OGC 02-087r3

Open GIS Consortium Inc.

Date: 2002-12-13

Reference number of this OpenGIS® project document: OGC 02-087r3
Version: 1.1.1

Category: OpenGIS® Implementation Specification

Editor: Douglas Nebert

OpenGIS® Catalog Services Specification

Copyright notice

This OGC document is copyright-protected by OGC. While the reproduction of drafts
in any form for use by participants in the OGC standards development process is
permitted without prior permission from OGC, neither this document nor any extract
from it may be reproduced, stored or transmitted in any form for any other purpose
without prior written permission from OGC.

Document type: OpenGIS® Publicly Available Standard
Document subtype: Implementation Specification
Document stage: Adopted

Document language: English

OGC 02-087r3

Contents

1 SCOP L ceericriicrnrinsssnesssresssnessssnessssssssssesssssssssssssssssesssssesssssesssssssssssssssssosssssessnsssssssses 1
2 CONTOIMANCEcuueeriinrrirnniisinricssnrissssnsssssnessssnssssssoss 1
3 NOrmative referenCes.....iciveierseicssnicssnicssanicsssnecsssnesssssessssesssssesssssssssssssnssessnss 1
4 Terms and definitions 1
5 CONVENTIONS ..uuerierrrirsrressrrcsssrncsssnnssssnssssssessssossssssssssssssassssssssssssssssssssssssssssnssssssssss 3
5.1 Symbols (and abbreviated terms) 3
5.2 UMML NOLALION ..ccccueericrrnrecssnncssssncssssnesssnss 4
6 OVEIVICW cuuericreriisnicssnricssssicssssisssssessssnssssssosssssossssssssssssssasssssssssssssssssssssssssesssssssssssss 6
6.1 Context of Catalog Services 6
6.2 Reference Model ArchiteCture.......cueiciveiciseicssnicssnnicssnnicssnnicsssssssssnessssnesssssesanes 6
6.3 Cross Profile Interoperabilitycccovveiieiviininicissnncssnncssnicssnnicsssnsssssnessssessssnes 8
6.4 Catalog Object MOdel........uueiinveiinieicsisnicssnicssnnicsssnecsssnssssssessssssssssssssssossssssssssecs 9
6.5 Metadata Model INdependencecoueeeeceecssnicssanecssnnecsssnessssessssssssssnossssosanss 10
6.6 QUErY LanGUAZe.....ccocueiervuricssuricssnnicsssnicsssnessssnesssssessssesssnesssssosssssosssssosssssssssssses 11
6.7 USE Of XIML...uuuiiirsuricssnnicssnncssssnssssncssssnsssssssssssssssssssssssessssssssssssssssssssssssssnsssssssssses 11
6.8 Browse IMA@esS......cccvverinrverinsnicssnicssnncssnsicsssnncsssosssss 11
6.9 Interoperability and Compliance with Simple Features........cccccceeevuriercurcesnnns 12
6.10 DiStributed SeArch c...cceiiniciiiiiseiinsencnsnicnsnicssnicssssisssssesssssesssssssssssssssssosssssossnss 13
7 The General Modeliioeiieiveriiisniicssnninssnnissssncssssncssssnessssscssssnosssssessssssssssssses 13
7.1 Introduction of The General Model..........ceiiiveicivnriissnicssnnicssnnicsssresssssssssssenes 13
7.2 Structural Model........ceiiieiiiisiininnninisnncssnicssnnicssssssssssesssssessssssssssssssssssssssssssses 14
7.3 Dynamic MoOdeloicueienvericnsnnicssnnccssnnccssnncsssncssssnsssssessssssssssssssssessssssssssssssssssses 63
8 OGC_Common Catalog Query Language..........ccceceeeeeercssnnrcssnnrcsssercssssscssssscses 71
8.1 Assumptions during the development of OGC_Common Query Language:.71
8.2 BNF definition of OGC_Common Query Languageccceeerercvercscnrrcssnencnes 71
9 Z239.50 Profile c..cccueeininrinssnnissnncsssnncssnncsssncsssnncssssssssssessssssssssssssssessssssssssssssssssses 83
9.1 AT CRITECTUT @..eeeeiiirniiisnnreninnicssnticsssnissssnesssnessssnesssssossssssssssssssssssssssossssssssssssssssssns 83
9.2 General Model to Z39.50 Profile Message Mappingc.cccceeeuerercnercscnnecsnsecnes 84
9.3 Example Sequence DIiagramccceececveeccsnncssnncssssncssssscssssesssssssssssssssssssssssses 86
9.4 Interface Definition — XML.....ccoviieiiviicisnncssnncssnicsssnecsssnessssnssssssesssssesssssossssssses 88
9.5 Definition of EXternalS........coeieiieiciiviicisnncssnncssnicssnnecsssnecssssesssssessssesssssssssssoses 95
10 CORBA Profile — Coarse Grain 107
10.1 Architecture - Object Model..........uievveicivricssnicssnnissnncssnncssnncssnsicssssscssssessanes 107
10.2 EVENT TrACES .cccouiiireriirsnrinsnrcsssrcssssncssssnossssssssssssssssssssssssssssesssssssssssssssssossssssssnss 107

i © OGC 2002 — All rights reserved

OGC 02-087r3

10.3 Interface Definition - IDLccccvvveiiiiiisniicscssnnnicsssnnnncssssnssecssssssssssssssssssssssssses 107
11 Bibliography c..cccceeiicninniieniinnricssssnnnecsssnnicsssssnsesssssnsssssssssssessssssssssssssssssssssssssse 145
Annex A: Abstract Test Suite for Conformance (Normative)cccceeeerecccssscnnn 146
Annex B: CORBA Profile — Fine Grain (Informative).......ccccceevvcccnnneneciccccssscsnnns 147
Annex C: OLEDB Profile (INformative).......ccecceeeiicccsssscssneasissccssssssssssssssescssssssens 187

© OGC 2002 — All rights reserved 111

OGC 02-087r3

i.

Preface

This document explains how Catalog Services version 1.1.1 are organized and implemented
for the discovery and retrieval of data and services metadata. The prior public version of this
specification was 1.0. Catalog Services version 1.1.1 supercedes and deprecates version 1.0.

il

Submitting organizations

The following organizations submitted the original document or its revisions to the Open GIS
Consortium, Inc. in response to the OGC Request 6, Core Task Force, Catalog Working
Group, A Request for Proposals: OpenGIS® Catalog Interface (OpenGIS® Project Document
Number 98-00112):

BAE SYSTEMS Mission Solutions (formerly Marconi Integrated Systems, Inc.)
Blue Angel Technologies, Inc.

Environmental Systems Research Institute (ESRI)

Geomatics Canada (Canada Centre for Remote Sensing (CCRS))

Intergraph Corporation

MITRE

Oracle Corporation

U.S. Federal Geographic Data Committee (FGDC)

U.S. National Aeronautics and Space Administration (NASA)

U.S. National Imagery and Mapping Agency (NIMA)

Contributing Entities

The submitting entities were grateful for the contributions from the following companies in
the development and revision of this Interface Specification:

iv

Compusult, Limited

GEODAN IT bv

Hammon, Jensen, Wallen & Associates, Inc (HIW)
JRC (Joint Research Centre), European Commission
SICAD GEOMATICS

© OGC 2002 — All rights reserved

iil.

Document contributor contact points

OGC 02-087r3

All questions regarding this document should be directed to the editor or the contributors:

Contact Company Address Phone Email
Yonsook Enloe SGT, Inc. 7701 Greenbelt Rd | Voice : +1-704- yonsook.enloe@gsfc
Greenbelt, MD 243-2085 .nasa.gov
20770 fax : +1-704-243-
2150
Doug Nebert U.S. Federal USGS National Voice: +1-703-648- | ddnebert@usgs.gov
Geographic Data | Center, Mail Stop 4151
Committee 590 fax: +1-703-648-
12201 Sunrise 5755
Valley Drive
Reston, VA 20192
iv. Revision history
Date Release Editor | Primary clauses modified Description
12Augl999 | 1.0 Nebert N/A Original Specification entitled
“Catalog Interface Implementation
Specification” OGC Document 00-
034
28Mar2001 | 1.1 Nebert Made fine-grain CORBA | Document only made available to
and OLE/COM Annexes to | OGC membership pending passage of
Informative, added abstract | Version 2.0. (OGC Document 01-
conformance test suite,
fixed coarse-grain CORBA
IDL
11Nov2002 | 1.1.1 Nebert, State diagram changes, Document primarily reflects
Katz, renamed specification and | conversion to newer OGC/ISO
changed WWW Profile to | document format
739.50 Profile, added
introductory words as
required for new format

v. Changes to the OpenGISEI Abstract Specification

The OpenGIS® Abstract Specification does not require changes to accommodate the
technical contents of this document.

© OGC 2002 — All rights reserved

OGC 02-087r3

vi. Future work

Improvements to this document are planned in version 2.0 to incorporate independent efforts
within the OGC community to include 1) a “stateless” Web profile of catalog services and 2)
interfaces associated with registries of all types of information resource objects. Work on
Version 2 will begin by convening a new Revision Working Group in early 2003, with
issuance of a revised specification anticipated in late 2003.

vii. Foreword

Attention is drawn to the possibility that some of the elements of this part of OGC 02-087
may be the subject of patent rights. The Open GIS Consortium, Inc. shall not be held
responsible for identifying any or all such patent rights.

This third edition cancels and replaces the second edition (OGC 01-040), which has been
technically revised.

This document, through its implementation profiles, references several external standards and
specifications as dependencies:

* Common Object Request Broker Architecture (CORBA/IIOP), Version 2.X, The
Object Management Group (OMG): http://www.omg.org

* Information and documentation -- Information retrieval (Z239.50) -- Application
service definition and protocol specification:
http://www.iso.ch/iso/en/CatalogDetailPage.CatalogDetail?CSNUMBER=27446&I1C
S1=35&I1CS2=240&ICS3=30

* Unified Modeling Language (UML) Version 1.3, The Object Management Group
(OMGQG): http://www.omg.org/cgi-bin/doc?formal/00-03-01

* The eXtensible Markup Language (XML), World Wide Web Consortium,
http://www.w3.0rg/TR/1998/REC-xml-19980210

Annex A, the Abstract Conformance Test Suite, is normative to this specification and shall
be implemented when a computing environment requires catalog services. All other annexes
are informative and provide background information, such as terminology and alternative
implementation approaches.

vi © OGC 2002 — All rights reserved

OGC 02-087r3

Introduction

This document provides guidance on the deployment of catalog services through the
presentation of abstract and implementation-specific models. Catalog services support the
ability to publish and search collections of descriptive information (metadata) for data,
services, and related information objects. Metadata in catalogs represent resource
characteristics that can be queried and presented for evaluation and further processing by
both humans and software. Catalog services are required to support the discovery of
registered information resources within a collaborating community.

© OGC 2002 — All rights reserved

vii

OGC 02-087r3

OpenGIS® Catalog Services Specification

1 Scope

This OpenGIS® document specifies the abstract and implementation models required to
publish and access digital catalogs of metadata for geospatial data, services, and related
resource information. Metadata act as generalized properties that can be queried and returned
through catalog services for resource evaluation. Catalog services support the use of one of
several well-known query languages to find and return results using well-known content
models (metadata schemas) and encodings. This OpenGIS® document is applicable to the
implementation of interfaces on catalogs of data and services.

2 Conformance

Abstract conformance to the mandatory catalog service interfaces is described in Annex A.
This Annex does not yet provide detail for optional interface packages for Access and
Management Services (See Section 6.2). In a given community, a test suite should include
test metadata records with a variety of element values and a series of queries that would
return correct and properly formatted results. Test data and queries are not included in this
document.

3 Normative references

The following normative documents contain provisions that, through reference in this text,
constitute provisions of this part of OGC 02-087. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. However, parties to
agreements based on this part of OGC 02-087 are encouraged to investigate the possibility of
applying the most recent editions of the normative documents indicated below. For undated
references, the latest edition of the normative document referred to applies.

Abstract Specification Topic 13: Catalog Services, version 4, OGC document 99-113
OpenGIS® Simple Features Specification for CORBA

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply:

4.1 data clearinghouse

Collection of institutions providing digital data, which can be searched through a single
interface using a common metadata standard [ISO 19115]

© OGC 2002 — All rights reserved 1

OGC 02-087r3

4.2 data level

Stratum within a set of layered levels in which data is recorded that conforms to definitions
of types found at the application model level [ISO 19101]

4.3 dataset series

Collection of datasets sharing the same product specification [ISO 19113, ISO 19114, ISO
19115]

4.4 feature catalog

Catalog containing definitions and descriptions of the feature types, feature attributes, and
feature relationships occurring in one or more sets of geographic data, together with any
feature operations that may be applied [ISO 19101, ISO 19110]

4.5 geographic dataset

Dataset with a spatial aspect [ISO 19115]

4.6 metadata dataset

Metadata describing a specific dataset [ISO 19101]
4.7 metadata entity

Group of metadata elements and other metadata entities describing the same aspect of data
NOTE 1 A metadata entity may contain one or more metadata entities

NOTE2 A metadata entity is equivalent to a class in UML terminology [ISO 19115]
4.8 metadata schema

Conceptual schema describing metadata

NOTE ISO 19115 describes a standard for a metadata schema. [ISO 19101]
49 metadata section

Subset of metadata that defines a collection of related metadata entities and elements [ISO
19115]

410 profile

Set of one or more base standards and - where applicable - the identification of chosen
clauses, classes, subsets, options and parameters of those base standards that are necessary
for accomplishing a particular function [ISO 19101, ISO 19106]

2 © OGC 2002 — All rights reserved

OGC 02-087r3

411 qualified name

Name that is prefixed with its naming context

EXAMPLE The qualified name for the road no attribute in class Road defined in the Roadmap schema is
RoadMap.Road.road_no. [ISO 19118]

4.12 reporting group

Data with common characteristics forming a subset of a dataset

NOTE 1 Common characteristics can include belonging to an identified feature type, feature attribute or feature
relationship; sharing data collection criteria; sharing original source; or being within a specified geographic or temporal
extent.

NOTE 2 A reporting group can be as small as a feature instance, an attribute value, or a single feature relationship. [ISO
19109, ISO 19113]

413 schema
Formal description of a model [ISO 19101, ISO 19103, ISO 19109, ISO 19118]
4.14 service

A service is a capability that a service provider entity makes available to a service user entity
at the interface between those entities [ISO 19101, ISO 19119]

4.15 service interface

Shared boundary between an automated system or human being and another automated
system or human being [ISO 19101]

4.16 state

Condition that persists for a period

NOTE the value of a particular feature attribute describes a condition of the feature [ISO 19108]

417 transfer protocol

Common set of rules for defining interactions between distributed systems [ISO 19118]
S Conventions

5.1 Symbols (and abbreviated terms)

Some frequently used abbreviated terms:

API Application Program Interface

COM Component Object Model

© OGC 2002 — All rights reserved 3

OGC 02-087r3

CORBA Common Object Request Broker Architecture

COTS Commercial Off The Shelf

DCE Distributed Computing Environment

DCP Distributed Computing Platform

DCOM Distributed Component Object Model

IDL Interface Definition Language

ISO International Organization for Standardization

0GC Open GIS Consortium

UML Unified Modeling Language

XML eXtensible Markup Language

739.50 Service definition for information search and retrieval, also known as
ISO 23950

5.2 UML notation

The diagrams that appear in this document are presented using the Unified Modeling
Language (UML) static structure diagram. The UML notations used in this document are
described in Figure 1below.

4 © OGC 2002 — All rights reserved

Association between classes

Association Name

OGC 02-087r3

role-1 role-2

Class #2

Association Cardinality

Only one

Zero or more

Class #1
— Class
0..* Class
0.1 Class

Optional (zero or one)

Aggregation between classes

1.

*
Class

One or more

Class

Specific number

Class Inheritance (subtyping of classes)

Superclass

T

Aggregate
[I I [[
Component Component Component Subclass #1
Class #1 Class #2 Class #n

Subclass #2 Subclass #n

Figure 1- UML Diagram

In this diagram, the following three stereotypes of UML classes are used:

a) <<Interface>> A definition of a set of operations that is supported by objects having this
interface. An Interface class cannot contain any attributes.

b) <<DataType>> A descriptor of a set of values that lack identity (independent existence
and the possibility of side effects). A DataType is a class with no operations whose
primary purpose is to hold the information.

c) <<CodeList>> is a flexible enumeration that uses string values for expressing a list of

potential values.

In this document, the following standard data types are used:

a) CharacterString — A sequence of characters

b) Integer — An integer number

c) Double — A double precision floating point number

d) Float — A single precision floating point number

© OGC 2002 — All rights reserved

OGC 02-087r3

6 Overview

Section 6 provides a descriptive overview of key issues in the development of the OGC
Catalog Interface.

6.1 Context of Catalog Services

The geospatial community is a very broad-based community that works in many different
operational environments, as shown in the information discovery continuum in Figure 2. On
one extreme there are tightly coupled systems dedicated to well defined functions in a tightly
controlled environment. At the other extreme are Web based services that know nothing
about the client. The initial catalog submissions addressed two parts of this continuum. One
proposal addressed the controlled Enterprise environment where a degree of a-priori
knowledge exists about the client and server. The other proposal addressed the global
Internet case where no a-priori knowledge exists between client and server. This document
provides a specification that is applicable to the full range of catalog operating environments.

Global Information | | || Information
Discovery 4| | I > Exploitation

AltaVista GEO CIPDCS SimpleFeatures

Heterogeneous < > Homogeneous

architectures

low O vigh

domain knowledge

Figure 2 - Information Discovery Continuum

6.2 Reference Model Architecture

The Reference Model for the OGC Catalog Interface is composed of two parts: a Reference
Architecture and a Decomposition of Catalog Services.

Figure 3 shows the Reference Architecture assumed for development of the OGC Catalog
Interface. The architecture is a multi-tier arrangement of clients and servers. To provide a
context, the architecture shows more than just catalog interfaces. The bold lines illustrate the
scope of OGC Catalog and Features interfaces. Where appropriate, OGC Feature interfaces
have been re-used in the OGC Catalog interface, as discussed in Section 6.9.

The Application shown in Figure 3 interfaces with the Application Server using the OGC
Catalog Interface. The Application Server may draw on one of three sources to respond to
the Catalog Service request: a Metadata Store local to the Application Server, another
Application Server, or a Data Store. The interface to the local metadata store is internal to
the Application Server. The interface between Application Servers is the OGC Catalog
Interface. The interface to the Data Store is the OGC Features Interface. In this case an
Application Server is acting as both a client and server. See Section 6.10 for more about

6 © OGC 2002 — All rights reserved

OGC 02-087r3

Distributed Searching. Data returned from an OGC Features query is processed by the
Application Server to return the data appropriate to a Catalog request.

Application

OGC Catalog
Interfaces

Application

Server OGC Features

Interfaces

Internal

Interfaces,
e.g. OGC

Features |~ MetadataStore — § describes Data Store

Figure 3 - Reference Model Architecture

Figure 4 shows a decomposition of the OGC Catalog Services. Discovery Services are those
services that allow a client to locate metadata that describes data. Access Services provide
the client with methods to request services on the data. Access Services are divided into two
types. Direct Access provides the client with a handle that provides the data to the client.
The specific definition of such a handle is outside of the scope of the OGC Catalog Interface.
Brokered Access provides the client with methods to order data that will be delivered in
some means outside of the Catalog Interface. The Management Service defines methods for
a client to change the metadata held by a catalog.

The Discovery Service is to be provided by all Application Servers claiming compliance with
the OGC Catalog Interface. The Access and Management Services are optionally required
for an OGC compliant catalog. But, if an application server claims Access or Management
compliance, this OGC Catalog Interface specification defines how the services are to be
implemented.

© OGC 2002 — All rights reserved 7

OGC 02-087r3

(Sjatal.og Includes init, close
ervice functions

Discovery Access Management
Service Service Service Services
(mandatory) (optional) (optional)

Direct I Brokered I

Figure 4- Decomposition of Catalog Services

6.3 Cross Profile Interoperability

The OGC Catalog General Model defines the behaviors and interfaces applicable to all
implementations of OGC Catalogs. In the real world, there is no one solution that fits
everyone’s needs. The OGC Catalog Profiles provide refinements of the General Model
targeted toward specific implementation communities. For those communities, the Profile
defines the standards for compliance.

The distributed computing environment can categorize profiles that operate within it. This
Specification defines a DCP as any set of protocols and services that allow two entities to
communicate. DCPs addressed in this specification include CORBA, OLEDB, and the
World Wide Web.

The General Model provides the glue that ties the Profiles together. Every Profile must
demonstrate consistency with the General Model in terms of behaviors and interfaces. This
consistency allows for the construction of Bridges between Profile implementations. A
Catalog Bridge, as shown in Figure 5 might consist of software layered over implementations
of two or more Profiles. The Profile implementations would all expose the same interfaces to
the Bridge code. In this way, a Bridge may serve as little more than a store and forward
device for Catalog request and response messages. The Profile implementations are
responsible for executing those messages within their implementation domain.

8 © OGC 2002 — All rights reserved

OGC 02-087r3

Bridge

Server Client

CORBA WWW

Profile Profile

Workgroup LAN

Client Server
CORBA WWW Profile
Profile

Figure 5- An Example of a One-Way Bridge

6.4 Catalog Object Model

The static class diagram of Figure 6 illustrates how the Catalog Services can utilize an OGC
Features Implementation. A catalog entry “references” the data it describes through a
feature-to-feature association. Since metadata can be associated at any level in the feature
hierarchy, the target of this reference can be any subclass of feature, but will most commonly
be associated to the feature collection, or logical data set. The catalog entry consists of an
aggregation of metadata attributes, at least one of which describes the "footprint" of the data
referenced. Thus, a catalog entry meets the fundamental definition of a feature. For this
reason, the Catalog Entry class realizes the Feature interface, that is, it supports all interface
protocols defined on Feature. Since the catalog entries are sub-types of feature, their
aggregation, the Catalog, is a sub-type of feature collection. Thus, the Catalog realizes the
interface for Feature Collection. Whenever a catalog is implemented according to an OGC
compliant feature data store, it is possible to access that data store directly using any OGC
feature data access interface. Thus, one mechanism to implement robust catalogs is the use of
OGC compliant feature data stores.

© OGC 2002 — All rights reserved 9

OGC 02-087r3

<<Interface>>

CG_CatalogService

(from Services)

<<Interface>>
L F eatureCollection

CG_Catalog

+ explainServer()

+ initSession()

+ terminateSession()
+ status()

+ cancelRequest()

<<Interface>>

Feature —— —— —— CG_CatalogEntry

B

ExternalDataSet

<<Interface>>

FeatureCollection
Coverage CG_MetadataEntity | — Fe:{jrt::ftl:i:;te

<<Interface>>

<<Interface>>
Feature

Figure 6- Catalog Object Model

6.5 Metadata Model Independence

Metadata structures, dependencies, and definitions -- known as schema -- exist for multiple
information communities. For the purposes of interchange of information within an
information community, a metadata schema may be defined that provides a common
vocabulary, which supports search, retrieval, display, and association between the description
and the object being described. Although this specification does not require the use of a
specific schema, the adoption of a given schema within an information community ensures
the ability to communicate and discover information.

The geomatics standardization activity under Technical Committee 211 includes a formal
schema for geospatial metadata that is intended to apply to all types of information. This
metadata standard, ISO 19115, currently a Draft International Standard (December 2001)
includes a proposal for core metadata elements in common use. All future registered ISO
TC211 metadata profiles must include these core elements. For the purpose of information
exchange across OpenGIS/Geomatics communities, the schema and core elements of ISO
19115 must be implemented by conforming implementations.

10 © OGC 2002 — All rights reserved

OGC 02-087r3

6.6 Query Language

The Query Capabilities of the OpenGIS Catalog Interface are intended to provide a minimum
subset of query capabilities that can be assumed at OGC Compliant Catalog implementations
while providing maximum flexibility for enabling alternate styles of query, result
presentation, and query languages. The flexibility goals are accomplished through the use of
a query service call that contains the parameters needed to establish the query /result
presentation style and a query expression parameter that includes the actual query and an
indication of the query language used.

The interoperability goal is supported by the specification of a minimal query language,
which must be supported by all compliant OpenGIS Catalog Services (defined in Section 8).
This query language supports nested Boolean queries, text matching operations, temporal
data types, the Simple Features “well known text representations™ and Simple Features
relational operators. The minimal query language syntax is based on the SQL WHERE clause
in the SQL SELECT statement.

The minimal query language assists the consumer in the discovery of datasets of interest at
all sites supporting the OpenGIS Catalog Services. The ability to specify alternative query
languages allows for evolution and higher levels of interoperability among more tightly
coupled subsets of Catalog Service Providers and Consumers.

6.7 Use of XML

The eXtensible Markup Language (XML) version 1.0 is used in the implementation of
certain aspects of catalog services to promote easy encoding and decoding of structured
information. To facilitate translation of information between implementation profiles XML is
used: 1) to package the elements of a query, and 2) to package the structured information
being returned from a query.

Standard metadata schemas are expressed in this specification using XML with Document
Type Declarations (DTDs) that are separate from the XML document they describe. In
catalog applications, the documents marked-up in XML must include either reference to the
DTD in the header line, and/or the DTD embedded in the document. XML-Schema is an
approved Recommendation from the World Wide Web Consortium that is intended to define
a more rigorous successor to the DTD.

6.8 Browse Images

In the OpenGIS®™ community there are a significant number of non-character data items that
can be used for Discovery. A good example of this type of metadata is a browse image, a
reduced resolution version of an image that is used by the consumer to select the data he
wishes to order. The browse image can be acquired from a service or as a standard piece of
metadata based on the size and ability to accept parameterization. The inclusion of a small
data item such as a thumbnail image is useful in the catalog results presentation. In contrast,
a large static or a dynamic browse image that selected different resolutions or bands of the
image based on request parameters uses the access service and be represented by the

© OGC 2002 — All rights reserved 11

OGC 02-087r3

appropriate URI in the catalog results. There is a large spectrum between these two extremes
and our legacy systems handle browse images in all the ways discussed.

The current advice of this specification is to encode very small browse images such as
thumbnail images as part of the catalog query result presentation using a common encoding
supported in XML Schema. For all larger browse images treat them as an access service and
place a referencing URI in the appropriate result fields.

6.9 Interoperability and Compliance with Simple Features

A functional requirement for this proposal was to use the Simple Feature types and functions
wherever possible, such as Feature, Feature Collection, Geometry, and Spatial Reference
System and the spatial operators. This proposal tries to maintain conceptual compatibility
with the Simple Features Implementation Specifications in the following manners:

1. Query comparison operators consistent with those defined in simple features are used
in the Catalog Specification Metadata query mechanism.

2. The Access service of the catalog specification allows for a simple transition to
Simple Feature access mechanisms.

The consistency between the query mechanism within the catalog specification and the query
language within the simple features specification allows an implementation to use a simple
features data store for the storing of metadata.

An alternative design uses the simple features query language directly to access metadata.
This design was rejected to preserve legacy implementations using Z39.50 metadata servers
incapable of supporting a complex query language. Since many Z39.50 metadata servers use
SQL databases as backends, a negotiation phase between a client and a particular server
could promote the query language to a full object-SQL for Simple Features.

The current query model allows for three types of query language:

- A common, mandatory query language using SQL style syntax, Z39.50 Type 1 operation
style, and spatial operations derived from the simple features model in the OGC Simple
Features Implementation Specification.

- Any dialect of SQL conformant with the OGC Simple Features Implementation
Specification.

- Z.39.50 Type 1 query.
This specification allows support of additional query languages as they are identified.
Each conformant server must support the mandatory query language. Other languages are

optional. Because of the limitations placed upon the mandatory query language it will be

12 © OGC 2002 — All rights reserved

OGC 02-087r3

possible to implement a service that translates the mandatory query language syntax into
either of the other two languages.

6.10 Distributed Search

The Reference Architecture for the OGC Catalog allows for catalog requests to be distributed
to multiple catalogs. The architecture allows for a Catalog to accept a request from a client
and distribute the request to other Catalogs. For the OGC Catalog Service, Distributed
Catalog Searching is defined as a service that involves services of multiple Catalog Servers,
in addition to the primary client-server interaction. A catalog server may be able to perform
Distributed Searching by propagating secondary catalog service requests to other catalog
servers.

To enable Distributed Searching, the following items are needed:

- A multi-tier Reference Architecture as provided by this specification (as defined in
Section 6.1)

- A data model to define how searches are to be distributed as defined by an information
community.

- Messages with elements applicable to Distributed Searching as provided by this
specification

To support distributed searching, a community develops a data model that determines how a
search will be distributed to coordinated data servers. The OGC Catalog General Model
allows data model neutrality with respect to distributed searching.

Several of the Discovery messages defined in Section 3 contain elements that pertain to
distributed searching. The query message contains elements that allow the client to request
certain search behavior with respect to distribution. The request and response messages
define elements that allow for the retrieval and comprehension of a distributed result set. The
request and response messages contain elements that allow for understanding the status of
distributed searches.

7 The General Model
7.1 Introduction of The General Model

The General Catalog Interface Model is composed of a single high-level view. It also
touches on the concept of having an OGC Service Architecture Framework where the
Catalog Interface is one component of such a framework. Both Structural and Dynamic
models are provided. This model supports the creation of integrated systems of OGC Catalog
Clients and Servers. These client and server components exercise a fine degree of control
and coordination upon each other. This environment also facilitates the integration of
Catalog Management and Simple Features Access within the catalog Discovery context. The
model provides a generalized interface between the client and server that requires all control
and coordination between client and server components to occur at an aggregated level.

© OGC 2002 — All rights reserved 13

OGC 02-087r3

The model provides a set of service interfaces that support the discovery, access,
maintenance and organization of catalogs of geospatial information. The interfaces specified
are intended to allow users or application software to find information that exists in multiple
distributed computing environments, including the World Wide Web (WWW) environment.

The dynamic model is represented as transitions in the state of the CG_CatalogService
object. That is, all of the behavior is expressed by the states and the state transitions of the
CG_CatalogService object that is affected by the messages sent by the client. A stateless
form of catalog search is also referenced in this specification, but the details of
implementation are not yet specified.

A more detailed implementation design is included as informative Annex C at the end of this
specification document. The annex also describes a small set of interfaces that an
implementer might employ in order to facilitate a mapping between a general and more
detailed profile. Such interfaces are private and left up to an implementer to specify how
they are developed.

7.2 Structural Model

7.2.1 Overview of the Interface Model

Figure 6 shows the general service interfaces. These interfaces allow the discovery, access
and management of geospatial data and services. This model is based on the concept of
interface operations passing Request — Response Message Pairs between a client and a
server. Stated another way, this architecture uses a messaging based structure to describe the
access and invocation of Catalog services.

As seen in Figure 7 there are four major interfaces, CG_CatalogService, CG_Discovery,
CG_Access and CG_CatalogManager. These are described in more detail in the following
sections of this document. The taxonomy of interfaces that have been placed above the
CG_CatalogService interface (i.e., OGC_Service and OGC_Stateful) have been created to
put forth the idea of having an overall architectural framework for the different services that
will be developed over time to populate the OGC Service Architecture. In the future, a
Stateless Catalog service will be defined.

14 © OGC 2002 — All rights reserved

OGC 02-087r3

<Interface>>

OCC Senvice

The OGC_Stateless Service (fom OGC Service i)

is tobe defined inafuture

<<Irterface>> P —

o OGC Stdefu

(from OGC Senvice Qlient) e OCTSenion Ciert)
<dntefece>>

CG CatalogSenvice

+initSession(message : OG InitSessionRequest) : OG InitSessionResponse

+ temrinateSession(message : OG TemminateRequest) : OG TenminateResponse

+ status(message : OG StatusRequest) : OG StatusResponse

+ cancelRequest(message : OG CancalRequest) : OG CancelRespanse

+ explainSenen(message : OG ExplainSenerRequest) : OG ExplainSenerResponse|

<nterface>>
GG CatalogVianager S
OG Acoess

+ areateCatdoglcreste: CreateCatd ogReqest) : QeateCalalogResponse

+ aeatelVetaddta(Create : CreatelMistadataRequest) : CredtelVitacttaResparse . .
. K BrokeredAccess(request : OG BrokeredAccessRequest) : OG BrokeredAccessResponse|
+ ypdateCatalog(ypdete : UpdateCatalogRequest) : UpdateCatd ogResponse *)

+ HeteCatalogdelete : DileteCaaiogRaquest) : DeleteCatdogResporse

<dnterface>>
OG Disoovery

+query(query : OG QueryRequest) : OG QueryResporse
+ presert(present : OG PresentRequest) : OG PresentResponse
+explanCallection(message : OG ExplainCallectionRequest) : OG ExplainCallectionResponse

Figure 7 - Main Static Class Diagram of the General Interface Model

7.2.2 The Messaging Model

As previously noted, the general interface model is based on the passing of messages
between a client and a catalog server. To support this type of model, a message-based
structure has been developed to describe the access and invocation of catalog services. The
following three figures (8, 9, and 10) are static class diagrams that depict this message-based
taxonomy.

Central to this taxonomy is the CG_Message class. CG_Message provides a consistent set of
parameters that are populated for all messages. The underlying implementation platform uses
these parameters to perform message routing and session management. Subclasses of
CG_Message are CG_Request and CG_Response. CG_Request messages encompass all
messages from a client requesting a service from the server. CG_Response messages

© OGC 2002 — All rights reserved 15

OGC 02-087r3

encompass all messages from a server generated in response to a client request. There is a
one to one relationship between requests and responses. That is to say, for each request, one

and only one response will be generated.

<<Abstract>>

CG_Message

+ sessionID : Integer

+ requestID : RequestID

+ destinationID : CharacterString

+ additionalinfo : CharacterString

£

<<Abstract>>

CG_Request

<<Abstract>>

CG_Response

+ diagnostic : CharacterString

Figure 8 - Main Class Diagram for Message Package

7.2.2.1 The Message Class (CG_Message)

The CG_Message class defines the core set of parameters expected of each message
exchanged between a client and server. These parameters support message routing and
session management. All request and reply messages are subclasses of the CG_Message

class.

CG_Message ::= sessionlD destinationID requestID additionallnfo format

sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID

additionallnfo ::= CharacterString
7.2.2.1.1 Message Parameters:

sessionID: Type = Integer

16

© OGC 2002 — All rights reserved

OGC 02-087r3

This is a unique identifier for this client/server session. The session identifier value is
assigned in response to a CG_InitSessionRequest. All further messages within that session
will contain that identifier in the sessionID parameter.

destinationID: Type = CharacterString

The DestinationID parameter identifies the target for this message. It can identify a server,
service, or a process within a service. The exact format of the destinationID is DCP
dependant. In a CORBA profile it is an OID while in a Z39.50 Profile it is a URI.

requestID: Type = CG_RequestID

The RequestID parameter is an identifier unique to this message. In the case of a request
message, this identifier can be used to monitor and control the processing resulting from the
request message. The formal definition of the CG_RequestID data type is in Section 7.2.5.

additionallnfo: Type = CharacterString

This parameter provides a means of passing additional data that may only be relevant within
the context of a specific message exchange. For example, if a server cannot execute a query
as specified, it may transform the query into a query it can process. In this case the reformed
query is sent back to the client in the queryResponse as additionallnfo.

7.2.2.1.2 Message Operations: None

7.2.2.2 Request Messages (CG_Request)

A client invokes Catalog services through request messages. Request messages include the
parameters of the message class but do not add any of their own. All messages to invoke
specific catalog services are subclasses of the CG_Request class.

CG_Request ::= sessionlD destinationID requestID additionallnfo format
sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID

additionallnfo ::= CharacterString
7.2.2.2.1 Message Parameters: None
7.2.2.2.2 Message Operations: None

7.2.2.3 Response Messages (CG_Response)

The server uses response messages to reply to client requests. The CG_Response class is the
root class for all response messages constructed by the server in response to a client request.

© OGC 2002 — All rights reserved 17

OGC 02-087r3

CG_Response ::= sessionlD destinationID requestID additionallnfo format diagnostic

sessionlD ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionallnfo ::= CharacterString

diagnostic ::= CharacterString

7.2.2.3.1 Message Parameters:

diagnostic: Type = CharacterString

This parameter provides a means of passing diagnostic data relevant within the context of the
specific message exchange.

7.2.2.3.2 Message Operations: None

18

<<Abstract>>
CG_Request

(fromMessages)

B

CG_CancelRequest

CG_ExphinCollectionRequest

+ requestiDtoCancel : CharacterString
+ freeResources : Boolean = True

+ attributeCategory : CG_AttributeCategory
+ collectionlD : CG_CollectionName

CG_ExplainServerRequest

+ capabilities : Sequence<CG_Capability>

CG_PresentRequest

+ presentation : OG_PresentationDescription
+ sortField : Sequence<CG_SortField>

+ returnFomat : CG_MessageFormat

+ iteratorSize : Integer

+ cursor : Integer

+ resultSetlD : CG_CdllectionName

CG_QueryRequest

+ queryExpression : CG_QueryExpression
+ resultType : CG_ResultType

+ iteratorSize : Integer

+ cursor : Integer

+ retumFormat : CG_MessageFormat

+ presentation : CG_PresentationDescription
+ sortField : Sequence<CG_SortField>

+ queryScope : CG_QueryScope

+ collectionID : CG_CollectionName

+ catalogType : CG_CatalogEntryType

Interface Model

CG_StatusRequest

CG_TerminateRequest

+ requestIDtoStatus : RequestiD

CG_InitSessionRequest

CG_BrokeredAccessRequest

+ productHandle : CharacterString

+ orderinformation : CG_Orderinformation

+ request Type : CG_BrokeredAccessRequest Type
+ userinformation : CG_Userinformation

+ packageSpecification : CG_PackageS pecification
+ orderlD: CharcterString

Figure 9 - Request Message Classes and Their Attributes (Parameters) Defined for OGC Catalog

© OGC 2002 — All rights reserved

OGC 02-087r3

7.2.2.4 The Message Class (CG_Message)

The CG_Message class defines the core set of parameters expected of each message
exchanged between a client and server. These parameters support message routing and
session management. All request and reply messages are subclasses of the CG_Message
class.

CG_Message ::= sessionlD destinationID requestID additionallnfo format
sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
7.2.2.4.1 Message Parameters:
sessionlD: Type = Integer

This is a unique identifier for this client/server session. The session identifier value is
assigned in response to a CG_InitSessionRequest. All further messages within that session
will contain that identifier in the sessionID parameter.

destinationID: Type = CharacterString

The DestinationID parameter identifies the target for this message. It can identify a server,
service, or a process within a service, or a list of services to which messages may be sent in a
distributed environment.

requestID: Type = CG_RequestID

The RequestID parameter is an identifier unique to this message. In the case of a request
message, this identifier can be used to monitor and control the processing resulting from the
request message. The formal definition of the CG_RequestID data type is in Section 7.2.5.
The requestID is usually set by the client to permit status and cancel operations against the
active request.

additionallnfo: Type = CharacterString

This parameter provides a means of passing additional data that may only be relevant within
the context of a specific message exchange.

© OGC 2002 — All rights reserved 19

OGC 02-087r3

7.2.2.4.2 Message Operations: None

7.2.2.5 Request Messages (CG_Request)

A client invokes Catalog services through request messages. Request messages include the
parameters of the message class but do not add any of their own. All messages to invoke
specific catalog services are subclasses of the CG_Request class.

CG_Request ::= sessionlD destinationID requestID additionallnfo format
sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID

additionallnfo ::= CharacterString
7.2.2.5.1 Message Parameters: None
7.2.2.5.2 Message Operations: None

7.2.2.6 Response Messages (CG_Response)

The server uses response messages to reply to client requests. The CG_Response class is the
root class for all response messages constructed by the server in response to a client request.

CG_Response ::= sessionlD destinationID requestID additionallnfo format diagnostic
sessionID ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
diagnostic ::= CharacterString
7.2.2.6.1 Message Parameters:
diagnostic: Type = CharacterString

This parameter provides a means of passing diagnostic data relevant within the context of the
specific message exchange for transferring error messages in the response.

7.2.2.6.2 Message Operations: None

20 © OGC 2002 — All rights reserved

<<Abstract>>

CG Request

fromMessages)

OG CaroslRequest

CG ExplairCollectiorRequest

+requestiDtoCancel : CharacterString
+freeResources : Boolean =True

+attributeCategory: CG_AttributeCategory

+odllectioniD: CG_CollectionName

OG_PresentRequest

+iterdorSiz : Integer
+aursor: Integer

+presentafion: CG_PresentafionDesaription
+sortFeld : Sequence<CG_SortField>
+ refurnFormet : CG_MessageFormat

+resultSetlD : CG_CollectionName

+ requestiDioStatus : RequestiD

CG BplainSenerRequest
+ capabilities : Set<CG_Capability> CG Temi Reqest
OG StahusRequest CG hitSessiorRequest

CG_QueryRequest

+ queryBxpression : CG_QuenyBxpression

+resultType : CG_ResultType

+iteratorSize : Integer

+cursor : Integer

+retfumFormat : CG_MessagefFormat
+presentation : CG_PresentationDescription
+sortFeld : Sequence<CG_SortField>
*+quenySoope : CG_QuerySaope
+oollectioniD : CG_CollectionName
+catalogType : CG_CatalogEntryType

CG _BrokeredAccessRequest

+productHandle : CharacterString
+orderinformation : CG_OrderSpecification
+orderD : CharacterString

+requesfType : CG _BrokeredAccessRequestType
+ userinformation : CG_Userinformation
+statusOrderUpdateType : CG StatusUpdateType

OGC 02-087r3

Figure 10 - Request Message Classes and Their Attributes (Parameters) Defined for OGC Coarse-Grain Catalog Interface Model

© OGC 2002 — All rights reserved

21

OGC 02-087r3

<<Abstract>>

CG_Response

(from Messages)

+ diagnostic : CharacterString

-

CG_InitSessionResponse

CG_TerminateResponse
+ status : CG_Status

CG_StatusResponse
+ status : CG_Status
+ requestiDtoStatus : RequestiD

CG_CancelResponse

+ status : CG_Status
+ canceledRequest : CG_RequestiD

CG_BrokeredAccessResponse
+ resourceEstimate : Integer
+ order : CG_CollectionName
+ orderStatus : CG_OrderStatus
+ orderlD : CharacterString

CG_ExplainCollectionResponse +status : CG_Status
+ collectionlD : CG CollectionName CG QueryResponse + requestType : CG_BrokeredAccessRequestType
- — + orderInformation : CG_OrderSpecification
+ dataModel : RecordSchema + retrievedData : CG_ReturnedData -
+ status : CG_Status + resultSetlD : CG_CollectionName

+ resultType : CG_ResultType
+status :CG_Status
CG_PresentResponse * hits : Integer
= +cursor : Integer
+ retrievedData : CG_ReturnedData
+cursor : Integer
+ status : CG_Status

CG_ExplainServerResponse
+ capabilities : Set<CG_Capability>

Figure 11 - Response Message Classes and Their Attributes (Parameters) Defined for OGC Coarse-Grained Catalog Interface Model.

22 © OGC 2002 — All rights reserved

7.2.3 CG_CatalogService Interface

OGC 02-087r3

Server level interfaces (i.e., those provided in the interface CG_CatalogService) provide
access to the services that support the establishment and management of a user session. Core
capabilities include the discovery of server capabilities, session initialization and termination
and request status and termination. The specific operations put forth in the coarse-grained
General Model supporting the CG_CatalogService Server are listed in Table 1.

Table 1 - The Operations of the CG_CatalogService Interface

Operation Name

Input Message Type

Returned Message Type

Function Provided

InitSession

CG_InitSession-
Request

CG_InitSessionResponse

This operation
generates a unique
identifier used to
track the context of
session.

TerminateSession

CG_TerminateRequest

CG_TerminateResponse

This operation
terminates the
session

Status

CG_StatusRequest

CG_StatusResponse

This operation is
used to check on the
status of a current
pending request.

CancelRequest

CG_CancelRequest

CG_CancelResponse

This operation is
used to terminate any
request.

ExplainServer

CG_ExplainServer-
Request

CG_ExplainServer-
Response

This operation lists
all the conventions
and services
available during the
current session.

All request messages generated for these interfaces must specify the Catalog Server in the
destinationID parameter, and the sessionID is also needed in some instances. Catalog
services are accessed through request messages, and the results returned through response
messages. Errors in processing a request message are reported to the client by returning the
appropriate response message using the diagnostic parameter to return the error status and
error message and with all service specific parameters unpopulated.

© OGC 2002 — All rights reserved

23

OGC 02-087r3

7.2.3.1 CG_InitSessionRequest

The CG_InitSessionRequest message is used to establish a session between the Catalog
Server and the Catalog Client. SessionID may be null in CG_InitSessionRequest. If a

sessionlD is supplied in CG_InitSessionRequest, the server is not obliged to accept the
sessionID. The server is free to supply any SessionID in CG_InitSessionResponse.

CG_InitSessionRequest ::= sessionID destinationID requestID additionallnfo
sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
Message Parameters: None

Message Operations: None

7.2.3.2 CG_InitSessionResponse

The CG_InitSessionResponse message is used to acknowledge the establishment of a session
between the Catalog Server and the Catalog Client. This message provides the session
identifier that will be used to establish the session context for each subsequent message.

CG_InitSessionResponse ::= sessionlD destinationID requestID additionallnfo diagnostic
sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
diagnostic ::= CharacterString
Message Parameters: None
Message Operations: None
7.2.3.3 CG_TerminateRequest

The CG_TerminateRequest message is used to terminate the current session. These
messages originate at the client and are addressed to the catalog server. Upon receipt of the
message, the Catalog Server will validate the message, stop all processing for that session
and delete any queries and result sets.

24 © OGC 2002 — All rights reserved

OGC 02-087r3

CG_TerminateRequest ::= sessionID destinationID requestID additionallnfo
sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
Message Parameters: None

Message Operations: None
7.2.3.4 CG_TerminateResponse

The server uses the CG_TerminateResponse message to deliver back to a client the
completion status of a CG_TerminateRequest.

CG_TerminateResponse ::= sessionlD destinationID requestID additionallnfo diagnostic
status

sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
diagnostic ::= CharacterString
status ::= CG_Status

7.2.3.4.1 Message Parameters:

status: Type = CG_Status

The Status parameter conveys the success or failure of the terminate request.
7.2.3.4.2 Message Operations: None

7.2.3.5 CG_ExplainServerRequest

The CG_ExplainServerRequest message is used to expose and negotiate the services and
conventions governing this session. CG_ExplainServerRequest messages originate at the
client. They are initially populated with the properties desired by that client using the
capabilities parameter. Each capabilities component can be populated with either a value or
a “wildcard”. When populated with a wildcard, the client is requesting the server to report on
the options available for that capability. In response to a request, the server can confirm,

© OGC 2002 — All rights reserved 25

OGC 02-087r3

deny or report on each capability. Capabilities requested by value are confirmed by returning
the same capability/value pair as requested. Capabilities requested by value that are not
supported by the server are denied by not returning that capability. When reporting the
server returns all of the values supported for a requested capability. The CG_Capability data
type is described in Section 7.2.7.3

CG_ExplainServerRequest ::= sessionlD destinationID requestID additionallnfo capabilities
sessionID ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
capabilities ::= Set<CG_Capability>
7.2.3.5.1 Message Parameters:
capabilities: Type = Set<CG_Capability>

The capabilities parameter passes a list of CG_Capability data types specifying the
capabilities and conventions of interest to the user. CG_Capability is a complex data type
that is described in Section 7.2.5.

7.2.3.5.2 Message Operations: None

7.2.3.6 CG_ExplainServerResponse

The CG_ExplainServerResponse message is used to expose and negotiate the services and
conventions governing this session. The capabilities parameter is received from the Explain
Server request and populated with the data desired. The details of populating the response
are given in the CG_ExplainServerRequest. This parameter is then inserted into the response
message and returned to the user.

CG_ExplainServerResponse ::= sessionlD destinationID requestID additionallnfo
diagnostic capabilities
sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString

diagnostic ::= CharacterString
26 © OGC 2002 — All rights reserved

OGC 02-087r3

capabilities ::= Set<CG_Capability>
7.2.3.6.1 Message Parameters:
capabilities: Type = Set<CG_Capability>

The capabilities parameter contains a list of CG_Capability data types detailing the capability
and convention information requested by the user. CG_Capability is a complex data type
that is described in Section 7.2.5.

7.2.3.6.2 Message Operations: None

7.2.3.7 CG_StatusRequest

The client uses the CG_StatusRequest message to discover the current status of any
processing taking place as a result of a specific request. The server returning the current
status of the request generates a CG_StatusResponse message.

CG_StatusRequest ::= sessionID destinationID requestID additionallnfo requestIDtoStatus
sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString

requestIDtoStatus ::= CG_RequestID

7.2.3.7.1 Message Parameters:
requestIDtoStatus: Type = CG_RequestID

The identifier of the Request that the user has initiated.
7.2.3.7.2 Message Operations: None

7.2.3.8 CG_StatusResponse

The CG_StatusResponse message is used by the server to deliver to the client the current
status of any processing taking place relating to the specified request. The server generates
these messages in response to a CG_StatusRequest message.

CG_StatusResponse ::= sessionlD destinationID requestID additionallnfo requestIDtoStatus
status

sessionID ::= Integer

destinationID ::= CharacterString

© OGC 2002 — All rights reserved 27

OGC 02-087r3

requestID ::= CG_RequestID
additionallnfo ::= CharacterString
requestIDtoStatus ::= CG_RequestID

status ::= CG_Status

7.2.3.8.1 Message Parameters:

requestIDtoStatus: Type = CG_RequestID

The identifier of the Request for which this message is delivering information.
status: Type = CG_Status

The status parameter conveys the current status of the selected request.
7.2.3.8.2 Message Operations: None

7.2.3.9 CG_CancelRequest

The CG_CancelRequest message is used to terminate any request. It is assumed that in
terminating a request that any result set or other resources associated with the request will be
“garbage collected” by the server if freeResources is true. Upon receipt of the message, the
Catalog Server will validate the message, stop all processing for the target and release
appropriate resources dependent on the request.

CG_CancelRequest ::= sessionID destinationID requestID additionallnfo
requestIDtoCancel freeResources
sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
requestIDtoCancel ::= CG_RequestID
freeResources ::= Boolean
7.2.3.9.1 Message Parameters:
requestIDtoCancel: Type = CG_RequestID

The identifier of the Request to be canceled.
28 © OGC 2002 — All rights reserved

OGC 02-087r3

freeResources: Type = Boolean

If set to FALSE, the partial result set is not deleted until the client terminates the session.
Default value is TRUE.

7.2.3.9.2 Message Operations: None

7.2.3.10 CG_CancelResponse

The server uses the CG_CancelResponse message to report on the success or failure of an
attempt to cancel a request.

CG_CancelResponse ::= sessionID destinationID requestID additionallnfo diagnostic
status canceledRequest
sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
diagnostic ::= CharacterString
status ::= CG_Status
canceledRequest ::= CG_RequestID
7.2.3.10.1 Message Parameters:
status: Type = CG_Status
Indicates whether or not the cancel request was successful.
canceledRequest: Type = CG_RequestID
Identifier for the request object that was the target of the cancel request.
7.2.3.10.2 Message Operations: None
7.2.4 CG_Discovery Interface

The CG_Discovery Interface provides users a way to discover what data, services and other
resources are available to them. These interfaces do not provide access to the resources
themselves; rather, they provide information on what the resources are and how to access
them. The specific operations of CG_Discovery are found in Table 2.

© OGC 2002 — All rights reserved 29

OGC 02-087r3

Table 2 - The Operations of the CG_Discovery Interface

Operation Name

Input Message Type

Returned Message
Type

Function Provided

Query

CG_QueryRequest

CG_QueryResponse

This operation is used to
search for data/services
from a given catalog
server and may return
records from the result set.

Present

CG_PresentRequest

CG_PresentResponse

This operation is used to
retrieve records from a
result set created from the
issuance of a query.

ExplainCollection

CG_ExplainCollection
Request

CG_ExplainCollection
-Response

This operation is used to
explain the data model of
the catalog.

7.2.4.1 CG_QueryRequest

The CG_QueryRequest message is used to request that the Catalog Server create a subset
(Result Set) of the catalog holdings or to further subset an existing Result Set.
CG_QueryRequest messages originate at the client. They are populated with the criteria to
be used to select the Result Set and parameters governing the scope of the query and the
format of the response. Upon receipt of the message, the Catalog Server will identify those
elements of the query space to be included in the Result Set and create a Result Set
containing those elements. Response to the client will be through the CG_QueryResponse
message. Timing of the response message is governed by the resultType parameter.

CG_QueryRequest ::= sessionID destinationID requestID additionallnfo queryExpression

resultType

iteratorSize cursor returnFormat presentation sortField queryScope

collectionID catalogType

sessionID ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

30

© OGC 2002 — All rights reserved

OGC 02-087r3

additionallnfo ::= CharacterString
queryExpression ::= CG_QueryExpression
resultType ::= CG_ResultType
iteratorSize ::= Integer
cursor ::= Integer
returnFormat ::= CG_MessageFormat
presentation ::= CG_PresentationDescription
sortField ::= Set<CG_SortField>
queryScope ::= CG_QueryScope
collectionID ::= CG_CollectionName
catalogType ::= CG_CatalogEntryType
7.2.4.1.1 Message Parameters:
queryExpression: Type = CG_QueryExpression

The queryExpression parameter contains the criteria used to subset the search space.
CG_QueryExpression is formally defined in Section 7.2.7.

resultRecommended Implementation Type: Type = CG_ResultType

The resultType parameter is used to specify how the user wants the result set presented.
CG_ResultType is formally defined in Section 7.2.7.

iteratorSize: Type = Integer

The iteratorSize parameter indicates the maximum number of result set entries to be returned
in the CG_QueryResponse.

cursor: Type = Integer

The Cursor parameter identifies the first result set entry to be returned in the
CG_QueryResponse.

returnFormat: Type = CG_MessageFormat

This parameter specifies the encoding standard to be used for returning the result set.
CG_MessageFormat is formally defined in Section 7.2.7.

© OGC 2002 — All rights reserved 31

OGC 02-087r3

presentation: Type = CG_PresentationDescription

The Presentation parameter is only valid when results are requested returned directly in the
CG_QueryResponse. This parameter informs the server which of the attributes in the result
set elements are to be returned to the client. The CG_PresentationDescription parameter is
defined in Section 7.2.7.

sortField: Type = Set<CG_SortField>

The sortField parameter specifies how the result set data is to be sorted prior to presentation.
The CG_SortField type is defined in Section 7.2.7.

queryScope: Type = CG_QueryScope

The queryScope parameter is used to specify the size of the query space for distributed
catalogs. CG_QueryScope is formally defined in Section 7.2.7.

See Section 6.10 for a discussion about distributed searching.
collectionID: Type = CG_CollectionName

This parameter identifies the search space for this query. A search space can be the catalog
holdings, a result set, or a named subspace of the catalog holdings. CG_CollectionName is
formally defined in section 7.2.7.

catalogType: type = CG_CatalogEntryType

The catalogType parameter specifies the types of catalog entries to query.
CG_CatalogEntryType is an enumerated code list formally defined in Section 7.2.7.

7.2.4.1.2 Message Operations: None

7.2.4.2 CG_QueryResponse

The server uses the CG_QueryResponse message to report back to a client on the status of a
CG_QueryRequest. The behavior of the CG_QueryResponse depends on the result type
parameter as shown in Section Error! Reference source not found.. Additionally, the
contents of the CG_QueryResponse depend on the result type parameter.

CG_QueryResponse ::= sessionID destinationID requestID additionallnfo diagnostic
retrievedData resultSetID resultType status hits cursor
sessionlD ::= Integer
destinationID ::= CharacterString

requestID ::= CG_RequestID

32 © OGC 2002 — All rights reserved

OGC 02-087r3

additionallnfo ::= CharacterString
diagnostic ::= CharacterString
retrievedData ::= CG_ReturnData
resultSetID ::= CG_CollectionName
resultType ::= CG_ResultType
status ::= CG_Status
hits ::= integer
cursor ::= Integer
7.2.4.2.1 Message Parameters:
retrievedData: Type = CG_ReturnData

The retrievedData parameter contains a subset of the results of this query request. It is
organized and formatted as specified in the presentation, messageFormat, and sortField
parameters. This parameter is only populated if resultType = Results. A formal definition of
the CG_ReturnData type can be found in Section 7.2.7.

resultSetID: Type = CG_CollectionName

This parameter identifies the Result Set generated for the query. Further query, present and
cancel requests for this Result Set will supply this value through the collectionID parameter.
The CG_CollectionName type is defined in Section 7.2.7.

resultType: Type = CG_ResultType

The resultType parameter indicates how the server responded to the query request.
CG_ResultType is formally defined in Section 7.2.7.

status: Type = CG_Status

The Status parameter conveys the success or failure of the query request. The CG_Status
type is formally defined later in Section 7.2.7.

hits: Type = Integer
Indication of the number of entries in the result set.
cursor: Type = Integer

The Cursor parameter identifies the last item in the result set that was returned in this
retrieved data set.

© OGC 2002 — All rights reserved 33

OGC 02-087r3

7.2.4.2.2 Message Operations: none

7.2.43 CG_PresentRequest

The CG_PresentRequest message is used to request that the Catalog Server deliver a portion
of a Result Set. CG_PresentRequest messages originate at the client. CG_PresentRequest
messages are populated with the identifier for the Result Set and parameters governing the
format of the response. Upon receipt of the message, the Catalog Server will build a subset
of the Result Set based on the specified cursor location, the iterator size, and the attributes
defined in the presentation parameter. This subset will then be returned to the client through
the CG_PresentResponse message.

CG_PresentRequest ::= sessionID destinationID requestID additionallnfo resultSetID
presentation

sortField returnFormat iteratorSize cursor

sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
resultSetID ::= CG_CollectionName
presentation ::= CG_PresentationDescription
sortField ::= Set<CG_SortField>
returnFormat ::= CG_MessageFormat
iteratorSize ::= Integer
cursor ::= Integer

7.2.4.3.1 Message Parameters:

presentation: Type = CG_PresentationDescription

The Presentation parameter informs the server which of the attributes in the result set
elements are to be returned to the client. Presentation serves the same function and has the
same format as the corresponding parameter in the CG_QueryRequest message. The
CG_PresentationDescription parameter is defined in Section 7.2.7.

sortField: Type = Set<CG_SortField>

34 © OGC 2002 — All rights reserved

OGC 02-087r3
The sortField parameter specifies how the result set data is to be sorted prior to presentation.
The CG_SortField type is defined in Section 7.2.7.
returnFormat: Type = CG_MessageFormat

This parameter specifies the encoding standard to be used for returning the result set.
CG_MessageFormat is formally defined in Section 7.2.7.

iteratorSize: Type = Integer

The iteratorSize parameter indicates the maximum number of result set entries to be returned
at one time.

cursor: Type = Integer

The Cursor parameter identifies the first result set entry to be accessed when traversing the
result set.

7.2.4.3.2 Message Operations: None

7.2.44 CG_PresentResponse

The CG_PresentResponse message is used by the server to deliver to a client a subset of the
Result Set. The server generates these messages in response to a CG_PresentRequest
message.

CG_PresentResponse ::= sessionlD destinationID requestID additionallnfo diagnostic
retrievedData

cursor hits status
sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
diagnostic ::= CharacterString
retrievedData ::= CG_ReturnData
cursor ::= Integer
hits ::= Integer

status ::= CG_Status

© OGC 2002 — All rights reserved 35

OGC 02-087r3

7.2.4.4.1 Message Parameters:
retrievedData: Type = CG_ReturnData

The retrievedData parameter contains a subset of the results of the query request. It is
organized and formatted as specified in the presentation, returnFormat, and sortField
parameters. A formal definition of the CG_ReturnData type can be found in Section 7.2.7.

cursor: Type = Integer

The Cursor parameter identifies the last item in the result set that was returned in this
retrieved data set.

hits: Type = Integer
Indication of the number of entries in the result set.
status: Type = CG_Status

The Status parameter conveys the success or failure of the query request. The CG_Status
type is formally defined in Section 7.2.7.

7.2.4.4.2 Message Operations: None

7.2.4.5 CG_ExplainCollectionRequest

The CG_ExplainCollectionRequest inquires for information on the data taxonomy (model) of
a particular catalog or catalog collection.

CG_ExplainCollectionRequest ::= sessionID destinationID requestID additionallnfo
attributeCategory collectionID returnFormat
sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
attributeCategory ::= CG_AttributeCategory
collectionID ::= CG_CollectionName

returnFormat ::= CG_MessageFormat

36 © OGC 2002 — All rights reserved

OGC 02-087r3

7.2.4.5.1 Message Parameters:
attributeCategory: Type = CG_AttributeCategory

This parameter allows the client to specify the types of attributes that they want data about.
Currently defined values are queriable, presentable and all. CG_AttributeCategory is
formally defined in Section 7.2.7.

collectionID: Type = CG_CollectionName

This parameter specifies the collection for which the client wants the data structure
explained. CG_CollectionName is formally defined in Section 7.2.7.

7.2.4.5.2 Message Operations: None

7.2.4.6 CG_ExplainCollectionResponse

The CG_ExplainCollectionResponse returns the requested information on the data taxonomy
of the selected catalog collection.

CG_ExplainCollectionResponse ::= sessionID destinationID requestID additionallnfo
diagnostic collectionID dataModel returnFormat

sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
diagnostic ::= CharacterString
collectionID ::= CG_CollectionName
dataModel ::= CG_SchemalD
status: Type = CG_Status
7.2.4.6.1 Message Parameters:
collectionID: Type = CG_CollectionName

This parameter specifies the collection from which the dataModel parameter was derived.
CG_CollectionName is formally defined in Section 7.2.7.

dataModel: Type = CG_SchemalD

This parameter provides the data model information requested by the client. CG_SchemalD
is formally defined in Section 7.2.7.

© OGC 2002 — All rights reserved 37

OGC 02-087r3

status: Type = CG_Status

The Status parameter conveys the success or failure of the request. The CG_Status type is
formally defined in Section 7.2.7.

7.2.4.6.2 Message Operations: None

7.2.5 CG_Access Interface

The CG_Access Interface provides the user with a means to access the items located through
the Discovery service. Access is divided into two categories, direct and brokered. Direct
access is for those resources that are readily available over public interfaces such as the OGC
Simple Features and Catalog. Methods for Direct Access are outside of the scope of the
Catalog Interface, although the Catalog Interface will return a "handle" to the client to allow
Direct Access. Not all resources can be accessed directly. Brokered access provides
interfaces for gaining access to resources that are controlled. Controlled resources might
include those for which the following applies:

1. afeeis charged,

2. have security limitations,

3. require additional processing or
4. are not available electronically.

The brokered access operation provides a means for the user to provide the necessary
information to request access to a resource (i.e., order) and for the owner to provide the data
necessary to achieve that access.

7.2.5.1 CG_BrokeredAccessRequest

The CG_BrokeredAccessRequest is a service requesting data that cannot be made available
directly.

CG_BrokeredAccessRequest ::= sessionID destinationID requestID additionallnfo
productHandle orderInformation orderID requestType
userInformation statusOrderUpdateType

sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString

38 © OGC 2002 — All rights reserved

OGC 02-087r3

productHandle ::= CharacterString
orderInformation ::= CG_OrderSpecification
orderID ::= CharacterString
requestType ::= CG_BrokeredAccessRequestType
userInformation ::= CG_UserInformation
statusOrderUpdateType ::= CG_StatusUpdateType
7.2.5.1.1 Message Parameters:
productHandle: Type = CharacterString

The product handle is the identifier for a specific product taken from the catalog metadata for
that product.

orderInformation: Type = CG_OrderSpecification

For CG_BrokeredAccessRequestType = orderEstimate or OrderQuote AndSubmit,the
specification of the current order request as provided as by the client or modified by the
server during the estimation process.

For CG_BrokeredAccessRequestType = orderMonitor or orderCancel,
CG_OrderSpecification is ignored and may not be supplied.

orderID: type = CharacterString

The orderID parameter provides a unique identifier for an order in progress. This ID can be
used to inquire about the status of the order as it is being processed. For
CG_BrokeredAccessRequestType = orderMonitor or orderCancel, orderID shall be supplied.
For requestType = orderEstimate or OrderQuote AndSubmit, orderID shall be empty.

requestType: Type = CG_BrokeredAccessRequestType

The request type parameter identifies the type of service the client needs from the server.
Valid values are estimate, submit, monitor and cancel. Estimate is used to check if the order
is valid and to request an estimate of resources required to fill the order. Submit is a request
to order and deliver the products(s). Monitor provides the current status of the order. Cancel
requests that the order be cancelled. The server must grant cancellation of the order.
CG_BrokeredAccessRequestType is formally defined in Section 7.2.5.

userInformation: Type = CG_UserInformation

To receive products it is necessary to provide requester identification, billing and delivery
data as part of the order. This parameter is used to provide that data.

© OGC 2002 — All rights reserved 39

OGC 02-087r3

statusOrderUpdateType : Type = CG_StatusUpdateType

How a given client likes to be kept informed about the status of a given order.
7.2.5.1.2 Message Operations: None

7.2.5.2 CG_BrokeredAccessResponse

The server generates the CG_BrokeredAccessResponse message in response to a
CG_BrokeredAccessRequest.

CG_BrokeredAccessResponse ::= sessionlD destinationID requestID additionallnfo
diagnostic format orderStatus resourceEstimate order orderID status requestType

sessionlD ::= Integer

destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
diagnostic ::= CharacterString
format ::= CG_MessageFormat
orderStatus ::= CG_OrderStatus
resourceEstimate ::= CharacterString
order ::= CG_CollectionName
orderID ::= CharacterString

status ::= CG_Status

requestType ::= CG_BrokeredAccessRequestType

orderInformation ::= CG_OrderSpecification

7.2.5.2.1 Message Parameters:
orderStatus Type ::= CG_OrderStatus

This parameter indicates the status of the order. The status of the order is different than the
status of a CG_Access message. The status of the message is reported in the response in the
status parameter. The CG_OrderStatus type is formally defined in Section 7.2.5 of this
specification.

40 © OGC 2002 — All rights reserved

OGC 02-087r3

resourceEstimate: Type = CharacterString

This parameter reports back on the resources needed to process and/or deliver the requested
resource. Examples of these resources are time until delivery and cost.

order: Type = CG_CollectionName

The order parameter returns a name or id of the requested product object online. This
parameter can be used for direct access (such as through simple features) to the online
product. The CG_CollectionName type is formally defined in Section 7.2.5 of this
specification.

orderID: type = CharacterString

The orderID parameter provides a unique identifier for an order in progress. This ID can be
used to inquire about the status of the order as it is being processed. This number is generated
by the server in response to a CG_BrokeredAccessRequest where requestType =
orderEstimate or OrderQuoteAndSubmit

status: Type = CG_Status

The Status parameter conveys the status of the requested product. The CG_Status type is
formally defined in Section 7.2.5.

requestType: Type = CG_BrokeredAccessRequestType

The request type parameter identifies the type of service the client needs from the server.
CG_BrokeredAccessRequestType is formally defined in Section 7.2.5.

orderInformation: Type ::= CG_OrderSpecification

For CG_BrokeredAccessRequestType = orderEstimate or OrderQuoteAndSubmit, the
specification of the current order request as provided as by the client or modified by the
server during the estimation process. .

For CG_BrokeredAccessRequestType = orderMonitor or orderCancel,
CG_OrderSpecification is ignored and may not be supplied.

7.2.5.2.2 Message Operations: None

© OGC 2002 — All rights reserved 41

OGC 02-087r3

7.2.6 CG_CatalogManager Interface

Note: The contents of this section are preliminary and incomplete

The design of these interfaces is planned for

A Future Version of this specification

The CG_CatalogManager Interface provides for the maintaining and updating of a catalog
service. The operations defined for this interface are listed in Table 3.

Table 3 - The Operations of the CG_CatalogManager Interface

Operation
Name

Input Message Type

Returned Message Type

Function Provided

createCatalog

CG_CreateCatalogRequest

CG_CreateCatalogRequest

This operation is performed
to start the process of
creating a new catalog or a
new set of catalog entries of
an existing catalog service.

createMetadata

CG_CreateMetadataRequest

CG_CreateMetadataResponse

This operation is initiated to
create metadata about a
given set of products held in
a catalog.

updateCatalog

CG_UpdateCatalogRequest

CG_UpdateCatalogResponse

This operation is used to
update the contents of a
given catalog service.

deleteCatalog

CG_DeleteCatalogRequest

CG_DeleteCatalogResponse

This operation is used to
delete the contents of a
given catalog service entry
(entries).

7.2.6.1

CG_CreateCatalogRequest

A client with the appropriate user privileges uses this message to add new information to a
catalog service.

CG_CreateCatalogRequest ::= sessionID destinationID requestID additionallnfo

sessionlD ::= Integer

destinationID ::= CharacterString

42

© OGC 2002 — All rights reserved

OGC 02-087r3

requestID ::= CG_RequestID
additionallnfo ::= CharacterString
Message Parameters: TBD

Message Operations: TBD

7.2.6.2 CG_CreateCatalogResponse

This message is used/sent by the server to acknowledge/accept the request to add new
information to the catalog.

CG_CreateCatalogResponse ::= sessionID destinationID requestID additionallnfo diagnostic
sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
diagnostic ::= CharacterString
Message Parameters: TBD

Message Operations: TBD

7.2.6.3 CG_CreateMetadataRequest

A client that has the appropriate user privileges uses this message to add metadata entries to a
catalog.

CG_CreateCatalogRequest ::= sessionID destinationID requestID additionallnfo
sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
Message Parameters: TBD

Message Operations: TBD

© OGC 2002 — All rights reserved 43

OGC 02-087r3

7.2.64 CG_CreateMetadataResponse

This message is used/sent by the server to acknowledge/accept the request to add new
metadata entries to the catalog.

CG_CreateCatalogResponse ::= sessionlD destinationID requestID additionallnfo diagnostic
sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
diagnostic ::= CharacterString
Message Parameters: TBD

Message Operations: TBD

7.2.6.5 CG_UpdateCatalogRequest

A client that has the appropriate user privileges uses this message to update various types of
information (e.g., data or metadata) to a catalog.

CG_UpdateCatalogRequest ::= sessionID destinationID requestID additionallnfo
sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
Message Parameters: TBD

Message Operations: TBD

7.2.6.6 CG_UpdateCatalogResponse

The server uses/sends this message to acknowledge/accept the request to update various
types of information (e.g., data or metadata) to a catalog.

CG_UpdateCatalogRequest ::= sessionID destinationID requestID additionallnfo diagnostic

sessionlD ::= Integer

44 © OGC 2002 — All rights reserved

OGC 02-087r3

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionallnfo ::= CharacterString
Message Parameters: TBD

Message Operations: TBD

7.2.6.7 CG_DeleteCatalogRequest

A client with appropriate user privileges uses this message to delete various types of
information (e.g., data or metadata) to a catalog.

CG_UpdateCatalogRequest ::= sessionID destinationID requestID additionallnfo
sessionID ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
Message Parameters: TBD

Message Operations: TBD

7.2.6.8 CG_DeleteCatalogResponse

This message is used/sent by the server to acknowledge/accept the request to delete various
types of information (e.g., data or metadata) to a catalog.

CG_UpdateCatalogRequest ::= sessionID destinationID requestID additionallnfo diagnostic
sessionlD ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
Message Parameters: TBD

Message Operations: TBD

© OGC 2002 — All rights reserved 45

OGC 02-087r3

7.2.7 Parameter Type Definitions

This section provides definitions for all of the parameter data types used in Request-
Response Message Pairs. These definitions assume the use of the OGC well known data
types where applicable.

7.2.7.1 CG_AttributeCategory
Recommended Implementation Type: Code List
Used By: CG_ExplainCollectionRequest

CG_ AttributeCategory is a code list for selecting the types of catalog entry attributes to be
exposed by an explain request. The valid values for this type are the following:

Table 4 - Attribute Category Values

Value Explanation

queriable Attributes can be queried

presentable Attributes are only displayed, not queried
both Attributes that can be queried and presented

© OGC 2002 — All rights reserved 47

OGC 02-087r3

7.2.7.2 CG_BrokeredAccessRequestType
Recommended Implementation Type: Code List
Used By: CG_BrokeredAccessRequest

CG_BrokeredAccessRequestType is a code list for identifying the nature of a brokered
access request. Valid values for this type are shown in Table 6.

Table 6 - Brokered Access Request Types

Value Explanation

orderEstimate Validate and obtain the estimate of an order specification

orderQuoteAndSubm | Obtain a quote and subsequently submit an order

it specification
orderMonitor Monitor the progress of an order request
orderCancel Cancel an order request

7.2.73 CG_Capability
Recommended Implementation Type: Complex data structure
Used By: CG_ExplainServerRequest, CG_ExplainServerResponse

Uses: CG_AllSupportedRequest, CG_Defaults, CG_Explain, CG_Query, CG_Messaging,
CG_Session, CG_Softwarelnformation, CG_SupportedCollections

CG_Capability is a super class for organizing descriptions of catalog capabilities and session
conventions. It is a collection of subtypes (subclasses) that can be aggregated together into a
single data entity in the CG_ExplainServerRequest and CG_ExplainServerResponse. Each
subtype addresses a specific piece of data relating to the interactions between a client and the
server Figure 11 shows the Capability Class and its subclasses that have been defined for the
Catalog General Interface Model.

48 © OGC 2002 — All rights reserved

OGC 02-087r3

<<DataType>>
<<CodeList>> CG_Messaging <<DataType>>
CG_Capab”itieSRequeStType + characterSet: CG_CharacterSet CG_Software Inf9rmat|0n
+ all + messageFormat: CG_MessageFormat +vendor : CharacterString
+ versionNumber : CharacterString
+ default
+ negotiated
<<DataType>>
<<DataType>> CG_Session
CG_ExposeCollectionName <<Abs‘ram>‘>' +language : CharacterString
+supportedCollection : Set<CG_CollectionName> CG_Capability + catalogS pecificationVersion : CharacterString
+ characterSet: CG_CharacterSet

<<DataType>> <<DataType>>
CG_DefaultTimeOut CG_Query

+ timeOut : UomTime

+ version : CharacterString
CG_Explain + characterSet: CG_CharacterSet

+ characterSet : CG_CharacterSet +queryLanguage : CG_QueryLanguage

+ explainType : CG_ExplainType

Figure 11 - Static Class Diagram showing CG_Capability Class and Its Instantiated Subtypes.

7.2.7.3.1 CG_CapabilitiesRequestType
Recommended Implementation Type: Code List
Used By: CG_Capability

This is a subtype of capabilities that allows for the request and response of specific capability
structures using the following code list values:

Table 5 - Capability Types

Value Explanation

all Return full set of capabilities

default Return only default (preferred) capabilities

negotiated Responds to client-requested capabilities or alternatives if not
supported

Parameter is only submitted as part of a request message from the client. When this
parameter is null or all, the response shall include a complete list of all capabilities supported
by the server.

© OGC 2002 — All rights reserved 49

OGC 02-087r3

7.2.7.3.2 CG_DefaultTimeOut
Recommended Implementation Type: DataType
Used By: CG_Capability

This parameter is the default time out that a client can set for a session. After a period of no
activity in a session, the server may unilaterally close a session without notification to the
client (see Section 3.1). The server must be prepared to respond to client request for a session
that has timed out by returning the paired response containing a diagnostic indicating that the
session does not exist. The single parameter in CG_DefaultTimeOut is the default time out
and it is specified using the UomTime data type from the OGC Basic Package!, Unit of
Measure.

7.2.7.3.3 CG_Explain

Recommended Implementation Type: data structure composed of explainType and
characterSet

Used By: CG_Capability
Uses: CG_QueryLanguage, CG_CharacterSet

This parameter provides information on the explain supported by the server. This is a data
structure composed of the following elements:

characterSet: (type = CG_CharacterSet) specifies the expected character set.

explainRecommended Implementation Type: (type = CG_ExplainType) specifies the
level or type of Explain supported.

7.2.7.3.4 CG_Messaging

Recommended Implementation Type: Data structure
Used By: CG_Capability

Uses: CG_CharacterSet, CG_MessageFormat

The CG_Messaging parameter is a data structure containing data describing the messaging
conventions a particular server observes. Sub-types of the messaging type are:

characterSet: (type = CG_CharacterSet) describes the character sets supported

1 0GC Basic Package: see OpenGIS project document 99-005r3, January 1993.
50 © OGC 2002 — All rights reserved

OGC 02-087r3

messageFormat: (type = CG_MessageFormat) describes the formatting of the
messages.

7.2.7.3.5 CG_Query

Recommended Implementation Type: data structure composed of version, characterSet and
queryLanguage fields

Used By: CG_Capability
Uses: CG_QueryLanguage, CG_CharacterSet

This parameter provides information on one of the query languages supported by the server.
This is a data structure composed of the following elements:

version: (type = character string) specifies the version of queryLanguage supported.
characterSet: (type = CG_CharacterSet) specifies the expected character set.

queryLanguage: (type = CG_QueryLanguage) specifies the query language
supported.

7.2.7.3.6 CG_QueryLanguage
Recommended Implementation Type: Code List
Used By: CG_Query, CG_QueryExpression

This code list contains the query languages supported by a given catalog server that the client
has initiated a session with. OGC_Common is the default for all implementations. The list
of query languages follows:

OGC_Common
723950 TypeOne
SQL3_SimpleFeature
SQL2 SimpleFeature

The OGC_Common query language is defined in Section 8. All implementations must
support OGC_Common.

7.2.7.3.7 CG_Session

Recommended Implementation Type: Data Structure
Used By: CG_Capability

Uses: CG_CharacterSet

© OGC 2002 — All rights reserved 51

OGC 02-087r3

The CG_Session parameter contains data describing the constraints on any sessions

supported by a server. This is a data structure containing the following elements:
language: (type = Character String) — language supported by the interface

catalogSpecificationVersion: (type = Character String) — OGC Catalog compliance
version

characterSet: (type = CG_CharacterSet) — character set used for text encoding

7.2.7.3.8 CG_Softwarelnformation
Recommended Implementation Type: Data structure
Used By: CG_Capability

This parameter is a CG_Capability type used to identify the vendor and version number of
the server software suite. CG_Softwarelnformation is a data structure containing the
following elements:

vendor: (type = Character String) — name of the software manufacturer
SWversionNumber: (type = Character String) — version number of this release

IFversionNumber (type = Character String) — version number of OGC Catalog
Interface supported by the software suite.

7.2.7.3.9 CG_SupportedCollections

Recommended Implementation Type: set<CG_CollectionName>
Used By: CG_ExposeCollectionName

Uses: CG_CollectionName

A capability used for requesting and returning the collections that the server has knowledge
of and can provide access to a client request.

7.2.74 CG_CatalogEntryType
Recommended Implementation Type: Code List
Used By: CG_QueryRequest, CG_PresentResponse

A catalog contains several different types of data. This parameter provides for the selection
of one of those types for processing. It is implemented as a code list that takes the following
values:

Data set — the lowest level packaging of Features that have been cataloged
52 © OGC 2002 — All rights reserved

OGC 02-087r3
Data set collection — a grouping of data sets that have commonality (ISO 19115: data
set series)

Service — a set of interfaces that provide access to or operations on data (e.g. catalog
service)

7.2.7.5 CG_CharacterSet
Recommended Implementation Type: Code List
Used By: CG_Messaging, CG_Query, CG_Session

This parameter type represents one of the standard computer character representation
systems. It is implemented as a code list that takes the following values:

ASCII
UniCode
Shift-JIS
7.2.7.6 CG_CollectionName
Recommended Implementation Type: Union data

Used By: CG_QueryRequest, CG_QueryResponse, CG_ExplainCollectionRequest,
CG_ExplainCollectionResponse, CG_BrokeredAccessResponse, CG_ReturnData

Collection Name is a type that identifies a catalog data resource. It can point to a catalog,
catalog entry, named catalog subspace, named catalog superspace or a result set. This type is
a union of two base types:

collection ID (character string)
collection Name (character string).
7.2.7.7 CG_Record
Recommended Implementation Type: Collection of name-value pairs

Used By: CG_Schema

A record is name-value pair association implemented as a simple look-up and query
mechanism that associates keys (of a selected type) to values. Most commonly used for
finding attributes by name within a record or record-like associative memory.

select — return a value using a key

insert — add a value using a key

© OGC 2002 — All rights reserved 53

OGC 02-087r3

delete — delete a value using a key
keylist — list the keys
7.2.7.8 CG_MessageFormat
Recommended Implementation Type: Code List
Used By: CG_QueryRequest, CG_PresentRequest, CG_Messaging

CG_MessageFormat is an enumerated code list of the available formats for encoding a
returned data set. Valid values for this type are:

XML

HTML

TXT
7279 CG_Orderltem
Recommended Implementation Type: Data Structure
Used by: GC_BrokeredAccessRequestType

This data structure contains the specification of a single order item (i.e. e. the product that is
ordered and that is to be delivered):

* productld, which is the identifier of the ordered product.
* productPrice, which is the price of the product.
* productDeliveryOptions, which contains delivery options for the product.

* processingOptions, which specifies the processing options that are to be applied on
the product before delivery.

* sceneSelectionOptions, which specifies the selection of the scene from the whole
product that is to be delivered.

7.2.7.10 CG_OrderSpecification
Recommended Implementation Type: Data Structure
Used By: CG_BrokeredAccessRequest

The specification of the order request as provided as input by the client if
CG_BrokeredAccessRequestType = orderEstimate or OrderQuote AndSubmit.

54 © OGC 2002 — All rights reserved

OGC 02-087r3

The structure contains the following information about the product specification:
* orderCentrelD — identifies the order center at which the order will be performed
» orderPrice —the price for the whole order

» orderDeliveryDate - the latest date at which the order can be expected to be
delivered to the user.

e orderCancellationDate — the latest date at which the user can cancel the order.
* deliveryMethod — how the order will be delivered to the user: e-mail, ftp or mail.

* package — contains the definition of how the packages which compose the order
7.2.7.11 CG_OrderStatus
Recommended Implementation Type: Code List

Used By: CG_BrokeredAccessResponse

CG_ OrderStatus is a code list for identifying the status of an order. Valid values for this
type are:

Table 8 - Order Status Codes

Value Explanation

orderBeingEstimated | the order is currently being estimated by the target order
handling system.

An Estimate is an approximation only.

orderEstimated indicates that the order has been successfully validated and
that an estimate is provided.

orderBeingQuoted the order is currently being quoted by the target order
handling system.

A Quote shall be considered contractually binding.

orderBeingProcessed | the order is currently being processed by the target order
handling system.

orderCompleted processing of order has been completed.

orderNotValid the order has not been successfully validated.

© OGC 2002 — All rights reserved 55

OGC 02-087r3

orderCancelled the order has been cancelled

7.2.7.12 CG_PackageSpecification
Recommended Implementation Type: Data Structure
Used By: CG_BrokeredAccessRequest, CG_OrderSpecification, CG_PackagingType
The specification of a single package or multiple packages.
The structure contains the following information about the packaging order:
* packageld — the identifier of the ordered package
» packagePrice —the price for the package

* package — the detailed information concerning the specification of package. (See
packagingType)

* packageMedium —the medium on which the package will be delivered to a user.

» packageSize — the size of the package in kilobytes.

7.2.7.13 CG_PackagingType
Recommended Implementation Type: Code List

Used By: CG_PackageSpecification, CG_BrokeredAccessRequest
The specification of the packaging method used to deliver an order to a user.

» predefinedPackage: A package predefined by the given catalog service

* adhocPackage: A package constructed of Orderltems to fulfill a particular order

7.2.7.14 CG_PaymentMethod
Recommended Implementation Type: Code List
Used By: CG_UserInformation

This code list contains the payment methods for an order secured through using a CG_Access
operation. The supported methods are the following:

e credit

e cash

56 © OGC 2002 — All rights reserved

OGC 02-087r3

* purchaseOrder

7.2.7.15 CG_PredefinedPresentationType
Recommended Implementation Type: Code List
Used By: CG_PresentationDescription

This parameter is a code list defining pre-defined query presentation descriptions supported
by a data server. Current values that this parameter can take are:

e full - includes all defined standard elements from the information community schema.
This is a large set of elements, but it ensures that clients receive everything their users
may need to evaluate the retrieval record for further processing. Note that, while all
schema elements are returned, some elements may be meaningless for the record that
is actually returned, and may contain undefined values.

* brief - includes a minimal subset of the defined standard information community
schema elements available from the appropriate database schema.

7.2.7.16 CG_PresentationDescription
Recommended Implementation Type: Data Union

Used By: CG_QueryRequest, CG_PresentRequest
Uses: CG_PredefinedPresentationType, RecordType

This parameter type contains the name and types of the requested attributes that will be
returned by a query or present request. Alternately, this parameter may be the name of a
Predefined Presentation Type.

» attributes: (type = sequence<RecordType>) — list of attribute name/type pairs

* name: (type = CG_PredefinedPresentationType) —), identifying a predefined
presentation type.

7.2.7.17 CG_QueryExpression

Recommended Implementation Type: Data Structure
Used By: CG_QueryRequest

Uses: CG_QueryLanguage

CG_QueryExpression contains a description of the query language being used and the query
string. The query string is a character string. The query language is specified using the
CG_QueryLanguage type.

© OGC 2002 — All rights reserved 57

OGC 02-087r3

* theQuery: (type = CharacterString) — the text defining the query

* theNamespace: (type = CharacterString) — where the attributes used in theLanguage
are defined.

* theLanguage: (type = CG_QueryLanguage) — the query language being used
7.2.7.18 CG_QueryScope
Recommended Implementation Type: Code List
Used By: CG_QueryRequest

CG_QueryScope is a code list describing the size of the search space for a query. Current
valid values for this type are:

distributed
local
See Section 6.10 for a discussion of distributed search behavior.
7.2.7.19 CG_RequestID
Recommended Implementation Type: Data Structure
Used By: CG_Message, CG_StatusRequest, CG_CancelRequest, CG_CancelResponse

CG_RequestID is a compound number used to uniquely identify a specific request in a global
context. The client creates these parameters from two values, the SessionlD and a counter.
The Session ID provides a globally unique identifier for this request context. A counter
provides a session unique identifier. Joined together, they form a globally unique identifier
for a request.

sessionlD: (type = uint) — globally unique session identifier
counter: (type = uint) — session unique identifier

7.2.7.20 CG_ResultType

Recommended Implementation Type: Code List

Used By: CG_QueryRequest, CG_QueryResponse

CG_ResultType is a code list describing the type of data to be returned in a query response
message and the behavior of the message response (see Section 3.1). Current valid values for
this type are:

58 © OGC 2002 — All rights reserved

OGC 02-087r3

validate - the CG_QueryResponse is returned as soon as CG_QueryRequest has been
determined to be valid. Query processing continues after the CG_QueryResponse is
returned. CG_Status will be set to 'failure' in case of an invalid query and to
'processing ' in case of a valid query. Reasons for failure are provided in the
diagnostic of CG_QueryResponse.

resultSetID - the CG_QueryResponse is returned as soon as the resultSetID is
available and the query has completed processing.

hits- the CG_QueryResponse is returned as soon as the query has completed
processing and the number of hits has been determined. Metadata records are not
returned in the CG_QueryResponse

results - the CG_QueryResponse is returned as soon as the query has completed
processing and the results have been formatted for return. Metadata records are
returned in the CG_QueryResponse

7.2.7.21 CG_ReturnData

Recommended Implementation Type: Data Structure
Used By: CG_QueryResponse, CG_PresentResponse
Uses: CG_MessageFormat

CG_ReturnData is a data type for packaging result set elements for return to the client. This
data structure contains two components. The encoding component identifies the technique
used to encode the result set data. The payload component contains the actual encoded data.

encoding: (type = CG_MessageFormat) — this component identifies the encoding technique
used to package the catalog data. It is of type CG_MessageFormat which is defined in
Section 7.2.7.8.

payload: (type = CharacterString) — payload is a “blob” for holding the returned catalog
data. The structure of this component is defined by the encoding parameter.

7.2.7.22 CG_Schema
Recommended Implementation Type: Complex Data

Used By: CG_SchemalD

© OGC 2002 — All rights reserved 59

OGC 02-087r3

Table 9 - Minimal Mandatory Attribute Definitions

Name Single or multi word designation assigned to a data element.

Definition Statement that expresses the essential nature of a data element
and permits its differentiation from all other data elements.

Representation Type of symbol, character or other designation used to represent a
Category data element.

Form of Name or description of the form of representation for the data
Representation element, e.g. 'quantitative value', 'code’, 'text', 'icon'.

Datatype of data A set of distinct values for representing the data element value.

element values

7.2.7.23 CG_SchemalD
Recommended Implementation Type: Union Data
Used By: CG_ExplainCollectionResponse

Uses: CG_Schema, SchemaName

The CG_SchemalD is a data type used to represent the schema of a data, feature or catalog
collection. It is a union of two elements, a named identifier for a well known schema, or an
element of type CG_Schema.

schemaName : (type = CharacterString)
schema := (type = CG_Schema)
7.2.7.24 CG_SortField
Recommended Implementation Type: Data Structure
Used By: CG_QueryRequest, CG_PresentRequest
Uses: CG_SortOrder

CG_SortField provides sorting information to the server for formatting data returned to the
client. This type consists of an attribute name and sort order descriptor. The attribute name
identifies the result set attribute type to be sorted on. The sort order descriptor is of the
CG_SortOrder type.

60 © OGC 2002 — All rights reserved

OGC 02-087r3

attributeName: (type = character string) — name of attribute to sort on

sortOrder: (type = CG_SortOrder) — how the attributes are to be ordered by the sort
7.2.7.25 CG_SortOrder
Recommended Implementation Type: Code List
Used By: CG_SortField

CG_SortOrder is an enumerated code list for defining how a value is to be sorted. The
current valid values for this type are shown in Table 10.

Table 10 - Sort Order Operations

OPERATOR DESCRIPTION

Ascending Sort in ascending alphanumeric order based on the
attribute

Descending Sort in descending alphanumeric order based on the
attribute

7.2.7.26 CG_Status
Recommended Implementation Type: Code List

Used By: CG_TerminateResponse, CG_StatusResponse, CG_CancelResponse,
CG_PresentResponse, CG_BrokeredAccessResponse

CG_Status is a code list for representing the current status of a resource or request. The valid
values for this type are the following:

» success: the request has been processed without error.

» successResultsAvailable: the request has been processed without error and outputs of the
processing can be retrieved.

» processingNormal: the requested operations have begun but are not completed. No errors
have been identified.

» processingQueued: the requested operations have begun but are not completed. No errors
have been identified. The processing has been temporally suspended and will resume
when other processing has been completed.

© OGC 2002 — All rights reserved 61

OGC 02-087r3

» processingPausedOrSuspended: the requested operations have begun but are not
completed. No errors have been identified. The processing has been temporally
suspended and will resume when triggered by an external event.

» failure: the request could not be completed due to errors being encountered. On a best
effort basis the server has returned to the state prior to the request.

» failureAccessDenied : the request could not be completed because the privileges of the
client did not permit the operation. On a best effort basis the server has returned to the
state prior to the request.

7.2.7.27 CG_StatusUpdateType
Recommended Implementation Type: Code List
Used By: CG_OrderStatusUpdateType

This parameter defines how the user requesting the order desires to be kept informed about
the order processing.

» manual: The user performs the status request using the Catalog Interface

» automatic: The OHS filling the order provides status updates for the user via email

7.2.7.28 CG_UserInformation

Recommended Implementation Type: Data Structure

Used By: CG_BrokeredAccessRequest

This parameter type is a data structure used to provide information about the user.
userName: (type = Character String) — name of the user
userAddress: (type = CharacterString) — billing, home or delivery address of user

phoneNumber: (type = CharacterString) — home or office phone number for user

>
>
>
» faxNumber: (type = CharacterString) — home or office fax number for user
» emailAddress: (type = CharacterString) — e-mail address for the user

» NetAddress: (type = CharacterString) — Address of the users’ primary computer.
>

PaymentMethod: (type = CG_PaymentMethod) — defines the payment method
7.2.7.29 RecordType

Recommended Implementation Type: MetaClass
62 © OGC 2002 — All rights reserved

OGC 02-087r3

Used By: CG_PresentationDescription

A set of AttributeName - AttributeType pairs. A structural metadata entity for controlling
the instances of the class Record.

7.3 Dynamic Model

The Catalog Interface defines a stateful session (a stateless interface will be added in future

versions of the Implementation Specification). This section defines the states of the session
and the allowed transitions between the states. All other state transitions are disallowed and
are consider errors if exhibited by a server.

A physical server may support more than one session. Each of the sessions are independent
when viewed from the interface defined by this specification.

In the state models below, a transition is typically triggered by a request. Following the
messaging model introduced earlier, a CG_Request is paired with a CG_Response.
Generally, a transaction in this model is bounded by a request-response pair. Note that a
transaction can be statused or cancelled while it is active, i.e., before a response is issued.
Once the server has sent a CG_Response, the server treats the receipt of a CG_StatusRequest
(or CG_CancelRequest) as an error, to which it responds gracefully. Gracefully means that
the server should respond with a CG_StatusResponse (or a CG_CancelResponse) with a
diagnostic indicating that the RequestIDtoStatus (or the RequestIDtoCancel) is not
recognized. The server shall not change state in response to a CG_StatusRequest (or
CG_CancelRequest) when the transaction is complete, i.e., a CG_Response has been sent.

7.3.1 UML State Diagram Notation

The state diagrams in the following sections use the UMLnotation. Figure 12 provides a
summary of the UML notation used in the following sections. Transitions are the paths
between states. A transition will occur if the event occurs and the guard condition is true. If
a transition occurs, the Action is completed prior to entering the next state.

Composite states contain multiple sub-states. Both the Sequential Composite State and the
Concurrent Composite State types are used in model for the Catalog Interface. In a
Sequential Composite State only one sub-state is active at any given time. UML defines that
when a transition enters Concurrent Composite State all of the sub-states are active, although
some of the sub-states may remain in the Initial State. When exiting a composite state, all
sub-states are exited as well.

© OGC 2002 — All rights reserved 63

OGC 02-087r3

* 9

Event / Action Event / Action
Simple State Event /
Actiof
State A State B
Event [guard condition] , Transition Sequential, Composite State

Action

(] Initial State .
Event/ Action Event / Action
® Final State (State A) (State B]

Concurrent, Composite State

Figure 12 - UML State Diagram Notation

7.3.2 Catalog Server State Machine

The top-level state diagram for the Catalog Interface is shown in Figure 13. After a
successful initialization, the session will be in the Main state. The Main state is a concurrent,
composite state, consisting of four substates: Discovery, Access, Management, and Explain.
While in the Main state, CG_Requests (other than CG_TerminateRequest) may cause
transitions internal to the substates. To determine what transition occurs for the various
CG_Requests, the internals of the substates must be examined. (If a server does not support
interfaces associated with a substate, the substate is not present for sessions with that server.
For example, if the server does not support CG_access, then the Access Substate is not
present.)

When a CG_TerminateRequest is received, the session will transition from any the Main
state to the end state, ending all processing associated with the substates of Main. The
Catalog Session state diagram allows the server to end a session after a designated,
configurable duration, i.e., timeout. When a session times-out, the server closes the session
without notification to the client. The server must be prepared to respond to client requests
for a session that has timed out by returning the paired response containing a diagnostic
indicating that the session does not exist.

64 © OGC 2002 — All rights reserved

OGC 02-087r3

4 N

OGC Catalog Session
CG_InitSessionRequest /

CG_CancelRequest /
clean-up session,

CG_CancelResponse,
CG_StatusRequest / Initializing CG_InitSessionResponse >@
CG_StatusResponse Session » />
J A

CG_TerminateRequest /

session established / clean-up session,
CG_InitSessionResponse CG_TerminateResponsg,

timeout /
clean-up session

(Main

_ /

Figure 13 - Catalog Session State Diagram

7.3.3 Discovery State

Two views of the Discovery State diagram are provided: Figure 14 shows an abbreviated
state diagram, Figure 15 shows the complete Discovery state diagram. The abbreviated
version is only provided to assist the reader in understanding the complete diagram.

A session can be in the Discovery substate, once a successful initialization has occurred at
which time the Discovery substate will be in the initial state. Upon receiving any
CG_QueryRequest, the Discovery state will transition to the Processing Query state.
Transitions leaving the Processing Query state are dependent upon the resultType that was
requested in the CG_QueryRequest that caused entry into the Processing Query state. The
four potential values for resultType are Validate, Result Set ID, Hits, Results. Ifa
CG_PresentRequest is sent by the client prior to the query completing, the session will
transition to the Processing Query and Formatting Results state. The formatting of records
and a CG_PresentResponse must occur causing a transition to the Processing Query state,
prior to completing the query and sending a CG_QueryResponse, if necessary.

When the query completes and the resultType was not Results, the state will transition to the
Idle state, sending a CG_QueryResponse unless the resultType was Validate, in which case a
response has already been sent. When the resultType was Results, the state will pass to the
Formatting Records for Query state, until the results are ready and a CG_QueryResponse
containing the records can be sent. While in the Idle state, a CG_PresentRequest may be sent
by the client, in which case, if a result set is present, the state will transition to the Formatting
Records state, until the results are ready and a CG_QueryResponse containing the records

© OGC 2002 — All rights reserved 65

OGC 02-087r3

can be sent. As will be seen in the next diagram, there need not be a result set when the
Discovery substate is Idle. If no result set is present while in the Idle state and a
CG_PresentRequest is received, the state will not transition and a CG_PresentResponse will
be returned with a diagnostic.

If a CG_QueryRequest is received while in the Idle state, the result set for the session, if
present, will be reset, and the state will transition to the Processing Query state, creating a
new result set. A catalog session can only have a single result set. (Future enhancements of
the Catalog Interface may allow multiple result sets to exist in a session.) The result set is
also deleted when a CG_TerminateRequest is received and the Catalog Interface state, which
includes the Discovery substate, transitions from Main to the end state.

a8)

D|SCOUEI’¥
CG_CueryRequest J CG_QueryRequest /
Initialize msult et Fasst msult sst
_ Cluary 2 complete [resuliTypeain
Responae Ready |re=aultT,lpr_a n Processing | ©9-QueryRequest was "validate"] /
CG_OueryRequest was ‘validats") a 9
CG_QuaryResponse uery
Query is complete [resultTypein A
\". CGE_QueryRequest was “hits” or "‘3@
= "result Sat 1D 4 C‘@ '%5;,

G _QuenyResponsa

Processing
Cuery and
Faormatting
Records

Formatting
Records for Query

Figure 14 - Discovery State Diagram (without Status and Cancel)

The complete Discovery state diagram adds CG_StatusRequest and CG_CancelRequest. The
substates of Discovery remain the same, but additional transitions are present. If a
CG_CancelRequest is received while in the Processing Query state, the session will
transition to the Idle state. Depending upon the value of the freeResources parameter in the
CG_CancelRequest, a result set may or may not exist once in the Idle State. Note that
because the client sets the request ID in a request, the client knows the ID that is used in a
status or cancel request.

66 © OGC 2002 — All rights reserved

OGC 02-087r3

r CGE_QueryRequest /

Resst result set Discovery

CGE_CancelRequest,
[GG_QueryResponss was sant] /
CG_CancelResponsa

CE_ QuernyRequest f
Initialize result sst

CG_StatusAesponss

CG_StatusRequest /

Query B complete [resultTypein
CGE_CueryRequest was 'validate"] /
L

Response Ready [resultTypein
CGE_QueryRequest was 'validate"] /
CG_QueryResponze

Processing CG_StausReguest /

CG_StwusResponss

Cluery i completa [resuliTypein

s A
%_‘- [o{c] Ouar,-'ﬁ‘a_quast was "hits” or Cfo}
&@ result Sat D7)/ C‘G@l,.

CGE_OuenyResponse

CGE_CancelRequest,

[CG_QuenyResponss was not sent]
CG_CancelResponsa,
CG_QueryResponse

Processing
Query and
Farmatting
Records

CG_CancelRequest /
G _CancelResponse,
C G PresantResponze

Formatting
CG_CancelRequest / Records

ZGE_Cancel Respons
GG _PresantResponze

CG_StatusFeqguest /
G_CancelRequest / CG_StetusHespons:
CG_CancelRespon se,

CG PresantResponse

Formatting CG_StetusRaguest /
L Records for Query 06 StatsAesponss _j

o6 StetusFeguest / Cuery i complete [resultTypain
C6_SteResponss ©O_QueryRequest was results’]

Figure 15 - Discovery State Diagram (Complete)

7.3.4 Access State Diagram

The Access State Diagram is shown in Figure 16. A session can be in the Access substate,
once a successful initialization has occurred at which time the Access substate will be in the
initial state. Upon receiving a CG_BrokeredAccessRequest, the Access state will transition
to the Processing Request State. During the Processing Request State, the state of an Order
may be modified based on the contents of the CG_BrokeredAccessRequest. The state of the
Order is a separate state machine; see Figure 17 and Figure 18. Transitions in the Order state
may occur independent of OGC Catalog Interface requests, e.g., order fulfilled is a transition
that occurs without a CG_BrokeredAccessRequest. The server may delete orders. The server
must be prepared to respond to client request for an order that has been deleted by returning
the paired response containing a diagnostic indicating that the order does not exist.

Once the processing of a CG_BrokeredAccessRequest has completed a response is sent and
the state transitions to Idle. Transition out of the Idle state occurs upon the client sending a
CG_BrokeredAccessRequest in which case the state transitions to Processing Request.
When a CG_TerminateRequest is received, the Catalog Interface state, which includes the
Access substate, transitions from Main to the end state also closing the Access state.

© OGC 2002 — All rights reserved 67

OGC 02-087r3

Access

CG_BrokeredAccessRequest /

CG_BrokeredAccessRequest /
CG_StatusRequest /
CG_StatusResponse

Processing
Request

CG_CancelRequest /
CG_CancelResponse,
CG_BrokeredAccessResponse

request complete /
CG_BrokeredAccessResponse

Figure 16 - Access State Diagram

CGﬁBrokered/?;cessRe_?ues(derM .
equestType = “orderMonitor”] s 3
CG_BrokeradhcoassResponse Order Estimation

order deleted/

order not
valid

order not valid during estimation /

CG_BrokeredAccessRequest
[RequestType = “orderMonitor”] /
CG_BrokeredAccessResponse

. estimation complete /
order being
® >

estimated

order deleted/

order
estimated

A4

y

CG_BrokeredAccessRequest
[RequestType = “orderEstimate”] /
CG_BrokeredAccessResponse

CG_BrokeredAccessRequest
equestType = “orderMonitor] /
CG_BrokeredAccessRequest CG_BrokeredAccessResponse

[RequestType = “orderCancel”] /
CG_BrokeredAccessResponse

order deleted/

order
cancelled

CG_BrokeredAccessRequest
equestType = “orderMonitor’] /
CG_BrokeredAccessResponse

Figure 17 - Order Estimation State Diagram

68 © OGC 2002 — All rights reserved

OGC 02-087r3

order not valid

CG_BrokeredAccessRequest
[RequestType = “orderMonitor’]
CG_BrokeredAccessResponse

. u| order being
quoted
CG_BrokeredAccessRequest
[RequestType = “orderQuoteandSubmit”] /
CG_BrokeredAccessResponse

CG_BrokeredAccessRequest
[RequestType = “orderCancel’]
CG_BrokeredAccessResponse

order
cancelled

during quotation /,

CG_BrokeredAccessRequest
[RequestType = “orderMonitor’] /
CG_BrokeredAccessResponse

order deleted/

order not
valid

order not valid
during processing /

CG_BrokeredAccessRequest
R

\ CG_BrokeredAccessResponse

order being order fulfilled /
processed

quotation
complete /

CG_BrokeredAccessRequest
[RequestType = “orderCancel’],
processing cannot be cancelled /
CG_BrokeredAccessResponse

CG_BrokeredAccessRequest [RequestType = “orderCancel],
processing can be cancelled /
CG_BrokeredAccessResponse

order deleted/

CG_BrokeredAccessRequest

uestType = “orderMonitor’] /

[Req
CG_BrokeredAccessResponse

order
completed

Order Submission

[RequestType = “orderMonitor’] /

order deleted/

CG_BrokeredAccessRequest
[RequestType = “orderMonitor}
CG_BrokeredAccessResponse

1

Figure 18 - Order Submit State Diagram

7.3.5 Management State

The Management State Diagram is shown in Figure 19. A session can be in the Management
substate, once a successful initialization has occurred at which time the Management substate
will be in the initial state. The requests are independent and paired, i.e., the response upon
leaving the Processing Request state is determined by the request that caused the transition

into the Processing Request State.

Once the processing of a request has completed a response is sent and the state transitions to
Idle. Transition out of the Idle state occurs upon the client sending a subsequent
management request in which case the state transitions to Processing Request. When a
CG_TerminateRequest is received, the Catalog Interface state, which includes the
Management substate, transitions from Main to the end state also closing the Management

state.

© OGC 2002 — All rights reserved

69

OGC 02-087r3

Management

CG_CreateCatalogRequest or
CG_CreateMetadataRequest or
CG_UpdateCatalogRequest or
CG_DeleteCatalogRequest /
CG_CreateCatalogRequest or

CG_CreateMetadataRequest or
. CG_UpdateCatalogRequest or
CG_StatusRequest / |: Processing CG_DeleteCatalogRequest /

CG_StatusResponse Request

CG_CancelRequest / request complete /
CG_CancelResponse, CG_CreateCatalogResponse or
(CG_CreateCatalogResponse or CG_CreateMetadataResponse or
CG_CreateMetadataResponse or CGiUpdatcCatalochsponSC or
CG_UpdateCatalogResponse or CG DeleteCatalogResponse

CG_DeleteCatalogResponse)

Idle \
J

Figure 19 - Management State Diagram

7.3.6 Explain State Diagram

The Explain State Diagram is shown in Figure 20. A session can be in the Explain substate,
once a successful initialization has occurred at which time the Explain substate will be in the
initial state. The requests are independent and paired, i.e., the response upon leaving the
Processing Request state is determined by the request that caused the transition into the
Processing Request State.

Once the processing of a request has completed a response is sent and the state transitions to
Idle. Transition out of the Idle state occurs upon the client sending a subsequent explain
request in which case the state transitions to Processing Request. When a
CG_TerminateRequest is received, the Catalog Interface state, which includes the Explain
substate, transitions from Main to the end state also closing the Explain state.

70 © OGC 2002 — All rights reserved

OGC 02-087r3

Explain

CG_ExplainServerRequest or
CG_ExplainCollectionRequest /

CG_ExplainServerRequest or

. CG_ExplainCollectionRequest /
Processing

Request

CG_StatusRequest /
CG_StatusResponse

CG_cancelRequest /
CG_CancelResponse,
(CG_ExplainServerResponse or
CG_ExplainCollectionResponse)

Y
Idle \

Figure 20 - Explain State Diagram

response ready /
CG_ExplainServerResponse or
CG_ExplainCollectionResponse

8 OGC_Common Catalog Query Language

This section defines the OGC Common Catalog Query Language. OGC_Common is the
query language to be supported by all OGC Catalog Interfaces in order to support search
interoperability.

8.1 Assumptions during the development of OGC_Common Query Language:
* The query will have a syntax similar to the SQL “Where Clause”

* The expressiveness of the query will not require extensions to various current
query systems used in geospatial catalog queries other than the implementation of
some geo operators.

* The query language is extensible

* OGC_Common supports both tight and loose queries. A tight query is defined
where if a catalog doesn’t support an attribute/column specified in the query, no
entity/row can match the query and the null set is returned. In a loose query, if an
attribute is undefined, it is assumed to match

8.2 BNF definition of OGC_Common Query Language
<SQL termnal character> ::=
<SQ@. | anguage character>
<SQ. | anguage character> ::=

<simple Latin letter>

© OGC 2002 — All rights reserved 71

OGC 02-087r3

| <digit>
| <SQ special character>
<sinple Latin letter> ::=
<sinmple Latin upper case letter>
| <simple Latin | ower case letter>
<sinmple Latin upper case letter> ::=
Al B| C| D| E|] F|] G| H|] '] J] K] L] M| N|J O
| PI QI RI S| T U] V] W| X] Y] Z
<sinple Latin | ower case letter> ::=
alblcldlelflglh] i jl k[I]m[n]|o
lplalrl sl t]ulv]w|]x]y]|z
<digit> ::=

0| 1] 2| 3| 4| 5| 6| 7] 8] 09

<SQ. special character> ::

<space>

| <doubl e quote>

| <percent>

| <anpersand>

| <quote>

| <left paren>

| <right paren>

| <asterisk>

| <plus sign>

| <commra>

| <m nus sign>

| <period>
| <solidus>
| <col on>

| <semi col on>
72 © OGC 2002 — All rights reserved

OGC 02-087r3

| <less than operator>

| <equal s operator>

| <greater than operator>

| <question mark>

| <left bracket>

| <right bracket>

| <circunflex>

| <underscore>

| <vertical bar>

| <left brace>

| <right brace>
<space> ::= [*space character in character set in use In ASCII it would be 40*/
<doubl e quote> ::="
<percent> ::= %
<anpersand> ::= &
<quote> ::=
<left paren> ::= (
<right paren> ::=)
<asterisk> ::= *
<plus sign> ::= +
<comma> ::=

<m nus sign> ::= -

<period> ::= .
<solidus> ::=/
<colon> ::=:

<sem colon> ::=
<l ess than operator> ::= <
<equal s operator> ::= =

<greater than operator> ::= >

© OGC 2002 — All rights reserved 73

OGC 02-087r3

<question mark> ::=?
<l eft bracket> ::=|
<right bracket> ::=]

<circunflex> :

<underscore> ::=

<vertical bar> :

<left brace> ::={
<right brace> ::=}
<separator> ::= { <comment> | <space> | <newine> }..

/* The next section of the BNF defines the tokens available to the | anguage. |
have del eted the concepts of bit string, hex string and nati onal
character string literal, since those types do not have equivalents in
G AS or CIP/GEOC. Also a significant nunber of the keywords have been
renoved with Keywords have been added to support the geo literals. */

<t oken> ::=
<nondel i m ter token>
| <delimter token>
<nondel im ter token> ::=
<regular identifier>
| <key word>
| <unsigned nureric literal >
<regular identifier> ::= <identifier body>
<identifier body> ::=
<identifier start> [{ <underscore> | <identifier part>1}...]
<identifier start> ::= <sinple latin letter>
<identifier part> ::=
<identifier start>
| <digit>
<key word> ::=

<reserved word>

<reserved word> :

74 © OGC 2002 — All rights reserved

OGC 02-087r3

AND | POINT | LINESTRI NG
| POLYGON | MULTI PO NT | MULTI LI NESTRING | MULTI POLYGON

| EMPTY | DATE | TIME | TIMESTAMP| FALSE| TRUE| UNKNOWN |LIKE | MNUTE |
NONTH

| NOT | NULL
<unsi gned nuneric literal > :=
<exact nuneric literal >
| <approximate nunmeric literal >
<exact nuneric literal> ::=
<unsigned integer> [<period> [<unsigned integer>1]]
| <period> <unsigned integer>
<unsigned integer> ::= <digit>..
<approxi mate nuneric literal> ::= <manti ssa> E <exponent >

<manti ssa> ::= <exact nuneric literal >

<exponent> ::= <signed integer>
<signed integer> ::= [<sign>] <unsigned integer>
<sign> ::= <plus sign> | <minus sign>
< character string literal> ::=
<quote> [<character representation> ..] <quote>
<character representation> ::=
<nonquot e character>
| <quote synbol >
<quot e synbol > ::= <quot e><quot e>
/*End of non delimiter tokens*/

/* | have limted the delimter tokens by elimnating, interval strings and
delimted identifiers BNF and sinplifying the | egal character set to
the characters to a single set so no identification of character set
woul d be needed decision. */

<delimter token> ::=
<character string literal >

| <SQ special character>

© OGC 2002 — All rights reserved 75

OGC 02-087r3

| <not equal s operator>
| <greater than or equal s operator>
| <less than or equal s operator>
| <concatenation operator>
| <doubl e greater than operator>
| <right arrow>
| <left bracket>
| <right bracket>
< character string literal> ::=
<quote> [<character representation>. ..] <quote>
<character representation> ::=
<nonquot e char act er>
| <quote synbol >
<quot e synbol > :: = <quot e><quot e>
<not equal s operator> ::= <>
<greater than or equals operator> ::= >=
<l ess than or equals operator> ::= <=

/*The following section is intended to give context for identifier and
nanespaces. It assunes that the default namespace is specified in the
query request and does not allow any overrides of the namepace */

<identifier> ::=
<identifier start [{ <underscore> | <identifier part>1}...]
< identifier start> ::= <sinple Latin letter>
<identifier part> ::=
<sinmple Latin letter>
| <digit>
<attribute nane> ::= <sinple attribute nane>
| <compound attribute nane>
<sinmple attribute nane>::=<identifier>

<compound attribute name>::= < identifier><period> [{<identifier><period>}.]

76 © OGC 2002 — All rights reserved

OGC 02-087r3

<sinple attribute nane>
/*The rest of the BNF is the real BNF for the query capabilities.*/
<search condition> ::=<bool ean val ue expression>
<bool ean val ue expression> ::=
<bool ean terne
| <bool ean val ue expression> OR <bool ean ternme
<bool ean terms ::=
<bool ean factor>
| <bool ean tern> AND <bool ean factor>
<bool ean factor> ::=
[NOT] <bool ean primary>
<bool ean prinmary> ::=
<predi cat e>
| < routine invocation>
<predicate> ::=
<conpari son predicate>
| <text predicate>

| < null predicate>

<conparison predicate> ::= <attribute nane> <conp op> <literal >

<text predicate> ::= <attribute nane> [NOT] LIKE <character pattern>

<nul | predicate> ::= <attribute nane> IS [NOT] NULL

<character pattern> ::= <character string literal>/* In a character pattern the

character percent is used as a wildcard to represent an arbitrary

string. This allows LIKE to inplenment the effect of many characters
mat chi ng operations, such as: contains, begins with, ends with, not
contains, not begins with, not ends with, and so forth. For exanple:

attribute like '%ontains_this%
attribute like 'begins_with_this%
attribute like '%nds with_this'

attribute like ‘d_ve will natch ‘dave’ or “dove””

© OGC 2002 — All rights reserved 77

OGC 02-087r3

attribute not like "% |1 _not_contain_this%
attribute not like "will_not_begin_wth_this%
attribute not like "%ill_not_end_with_this */
<conmp op> ::=
<equal s operat or>
| <not equal s operator>
| <less than operator>
| <greater than operator>
| <less than or equal s operator>
| <greater than or equal s operator>
<literal> ::=
<signed nuneric literal >
| <general literal>
<signed nuneric literal> ::=
[<sign>] <unsigned numeric literal >
<general literal> ::=
<character string literal >
| <datetime literal >
| <boolean literal >
| <geography litera
<bool ean literal> ::=
TRUE
| FALSE
| UNKNOMWN
<routine invocation> ::=
| <geoop name>< georoutine argunment |ist>
| <rel geoop nane><rel geoop argunent |ist>

| <routine name> <argunent |ist>

78 © OGC 2002 — All rights reserved

OGC 02-087r3

<routine nane> ::= < attribute nane>

<geoop name> ::= EQUAL | DI SJO NT || NTERSECT | TOUCH | CROSS | W THI N | CONTAI NS
| OVERLAP | RELATE

<rel geoop nane> ::= DWTH N | BEYOND

<argunent list>:
<l eft paren> [<positional argunents>] <right paren>
<posi tional argunents> ::=
<argunent> [{ <comma> <argunment> }...]

<argunent> ::= <literal> | <attribute name>
<georoutine argunent list> ::=

<l eft paren> <attribute nane> <conma> <geonetry literal> <right paren>
<rel geoop argunent list> ::=

<l eft paren> <attribute name> <conma> <geonetry literal > <comma> <tol erance>

<right paren>
<tol erance> ::=

<unsi gned nuneric literal > <conmma> <di stance units>

<di stance units> ::= = “feet” | “meters” | “statute mles” | “nautical mles”
“kil ometers”
/*this set of units is just an exanple. The real list of distance unit must be

devel oped*?
<geonetry literal> :=
<Poi nt Tagged Text >
| <LineString Tagged Text>
| <Polygon Tagged Text>
| <MultiPoint Tagged Text>
| <MultilineString Tagged Text >
| <Mul ti Pol ygon Tagged Text >
| <GeornetryColl ection Tagged Text>
| <Envel ope Tagged Text>
<Poi nt Tagged Text> : =

PO NT <Poi nt Text >

© OGC 2002 — All rights reserved 79

OGC 02-087r3

<LineString Tagged Text> :=

LI NESTRI NG <Li neStri ng Text >
<Pol ygon Tagged Text> : =

POLYGON <Pol ygon Text >
<Mul ti Poi nt Tagged Text> :=

MULTI PO NT <Mul ti poi nt Text >
<Mul tiLineString Tagged Text> :=

MULTI LI NESTRI NG <Mul ti Li neString Text>
<Mul ti Pol ygon Tagged Text> : =

MULTI POLYGON <Mul ti Pol ygon Text >
<CGeonetryCol | ecti on Tagged Text> : =

GEOMVETRYCOLLECTI ON <GeonetryCol | ection Text>

<Poi nt Text> := EMPTY | <left paren> <Point> <right paren>
<Poi nt > : = <x> <space><<y>
<x> := nuneric literal

<y> := nuneric literal
<LineString Text> := EMPTY
| <left paren> <Point > {<comma> <Point > }..<right paren>

<Pol ygon Text> := EMPTY

| <left paren> <LineString Text > {<comma> < LineString Text > }.<right
par en>

<Mul ti point Text> := EMPTY
| <left paren> <Point Text > {<comma> <Point Text > }... <right paren>
<Mul ti LineString Text> := EMPTY

| <left paren> <LineString Text > {<comma> < LineString Text > }... <right
par en>

<Mul ti Pol ygon Text> := EMPTY

| <left paren> < Polygon Text > {<conma> < Polygon Text > }... <right
par en>

<GeonetryCol | ection Text> := EMPTY

80 © OGC 2002 — All rights reserved

OGC 02-087r3

| <left paren> <Geonetry Tagged Text> {<comma> <Geonetry Tagged Text> }...

<right pare

<Envel ope Tagged Text> :

n>

ENVELCOPE <Envel ope Text >

<Envel ope Text> := EMPTY

| <left paren> > <WestBoundLongitude> <comra> East BoundLongi t ude> <conma>

Nor t hBoundLat it ude <comma> <Sout hBoundLatitude> < <right paren>

<Weést BoundLongi t ude> : =
<East BoundLongi t ude> : =
<Nor t hBoundLat i tude> : =

<Sout hBoundLat i tude> : =

nuneric litera

nunmeric litera

nuneric litera

nurmeric litera

<datetinme literal> ::=

<date literal >
| <tine literal>
| <tinestanp literal >

<date literal> ::=

DATE <date string>

<date string> ::=

<quot e> <unquot ed date string> <quote>

<unquot ed date string> ::= <date val ue>

<date value> ::=

<years val ue> <m nus si gn> <nont hs val ue><m nus si gn> <days val ue>

<years value> ::= <datetine val ue>

<dat eti nme val ue> ::= <unsigned integer>
<nmont hs val ue> ::= <datetine val ue>
<days val ue> ::= <datetinme val ue>

<tinme literal> ::=

TIME <tine string>

© OGC 2002 — All rights rese

rved

81

OGC 02-087r3

<time string> ::=
<quot e> <unquoted tinme string> <quote>
unquoted time string> ::=
<time value> [<time zone interval >]
<time value> ::=
<hours val ue> <col on> <m nutes val ue> <col on> <seconds val ue>
<hours val ue> ::= <datetine val ue>

<m nutes value> ::= <datetine val ue>

<seconds val ue> :
<seconds integer value> [<period> [<seconds fraction>1]]
<seconds integer val ue> ::= <unsigned integer>

<seconds fraction> ::= <unsigned integer>

<time zone interval> ::=

<Z>| <si gn> <hours val ue> <col on> <mi nutes value> /* Z= Coordi nat ed
Uni versal Tine, signed numerics are offsets from UTC*/

<tinmestanp literal> ::=

TI MESTAMP <ti nmestanp string>

<timestanmp string> ::=

<quot e> <unquoted SQL timestanp string> <quote>

| <quot e> <unquoted | SO timestanp string> <quote>
<unquoted SQ tinestanp string> ::=

<unquot ed date string> <space> <unquoted tine string>
<unquoted 1SO timestanp string> ::=

<unquot ed date string> <T> <unquoted time string>

82 © OGC 2002 — All rights reserved

OGC 02-087r3

9 Z39.50 Profile
9.1 Architecture

The Z39.50 Profile uses a message-based client server architecture. The profile maps each of
the general model operations to a corresponding service specified in the ANSI/NISO Z39.50
Application Service Definition and Protocol Specification [/1SO 23950]
[Attp.//lcweb.loc.gov/z3950/agency/document.html]. For conformance, clients and servers
must support Z39.50 Version 3.

The Z39.50 Profile specifies the use of the following transport mechanisms:

* HyperText Transport Protocol (HTTP) where services are encoded in XML using the
XML Encoding Rules (XER) [Attp://asf.gils.net/xer].

* Directly over TCP where services are encoded using the Basic Encoding Rules (BER)
[1SO 8825].

9.1.1 Supported Services

Each operation specified in this profile corresponds to a Z39.50 Service, and consists of a
client request message followed by a server response message. The Z39.50 Services used in
this profile include the Init, Search, Present, Resource Control, Trigger Resource Control,
Sort, Extended Services and Close.

9.1.2 Transport (HTTP)

The client transmits request messages to the server and the server returns responses to the
client over HTTP version 1.0 or 1.1. A logical session is maintained between the client and
server using state management as specified in JETF RFC 2109: HTTP State Management
Mechanism [http://www.w3.org/Protocols/rfc2109/rfc2109], where the SessionlD is
maintained in a cookie named “XERSessionld”.

Request messages are transmitted using the HTTP POST method. As other HTTP
methods become widely available, other HTTP methods may be used (such
as the HTTP SEARCH method). The content of the HTTP method
contains the request message, and the content of the HTTP response
contains the response message. In both cases, the message content is
encoded in XML and the Content-Type is application/x-xer-z3950. Once
the Content Type is registered, the Content Type will become
application/xer-z3950.

9.1.3 Transport (TCP)

The client transmits request messages to the server and the server returns response messages
to the client directly over TCP as specified in IETF RFC 1729: Using the Z39.50 Information

© OGC 2002 — All rights reserved 83

OGC 02-087r3

Retrieval Protocol in the Internet Environment [fip.//fip.ietf.org/rfc/rfcl729.txt], where all
request and response messages are encoded using BER.

9.2 General Model to Z39.50 Profile Message Mapping

Table 11 provides a mapping between general model operations and the Z39.50 Profile
services. The Z39.50 Profile messages are defined in Section 9.4. The messages listed under
the Z39.50 Profile Service column are representative operations from the ISO 23950 standard
that provide appropriate functionality. Further interpretation is provided through details in the
footnotes. This table is provided to orient the programmer in correspondence with the general
model but does not provide parameter-level mapping. This table also only depicts the
mandatory (Discovery) catalog services operations and does not declare equivalence for the
optional management and access operations in this version.

84 © OGC 2002 — All rights reserved

OGC 02-087r3

Table 11 - General Model to Z39.50 Profile Message Mapping

General Model Operation 739.50 Profile Service
CG_InitSessionRequest initRequest’
CG_InitSessionResponse InitResponse’
CG_TerminateRequest close”
CG_TerminateResponse close
CG_ExplainServerRequest searchRequest™*
CG_ExplainServerResponse searchResponse
CG_StatusRequest triggerResourceControlReq
uest
CG_StatusResponse resourceControlRequest
CG_CancelRequest triggerResourceControlReq
uest
CG_CancelResponse none’
CG_QueryRequest searchRequest™° and
sortRequest
CG_QueryResponse searchResponse and
sortResponse
CG_PresentRequest presentRequest
CG_PresentResponse presentResponse
CG_ExplainCollectionRequest searchRequest’
CG_ExplainCollectionResponse searchResponse’
CG_BrokeredAccessRequest extendedServicesRequest®
CG_BrokeredAccessResponse extendedServicesResponse”

"' The following init Options are used in this profile: search, present, sort, extended-services,
trigger-resource-control, named result sets, and resource-control.

© OGC 2002 — All rights reserved 85

OGC 02-087r3

? Although Z39.50 permits both the client and server to initiate a Close request, for
conformance with the general model, only the client is permitted to initiate a Close request.
In practice, a server may terminate a session after a reasonable amount of idle client activity.

3 Note that the CG_ResultType values of results and hits are supported in this profile. The
CG_ResultType values of result set ID and validate are unsupported.

* The CG_ExplainServerRequest is implemented using a searchRequest on the Explain
Database with ExplainCategory = TargetInfo and Databaselnfo.

> For HTTP transport, a message with no content is returned.

% The CG_CatalogEntryType and CG_QueryScope parameters in the CG_QueryRequest are
implemented in the Z39.50 Profile as external elements of the SearchRequest. The externals
are defined in Section 9.5.1.

" The CG_ExplainCollectionRequest is implemented using a searchRequest on the Explain
Database with ExplainCategory = TargetInfo and RetrievalRecordDetails.

¥ Brokered Access is implemented in the Z39.50 Profile using the Order Extended Service
defined in Section 9.5.2. The Order Extended Service uses the Z39.50 Extended Service
mechanism.

9.3 Example Sequence Diagram

The following sequence diagram illustrates a typical set of transactions that may occur
between a client and server, and between the server and its interface to an external catalog
system. The client sends an initRequest message to the server, the external system processes
the initRequest message by initializing a session with the client and the server returns an
initResponse message to the client. This interaction establishes a session in which all
subsequent interactions occur.

86 © OGC 2002 — All rights reserved

OGC 02-087r3

Client Servic
initRequest
< — Initialize
< initResponse | | session
searchRequest
Pt —— -3
Perform
< searchResponse | - _________| search
presentRequest
Obtain
< presentResponse | | records
close
Pr----o-m-m->
Close
| .
< S I session

Figure 21 - Z39.50 Profile Sequence Diagram

Next the client constructs a query and sends the query in the searchRequest message to the
server. The server runs the search on the external catalog system, and returns the requested
results in the searchResponse message. If the search was successful, a virtual result set is
created and the client may request records from the result set using the presentRequest
message. In the presentRequest, the client may request any contiguous set of records from
the result set (e.g., records 10 through 20). The server returns the records to the client in the
presentResponse message. The client may continue to perform additional searches and
record retrievals, or may close the session with the server by sending a close message.
Optionally, the server may respond with a close message.

© OGC 2002 — All rights reserved 87

OGC 02-087r3

9.4

Interface Definition — XML

For HTTP transport the XML messages are defined by the XML encoding rules. The
specification for the XML encoding rules can be found at http://asf.gils.net/xer . This
specification derives the encoding of the Application Protocol Data Units (APDUs) from the

ASN.1 specification of Z39.50 available from
http://lcweb.loc.gov/z39.50/agency/document.html .

For information a DTD for Z39.50 encoded using XER 1is given below.

<I-- The | S23950 nanespace is the specification in ASN 1
mai nt ai ned at "http://1cweb. | oc. gov/z3950/ agency/ asnl. htm " -->

<! ELEMENT Search (

<l--

i ni t Request |

i ni t Response |

sear chRequest |

sear chResponse |

pr esent Request |

pr esent Response |
resour ceCont r ol Request

resour ceCont r ol Response |

sort Request |
sort Response |
ext endedSer vi cesRequest

ext endedSer vi cesResponse |

cl ose
) >

Initialization service definitions -->

<! ELEMENT i ni t Request (

ref erencel d?,

pr ot ocol Ver si on,

opti ons,

pref erredMessageSi ze,
excepti onal Recor dSi ze,
i dAut henti cati on?,

i mpl enent ati onl d?,

i mpl ement at i onNane?,

i mpl enent at i onVer si on?,
user | nf ormati onFi el d?,
ot her I nf 0?

)>

<! ELEMENT i ni t Response (

88

ref erencel d?,

pr ot ocol Versi on,

opti ons,

pref erredMessageSi ze,
excepti onal Recor dSi ze,
resul t,

i npl enent ati onl d?,

i mpl ement at i onNane?,

i mpl enent ati onVer si on?,
user | nf or mat i onFi el d?,
ot her | nf 0?

) >

© OGC 2002 — All rights reserved

<l--

Search service definitions -->

<! ELEMENT sear chRequest (

referencel d?,

smal | Set Upper Bound,

| ar geSet Lower Bound,

medi unBet Pr esent Nunber ,
repl acel ndi cat or,

resul t Set Nane,

dat abaseNanes,

smal | Set El enent Set Nanes?,
medi unBet El enent Set Nanes?,
pr ef erredRecor dSynt ax?,
query,

addi ti onal Sear chl nf 0?,

ot her | nf 0?

) >

<! ELEMENT sear chResponse (

<l--

ref erencel d?,

resul t Count,

nunber O Recor dsRet ur ned,
next Resul t Set Posi ti on,
sear chSt at us,

resul t Set St at us?,
present St at us?,
records?,

addi ti onal Sear chl nf 0?,
ot her | nfo?

) >

Present service definitions -->

<! ELEMENT pr esent Request (

referencel d?,

resul tSetld,

resul t Set St art Poi nt,
nunber O Recor dsRequest ed,
recor dConposi ti on?,

pr ef err edRecor dSynt ax?,
ot her | nf 0?

) >

<! ELEMENT pr esent Response (

<l--

ref erencel d?,

nunber O Recor dsRet ur ned,
next Resul t Set Posi ti on,
present St at us,

records?,

ot her | nfo?

) >

Resource control service definition

<! ELEMENT r esour ceCont r ol Request (

ref erencel d?,

suspendedFl ag?,

resour ceReport ?,

parti al Resul t sAvai | abl e?,
responseRequi r ed,

tri gger edRequest Fl ag?,

ot her I nfo?

) >

<! ELEMENT resour ceCont rol Response (

ref erencel d?,
conti nueFl ag,
resul t Set Want ed?,

© OGC 2002 — All rights reserved

OGC 02-087r3

&9

OGC 02-087r3

ot her | nfo?
) >

<l-- Close service definition -->
<! ELEMENT cl ose (

ref erencel d?,

cl oseReason,

di agnosti cl nfornmati on?,

resour ceReport For mat ?,

resour ceReport ?,

ot her | nfo?

) >

<l-- Sort service definition -->
<! ELEMENT sort Request (
referencel d?,
i nput Resul t Set Nanes,
sort edResul t Set Nane,
sort Sequence,
ot her | nfo?
) >
<! ELEMENT sort Response (
referencel d?,
sort St at us,
resul t Set St at us?,
di agnostics?,
ot her | nf 0?
) >

<l -- extendedServices service definition -->
<! ELEMENT ext endedServi cesRequest (

ref erencel d?,

function,

packageType,

packageNane?,

user| d?,

retentionTi ne?,

per m ssi ons?,

descri ption?,

t askSpeci fi cParaneters?,

wai t Acti on,

el enent s?,

ot her | nf 0?

) >

<! ELEMENT ext endedServi cesResponse (
ref erencel d?,
oper ati onSt at us,
di agnostics?,
t askPackage?,
ot her | nf 0?
) >

<l-- Auxiliary initialization service definitions -->

<! ELEMENT pr ot ocol Versi on (#PCDATA)> <!-- val ues: version-1 version-2
version-3 -->

<! ELEMENT options (#PCDATA) > <I-- values: search present del Set
triggerResourceCtrl resourceCrl sort
ext endedSer vi ces nanedResul t Sets -->

<! ELEMENT pref erredMessageSi ze (#PCDATA)> <!-- integer -->

<! ELEMENT exceptional RecordSi ze (#PCDATA)> <!-- integer -->

90 © OGC 2002 — All rights reserved

<! ELEMENT result (#PCDATA) > <l-- values: true | false -->
<! ELEMENT i npl enent ati onl d (#PCDATA) > <!-- general string -->
<! ELEMENT i npl errent at i onName (#PCDATA) > <l-- general string -->
<! ELEMENT i npl enent ati onVer si on (#PCDATA)> <!-- general string -->
<! ELEMENT user | nformationFi el d (External)>
<I-- Auxiliary search service definitions -->
<! ELEMENT snal | Set Upper Bound (#PCDATA) > <l-- integer -->
<! ELEMENT | ar geSet Lower Bound (#PCDATA) > <l-- integer -->
<! ELEMENT medi unSet Present Nunber (#PCDATA)> <!-- integer -->
<! ELEMENT repl acel ndi cat or (#PCDATA) > <l-- values: true | false -->
<! ELEMENT resul t Set Nane (#PCDATA) > <l-- general string -->
<! ELEMENT smal | Set El ement Set Names (generi cEl enent Set Name | dat abaseSpecific)>
<! ELEMENT nedi unSet El enrent Set Nanes (generi cEl ement Set Nane | dat abaseSpecific)>
<! ELEMENT preferredRecordSynt ax (#PCDATA)> <!-- object identifier -->
<! ELEMENT addi ti onal Searchl nfo (#PCDATA)> <!-- subelenent onmitted -->
<! ELEMENT resul t Count (#PCDATA) > <l-- integer -->
<! ELEMENT searchSt at us (#PCDATA) > <l-- values: true | false -->
<l-- Query definition -->
<! ELEMENT query (type-0 | type-1 | type-2 | type-100 | type-101 | type-102)>
<! ELEMENT type-0 (#PCDATA) > <l-- any -->
<! ELEMENT type-1 (attributeSet, rpn)> <!-- RPN query -->
<! ELEMENT type-2 (#PCDATA) > <l-- octet string -->
<! ELEMENT type-100 (#PCDATA) > <l-- octet string -->
<! ELEMENT type-101 (attributeSet, rpn)> <!-- RPN query -->
<! ELEMENT type-102 (#PCDATA) > <l-- octet string -->
<l-- Query operand definitions -->
<l ELEMENT rpn (op | rpnRpnOp) > <l-- opis Qperator -->
<! ELEMENT rpnl (op | rpnRpnOp) > <l-- opis Qperator -->
<l ELEMENT rpn2 (op | rpnRpnOp) > <l-- opis Qperator -->
<! ELEMENT r pnRpnOp (rpnil,

rpn2,

op) > <l-- opis Cperand -->
<! ELEMENT op (

(attrTerm| resultSet | resultAttr) |

(and | or | and-not)

) > <l-- opis Operand & Qperator -->
< ELEMENT attrTerm (attributes, tern)> <l-- AttributesPlusTerm-->
<! ELEMENT resul t Set (#PCDATA) > <l-- general string -->
<! ELEMENT resultAttr (#PCDATA)> <l-- subelenents omtted -->
<! ELEMENT nuneric (#PCDATA) > <l-- integer -->
<! ELEMENT string (#PCDATA) > <l-- general string -->
<! ELEMENT general (#PCDATA)> <l-- octet string -->
<! ELEMENT conpl ex (#PCDATA) > <!-- subel enents onmtted -->
<l-- Query operator definitions -->
<! ELEMENT and EMPTY> <l-- null -->
<! ELEMENT or EMPTY> <l-- null -->
<! ELEMENT and-not EMPTY> <l-- npull -->
<I-- Auxiliary present service definitions -->
<! ELEMENT resul t Set St art Poi nt (#PCDATA) > <!-- integer -->
<! ELEMENT nunber Of Recor dsRequest ed (#PCDATA) > <l-- integer -->
<! ELEMENT recor dConposi tion (sinple)> <l-- complex onmtted -->

OGC 02-087r3

<! ELEMENT si npl e (generi cEl ement Set Nane | dat abaseSpecific)>

<l-- Auxiliary search and present service definitions -->

<! ELEMENT nunber OF Recor dsRet ur ned (#PCDATA) > <l-- integer -->

<! ELEMENT next Resul t Set Posi ti on (#PCDATA) > <l-- integer -->

<! ELEMENT present St at us (#PCDATA) > <l-- val ues: success |
partial-1 | partial-2 |

© OGC 2002 — All rights reserved

91

OGC 02-087r3

<!-- Record and diagnostic definitions -->
<! ELEMENT records (

responseRecords |

nonSur r ogat eDi agnostic |

mut i pl eNonSur Di agnosti cs

partial -3 |
failure -->

partial -4 |

)>
<! ELEMENT responseRecords (ltent)> <!-- sequence of NanePlusRecord -->
<! ELEMENT nane (#PCDATA) > <!-- general string -->
<! ELEMENT record (retrieval Record | surrogateDi agnostic)>
<! ELEMENT retrieval Record (External)>
<! ELEMENT surrogat eDi agnostic (defaul t Format | externallyDefined)>
<! ELEMENT nonSurrogat eDi agnosti c (diagnosticSetld | condition | addinfo)>
<! ELEMENT nut i pl eNonSur Di agnostics (ltent)>
<l-- Auxiliary resource control definitions -->
<! ELEMENT suspendedFl ag (#PCDATA) > <!-- values: true | false -->
<! ELEMENT parti al Resul t sAvai |l abl e (#PCDATA)> <!-- values: subset | interim
| none -->
<! ELEMENT r esponseRequi red (#PCDATA) > <l-- values: true | false -->
<! ELEMENT tri gger edRequest Fl ag (#PCDATA) > <l-- values: true | false -->
<! ELEMENT conti nueFl ag (#PCDATA) > <l-- values: true | false -->
<! ELEMENT resul t Set Want ed (#PCDATA) > <l-- values: true | false -->
<l-- Auxiliary close service definitions -->
<! ELEMENT cl oseReason (#PCDATA) > <I'-- values: finished | shutdown |
systenProblem | costLinmt |
resources | securityViolation |
protocol Error | |ackCOF Activity]|
peer Abort | unspecified -->
<! ELEMENT di agnosti clnformati on (#PCDATA)> <!-- general string -->
<! ELEMENT resour ceReport Format (#PCDATA)> <!-- object identifier -->
<l-- Auxiliary sort definitions -->
<! ELEMENT i nput Resul t Set Nanes (Itent)> <!'-- sequence of general string -->
<! ELEMENT sortedResul t Set Nane (#PCDATA) > <l-- general string -->
<! ELEMENT sort Sequence (Iltent)> <l-- SeqO>F SortRequ.sortSeq -->
<! ELEMENT sort El ement (generic | databaseSpecific)>
<! ELEMENT sort Rel ati on (#PCDATA) > <l-- values: ascending | descending
ascendi ngByFr equency |
descendi ngByFr equency -->
<! ELEMENT caseSensitivity (#PCDATA)> <!-- values: caseSensitive |
casel nsensitive -->
<! ELEMENT mi ssi ngVal ueAction ((abort | null), m ssingVal uebata)>
<! ELEMENT abort EMPTY> <l-- null -->
<! ELEMENT nul | EMPTY> <l-- null -->
<! ELEMENT ni ssi ngVal ueDat a (#PCDATA) > <l-- octet string -->
<! ELEMENT generic (sortfield | el enentSpec | sortAttributes)>
<! ELEMENT dat abaseNane (#PCDATA) > <l-- general string -->
<! ELEMENT dbSort (sortfield | elementSpec | sortAttributes)>
<! ELEMENT sortfield (#PCDATA) > <l-- general string -->
<! ELEMENT el enent Spec (
(schema?, el enent Spec?) |
(el enrent Set Nane | ext ernal Spec)
) > <l-- SortKey, Specification -->
<! ELEMENT schena (#PCDATA) > <!-- object identifier -->
<! ELEMENT el enent Set Nane (#PCDATA) > <!-- general string -->
<! ELEMENT ext er nal Spec (External)>
<! ELEMENT sortAttributes (id, list)>
<! ELEMENT id (#PCDATA) > <l-- object identifier -->
92 © OGC 2002 — All rights reserved

OGC 02-087r3

<IELEMENT list (ltent)> <l-- SeqO>¥ AttributeEl emrent -->

<! ELEMENT sort St at us (#PCDATA) > <!-- values: success | partial-1 |
failure -->

<I-- Auxiliary extendedServices definitions -->

<l ELEMENT function (#PCDATA) > <I-- values: create | delete |
nodi fy -->

<! ELEMENT packageType (#PCDATA) > <!-- object identifier -->

<! ELEMENT packageNane (#PCDATA) > <l-- general string -->

<! ELEMENT retentionTime (value | unitUsed)>

<! ELEMENT perm ssions (ltent)>

<! ELEMENT al | owabl eFunctions (Itent)> <I-- values: delete |
nmodi fyContents |
nmodi f yPer mi ssions | present |
i nvoke -->

<! ELEMENT descri ption (#PCDATA) >

<! ELEMENT t askSpecificParanmeters (External)>

<! ELEMENT wai t Acti on (#PCDATA) > <l-- values: wait | waitlfPossible|

dontWait | dontReturnPackage -->

<! ELEMENT el enents (#PCDATA) > <!-- general string -->

<! ELEMENT operati onStatus (#PCDATA) > <I'-- values: done | accepted |
failure -->

<! ELEMENT t askPackage (External)>

<! ELEMENT referenceld (#PCDATA) > <l-- octet string -->

<! ELEMENT resul tSetld (#PCDATA) > <!-- general string -->

<! ELEMENT di agnostics (ltent)> <!-- sequence of DiagRec -->

<! ELEMENT dat abaseNanes (ltent)>

<! ELEMENT ot her| nfo (#PCDATA) > <l -- subelenent onmitted -->

<! ELEMENT resourceReport (External)>

<! ELEMENT resul t Set St at us (#PCDATA) > <I-- values: enpty | subset |
interim| unchanged | none -->

<I-- Definition of additional components -->

<l-- Authentication (initRequest) -->

<! ELEMENT i dAut hentication (open | idPass | anonynous | other)>

<! ELEMENT open (#PCDATA) > <l-- visible string -->

<! ELEMENT i dPass (groupld?, userld?, password?)>

<! ELEMENT groupl d (#PCDATA) > <l-- general string -->

<! ELEMENT user|d (#PCDATA) > <l-- general string -->

<! ELEMENT password (#PCDATA) > <l-- general string -->

<! ELEMENT anonynmous EMPTY> <l-- null -->

<! ELEMENT ot her (External)>

<l-- AttributesPlusTerm-->

<! ELEMENT attributes (ltent)> <l-- SeqO™f AttributeEl enent -->

<! ELEMENT t erm (#PCDATA) > <l-- data types onmitted -->

<l-- AttributeEl enent -->

<! ELEMENT attri buteSet (#PCDATA) > <!-- object identifier -->

<! ELEMENT attri but eType (#PCDATA) > <l-- integer -->

<! ELEMENT attri buteVal ue (numeric | conpl ex)>

<!-- El enent Set Nanes -->

<! ELEMENT generi cEl enent Set Name (#PCDATA)> <!-- general string -->

<! ELEMENT dat abaseSpecific (ltent)> <!'-- sequence of (dbNane, esn) -->

<! ELEMENT dbNane (#PCDATA) > <!-- general string -->

<! ELEMENT esn (#PCDATA) > <l-- general string -->

<!-- DiagRec -->

<! ELEMENT def aul t For mat (di agnosticSetld | condition | addinfo)>

© OGC 2002 — All rights reserved

93

OGC 02-087r3

<! ELEMENT di agnosticSetld (#PCDATA) > <l-- object identifier -->
<! ELEMENT condi tion (#PCDATA) > <l-- integer -->

<! ELEMENT addi nf o (v2Addinfo | v3Addl nfo)>

<! ELEMENT v2Addl nfo (#PCDATA) > <!-- visible string -->
<! ELEMENT v3Addl nfo (#PCDATA) > <l-- general string -->
<! ELEMENT external | yDefi ned (External)>

<l-- IntUnit -->

<! ELEMENT val ue (#PCDATA) > <l-- integer -->

<! ELEMENT unitUsed (unitSystem | unitType | unit | scal eFactor)>

<! ELEMENT uni t Syst em (#PCDATA) > <!-- general string -->
<! ELEMENT unit Type (string | numeric)>

<! ELEMENT unit (string | nuneric)>

<! ELEMENT scal eFact or (#PCDATA) > <l-- integer -->

<!-- Elements added by the XER specification -->

<l-- the Itemtag is used for many things:

AttributesPlusTerm
AttributelLi st

Recor ds. responseRecords
Di agRec
Sort Request . sort Sequence

Sort El enent . dat abaseSpecific

El enenSet nanes. dat abaseSpecific
Per mi ssi ons

International String

-->

<! ELEMENT |tem (#PCDATA) >

<l-- dobal auxiliary definitions -->
<! ELEMENT External (direct-reference,
<! ELEMENT direct-reference (#PCDATA) >
<! ELEMENT encodi ng (si ngl e- ASN1-type |
<! ELEMENT si ngl e- ASN1-type (#PCDATA) >
<! ELEMENT oct et -al i gned (#PCDATA) >

94

(attributes, term
(attributeSet?, attributeType,
attri but eVal ue)
(name, record)
(defaul t Format | externallyDefined)
(sortEl ement, sortRelation,
caseSensitivity, mssingVal ueAction?)
(dat abaseNane, dbSort)

(dbNarme, esn)
(userld, allowabl eFunctions)>
(#PCDATA)

encodi ng) >

octet-aligned)>

© OGC 2002 — All rights reserved

OGC 02-087r3

9.5 Definition of Externals

9.5.1 Additional Search Info

This section contains the parameters used in the "otherInfo" part of a Z39.50 searchRequest
in order to implement the CG_CatalogEntryType and CG_QueryScope parameters in the
CG_QueryRequest of the General Model.

"otherInfo" in a SearchRequest may be used by the origin to specify the scope of a search, 1.
e. whether the search domain is wide or restricted to a local search. This is achieved using the
SearchControl EXTERNAL in otherInfo. SearchControl is defined below using ASN.1
notation. If otherInfo is not provided, the type of item descriptors to be searched shall be
derived from the query definition and/ or the content of the collection and the default scope
of a local search shall be assumed.

The Search Control structure contains two items: itemDescriptorType which maps to
CG_CatalogEntryType and searchScope which maps to CG_QueryScope. The CIP-Release-
B-APDU {Z39.50-CIP-B-APDU 1} defines the following items:

SearchControl ::= SEQUENCE
{
i temDescriptorType [1] I MPLICI T | NTEGER
{
col I ecti onDescri ptorSearch (1),
pr oduct Descri pt or Search (3),
servi ceDescri ptorSearch (4),
cat al ogDescri pt or Search (5)
}
searchScope [2] IMPLICIT | NTEGER
{
| ocal Search (1),
wi deSearch (2)
}

© OGC 2002 — All rights reserved 95

OGC 02-087r3

For further information, see Section 3.5.2.5 and Appendix E. 6.1. of Catalogue
Interoperability Protocol (CIP) Specification - Release B, CEOS/WGISS/PTT/CIP-B, June
1998, Issue 2.4, Committee on Earth Observation Satellites (CEOS)
(ftp://harp.gsfc.nasa.gov/incoming/fed/cip_spec24.pdf’).

9.5.2 Order Extended Service

The Order Extended Service, which is a custom Z39.50 Extended Service, allows an origin
to order products previously queried. The Order ES is presented in Table 12.

Further information describing the Order Extended Service can be found in Catalogue
Interoperability Protocol (CIP) Specification - Release B, CEOS/WGISS/PTT/CIP-B, June
1998, Issue 2.4, Committee on Earth Observation Satellites (CEOS)
(ftp://harp.gsfc.nasa.gov/incoming/fed/cip_spec24.pdf).

96 © OGC 2002 — All rights reserved

OGC 02-087r3

Table 12 - Order Extended Service

ASN.1 Definition

Meaning

{Z39.50-CI P-Order-ES} DEFINITIONS :: =

BEG N

| MPORTS Ot herInfornmation, International String, |IntUnit
FROM Z39. 50- APDU- 1995;

Cl POr der = CHO CE
{
esRequest [1] I MPLIC T SEQUENCE{
t oKeep [1] OriginPart ToKeep,
not Tokeep [2] Oigi nPart Not ToKeep},
t askPackage [2] I MPLI CI T SEQUENCE{

originPart [1] OriginPart ToKeep,
targetPart [2] TargetPart}

The Order Extended Serivce uses the Z39.50 Extended Servi ce Facility.

Ori gi nPart ToKeep = SEQUENCE

{
action [1] IMPLICIT I NTEGER {

order Esti mate (1),

or der Quot eAndSubmi t (2),

or der Moni t or (3),

or der Cancel (4)},
orderld [2] International String OPTI ONAL,
order Speci fication [3] OderSpecification OPTI ONAL,
st at usUpdat eQpt i on [4] StatusUpdateOption OPTI ONAL,
user | nformation [5] User | nformation OPTI ONAL,
ot herlnfo [6] Oherlnformation OPTI ONAL
}

The OriginPartToKeep contains the following:
e action, which indicates the type of operation that is requested to be
performed for the order request. The supported operations are the
following:
¢ orderEstimate, which is used to validate and obtain the estimate of
an order specification.

¢ orderQuoteAndSubmit, which is used to quote2 and submit an
order specification.

e orderMonitor, which is used to monitor the progress of the
processing of an order request.

¢ orderCancel, which is used to cancel an order request.

2 The estimate for an order is approximate and non-binding, whereas the quote for an order is precise and binding.

© OGC 2002 — All rights reserved

97

OGC 02-087r3

ASN.1 Definition

Meaning

orderld, which is the identifier of the order request as provided as input
by the origin.

orderSpecification, which is the specification of the order request as
provided as input by the origin.

Note that, in principle, the order request specified by the origin is
unstructured, i.e. it contains a list of item descriptor identifiers and the
order options related to them, but does not attempt to group them into
packages and delivery units.

statusUpdateOption, which indicates how the origin wishes to be kept
up to date as to the status of the order processing.

userInformation, which contains the personal user information as
provided as input by the origin.

otherInformation, which contains additional information not specified
by the CIP.

orderld

order Speci fication
user | nformation

ot herlnfo

}

Origi nPart Not ToKeep ::

[1]
[2]

[4]

SEQUENCE

International String
Or der Speci fication
User | nformation

Q her | nformation

OPTI ONAL,
OPTI ONAL,
OPTI ONAL,
OPTI ONAL

The OriginPartNotToKeep3 contains the following:

orderld, which is the identifier of the order request.
orderSpecification, which is the specification of the order request.
userInformation, which contains the personal user information.

otherInformation, which contains additional information not specified
by the CIP.

3 The definitions used in OriginPartNotToKeep are strictly identical to the ones provided in OriginPartToKeep. The former is used as input by the target (which may overwrite
some values as appropriate) for the definition of TargetPart, whereas the latter remains unmodified and is stored in the fask package. This duplication therefore allows the
comparison of the order as specified by the origin (OriginPartToKeep) with the order as returned by the target (TargetPart).

© OGC 2002 — All rights reserved

98

OGC 02-087r3

ASN.1 Definition

Meaning

Tar get Part =

SEQUENCE

The TargetPart contains the following:

{ o o .
orderld [1] International String, e orderld, which is the identifier of the order request as provided as
order Speci fi cation [2] OderSpecification OPTI ONAL, output by the target.
orderStatuslnfo [3] OderStatusinfo OPTI ONAL, * orderSpecification, which is the specification of the order request as
user | nf or mat i on [4] Userlnformation OPT! ONAL, rovided as output by the target. This order specification provided b
ot herlnfo [5] Gherlnformation OPTI ONAL p tp Y eet. | °r spectl P e¢ by
} the target overrides the specification provided as input by the origin in
originPartNotToKeep. It contains the item descriptors and order
options supplied as input, with any necessary modifications or
additions, in a structured manner, i.e. the item descriptors are grouped
into packages and delivery units.
e orderStatusInfo, which indicates the status of the order request being
performed4.
¢ userInformation, which contains the personal user information.
e otherInfo, which contains additional information not specified by the
CIP
StatusUpdateCption ::= CHa CE The StatusUpdateOption provides options for how the user will receive
manual [1] NULL, updates on the status of an extended service request. The parameters are:
automatic [2] IMPLICIT I NTEGER { * manual the user performs the status request.
} eMai | (1)} e automatic where the OHS filing the order provides status updates for

the user via email>.

4 Note the difference between the operationStatus, which is provided in the ES Response, and the orderStatusInfo, which is included in the task package. operationStatus provides
status information for the ES operation as a whole and indicates whether the ES operation has been performed successfully or not by the target. orderStatusinfo provides status
information for the order specified in the task package and indicates the state of the order or the process being performed for an order at the LOHS.

5 This could be expanded in the future to include, for example, automatic update via the origin.

© OGC 2002 — All rights reserved

99

OGC 02-087r3

ASN.1 Definition

Meaning

User | nformation

SEQUENCE

The Userinformation structure is presented by the origin part of a request to a

{) X) ; S
user | d [1] International String, target. The information prov1ded. contains mandau?ry fields .(the user identifier)
user Nane [2] International String OPTI ONAL and optional fields. The target will allow the Userinformation structure
user Addr ess [3] Postal Address OPTI ONAL, contents to be used as an input to the delivery specification for elements which
t el Number [4] International String OPTI ONAL, can be altered by the user. The target will refer to the local database contents
faxNurber [5] International String OPTI ONAL, for the user and will use the contents of the database, or the Userinformation
emai | Address [6] InternationalString OPTI ONAL, structure depending on the privilege of the user to offer alternative information.
net wor kAddr ess [7] International String OPTI ONAL, The UserInformation structure consists of the following attributes:
bil'ling [8] Billing OPTI ONAL

} e userld the user identifier, the identifier which the user provides as part
of an InitializeRequest.
¢ userName the full name of the user.
e userAddress a structure to hold the users address.
¢ telNumber the users telephone number.
e faxNumber the fax number for the user.
* emailAddress the electronic mail address for the user.
* networkAddress the network address to send files to electronically. For
Internet addresses, the address is written in URL format to allow
directories as well as domain’s to be specified.
e Dbilling the method of payment (and hence of billing) available for the
user.
O der Specification SEQUENCE The OrderSpecification is the specification of the order request and contains
orderingCentreld [1] International String, the following:
orderPrice [2] Pricelnfo OPTI ONAL, ¢ orderingCentreld, which identifies the ordering centre at which the
orderDel i veryDat e [3] International String OPTI ONAL, order will be performed.
order Cancel | ati onDate [4] International String OPTI ONAL, « orderPrice. which is the price for the whole order
deliveryUnits [5] SEQUENCE OF DeliveryUnit Spec, ’ p :
ot herInfo [6] Oherlnformation OPTI ONAL e orderDeliveryDate, which is the latest date at which the order can be
} expected to be delivered to the user.
¢ orderCancellationDate, which is the latest date at which the user can
cancel the order.
¢ deliveryUnits, which contains the definition of the delivery units which
compose the order.
e otherInfo, which may be used to provide additional information not
specified by the CIP.
100 © OGC 2002 — All rights reserved

OGC 02-087r3

ASN.1 Definition Meaning
Del i veryUni t Spec S= SEQUENCE The DeliveryUnitSpec contains the specification of a single delivery unit (i.e.
deliveryUnitld [1] International String OPTI ONAL, part of an order that is delivered as a unit):
del i veryUnitPrice [2] Pricelnfo OPTI ONAL, e deliveryUnitld, which is the identifier of the delivery unit.
del i ver yMet hod [3] Del i ver yMet hod OPTI ONAL, . : PR s : : :
bi I1ing [4 Billing OPTI ONAL, delfveryUthrlce, V&Thlc%l is the price of'the de}lvery umt: N
packages [5] SEQUENCE OF PackageSpec, e deliveryMethod, which is the method with which the delivery unit is
ot herInfo [6] Oherlnformation OPTI ONAL delivered to the user.
} e Dbilling, which is the method with which the user is going to be billed.
* packages, which contains the definition of the packages which compose
the delivery unit.
e otherInfo, which may be used to provide additional information not
specified by the CIP.
Cel E veryMet hod c= cHa cE The DeliveryMethod defines the method with which a delivery unit is
eMai | [1] International String, delivered to the user and is one of the following:
ftp [2] FTPDelivery, e eMail, which specifies the email address that the order will be delivered
mai | [3] Post al Addr ess, to
?t herinfo [4] Qherinformation * ftp, which specifies that the order will be delivered via ftp, the type of

transfer and the ftp address
e mail, which specifies that the order will be delivered via mail and
provides the postal address

¢ otherInfo, which may be used to provide additional information (such
as an alternative delivery method) not specified by the CIP.

© OGC 2002 — All rights reserved 101

OGC 02-087r3

ASN.1 Definition

Meaning

FTPFEI ivery SEQUENCE The FTPMethod defines the method with which a delivery unit is delivered to
transferDirection [1] IMPLICIT I NTEGER the user and is one of the following:
{ ¢ transferDirection, which specifies that the order will be delivered via
push (0), e-mail.
f utl (1) e ftpAddress, which specifies that the order will be delivered via ftp.

ft pAddr ess [2] International String

}

Billing SEQUENCE The Billing structure® contains attributes which describe the method by which
payment Met hod [1] Paynent Met hod, a user will pay for a sgrvice, together with supporting information regarding
cust oner Ref er ence [2] IMPLICIT CustonerReference, the payment. The attributes are:

;:ust oner PONunber [3] IMPLICIT International String OPTI ONAL + paymentMethod indicates the method of payment used.
¢ customerReference is the customer provided reference for the order.
¢ customerPONumber is the purchase order provided by the customer
for the order.

Payment Met hod CHa CE The PaymentMethod structure contains attributes which describe the method
bi 111 nvoi ce [0] IMPLICIT NULL, by which a user will pay for a service. The attributes are:
pr epay [1] IMPLICIT NULL, ¢ Dbilllnvoice indicates that an invoice is to be sent to the user (or payee).
deposi t Account [2] IMPLICIT NULL, . repay indicates that payment has already been agreed/performed
pri vat eKnown [3] INPLICIT NULL, prepay ndicates fat pay ready been agreedip '
pri vat eNot Known [4] IMPLICIT EXTERNAL}, e depositAccount indicates that there is a deposit account for the
} payment.

e privateKnown indicates that the payment method is private and known.
¢ privateNotKnown contain private unknown payment method
information.

Cust omer Ref er ence SEQUENCE The CustomerReference structure contains attributes which provide a
cust oner | d [1] International String, customer reference for the order. The attributes are:
accounts [2] SEQUENCE OF International String * customerld indicates the customer identifier at the LOHS.

} * accounts is the name of the account(s) available to apply charges to on

behalf of the user.

6 The Billing structure used by the Order Extended Service is derived from the addIBilling structure defined in the Item Order ES.
© OGC 2002 — All rights reserved

102

OGC 02-087r3

ASN.1 Definition

Meaning

POSE al Addr ess E SEQUENCE PostalAddress contains the postal address for a user and consists of:
st r eet Addr ess [1] International String, e streetAddress, which is the street name and number.
city [2] International String, » city, which is the name of the city (or nearest city).
state [3] I nternational String, L.
post al Code [4] International String, e state, which is the name of the state or county.
country [5] International String ¢ postalCode, which is the country specific postal code.
} e country, which is the name of the country.
PackageSpec = SEQUENCE The PackageSpec contains the specification of a single package (i.e. part of an
gesp P gle packag p
packagel d [1] International String OPTI ONAL order that is delivered on a single medium):
packagePrice [2] Pricelnfo OPTI ONAL, ¢ packageld, which is the identifier of the package.
package (3] CH({] CE » packagePrice, which is the price of the package.
pr edef i nedPackage [1] PredefinedPackage, ¢ package, which contains the specification of the package. The package
adHocPackage [2] AdHocPackage is one of the following:
}, . .]
packageMedi um [4] International String, prr:ditzii;:nedPackage, which is a package pre-defined by the data
packageKByt eSi ze [5] | NTEGER, provider.
otherlnfo [6] Oherlnformation OPTI ONAL * adHocPackage, which is a package constructed ad-hoc by the data
} provider to fulfil the order request.

¢ packageMedium, which is the medium on which the package will be
delivered to the user.

¢ packageKByteSize, which contains the size of the package in
kilobytes.

e otherInfo, which may be used to provide additional information not
specified by the CIP.

Pr edef i nedPackage =

collectionld [
orderltens [
ot herlnfo [

}

SEQUENCE

I nternational String,
SEQUENCE OF Orderltem
O her | nformati on

OPTI ONAL

A PredefinedPackage contains the definition of a package that is pre-defined
by the data provider. A PredefinedPackage is a collection that is stored in
advance (i.e. not to fulfil a specific order) on a medium and is defined as
follows:

e collectionld, which is the identifier of the pre-packaged collection.
Must be formatted according to the naming convention for collection
identifiers specified in Appendix E.

¢ orderltems, which contains the list of the order items contained in the
package.

¢ otherInfo, which may be used to provide additional information not
specified by the CIP.

© OGC 2002 — All rights reserved

103

OGC 02-087r3

ASN.1 Definition

Meaning

}

AdHocPackage s SEQUENCE CF Orderltem An AdHocPackage is a package that is defined ad-hoc by a data provider to
fulfil a specific order. An AdHocPackage contains the list of the order items
contained in the package.

Orderitem cE SEQUENCE The OrderItem contains the specification of a single order item (i.e. the

E)r oduct I d [1] International String product that is ordered and that is to be delivered):
product Price [2] Pricelnfo OPTI ONAL, e productld, which is the identifier of the ordered product.
product Del i veryQpti ons [3] Product Del i veryQOpti ons OPTI ONAL, . . PR :
processi ngOpt i ons [5] ProcessingOptions OPTI ONAL, productPrlfe, wh1ch'1s the prl.ce ofthe.produ.ct. .
sceneSel ectionOptions [6] SceneSel ectionOptions OPTI ONAL, ¢ productDeliveryOptions, which contains delivery options for the
order St at usl nfo [7] OderStatuslinfo OPTI ONAL, product.
?t herInfo [8] Qherlnformation OPTI CNAL * processingOptions, which specifies the processing options that are to
be applied on the product before delivery.
¢ sceneSelectionOptions, which specifies the selection of the scene from
the whole product that is to be delivered.
« orderStatusInfo, which indicates the status of the order item”.
¢ otherInfo, which may be used to provide additional information not
specified by the CIP.
Pr O?“Ct DeliveryOptions ::= SEQUENCE The ProductDeliveryOptions contains the specification of the options
pr oduct Byt eSi ze [1] |NTEGER OPTI ONAL, regarding the delivery of a product:
product For mat [2] International String OPTI ONAL, * productByteSize, which contains the size of the product in bytes.
product Compr essi on [3] International String CPTI CNAL, ¢ productFormat, which specifies the format of the product.
ot herlnfo [4] Gherlnformation OPTI ONAL T) . . .
} ¢ productCompression, which specifies the compression mechanism
applied to the product.
¢ otherInfo, which may be used to provide additional information not
specified by the CIP.
Processi ngOpti ons s CHa Ce The ProcessingOptions specifies the processing options that are to be applied
f or mat t edPr ocessi ngGpt i ons [1] EXTERNAL on the product before delivery and is one of the following:
unf or mat t edPr ocessi ngOptions [2] I nternational String * formattedProcessingOptions, which specifies the processing options

according to the format specified in [ORD].

* unformattedProcessingOptions, which specifies the processing
options in a free-text form.

7 Note the difference between the orderStatusinfo in TargetPart, which indicates the state, or the process being performed for, an order as a whole at the LOHS, and the
orderStatusinfo in Orderltem, which indicates the state, or the process being performed for, a specific order item within an order at the LOHS.

© OGC 2002 — All rights reserved

104

OGC 02-087r3

ASN.1 Definition

Meaning

SceneSel ecti onOpti ons =

formattedSceneSel ecti onOptions [1]
unf or mat t edSceneSel ecti onOpti ons [2]

CHO CE

EXTERNAL,
International String

The SceneSelectionOptions specifies the selection of the scene from the whole
product that is to be delivered and is one of the following:

* formattedSceneSelectionOptions, which specifies the scene selection

pri ceExpirationDate [2]
addi tional Pricelnfo [3]

}

I nternational String,
International String

OPTI ONAL

} options according to the format specified in [ORD].
¢ unformattedSceneSelectionOptions, which specifies the scene
selection options in a free-text form.
Pricelnfo e SEQUENCE The PriceInfo contains the information related to the price of an item:
i)r ice [1] IntUnit, e price, which contains the price of the item.

* priceExpirationDate, which specifies the latest date at which the price
provided is valid (i.e. until the expiration date the origin is guaranteed
that the price will not vary. However, after the expiration date the price
may change).

¢ additionalPriceInfo, which may be used to provide a textual
explanation when the price of a item differs from the sum of the
elements which compose this item (e.g. it can be used to explain why
the price of a delivery unit differs from the sum of the prices of the
packages which compose the delivery unit).

Or der St at usl nfo

{
order State [1]

additional Statusinfo [2]
}

SEQUENCE

CHOI CE
{

staticState
dynami cSt at e
b

International String

[1] StaticState,
[2] DynamicState

OPTI ONAL

OrderStatusInfo describes the status of an extended service order request. The
different status values are:

* orderState indicates the state of the order request or the processing
being performed for the order:
e staticState indicates the state of the order when no order request is
being performed.
* dynamicState indicates the processing that is currently performed
for an order request.

* additionalStatusInfo contains additional status information provided
by the LOHS (e.g. to clarify the meaning of the orderState).

StaticState [1]
{

order Not Val i d

order Esti mat ed

or der Conpl et ed

}

I MPLICI T | NTEGER

(1),
(2),
(3)

StaticState describes the state of an order when no order request is active. The
possible states are:

¢ orderNotValid indicates that the order has not been successfully
validated.

e orderEstimated indicates that the order has been successfully validated
and that an estimate is provided.

¢ orderCompleted indicates that the order has been completed.

© OGC 2002 — All rights reserved

105

OGC 02-087r3

ASN.1 Definition Meaning
Dynani cStat e ti= [2] IMPLICIT I NTEGER DynamicState describes the state of an order when an order request is active
E)r der Bei ngEst i mat ed (4) and thus being process. The possible states are:
or der Bei ngQuot ed (5), ¢ orderBeingEstimated the order is currently being estimated by the
or der Bei ngPr ocessed (6), target order handling system.
g: gg: gg: Egg&ngf Ieijed E 8 ' ¢ orderBeingQuoted the order is currently being quoted by the target
} order handling system.
¢ orderBeingProcessed the order is currently being processed by the
END

target order handling system.

¢ orderBeingCancelled the order request which was previously sent
to the target is being cancelled.

¢ orderBeingDeleted the order is being deleted.

106 © OGC 2002 — All rights reserved

OGC 02-087r3

10 CORBA Profile — Coarse Grain
10.1 Architecture - Object Model

This section describes the CORBA profile. The intention of the CORBA profile is to follow
the General Model closely. This enables the building of lightweight bridges between the
CORBA profile and the Z39.50 Profile.

The CORBA profile is described in IDL (interface definition language) of OMG (the Object
Management Group).

10.2 Event Traces

The interfaces in the IDL follow the General Model as closely as possible. Therefore all
conventions, operation names and cases are borrowed from the General Model. An
alternative is using the conventions of the CORBA IDL for Simple Features, in which all
names are in lower case. This alternative is rejected to stay close to the General Model.

The core of the CORBA profile consists of only one interface: CG_CatalogServices. The
separate services of the General Model (discovery, access and management) are defined in
separate interfaces to reflect the General Model. They are all realized by the central interface
CG_CatalogServices. The operations of CG_CatalogServices take without exception a
request message as an input parameter and return a response parameter. All messages are
filled with standard or compound CORBA structures. Name value pairs, an optional way to
transfer meta information, are borrowed from the OMG CORBA 2.3 Dynamic Any
specification.

10.3 Interface Definition - IDL

This section describes the CORBA IDL. It first describes enumerations and then structures,
unions, and messages, respectively. It concludes with a description of the
CG_CatalogServices interface, the core of the profile, and other interfaces.

All enumerations, structures, unions, messages and interfaces are part of the
OGC_CatalogService module. Module names have to be harmonized across all OGC
CORBA specifications and have to be prefixed by org.opengis.

#pragma prefix "opengis.org"
nodul e OGC _Cat al ogSer vi ce

{

b

Throughout the module OGC CatalogService the new IDL types wstring and wchar is used
instead of string and char to allow usage of different character codesets (other than Unicode)
for internationalization (i118n).

© OGC 2002 — All rights reserved 107

OGC 02-087r3

In CORBA I DL type definitions for sequences containing different el enent
dat atypes are used to avoid anonynous sequences in | DL mappi ngs
for sonme programm ng | anguages.

10.3.1 Enumerations

Enumerations can be modeled by a direct translation of all code-lists of the General Model.
The following enumerations are borrowed literally:

enum CG Attribut eCategory {queriable, presentable, both};

enum CG Cat al ogEnt ryType {product, collection, catal og, service};
enum CG CharacterSet {ASCI|, Uni Code, ShiftJlS};

enum CG _Predefi nedPresentati onType {full, brief};

enum CG _QueryLanguage {OGC _Comon, Z3950 TypeOne, SQ.3_Si npl eFeat ure,
SQ.2_Si mpl eFeat ur e} ;

enum CG QueryScope {distributed, |ocal};

enum CG Resul t Type {validate, resultSetID, hits, results};

enum CG Sort Order {ascendi ng, descendi ng};

enum CG St atus {success, successResultsAvail able, processi ngNornal,

processi ngQueued, processi ngPausedOr Suspended, failure,
fail ureAccessDeni ed};

The CORBA profile adds an NV entry to the message format enumeration. Specifying NV
lets the server return results as name-value pairs. Name-value pairs are specified in the OMG
CORBA 2.3 DynamicAny specification, but to be complete, the definition is repeated below.
Usage of NameValuePair specification from OMG CORBA 2.3 DynamicAny aligns Catalog
Services CORBA Profile with revision 1.1 (draft 3) of Simple Feature Access for CORBA.

enum CG_MessageFormat {XM., HTM., TXT, NV};
#pragma prefix "ong. org"
#i ncl ude <orb.idl>

nodul e Dynani cAny {

typedef string Fi el dNane;
struct NaneVal uePair {
Fi el dNare i d;

any val ue;
108 © OGC 2002 — All rights reserved

OGC 02-087r3

s

t ypedef sequence<NaneVal uePair> NaneVal uePai r Seq;

s
So if the server gives the results back as XML in the next example:
<?xm version="1.0"7?>
<I DOCTYPE Met adata SYSTEM "m n.dtd" >
<Met adat a><Titl e>Countri es of Europe</Title>
<Abstract >Thi s dataset contains the countries of Europe</Abstract>
<CGeogr aphi cBoundi ngBox><west BoundLongi t ude>- 24. 17</ west BoundLongi t ude>
<east BoundLongi t ude>40. 71</ east BoundLongi t ude>
<nor t hBoundLat i t ude>71. 26</ nort hBoundLat i t ude>
<sout hBoundLat i t ude>27. 63</ sout hBoundLat i t ude>
</ Geogr aphi cBoundi ngBox>

</ Met adat a>

Name-value pair results are as follows:

id: Metadata id: Title
value: NameValuePair » value: Countries
Seq of Europe
id: Abstract
» value: This

dataset ...
id: Geographic

» BoundingBox id: westBound

value: NameValuePair p Longitude
Seq value:-24.17

The advantage is that pure CORBA environments do not have to parse the XML to get the
results. They receive them in a suitable general structure. If the CORBA server is combined
with another type of client, e.g. a Web client, then probably XML (the default) will be
preferred.

The any value member can contain any type: standard types as long, double, string, types as

NameValuePair or NameValuePairSeq (this gives the possibility to create recursive
structures) or user-defined types.

© OGC 2002 — All rights reserved 109

OGC 02-087r3

10.3.2 Structures and unions

Most of the structures and unions from the General Model can be translated directly into
CORBA structs and unions.

uni on CG _Col | ecti onName
swi tch(Ilong)
{
case 1 : wstring collectionlD
case 2 : wstring collectionNang;
H

A new capability is present in CG_QueryExpression in the CORBA Profile that allows
passing of parameters that can't be converted to strings but must be bound to variables in
string theQuery (e.g. "?" in JDBC). For example, references or handles for metadata
retrieved from related collections in previous queries. queryParameters might contain a
NameValuePairSeq or non ASCII XML Data. The additional member aligns Catalog
Services query facilities with respective Simple Feature Access for CORBA query facilities.

struct CG Quer yExpression

{
wstring theQuery;
wstring theNanespace;
CG_QuerylLanguage t heLanguage;
any queryParaneters;

i

To allow for globally unique sessionID a long long (Long) is used as datatype instead of long
(Integer).

struct CG Request|D

{
| ong | ong sessionl D
| ong counter;

i

struct CG SortField

110 © OGC 2002 — All rights reserved

OGC 02-087r3

wstring attributeNang;
CG Sort Order sortOrder;
1

The General Model specifies the structure member payload as string for the CG_ReturnData,
indicating it as a 'blob'. It is more correct within CORBA to specify an any structure member
here so that strings or name-value pairs or sequences can be stored.

struct CG _ReturnData

{
CG _MessageFor mat encodi ng;
any payl oad;

H

The CG_PresentationDescription union in the General Model contains a sequence of tuple-
types in the presentation description. For the CORBA profile it is not necessary to have
tuple-types here, a sequence of attribute names is sufficient. The tuple-types are not defined
in the CORBA profile. In CORBA IDL type definitions for sequences containing different
element datatypes are used to avoid anonymous sequences in IDL mappings for some
programming languages.

typedef sequence<wstring> StringSeq;
uni on CG _Presentati onDescription
swi tch(Il ong)
{
case 1 : StringSeq attributes; // CG TupleType in GM
case 2 : CG PredefinedPresentati onType presentationType;
I

The CG_SchemelD structure uses a structure member CG_Schema. This is in the CORBA
profile defined as a sequence of name-value pairs from the OMG CORBA 2.3 DynamicAny
module. All names, types, and used sequences can be specified in name-value pairs. A
schema, tuple-type or a dictionary is not needed here. If a schema or anything like that is
specified in a general OGIS module in the future, it might be taken over here.

t ypedef Dynam cAny: : NaneVal uePai r Seq CG Scheng,;

struct CG Schenal D

© OGC 2002 — All rights reserved 111

OGC 02-087r3

wstring schemeNane;
CG _Schema schenm;
s
10.3.3 Definitions for brokered access

The General Model defines some code-lists and structures for brokered access. These
definitions are directly translated into their CORBA counterparts:

enum CG Br oker edAccessRequest Type {orderEsti mate, order Quot eAndSubmit,
order Moni tor, orderCancel };
struct CG Orderltem
{
/1 Note: datatypes not provided by GV
any productl| D
any productPrice;
any productDeliveryOptions;
any processi ngOpti ons;
any sceneSel ecti onOpti ons;
H
struct CG OrderSpecification
{
/1 Note: datatypes not provided by GV
any orderCentrel D
any orderPrice;
any orderDeliveryDat e;
any order Cancel | ati onDat e;
any del i ver yMet hod;
any package;

b
112 © OGC 2002 — All rights reserved

OGC 02-087r3

enum CG Order Status {orderBei ngEsti mat ed, orderEsti nated,
or der Bei ngQuot ed, order Bei ngProcessed,
order Conpl et ed, order Not Valid, orderCancelled};
enum CG_Packagi ngType {predefi nedPackage, adhocPackage};
struct CG_PackageSpecification
{
/1 Note: datatypes not provided by GV
any packagel d;
any packagePri ce;
CG _Packagi ngType package;
any packageMedi um
| ong packageSi ze;
s
enum CG _Payment Met hod {credit, cash, purchaseOrder};
enum CG_St at usUpdat eType {manual , autonatic};
struct CG Userl|nformation
{
wstring user Nane;
wstring user Address;
wstring phoneNunmber;
wstring faxNunber;
wstring enmil Addr ess;
wstring net Address;
CG_Paynent Met hod paynent Met hod;
H
10.3.4 Capabilities

The capabilities in the General Model are designed with inheritance. In CORBA designing
capabilities as interfaces can reflect this, but this is not useful. Capabilities like messages (see

© OGC 2002 — All rights reserved 113

OGC 02-087r3

below) have to be transferred over the network. Therefore, they are defined as either type
definitions or structures.

t ypedef bool ean CG Al | Support edRequest;
t ypedef bool ean CG Defaults;

struct CG Def aul t Ti meCut

{
unsi gned long long tinmeQut;
/1l used to be OGC Basic:: Uoniline, but OGC Basic is no |onger
mai ntai ned as normative part of the Catal og Services
Speci fication
i

t ypedef bool ean CG_Expl ai n;

struct CG Messagi ng

{
CG Char act er Set charact er Set ;
CG_MessageFor mat nessageFor mat ;
H
struct CG Query
{
wstring version;
CG Char act er Set charact er Set ;
CG_QuerylLanguage querylLanguage;
H
struct CG Session
{
wstring | anguage;
wstring catal ogSpecificationVersion;
CG Charact er Set character Set;
1

114 © OGC 2002 — All rights reserved

struct CG Softwarel nformation
{

wstring vendor;

wstring SWersionNunber ;

wstring | Fversi onNunber;

b

t ypedef sequence<CG Col | ecti onNane> CG SupportedCol | ecti ons;

OGC 02-087r3

To be able to make a sequence of different capabilities, a union CG_Capability is created,

encompassing all derived capabilities.

A union normally has a discriminator. This can be a long value, but this is generally not
preferred because you have to remember the value indicating the intended capability.

Therefore, an enumeration of capabilities is included in the CORBA profile.

enum CG CapabilityType

{ ctAll SupportedRequest, ctDefaults, ctDefaultTi neQut, ctExplain,
ct Messagi ng, ctQuery, ctSession, ctSoftwarelnformation,

ct SupportedCol | ections };
uni on CG Capability
swi t ch(CG _Capabi lityType)
{

case ct Al | SupportedRequest : CG Al |l Support edRequest
al | Support edRequest ;

case ctDefaults : CG Defaults defaults;

case ctDefaul tTi meQut : CG Defaul t Ti meQut tinmeQut;
case ctExplain : CG Explain explain;

case ctMessaging : CG Messagi ng nessagi ng;

case ctQuery : CG Query query,

case ctSession : CG Session session;

case ctSoftwarel nformati on : CG Softwarel nformation
sof t war el nf or mat i on;

case ctSupportedCollections : CG SupportedCollections
supportedCol | ecti ons;

s

© OGC 2002 — All rights reserved

115

OGC 02-087r3

10.3.5 General messages

The General Model is a message-based model, where messages are designed in the form of a
class hierarchy. In CORBA IDL, the messages are translated as structs. Writing them in the
form of interfaces is not useful. In CORBA, the objects (instances of interfaces) stay on a
remote server machine and are referred to by a client machine. They are not transferred over
the network. This is definitely not the intention for messages.

All messages have the same form as the messages described in the General Model. However,
messages in the form of structs cannot inherit from each other in CORBA. Therefore the
CG_Message class is also included in the CORBA profile and a member of all other
messages, called 'base'.

struct CG _Message

{
I ong | ong sessionl D;
wstring destinationlD
CG_Request | D request | D;
wstring additionallnfo;

i

All other messages, which in the General Model inherit from CG_Message, have in the
CORBA profile the CG_Message as a structure member. The next messages do not add extra
structure members. Alternatively, they might have been modeled by a typedef. But to be
consistent with the rest of the messages these message have base as a structure member.

Note that the response in the General Model also contains a string structure member
diagnostic. This parameter is not specified in the CORBA profile. Error handling will be
handled by exceptions, the standard CORBA facility. Exceptions are described below.
WWW/CORBA bridges can catch these exceptions and convert them into diagnostic info if
necessary.

struct CG I nit Sessi onRequest

{
CG Message base;
H
struct CG_InitSessi onResponse
{

CG _Message base;
116 © OGC 2002 — All rights reserved

OGC 02-087r3

H
struct CG Ter m nat eRequest
{
CG _Message base;
H
struct CG Terni nat eResponse
{
CG _Message base;
CG_St at us st at us;
H

The status and cancel messages add a few structure members in addition to the base structure
member.

struct CG_St at usRequest
{
CG _Message base;
CG_Request | D request | Dt oSt at us;
H
struct CG_St at usResponse
{
CG _Message base;
CG _Request I D request | Dt oSt at us;
CG_St atus st at us;
H
struct CG _Cancel Request
{
CG _Message base;
CG Request I D request | Dt oCancel ;

bool ean freeResources;

© OGC 2002 — All rights reserved 117

OGC 02-087r3

H
struct CG Cancel Response
{
CG _Message base;
CG_St atus st at us;
CG_Request | D cancel edRequest ;
i

The explain server messages add sequence of capabilities to the base message. The
capability-type sequence can be filled with capability-types to specify which capabilities are
requested from the server. The server responds with reporting each capability in a sequence
of capabilities.

typedef sequence<CG CapabilityType> CG CapabilityTypeSeq;
struct CG_Expl ai nSer ver Request
{
CG Message base;
CG Capabi lityTypeSeq capabilities;
s
struct CG_Expl ai nServer Response

{
CG Message base;

CG Capabi lityTypeSeq capabilities;
1
10.3.6 Discovery messages

There are three request/response message pairs in the discovery service. To enhance
distributed searching, an additional structure member for the query message is provided. This
member is not included in the General Model. This structure member asynchronous can be
set to true to force asynchronous searching. The query method will return immediately,
setting structure member hits in the response to zero. Query results can be retrieved later on,
when the query is ready. The progress of the query can be examined with the status
messages. The query can be cancelled with the cancel messages.

118 © OGC 2002 — All rights reserved

OGC 02-087r3

Note: This asynchronous behaviour is only specified for the query request message. All other operations (e.g. init, terminate,
status, cancel, explain, present) are not considered as time-consuming and return immediately after processing.

Another structure member, maxLevel, is added to have more control in the range of the
distribution. If one catalog contains another one, that other one contains a third one, and so
on, you will possibly specify that only two levels of sub-catalogs will be searched. Setting
the maxLevel member to two will force this. Setting maxLevel to -1 forces searching all
sub-catalogs.

Note: If the queryScope is Local there is no distributed search at all.
typedef sequence<CG SortFi el d> CG SortFi el dSeq;
struct CG_QueryRequest
{

CG Message base;
CG_Quer yExpr essi on quer yExpressi on;
CG Resul t Type resul t Type;
long iteratorSize;
| ong cursor;
CG_MessageFor mat ret urnFor nmat ;
CG _Presentati onDescription presentation;
CG SortFiel dSeq sortField;
CG_QueryScope queryScope;
CG Col | ecti onNanme col |l ectionl D;
CG Cat al ogEnt ryType cat al ogType;
bool ean asynchronous;
| ong nmaxLevel ;
H
struct CG_QueryResponse
{
CG _Message base;
CG ReturnbData retrievedDat a;

CG Col | ecti onNanme resul t Setl D

© OGC 2002 — All rights reserved 119

OGC 02-087r3

CG_Status st at us;
I ong hits;
| ong cursor;
s
struct CG_Present Request
{
CG Message base;
CG Col |l ectionNane resul tSetl D
CG Presentati onDescription presentation;
CG SortFiel dSeq sortField;
CG_MessageFor mat returnFor nat;
long iteratorSize;
| ong cursor;
s
struct CG_Present Response
{
CG Message base;
CG ReturnData retrievedDat a;
| ong cursor;
long hits;
CG_Status st at us;
i
struct CG _Expl ai nCol | ecti onRequest
{
CG Message base;
CG AttributeCategory attributeCategory;

CG Col | ecti onNane col |l ectionlD;

120 © OGC 2002 — All rights reserved

OGC 02-087r3

CG_MessageFor mat ret urnFor nat;
i
struct CG _Expl ai nCol | ecti onResponse
{
CG Message base;
CG Col | ecti onNanme col |l ectionl D;
CG_Schenal D dat aMbdel ;
CG St atus st at us;
i
10.3.7 Management messages

The General Model defines messages for managing catalogs. These messages are translated
to the CORBA profile literally. The General Model must still define the contents of the
messages. Therefore, not all messages are described here in detail.

struct CG CreateCat al ogRequest
{
CG _Message base;
/1 thd
b
struct CG CreateCatal ogResponse
{
CG _Message base;

/1 thd

s

The same applies to the messages CG_CreateMetadataRequest,
CG_CreateMetadataResponse, CG_UpdateCatalogRequest, CG_UpdateCatalogResponse,
CG_DeleteCatalogRequest, CG DeleteCatalogResponse.

10.3.8 Access messages

The General Model specifies direct access and brokered access. Direct access is provided by
interfaces such as the OGC Simple Features and Coverage interfaces for CORBA. If a

© OGC 2002 — All rights reserved 121

OGC 02-087r3

catalog entry denotes an OGC Feature, a Feature Collection or a Coverage, the meta-
information of this entry can be populated with an ior (interoperable object reference). This
meta-information entity is called ior and is filled with the standard representation of an ior,
specified by the OMG (Object Management Group), the creators of CORBA. In XML this
looks like the following (abbreviated) example:

<i or >l OR 010631002800000049444c3a6f 6d672e6f...</ior>

Brokered access is specified by a request and a response message, conform all operations of
the General Model. The messages are listed below.

struct CG BrokeredAccessRequest
{
CG Message base;
wstring product Handl e;
CG _Order Speci fication orderlnformation;
wstring orderl D
CG _Br oker edAccessRequest Type request Type;
CG User I nfornation userlnformation;
CG_St at usUpdat eType st at usOr der Updat eType;
CG_PackageSpeci fi cati on packageSpeci ficati on;
H
t ypedef sequence<l ong> LongSeq;
struct CG BrokeredAccessResponse
{
CG _Message base;
CG Order St at us order St at us;
LongSeq resourceEsti nate;
CG Col | ecti onNane order;
wstring orderl D
CG St at us st at us;

CG _Br oker edAccessRequest Type request Type;

122 © OGC 2002 — All rights reserved

OGC 02-087r3

H
10.3.9 Exceptions

Exceptions are not specified in the General Model because they are profile specific. In
CORBA exceptions are considered as an appropriate way to notify error situations to clients.
The CORBA profile specifies exceptions. The diagnostic structure member of the response
messages are not used in the CORBA profile, their role is taken over by the exceptions. Some
exceptions specify the diagnostic (w) string as an exception parameter. By other exceptions
this is not necessary, as the exceptions are self-explaining.

exception | nvali dRequest{};

exception InvalidSession{};

exception InvalidCollection{ sstring diagnostic; };
The exception InvalidQuery is thrown if the client specifies an invalid query.
Note: The exception is not thrown if the resultType field is set to validate.

exception InvalidQery{ wstring diagnostic; };

The exception Notlmplemented is defined in cases where the client asks for not-implemented
behavior. This might occur by requesting the optional access or management services.

exception Notlnplenented{ wstring diagnostic; };

The NotSupported exception is thrown if the client specifies something in a request
parameter that is not implemented by the server. For example the client can specify its query
in 23950 TypeOne, but the server can only interpret OGC Common queries.

exception Not Supported{ wstring diagnostic; };

The last exception, CatalogError, indicates an error when none of the above exceptions is
appropriate.

exception Catal ogError{ wstring diagnostic; };
10.3.10Catalog Service interfaces

The interface CG_Discovery implements methods for discovery: query, present and
explainCollection. These methods take a request message as input parameter and return a
response message as output parameter.

i nterface CG Di scovery

{
CG _QueryResponse query(in CG QueryRequest request)

rai ses(lnvalidSession, Catal ogError);

© OGC 2002 — All rights reserved 123

OGC 02-087r3

CG _Present Response present (in CG Present Request request)
rai ses(InvalidSession, Catal ogError);

CG_Expl ai nCol | ecti onResponse expl ai nCol | ection(in
CG _Expl ai nCol | ecti onRequest request)

rai ses(Catal ogError);
}s

The next interface describes the CG_Manager interface, which defines catalog management
functions. All methods are taken literally from the General Model. These methods create,
update, or delete catalog entries. The appropriate meta information will be provided in the
request messages.

By specifying a CORBA ior (interoperable object reference) in the meta-information, the
following functions are possible:

» direct access to OGC Simple Features, OGC Feature Collections or OGC Coverages
» distributed search through multiple catalog services

To enable this functionality the field ior must be filled with the correct ior in the standard
OMG ior string representation.

i nterface CG Manager
{
CG _Cr eat eMet adat aResponse
creat eMetadat a(i n CG _Creat eMet adat aRequest request)
rai ses(Not | npl enent ed, Catal ogError);
CG _Cr eat eCat al ogResponse
creat eCat al og(i n CG Creat eCat al ogRequest request)
rai ses(Not | npl enent ed, Catal ogError);
CG_Updat eCat al ogResponse
updat eCat al og(i n CG_Updat eCat al ogRequest request)
rai ses(Not | npl enent ed, Catal ogError);
CG Del et eCat al ogResponse

del et eCat al og(i n CG Del et eCat al ogRequest request)

124 © OGC 2002 — All rights reserved

OGC 02-087r3

rai ses(Not | npl enent ed, Catal ogError);
s

The interface CG_Access is the interface for access messages. It describes only one
operation: the brokeredAccess function which has the request as input and which returns the
response. Direct access is provided by interfaces as the Simple Feature interface and the
Coverage interface. These interfaces are not described here. The client can get a reference to
these interfaces by examining the ior field in the meta-information.

i nterface CG Access

{
CG Br oker edAccessResponse
br oker edAccess(i n CG BrokeredAccessRequest request)
rai ses(Not | npl enent ed, Catal ogError);
H

The CG_CatalogServices interface is the core of the CORBA profile. All operations have a
comparable form of the operations specified in the General Model. This consists of a request
message as an input parameter and a response message as a return value.

The CG_CatalogServices inherits from the interfaces CG_Discovery, CG_Access and
CG_Manager. In this way these services are realized.

Note: Access and manager services are optional. If a server does not implement these services it throws the exception
NotImplemented.

The CG_CatalogServices also inherits from OGC_StatefulService that is described below.

interface CG Catal ogServices : OGC Stateful Service, CG D scovery,
CG_Access, CG_Manager

CG | ni t Sessi onResponse initSession(in CG InitSessionRequest request)
rai ses(Catal ogError);

CG _Ter m nat eResponse term nat eSessi on(in CG Term nat eRequest request)
rai ses(InvalidSession, Catal ogError);

CG_Expl ai nSer ver Response expl ai nServer (i n CG _Expl ai nSer ver Request
request)

rai ses(Catal ogError);

© OGC 2002 — All rights reserved 125

OGC 02-087r3

CG_St at usResponse status(in CG StatusRequest request)
rai ses(IlnvalidSession, InvalidRequest, Catal ogError);
CG_Cancel Response cancel (i n CG _Cancel Request request)
rai ses(InvalidSession, InvalidRequest, Catal ogError);
H
10.3.11Basic interfaces

Because of the asynchronous behavior of the query operation, a callback notifying the
termination of the query might be useful. The Observer Design Pattern [GAMMA97]
describes a standard mechanism for notifications to one or more clients. We envision that
such a mechanism will be useful for many operations in the OpenGIS world. Therefore the
OGC_Opbserver and the OGC_Subject interfaces are modeled separately. These interfaces
might be moved to an OGC general module, in the same or a similar form. The next
interfaces describe the mechanism.

Note: They are not mentioned in the General Model, as this is a CORBA specific behaviour.
i nterface OGC (bserver;
i nterface OGC _Subj ect
{
void attachCbserver(in OGC _Observer (hserver);
voi d detat chQobserver (in OGC bserver Cbserver);
voi d noti fyGbserver();
s
i nterface OGC Cbserver
{
voi d updat eSubj ect (i n OGC_Subj ect ChangedSubj ect);
s

The CG_CatalogServices interface inherits from OGC_Service. This is envisioned as the
basic interface for all OpenGIS services. As it does not exist yet, the content of this interface
is not clear.

interface OGC Service : OGC _Subject

{

126 © OGC 2002 — All rights reserved

OGC 02-087r3

interface OGC Stateful Service : OGC _Service

{
H

10.3.12Complete IDL
e
/1 Modul e OGC _Cat al ogSer vi ce
N e
/1 Purpose CORBA profile for catal og services
I e
/1 Authors . Barend CGehrels, Geodan IT b.v., the Netherl ands
/1 Joi ned Cat al og Response Team
/1 Date : july 13, 1999
/1 july 26, 1999: errata based upon m nor GM changes
/1 july 30, 2000: Juergen Ebbi nghaus (SI CAD)
/1 and Barend Cehrels:
/1 changes based on S| CAD Revi ew
/1 - string -> wstring
/1 - long SessionlD -> long | ong
/ - e.g. sequence<type> TypeSeq
e e

#pragma prefix "opengis.org"
#i ncl ude <Dynam cAny.idl >
nmodul e OGC_Cat al ogSer vi ce

{

/1 Paraneter type definitions

© OGC 2002 — All rights reserved 127

OGC 02-087r3

/1 3.2.7.1
enum CG Attribut eCategory {queriable, presentable, both};
/Il 3.2.7.2
enum CG Br oker edAccessRequest Type {orderEsti mate, order Quot eAndSubmit,
order Moni tor, orderCancel };
/1l 3.2.7.3 capabilities see bel ow
/1l 3.2.7.4
enum CG _Cat al ogEnt ryType {product, collection, catal og, service};
/Il 3.2.7.5
enum CG CharacterSet {ASCI|, Uni Code, ShiftJlS};
/1l 3.2.7.6
uni on CG Col | ecti onName
swi tch(Il ong)
{
case 1 : wstring collectionlD
case 2 : wstring collectionNang;
b
/1l 3.2.7.7 CG Dictionary see CG Schene
/Il 3.2.7.8
enum CG _MessageFormat {XM., HTM., TXT, NV};
/1 3.2.7.9
struct CG Orderltem
{
/1l Note: datatypes not provided by GM
any productl| D

any productPrice;

128 © OGC 2002 — All rights reserved

OGC 02-087r3

any productDeliveryOptions;
any processi ngOpti ons;
any sceneSel ecti onOpti ons;
I
/1 3.2.7.10
struct CG Order Specification
{
/1 Note: datatypes not provided by GV
any orderCentrel D
any orderPrice;
any orderDeliveryDat e;
any order Cancel | ati onDat e;
any del i veryMet hod;
any package;
H
/1 3.2.7.11
enum CG Order Status {orderBei ngEsti mat ed, orderEsti nated,
or der Bei ngQuot ed, or der Bei ngProcessed,
order Conpl et ed, order Not Valid, orderCancell ed};
/1 3.2.7.13
enum CG _Packagi ngType {predefi nedPackage, adhocPackage};
/1 3.2.7.12
struct CG _PackageSpecification
{
/'l Note: datatypes not provided by GM
any packagel d;
any packagePri ce;

CG_Packagi ngType package;

© OGC 2002 — All rights reserved 129

OGC 02-087r3

any packageMedi um
| ong packageSi ze
s
/1l 3.2.7.14
enum CG _Payrment Met hod {credit, cash, purchaseOrder};
/1 3.2.7.15
enum CG _Predefi nedPresentati onType {full, brief};
/1l 3.2.7.16
typedef sequence<wstring> StringSeq;
uni on CG _PresentationDescription

swi tch(Il ong)

{
case 1 : StringSeq attributes; // CG Tupl eType in GM
case 2 : CG PredefinedPresentati onType presentati onType; // name
in GM
H
/Il 3.2.7.3.7

enum CG _QuerylLanguage {OGC_Common, Z3950_ TypeOne, SQ.3_Si npl eFeat ure,
SQ.2_Si mpl eFeat ur e} ;

/1 3.2.7.17

struct CG QueryExpression

{
wstring theQuery;
wstring theNanespace;
CG_QuerylLanguage t heLanguage;
any queryParaneters;

i

/1l 3.2.7.18

130 © OGC 2002 — All rights reserved

OGC 02-087r3

enum CG QueryScope {distributed, |ocal};
/1 3.2.7.19

struct CG Request|D

{
I ong | ong sessionl D
| ong counter;

s

/1l 3.2.7.20

enum CG Resul t Type {validate, resultSetID, hits, results};
/1 3.2.7.21
struct CG_ReturnDat a
{
CG_MessageFor mat encodi ng;
any payl oad;
/1 XM, HTML, TXT will return a string

/1 NV will return a Dynani cAny:: NaneVal uePai rSeq (from CORBA 2.3
Dynam c Any)

s
/1 3.2.7.22 CG Schene
t ypedef Dynami cAny:: NaneVal uePair Seq CG Scheng,;
/1l 3.2.7.23 CG _Schenel D
struct CG Schenal D
{
wstring schenmeNane;
CG_Schena schens;
H
/1 3.2.7.25

enum CG Sort Order {ascendi ng, descendi ng};

© OGC 2002 — All rights reserved 131

OGC 02-087r3

/1 3.2.7.24
struct CG SortField
{
wstring attributeNane;
CG SortOrder sortOrder;
H
/1 3.2.7.26
enum CG_Status {success, successResul tsAvail abl e, processi ngNormal,
processi ngQueued, processi ngPausedOr Suspended, failure,
fail ureAccessDeni ed};
/1 3.2.7.27
enum CG_St at usUpdat eType {nmanual, autonatic};
/1 3.2.7.28 CG Tupl eType
/1l 3.2.7.29
struct CG UserlInformation
{
wstring user Naneg;
wstring user Address;
wstring phoneNumber;
wstring faxNunber;
wstring enail Addr ess;
wstring net Address;

CG_Paynent Met hod paynent Met hod;

/1 Capabilities, 3.2.7.3

enum CG _CapabilityType

132 © OGC 2002 — All rights reserved

OGC 02-087r3

{ ctAll SupportedRequest, ctDefaults, ctDefaultTi neCut,
ct Expl ai n, ctMessaging, ctQuery, ctSession,
ct Sof t war el nformati on, ct SupportedCollections };
/1 3.2.7.3.1
t ypedef bool ean CG Al | Support edRequest;
/1 3.2.7.3.2
t ypedef bool ean CG Defaults;
/1 3.2.7.3.3

struct CG Def aul t Ti meCut

{

unsi gned |l ong long tinmeQut;
s
/1 3.2.7.3.4

t ypedef bool ean CG Expl ai n;
/1l 3.2.7.3.5
struct CG Messagi ng
{
CG Char act er Set char act er Set ;
CG_MessageFor mat nessageFor mat ;
H
/1 3.2.7.3.6
struct CG Query
{
wstring version;
CG Charact er Set character Set;
CG_QuerylLanguage querylLanguage;
s

/1l 3.2.7.3.8

© OGC 2002 — All rights reserved 133

OGC 02-087r3

struct CG Session
{
wstring | anguage;
wstring catal ogSpecificationVersion;
CG Character Set character Set;
H
/1 3.2.7.3.9
struct CG _Sof twarel nformation
{
wstring vendor;
wstring SWersi onNunber ;
wstring | Fversi onNunber;
s
/1l 3.2.7.3.10
typedef sequence<CG Col | ecti onNane> CG SupportedCol | ecti ons;
[/l 3.2.7.3
union CG Capability
swi t ch(CG _Capabi lityType)
{

case ct Al |l SupportedRequest : CG Al |l Support edRequest
al | Support edRequest ;

case ctDefaults : CG Defaults defaults;

case ctDefaul t TineQut : CG Defaul tTi mreCut tinmeCut;
case ctExplain : CG Explain explain;

case ctMessaging : CG Messagi ng nessagi ng;

case ctQuery : CG Query query;

case ctSession : CG Session session;

134 © OGC 2002 — All rights reserved

OGC 02-087r3
case ctSoftwarelnfornmati on : CG Softwarel nformation
sof t war el nf or mati on;

case ctSupportedCollections : CG SupportedCollections
supportedCol | ecti ons;

struct CG _Message

{
| ong | ong sessionl D
wstring destinationlD
CG _Request | D request | D;

wstring additionallnfo;

H
struct CG_InitSessi onRequest
{
CG _Message base;
b
struct CG_Init SessionResponse
{
CG Message base;
b
struct CG _Ter i nat eRequest
{
CG Message base;
i
struct CG Term nat eResponse
{

© OGC 2002 — All rights reserved 135

OGC 02-087r3

CG Message base;
CG_St at us st at us;
s
typedef sequence<CG CapabilityType> CG CapabilityTypeSeq;
struct CG_Expl ai nServer Request
{
CG Message base;
CG _Capabi lityTypeSeq capabilities;
b
struct CG_Expl ai nServer Response
{
CG Message base;
CG _Capabi lityTypeSeq capabilities;
I
struct CG_St at usRequest
{
CG Message base;
CG _Request | D request | Dt oSt at us;
i
struct CG_St at usResponse
{
CG Message base;
CG _Request I D request | Dt oSt at us;
CG St at us st at us;
H
struct CG_Cancel Request

{

136 © OGC 2002 — All rights reserved

OGC 02-087r3

CG Message base;
CG _Request I D request | Dt oCancel ;
bool ean freeResources;
I
struct CG _Cancel Response
{
CG Message base;
CG St at us st at us;
CG_Request | D cancel edRequest ;
H
typedef sequence<CG SortFi el d> CG SortFi el dSeq;
struct CG_QueryRequest
{
CG _Message base;
CG_Quer yExpressi on quer yExpressi on;
CG Resul t Type resul t Type;
long iteratorSize;
| ong cursor;
CG_MessageFor mat returnFormat;
CG Present ati onDescription presentation;
CG SortFiel dSeq sortField;
CG_QueryScope queryScope;
CG Col | ecti onNane col | ectionl D,
CG Cat al ogEnt ryType cat al ogType;
bool ean asynchronous;
| ong naxLevel ;
s

struct CG _QueryResponse

© OGC 2002 — All rights reserved 137

OGC 02-087r3

{
CG Message base;
CG ReturnData retrievedDat a;
CG Col |l ectionNane resul tSetl D
CG_St atus st at us;
long hits;
| ong cursor;

s

struct CG_Present Request

{
CG Message base;
CG Col | ecti onNanme resul tSetl D
CG PresentationDescription presentation;
CG SortFiel dSeq sortField;
CG_MessageFor mat ret urnFor mat;
long iteratorSize;
| ong cursor;

s

struct CG_Present Response

{
CG Message base;
CG ReturnData retrievedDat a;
| ong cursor;
long hits;
CG_St atus st at us;

H

struct CG _Expl ai nCol | ecti onRequest

138 © OGC 2002 — All rights reserved

OGC 02-087r3

CG Message base;
CG AttributeCategory attributeCategory;
CG Col | ecti onName col | ectionl D,
CG_MessageFor mat ret urnFormat;
H
struct CG Expl ai nCol | ecti onResponse
{
CG _Message base;
CG Col | ecti onNanme col | ectionl D;
CG_Schenal D dat aMbdel ;
CG_St at us st at us;
s
/1 Messages for access
/1 3.2.5.1
struct CG BrokeredAccessRequest
{
CG _Message base;
wstring product Handl e;
CG Order Speci fication orderlnformation;
wstring orderl D
CG Br oker edAccessRequest Type request Type;
CG User I nformation userlnfornation,;
CG_St at usUpdat eType st at usOr der Updat eType;
CG _PackageSpeci fi cati on packageSpeci ficati on;
H
/1 3.2.5.2

typedef sequence<l| ong> LongSeq;

© OGC 2002 — All rights reserved 139

OGC 02-087r3

struct CG BrokeredAccessResponse
{
CG _Message base;
CG Order St at us order St at us;
LongSeq resourceEsti nate;
CG Col | ecti onNane order;
wstring orderl D
CG _St at us st at us;
CG _Br oker edAccessRequest Type request Type;
H
/'l Messages for nanaging functions
struct CG CreateCat al ogRequest
{
CG _Message base;
/1 thd
b
struct CG CreateCatal ogResponse
{
CG _Message base;
/1 thd
H
struct CG Updat eCat al ogRequest
{
CG_Message base;
/1 thd
H

struct CG Updat eCat al ogResponse

140 © OGC 2002 — All rights reserved

OGC 02-087r3

CG Message base;

/1 thd
I
struct CG Del et eCat al ogRequest
{

CG Message base;

/1 thd
b
struct CG Del et eCat al ogResponse
{

CG Message base;

/1 thd
I
struct CG Creat eMet adat aRequest
{

CG Message base;

/1 thd
i
struct CG CreateMet adat aResponse
{

CG Message base;

/] thbd

exception I nvalidSession{};

© OGC 2002 — All rights reserved 141

OGC 02-087r3

142

exception | nvali dRequest{};

exception InvalidCollection{ wstring diagnostic; };
exception InvalidQery{ wstring diagnostic; };
exception Notlnplemented{ wstring diagnostic; };
exception Not Supported{ wstring diagnostic; };

exception Catal ogError{ wstring diagnostic; };

i nterface OGC (bserver;

i nterface OGC _Subj ect

{
oneway void attachCbserver(in OGC_Cbserver Observer);
oneway void detachCbserver(in OGC_Cbserver Observer);
oneway void notifyQoserver();

b

i nterface OGC _Cbserver

{
voi d updat eSubj ect (i n OGC_Subj ect ChangedSubj ect);

H

interface OGC Service : OGC_Subject

{

i

interface OGC Stateful Service : OGC _Service

{

H

interface CG Discovery

© OGC 2002 — All rights reserved

OGC 02-087r3

{
CG _QueryResponse query(in CG QueryRequest request)
rai ses(InvalidSession, InvalidQuery, InvalidCollection,
Not Support ed, Catal ogError);
CG _Present Response present (in CG Present Request request)
rai ses(InvalidSession, InvalidCollection, NotSupported,
Cat al ogError);
CG_Expl ai nCol | ecti onResponse expl ai nCol | ection(in
CG _Expl ai nCol | ecti onRequest request)
rai ses(Catal ogError);
i

i nterface CG Catal ogServi ces;

i nterface CG Access

{
/1l Direct access is provided by the IOR fields in the neta-
i nformation
/1 itself
/1 Brokered access
CG_Br oker edAccessResponse
br oker edAccess(in CG BrokeredAccessRequest request)
rai ses(Not | npl enented, Catal ogError);
s
i nterface CG Manager
{

CG _Cr eat eMet adat aResponse
creat eMetadat a(i n CG_Creat eMet adat aRequest request)
rai ses(Not | npl enented, Catal ogError);

CG _Cr eat eCat al ogResponse
creat eCat al og(i n CG _Creat eCat al ogRequest request)

rai ses(Not |l npl enented, Catal ogError);

© OGC 2002 — All rights reserved 143

OGC 02-087r3

CG_Updat eCat al ogResponse

updat eCat al og(i n CG _Updat eCat al ogRequest request)
rai ses(Not | mpl enent ed, Catal ogError);
CG Del et eCat al ogResponse
request)

del et eCat al og(i n CG _Del et eCat al ogRequest
rai ses(Not | npl enented, Catal ogError);

s

i nterface CG _Catal ogServices :
CG_Access, CG _Manager

OGC_St at ef ul Servi ce, CG_Di scovery,

{
CG | ni t Sessi onResponse initSession(in CG InitSessionRequest
request)
rai ses(Catal ogError);
CG_Ter m nat eResponse term nat eSessi on(in CG Term nat eRequest
request)
rai ses(Inval i dSession, Catal ogError);
CG_Expl ai nSer ver Response expl ai nServer (i n CG_Expl ai nSer ver Request
request)
rai ses(Catal ogError);
CG_St at usResponse status(in CG StatusRequest request)
rai ses(InvalidSession, InvalidRequest, Catal ogError);
CG _Cancel Response cancel (i n CG Cancel Request request)
rai ses(InvalidSession, InvalidRequest, Catal ogError);
b
b

144 © OGC 2002 — All rights reserved

OGC 02-087r3

11 Bibliography

ISO/IEC 8825:1990 Information technology -- Open Systems Interconnection --
Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1)

ISO 19101:2002 Geographic information -- Reference model

ISO 19103:2002 (DTS) Geographic information - Conceptual schema language, (Draft
Technical Specification)

ISO 19106:2002 (DIS) Geographic information - Profiles

ISO 19108:2002 Geographic information - Temporal schema

ISO 19109:2002 (DIS) Geographic information - Rules for application schema

ISO 19110:2001 (DIS) Geographic information - Methodology for feature cataloguing
ISO 19113:2002 Geographic information - Quality principles

ISO 19114:2001 (DIS) Geographic information - Quality evaluation procedures

ISO 19115:2001 (DIS) Geographic information - Metadata

ISO 19118:2002 (DIS) Geographic information - Encoding

ISO 19119:2002 (DIS) Geographic information - Services

ISO 23950:1998 Information and documentation -- Information retrieval (Z39.50) --
Application service definition and protocol specification

© OGC 2002 — All rights reserved 145

OGC 02-087r3

Annex A: Abstract Test Suite for Conformance (Normative)

All implementation profiles should provide methods for conformance testing that adhere to this
generalized abstract test suite. Conformance for extended (optional) interfaces, including the Access
and Management Service are not described herein.

Test case identifier: Initialize
a) Test Purpose: To determine conformance by initializing a session

b) Test Method: Client sends CG_Initiliaze Request to the Catalog Server, Server responds with
a CG_IntializeResponse

c) Reference: OGC Catalog Services Specification
d) Test Type: TBD

e) Test Verdict: pass/fail

Test case identifier: Query and Present
a) Test Purpose: To determine conformance by performing a query
b) Test Method: As part of a session, the client sends a CG_QueryRequest. The server performs
the query and responds with a CG_QueryResponse. Client then sends a CG_PresentRequest,
server responds with a CG_PresentResponse. The query must complete without error and the
records returned in the CG_PresentResponse must match the query.
c) Reference: OGC Catalog Services Specification
d) Test Type: TBD

e) Test Verdict: pass/fail
Test case identifier: Terminate
a) Test Purpose: To determine conformance by terminating a session

b) Test Method: As part of a session, the client sends a CG_TerminateRequest. The server
responds with a CG_TerminateResponse. No errors occur.

c) Reference: OGC Catalog Services Specification
d) Test Type: TBD

e) Test Verdict: pass/fail

146 © OGC 2002 — All rights reserved

OGC 02-087r3

Annex B: CORBA Profile — Fine Grain (Informative)

Fine-Grain CORBA Structural Model —Overview

This section defines the Fine Grain CORBA Profile of the OGC Catalog Specification. The
Fine Grain portion is divided into four sections for purposes of explanation:

1) The Library and Manager interfaces — Used to place requests with the Catalog Service
2) The Responses — Used to retrieve the results of a request

3) The Datatypes — The data types used as parameters in the requests and responses
operations

4) Callback — Used to notify clients of the status of a request

These elements are used together in a simple three-step pattern to provide the Catalog
Service capabilities:

1) The Library object provides a Manager object to the client.

2) This Manager object provides one or more operations for a specific capability such as
query or access. When successfully invoked by the client, these operations return a
Response object.

3) That Response objects provides one or more operations that allow retrieval of the results
of the request, such as the results of a query.

B.2 Managers

The Manager segment of the Fine Grain General Model is composed of the Library interface,
which acts as a Factory for the Managers, two abstract interfaces (LibraryManager and
ResponseManager) which define operations common to the concrete Managers and five
concrete Managers (CatalogMgr, OrderMgr, CreationMgr, UpdateMgr and DataModelMgr)
each specialized to provide a specific capability. Figure C-1 shows the UML describing these
interfaces, relationships and their operations. Details for each interface are given below.

© OGC 2002 — All rights reserved 147

OGC 02-087r3

<<Interface>>
Library

+ managerTypes()
+ manager()
+ libraryDescription()

<<Interface>>
LibraryManager

+ propertyNames()
+ propertyValues()
+ libraries()

<<Interface>>

<<Interface>>
ResponseManager

+ listActiveResponses()

+ defaultTimeout()
+ deleteResponse()

<<Interface>>
UpdateMgr

+ update()
+ updateByQuery()
+ release_lock()

DataModelMgr

<<Interface>>

+ listDataViews () CatalogMgr e Il e

+ attributes() CreationMgr OrderMgr

+ queryableAttributes() + submitQuery()

+ entities() + hitCount() + create() + packageSpecifications()

+ entityAttributes()

+ validateQuery() + createMetadata() + validateOrder()

+ order()

Figure B- 1 - Static Class Diagram of the Library and Managers

B.2.1 Library

The Library interface serves as the starting point for any interaction with the rest of the fine-
grained interfaces. All capabilities of a library system are accessed through the concrete
manager objects. The Library interface is the mechanism by which a client discovers and
requests access to manager objects.

B.2.1.1 Public Operations:
managerTypes () : ManagerTypeList

This operation allows a client to discover which managers a particular library supports. A
ManagerTypeList structure is returned from a successful invocation of this operation.

manager (manager_type: in ManagerType, access_criteria: in
OGCBasic::NameValueList) : LibraryManager

This operation is a request to be given access to a manager object. A successful invocation

will return a reference to an object of type LibraryManager. The client then can use this
Manager to make requests for specific Catalog services.

148 © OGC 2002 — All rights reserved

OGC 02-087r3

libraryDescription () : LibraryDescription

This operation returns descriptive information about the library. A successful invocation of
this operation will return a populated LibraryDescription structure. See the Datatypes Section
3.3.4 for details on the LibraryDescription structure.

B.2.1.2 LibraryManager

The LibraryManager interface serves as the (abstract) root for all types of manager objects in
the Fine Grained Model. It is abstract in the sense that a concrete LibraryManager object by
itself would serve no real purpose. Its real purpose is to define certain operations that are
common to all types of manager objects in the Fine Grained Model. Public operations follow:

propertyNames () : OGCBasic::NameList

This selector operation allows a client to obtain a list of property names. A property name is
the name component of a NameValue pair. The NameList returned by this operation
identifies all the property names supported or known by this manager. These properties are
used to describe any characteristics of a Manager.

propertyValues (desired_properties : in OGCBasic::NameList) : PropertyList

This operation allows a client to discover the properties and the current values of those
properties that describe a Manager.

libraries () : LibraryList

This selector operation allows a client to determine the specific geospatial library system(s)
this Manager supports.

B.2.1.3 ResponseManager

The ResponseManager is an abstract interface that defines operations common to all managers
that use Response objects as part of their operations. Public operations follow.

listActiveResponses () : ResponseList

This operation allows a client to determine what responses this ResponseManager is
managing. A successful invocation of this operation will return a ResponseList structure

defaultTimeout () : OGCBasic::RelativeTime

This operation allows a client to get the default value of the lifetime of the Responses being
managed by this ResponseManager. This time is the length of time the Response object must
be maintained before the Response is deleted. This time is used by a count down timer,
which is reset with each invocation of an operation on the specific Response object. When

© OGC 2002 — All rights reserved 149

OGC 02-087r3

the count down expires, i.e., no invocations during the timeout period, the Response object
may be “garbage collected”.

deleteResponse (response : in Response) : void

This operation allows a client to destroy a Response and free all resources associated with
that Response.

B.2.1.4 CatalogMgr

The CatalogManager Interface allows a client to submit queries to search the catalog of
holdings of a geospatial library. Derived from LibraryManager, ResponseManager. Public
Operations:

submitQuery (view_name : in ViewName, query : in Query, result_attributes : in
OGCBasic::NamelList, sort_attributes : in SortAttributeList, properties : in
PropertyList) : SubmitQueryResponse

This operation allows a client to submit a query to search a catalog. The client indicates the
product type of interest by supplying the desired value in view name. The client indicates the
view of the catalog of interest in view name, the query expression itself in guery, the set of
attributes to be returned in result attributes and any sorting to be done in sort_attributes. The
parameter properties is used to supply any implementation specific parameters. A successful
invocation returns a SubmitQueryResponse object, which is used to retrieve the query results.
If the property list contains the property “lock” (type = Boolean) and the lock is set to true,
the products that are returned by the query are locked for update.

hitCount (view_name : in ViewName, query : in Query, properties : in PropertyList) :
HitCountResponse

This operation allows a client to determine the number of results ("hits") that would be
returned from a particular query. The parameters used are the same as used in the
submitQuery operation.

validateQuery (view_name : in ViewName, query : in Query, result_attributes : in
OGCBasic::NamelList, sort_attributes : in SortAttributeList, properties : in
PropertyList) : boolean

This operation allows a client to verify that a specific query is valid. The parameters used are
the same as used in the submitQuery operation.

B.2.1.5 OrderMgr

150 © OGC 2002 — All rights reserved

OGC 02-087r3

The OrderMgr Interface allows a client to submit orders for data sets or products from a
geospatial library. The OrderMgr provides operations to place an order (order), specify how it
is to packaged and delivered (i.e., packageSpecifications), and to validate an order specification
prior to submitting the order to a library (validate). Derived from LibraryManager,
ResponseManager. Public Operations:

packageSpecifications () : OGCBasic::NameList

This operation returns a NameList containing all packaging specifications known or
acceptable to this OrderMgr. The details of the packageSpecifications are implementation
dependent.

validateOrder (order : in OGCBasic::DG_DirectedGraph, properties : in PropertyList)
: ValidationResults

This operation is used to determine if an order request for a data set or product from a
geospatial library is valid. The operation returns a data structure indicating the validity of the
order and information concerning details specific to the validation of the order.

order (order : in OGCBasic::DG_DirectedGraph, properties : in PropertyList) :
OrderResponse

This operation is used to request delivery of one or more datasets or products (i.e. place an
order). The client defines the order by assembling a DG DirectedGraph containing all
necessary elements of the desired order.

B.2.1.6 CreationMgr

The CreationMgr interface allows a client to nominate a data set or product to a library(s) for
inclusion in the library holdings. This interface also allows a client to nominate the metadata of
a data set or product for inclusion without supplying the data set or product itself. Derived
from LibraryManager, ResponseManager. Public Operations:

create (new_product : in OGCBasic::FileLocationList, creation_metadata : in
OGCBasic::DG_DirectedGraph, properties : in PropertyList) : CreateResponse

This operation allows a client to nominate a data set or product for inclusion in the holdings
of a library(s). The data set or product nominated must be accompanied by the appropriate
metadata. The metadata may be in the product itself in the DG_DirectedGraph or a
combination of the two.

createMetadata (creation_metadata : in OGCBasic::DG_DirectedGraph, view_name :
in ViewName, properties : in PropertyList) : CreateMetaDataResponse

This operation allows a client to nominate the metadata of a data set or product for inclusion
in a library(s) without supplying the data set or product itself. The client nominates the
metadata by supplying all metadata elements in the DG DirectedGraph creation metadata.

B.2.1.7 UpdateMgr

© OGC 2002 — All rights reserved 151

OGC 02-087r3

The UpdateMgr Interface provides the capability for a client to modify existing catalog entries.
Derived from LibraryManager, ResponseManager. Public Operations:

update (view : in ViewName, changes : in UpdateDG_DirectedGraphList, properties :
in PropertyList) : UpdateResponse

This operation allows a client to modify existing catalog entries. The desired modifications
are defined by specifying the view that is being updated along with an UpdateDAGList that
contains the entries with the modified and/or additional values.

updateByQuery (updated_attribute : in OGCBasic::NameValue, query : in Query,
view_name : in ViewName, properties : in PropertyList) : UpdateByQueryResponse

This operation allows a client to update one or more catalog entries by supplying a query to
select the entries to be changed in query and a NameValue pair containing the attribute to be
updated and its new value in updated _attribute.

releaseLock (lockedProduct : in UID::Product) : void

This operation manually releases a lock that has been placed on a Product. The Product
reference for the locked Product is provided in the parameter lockedProduct. A Product is
locked through the Catalog Manager.

B.2.1.8 DataModelMgr

The DataModelMgr Interface allows a client to discover and access the metadata model being
used by a given Geospatial Library. Derived from LibraryManager. Public Operations:

listDataViews (properties : in PropertyList) : ViewList

This operation exposes the hierarchy of data view types recognized by this library. See the
DataTypes Section 3.3.4 for details of the ViewList structure. The term “view” as used in
this section is equivalent to the queryable attribute set of a Z39.50 implementation. It may
also be thought of as equivalent to a metadata profile of the proposed international standard
on Metadata that has been generated by members of the ISO TC/211 standards body.

attributes (view_name : in ViewName, properties : in PropertyList) :
AttributeInformationList

This operation returns an AttributeInformationList, which describes the requested data view.
The AttributeInformationList is composed of elements of type AttributeInformation. The
AttributeInformationList contains both queryable and non-queryable attributes. See the
DataTypes Section 3.3.4 for the details of the AttributeInformationList structure.

queryableAttributes (view_name : in ViewName, properties : in PropertyList) :
AttributeInformationList

152 © OGC 2002 — All rights reserved

OGC 02-087r3

This operation returns an AttributeInformationList , which describes a specific data view.
The AttributeInformationList is a sequence of elements of type AttributeInformation. The
AttributeInformationList contains the subset of all attributes that are queryable. See the
DataTypes Section 3.3.4 for the details of the AttributeInformationList structure.

entities (view_name : in ViewName, properties : in PropertyList) :

OGCBasic::DG_DirectedGraph

This operation returns a DG_DirectedGraph, which represents a set of entities and their
relationships that compose a specific data view.

entityAttributes (entity : in Entity, properties : in PropertyList) :

AttributeInformationList

This operation returns an AttributeInformationList, which represents a set of attributes that
describes a specific entity. The AttributeInformationList contains elements of type
AttributeInformation. See the DataTypes Section 3.3.4 for the details of the

AttributeInformationList structure.

B.2.2 Responses

The Response segment of the Fine Grain General Model is composed of one abstract
interface (Response) and seven concrete Responses. Each of these concrete responses is
returned by a specific Manager operation. Figure 13 shows the UML describing these
interfaces, relationships and their operations. Details for each interface are listed in the
following sections. Table B.2.2-1 provides a mapping of the Manager interfaces that create
the concrete Response Interfaces when the appropriate operation of the Manager interface is

invoked.

Table B-1 - Response Interfaces Created by Invoking An Operation of a Manager Interface

Fine-Grain Manager Manager Interface Response Interface Created
Interface Operation by Invoking the Operation
of The Manager Interface
CatalogMgr SubmitQuery SubmitQueryResponse
HitCount HitCountResponse
Order Order OrderResponse
CreationMgr Create CreateResponse
CreateMetadata CreateMetadataResponse
UpdateMgr Update UpdateResponse
© OGC 2002 — All rights reserved 153

OGC 02-087r3

UpdateByQuery

UpdateByQueryResponse

154

© OGC 2002 — All rights reserved

OGC 02-087r3

<<Interface>>
Response

+ requestDescription()
+ userinfo()

+ status()

+ cancel()

+ remainingDelay()

+ registerCallback()

+ freeCallback()

+ responseManager()

<<Interface>>
<<Interfface>> HitCountResponse
CreateResponse

+ complete()

+ complete()

<<Interface>>
SubmitQueryResponse

+ completeGraphResults()
+ completeTableResults ()
+ completeXMLResults()

<<Interface>>
OrderResponse

+ complete()

<<Interface>>

<<Interface>>
<<Interface>> UpdateByQueryResponse

UpdateResponse

CreateMetaDataResponse

+ complete()

+ complete() + complete()

Figure B-2 — Static Class Diagram of The Response Interfaces

B.2.2.1 Response

The Response Interface is an abstract interface that defines those operations that are common
to all concrete Response objects. Public Operations:

requestDescription () : OGCBasic::RequestDescription

© OGC 2002 — All rights reserved 155

OGC 02-087r3

This operation returns a populated RequestDescription structure that describes the Request
that generated this Response. See the DataTypes Section 3.3.4 for details on the
RequestDescription structure.

userInfo (message : in string) : void

This operation allows a user to provide information that describes the Response. The client
supplies this information in the form of a string in a message form. A successful invocation
of this operation associates the client's message with the Request.

status () : OGCBasic::Status

This operation returns the current status of the Response. This operation can be used to poll
the Response to determine whether or not it has completed processing.

cancel () : void

This operation is used to terminate further processing of a Response.
remainingDelay () : OGCBasic::RelativeTime

This operation returns an estimate of the time until the Response reaches completion.
registerCallback (callback : in CB::Callback) : void

This operation allows a client to register a Callback object with a Response object. The
purpose of a Callback object is to provide an operation to allow the Response object to notify
the client that processing of a Response has reached a terminal state.

freeCallback (callback : in CB::Callback) : void

This operation allows a client to remove a Callback previously registered with a Response.
The client supplies a reference to the Callback that is to be de-registered

responseManager () : ResponseManager

This operation allows a client to discover which ResponseManager is managing the Response
object.

B.2.2.2 SubmitQueryResponse
The SubmitQueryResponse Interface is used to obtain the results from submitting a query to

the catalog service of a geospatial library. This Response is returned from the submitQuery
operation of the CatalogMgr. Derived from Response. Public Operations:

completeGraphResults (start_point : in unsigned long, length : in unsigned long, results
: out QueryResults) : OGCBasic::State

156 © OGC 2002 — All rights reserved

OGC 02-087r3

This operation returns a set of query results expressed as a Directed Graph structure. See the
DataTypes Section 3.3.4 for details on the DG _DirectedGraph structure.

completeTableResults (start_point : in unsigned long, length : in unsigned long, results :
out

This operation returns a set of query results expressed as a NameValueTable structure. See
the DataTypes Section3.3.4 for details on the NameValueTable structure.

completeXMLResults (start_point : in unsigned long, length : in unsigned long, results :
out string) : OGCBasic::State

This operation returns a set of query results expressed as an XML document.

B.2.2.3 OrderResponse

The OrderResponse Interface is used to return the status of the processing of an order. This
Response is returned from the order operation of the OrderMgr. Derived from Response.
Public Operations:

complete () : OGCBasic::State

This operation allows a client to wait until processing of the order is complete, and to obtain
the final status.

B.2.2.4 CreateMetaDataResponse
This Interface is used to create new metadata entries for the catalog holdings of a geospatial

library. This Response is returned from the createMetadata operation of the CreationMgr.
Derived from Response. Public Operations:

complete (new_product : out UID::Product) : OGCBasic::State

This operation waits until the creation processing is complete, and then returns the identifier
for the dataset product just created.

B.2.2.5 CreateResponse

The CreateResponse interface is used to create new product entries in a geospatial library. This
Response is returned from the create operation of the CreationMgr. Derived from Response.
Public Operations:

complete (new_product : out UID::ProductList) : OGCBasic::State

This operation waits until the creation processing is complete, and then returns a ProductList
containing the references to all newly created dataset(s) or product(s).

B.2.2.6 UpdateByQueryResponse

© OGC 2002 — All rights reserved 157

OGC 02-087r3

The UpdateByQueryResponse interface is used to complete the processing of an update of a
catalog entry operation. This Response is returned from the updateByQuery operation of the
UpdateMgr. Derived from Response. Public Operations:

complete () : OGCBasic::State

This operation waits until the update processing is complete, and then returns the update
status.

B.2.2.7 UpdateResponse
The UpdateResponse interface is used to complete the processing of an update operation of a

catalog entry. This Response is returned from the update operation of the UpdateMgr. Derived
from Response. Public Operations:

complete () : OGCBasic::State

This operation waits until the update processing is complete, and then returns the status of the
update operation.

B.2.2.8 HitCountResponse
The HitCountResponse Interface is used to return the number of hits obtained in response to an

invocations of the hitCount operation of the CatalogMgr. Derived from Response. Public
Operations:

complete () : OGCBasic::State

This operation allows a client to complete processing of the HitCountResponse. This
operation returns a value that indicates the total number of results ("hits") that would be
returned if the query were executed. It also returns a State indicating details of the completed
operation.

B.2.3 DataTypes

This section defines the data types used by the operations of the Managers and Response
interfaces. This section is divided into two subsections: Catalog Specific Types and OGC
Types. Catalog Types are types defined specifically for the use of the Catalog Service. OGC
Types are used by the Catalog Service but are very general in nature (i.e., might be used by
other OGC services).

B.2.3.1 Catalog Specific DataTypes
B.2.3.1.1 AttributeInformation

A collection of elements that together describes an attribute used in a metadata model.

158 © OGC 2002 — All rights reserved

Public Attributes:

attribute_name : string

The name of the attribute being described

attribute_units : string

The units of measure for this attribute.

description : string

A human-readable description of the attribute

sortable : boolean

A flag indicating whether this attribute is sortable.

updateable : boolean

A flag indicating whether this attribute is updateable by clients

B.2.3.1.2 AttributeInformationList
A sequence of AttributeInformation structures.
B.2.3.1.3 AttributeType
Defines the list of all possible Attribute Types.
Public Attributes:

text

integer

floating_point

ogcbasic_coordinate

ogcbasic_polygon

ogcbasic_abs time

ogcbasic_rectangle

ogcbasic_image

ogcbasic_height

ogcbasic_elevation

© OGC 2002 — All rights reserved

OGC 02-087r3

159

OGC 02-087r3

ogcbasic_distance
ogcbasic_percentage
ogcbasic_ratio
ogcbasic_angle
ogcbasic_file size
ogcbasic_file location
ogcbasic_count
ogcbasic_weight
ogcbasic date
ogcbasic_linestring
ogcbasic_data rate
ogcbasic_bin_data
boolean data
ogcbasic_duration
B.2.3.1.4 Change

A structure used to indicate which node of a DG_DirectedGraph is to be changed and what
type of change is to be performed.

B.2.3.1.5 ChangeList
A sequence of Change structures.
B.2.3.1.6 ChangeType

An enumerated data type used to indicate the type of change to an attribute value being
requested.

Public Attributes:
add_change :

Indicates a change to add a new Node to a DG_DirectedGraph

update_change :
160 © OGC 2002 — All rights reserved

OGC 02-087r3

Indicates a change that will update an existing Node in a DG_DirectedGraph
delete _change :

Indicates a change that will delete a Node from a DG_DirectedGraph
B.2.3.1.7 DateRange
A structure that defines a range of dates.
B.2.3.1.8 Domain
A union data type that defines a container to hold a domain value.

Public Attributes:

The table below contains the list of DomainType and their ranges used in the enumeration
“DomainType” (D.2.3.1.9).

DomainType DomainType Range
date value DateRange
text_value unsigned long

integer value IntegerRange
integer_set IntegerRangeList

floating_point_value FloatingPointRange
list OGCBasic::NameList
ordered _list OGCBasic::NameList
integer range IntegerRange
floating point_range FloatingPointRange
floating_point_set FloatingPointRangeList
geographic OGCBasic::Rectangle
geographic_set OGCBasic::RectangleList
binary data OGCBasic::BinData
boolean_value boolean
B.2.3.1.9 DomainType

© OGC 2002 — All rights reserved 161

OGC 02-087r3

This enumeration defines the set of all possible data types expected to be used in a metadata
model. It is used by the DataModelMgr to describe an attribute in a metadata model.

Public Attributes:
date value :
text value :
integer value:
floating point value:
list :
ordered list :
integer range :
floating_point range :
geographic :
integer set :
floating_point set :
geographic_set :
binary data :
boolean value :
B.2.3.1.10 Entity
A string value used as an identifier for an entity in a metadata model.
B.2.3.1.11 FloatingPointRange

A structure that defines a range of floating point numbers.

Public Attributes:

lower_bound : double

The lower limit of the range.

upper_bound : double

162 © OGC 2002 — All rights reserved

OGC 02-087r3

The upper limit of the range.
B.2.3.1.12 FloatingPointRangeList
A sequence that defines a set of floating point ranges.
B.2.3.1.13 IntegerRange
A structure that defines a range of integers.
Public Attributes:
lower_bound : long

The lower limit of the range
upper_bound : long

The upper limit of the range
B.2.3.1.14 IntegerRangeList
A sequence that defines a set of integer ranges.
B.2.3.1.15 LibraryDescription

A structure that contains a human-readable description of a Library.

Public Attributes:

library_name : string

An identifier for this instance of a Library.
library_description : string

A human-readable description of this Library. This may contain information such as a
description of its holdings and ordering or pricing schemes.

library _version_number : string

A field that indicates the version of the Library system software (i.e. N.N.N).
B.2.3.1.16 LibraryDescriptionList
A sequence of LibraryDescriptions.
B.2.3.1.17LibraryList

A sequence of Library identifiers.

© OGC 2002 — All rights reserved

163

OGC 02-087r3

B.2.3.1.18 ManagerType

An identifier for a type of Manager. The current valid values are "CatalogMgr",
"OrderMgr", "DataModelMgr", "CreationMgr" and "UpdateMgr".

B.2.3.1.19 ManagerTypeList
A sequence of ManagerTypes.
B.2.3.1.20 Polarity

An enumeration used to indicate the direction of a sort.

Public Attributes:

B.2.3.2 ascending :

descending :

B.2.3.2.1 PropertyList

A typedef that contains a name value pair.

B.2.3.2.2 Query

A structure that contains a query expression for submittal to a catalog.
B.2.3.2.3 QueryResults

A structure that is used as one of the three means to encode a set of query results, the others
being NameValueTable and XML. See the operations of the SubmitQueryResposnse
interface.

B.2.3.2.4 RequirementMode

An enumeration that defines a flag to indicate whether the attribute is required to be present
in every catalog entry.

Public Attributes:
mandatory :

This parameter is used to indicate a catalog entry is mandatory.
optional :

This parameter is used to indicate a catalog entry is optional.

B.2.3.2.5 ResponseList
164 © OGC 2002 — All rights reserved

OGC 02-087r3

A sequence of Response identifiers.

B.2.3.2.6 SortAttribute

A structure used to indicate the attribute to be sorted upon and its direction.
B.2.3.2.7 SortAttributeList

A sequence of SortAttributes.

B.2.3.2.8 UpdateDG_DirectedGraph

A structure that defines a set of changes to another DG_DirectedGraph. It includes the new
values (data) and how these changes are to be applied to the other DG_DirectedGraph
(changes).

B.2.3.2.9 UpdateDG_DirectedGraphList
A sequence of UpdateDG_DirectedGraph structures.
B.2.3.2.10 ValidationResults

This data type is returned to indicate if a requested operation is valid. It is used in the
CatalogMgr::validateQuery and OrderMgr::validateOrder operations.

Public Attributes:

valid : boolean

If TRUE requested operation is valid. If FALSE requested operation is not valid.
warning : boolean

If TRUE warning field contains a description of a warning condition associated with the
validity of the requested operation (i.e. Valid but ...). If FALSE no warning is given.

details : string

The text describing the warning.
B.2.3.2.11 ValidationResultsList
A sequence of ValidationResult structures.
B.2.3.2.12 View
This structure is used to define the relationship between Views and other Views (sub-views).

B.2.3.2.13 ViewList

© OGC 2002 — All rights reserved 165

OGC 02-087r3

A sequence of Views
B.2.3.2.14 ViewName

A string used as an identifier for a View. A View is used to denote a specific set of attributes
that may be used together in queries.

B.2.3.2.15 ViewNameList
A sequence of ViewName
B.2.3.3 Proposed Additional OGC Basic Data Types

In Version 1.1 of this Specification this section of Annex C describes basic types used in the
Fine Grain Model and Profile. These types will need to be “harmonized” with existing OGC
Basic types. Once this harmonization work is completed this informative Annex of the
Catalog Specification will be revised to reflect which existing OGC Basic Types were
adopted by the Catalog Specification Revision Working Group (RWG) and which types were
put forth as candidates to augment the OGC Basic Types Repository.

B.2.3.3.1 AbsTime

A structure defining an absolute time, including the date.
B.2.3.3.2 BinData

A "blob" of binary data

B.2.3.3.3 Cardinality

An enumeration that defines the possible values of cardinality.

Public Attributes:

one to_one :
one to many :
many to _one:
many_ to many :

one to_zero or more:
one to one or more:

one_to_zero or_one:

166 © OGC 2002 — All rights reserved

OGC 02-087r3

B.2.3.3.4 DG_DirectedGraph

A Directed Graph structure is essentially a directed acyclic graph. The graph contains two
types of information; data elements called “nodes”, and relationships among these nodes
called “edges”. Figure B-3 is a representation of the DG_DirectedGraph that has been
created from reverse engineering of the IDL used to define a Directed Graph. It was created
using a commercial CASE tool that has the functionality to reverse engineer IDL into UML.

<<CORBAStruct>>
DG_DirectedGraph

+nodes +edges
<<CORBATypedef>> SOz RS
NodeList EdgeList
<< >>
CORE‘ﬁdSGt)ruct <<CORBAStruct>>
. . Edge
attribute_name : string , , L
value : any relationship_type : string
+node_type
+start_node
<<CORBAEnum>> +end_node
NodeType +id
ROOT_NODE <<CORBATypedef>>
ENTITY_NODE NodelD
RECORD_NODE

ATTRIBUTE_NODE

Figure B-3 - The DG_DirectedGraph

B.2.3.3.5 DG_DirectedGraphList

A sequence of Directed Graphs

© OGC 2002 — All rights reserved 167

OGC 02-087r3

B.2.3.3.6 Date
A structure describing a single date as day, month and year.
Public Attributes:
year : unsigned short
The year stated as a four digit number.
month : unsigned short

The month stated as an unsigned short whose valid range is 1-12, where 1=January and
12=December.

day : unsigned short
The day of the month.
B.2.3.3.7 Edge

A structure defining the relationship between two nodes.

Public Attributes:
relationship_type : string
Defines the type of relationship if any exist between two Nodes of a DG _DirectedGraph.
B.2.3.3.8 EdgeList
A sequence of Edges
B.2.3.3.9 FileLocation
This structure contains the location and access information for a file.
Public Attributes:
user_name : string
An identifier for a user that has access to this file.
password : string
A password associated with the user_name field
host_name : string

The host on which this file resides.

168 © OGC 2002 — All rights reserved

path_name : string

The complete path to the directory containing this file.

file_name : string

The name of the file.

B.2.3.3.10 FileLocationList

A sequence of FileLocation structures
B.2.3.3.11 Name

A generic string identifier.
B.2.3.3.12 NameList

A sequence of generic identifiers.
B.2.3.3.13 NameValue

A structure that associates an identifier with a value.

Public Attributes:
theValue : any
theName : string
B.2.3.3.14 NameValueList
A sequence of NameValue pairs

B.2.3.3.15 NameValueTable

OGC 02-087r3

The NameValueTable represents a two-dimensional structure that can be conceptualized as a
rectangle. Table elements are indexed by each single entity of NameValueList being the row
and each component (i.e., NameValue) of a NameValueList being an entity of a column. This

is illustrated in Figure B-4.

© OGC 2002 — All rights reserved

169

OGC 02-087r3

I o000 NameValueList
(row)
o ™
[] e
(] ([
| YY)
H_)
NameValue
(column)

Figure B-4— Illustration of a NameValueTable
B.2.3.3.16 Node

A structure that contains information about the identification of a Node of a
DG _DirectedGraph.

Public Attributes:
id : long

A long that uniquely identifies a node of a DG_DirectedGraph
B.2.3.4 Node_Type:

A structure that contains the type of nodes of a DG _DirectedGraph
attribute_name : string

The attribute being described.
value : any

The value of the attribute
B.2.3.4.1 NodelID

A numeric identifier for a Node in a DG_DirectedGraph
170 © OGC 2002 — All rights reserved

OGC 02-087r3

B.2.3.4.2 NodeList
A sequence of Nodes
B.2.3.4.3 NodeType
A structure that contains the type of nodes of a DG_DirectedGraph.
Public Attributes:
root_node :
entity node :
record node :
B.2.3.5 attribute_node :
B.2.3.5.1 RequestDescription

The structure RequestDescription is used to describe the type and details of a request
submitted for processing. The RequestDescription structure is composed of four elements.
The string user_info contains a message supplied by the submitting client, the contents of this
message are completely determined by the client. The string request_type identifies the
operation that was used to submit the request. The values and syntax of this element need to
be defined in an implementation document of the Fine Grain CORBA profile. The string
request_info contains any message the processing server wishes to return to the client
concerning the specific request. It is intended to be human readable and is implementation
dependent. The NameValueList request_details is intended to describe the parameters of the
operation that generated this request. The specific names and values in this element are
dependent on the operation that initiated this request and need to be defined in an
implementation document.

B.2.3.5.2 OGCBasic::State

An enumerated data type defining the condition of a process, response object or catalog
system element.

Table D-2 lists the enumerated types for the OGCBasic::State data type.

Table B-2. Enumeration of the State Conditions of OGCBasic::State

State Description of Conditions

COMPLETED All requested processing has completed successfully

© OGC 2002 — All rights reserved 171

OGC 02-087r3

IN_PROGRESS Still processing, no error or abnormal conditions yet encountered

ABORTED Processing has stopped due to an error or abnormal condition

CANCELED Processing has been stopped by request

PENDING Processing has not yet begun or has temporarily been halted

SUSPENDED Processing has been temporarily suspended by client request

RESULTS_AVAILABLE Processing has generated some results and made them available.
Additional processing may occur.

B.2.3.5.3 OGCBasic::Status

The structure Status is used to describe the details of the current condition of a process,
request, or system element. The Status structure is composed of three elements:
completion_state a State (see above) indicating the current condition of the process, request
or system element, warning a boolean that if TRUE indicates that the status message field
contains warning information and stafus _message, a string containing a human readable
message that further amplifies or clarifies the State.

B.2.4 Callbacks

Callbacks are an optional portion of the Fine Grain General Model that allow clients to
monitor the status of their Requests without either blocking or polling for status. This is done
by the client implementing the Callback interface and supplying a pointer to this interface in
the registerCallback operation of the Response interface. See the Response interface for the
details of this operation.

B.2.4.1 Callback

The Callback interface is implemented by clients wishing to be notified of changes in state of
their Requests.

Public Operations:
notify (description : in OGCBasic::RequestDescription) : void

This operation is invoked by a server to notify the client that owns this Callback that the state
of a Request has changed. A description of the Request that has changed is provided in the
RequestDescription parameter.

release () : void
This operation is invoked by the server to indicate to the client that the Callback resources

may be released.
172 © OGC 2002 — All rights reserved

OGC 02-087r3

B.3 Fine-Grain Dynamic Model

This section describes two aspects of the dynamic behavior of the Fine Grain CORBA (FGC)
portion of this specification. The following section contains a set of UML Sequence
Diagrams showing how a client application would use certain interfaces of the FGC to
perform a typical query of a catalog. Section 3.5.2 contains a set of state diagrams showing
the legal transitions for the concrete Response Interfaces of the FCG. Both sections are not
intended to be an exhaustive discussion of the dynamic behavior of the FGC portions of this
specification, but show how a client application implementer may use the given set of
interfaces proposed to accomplish the task of querying a catalog.

B.3.1 Sequence Diagrams of the Fine-Grain CORBA Model

This section contains a set of UML Sequence Diagrams showing how a client application
would use the Library, CatalogMgr and SubmitQueryResponse Interfaces to query and obtain
results from a Catalog Service. This same pattern is applicable to all other Manager
interfaces of the FGC Specification. That is, a client would use the Library Interface to
determine the functionality a given Library supports, invokes the appropriate Manager
Interface to accomplish a given task (e.g., querying as shown in this set of diagrams). And
finally, invoking operations on the appropriate Response Interface to complete the task.

© OGC 2002 — All rights reserved 173

OGC 02-087r3

B.3.1.1 Typical Query Sequence

: CG Client : Library : CatalogMgr : SubmitQueryResponse
| 1: libraryDescription() J}
T 2: managerTypes()

3: responseManager(ManagerType, NameValueList)

T

—

4: submitQuery(String, String, NamelList, SortAttributeList, NameValueList)

i 5: complete(QueryResults)
g
6: complete(QueryResults)
L
I 7: deleteResponse(Response)
]

Figure B-5 - Typical Query Sequence

The typical query sequence diagram shown above illustrates how a client may submit a query
against a Catalog Service and retrieve the results.

1. The client retrieves a description of the Library. This might contain such information as a
summary of the Libraries’ holdings, its capabilities or its pricing model.

2. The client retrieves a list of the Manager types supported by this implementation. Using
this list, the client software can determine what set of capabilities this implementation offers
(i.e., discovery, access/order, creation etc). The client selects one Manager value from this
list (in this case the value “CatalogMgr’) and uses it in a call to the requestManager
operation.

3. The client requests a specific Manager type, passing in the desired ManagerType
(“CatalogMgr”) and a set of name value pairs that are used as access criteria. User name and
password are the most common examples of access criteria. A successful invocation of this

174 © OGC 2002 — All rights reserved

OGC 02-087r3

operation returns a reference (pointer) to a Manager of the requested type. The client can now
interact directly with that Manager.

4. The client submits a query to the CatalogManager, which includes the query expression
itself (comparable to a SQL WHERE clause), a set of attributes to be returned (comparable to
a SQL SELECT clause) and any desired sorting of the result set. A successful invocation of
this operation returns a reference to a SubmitQueryResponse object. The results of the query
can be accessed through this Response object.

5. The client can retrieve the results of the query via the complete operation. Each invocation
returns the specified sequence of "hits".

6. The client calls complete to retrieve as many hits as needed or desired.

7. The client deletes the SubmitQueryResponse when its no longer has need of it.

B.3.1.2 Minimal Query Sequence

: CG Client . Library : CatalogMgr : SubmitQueryResponse

1: responseManager(ManagerT ype, NameVaIueLiEtJJ

I

: submitQuery(String, String, NameList, SortAttributeLjst, NameValueList

]

3: complete(QueryResults)

Figure B-6 - Minimal Query Sequence

The figure above shows the minimum set of operations required to perform a single query
and retrieve some results.

1. The client requests access to a Manager passing in the desired ManagerType (in this case
a CatalogMgr) and a set of name value pairs that are used as access criteria. (User name
and password are common examples of access criteria). A successful invocation of this
operation returns a reference (pointer) to a Manager of the requested type. The client can
now interact directly with that Manager.

© OGC 2002 — All rights reserved 175

OGC 02-087r3

2. The client submits a query to the CatalogMgr, including the query expression itself
(comparable to a SQL WHERE clause), a set of attributes to be returned (a SQL SELECT
clause) and any desired sorting of the result set. A successful invocation of this
operation returns a reference to a SubmitQueryResponse object. The results of the query
can be accessed through this object.

3. The client can retrieve the results of the query via the complete operation. Each
invocation returns the specified sequence of “hits”. This operation is invoked repeatedly
to return as many hits as needed or desired.

B.3.1.3 Query With Callback Sequence

The callback is
associated with the client

: Callback : CG_Client : Library _: CatalogMgr : SubmitQueryResponse

L 1: libraryDescription() \J}
T 2: managerTypes()
I 3: requestManager(ManagerType, NameValueList)
T4: submitQuery(String, String, NameList, SortAttributeList, NameValueList)
T 5: registerCallback(Callback)
L] 6: notify(ResponseDescription)

H 7: complete(QueryResults)
T 8: complete(QueryResults) j—ﬁ
T 9: deleteResponse(Response)
T 10: release()

Figure B-7 - Query with Callback Sequence

176 © OGC 2002 — All rights reserved

OGC 02-087r3

The query with callback sequence diagram shown above illustrates how a client may use a
Callback object to be notified that a query has been completed.

1.

10.

The client retrieves a description of the Library. This might contain such information as a
summary of the Libraries’ holdings, its capabilities or its pricing model.

The client retrieves a list of the Manager types supported by this implementation. Using
this list, the client software can determine what set of capabilities this implementation
offers (i.e., discovery, access/order, creation etc). The client selects one Manager value
from this list (in this case the value “CatalogMgr”) and uses it in a call to the
requestManager operation.

The client requests a specific Manager type, passing in the desired ManagerType
(“CatalogMgr”) and a set of name value pairs that are used as access criteria. User name
and password are the most common examples of access criteria. A successful invocation
of this operation returns a reference (pointer) to a Manager of the requested type. The
client can now interact directly with that Manager.

The client submits a query to the CatalogMgr, which includes the query expression itself
(comparable to a SQL WHERE clause), a set of attributes to be returned (comparable to a
SQL SELECT clause) and any desired sorting of the result set. A successful invocation
of this operation returns a reference to a SubmitQueryResponse object. The results of the
query can be accessed through this Response object.

The client registers a Callback object with the SubmitQueryResponse object.

The Catalog Service invokes the “notify operation” on the Callback object indicating the
Response has completed processing.

The client can retrieve the results of the query via the complete operation. Each
invocation returns the specified sequence of "hits".

The complete operation is called repeatedly to retrieve as many results as desired.
The client deletes the Response object.

The Catalog Service invokes the release operation on the Callback since it will not be
called again.

© OGC 2002 — All rights reserved 177

OGC 02-087r3

B.3.1.4 Query With Polling Sequence

N : Library N N
OGC Client| CatalogMgr SubmitQueryRespons
| 1: libraryDescription () |
2: managerTypes ()
3: requestManager (ManagerType, NameValueList)
\-Hz validateQuery(CharacterString, CharacterString, NameList, SortAttributeList, NameValueList)
% submitQuery(CharacterString, CharacterString, NameList, SortAttributeList, NameValueList)

Polling until Status AN
="COMPLETE" or H

6: status()

"RESULTS AVAILABLE"

Repeat until all AN

7: completeTableResults(Integer, Integer, NameValueList)
results returned or

as many as user H /U

desires

8: deleteRequest(Response)

Figure B-8 - Query with Polling Sequence

Figure B-8 shown above illustrates how a client may use a polling mechanism to be notified
that a query has been completed.

1. The client retrieves a description of the Library. This might contain such information as a
summary of the Libraries’ holdings, its capabilities or its pricing model.

2. The client retrieves a list of the Manager types supported by this implementation. Using
this list, the client software can determine what set of capabilities this implementation
offers (i.e., discovery, access/order, creation etc). The client selects one Manager value
from this list (in this case the value “CatalogMgr”) and uses it in a call to the
requestManager operation.

3. The client requests a specific Manager type, passing in the desired ManagerType
(“CatalogMgr”) and a set of name value pairs that are used as access criteria. User name

178 © OGC 2002 — All rights reserved

OGC 02-087r3

and password are the most common examples of access criteria. A successful invocation
of this operation returns a reference (pointer) to a Manager of the requested type. The
client can now interact directly with that Manager.

4. The client submits a query to the CatalogMgr, which includes the query expression
(comparable to a SQL WHERE clause), a set of attributes to be returned (comparable to a
SQL SELECT clause) to be checked that it is syntactically correct.

5. The client then resubmits the query to the CatalogMgr. A successful invocation of this
operation returns a reference to a SubmitQueryResponse object. The results of the query
can be accessed through this Response object.

6. The client polls the status operation until it receives a status of “COMPLETE” or
“RESULTS AVAILABLE”.

7. The client can retrieve the results of the query via the complete operation. Each
invocation returns the specified sequence of "hits". The complete operation is called
repeatedly to retrieve as many results as desired or all are retrieved.

8. The client then deletes the Response object.

© OGC 2002 — All rights reserved 179

OGC 02-087r3

B.3.2 State Diagrams

This section provides a set of UML statechart diagrams that describe a particular aspect of
the Fine Grain implementation behavior. These diagrams have been included for informative
purposes only and do not imply a mandatory implementation for any of the concrete response
interfaces. Table D-3 is a listing of the seven legal states a given Response Interface may
have. It also provides a brief description of each of the states.

The following diagrams reflect the state machine for each generalization of the Fine Grain
Interface Response. In the diagrams below, the states marked with an asterisk indicate that a
Callback (if one has been registered with a given Response) is triggered when that state is

entered.

Table B-3. Enumeration of the State Conditions of the Various Response Interfaces

State

Description of Conditions

COMPLETED

All requested processing has completed successfully

IN_PROGRESS

Still processing, no error or abnormal conditions yet encountered

ABORTED Processing has stopped due to an error or abnormal condition
CANCELED Processing has been stopped by request

PENDING Processing has not yet begun or has temporarily been halted
SUSPENDED Processing has been temporarily suspended by client request

RESULTS AVAILABLE

Processing has generated some results and made them available.
Additional processing may occur.

180

© OGC 2002 — All rights reserved

OGC 02-087r3

SUBMIT_QUERY_| PONSE_INITIAL_STATE

—Op_Cycle
Queue_New_Submit_Query_Response

PENDING |

Start_Processing_Next_Op_Cycle

Start_Processi

All_Results_Retrieve_for_Current_Op_Cycle
Some_Results_Available

__ |RESULTS_AVAILABLE
Trigger only first time state is entered * I

All_Results_Comp

CANCELED

Figure B-9. State Diagram for SubmitQueryResponse Interface

ORDER_RESPONSE_INITIAL_STATE

Queue_New_ Order_Response

Start_Processing_Order
PENDING SUSPENDED
*

—

Start_Progessing_Ordel

IN_PROGRESS ABO:;TED
Order_Completely_|Processed R CANCELED
COMPLETED
%
Lifetifme_Expires etime_Expires

Lifetime_Expires

Deleted_via_Response_Manager

ORDERiRPO ETED

Figure B-10 - UML Statechart for OrderResponse Interface

© OGC 2002 — All rights reserved 181

182

OGC 02-087r3

CREATE_RESPONSE_INITIAL_STATE

Queue_New_Create_Response

Start_Processing_Create_Response

PENDING SUSPENDED

*

tart_Processing_Create_Response

IN_PROGRESS

ABORTED
*

RESULTS_AVAILABLE

CANCELED

COMPLETED
%

ime_Expires
Lifetime_Expifes

Lifetiche_Expires
Deleted_via_Response_Manager

CREATE_RESP!

Figure B-11 - UML Statechart for CreateResponse Interface

© OGC 2002 — All rights reserved

OGC 02-087r3

CREATE_METADATAGRESPONSE_INITIAL_STATE

Queue_|

lew_Create_MetaData_Response
Start_Processing_Create_MetaData_Response

PENDING

SUSPENDED
*

tart_Processing_Create_MetaData_Respanse

ABORTED
*

IN_PROGRESS

RESULTS_AVAILABLE
COMPLETED
*

CANCELED

Lifetime_Expires
Lifetime_Expifes

Lifetiche_Expires

Deleted_via_Response_Manager

CREATE_METAI SPONSE_DELETED

Figure B-12 - UML Statechart for CreateMetadataResponse Interface

© OGC 2002 — All rights reserved 183

OGC 02-087r3

HIT_COUNT_RESPONSE_INITIAL_STATE

Queue_New_Hit_Count_Response

t_Count_Response PENDING

Start_Processing_Hi

SUSPENDED
*

Start_Processing_Hit_Cdunt_Respon:

IN_PROGRESS

RESULTS_AVAILABLE
COMF;#ETED

ABORTED
&

CANCELED

Canceled_b

Lifetime_Expires

Lifetime_Expifes

Lifetime_Expires
Deleted_via_Response_Manager

"HIT_COUNT_RESPONSE_DELETED

Figure B-13 - UML Statechart for HitCountResponse Interface

184 © OGC 2002 — All rights reserved

OGC 02-087r3

/. Update_Response_Initial_State
—

Start Processing_Update—Response

‘ SUSPENDED

DING

*

_Update_Respo

IN_PROGRESS

ABORTED

*

LifeTime_Expires

CANCELED
*

LifeTime| Expires

‘ RESULTS_AVAILABLE ‘

Canceled_by

COMPLETED

Deleted_via_Response_Manager

LifeTime_Expires

UPDATE_RESPONSE_DELETED

Figure B-14 — State Diagram for Update Response Interface

© OGC 2002 — All rights reserved 185

OGC 02-087r3

UPDATE_BY_QUERY_RESPONSE_INITIAL_STATE

Start_Processing_Update_By_Query_Response

SUSPENDED

ABORTED

IN_PROGRESS

*

LifeTime,

Expires
CANCELED
’q

LifeTime_Expires

RESULTS_AVAILABLE }

Canceled_by

COMPLETED

Deleted_via_Response_Manager

LifeTime_Expires

UPDATE_BY_QUERY_RESPONSE_DELETED

Figure B-15 - UML Statechart for UpdateByQueryResponse

186 © OGC 2002 — All rights reserved

OGC 02-087r3

Annex C: OLEDB Profile (Informative)

C.1 Architecture

The COM Profile uses OLEDB as the mechanism for accessing catalog data. OLEDB is the
standard within the Microsoft developer community for locating and exchanging data. As
such, this profile addresses two classes of catalog environment, those using pure OLEDB and
those using OGC extensions. The majority of this profile will address the first case as pure
OLEDB will address most of the functional needs. Extensions will be detailed where they
are appropriate.

C.1.1 Required OLEDB Interfaces

The following OLEDB interfaces are required for a data server to act as an OGC Catalog
server.

Datasource:

IDBCreateSession (OLEDB Mandatory)

IDBInitialize (OLEDB Mandatory)

IDBProperties (OLEDB Mandatory)

IDBAsyncStatus (OLEDB optional)
Session:

IDBCreateCommand (OLEDB optional)

IDBSchemaRowset (OLEDB optional)

Commands:
[Accessor (OLEDB Mandatory)
IColumnsInfo (OLEDB Mandatory)
ICommand (OLEDB Mandatory)

ICommandProperties (OLEDB Mandatory)

ICommandText (OLEDB Mandatory)
Rowsets:

[Accessor (OLEDB Mandatory)

IColumnsInfo (OLEDB Mandatory)

IRowset (OLEDB Mandatory)

© OGC 2002 — All rights reserved 187

OGC 02-087r3

IRowsetView (OLEDB optional)

IDBAsyncStatus (OLEDB optional)
Views:

IColumnsInfo (OLEDB Mandatory)

[Accessor (OLEDB optional)

IViewRowset (OLEDB optional)

IViewSort (OLEDB optional)

C.1.2 OGC Extensions to OLEDB

OLEDB only supports HTML, text and binary formats. To support XML, DAG and SGML
return formats the following flags have been defined for the dwFlag parameter of the
DBBINDING entry in the Accessor.

DBBINDFLAG XML -> 0x4
DBBINDFLAG DAG -> 0x8
DBBINDFLAG _SGML -> 0x10

OLEDB only supports SQL dialects. Support for non-SQL query languages requires the
addition of the DBPROP_OGCLANG property to Command objects. This property can take
the following values:

OGC_Common -> 1

73950 TYPEONE ->2

SQL3 SIMPLEFEATURE -> 3
SQL2 SIMPLEFEATURE -> 4

The DBPROP_OGCLANG property is set instead of the DBPROP_SQLSUPPORT property
through the SetProperties interface on Command objects.

The AttributeCategory Parameter of the Explain Collection Request is not directly supported
in the pure OLEDB environment. To support this parameter, the parameter
ATTRIBUTECATEGORY will be added to the property set supported by the GetRowset
interface.

C.2 Sequence Diagram
InitSessionRequest

Initializer::CreateDBInstance()

188 © OGC 2002 — All rights reserved

InitSessionResponse

TerminateSessionRequest

TerminateResponse

ExplainServerRequest

ExplainServerResponse

StatusRequest

StatusResponse

CancelRequest

CancelResponse

QueryRequest

OGC 02-087r3

Datasource->IDBInitialize::Initialize()
Datasource->IDBProperties::SetProperties()

Datasource->IDBCreateSession::CreateSession()

Session->Release()

Datasource->Release()

Datasource->IDBProperties::GetProperties()
Datasource->IDBProperties::SetProperties()

Session->QuerylInterface(IID_IDBSchemaRowset)

Rowset->IDBAsynchStatus::GetStatus()

Rowset->IDBAsynchStatus:: Abort()

Session->IDBCreateCommand::CreateCommand()
Command->ICommandProperties::SetProperties()
Command->ICommandText::SetCommandText()
Command->ICommand::Execute()

Rowset->IRowsetView::CreateView()

© OGC 2002 — All rights reserved

189

OGC 02-087r3

View->IColumnsInfo::GetColumnInfo()
View->IViewSort::SetSort()
View->IAccessor::CreateAccessor()
View->IViewRowset::OpenViewRowset()
Rowset->IRowset::GetNextRows()
Rowset->IRowset::GetData()

QueryResponse

PresentRequest
Rowset->IRowsetView::CreateView()
View->IColumnsInfo::GetColumnInfo()
View->IViewSort::SetSort()
View->[Accessor::CreateAccessor()
View->IViewRowset::OpenViewRowset()
Rowset->IRowset::GetNextRows()
Rowset->IRowset::GetData()

PresentResponse

ExplainCollectionRequest
Session->IDBSchemaRowset::GetRowset()
Rowset->1ColumnsInfo::GetColumnInfo()
Rowset->IAccessor::Create Accessor()
Rowset->IRowset::GetNextRows()
Rowset->IRowset::GetData()

ExplainCollectionResponse

C.3 Parameter Translation

190 © OGC 2002 — All rights reserved

OGC 02-087r3
This section addresses how catalog message parameter types defined in the General Model
can be translated into and out of OLEDB equivalents.
C.3.1 CG_AttributeCategory
Recommended Implementation Type: Code List
Used By: CG_ExplainCollectionRequest

CG_ AttributeCategory is a code list for selecting the types of catalog entry attributes to be
exposed by an explain collection request. These values are used by the client code to select
the subset of the schema to return.

* Queriable
e Presentable
e Both

CG_AttributeCategory is supported through an extension to the GetRowset
interface. ATTRIBUTECATEGORY is added to the property set
supported by this interface. ATTRIBUTECATEGORY can take one of two
bit values; queriable (0x01) and presentable (0x02). Both is the inclusive or
of Queriable and presentable (0x03).

C.3.2 CG_BrokeredAccessRequestType
Recommended Implementation Type: Code List
Used By: CG_BrokeredAccessRequest

Not currently mapped

C.3.3 CG_Status

Recommended Implementation Type: Code List

Used By: CG_TerminateResponse, CG_StatusResponse, CG_CancelResponse,
CG_PresentResponse, CG_BrokeredAccessResponse

CG_ Status type variables are used to return status information to the General Model. This is
a direct mapping of the OLE DB HRESULT values in most cases. More detailed
information will be provided with each message description.

C.3.4 CG_Capability
Recommended Implementation Type: Complex data structure
Used By: CG_ExplainServerRequest, CG_ExplainServerResponse

© OGC 2002 — All rights reserved 191

OGC 02-087r3

Uses: CG_AllSupportedRequest, CG_Defaults, CG_ExplainCollection, CG_Query, CG_Messaging,
CG_Session, CG_Softwarelnformation, CG_SupportedCollections

CG_Capability is an aggregate of the following parameter types.
C.3.4.1 CG_AllSupportedRequest

Recommended Implementation Type: Boolean

Used By: CG_Capability

When this parameter is set within a capabilities structure all other capabilities will be ignored
and the server will be queried for the all of the capabilities supported.

C.3.4.2 CG_Defaults
Recommended Implementation Type: Boolean
Used By: CG_Capability

When this parameter is set within a capabilities structure, all other capabilities will be
ignored and the server will be queried for the default capabilities supported.

C.3.4.3 CG_ExplainCollection
Recommended Implementation Type: Boolean
Used By: CG_Capability

CG_ExplainCollection is supported in OLE DB by the IDBSchemaRowset interface. This
parameter will be set to TRUE for servers that support that interface.

C.3.4.4 CG_Query

Recommended Implementation Type: data structure composed of version, characterSet and
queryLanguage fields

Used By: CG_Capability
Uses: CG_QueryLanguage, CG_CharacterSet

The CG_Query capability structure can be populated from the DBPROP_SQLSUPPORT
property of the Data Source object. This is a read only property that is read from the Data
Source object through the IDBProperties interface. This interface only reports on the
variations of SQL supported. The versions of SQL supported are:

DBPROPVAL SQL NONE —no SQL support

DBPROPVAL SQL ODBC MINIMUM
192 © OGC 2002 — All rights reserved

OGC 02-087r3

DBPROPVAL SQL ODBC_CORE

DBPROPVAL SQL ODBC EXTENDED - cumulative based on ODBC 2.5
definitions

DBPROPVAL SQL ESCAPECLAUSES — ODBC escape clause syntax supported
DBPROPVAL SQL ANSI92 ENTRY
DBPROPVAL SQL FIPS TRANSITIONAL
DBPROPVAL SQL ANSI92 INTERMEDIATE

DBPROPVAL SQL ANSI92 FULL - cumulative based on ANSI SQL 92
definitions

DBPROPVAL SQL ANSI&9 IEF — supports ANSI 89 Integrity Enhancement
Facility

DBPROPVAL SQL SUBMINIMUM - uses SQL rules but less capable than ODBC
minimum.

Support for non-SQL query languages requires the addition of the DBPROP_ OGCLANG
property to Dataset objects. This property can take the following values:

OGC _Common -> 1

73950 TYPEONE ->2

SQL3 SIMPLEFEATURE -> 3
SQL2 SIMPLEFEATURE ->4

The DBPROP_OGCLANG property is set instead of the DBPROP_SQLSUPPORT property
through the SetProperties interface on Dataset objects.

The components of the CG_Query structure are populated as follows:
Version == derived from the DBPROP_SQLSUPPORT property.

CharacterSet == only UNICODE or ASCII is valid. Client code must know what it
can support.

QueryLanguage == always SQL.
C.3.4.5 CG_Messaging

Recommended Implementation Type: Data structure

© OGC 2002 — All rights reserved 193

OGC 02-087r3

Used By: CG_Capability
Uses: CG_CharacterSet, CG_MessageFormat

OLE DB only supports binary, text and HTML formatting, UNICODE and ASCII character
sets. To support XML, DAG and SGML return formats the following flags have been
defined for the dwFlag parameter of the DBBINDING entry in the Accessor.

DBBINDFLAG XML -> 0x4
DBBINDFLAG DAG -> 0x8
DBBINDFLAG _SGML -> 0x10

C.3.4.6 CG_Session

Recommended Implementation Type: Data Structure

Used By: CG_Capability

Uses: CG_CharacterSet

This capability provides information that is specific to the Catalog service. These properties
can be added to a server product but are not currently available.

Language == not available
CatalogSpecificationVersion == not currently available
CharacterSet == limited to UNICODE or ASCII

C.3.4.7 CG_SoftwareInformation

Recommended Implementation Type: Data structure
Used By: CG_Capability

This capability structure can be populated from two of the Data Source Information
properties. These are read only properties that can be read from the Data Source object
through the IDBProperties interface.

Vendor == DBPROP_DBMSNAME (the name of the server product)
VersionNumber == DBPROP_DBMSVER (the version of the server product)
C.3.4.8 CG_SupportedCollections

Recommended Implementation Type: set<CG_CollectionName>

194 © OGC 2002 — All rights reserved

OGC 02-087r3

Used By: CG_Capability
Uses: CG_CollectionName

The DBPROP DATASOURCENAME property can be queried using the IDBProperties
interface on the data source but cannot be set. Only the current catalog data set name can be
returned at this point.

C.3.5 CG_QueryLanguage
Recommended Implementation Type: Code List
Used By: CG_Query, CG_QueryExpression

The CG_QueryLanguage parameter type can be mapped into the DBPROP_SQLSUPPORT
property of the Data Source object. This is a read only property that is read from the Data
Source object through the IDBProperties interface. This interface only reports on the
variations of SQL supported. The versions of SQL supported are:

DBPROPVAL SQL NONE —no SQL support
DBPROPVAL SQL ODBC MINIMUM
DBPROPVAL SQL ODBC CORE

DBPROPVAL SQL ODBC EXTENDED - cumulative based on ODBC 2.5
definitions

DBPROPVAL SQL ESCAPECLAUSES — ODBC escape clause syntax supported
DBPROPVAL SQL ANSI92 ENTRY
DBPROPVAL SQL FIPS TRANSITIONAL
DBPROPVAL SQL ANSI92 INTERMEDIATE

DBPROPVAL SQL ANSI92 FULL - cumulative based on ANSI SQL 92
definitions

DBPROPVAL SQL ANSI89 IEF — supports ANSI 89 Integrity Enhancement
Facility

DBPROPVAL SQL SUBMINIMUM - uses SQL rules but less capable than ODBC
minimum.

Support for non-SQL query languages requires the addition of the DBPROP_OGCLANG
property to Command objects. This property can take the following values:

OGC_Common -> 1

© OGC 2002 — All rights reserved 195

OGC 02-087r3

73950 TYPEONE ->2
SQL3_SIMPLEFEATURE -> 3
SQL2 SIMPLEFEATURE -> 4

The DBPROP_OGCLANG property is set instead of the DBPROP_SQLSUPPORT property
through the SetProperties interface on Command objects.

C.3.6 CG_CatalogEntryType
Recommended Implementation Type: Code List
Used By: CG_QueryRequest

There is no direct way to use this parameter in OLEDB. It may be passed as a command
parameter to some servers or included in query text.

C.3.7 CG_CharacterSet
Recommended Implementation Type: Code List

Used By: CG_Messaging, CG_Query, CG_Session

OLE DB only supports ASCII and UNICODE character sets. Specific providers may only support one or the other.
C.3.8 CG_CollectionName
Recommended Implementation Type: Union data

Used By: CG_QueryRequest, CG_QueryResponse, CG_ExplainCollectionRequest,
CG_ExplainCollectionResponse, CG_BrokeredAccessResponse, CG_ReturnData

CG_CollectionName can be mapped into several types of OLEDB parameters based on the
message and message parameter. Specific mapping details can be found in each message
section.

C.3.9 CG_MessageFormat
Recommended Implementation Type: Code List
Used By: CG_QueryRequest, CG_PresentRequest, CG_Messaging

OLE DB only supports binary, text and HTML formatting. This parameter is used to build
accessors for retrieving data from a Rowset. To support XML, DAG and SGML return
formats the following flags have been defined for the dwFlag parameter of the DBBINDING
entry in the Accessor.

196 © OGC 2002 — All rights reserved

OGC 02-087r3

DBBINDFLAG XML -> 0x4
DBBINDFLAG DAG -> 0x8

DBBINDFLAG SGML -> 0x10

C.3.10 CG_PredefinedPresentationType

Recommended Implementation Type: Code List
Used By: CG_PresentationDescription

Named presentations are not directly supported by OLEDB.
C.3.11 CG_PresentationDescription

Recommended Implementation Type: Data Union
Used By: CG_QueryRequest, CG_QueryResponse
Uses: CG_PredefinedPresentationType, RecordType

The list of attribute names is used to build accessors for retrieving data from a Rowset.
Named presentations are not directly supported by OLEDB.

C.3.12 CG_QueryExpression
Recommended Implementation Type: Data Structure
Used By: CG_QueryRequest

Uses: CG_QueryLanguage

CG_QueryExpression maps directly into two parameters used for building queries in OLE
DB. Queries are built using the IcommandText::SetCommandText interface the parameters
are:

dialect == which is similar to the theLanguage element of CG_QueryExpression
command == a pointer to a text string such as the theQuery element

C.3.13 CG_QueryScope

Recommended Implementation Type: Code List

Used By: CG_QueryRequest

There is no OLE DB equivalent to this parameter at this time.

© OGC 2002 — All rights reserved 197

OGC 02-087r3

C.3.14 CG_RequestID

Recommended Implementation Type: Data Structure

Used By: CG_Message, CG_StatusRequest, CG_CancelRequest, CG_CancelResponse
CG_RequestID is mapped by the client software into a Rowset handle.

C.3.15 CG_ResultType

Recommended Implementation Type: Code List

Used By: CG_QueryRequest, CG_QueryResponse

CG_ResultType is a code list describing the type of data to be returned in a query response
message. These values are used by the OLEDB client code to select the interfaces to
exercise.

e resultSet

e results
e validate
e hits

C.3.16 CG_ReturnData
Recommended Implementation Type: Data Union
Used By: CG_QueryResponse, CG_PresentResponse
Uses: CG_CollectionName, CG_CatalogEntry

Packaging of data into a CG_ReturnData format is performed by the Rowset::GetData()
method. The format of the returned data is determined by the dwFlag parameter of the
DBBINDING entry in the Accessor.

C.3.17 CG_SortField

Recommended Implementation Type: Data Structure
Used By: CG_QueryRequest, CG_PresentRequest
Uses: CG_SortOrder

CG_SortField parameters can be mapped directly into OLD DB data types with a little
processing.

198 © OGC 2002 — All rights reserved

OGC 02-087r3

attributeName == map into column information structure (DBCOLUMNINFO). Retrieve the

column information using IcolumnsInfo::GetColumnlInfo, identify the proper attribute by

comparing attributeName to the DBCOLUNINFO entry pwszName, and get the ordinal for

that column from the lordinal entry. The ordinal values will be used to identify the sort

attributes.

sortOrder == OLE DB type DBSORT

C.3.18 CG_SortOrder

Recommended Implementation Type: Code List

Used By: CG_SortField

CG_SortOrder is similar to the OLE DB type DBSORT. DBSORT variables can indicate

ascending or descending sorting only.

C.3.19 CG_UserInformation

Recommended Implementation Type: Data Structure
Used By: CG_BrokeredAccessRequest

Not yet mapped.

C.3.20 CG_PaymentMethod

Recommended Implementation Type: CodeList
Used By: CG_UserInformation

Not yet mapped.

C.3.21 RecordType

Recommended Implementation Type: Complex Data

Used By: CG_PresentationDescription

Maps into a data structure consisting of a key (character string) and a type (codelist).

C.3.22 Schema
Recommended Implementation Type: Complex Data
Used By: CG_SchemalD

Maps into an array of RecordType

© OGC 2002 — All rights reserved

199

OGC 02-087r3

C.3.23 CG_SchemalD

Recommended Implementation Type: Complex Data

Used By: CG_ExplainCollectionResponse

Uses: Schema, SchemaName

CG_SchemalD maps into a data structure consisting of:
schemalD ::= character string
schema ::= Schema

C.4 Detailed Implementation Guidance

C.4.1 Establish a catalog session

C.4.1.1 Request

CG_InitSessionRequest ::= sessionID destinationID requestID additionallnfo
sessionlD ::= Integer
destinationID ::= CG_CollectionName
requestID ::= CG_RequestID
additionallnfo ::= String

C.4.1.2 Response

CG_InitSessionResponse ::= sessionlD destinationID requestID additionallnfo diagnostic
sessionlD ::= Integer
destinationID ::= CG_CollectionName
requestID ::= CG_RequestID
additionallnfo ::= XMLString
diagnostic ::= CharacterString

C.4.1.3 Pure OLEDB Processing
// Marshall the input parameters

session]D == not used
200 © OGC 2002 — All rights reserved

OGC 02-087r3
destinationID == Name of data source, map to clsid through iterator, Data Links UI or
Directory
requestID == not used
additionallnfo == not used

// Create a Data Source object

// clsid is an identifier for the data source. It can be found through the iterator, data
links UI or Active Directory.

mylnitialize->CreateDBInstance

(

clsid // clsid generated from destinationID

pUnkOuter /I NULL

dwClsContext /I CLSTX INPROC_ SERVER (in process server)
pwszReserved // NULL

riid // TID_IDBInitialize

&myDataSource // returned pointer Data source object

)

// Map myDataSource to destinationID. This mapping will be persistent for use in all
further messages within this session.

// Initialize it
myData Source->IDBInitialize::Initialize()
/I Set the properties, the following properties are recommended:
/l DBPROP_ASYNCTXNABORT
/! DBPROP_INIT ASYNCH
// DBPROP_MULTIPLERESULTS
/l DBPROP MULTIPLESTORAGEOBIJECTS

myData Source->IDBProperties::SetProperties

© OGC 2002 — All rights reserved 201

OGC 02-087r3

(

cPropertySets // Number of entries in rgPropertySets (4)
rgPropertySets // an array of DBPROPSET data structures
)

// Create a session

myDataSource->IDBCreateSession::CreateSession

(

pUnkOuter // NULL

riid // TID_IOpenRowset
mySession // Pointer to the session object
)

// Map mySession to sessionID. This mapping will be used for all further messages in
this session.

// Marshal the output parameters
sessionID == map from mySession
destination]D == map from myDataSource
requestID == NULL
additionallnfo == NULL unless an error occurred
C.4.1.4 Relevant OLE DB Properties

DBPROP_ASYNCTXNABORT — (Data source) select whether transactions can be aborted
asynchronously

DBPROP_INIT ASYNCH — (Initialization) select asynchronous processing.
DBPROP_INIT DATASOURCE — (Initialization) the name of the database to connect to.
DBPROP_INIT LOCATION — (Initialization) the name of the catalog server.

DBPROP_MULTIPLERESULTS — (Data source) set the DBPROPVAL MR SUPPORTED
and DBPROPVAL MR _CONCURRENT flags to allow access to multiple result sets.

202 © OGC 2002 — All rights reserved

OGC 02-087r3
DBPROP_MULTIPLESTORAGEOBIJECTS — (Data Source) set if access to more than one
catalog at a time is supported

C.4.1.5 OGC OLEDB Extensions
None
C.4.2 End a Catalog Session
C.4.2.1 Request
CG_TerminateRequest ::= sessionID destinationID requestID additionallnfo

sessionID ::= Integer

destinationID ::= CG_CollectionName

requestID ::= CG_RequestID

additionallnfo ::= XMLString
C.4.2.1Response

CG_TerminateResponse ::= sessionID destinationID requestID additionallnfo diagnostic
status

sessionlD ::= Integer

destinationID ::= CG_CollectionName

requestID ::= CG_RequestID

additionallnfo ::= XMLString

diagnostic ::= CharacterString

status ::= CG_Status
C.4.2.3 Pure OLEDB Processing

// Marshall the input parameters
sessionID == maps to the session handle “mySession”
destination]D == maps to the Data Source handle “myDataSource”
requestID == not used

additionallnfo == not used

© OGC 2002 — All rights reserved 203

OGC 02-087r3

/I Terminate the session
mySession->Release()
myDataSource->Release()

// Marshall the output parameters
sessionlD == mapped from mySession
destination]D == mapped from myDataSource
requestID == NULL
additionallnfo == NULL
diagnostic == NULL unless an error occurred
status == mapped from HRESULT
C.4.2.4 Relevant OLE DB Properties
None
C.4.2.5 OGC OLEDB Extensions
None
C.4.3 Query the server properties

C.4.3.1 Request

CG_ExplainServerRequest ::= sessionID destinationID requestID additionallnfo capabilities

sessionlD ::= Integer

destinationID ::= CG_CollectionName
requestID ::= CG_RequestID
additionallnfo ::= XMLString
capabilities ::= Sequence<Capability>

C.4.3.2 Response

CG_ExplainServerResponse ::= sessionID destinationID requestID additionallnfo

diagnostic capabilities

204

© OGC 2002 — All rights reserved

OGC 02-087r3

sessionID ::= Integer
destinationID ::= CG_CollectionName
requestID ::= CG_RequestID
additionallnfo ::= XMLString
diagnostic ::= CharacterString
capabilities ::= Sequence<Capability>
C.4.3.3 Pure OLEDB Processing
// Marshall the input parameters
sessionID == maps to the session handle “mySession”
destination]D == maps to the Data Source handle “myDataSource”
requestID == not used
additionallnfo == not used
capabilities == mapping of capabilities to OLE DB properties is described in section ----
/I If CG_AllSupportedRequest or CG_Default specified
// Get all or the properties of the Data Source

myDataSource->IDBProperties::GetProperties

(

cPropertylDSets // number of entries in rgPropertylDSets
rgPropertylDSets // DBPROPIDSET array

pcPropertySets // number of entries returned in rgPropertySets
&rgPropertySets // Pointer to property set buffer

)

/I Else set all writeable properties and read them back

myDataSource->IDBProperties::SetProperties

(

© OGC 2002 — All rights reserved

205

OGC 02-087r3

cPropertySets // Number of entries in property set buffer
&rgPropertySets // Pointer to property set buffer
)

myDataSource->IDBProperties::GetProperties
(
cPropertylDSets // number of entries in rgPropertylDSets
rgPropertylDSets // DBPROPIDSET array
pcPropertySets // number of entries returned in rgPropertySets
&rgPropertySets // Pointer to property set buffer
)

// See if this server supports CG_ExplainCollection
mySession->QueryInterface
(
riid // TID_IDBSchemaRowset
(void **)&mySchemaRowset// pointer to Schema Rowset interface
)
// If mySchemaRowset == NULL, then set CG_ExplainCollection to FALSE
/I ELSE set CG_ExplainCollection to TRUE
// Marshall the output parameters
sessionlD == mapped from mySession
destinationID == mapped from myDataSource
requestID == copied from input parameter
additionallnfo == NULL
diagnostic == NULL unless an error occurred

capabilities == remap as described in section ---
206 © OGC 2002 — All rights reserved

OGC 02-087r3

C.4.3.4 Relevant OLE DB Properties
DBPROP_DATASOURCENAME — (Data source) the name of the data source

DBPROP MAXSORTCOLUMNS — (View) maximum number of columns that can be
supported in a sort.

DBPROP_SQLSUPPORT - (Data Source) specifies level of SQL support provided by
server.

C.4.3.5 OGC OLEDB Extensions

None

C.4.4 Check the status of a request

C.4.4.1 Request

CG_StatusRequest ::= sessionID destinationID requestID additionallnfo requestIDtoStatus
sessionlD ::= Integer
destinationID ::= CG_CollectionName
requestID ::= CG_RequestID
additionallnfo ::= XMLString
requestIDtoStatus ::= CG_RequestID

C.4.4.2 Response

CG_StatusResponse ::= sessionID destinationID requestID additionallnfo diagnostic status
requestIDtoStatus

sessionlD ::= Integer

destinationID ::= CG_CollectionName
requestID ::= CG_RequestID
additionallnfo ::= XMLString
diagnostic ::= CharacterString

status ::= CG_Status

requestIDtoStatus ::= CG_RequestID

© OGC 2002 — All rights reserved 207

OGC 02-087r3

C.4.4.3 Pure OLEDB Processing
// Marshall the input parameters
sessionID == maps to the session handle “mySession”
destinationID == maps to the Data Source handle “myDataSource”
requestID == not used
additionallnfo == not used
requestIDtoStatus == map into myCommand
/I Request the status
myCommand->QuerylInterface
(
riid // TID_IDBAsynchStatus

(void **)&myAsynchStatus // pointer to asynch status interface

)
myAsynchStatus->GetStatus
(
HCHAPTER hChapter //DB_NULL_HCHAPTER
ULONG ulOperation // DBASYNCHOP_OPEN
ULONG * pulprogress // current progress toward completing this phase

ULONG * pulProgressMax // returned maximum value of pulprogress

ULONG * pulAsynchPhase // Phase — can be initializing, populating or complete
ULONG * ppwszStatusText // supporting text

)

/l percentage complete is pulprogress / pulProgressMax

// Marshall the output parameters

sessionlD == mapped from mySession
208 © OGC 2002 — All rights reserved

OGC 02-087r3

destinationID == mapped from myDataSource
requestID == copied from input parameter
additionallnfo == NULL
diagnostic == copy from ppwszStatusText
requestIDtoStatus == copied from input parameter
status == mapped from pulprogress, pulProgressMax and pulAsynchPhase
C.4.4.4 Relevant OLE DB Properties
DBPROP_CONNECTIONSTATUS — (Data source) gets the status of the catalog connection
C.4.4.5 OGC OLEDB Extensions
None
C.4.5 Cancel a request
C.4.5.1 Request
CG_CancelRequest ::= sessionID destinationID requestID additionallnfo
requestIDtoCancel freeResources
sessionlD ::= Integer
destinationID ::= CG_CollectionName
requestID ::= CG_RequestID
additionallnfo ::= XMLString
requestIDtoCancel ::= CG_RequestID
freeResources ::= Boolean
C.4.5.2 Response
CG_CancelResponse ::= sessionID destinationID requestID additionallnfo diagnostic
Status canceledRequest
sessionlD ::= Integer

destinationID ::= CG_CollectionName

© OGC 2002 — All rights reserved 209

OGC 02-087r3

requestID ::= CG_RequestID

additionallnfo ::= XMLString

diagnostic ::= CharacterString

status ::= CG_Status

canceledRequest ::= CG_RequestID
C.4.5.3 Pure OLEDB Processing

/I Marshall the input parameters
sessionID == maps to the session handle “mySession”
destinationID == maps to the Data Source handle “myDataSource”
requestID == not used

additionallnfo == not used

requestIDtoCancel == map into myCommand
freeResources == not sure we can do this here

// Terminate the session
myCommand->QuerylInterface
(
riid // TID_IDBAsynchStatus
(void **)&myAsynchStatus // pointer to asynch status interface

)
myAsynchStatus->Abort

(
HCHAPTER hChapter // DB_NULL_HCHAPTER

ULONG ulOperation // DBASYNCHOP_OPEN

)

210 © OGC 2002 — All rights reserved

OGC 02-087r3

// Marshall the output parameters

sessionlD == mapped from mySession
destination]D == mapped from myDataSource
requestID == copied from input parameter
additionallnfo == NULL

diagnostic == NULL

status == mapped from HRESULT

canceledRequest == copied from input parameter requestIDtoCancel

C.4.5.4 Relevant OLE DB Properties

DBPROP_ABORTPRESERVE — Rowset property to preserve or delete results after an abort

C.4.5.5 OGC OLEDB Extensions

None — freeResources not currently supported

C.4.6 Issue a Query
C.4.6.1 Request

CG_QueryRequest ::= sessionID destinationID requestID additionallnfo queryExpression
resultType

iteratorSize cursor returnFormat presentation sortField queryScope
collectionID catalogType

sessionlD ::= Integer

destinationID ::= CG_CollectionName

requestID ::= CG_RequestID

additionallnfo ::= XMLString

© OGC 2002 — All rights reserved 211

OGC 02-087r3

queryExpression ::= CG_QueryExpression
resultType ::= CG_ResultType

iteratorSize ::= Integer

cursor ::= Integer

returnFormat ::= CG_MessageFormat
presentation ::= CG_PresentationDescription
sortField ::= Sequence<sortField>
queryScope ::= CG_QueryScope
collectionID ::= CG_CollectionName

catalogType ::= CG_CatalogEntryType

C.4.6.2 Response
CG_QueryResponse ::= sessionlD destinationID requestID additionallnfo diagnostic

.. retrievedData
sessionlD ::= Integer

destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
diagnostic ::= CharacterString
retrievedData ::= CG_ReturnData
resultSetID ::= CG_CollectionName
resultType ::= CG_ResultType
status ::= CG_Status

hits ::= integer

cursor ::= Integer

212 © OGC 2002 — All rights reserved

OGC 02-087r3

C.4.6.3 Pure OLEDB Processing

// Marshall the input parameters

sessionID == maps to the session handle “mySession”
destinationID == maps to the Data Source handle “myDataSource”
requestID == not used
additionallnfo == not used
queryExpression
theQuery == local LPCOLSTR variable “string”
theLanguage == local REFGUID variable “dialect”
resultType == used by this client to control query processing
resultSet == only return the resultSet ID
results == Return result data
validate == Only confirm that the query was accepted
hits == Only return the size of the result set
iteratorSize == used directly by IRowSet::GetNextRows
cursor == used directly by IRowSet::GetNextRows
returnFormat == Used to generate the Accessor.
presentation == Used to generate the Accessor
sortField

attributeName == maps into the column ordinal for this attribute

sortOrder == OLEDB type = DBSORT which can indicate ascending or descending
sorts only

© OGC 2002 — All rights reserved 213

OGC 02-087r3
queryScope == used to indicate distributed query. May be ignored or included as a
command parameter.

collectionID == may be included in the query string as an SQL FROM clause or included as
a command parameter

catalogType == may be passed as a command parameter or included in query text.
// Create a command object

mySession->IDBCreateCommand::CreateCommand

(

pUnkOuter /I NULL

riid // TID_ICommand

(void **)&myCommand // pointer to the command object
)

// Set the query language

myCommand->QuerylInterface

(
riid // TID_ICommandProperties
(void **)&myCommandProps // pointer to command properties interface
)
myCommandProps->SetProperties
(
cPropSets // Number of property sets (1)
rgPropSets // the DBPROP_SQLSUPPORT property
)

// Insert the query text
214 © OGC 2002 — All rights reserved

OGC 02-087r3

myCommand->QuerylInterface
(
riid // TID_ICommandText
(void **)&myCommandText // pointer to command text interface

)

myCommandText->SetCommandText

(

DBGUID SQL // allows use of the DBPROP_SQLSUPPORT
property

string // from queryExpression::theQuery
)
/I Execute the command
myCommand->QuerylInterface
(
riid // TID_1Command
(void **)&myCommandInterface // pointer to command interface

)

myCommandInterface->Execute
(
NULL
IID IRowset
NULL
NULL
(void **) &myRowset
)
/I If resultType parameter is resultSet or validate then skip to marshalling

© OGC 2002 — All rights reserved 215

OGC 02-087r3

// If resultType parameter is hits then -------
// If resultType parameter is results then process the Rowset data

// Create a view from the Rowset

myRowSet->IRowsetView::CreateView

(
pUnkOuter

riid /I TID_1View
myView
)

// get the column information

my View->1ColumnsInfo::GetColumnInfo

(

ULONG * pcColumns // number of columns returned
DBCOLUMNINFO * prglnfo // array of column information

OLECHAR ** ppStringsBuffer // string data pointed to by prglnfo

elements

)
// apply sorting

myView->IViewSort::SetSort

216

(
ULONG cColumns // Number of entries in rgColumns and rgOrders
Const ULONG rgColumns|] /I column ordinals from prginfo[].iOrdinal
Const DBSORT rgOrders[] // can be DBSORT ASCENDING or

/l DBSORT DESCENDING
)

© OGC 2002 — All rights reserved

OGC 02-087r3

// Build an Accessor
// The Accessor defines how the data returned by this query will be processed. This is

// where the presentation and returnFormat parameters come into play. To build the
Accessor,

// traverse the list of attributes in the presentation parameter and add to the Accessor
the

// instructions for appending that attribute to the end of the retrievedData parameter.

myView->QueryInterface

(

riid // TID_Iaccessor

&mylAccessor // pointer to the Accessor interface
)

/I For each attribute on the Presentation list, find the column

// and build a new DBBINDING entry for the Accessor. Key entries are:

/I 10rdinal = ordinal defines the location of the attribute in the Rowset

/I obValue = offset in retrievedData where the value for this attribute is to be stored
// dwFlag = set DBBINDFLAG HTML if returnFormat is HTML

/I wtType = data format of copied data. If messageFormatis HTML or TXT, set to
DBTYPE STR for ASCII and DBTYPE WSTR for UNICODE text output.

mylAccessor->CreateAccesor
(
DBACCESSORFLAGS flags//DBACCESSOR ROWDATA
ULONG pcBindings // number of entries in prBindings

Const DBBINDING prBindings[] // an array of DBBINDING structures, one for
each attribute

ULONG rowsize // not used

HACCESSOR * myAccessor // returned handle of the Accessor

© OGC 2002 — All rights reserved 217

OGC 02-087r3

DBBINDSTATUS rgstatus[] // An array of status values, one for each rbindings
entry

)

/I Create a Rowset with the sorting applied
my View->QuerylInterface

(

REFIID riid // TID_IViewRowset

Tunknown ** &mylViewRowset // pointer to the ViewRowset interface

)

mylViewRowset->OpenViewRowset
(
[Unknown ** outer /I NULL
REFIID Riid // ID_IRowSet

&myRowset // Sorted Rowset

)

// retrieve the data

myRowset->GetNextRows

(

HCHAPTER chapter // DB_NULL HCHAPTER

LONG cursor // from input parameter

LONG iteratorSize // from input parameter

ULONG * rowsreceived // number of rows actually returned
HROW ** rowbuffer // memory containing the row data

)

218 © OGC 2002 — All rights reserved

OGC 02-087r3

myRowset->GetData
(
HROW rowbuffer // memory containing the row data
HACCESSOR myAccessor // the data Accessor object
Void * retrievedData.payload // payload portion of the returned data parameter
)
// Marshall the output parameters

sessionlD == mapped from mySession

destinationID == mapped from myDataSource

requestID == maps to myRowSet

additionallnfo == NULL

diagnostic == NULL unless an error occurred

retrievedData == populated by IRowset::GetData

resultSetID == maps to myRowSet

resultType == copied from input parameter

status == map from HRESULT values
hits == TBD

cursor == input parameter + rowsreceived from [rowset::GetNextRows
C.4.6.4 Relevant OLEDB Properties

DBPROP_ACCESSORDER — (Rowset) set to DBPROPVAL AO RANDOM to enable
presentation specification.

DBPROP_CANFETCHBACKWARDS — (Rowset) Boolean to allow backup the cursor

DBPROP CANSCROLLBACKWARDS (Rowset) Boolean to allow backward scrolling of
the Rowset

DBPROP ROWSET ASYNCH — (Rowset) governs how the Rowset is generated — maps to
result type

DBPROP MAXROWS — (Rowset) maps to iterator size?

© OGC 2002 — All rights reserved 219

OGC 02-087r3

DBPROP_SERVERCURSOR (Rowset) sets the cursor location
C.4.6.5 OGC OLEDB Extensions

ReturnFormat: standard OLEDB only supports HTML, text and binary formats. To support
XML, DAG and SGML formats the following flags have been defined for the dwFlag
parameter of the DBBINDING entry in the Accessor.

DBBINDFLAG XML
DBBINDFLAG DAG
DBBINDFLAG SGML

QueryExpression: OLEDB only supports SQL dialects. Support for non-SQL query
languages requires the addition of the DBPROP_OGCLANG property. This property
can take the following values:

OGC_Common -> 1

73950 TYPEONE ->2

SQL3 SIMPLEFEATURE -> 3
SQL2 SIMPLEFEATURE -> 4

The DBPROP_OGCLANG property is set instead of the DBPROP_SQLSUPPORT property
through the SetProperties interface on command objects.

queryScope == Add optional command parameter

collectionID == SQL FROM clause equivalent, add optional command parameter or include
in query string.

catalogType == may be passed as a command parameter or included in query text.
C.4.7 Present Query Results
C.4.7.1 Request
CG_PresentRequest ::= sessionID destinationID requestID additionallnfo presentation
sortField returnFormat iteratorSize cursor
sessionID ::= Integer

destinationID ::= CG_CollectionName

220 © OGC 2002 — All rights reserved

OGC 02-087r3

requestID ::= CG_RequestID
additionallnfo ::= XMLString
presentation ::= CG_PresentationDescription
sortField ::= Sequence<SortField>
returnFormat ::= CG_MessageFormat
iteratorSize ::= Integer
cursor ::= Integer

C.4.7.2 Response

CG_PresentResponse ::= sessionlD destinationID requestID additionallnfo diagnostic
retrievedData

cursor hits status

sessionlD ::= Integer

destinationID ::= CharacterString

requestID ::= CG_RequestID

additionallnfo ::= CharacterString

diagnostic ::= CharacterString

retrievedData ::= CG_ReturnData

cursor ::= Integer

hits ::= Integer

status ::= CG_Status
C.4.7.3 Pure OLEDB Processing

// Marshall the input parameters
sessionID == maps to the session handle “mySession”
destinationID == map to Rowset (myRowSet) created by previous query
requestID == not used

additionallnfo == not used

© OGC 2002 — All rights reserved 221

OGC 02-087r3

presentation == Used to generate the Accessor
sortField
attributeName == maps into the column ordinal for this attribute

sortOrder == OLEDB type = DBSORT which can indicate ascending or descending
sorts only

returnFormat == Used to generate the Accessor.
iteratorSize == used directly by IRowSet::GetNextRows
cursor == used directly by IRowSet::GetNextRows
/I Create a view from the Rowset
myRowSet->IRowsetView::CreateView
(
pUnkOuter
riid /I TID_1View
myView
)
/I get the column information
my View->1ColumnsInfo::GetColumnInfo
(
ULONG * pcColumns // number of columns returned
DBCOLUMNINFO * prglnfo // array of column information

OLECHAR ** ppStringsBuffer // string data pointed to by prglnfo
elements

)
// apply sorting
myView->IViewSort::SetSort

(
222 © OGC 2002 — All rights reserved

OGC 02-087r3

ULONG cColumns // Number of entries in rgColumns and rgOrders
Const ULONG rgColumns|] /I column ordinals from prginfo[].iOrdinal
Const DBSORT rgOrders[] // can be DBSORT ASCENDING or

/1 DBSORT DESCENDING
)
// Build an Accessor
// ' The Accessor defines how the data returned by this query will be processed. This is

// where the presentation and returnFormat parameters come into play. To build the
Accessor,

// traverse the list of attributes in the presentation parameter and add to the Accessor
the

// instructions for appending that attribute to the end of the retrievedData parameter.

my View->QuerylInterface

(

riid /I TID_Taccessor

&mylAccessor // pointer to the Accessor interface
)

// For each attribute on the Presentation list, find the column

// and build a new DBBINDING entry for the Accessor. Key entries are:

/I 10rdinal = ordinal defines the location of the attribute in the Rowset

/I obValue = offset in retrievedData where the value for this attribute is to be stored
/I dwFlag = set DBBINDFLAG HTML if returnFormat is HTML

/I wtType = data format of copied data. If messageFormat is HTML or TXT, set to
DBTYPE STR for ASCII and DBTYPE WSTR for UNICODE text output.

mylAccessor->CreateAccesor

(

© OGC 2002 — All rights reserved 223

OGC 02-087r3

DBACCESSORFLAGS flags//DBACCESSOR_ROWDATA

ULONG pcBindings

// number of entries in prBindings

Const DBBINDING prBindings[] // an array of DBBINDING structures, one for

each attribute

ULONG rowsize

// not used

HACCESSOR * myAccessor // returned handle of the Accessor

DBBINDSTATUS rgstatus[] / An array of status values, one for each rbindings

entry

)

/I Create a Rowset with the sorting applied

my View->QuerylInterface

(
REFIID riid

/I TID_TViewRowset

Tunknown ** &mylViewRowset // pointer to the ViewRowset interface

)

mylViewRowset->OpenViewRowset

(

IUnknown ** outer
REFIID Riid

&myRowset

)

// retrieve the data
myRowset->GetNextRows

(

HCHAPTER chapter
224

// NULL
// TID_IRowSet

// Sorted Rowset

//DB_NULL HCHAPTER
© OGC 2002 — All rights reserved

OGC 02-087r3

LONG cursor // from input parameter
LONG iteratorSize // from input parameter
ULONG * rowsreceived // number of rows actually returned
HROW ** rowbuffer // memory containing the row data
)
myRowset->GetData
(
HROW rowbuffer // memory containing the row data

HACCESSOR myAccessor // the data Accessor object
Void * retrievedData.payload// payload portion of the returned data parameter
)
// Marshall the output parameters
sessionlD == mapped from mySession
destination]D == mapped from myRowset
request]D == mapped from myRowSet
additionallnfo == NULL
diagnostic == NULL unless an error occurred
retrievedData == populated by IRowset::GetData
cursor == input parameter + rowsreceived from [rowset::GetNextRows
hits == rowsreceived
status == map from HRESULT values
C.4.7.4 Relevant OLEDB Properties

DBPROP_ACCESSORDER — (Rowset) set to DBPROPVAL AO RANDOM to enable
presentation specification.

DBPROP_CANFETCHBACKWARDS — (Rowset) Boolean to allow backup the cursor

© OGC 2002 — All rights reserved 225

OGC 02-087r3
DBPROP CANSCROLLBACKWARDS _(Rowset) Boolean to allow backward scrolling of
the Rowset

DBPROP ROWSET ASYNCH — (Rowset) governs how the Rowset is generated — maps to
result type

DBPROP _MAXROWS — (Rowset) maps to iterator size?
DBPROP_SERVERCURSOR (Rowset) sets the cursor location
C.4.7.5 OGC OLEDB Extensions

ReturnFormat: standard OLEDB only supports HTML, text and binary formats. To support
XML, DAG and SGML formats the following flags have been defined for the dwFlag
parameter of the DBBINDING entry in the Accessor.

DBBINDFLAG XML
DBBINDFLAG DAG
DBBINDFLAG_SGML
C.4.8 Get the schema
C.4.8.1 Request
CG_ExplainCollectionRequest ::= sessionID destinationID requestID additionallnfo
attributeCategory collectionID
sessionID ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
attributeCategory ::= CG_ AttributeCategory
collectionID ::= CG_CollectionName
C.4.8.2 Response

CG_ExplainCollectionResponse ::= sessionlD destinationID requestID additionallnfo
diagnostic

collectionID dataModel
226 © OGC 2002 — All rights reserved

sessionID ::= Integer
destinationID ::= CharacterString
requestID ::= CG_RequestID
additionallnfo ::= CharacterString
diagnostic ::= CharacterString
collectionID ::= CG_CollectionName
dataModel ::= CG_SchemalD
C.4.8.3 Pure OLEDB Processing
/I Marshall the input parameters
sessionID == maps to the session handle “mySession”
destinationID == maps to the Data Source handle “myDataSource”
requestID == not used
additionallnfo == not used
attributeCategory == See extensions
collectionID == not yet used
// alocal data item to hold schema data
Schemadata == an array of structure
Schema name — character string
Table — character string
Column_name — character string

Ordinal — integer

OGC 02-087r3

Data_type — code list (see OLEDB Programmer’s Reference Appendix A)

// Get the COLUMNS table from the schema Rowsets

mySession->QueryInterface

(

© OGC 2002 — All rights reserved

227

OGC 02-087r3

riid // TID_IDBSchemaRowset
(void **)&mylSchemaRowset // pointer to Schema Rowset interface
)
mylSchemaRowset->GetRowset
(
Tunknown * punkOuter // NULL
REFGUID rguidschema // DBSCHEM_COLUMNS
ULONG crestrictions /10

Const VARIANT rgrestrictions[] // NULL

REFIID riid // TID_IRowSet

ULONG cpropertysets /110

DBPROPSET rgpropertysets|] /I NULL

Tunknown ** myRowSet // pointer to the schema Rowset
)

/I get the column information for this Rowset

myRowSet->IColumnsInfo::GetColumnInfo

(

ULONG * pcColumns // number of columns returned

DBCOLUMNINFO * prglnfo // array of column information

OLECHAR ** ppStringsBuffer // string data pointed to by prglnfo
elements

)

/I create an Accessor collecting the schema name, table, column name, ordinal and
data type

/! Table == TABLE NAME

/l Schema name == TABLE SCHEMA
228 © OGC 2002 — All rights reserved

OGC 02-087r3

/l Column_name = COLUMN NAME
/! Data_type == DATA_ TYPE

/l Ordinal == ORDINAL POSITION

myRowSet->QueryInterface

(

riid // TID_Iaccessor

&mylAccessor // pointer to the Accessor interface
)

mylAccessor->CreateAccesor

(
DBACCESSORFLAGS flags//DBACCESSOR_ROWDATA

ULONG pcBindings // number of entries in prBindings

Const DBBINDING prBindings[] // an array of DBBINDING structures, one for

each attribute

entry

ULONG rowsize // not used
HACCESSOR * myAccessor // returned handle of the Accessor

DBBINDSTATUS rgstatus[] / An array of status values, one for each rbindings

)
// get the data from each COLUMNS Rowset

myRowSet->GetNextRows

(

HCHAPTER chapter // DB_NULL HCHAPTER

LONG cursor /10

LONG iteratorSize // number of rows that rowbuffer can hold
ULONG * rowsreceived // number of rows actually returned

© OGC 2002 — All rights reserved 229

OGC 02-087r3

HROW ** rowbuffer

)

myRowset->GetData

(
HROW rowbuffer

// memory containing the row data

// memory containing the row data

HACCESSOR myAccessor // the data Accessor object

Void * Schemadata

)

// temporary storage for schema data

// Marshall the output parameters

sessionlD == mapped from mySession

destinationID == mapped from myDataSource

requestID == mapped from myRowSet

additionallnfo == NULL

diagnostic == NULL unless an error occurred

collectionID == copy from schemadata.table

dataModel == composed of

schemaName == copy from schemadata.schema name

schema == composed of

key == copy from schemadata.column name

type == map from schemadata.data_type

C.4.8.4 Relevant OLEDB Properties

DBPROP_COL DEFAULT — (column) VARIANT specifying the default value for the

column

DBPROP_COL DESCRIPTION — (column) Human readable description of the column

C.4.8.5 OGC OLEDB Extensions

230

© OGC 2002 — All rights reserved

OGC 02-087r3

a) AttributeCategory Parameter: This parameter is not supported by the pure OLEDB
environment. To support this parameter, the parameter ATTRIBUTECATEGORY will
be added to the property set supported by the GetRowset interface.

© OGC 2002 — All rights reserved 231

	Scope
	Conformance
	Normative references
	Terms and definitions
	Conventions
	Symbols (and abbreviated terms)
	UML notation

	Overview
	Context of Catalog Services
	Reference Model Architecture
	Cross Profile Interoperability
	Catalog Object Model
	Metadata Model Independence
	Query Language
	Use of XML
	Browse Images
	Interoperability and Compliance with Simple Features
	Distributed Search

	The General Model
	Introduction of The General Model
	Structural Model
	Overview of the Interface Model
	The Messaging Model
	The Message Class (CG_Message)
	Message Parameters:
	Message Operations: None

	Request Messages (CG_Request)
	Message Parameters: None
	Message Operations: None

	Response Messages (CG_Response)
	Message Parameters:
	Message Operations: None

	The Message Class (CG_Message)
	Message Parameters:
	Message Operations: None

	Request Messages (CG_Request)
	Message Parameters: None
	Message Operations: None

	Response Messages (CG_Response)
	Message Parameters:
	Message Operations: None

	CG_CatalogService Interface
	CG_InitSessionRequest
	CG_InitSessionResponse
	CG_TerminateRequest
	CG_TerminateResponse
	Message Parameters:
	Message Operations: None

	CG_ExplainServerRequest
	Message Parameters:
	Message Operations: None

	CG_ExplainServerResponse
	Message Parameters:
	Message Operations: None

	CG_StatusRequest
	Message Parameters:
	Message Operations: None

	CG_StatusResponse
	Message Parameters:
	Message Operations: None

	CG_CancelRequest
	Message Parameters:
	Message Operations: None

	CG_CancelResponse
	Message Parameters:
	Message Operations: None

	CG_Discovery Interface
	CG_QueryRequest
	Message Parameters:
	Message Operations: None

	CG_QueryResponse
	Message Parameters:
	Message Operations: none

	CG_PresentRequest
	Message Parameters:
	Message Operations: None

	CG_PresentResponse
	Message Parameters:
	Message Operations: None

	CG_ExplainCollectionRequest
	Message Parameters:
	Message Operations: None

	CG_ExplainCollectionResponse
	Message Parameters:
	Message Operations: None

	CG_Access Interface
	CG_BrokeredAccessRequest
	Message Parameters:
	Message Operations: None

	CG_BrokeredAccessResponse
	Message Parameters:
	Message Operations: None

	CG_CatalogManager Interface
	CG_CreateCatalogRequest
	CG_CreateCatalogResponse
	CG_CreateMetadataRequest
	CG_CreateMetadataResponse
	CG_UpdateCatalogRequest
	CG_UpdateCatalogResponse
	CG_DeleteCatalogRequest
	CG_DeleteCatalogResponse

	Parameter Type Definitions
	CG_AttributeCategory
	CG_BrokeredAccessRequestType
	CG_Capability
	CG_CapabilitiesRequestType
	CG_DefaultTimeOut
	CG_Explain
	CG_Messaging
	CG_Query
	CG_QueryLanguage
	CG_Session
	CG_SoftwareInformation
	CG_SupportedCollections

	CG_CatalogEntryType
	CG_CharacterSet
	CG_CollectionName
	CG_Record
	CG_MessageFormat
	CG_OrderItem
	CG_OrderSpecification
	CG_OrderStatus
	CG_PackageSpecification
	CG_PackagingType
	CG_PaymentMethod
	CG_PredefinedPresentationType
	CG_PresentationDescription
	CG_QueryExpression
	CG_QueryScope
	CG_RequestID
	CG_ResultType
	CG_ReturnData
	CG_Schema
	CG_SchemaID
	CG_SortField
	CG_SortOrder
	CG_Status
	CG_StatusUpdateType
	CG_UserInformation
	RecordType

	Dynamic Model
	UML State Diagram Notation
	Catalog Server State Machine
	Discovery State
	Access State Diagram
	Management State
	Explain State Diagram

	OGC_Common Catalog Query Language
	Assumptions during the development of OGC_Common Query Language:
	BNF definition of OGC_Common Query Language

	Z39.50 Profile
	Architecture
	Supported Services
	Transport (HTTP)
	Transport (TCP)

	General Model to Z39.50 Profile Message Mapping
	Example Sequence Diagram
	Interface Definition – XML
	Definition of Externals
	Additional Search Info
	Order Extended Service

	CORBA Profile – Coarse Grain
	Architecture - Object Model
	Event Traces
	Interface Definition - IDL
	Enumerations
	Structures and unions
	Definitions for brokered access
	Capabilities
	General messages
	Discovery messages
	Management messages
	Access messages
	Exceptions
	Catalog Service interfaces
	Basic interfaces
	Complete IDL

	Bibliography
	
	
	
	The ResponseManager is an abstract interface that defines operations common to all managers that use Response objects as part of their operations. Public operations follow.
	The CatalogManager Interface allows a client to submit queries to search the catalog of holdings of a geospatial library. Derived from LibraryManager, ResponseManager. Public Operations:
	The OrderMgr Interface allows a client to submit orders for data sets or products from a geospatial library. The OrderMgr provides operations to place an order (order), specify how it is to packaged and delivered (i.e., packageSpecifications), and to
	The CreationMgr interface allows a client to nominate a data set or product to a library(s) for inclusion in the library holdings. This interface also allows a client to nominate the metadata of a data set or product for inclusion without supplying the
	The UpdateMgr Interface provides the capability for a client to modify existing catalog entries. Derived from LibraryManager, ResponseManager. Public Operations:
	The DataModelMgr Interface allows a client to discover and access the metadata model being used by a given Geospatial Library. Derived from LibraryManager. Public Operations:
	The Response Interface is an abstract interface that defines those operations that are common to all concrete Response objects. Public Operations:
	The SubmitQueryResponse Interface is used to obtain the results from submitting a query to the catalog service of a geospatial library. This Response is returned from the submitQuery operation of the CatalogMgr. Derived from Response. Public Operations:
	The OrderResponse Interface is used to return the status of the processing of an order. This Response is returned from the order operation of the OrderMgr. Derived from Response. Public Operations:
	This Interface is used to create new metadata entries for the catalog holdings of a geospatial library. This Response is returned from the createMetadata operation of the CreationMgr. Derived from Response. Public Operations:
	The CreateResponse interface is used to create new product entries in a geospatial library. This Response is returned from the create operation of the CreationMgr. Derived from Response. Public Operations:
	The UpdateByQueryResponse interface is used to complete the processing of an update of a catalog entry operation. This Response is returned from the updateByQuery operation of the UpdateMgr. Derived from Response. Public Operations:
	The UpdateResponse interface is used to complete the processing of an update operation of a catalog entry. This Response is returned from the update operation of the UpdateMgr. Derived from Response. Public Operations:
	The HitCountResponse Interface is used to return the number of hits obtained in response to an invocations of the hitCount operation of the CatalogMgr. Derived from Response. Public Operations:
	Public Attributes:
	Public Attributes:
	Public Attributes:
	Public Attributes:
	Public Attributes:
	Public Attributes:
	Public Attributes:
	Public Attributes:
	Public Attributes:
	Public Attributes:

	Public Attributes:
	Public Attributes:
	Public Attributes:
	Public Attributes:
	Public Attributes:
	Public Attributes:
	Public Attributes:
	Public Operations:

	B.3.1.1 Typical Query Sequence
	B.3.1.2 Minimal Query Sequence
	B.3.1.3 Query With Callback Sequence
	B.3.1.4 Query With Polling Sequence

	B.3.2 State Diagrams

