFS Outputs shown in the Luciad’s Aviation Client (1)

Figure 15 - WFS Outputs shown in the Luciad’s Aviation Client (2)

OGC 10-079r3

34 Copyright © 2010 Open Geospatial Consortium, Inc.

Figure 16 - WFS Outputs shown in the Luciad’s Aviation Client (3)

7.4.5 Access

 Endpoint

This service’s endpoint is http://data.laits.gmu.edu:8081/ows7/wfs

 Demonstration page

You may access the demonstration page at

http://data.laits.gmu.edu:8081/ows7/index.html

7.5 Envitia AIXM / WXXM FPS

The general computational architecture used as the basis for Envitia FPS experimentation

in OWS-7 is shown in Figure 17. This shows all of the key components of the sub-system

including the registry, WFS, WCS and Feature Portrayal Service. The style editor clients

created the Styled Layer Descriptors (SLD) which are then uploaded into the registry

using the web browser interface. The FPS clients make a WMS request with an additional

SLD parameter referencing an SLD file contained in the registry.

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 35

Figure 17 - Feature Portrayal Service Architecture

Specific portrayal rules were created for AIXM and WXXM features and were then

stored in the registry. Hence styling rules and symbology could be directly referenced via

a registry query URL, e.g.:

http://registry.galdosinc.com/ows7/query?request=GetRepositoryItem&id=urn:envit

ia:com:sld:fmawxxm

These URLs were then supplied as the “sld” argument in the GetMap request made from

the clients to the FPS, e.g.:

http://217.33.30.11/envitia.wms.ows7.aixm2/wms.aspx?REQUEST=GetMap&SERVI

CE=WMS&VERSION=1.3.0&FORMAT=image/png&BGCOLOR=0xFFFFFF&TR

ANSPARENT=TRUE&CRS=EPSG:4326&BBOX=-93.2,44.8,-

93.1,44.9&WIDTH=968&HEIGHT=843&LAYERS=Layers.9ADDBBB9&sld=http://

registry.galdosinc.com/ows7/query?request=GetRepositoryItem&id=urn:envitia:co

m:sld:fmawxxm

The FPS was configurable between component and integrated modes but in OWS-7 was

acting in an integrated capacity, rather than as a component implementation (integrated

and component FPS implementations are described here: OGC 05-078r4). The layers

made available via the FPS were configured to match the WFS and WCS services

available within the test bed. Feature data was also stored in a cache at the FPS to aid

performance, avoiding a repeated WFS/WCS query for every FPS request and so

reducing latency and reducing load on the WFS. In some cases (where data is volatile, the

FPS was set to query the WFS every time. An alternative is to include a publish-subscribe

client in the FPS so that once cached any changes in the cached WFS can be detected and

the FPS kept immediately up to date. This should be the subject of experimentation in

future testbeds.

OGC 10-079r3

36 Copyright © 2010 Open Geospatial Consortium, Inc.

7.6 Alticode WXXM FPS

7.6.1 Context

Alticode participates to the OWS-7 in the frame of a consortium led by MeteoFrance, and

also comprising Atmosphere Services. The Feature Portrayal Server implemented by

Alticode was thus primarily intended to make the link between the WFS provided by

MeteoFrance, serving Volcanic Ash SIGMETs, and the EFB type client, designed by

Atmosphere.

The FPS development was initiated “from scratch”, and has been based exclusively on

the OGC standards documents (more specifically on WMS, SLD and SE specifications,

whose respective references are 06-042, 05-078r4 and 05-077r4).

In spite of being targeted in priority to render polygons describing volcanic ash clouds,

provided in WXXM encoded SIGMETs, no specific assumption was made on the nature

of data processed when designing the FPS. Within OWS-7, Alticode's FPS should thus be

able to serve both WXXM and AIXM types of data.

7.6.2 Software Architecture

The Alticode FPS' structure mirrors rather closely that of OGC standards: objects

modeling Filter Encoding, Symbology Encoding and Styled Layer Description have been

implemented in separate modules. Schematically, the applicative structure of the

component can be seen as a simple layered one, as depicted on the diagram below (Figure

18):

Feature Portrayal Service (FPS) (Web Map Service, WMS)

Styled Layer Descriptor (SLD)

Symbology Encoding (SE)

Filter Encoding (FE)

Figure 18 - Layer structure of the Alticode FPS

The FPS component is written in Python programming language4. The associated web

site (http://www.alticode.net/OWS7/) has been built using the django framework5, and is

served by Apache.

4 http://www.python.org/

5 http://www.djangoproject.com/

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 37

7.6.3 Limitations

It hasn't been possible to implement a fully fledged FPS within the short OWS-7 time

frame. Hence, the component is affected by a number of limitations, which are further

detailed in the following subsections.

7.6.4 Scope

The scope of possibilities offered by the OGC standards referenced above was thought to

be incompatible with the development schedule and has thus been voluntarily restricted.

The only SLD/SE version accepted is 1.1.0 and the main functional limitations are listed

below:

 SLD: layers and styles are assumed to be defined by the clients, respectively via

UserLayer and UserStyle elements (NamedLayer and NamedStyle elements are

silently ignored);

 SE: only two of the five possible symbolizers are currently implemented (at the

time of document writing), namely PolygonSymbolizer and PointSymbolizer;

 FE: filtering capabilities based on spatial operators, object identifiers and

functions are not yet implemented (at the time of document writing)

7.6.5 Efficiency

From the client's perspective, the FPS efficiency is mostly characterized by the latency

(delay before the requested map is effectively rendered), which should be as short as

possible. The decision to try and implement a fully flexible “component server” (as

opposed to integrated ones, see SLD specification) would not have been made if short

response times had been considered as a priority. In other words, the chosen architecture

(no cache, no a priori knowledge of any WFS) is known to be incompatible with

optimized response times.

7.6.6 Robustness

The FPS robustness can be challenged in (at least) two ways:

 Through the large variety of options made possible by the standards (an extensive

test campaign was not compatible with the project's tight schedule);

 By submitting it to heavy loads (high rate of client requests). The component

developed for OWS-7 was meant to be a prototype, not an industrial product.

Since it was not a targeted objective, the capacity to sustain heavy loads has not

been taken into account in the component development – for which it can become

a dimensioning factor.

OGC 10-079r3

38 Copyright © 2010 Open Geospatial Consortium, Inc.

7.7 Galdos INdicio™ Registry

INdicio™ is a Web Registry that implements the Open Geospatial Consortium (OGC)

Web Registry Service specification (also known as the Catalogue Service for the Web).

Unlike conventional geographic catalogues, INdicio™ is highly configurable and can be

readily deployed to manage a wide variety of objects.

7.7.1 Key features of INdicio™

 Open standards-based

 Easy installation and configuration

 Easy management and monitoring capabilities

 Secure and flexible interface

 Supports multilingual application domains

 Support for large transactions

INdicio™ ships with a CSW-ebRIM Basic Extension Package which provides a variety

of useful objects for geospatial applications including:

 Services taxonomy (source: ISO 19119 “Geographic information – Services”)

 Country codes (source: ISO 3166-1 “Codes for the representation of names of

countries and their subdivisions – Part 1: Country codes”)

 Geographical regions (source: UN Statistics Division)

 Feature codes (source: DGIWG FDD)

 Property categories based on Dublin Core (source: DCMI metadata terms)

INdicio™ is inherently extensible and can be adapted to multiple application

requirements by using OGC CSW layered on top of ebRIM. Galdos Systems Inc. is

constantly developing new extension packages, such as the CRS Extension Package, as

well as custom extension packages on request.

The Flexible and secure query interface:

 Supports spatial queries using GML 3.1.1

 Supports XACML specification

 Supports role-based access control

 Full text search of XML resources

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 39

 Extensible harvest

 Customizable life cycle management

 Output transformations facilitate rapid web services integration

7.7.2 Technical summary

 Implementation of OGC Cat 2.0.2, CSW-ebRIM 1.0.1

 OGC Filter Expressions (v1.1.0)

 PostgreSQL 8.4, Oracle 11g, Oracle Express Edition (XE) 10g

 Java JDK 1.6

 Windows 2003

 Red Hat Enterprise Linux 4.0

 Apache Tomcat 6x Web Application Server

7.7.3 Supported specifications

 OGC CSW-ebRIM 1.0.1

 OGC Catalogue 2.0.2 / CSW

 OASIS ebRIM 3.0

 OGC Filter 1.1.0

 GML 3.1.1

 OWS Common 1.0

7.8 52°North Event Service

The Event Service used in the OWS-7 Aviation scenarios is based on the 52 North

implementation of the OGC Sensor Event Service discussion paper that was also used as

a basis for the OWS-6 AIM Event Service.

7.8.1 Service Description

As the OWS-7 Aviation Event Service is based on the OGC Sensor Event Service (SES)

specification it uses the same communication protocol and relies on the same standards.

All communication with the Event Service is done via SOAP messages transmitted using

HTTP.

OGC 10-079r3

40 Copyright © 2010 Open Geospatial Consortium, Inc.

On top of that the Event Service implements operations defined by the OASIS Web

Services Notification (WS-N) specifications. The mandatory operations are:

 Notify: This is the basic method to send notifications (e.g. digital NOTAMs) from

a notification producer to the Event Service and from the Event Service to a

notification consumer (e.g. the clients). In contrast to the other methods no

request-response communication is used here, all notifications are pushed instead.

 Subscribe: Using this operation a notification consumer can express its interest in

notifications. Such a subscription may include a filter statement to specify the sub

set of notifications of interest.

 GetCurrentMessage: This method allows requesting the last message that was

posted to a specific topic.

 RegisterPublisher: This method is used to register a notification producer at the

Event Service. This method is not mandatory to be used with the OWS-7 Aviation

Event Service, however it is necessary if the DescribeSensor operation (see

below) shall return complete and useful information.

In addition the following optional operations are implemented:

 Renew: This method allows renewing a subscription in a sense that its termination

time is changed to a later one.

 Unsubscribe: This method cancels a specific subscription.

In addition to these methods defined by OASIS WS-N the Event Service supports some

operations that are common to OGC and OGC SWE services:

 GetCapabilities: The GetCapabilities operation is common to the OGC services

and returning the service metadata and capabilities like the supported operation

and filter languages.

 DescribeSensor: This method is common to OGC SWE services. It is used to

provide more detailed information about sensors that are used by the service. It is

inherited form the SES specification. In case of the common event service this

operation can be used to access information about the registered notification

producers (see RegisterPublisher) which may be sensors. With respect to the

attempt to build an Event Service specification for all areas of the OGC started in

the OWS-6 and -7 eventing activities this method will most likely be renamed to a

more general name.

Further important standards used by the Event Service cover the encoding of the filter

statements used in the subscriptions. The OWS-7 Aviation Event Service supports two

languages, however only the first one is used in the demonstrated scenarios. The

languages are:

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 41

 The OGC Filter Encoding Specification (FES) 2.0: This filter language was

originally designed for the use in requests to OGC Web Feature Services (WFS).

Due to its generic design it can be applied on various placed including filtering of

events. The language defines the encoding of the most important comparison,

spatial and temporal operators as well as logical links and functional expressions.

 The OGC Event Pattern Markup Language (EML): The EML is a language to

encode event patterns for Complex Event Processing (CEP) and Event Stream

Processing (ESP). Using such event patterns it is possible to define rules how new

information shall be derived from a stream of events instead of just filtering it.

The EML is currently available as a discussion paper and not used in the OWS-7

Aviation scenarios.

7.8.2 Changes to the Service

Compared to its source the Sensor Event Service (SES) the Event Service for Aviation is

changed in some places. On the one hand the sensor specific operations like

DescribeSensor are no longer supported. Possible ways of providing metadata about the

available events that are applicable not only in the SWE domain are discussed in the

OWS-7 Event Architecture ER (10-060).

Also the supported input formats are extended. The pure SES does only support

notifications encoded as Observations & Measurements or as EML Events which is an

experimental format for the encoding of complex events. For the Aviation version of the

Event Service the support for the Aeronautical Information Exchange Model (AIXM) and

the Weather Information Exchange Model (WXXM) were added.

Compared to the version provided for OWS-6 there are two major changes. One is the

previous mentioned support for WXXM which was not available in OWS-6. Thus, now it

is possible to serve notifications on aeronautical features and weather information from a

single service. The other change is related to the subscription handling inside the Event

Service. The lifecycle management for the subscriptions allows setting a lifetime for each

subscription. If the time runs out of a subscription it is automatically removed. To prevent

subscriptions running out that are needed longer than initially it is possible to extend the

validity period via the Renew operation. It is also possible to manually remove an

existing subscription via the Unsubscribe operation.

All these features described above are demonstrated in the OWS-7 Aviation scenarios

including the use of multiple event encodings, multiple concurrent subscriptions,

subscription lifetime handling and use of the Unsubscribe operation.

7.9 Frequentis Dispatch Aviation Client and EFB Client

This section describes the technical solution for the Dispatch Aviation client and EFB

(Electronic Flight Bag) client developed by Frequentis within the OWS-7 testbed.

OGC 10-079r3

42 Copyright © 2010 Open Geospatial Consortium, Inc.

7.9.1 Component functions

The OWS-7-Aviation Client (AC) component provides pre-flight and on-flight assistance

functions for flight dispatchers and pilots. The pilot can use this component for gathering

and delivery most up-to date information concerning his/her flight.

The implementation scope for such a component is generally wide, but this

implementation focused mainly on the parts that interface Web Services providing

AIXM, WXXM and graphical data. This implementation did not focus on areas like:

Flight Plan Management (organizing and assigning flight plans), Aircraft Data (for

fuelling calculations etc.), User Management (pilots and dispatchers as users of OWS-7-

AC) or Security (which needs to be dealt-with cross-thread the OWS-7 testbed).

The OWS-7-AC component focuses on implementing User Interface (UI) functions

enabling the user to search aeronautical and weather data concerning the flight. Both pilot

and dispatcher can use OWS7-AC functions to find data, which are provided by WFS

(Web Feature Services) for AIXM and WXXM data. The graphical component connects

to FPS server(s) to present data graphically. Both - the dispatcher and the pilot can

subscribe to the Event Service for data updates relevant to the flight or to areas, which the

user is specifically interested in. The Event-Consumer module of the OWS-7-AC

component receives data from the Event Service based on the subscriptions and presents

them to the users (both pilot and dispatcher).

Within the OWS-7 testbed several functions (e.g.: AIXM WFS) have been implemented

by more than one contributors. The OWS-7-AC dealt with connecting to multiple data

providers (offering either different scope or different format versions of data).

When implementing the OWS-7-AC, many interesting questions appeared. The following

three conceptual topics are indicating the need for further analysis and discussion:

1. Communication between Pilot and Dispatcher

The Frequentis OWS-7-AC component implementation has not dealt with Pilot

and Dispatcher as separate clients to WFS or Event service. But the Flight entity

itself (where dispatcher and the pilot contributes on pre-flight and on-flight data

assistance) acts here as the client to the WFS and Event Service. Any data

subscriptions created by the dispatcher (on a specific Flight session) cause Event

data retrieval by the pilot (on the same Flight session) and the other way around.

This concept assures that both parts have the same information.

2. Caching data on client

When an event (data change) arrives at the client, it is displayed at the first place

(graphically or textually). But also any local (cached) data stored on client side

and affected by this event should be either updated or released from the local

client cache (and consequently next time forcing the data (in time slice of the

incoming event) to be reloaded from the WFS).

3. Scope of data coverage by Services

Different data providers cover different scope of data (e.g.: In this project

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 43

Snowflake covers U.S. part, Comsoft covers parts of Europe). The OWS-7-AC

component implementation should ideally make the data providers transparent for

its users. The current implementation needs the user to select the data provider

first (as their data coverage is not known generally). A central WFS, which would

have the coverage information could route requests to specific WFS servers and

responses back to the clients.

7.9.2 Component architecture

In the client-server architecture the OWS-7-AC component is the client to WFS, FPS and

Event Service. The core of the OWS-7-AC component is a Web Server. Users connect to

the OWS-7-AC Web Server using a Web Browser and access data from the WFS, FPS

and Event Service.

The Event-Consumer component of the OWS-7-AC Web Server listens for incoming

events. These are sent by Event Service to the OWS-7-AC Web Server based on

subscriptions made by the user.

7.9.3 Technologies used

The Web Server is running on RedHat Linux OS in Apache Tomcat Web Server

container. The application framework has been implemented in Spring Framework. The

key software components interfacing indirectly the WFS components are the RestClient

and SoapClient, both implemented using existing Spring components of the framework.

This proved the Spring framework to be very suitable for the client (and the server

interface) parts.

The client technology (web browser interface) stands on AJAX components

communicating asynchronously with the web server. The map component for graphical

presentation of data was built on top of OpenLayers libraries providing API interface to

WMS (Web Map Server) clients.

7.10 Luciad EFB Client

7.10.1 Luciad introduction

Luciad is a software product company providing standards-based software components

for high performance visualization in the ATC/ATM, Defense, and Security areas.

Luciad closely follows open standards such as the geospatial standards defined by the

OGC. Luciad has applied these standards in its flagship product LuciadMap which is

used in numerous projects for customers including Eurocontrol, FAA, NATO and large

system integrators.

Last year, Luciad was also actively involved in the OGC OWS-6 initiative, in which an

Electronic Flight Bag (EFB) client was developed within the AIM thread. This client was

successfully demonstrated during the different TIEs and during the AIXM Users

Conference organized by sponsor organizations Eurocontrol and FAA.

OGC 10-079r3

44 Copyright © 2010 Open Geospatial Consortium, Inc.

7.10.2 Software Architecture

For the OWS-7 Aviation thread, Luciad contributed an Aviation client application, with

focus on Electronic Flight Bag (EFB) functionality but also equipped with some aspects

of a Flight Dispatch application.

A schema of the application’s architecture is shown in Figure 19.

Figure 19 - Luciad EFB and Dispatch Aviation Client

Client characteristics:

 Integrated WFS client, supporting versions 1.0.0, 1.1.0, and 2.0. The client

supports the WFS basic and transactional profiles.

o Support for OGC Filter Encoding 1.0, 1.1 and 2.0.

o A comprehensive user interface to create relevant filters according to the

scenario is provided in the client. For example, to filter on objects falling

within a given distance from the flight plan, and complying with temporal

and other non-spatial constraints.

 Integrated WMS client, supporting versions 1.1.0, 1.1.1 and 1.3.0. The client

supports the WMS basic, queryable, and SLD profiles.

 Integrated WCS client, supporting version 1.0.0.

 Integrated client to communicate with an Event Notification service

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 45

o Subscription of a consumer with support for complex filtering.

o Unsubscription of a consumer.

o Listening to events by a subscribed consumer.

 Wide range of data format support, including

o AIXM 5.0 & 5.1 for aeronautical data

o WXXM 1.1.1 for weather data

o Additional aeronautical and weather data formats like AIXM 3.3/4.0/4.5,

ARINC 424, DAFIF and GRIB.

o Raster format support (GeoTIFF, TIFF, JPEG, JPEG 2000, PNG, GIF,

ECW, MrSID, CADRG/ADRG/USRP, DTED, USGS DEM …) for

satellite imagery and elevation background data.

o Vector format support (KML 2.2, ESRI Shape, MapInfo MIF/MAP, GML

2/3.1.1/3.2.1, SVG …) for vector-based background data.

o 3D format support (OBJ, OpenFlight …) for data such as 3D terrain and

3D buildings.

 Digital NOTAM and weather event support for aeronautical/weather information

updates

 Support for METARs, TAFs, SIGMETs and PIREPs for weather observations

 Visualization of aeronautical and weather data according to ICAO guidelines

 Support for visualization in 2D and 3D for all data sources

 Capability of rendering feature data with an OGC Styled Layer Descriptor (SLD)

both locally and remotely through a Feature Portrayal Service (see below)

7.10.3 Usage of a Feature Portrayal Service

The client allows connecting with a Feature Portrayal Service to remotely render feature

data using an OGC Styled Layer Descriptor (SLD). Because the client has direct support

for SLD and also has an interface to WFS, it also supports local rendering of feature data

– thus mimicking the behavior of a Feature Portrayal Service locally at the client.

7.10.4 Technical Notes

All development is done in Java, using the Java Development Kit (JDK) 1.5. The client

application is developed on top of Luciad’s core products LuciadMap and Lucy.

LuciadMap is a suite of software components for application development with focus on

OGC 10-079r3

46 Copyright © 2010 Open Geospatial Consortium, Inc.

high performance visualization and situational awareness. Lucy is a high-level

application component for rapid application development, providing all LuciadMap

components in one configurable, extendable application.

The software runs on any operating system for which a Java Virtual Machine 1.5 or

higher exists. For the 3D visualization, a graphics card with support for OpenGL 1.2 or

higher is required.

7.11 Atmosphere WXXM Handheld Client

7.11.1 Context

Atmosphere participated to the OWS-7 Testbed in the frame of a consortium led by

MeteoFrance, along with Alticode. The main purpose of what was called the MFAA

consortium was to implement an end to end service from MeteoFrance WXXM WFS to

the Atmosphere handheld client through the portrayal service (FPS) implemented by

Alticode. In that context, the features meant to be provided, portrayed and eventually

displayed by the handheld client were Volcanic Ash features.

As much as possible, the handheld client was supposed to be able to connect with other

services implement by the OWS-7 participants. The handheld client architecture has been

developed based on the open OpenLayers library, initially designed to interact with

WMSs and to display maps, layers and features in a user-friendly way. To fit in the end

to end chain mentioned above, modifications have been operated on OpenLayers for the

client to interact with FPSs.

OGC standards documents used are WMS and SLD specifications (06-042, 05-078r4).

7.11.2 Software Architecture

The handheld client, as being a first try for implementing OGC standards, has been

developed has a Web Application. It is based on the following libraries:

 OpenLayers

 Ext JS (now Sencha)

 GeoExt

OpenLayers is a set of java script libraries that provide all the structure for data retrieving

and queries manipulations. OpenLayers is OGC compliant. However, in order to interact

with FPSs, additional modules had to be developed. These additional modules are based

on WMS specification and the WMS.js module integrated in OpenLayers.

ExtJS and GeoExt are a set of libraries also written in java script. Their role is mostly to

present the handheld client in an as user-friendly way as possible. All the graphical

design of the application is rendered thanks to both these libraries. The entire project has

been developed in java script.

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 47

The client is available at the following URL:

 http://galbn1.atmosphere.aero

7.11.3 Limitations

Atmosphere, as a newcomer and due to the short OWS-7 time frame and the steep

learning curve, decided to develop the handheld client as a web application. Hence, the

component is affected by a number of limitations: Due to its nature, the handheld client

was unable to interact with the Event Service without having to develop an intermediate

proxy (between the client and the Event Service).

The main objective (that is, showing an implementation of an interoperable service

between the MeteoFrance WMS, the Alticode FPS and the Atmosphere client) has been

completed, yet all the possibilities of the client have not been explored (e.g. connection to

an Event Service or implementation of SOAP). With the acquired knowledge of the OGC

standards, a “rich client” as an entity independent of any browser could be envisaged for

coming Testbeds.

As described in the WXXM ER, the MFAA has encountered difficulties to quickly

understand the standard through the given examples of the WXXM use. This is partly due

to the fact that examples are very basic (which is good for the first steps of

understanding) and that there is a lack of more complex examples that would allow to

fully understand most of the possibilities given by WXXM. A set of more complex

examples would be of great help in coming Testbeds, for newcomers and for previously

participating members such as MFAA.

1.1.4 Scope

The Handheld client has a connection to the following OGC participants:

 Alticode FPS

 Envitia FPS/WMS

It is retrieving Data from AIXM and WXXM servers.

Possibilities to filter on the following parameters are available:

 Valid time (begin and end)

 Flight level (bottom and top)

 Feature type (SIGMETs : Volcanic Ash, Icing and Turbulence)

7.11.4 Perspective of evolution

Atmosphere as part of MFAA, for its first participation, developed a light client mostly to

show that the standard was quite easy to understand and use, even in just a few weeks.

However, understanding the WXXM standard took time, and thus the client has not been

http://galbn1.atmosphere.aero/

OGC 10-079r3

48 Copyright © 2010 Open Geospatial Consortium, Inc.

developed as far as it could have been (see the limitations section). Further participation

could allow MFAA to go deeper into the standard and implement more of its

possibilities.

A possible option could be to integrate the FPS service and the client, for bandwidth

optimization for instance (exchange XML/GML instead of pictures).

An integrated SLD creator would also be an interesting possibility, to enhance potential

customization of the data for the end user.

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 49

8 Aviation Event Architecture

This section of the aviation architecture describes the dynamic aspects in the aviation

scenario based on the general concept of events and publish-subscribe interaction models.

The aviation scenario makes use of the general publish-subscribe model, where

notifications are sent to receivers in case that previously defined filter criteria are

matched by new or updated data. During the preparation phase as well as during the

entire duration of the flight, flight dispatchers and pilots can subscribe to a web services

based notification service to receive specified changes, in particular additions, to

aeronautical and weather databases at the time they are made. Subscriptions are modified

or cancelled during the flight as the aircraft proceeds on its route.

The challenges arise from the integration and processing of aeronautical and weather

information models and encodings, namely AIXM (version 5.1) and WXXM (version

1.1.1) and the realization of the scenarios compliant to the general OGC Event

Architecture (see OGC 10-060).

8.1 AIM Specifics: Event Encodings

8.1.1 AIXM

The AIXM extension for AIXM version 5.1 contains the model and XML encoding for

aviation events. The base model is described in more detail in OGC 10-131 OWS-7

Aviation – AIXM Assessment Report.

8.1.1.1 AIXM 5.1 basic message / dnotam event

In this section several aspects are discussed related to the encoding of Aviation events.

The AIXM 5.1 model that was tested in OWS-7 defines two types that can be used to

provide information on feature changes: the AIXMBasicMessage and the Event. The

former is defined in the core AIXM 5.1 package while the latter was provided as part of

the xnotam draft extension package.

Both the AIXMBasicMessage and the Event message derive from the same base type, the

AbstractAIXMMessageType. In addition, both are modeled as explicit features, so they

can be identified. However, an Event adds some more specific properties that are relevant

from an Event Architecture point of view. These will be discussed later on. In the testbed

only the Event type was used. Thus the following discussion concentrates on this data

type.

Common (though optional) properties of AIXM messages are a sequence number as well

as message metadata. In addition, names as well as an identifier, description and

boundary may be provided. These properties are now discussed in more detail.

OGC 10-079r3

50 Copyright © 2010 Open Geospatial Consortium, Inc.

8.1.1.1.1 Sequence Number

Conversations during the testbed showed that the sequenceNumber property in an AIXM

message was designed to support traceability of messages.

An example was provided in which a series of Events is issued. If the receiver of these

events only gets Events n.1 and n.3, then the gap in the message sequence (Event n.2) can

be detected.

This use of the sequenceNumber property is appropriate to identify gaps in the sequence

of all Events that are generated by an event source. This can for example be a WFS.

Being able to support this exact functionality was not relevant in the use cases tested in

OWS-6 and OWS-7, however, as most clients were interested in specific events that

fulfilled their subscription’s filter criteria.

If the sequenceNumber is only intended to be used for identifying gaps in a transmission

of an Event sequence between two system entities, then it seems to be more appropriate

to leverage functionality of the transport mechanism or the protocol used to convey the

events to achieve the same goal. For example, WS-ReliableMessaging is designed to

reliably transmit a sequence of messages from one system entity to another. The

technology plugs in to the SOAP protocol and uses automatically added sequence

numbers and an acknowledgement mechanism to ensure that all messages are delivered.

Various quality levels are covered by the specification, for example to avoid duplicate

delivery. A future revision of AIXM may consider deprecating or removing the

sequenceNumber in AIXM messages or clarifying the intended semantics.

8.1.1.1.2 Message Metadata

Each AIXM message may provide metadata according to ISO 19115 and encoded

following ISO 19139.

As defined in the OWS-6 (SWE) Event Architecture ER (OGC 09-032), any feature can

be considered as an event as long as it supports the provision of the time when the

happening represented by that feature took place.

As each AIXM message has one or more members and as a dnotam Event provides a

selection of time slice information for these features, such an Event can be considered to

itself be an indicative event. As it indicates that (potentially multiple) other events have

happened, we could also call it a summary event.

If the dnotam Event type itself is considered to be an event, it has to provide an event

time. The most appropriate property to provide the required semantics seems to be the

date that is buried deep in the message’s metadata structure

(Event/messageMetadata/identificationInfo/citation/date). This date can – using the

appropriate code – give the time when the resource, in this case the dnotam Event, was

brought into existence. A different time, the issue time, may be provided as well (adding

another value to the same date property). The creation and issue time in most cases will

be the same.

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 51

Another property of a message’s metadata, the dateStamp, should be treated with care. It

does not necessarily represent the event time of the dnotam Event. It rather provides the

date that the metadata itself was created – which may be different in case that the

metadata of an Event was added to it later on.

These considerations are important from the Event Architecture point of view. In

practice, the content of a dnotam Event is of primary interest. There, the time slices of

features are the most important information. The event time of a time slice depends upon

the type of time slice at hand.

8.1.1.1.3 Identifier and Names

A dnotam Event has properties that can be used to provide a name to the event, identify

and describe it. The following observations can be made.

An Event may provide values for specific textual name and description properties. As the

dnotam Event is derived from the aixm:AbstractAIXMFeatureBaseType it inherits the

gml:description and gml:name properties from that data type.

There are subtle encoding differences. The dnotam properties consist of a string value

with size limitations. They are nillable and can therefore contain an optional nil reason

description. The gml:description is not nillable but may be empty and also contain a nil

reason. A gml:name has an optional codeSpace and is not nillable as well.

A revision of the AIXM model and encoding may remove or clarify this duplication of

information.

A dnotam Event may also have identity. Providing identity for an Event is useful for

example when an Event that was sent in error needs to be cancelled and therefore

referenced. The gml:identifier property of an Event should be used to contain the

identifier value.

In the testbed the use of the gml:id attribute in an Event was also discussed. GML itself

only requires this attribute to be unique in one XML instance and AIXM does not seem to

enforce a stricter requirement.

Using the gml:id to provide an Event’s identity came up because the WFS requires that

the value of this property is unique for all the features it governs. Because this

requirement does not apply to all services and clients in an Event Architecture, it is only

valid for a WFS. It is therefore not safe to assume that the gml:id can be used as identifier

for Event features in all cases. Especially when dnotam Events are transmitted not only

between two but across a network of entities, the gml:identifier is a better place to put an

Event’s identifier value. Agreement upon this mechanism is primarily important to

support clients in querying – not referencing – Events via their known identifier value.

8.1.1.1.4 Spatio-Temporal Extent / Boundary

In OWS-6 the boundary of a feature was used to perform spatial filtering. The approach,

although not particularly precise, was used in OWS-7 as well. Sections 8.1.1.3 and 8.4

OGC 10-079r3

52 Copyright © 2010 Open Geospatial Consortium, Inc.

discuss the issues encountered and ideas developed for performing spatial filtering in

more detail. This section shortly outlines the problem of computing the boundary for any

given feature instance.

The boundary property of aviation features defines the spatio or spatio-temporal extent of

this feature. This is an optional property of any GML feature. It is up to the entity that

creates the feature to populate the property with an appropriate value. In OWS-7, it was

difficult for service providers to do so as the rules to get or compute the spatial extent for

any aviation feature were not readily available. The definition of such rules as well as a

specification how to encode them in a machine readable way would be a useful

enhancement that benefits the whole OGC community. Services could leverage such

descriptions – for example contained in feature type descriptions – and compute the

boundary of a given feature instance on the fly without requiring intervention by a service

administrator.

8.1.1.1.5 Previous Event

Whenever a dnotam Event is updated or replaced, a new Event is published. This new

Event will point to the old one in its previousEvent property. The purpose of this property

therefore is to support a form of Event history.

Consider the following example: an airspace is announced to be closed between 12:00

and 15:00 o’clock. At 14:00 o’clock the decision is made to re-open it. In that case, a new

"correction" event is sent, which replaces the previous one.

The previousEvent property is useful in supporting above use case. If the relationship

between a given Event and its previous Event may have different semantics in the

aviation domain, the dnotam Event model should be extended to indicate the exact

semantics to avoid the need to infer the semantics. Table 1 in the OWS-6 SWE Event

Architecture ER (OGC 09-032) lists some possible relationships between events (cause,

initiation, perpetuation (or facilitation), hindrance (or blocking), termination, supersedes);

Table 2 in that report lists an additional one. CodeLists can be defined to be used in

identifying such relationships. These CodeLists may also be defined in and reused from a

more general Event Model (see OGC 10-060, section 12.2.4).

8.1.1.1.6 Event Type

A dnotam Event has a property (Event/properties/type) to indicate the type of changes

that the event contains information about. The codes used in this property are not

comparable to those used in the interpretation property of a time slice, but they are

related. This is important to understand the dnotam Event model.

The following list explains the code values allowed in an Event’s type property:

 TEMPORARY: for temporary situations (example: a snow contamination) – a

client can expect to have TEMPDELTA time slices that will update some existing

baseline information

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 53

 TRANSIENT: a client can expect to have new, ad-hoc features with a limited

lifetime

 PERMANENT: a client can expect to have PERMDELTA time slices that will

update some existing baseline information

8.1.1.2 Correction of Event Information

In domains where estimates or forecasts are published to inform clients about the future

state of a feature (e.g. a runway or airspace), it is necessary to have a mechanism to

revoke or change such messages. Section 8.1.1.1.5 contains a good example where this is

useful. In order to unambiguously identify the information that is being updated, it has to

be identifiable. This can happen by stating the identifier of for example a previously sent

event. How to identify a dnotam Event has been discussed in section 8.1.1.1.3. This can

also happen by referencing the previously sent event. The dnotam Event supports this

through the previousEvent property, discussed in section 8.1.1.1.5.

Time slices as defined in the AIXM model have a correctionNumber property. This is

used to unambiguously identify any correction that was made to a given time slice. The

time slices of a feature can be identified through the combination of the sequenceNumber

and the optional correctionNumber.

When a dnotam Event needs to be updated, it can currently only happen by pointing to it

from the new Event. Different update semantics also cannot be communicated (see

section 8.1.1.1.5). Furthermore, it is only possible to point to one specific Event that is

updated, not a complete list of event revisions.

It would be useful to add a correction or revision number to a dnotam Event. An Event

can thus have one fixed identifier which – in combination with the revision number – can

be used to uniquely identify one specific dnotam Event. Moreover, one can easily

identify all revisions of a given Event because they will all have the same identifier value

– only the revision number is different.

The OGC should consider this mechanism for any GML feature as it is applicable for

other domains as well (e.g. the Sensor Web domain). This could be achieved by adding a

revision number property to the standard GML object properties.

8.1.1.3 Reverse Associations Extension for Event Filtering

This section explains how the reverse association extension can help with filtering of

events. It also shortly discusses approaches to better model these associations.

What is the purpose of a reverse association? First of all, such an association is an

extension that can be added to a given AIXM feature in its extension property. It makes

an association navigable in both directions if it is usually only navigable in one direction.

OGC 10-079r3

54 Copyright © 2010 Open Geospatial Consortium, Inc.

Figure 20 - Model of a Reverse Association from Route to Airspace

The figure above (Figure 20) shows the directed protectsRoute association. It goes from

the Airspace feature type (being the association’s source) to the Route feature type (being

the target). The reverse association extension (modeled in blue) allows a Route to point to

the Airspace(s) that it is protected by if that information is necessary. Associations to any

class can be added in this way. Figure 21 shows the XML schema of the reverse

association extension that was available in OWS-7.

Figure 21 - Schema for a Route’s Reverse Associations Extension

As shown in Figure 20 a Route may point to several Airspace elements. In addition, it

may point to the RouteSegment elements that constitute a Route (this is not shown in

Figure 20). The following listing shows how reverse associations can be integrated in a

Route instance, using the extension schema element shown in Figure 21.

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 55

<dnotam:Event xmlns:dnotam="http://www.aixm.aero/schema/5.1/dnotam" …

gml:id="uniqueid">

 <dnotam:properties>

 <dnotam:EventProperties gml:id="ID_010">

 <dnotam:name>DONLON_EVENT</dnotam:name>

 <dnotam:description>Example of Digital NOTAM

Event</dnotam:description>

 <dnotam:type>TEMPORARY</dnotam:type>

 </dnotam:EventProperties>

 </dnotam:properties>

 <dnotam:hasMember>

 <aixm:Route gml:id="rtsg211">

 <gml:identifier

codeSpace="http://www.aixm.aero/schema/5.1/example">a14a8751-5428-46bc-

a2d1-32ef84d37b5c</gml:identifier>

 <aixm:timeSlice>

 <aixm:RouteTimeSlice gml:id="rts211">

 <gml:validTime>

 <gml:TimePeriod gml:id="vtSTAR224077">

 <gml:beginPosition>2010-07-

20T00:00:00</gml:beginPosition>

 <gml:endPosition>2010-07-20T12:00:00</gml:endPosition>

 </gml:TimePeriod>

 </gml:validTime>

 <aixm:interpretation>TEMPDELTA</aixm:interpretation>

 <aixm:sequenceNumber>3</aixm:sequenceNumber>

 <aixm:featureLifetime>

 <gml:TimePeriod gml:id="ltSTAR224077">

 <gml:beginPosition>2009-01-

01T00:00:00.000</gml:beginPosition>

 <gml:endPosition indeterminatePosition="unknown"/>

 </gml:TimePeriod>

 </aixm:featureLifetime>

 <aixm:flightRule>IFR</aixm:flightRule>

 <!--=================-->

 <!-- === REVERSE ASSOC. ===-->

 <!--=================-->

 <aixm:extension>

 <mxia:RouteExtension gml:id="REV_ASSOC">

 <!--=== Links to associated RouteSegments ===-->

 <mxia:theAirspace

xlink:href="http://www.aixm.aero/schema/5.1/example#xpointer(//aixm:Air

space[gml:identifier='cc9c7cc4-e000-4741-854d-b7d93973e099'])"/>

 <mxia:theRouteSegment

xlink:href="http://www.aixm.aero/schema/5.1/example#xpointer(//aixm:Rou

teSegment[gml:identifier='bc430a08-bb5d-48dd-8ef0-85ff50dcfb9d'])"/>

 <!-- ... omitted for brevity ... -->

 </mxia:RouteExtension>

 </aixm:extension>

 <!--=================-->

 </aixm:RouteTimeSlice>

 </aixm:timeSlice>

 </aixm:Route>

 </dnotam:hasMember>

</dnotam:Event>

Figure 22 - DNOTAM Event with route and reverse associations

OGC 10-079r3

56 Copyright © 2010 Open Geospatial Consortium, Inc.

The listing (Figure 22) shows a dnotam Event that provides temporary information about

a Route feature. The extension is provided in a RouteTimeSlice.

8.1.1.3.1 Filtering using reverse associations

The way reverse associations help event filtering is quite simple: a filter statement can

leverage the additional information provided through the features that are made available.

Consider the example Event in Figure 22. There, a RouteTimeSlice points to an Airspace

the Route is protected by. Clients that are interested in all events that concern features

protected by that Airspace can create an according filter statement. When searching for

events that have an association (not necessarily directly in the Event itself but its child

elements) to an Airspace with given identifier, they will get the Route update information

provided through the Event in Figure 22.

Spatial filtering of events can also be facilitated. If a given aeronautical feature does not

have a spatial extent itself, then the according geometry needs to be identified by other

means. A Route, for example, does not directly provide its geometry. The geometry can

be computed from the RouteSegments that are part of the Route. A different and probably

less exact geometry would be provided by the Airspaces that protect the Route. As said

before the Route feature model currently does not provide associations to point to the

Airspace(s) or its RouteSegments. These can now be added via reverse associations.

Event filter statements can include a function to compute the geometry – either via the

RouteSegment(s) or the Airspace(s). This function would need to be defined. The

geometry resulting from the function can then be used in spatial filter operations

performed upon events.

A problem with this approach is that the reverse associations may not be available in

dnotam Events. An Event Service should thus indicate support of these reverse

associations, which is discussed shortly in the following section. Some modeling aspects

also play a role. This is further discussed in section 8.1.1.3.3.

8.1.1.3.2 Policy considerations

The reverse association mechanism is an extension. As such, it is optional. For clients to

be able to leverage the functionality provided by this extension, they need to know if it is

supported by a service.

This can be achieved in different ways. First of all, a service can state in its capabilities or

via policies that each of the information items it creates contains all possible reverse

associations. This, however, can result in significant overhead, especially if many reverse

associations are added to the AIXM model.

A service may also allow clients to request the addition of certain reverse associations.

This can happen by including according request policies. The service would either

already contain the necessary associations in its database or compute them on-the-fly

(which can be a significant performance issue). A response to the client may or may not

contain the reverse associations – this can also be controlled via policies.

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 57

Apparently, the realization and utilization of the reverse association extension can

become complex. This is even more the case if a service does not have the means to

compute the reverse associations for a given feature itself. This is currently the case for

an Event Service. Here, the service only operates on the information given in incoming

events. In order to execute filter statements from subscriptions that use reverse

associations, the events send to or generated by the Event Service have to contain them.

An Event Service thus needs to be able to control the behavior of the event sources that

publish data to the service.

Two ways have been identified to solve this issue:

1. The Event Service requires all aviation events sent to it to contain all known

reverse associations.

2. The service defines policies that tell the publishers (event sources) which reverse

associations are required. This is a more fine grained approach.

Both approaches rely upon the publishers being able to provide the required information.

Using reverse associations this way can get complex, especially if not only direct

associations are considered but also second-, third- and n-th level reverse associations.

To summarize, policy and capability statements can be used to define behavior that is

offered and requested by and from a service with respect to the realization of the reverse

association extension. Further tests are needed to better understand the complexity in

applying this extension in practical use cases.

8.1.1.3.3 Modeling aspects

This section reviews the way that the reverse association extension was modeled and

realized in OWS-7.

The schema implementation of the extension is exemplarily shown in Figure 21. In

general, the approach currently taken is to create an AIXM feature type specific extension

which explicitly lists the available reverse associations. In Figure 21 this is the

RouteExtension element which has a group containing two elements, theAirspace and

theRouteSegment.

This approach is inflexible and causes overhead. On the one hand, one extension element

needs to be defined per AIXM feature type to contain the reverse associations allowed for

that type. On the other hand, listing of the allowed reverse associations in such an

extension only allows for these extensions to be added in the content model of a given

AIXM feature. New features added in a new version of the core AIXM model or other

extensions thereof cannot be incorporated in this way. Even reverse associations to

further features of the existing model, if such associations were not incorporated for any

reason, cannot be added once the list was finalized.

A better approach would be to create one abstract reverse association extension type that

can be used in all AIXM features. This could then be used in any feature type that is

added to the AIXM model via future extensions or in new versions of the core model.

OGC 10-079r3

58 Copyright © 2010 Open Geospatial Consortium, Inc.

One derivation of the abstract reverse association extension type per AIXM feature type

would be required – see Figure 23.

Figure 23 - Modeling reverse associations – common extension type and explicit specializations

Each specific reverse association type can then be used to point back to an instance of the

according feature type. In Figure 24 the AirspaceReverseAssociation is used by both a

Route and a given AIXMFeature to point back to the Airspace that has direct

dependencies on these features (the Route and the AIXMFeature).

This approach requires one specialization of the abstract reverse association type per

AIXM feature type for which reverse associations are needed. Any AIXM feature –

rather: its time slices – can include a number of these special reverse association types as

needed.

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 59

Figure 24 - Using the different reverse association model – UML object diagram

In addition to the modeling approach just described, it is also possible to use a more soft-

typed approach (see Figure 25). There, only one reverse association type is needed that

points to a given AIXM feature and which also defines the type of that feature.

OGC 10-079r3

60 Copyright © 2010 Open Geospatial Consortium, Inc.

Figure 25 - Modeling reverse associations – soft-typed approach

This would only require well-defined rules for populating the targetType property value.

A simple approach would be to use the namespace of a given AIXM application schema

model and the name of a feature defined by that model. For the Route example, this

would be http://www.aixm.aero/schema/5.1 and Route. In this case the two values can

also be concatenated, resulting in the URL http://www.aixm.aero/schema/5.1/Route to be

used as identifier of theFeature’s target type.

Note: The gml:remoteSchema attribute that is part of a GML property given by reference (i.e. using

xlink:href and xpointer) might seem to be appropriate for the purpose of recognizing the type of the

referenced feature. However, according to the GML 3.2.1 schema the gml:remoteSchema attribute is

deprecated. In addition, the gml:remoteSchema element's purpose seems to be (according to GML 3.1.1 –

no information was found in GML 3.2.1) to point to the schema that constrains the description of the

remote resource referenced by the xlink. Thus, clients would still need to resolve the schema and then

investigate it to determine which type of information an xlink is possibly pointing to. In addition, if the

xlink only points to the whole schema then – for example in case of the AIXM feature schema – still

many feature types may be defined in it, forcing the client to grab (at least the beginning of) the

referenced property and investigate its root element.

8.1.1.4 Handling of event properties given inline and byReference

In the XML Schema implementation of the hasMember property of a dnotam Event, an

AIXM feature always needs to be provided inline but can also be given byReference

using xlinks – see Figure 26.

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 61

Figure 26 - DNOTAM Event model – hasMember property given inline and byReference (optional)

This encoding deviates slightly from the GML 3.2 encoding rules (see section E.2.4.11 in

OGC 07-036). However, one could also say that this is a valid restriction / profile of the

encoding rules.

Important for an Event Service – or any other client consuming AIXM encoded data – is

that the rules defined in GML 3.2.1 clause 7.2.3.4 are not changed:

“If both a link and content are present in an instance of a property element, then the

object found by traversing the xlink:href link shall be the normative value of the property.

The object included as content shall be used by the data recipient only if the remote

instance cannot be resolved; this may be considered to be a "cached" version of the

object.” (OGC 07-036)

8.1.2 WXXM

In OWS-7, also weather events were tested in the AIM Event Architecture. Like

aeronautical events encoded in AIXM, WXXM encoded weather events are distinct

representations of possibly continuous phenomena. We can also say that these

OGC 10-079r3

62 Copyright © 2010 Open Geospatial Consortium, Inc.

phenomena have been discretized. Weather events can therefore be encoded and sent to

an Event Service where they can be filtered according to subscriptions’ filter criteria.

Weather events were published to the Event Service in pure WXXM encoding, that is

without an additional container element like the dnotam Event used for aeronautical

events. Some issues were identified with ambiguous elements encountered in the WXXM

1.1 encoding, for example the duplication of the featureOfInterest property in the

Forecast feature type. This resulted in confusion both from a service provider and client

point of view, which did not know where to exactly put and filter weather information.

These issues were solved during the testbed and the necessary changes incorporated in

WXXM version 1.1.1 – for more information see OWS-7 Aviation – WXXM Assessment

ER (OGC 10-132).

8.2 Aviation Event Channels

So far, subscriptions tested in the OWS-6 AIM and OWS-7 Aviation threads have been

made against the whole set of events available at an Event Service. With an increasing

amount of different events published at a service and increasing complexity of the filter

statement needed to get only those events that are really of interest to a consumer,

advanced publication concepts should be tested and put in place. The work performed in

the OWS-7 eventing cross thread started to address this problem with the definition and

conceptual modeling of so called event channels – see section 6.3 in OGC 10-060. This

work exemplarily created event metadata, also on event channels, for the aviation

domain. This was primarily used for the development and testing of initial event service

discovery work. For more information, see the OWS-7 Event Architecture Engineering

Report (OGC 10-060). This work should be pursued in future work for the aviation

domain, as it promises considerable performance benefits for the Aviation Event

Architecture.

8.3 AIM Events and Subscriptions

This chapter provides an overview of the subscriptions and notifications that were used in

the two scenarios.

Table 4 shows at which steps in the demonstration scenarios a system entity subscribes

for certain information. The subscriptions target is given by event type (SIGMET,

METAR, NOTAM etc.) as well as spatial filter (e.g. given by airport code).

Table 4 - Subscriptions in the Aviation Scenarios

Scenario Step Time Subscriber Description (Subscription for …) SubRef

1 3 08:30 dispatcher NAT MTT messages 1.1

1 11 10:15 dispatcher Aeronautical updates for EETN

and EFHK with effect after 18:00

UTC

1.2

1 13 10:25 dispatcher METARs for EETN or EFHK 1.3

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 63

Scenario Step Time Subscriber Description (Subscription for …) SubRef

1 14 10:25 dispatcher SIGMETs for an area including

EETN and EFHK that have effect

after 18:00 UTC

1.4

1 20 10:40 dispatcher NOTAMs on Kbbb or KBOS

having affect during 15:00 UTC

until ETA

1.5

1 22 10:50 dispatcher METARs for Kbbb or KBOS 1.6

1 24 11:55 dispatcher SIGMETs within 200nm of the

flight path during the flight period

(15:00 to ETA).

1.7

1 29 13:55 dispatcher METARs for KJFK 1.8

1 30 14:00 pilot pilot subscribes to same services as

dispatcher (see SubRef

1,2,3,4,5,6,7,8)

p1

1 37 14:52 dispatcher,

pilot

PIREPs for EETN, EFHK and

EFTU

1.9

1 42 15:00 pilot METARs or PIREPs on EETN or

EFHK, one for each airport

1.10

1 43 15:05 Pilot METARS on Kbbb, CYUL and

CYQX, one for each airport

1.11

1 44 15:05 Pilot NOTAMs on navaids and runways

on Kbbb, CYUL and CYQX, one

for each airport

1.12

2 6 08.38 Dispatcher SIGMETs affecting area inside of

the bounding box defined by the

points (55°N, 110°W) and (90°N,

180°W).

2 11 08.45 Dispatcher METARs and PIREPs for PAFA,

PANC and CYYC

2 12 08.55 Dispatcher AIREPs for area between 114W to

150W and 50°N to 90° N

2 15 09.15 Dispatcher NOTAMs within 100nm of flight

path with effect at any time until

20:00 UTC

2 20 09.35 Dispatcher NOTAMs for Devil’s Lake SUA

during the next 12 hours

2 35 12.40 Pilot METARs for PAFA, PANC and

CYYC

2 36 12.50 Pilot NOTAMs for PAFA, PANC and

CYYC

2 52 16.00 Pilot NOTAMs for KDEN and KSFO

2 53 16.05 Pilot METARs for KDEN and KSFO

OGC 10-079r3

64 Copyright © 2010 Open Geospatial Consortium, Inc.

At the end of the scenario two, that is the end of the flight, all subscriptions are cancelled

by the pilot. For scenario one, the pilot and dispatcher terminate individual subscriptions.

This is shown in Table 5.

A much more detailed subscription management strategy is possible. For example,

different owners of subscriptions may be in place, and rules may exist when a

subscription may be terminated. Also, a subscription may be terminated automatically at

a specific termination time, which would avoid idle subscriptions. This can be tested in

the future.

Table 5 - Unsubscriptions in the Aviation Scenarios

Scenario Step Time Un-

Subscriber

Description (no more …) SubRef

1 51 17:50 Pilot METARs for Kbbb 1.11

1 52 17:55 pilot NOTAMs for Kbbb 1.12

1 54 18:55 Pilot METARs for CYUL 1.11

1 55 19:00 pilot NOTAMs for CYUL 1.12

1 59 21:30 pilot METARs for CYQX 1.11

1 60 21:32 pilot NOTAMs for CYQX 1.12

1 74 23:50 pilot Pilot cancels all open

subscriptions

p1, 1.10

1 75 23:55 dispatcher all open subscriptions 1.1 - 9

2 54 17:00 Pilot All subscriptions

Table 6 shows which events are published and which subscriptions would target them.

Note the different encoding of the messages. According to their content WXXM or

AIXM types are used to convey the information.

Table 6 - Notifications in the Aviation Scenarios

Scenario Step Time Description Subscription Encoding

1 26 13:30 MTT message 1.1 AIXM

1 27 13:45 METAR: Bad weather in

KBOS

1.6 WXXM

1 36 14:50 Non-convective SIGMET,

3000 square miles over Baltic

sea

1.4, 1.7, p1 WXXM

1 39 14.56 PIREP on Tallin 9 WXXM

1 53 18:05 METARS for CYUL,

CYQX, EETN and EFHK

1.11, 1.10 WXXM

1 57 21:00 METAR for EETN 1.10 WXXM

1 58 21:05 PIREP for EETN 1.9, 1.10 WXXM

1 58 21:20 PIREP for EETN 1.9, 1.10 WXXM

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 65

Scenario Step Time Description Subscription Encoding

2 13 09.03 METARs for PAFA, PANC

and CYYC

Step 11 WXXM

2 16 09.20 AIREP Step 12 WXXM

2 21 09.40 AIREP Step 12 WXXM

2 23 10.03 METARS for PAFA, PANC

and CYYC

Step 11 WXXM

2 25 10.08 AIREP Step 12 WXXM

2 27 11.03 METARS for PAFA, PANC

and CYYC

Step 11 WXXM

2 28 12.03 METARS for PAFA, PANC

and CYYC

Step 11 WXXM

2 31 12.20 NOTAM for Devil’s Lake

SUA

Step 20 AIXM

2 38 13.03 METARS for PAFA, PANC

and CYYC

Step 11, 35 WXXM

2 39 14.00 Volcanic ash SIGMET for

Alaska IFR

Step 6 WXXM

2 40 14.10 METARS for PAFA, PANC

and CYYC

Step 11, 35 WXXM

2 41 15.20 NOTAMs closing PAFA and

PANC due to VA

Step 15, 36 AIXM

8.4 Spatial Filtering of Aeronautical and Weather Events

8.4.1 Introduction

There is a general issue with filtering events based on geometry information in the simple

case and based on geometry information in combination with other properties in the

complex case. This results mainly from the fact that many aeronautical features have

specific geometries or even no geometry at all. An airspace is a collection of geometry

components, an airport has a reference point but also a "boundary" polygon, etc. Having

this plethora of options, it appears very difficult at that stage to define a unified handling

of the locations of features.

Currently, spatial querying is done using the Q line of text NOTAM messages. To

achieve a major improvement, digital NOTAMs need to support integrated filtering, i.e.

filtering on spatial properties in combination with other thematic properties, such as type

of aircraft or specific flight characteristics. To allow at least some basic spatial filtering,

the workaround used in OWS-6 was applied in OWS-7 as well. Here, bounding boxes

had been created by the service provider explicitly and included in the NOTAM. The

bounding box was then used for spatial filtering. In the future, filtering on any

combination of properties, including thematic and spatial aspects should be supported and

tested.

OGC 10-079r3

66 Copyright © 2010 Open Geospatial Consortium, Inc.

In the following sections we describe the issues that we face when performing spatial

filtering of aeronautical events with the current AIXM model.

8.4.2 Filtering using Bounding Boxes

During the testbed, boundary information of aeronautical features was used to perform

spatial filtering of events. Issues and possible solutions using this approach are discussed

in the OWS-7 Event Architecture Engineering Report (OGC 10-060) section 9.1.3

(because of the relevance to multiple domains).

Note: the dnotam:Event is an example for a container event mentioned in OGC 10-060 section 9.1.3 –

usually services populate the boundedBy properties of the members of a dnotam:Event and clients

subscribe for them.

The main issues when filtering upon spatial properties of aeronautical features via the

bounding box computed from these properties are:

 inaccuracy of the bounding box geometry may result in irrelevant data not being

filtered out

 no OGC wide mechanism exists to govern the population of bounding box

information in features

Approaches to solve these issues are discussed in OGC 10-060.

8.4.3 Filtering using Generic Event Properties

The OGC Filter Encoding Specification (FES) enables clients to create highly detailed

filter statements. Any feature property can be identified via XPath like expressions and its

value subsequently be used in filter operations (comparisons, spatial filters etc).

The approach described in the previous section – using bounding boxes for spatial

filtering of features – uses a small part of the overall functionality that FES provides. If

more specific filtering needs to be performed in order to further narrow down the amount

of events transmitted to consumers, the full functionality of FES should be made

available to and used by clients that subscribe for events.

Clients can create highly detailed filters to for example perform more accurate spatial

filtering of events (using those event properties that provide the event’s spatial extent in

high detail).

This may also include some domain specific functions to compute geometries on the fly

from simple feature properties. For example, a Route is formed by several

RouteSegments, each having a defined start and end point. The points can be expressed in

various ways which makes it fairly difficult to create a simple filter expression that

incorporates the Route’s geometry encoded as a line (because of the many options for

encoding the position of a RouteSegment’s start and end point). A function could be

defined in the aeronautical domain that automatically computes such a geometry for a

given Route. Note that the current model requires reverse associations to point from a

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 67

Route to its RouteSegments – see section 8.1.1.3. Services that provided this function

would help clients in creating filter statements a lot. We therefore recommend

investigating the definition of domain specific functions in future testbeds to simplify the

creation of filter statements for clients.

That it is the clients’ responsibility to create complex filter statements is good from a

service’s point of view because the service does not need to incorporate special logic to

support filtering (like being able to compute the boundedBy property of features on-the-

fly to support spatial filtering upon this property). Then again, the more complex the filter

statements get the more computing resources are needed to execute them.

Additional filter complexity may be caused for example through the need to compute a

compound geometry (like the line string of a Route) from multiple feature properties (like

a Route’s RouteSegments – rather: the start and endpoint of these segments). Clients also

need to know exactly which properties are relevant for filtering. Although it is a client’s

responsibility to know what it is doing, too many options and a rather complex model can

be too difficult for new clients to understand in a reasonable amount of time. To support

such clients to perform simple tasks, common queries that are used in the aeronautical

domain could be hardwired aeronautical services. WFSs support stored queries. This

concept can enable the required functionality. The concept should also be considered for

other services, like Event Services. This functionality therefore is an interesting candidate

to be developed further in the future.

8.4.4 Filtering of AIXM Events in a Standalone Service

The AIXM model poses an interesting problem for filtering events in a standalone

service. To understand the problem, we first need to understand the relevant basics of the

AIXM model.

The AIXM Temporality Model encodes AIXM feature properties via time slices. The

union of all time slices of a given aeronautical feature represents the state of that feature

at a given time. Baseline information as well as temporary and permanent changes can be

represented. A client can determine the value of a specific feature property by evaluating

the baseline value and taking into account any subsequent change to it.

The temporality model is appropriate to account for the dynamic of an aeronautical

feature. However, the way that updates to a given feature are currently published is

problematic for an Event Service. The problem is that a dnotam Event only provides the

updated feature information. It usually does not contain information about the other

feature properties.

Why is this a specific problem for the Event Service? Because at the moment it does not

have the means to determine the values of feature properties that are not reported in the

events that it receives. Thus, subscription filters that query upon such properties cannot

be executed. For example a subscription may be interested in all events for the airspaces

in a given region. In other words, the subscription defines a spatial filter to identify these

airspaces. The filter can for example look for all airspaces that the region contains. As

discussed before, the AIXM encoding of an Airspace feature uses time slices to encode

OGC 10-079r3

68 Copyright © 2010 Open Geospatial Consortium, Inc.

the changes of feature properties. The geometry of an Airspace is defined via one or more

geometry components. Whenever an update to one of the Airspace’s properties is

performed, a dnotam Event is generated which contains that update. A client – like the

EFB of a pilot – that receives such an update is supposed to have all relevant information

about the updated feature. In other words, the client at least has the latest snapshot of that

feature. An EFB can for example have gotten this information from the flight dispatcher

before liftoff. The feature is identified via the identifier property which therefore needs to

be populated in a dnotam Event. An Event Service, on the other hand, is supposed to

filter incoming events based upon the information contained in that event. If a dnotam

Event for example notifies about a change of an Airspace’s activation, it usually does not

contain any other property values of the Airspace – also not on the geometry of the

Airspace. How then shall the Event Service apply the spatial filter upon this new event?

As discussed in sections 8.4.1 and 8.4.2, so far the boundedBy property of aeronautical

features that are members of an event were populated and used for spatial filtering. If

clients shall be enabled to filter upon any property of a feature that is contained in an

event, the Event Service has to be able to get the value of that property.

A solution for this problem needs to be found if detailed filtering of aeronautical events

shall be enabled in an Event Service. An AIXM feature could contain or better point to

the relevant snapshot of the feature that applies to the time when the updated information

is valid. Other solutions may also exist. For example, a dnotam Event or its members (the

AIXM features themselves) may contain endpoint information of the WFS that governs

the feature and thus has the missing information. These approaches indicate the need for

special treatment of AIXM encoded data by an Event Service. A profiling or extension of

the general Event Service functionality may be needed to better support filtering of

aeronautical events.

8.4.5 Filtering of Events Based on Aircraft Position – Dynamic Spatial Filters

An idea that came up during the testbed was to use dynamic instead of static spatial

filters. The spatial filters that were tested so far in subscriptions to aeronautical events

used a static buffer geometry computed around the flight path of an aircraft. All events

that were within this buffer (other relationships are also possible) matched the

subscription and were sent to the subscription’s consumer. This also means that all events

that are received for regions that the aircraft has long passed match the subscription. To

avoid delivery of these events, Event Processing functionality can be applied. There, it

would be possible to recalculate the buffer around the flight path from time to time based

upon the updated aircraft position. The subscription would include the according

processing instructions so that an event service can automatically adjust the buffer around

the flight path as the aircraft progresses. Events that are not located within the updated

buffer will no longer be delivered - Figure 27 illustrates the concept.

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 69

Figure 27 - Buffer around flight path, used for spatial filtering - dynamic updates to avoid past

events

Spatial filtering of events using dynamic filter properties is described in more detail in

section 9.3.2 of the OWS-7 Event Architecture Engineering Report (OGC 10-060).

8.4.6 Summary

In this chapter various aspects of performing (spatial) filtering on aviation events were

discussed.

Various issues exist that make filtering of these events problematic. Using the boundaries

of AIXM features for spatial filtering can be inaccurate (in case that the boundary is

encoded as a bounding box) while explicitly filtering upon spatial properties of AIXM

feature instances can become complex and may not even be possible due to the way

AIXM features are encoded in events.

Several options have been discussed to improve the filtering functionality. A common

approach to provide the boundary of a given feature could be developed. Also, domain

specific functions and stored queries may simplify the creation of filter statements for

aeronautical events. Finally, a way to get access to the complete information of an

aeronautical feature from a dnotam Event itself may be feasible.

OGC 10-079r3

70 Copyright © 2010 Open Geospatial Consortium, Inc.

Finally, an interesting mechanism to further improve the filtering of aeronautical events

using Event Processing functionality was discussed shortly. It could improve the filtering

of aeronautical events so that events that are located in regions that an aircraft has already

passed are no longer reported to it.

Future work should investigate how to simplify the process of filtering aviation events

while at the same time supporting the functionality to fulfill required use cases.

Furthermore, mechanisms to improve the filtering functionality by reducing the amount

of uninteresting events that are matched in subscriptions should be investigated.

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 71

OGC 10-079r3

72 Copyright © 2010 Open Geospatial Consortium, Inc.

9 Description of OGC Web Services 7.0

In July 2010, work in the OWS-7 test bed was completed. The test bed had three main

interoperability threads.

Sensor Fusion Enablement (SFE)

The SFE Thread builds on the OGC Sensor Web Enablement (SWE) framework

of standards that has achieved a degree of maturity through previous OWS

interoperability initiatives and deployments worldwide. SFE will focus on

integrating the SWE interfaces and encodings with workflow and web processing

services to perform sensor fusion. SFE will continue the development of Secure

SWE architecture, as well as the interoperability of SWE and Common CBRN

Sensor Interface (CCSI).

Emphasis for SFE during this phase of the OWS test bed will be the following:

 Motion Video Fusion. Geo-location of motion video for display and processing.

Change detection of motion video using Web Processing Service with rules.

 Dynamic Sensor Tracking and Notification. Track sensors and notify users based

on a geographic Area of Interest (AOI). The sensor and the user may be moving

in space and time.

 CCSI-SWE Best Practice. Building on OWS-6, develop an ER to be considered

by the OGC Technical Committee as a Best Practice.

Feature / Decision Fusion (FDF)

The FDF Thread builds on OWS-6 GPW and DSS work, in particular to advance

the state of information cataloguing, Web Processing Services (WPS) profiles,

and the Integrated Client. The following task areas have been identified for

Feature and Decision Fusion:

 Schema Automation. Transformation from UML to profiles of GML and KML,

including generation of constraints.

 Data Discovery and Organization. Use of thematic categories in multi-media data

discovery, including augmented metadata for quality of source, fitness for use,

and uncertainty of the data values, propagated through usage and workflow.

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 73

 Feature and Statistical Analysis. Workflow profiles for feature fusion, including

statistical analysis, vector and topological processing. WFS, WMS and WMTS

will be used to support statistical mapping.

 Geosynchronization. Web services and client components to support

synchronization of geospatial data and updates across a hierarchical Spatial Data

Infrastructure (SDI).

 Data and Analysis Sharing. The use of OWS Context for collecting links to web

services and analysis results.

 Integrated Client. A field-ready client application to support and display sensor

information, cataloguing metadata, notification alerts, feature and statistical

analysis, and OWS Context. This client will include an embedded WFS server for

geosynchronization support.

Aviation Thread

This thread seeks to further develop and demonstrate the use of the Aeronautical

Information Exchange Model (AIXM) and the Weather Information Exchange

Model (WXXM) in an OGC Web Services environment.

The US Federal Aviation Administration (FAA) and EUROCONTROL have

developed AIXM as a global standard for the representation and exchange of

aeronautical information. AIXM uses the OGC Geography Markup Language

(GML) tailored to the specific requirements for the representation of aeronautical

objects, including the temporality feature that allows for time dependent changes

affecting AIXM features. FAA and EUROCONTROL are using AIXM as an

integral part of their efforts to modernize their aeronautical information

procedures and to transition to a net-centric, global aeronautical management

capability. More specifically, AIXM is being used in the net-centric System Wide

Information Management (SWIM)-related components of the US NextGen and

European Union (EU)'s SESAR programs. Indeed, it is expected that the results

of the Aviation Thread of OWS-7 will be contributed to both programs with a

focus on recommended OGC specifications that can be applied in the definition

and implementation of both SWIM environments.

WXXM is also jointly developed by FAA and EUROCONTROL, as a proposed

standard for the exchange of aeronautical weather information in the context of a

OGC 10-079r3

74 Copyright © 2010 Open Geospatial Consortium, Inc.

net-centric and global interoperable Air Transport System (ATS). WXXM also

uses GML tailored to the specific requirements of aeronautical meteorology and

is based on the OGC Observation and Measurement Model. WXXM

development is harmonized and coordinated with the World Meteorological

Organization (WMO), the organization traditionally responsible for standards in

meteorology.

The OWS-7 Aviation Thread will investigate and demonstrate the applicability of

AIXM and WXXM along with relevant OGC specifications and web services to

applications and tools that support Airline Operations Centers and Flight

Dispatch applications. Such applications provide information for representing a

Common Operating Picture; supporting flight planning (including General

Aviation) and preparation (MET and AIM); calculating weight and balance;

estimating fuel requirements; in-flight emergency response; etc. The primary

focus in OWS-7 is on ground usage of the information, although provision of

information packages to the crew, on the ground and in the air, is also of interest.

To support the above goal, the OWS-7 Aviation Thread will cover the following

tasks:

 Evaluation and advancement of AIXM, in the areas of using and testing new

AIXM 5.1 features, developing components/tools for generating, validating,

converting, and parsing AIXM, addressing feature metadata requirements and

performance constraints, and supporting the portrayal of AIXM information.

 Evaluation and advancement of WXXM, focusing on the incorporation and

demonstration new weather concepts such as the 4-D Weather Data Cube,

including the impact of such concepts on the Event Notification Architecture, the

support for probabilistic events, and the definition and usage of the time model in

WXXM.

 Advancement of the Event Notification Architecture developed and exercised in

OWS-6 to support multiple sources of events and multiple types of events and

data changes (AIXM, WXXM), and to investigate different delivery protocols

(push/pull), registration and subscription lifecycle management approaches, and

domain/schema-specific matching between events and subscriptions.

 Integration of AIXM/WXXM in the FAA SWIM environment, focusing on

investigating approaches for leveraging SWIM Interface Management, Messaging

OGC 10-079r3

Copyright © 2010 Open Geospatial Consortium, Inc. 75

and Security capabilities, as well as enabling Aviation clients to access SWIM

services in addition to OGC services.

	Open Geospatial Consortium, Inc.
	OGC® OWS-7 Aviation Architecture Engineering Report
	Warning
	Preface
	OGC® OWS-7 Aviation Architecture Engineering Report
	Introduction
	Scope
	Document contributor contact points
	Revision history
	Future work
	Forward

	References
	OGC 03-105r1, OpenGIS® OpenGIS Geography Markup Language (GML) Encoding Specification
	OGC 04-094, OpenGIS® Web Feature Service Implementation Specification
	OGC 06-121r3, OpenGIS® Web Services Common Standard
	Terms and definitions
	Conventions
	Abbreviated terms

	OWS-7 Aviation Architecture overview
	Workflows
	Basic Workflow
	Portrayal Workflow

	Component Descriptions
	Snowflake AIXM WFS
	AIXM WFS-T 2.0
	GO Publisher WFS 2.0 Query Operations

	AIXM WFS-T and Event Publisher
	Inserting AIXM 5.1 timeslices via WFS-T 2.0
	WXXM WFS 2.0
	SWIM Components
	Data Loading
	Aeronautical data
	WXXM Data Loading

	Comsoft AIXM WFS
	Overview
	WFS 2.0 conformance
	Selecting AIXM 5 data with the GetFeature function
	Data modification with the Transaction function
	User management

	Meteo France WXXM WFS
	Context
	Scope
	Software Architecture
	Limitations

	GMU Severe Weather Detection WFS
	Background
	Data flow
	WFS 2.0 / WXXM 1.1
	Interaction with the OWS-7 clients
	Access

	Envitia AIXM / WXXM FPS
	Alticode WXXM FPS
	Context
	Software Architecture
	Limitations
	Scope
	Efficiency
	Robustness

	Galdos INdicio™ Registry
	Key features of INdicio™
	Technical summary
	Supported specifications

	52 North Event Service
	Service Description
	Changes to the Service

	Frequentis Dispatch Aviation Client and EFB Client
	Component functions
	Component architecture
	Technologies used

	Luciad EFB Client
	Luciad introduction
	Software Architecture
	Usage of a Feature Portrayal Service
	Technical Notes

	Atmosphere WXXM Handheld Client
	Context
	Software Architecture
	Limitations
	Perspective of evolution

	Aviation Event Architecture
	AIM Specifics: Event Encodings
	AIXM
	AIXM 5.1 basic message / dnotam event
	Sequence Number
	Message Metadata
	Identifier and Names
	Spatio-Temporal Extent / Boundary
	Previous Event
	Event Type

	Correction of Event Information
	Reverse Associations Extension for Event Filtering
	Filtering using reverse associations
	Policy considerations
	Modeling aspects

	Handling of event properties given inline and byReference

	WXXM

	Aviation Event Channels
	AIM Events and Subscriptions
	Spatial Filtering of Aeronautical and Weather Events
	Introduction
	Filtering using Bounding Boxes
	Filtering using Generic Event Properties
	Filtering of AIXM Events in a Standalone Service
	Filtering of Events Based on Aircraft Position – Dynamic Spatial Filters
	Summary

	Description of OGC Web Services 7.0
	Sensor Fusion Enablement (SFE)
	Feature / Decision Fusion (FDF)
	Aviation Thread

