

Open Geospatial Consortium, Inc.

Date: 2009-10-09

Reference number of this document: OGC 09-053r5

Version: 0.3.0

Category: Public Engineering Report

Editor(s): Bastian Schäffer

OGC® OWS-6 Geoprocessing Workflow Architecture
Engineering Report

Copyright © 2009 Open Geospatial Consortium, Inc.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document is an OGC Public
Engineering Report created as a deliverable in an OGC Interoperability Initiative
and is not an official position of the OGC membership. It is distributed for review
and comment. It is subject to change without notice and may not be referred to as
an OGC Standard. Further, any OGC Engineering Report should not be referenced
as required or mandatory technology in procurements.

Document type: OpenGIS® Engineering Report
Document subtype: NA
Document stage: Approved for Public Release
Document language: English

OGC 09-053r5

ii Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

Preface

This document presents the Geoprocessing Workflows related results of the OWS 6 GPW
thread. This group has focused on creating general recommendations and guidelines for
asynchronous workflows and security related aspects in workflows.

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

iii

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this
Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable,
and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be
construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in
violation of U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction
which may impact your right to import, export or use the Intellectual Property, and you represent that you have complied with any
regulations or registration procedures required by applicable law to make this license enforceable

OGC 09-053r5

iv Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

OWS-6 Testbed

OWS testbeds are part of OGC's Interoperability Program, a global, hands-on and
collaborative prototyping program designed to rapidly develop, test and deliver Engineering
Reports and Change Requests into the OGC Specification Program, where they are
formalized for public release. In OGC's Interoperability Initiatives, international teams of
technology providers work together to solve specific geoprocessing interoperability problems
posed by the Initiative's sponsoring organizations. OGC Interoperability Initiatives include
test beds, pilot projects, interoperability experiments and interoperability support services -
all designed to encourage rapid development, testing, validation and adoption of OGC
standards.

In April 2008, the OGC issued a call for sponsors for an OGC Web Services, Phase 6 (OWS-
6) Testbed activity. The activity completed in June 2009. There is a series of on-line
demonstrations available here: http://www.opengeospatial.org/pub/www/ows6/index.html
The OWS-6 sponsors are organizations seeking open standards for their interoperability
requirements. After analyzing their requirements, the OGC Interoperability Team
recommended to the sponsors that the content of the OWS-6 initiative be organized around
the following threads:

1. Sensor Web Enablement (SWE)

2. Geo Processing Workflow (GPW)

3. Aeronautical Information Management (AIM)

4. Decision Support Services (DSS)

5. Compliance Testing (CITE)

The OWS-6 sponsoring organizations were:

� U.S. National Geospatial-Intelligence Agency (NGA)

� Joint Program Executive Office for Chemical and Biological Defense (JPEO-CBD)

� GeoConnections - Natural Resources Canada

� U.S. Federal Aviation Agency (FAA)

� EUROCONTROL

� EADS Defence and Communications Systems

� US Geological Survey

� Lockheed Martin

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

v

� BAE Systems

� ERDAS, Inc.

The OWS-6 participating organizations were:
52North, AM Consult, Carbon Project, Charles Roswell, Compusult, con terra,
CubeWerx, ESRI, FedEx, Galdos, Geomatys, GIS.FCU, Taiwan, GMU CSISS, Hitachi
Ltd., Hitachi Advanced Systems Corp, Hitachi Software Engineering Co., Ltd., iGSI,
GmbH, interactive instruments, lat/lon, GmbH, LISAsoft, Luciad, Lufthansa, NOAA
MDL, Northrop Grumman TASC, OSS Nokalva, PCAvionics, Snowflake, Spot
Image/ESA/Spacebel, STFC, UK, UAB CREAF, Univ Bonn Karto, Univ Bonn IGG,
Univ Bunderswehr, Univ Muenster IfGI, Vightel, Yumetech

Contents Page

1 Introduction ... 1
1.1 Scope .. 1
1.2 Document contributor contact points ... 1
1.3 Revision history .. 1
1.4 Future work .. 2

2 References ... 2
3 Conventions .. 2

3.1 Abbreviated terms .. 2
3.2 UML notation ... 3

4 Introduction ... 3
4.1 Basic concepts for OWS Workflows .. 3
4.2 Geoprocessing Workflow ... 7

4.2.1 Transparent Chaining .. 9
4.2.2 Translucent Chaining .. 10
4.2.3 Opaque Chaining ... 11
4.2.4 BPEL ... 12

 4.2.4.1 BPEL process lifecycle ... 13
 4.2.4.2 BPEL process general structure ... 14
 4.2.4.3 Partner Handling .. 15
 4.2.4.4 Data Handling .. 16
 4.2.4.5 Basic Activities .. 17

4.2.5 XPDL .. 19
4.2.6 WSMO/WSML/WSMX ... 19

 4.2.6.1 Overall Architecture ... 21
 4.2.6.2 WSMX Execution Semantics - exemplified by AchieveGoal 22
 4.2.6.3 WSML Language Elements .. 23

4.3 Asynchronous Web Services .. 25
4.3.1 Pull Model ... 25
4.3.2 Pull Model ... 26

5 Developed Concepts ... 27
5.1 Workflow Exposition .. 27

5.1.1 Plain WS-* .. 27
5.1.2 Web Processing Service .. 27
5.1.3 Web Coverage Service .. 29
5.1.4 Web Feature Service ... 30
5.1.5 WF-XML .. 30

5.2 Data Transfer Patterns ... 30
5.2.1 Data Management ... 31
5.2.2 Data Transfer ... 31

5.2.2.1 By Value .. 31
5.2.2.2 By Reference .. 31

5.3 Workflow Response Delivery ... 31

OGC 09-053r5

ii Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

5.3.1 Raw Data result ... 32
5.3.2 Referenced Result ... 32
5.3.3 Encapsulated Result .. 32

5.4 Architectural Style Independent Workflows ... 32
5.4.1 BPMN vs. UML 2.0 Activity Diagrams .. 36
5.5 Asynchronous Workflow Participants .. 36

5.5.1 WPS-Push Model .. 37
 5.5.1.1 Extending the WPS execute request ... 39
 5.5.1.2 Use optional message parts ... 40
 5.5.1.3 Comparison of both approaches .. 41

5.6 Security Aspects in Workflows ... 42
5.6.1 Transparent .. 44

5.6.2 Translucent ... 44
 5.6.2.1 Preconditions .. 45

 5.6.2.2 Delegation Token Issuing .. 49
 5.6.2.3 Authentication with a Delegation Token ... 52
 5.6.2.4 Authorization with a Delegation Token ... 52
 5.6.3 Opaque .. 52

5.7 Workflow Semantics ... 53
5.7.1 Requirements for WEBSERVICE specification for Geographic

Information Services .. 53
5.7.2 Requirements for WEBSERVICE specification for Geoprocessing

Services .. 54
5.7.3 Semantic validation based on semantic annotation 56

6 Scenario ... 57
6.1 Architecture ... 58
6.2 Dynamic Model ... 60

7 Summary ... 64

References ... 67

Figures Page
Figure 1. OWS-2 Architecture ... 4
Figure 2. OWS-3 Service Chain ... 5
Figure 3. OWS-4 Workflow Architecture .. 5
Figure 4. OWS-5 SOA Workflow Architecture ... 6
Figure 5. OWS-5 ROA Workflow Architecture .. 7
Figure 6. Transparent Chaining Pattern .. 10
Figure 7. Translucent Chaining Pattern ... 11

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

iii

Figure 8. Opaque Chaining Pattern .. 12
Figure 9. BPEL Process Overview ... 13
Figure 11. Pull Model ... 26
Figure 12. Push Model .. 26
Figure 13. Basic WPS interaction ... 28
Figure 14. Workflow Engine Wrapping Architecture .. 29
Figure 15. Composing and execution of a service composition. ... 33
Figure 16. Import of Service Description. .. 34
Figure 17. Enter an URL and a local name. ... 34
Figure 18. The deployment dialogue window. ... 36
Figure 19. Conceptual Delegation Problem ... 43
Figure 20. Generic Delegation Concept for OWS .. 45
Figure 21. Precondition Processing ... 46
Figure 22. Delegation Token Hierarchy ... 48
Figure 24. Information items involved in the annotation of a WFS in WSMX (Klien (2007),

modified). ... 54
Figure 25. Information items involved in the annotation of a WPS in WSMX (in analogy to

Figure 1). .. 55
Figure 26. Scenario Architecture .. 58
Figure 28. Scenario Interaction Model ... 60
Figure 29. The workflow was initiated ... 62
Figure 30. Workflow Result reference as WCS coverage ... 63
Figure 31. Visualized workflow results fetched from a WCS. .. 64

Tables Page
Table 1. An overview of the mapping between WFS and UML. .. 35
Table 2. Comparison of WS-Addressing and OGC approach ... 42

Listings
Listing 1. General Structure of a BPEL process .. 14
Listing 2. General partnerLinkType structure ... 15
Listing 3. Sample PartnerLink structure ... 16
Listing 4. Sample Variable Declaration .. 16

OGC 09-053r5

iv Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

Listing 5. Sample assign activity ... 17
Listing 6. Sample invoke element structure ... 17
Listing 7. Principle Receive-Reply structure ... 18
Listing 8. WPS Pull Response Message .. 37
Listing 9. WPS Pull Final response. .. 38
Listing 10. BPEL mechanism for WPS pull invocation. ... 39
Listing 11. WPS Capabilities Extension ... 40
Listing 12. WS-Addressing Header Example .. 41
Listing 13. WS-Addressing with BPEL .. 41
Listing 14. Preconditions Extension .. 46
Listing 15. WS-Policy Precondition .. 47
Listing 16. Simple Delegation Token sample request ... 49
Listing 17. Simple Delegation Token example .. 52

Listing 18. WSML description of a WFS output………….…………………………………..
 57

Listing 19. WSML description of a WFS input………………………………………………..57

OGC® OWS-6 Geoprocessing Workflow Engineering Report

1 Introduction

1.1 Scope

This document covers Geoprocessing Workflow best practices and methods in a SOA
environment. A RESTful approach was also conducted in this testbed, but no specific
implementation details were available to be included in this ER; also, the RESTful workflow
approaches and technology used in this testbed was essentially same as that used in OWS-5.

1.2 Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Name Organization
Bastian Schaeffer Institute for Geoinformatics, University of

Muenster
Sven Schade Institute for Geoinformatics, University of

Muenster

1.3 Revision history

Date Release Editor Primary clauses
modified

Description

17.4.09 0.9 Schäffer,
Schade

 Completed draft

18.4.09 0.9.1 Schäffer 5.5 Typos eliminated, BPEL scripts for
asynchronous support added, references
added

20.4.09 0.9.2 Schade,
Schäffer

 Figure 9 Added, typos eliminates

25.4.09 0.9.3 Schäffer References updated and extended
22.7.09 0.3.0 Schäffer Polishing of all sections; indication

that RESTful approaches are not part
of the ER.

08/10/09 0.3.0 C. Reed Get ready for posting a public ER

OGC 09-053r5

2 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

1.4 Future work

2 References

3 Conventions

3.1 Abbreviated terms

ASM Abstract State Machines

BPEL Business Process Execution Language

GIS Geographic Information System

GML Geographic Markup Language

GPW Geo-Processing Workflow

ISO International Organization for Standardization

KVP Key-Value Pair

OGC Open Geospatial Consortium

QoS Quality of Service

SOA Service Oriented Architecture

SWS Semantic Web Service

UDDI Universal Description, Discovery and Integration

UML Unified Modeling Language

W3C World Wide Web Consortium

WCS Web Coverage Service

WFS Web Feature Service

WMS Web Map Service

WPS Web Processing Service

WSDL Wed Service Description Language

WSML Web Service Modelling Language

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

3

WSMO Web Service Modelling Ontology

WSMX Web Service Modelling eXecution engine

XML eXtensible Markup Language

3.2 UML notation

Most diagrams that appear in this standard are presented using the Unified Modeling
Language (UML) static structure diagram, as described in Subclause 5.2 of (OGC 2007).

4 Introduction

This section starts with an overview over the OGC activities and achievements in the
context of Geoprocessing Workflows in the past. This serves as a starting point for
defining the term Geoprocessing Workflow followed by explanations of relevant concepts
for challenges targeted at the OWS-6 GPW testbed. The presented concepts are evaluated
with a proof-of-concept implementation at the end of this document.

4.1 Basic concepts for OWS Workflows

The Open Geospatial Consortium has focused on spatial related workflows since several
years. Starting with ISO19119 (ISO 2001) the OpenGIS Consortium (OGC) and ISO
TC211 have jointly developed an international standard for geospatial service
architecture including the description of different workflow patterns (see section 4.2).

Additionally, several testbeds explored Geoprocessing Workflows in detail: In the OWS-
2 testbed, service chaining with the Business Process Execution Language (BPEL) was
elaborated. Figure 1 shows the basic architecture.

OGC 09-053r5

4 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

Discovery
Client

WOS

Map Viewer
Client

CPS

Data Services Portrayal Services

Catalog-Registry Services

Processing Services

Application Services

Bind

= OpenGIS Service Interface

Find

WFS WMS

Encodings

GML ESML

Service
Metadata

WMS
Context

XIMA

WSDLImage
Catalog

Image
Metadata

Publish

Service
Catalog

Image
Exploitation

Workflow
Manager

BPEL

WCTS WICSWCS

SensorML

Workflow/Task
Services

WfCS

Invoke

Execute &
Control

Figure 1. OWS-2 Architecture

Details are described in (OGC 2004) but it is important to note that a BPEL workflow
engine was used and labeled as a Workflow Chaining Service (WfCS). Therefore a WfCS
is a class of Workflow and Task Services as defined in ISO 19119 but is not defined
further with a fixed interface and therefore can be only regarded as a concept rather than
a service in an OGC sense. Since the workflow is hidden behind the vendor specific
WfCS interface, the opaque service chaining pattern was applied. Additionally, (OGC
2004) describes only synchronous workflow interactions but identified a need for
asynchronous service interaction as well. All data was passed by reference since all
services (processing and data) supported this type of data transaction.

The follow-up OWS-3 testbed also relied on BPEL as the workflow language. As shown
in figure 2, a workflow consisting of Web Coordinate Transformation Service (WCTS)
was implemented for a remote sensing scenario.

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

5

…
WCS

(SPOT Data Raw level)
WCTS

(PCI or Spot Image)
WCS

(SPOT Data Ortho Level)

Internet

Service chaining creates

Value-added products

ESA / SSE

Figure 2. OWS-3 Service Chain

Again the vendor specific interface of the Workflow Engine was directly used and
referred to as WfCS. Also, asynchronous service invocation with WS-Addressing was
elaborated and implemented for the WCTS.

The next evolution step took place in the OWS-4 testbed. Again, several workflows had
to be implemented and BPEL was selected again as the workflow language and
the workflow was hidden behind a standardized WFS/SPS interface. Therefore, the WFS-
T/SPS operations like GetFeature triggered the workflow on a BPEL workflow engine.
Figure 3 shows the basic architecture for one of the workflows developed.

Figure 3. OWS-4 Workflow Architecture

Details are described in (OGC 2006). However, asynchronous invocation of the service
was possible with the help of the Web Notification Service (WNS) (OGC 2003). The
workflow itself was still synchronous.

OGC 09-053r5

6 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

In the OWS-5 testbed, two completely different workflow approaches were exercised.
The first one applied the SOA principle and continued the practice of synchronous BPEL
scripts but wrapped the workflow as an asynchronous WPS process which delivers a
reference to a WFS back as show in Figure 4. Besides, the workflow was based on the
SOAP protocol.

Figure 4. OWS-5 SOA Workflow Architecture

Beyond the OWS-5 context, the OGC discussion paper (OGC 2008) extended the
approach of wrapping workflows as WPS processes to a dynamic
deployment/undeployment of any algorithm/workflow as a WPS process. As a result, the
WPS interface was extended to a Transactional WPS (WPS-T).

The second OWS-5 workflow applied the ROA principle and wrapped different
workflow engines behind a RESTful version of WF-XML (WF-XML-R) interface as
shown in figure 5.

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

7

Figure 5. OWS-5 ROA Workflow Architecture

Besides, limited security capabilities for RESTful workflow were apparently exercised
based on an OpenID extension but not explained further in the OWS-5 Workflow
Engineering report.

4.2 Geoprocessing Workflow

This section provides a brief classification of the term Geoprocessing Workflow as the
key aspect of this report.

Geoprocessing Workflows can be viewed as a combination of the two general concepts
Geoprocessing and Workflow.

Geoprocessing

In absence of a general definition for the term Geoprocessing, it can be seen as a
specialization of the term processing in a spatial context. In other words, Geoprocessing
is the processing of spatially related data.

In classical desktop GIS applications, geoprocessing represents the core GIS analysis
functionality (Lembo 2004) and thus, is one of the key concepts. On the other side,
distributed GIS systems are based on loosely coupled services organized in a SDI (Kiehle
et al. 2006). According to the ISO 19119 specification (ISO 2001), there are four
different types of Geoprocessing services:

 Spatial processing

e.g. Coordinate transformation services, Feature manipulation services or Route
determination services

OGC 09-053r5

8 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

 Thematic processing

e.g. Thematic classification services, Geographic information extraction services, or
Image processing services

 Temporal processing

e.g. Temporal reference system transformation services, Subsetting services,
Temporal proximity analysis services

 Metadata processing

 e.g. Statistical calculation service, Geographic annotation services

Workflow

The term Workflow is defined as an “automation of a business process, in whole or part,
during which documents, information or tasks are passed from one participant to another
for action, according to a set of procedural rules” (ISO, 2001).

Therefore, the concept of a workflow can be realized as a web service chain in order to
pass information from one workflow participant (web service) to another.

Geoprocessing Workflows

Geoprocessing Workflow brings both terms together. In the scope of this report, it can be
seen as an automation of a spatial process/model, in whole or part, during which
information is passed from one distributed Geoprocessing Service to another according to
a set of procedural rules using standardized interfaces.

In other words, Geoprocessing Workflows integrate data and services in an interoperable
way, where each part of the workflow is responsible for only a specific task, without
being aware of the general purpose of the workflow. Due to the distributed nature of
geographic data, Geoprocessing Workflows provide flexible means of processing highly
distributed and complex data for a wide variety of uses.

Leaving the semantical aspect out of scope, some research has recently been
accomplished on web based geoprocessing. Kiehle (Kiehle et al., 2006) describes a rule
based approach and theoretical foundations for geoprocessing service orchestration.
Weiser (Weiser et al. 2006) and Stollberg (Stollberg, 2006), focus on BPEL and WPS but
do not take the whole Geoprocessing lifecycle and OGC constraints into account. But the
OGC Interoperability and Specification Programs has produced a significant body of
knowledge and experience in designing, building and deploying Web Services. The full
potential of OGC Web Services as an integration platform will be achieved when
applications and business processes can be composed to perform complex interactions
using a standardized process integration approach.

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

9

Workflows regarded as Service Chains are one of the key concepts in enabling value-
added chains in SDIs (Alameh 2003). The ISO19119/Service Architecture standard
defines service chaining as: “A sequence of services where, for each adjacent pair of
services, occurrence of the first action is necessary for the occurrence of the second
action“ (ISO, 2001).

A service chain can always be regarded as a directed graph, since the input of one service
depends on the output of another service. A directed graph is defined as:

A set K of ordered nodes and a set E of edges, where each edge e(u,v)ЄE has a direction
and consists of a node pair (u,v) where u,v ЄK. .

The nodes in a directed graph represent service entities and the arcs represent the service
interactions. Directed acyclic graphs (DAG) are special types of directed graphs. The
definition of a directed graph from above has to be extended with the constraint that for
any node t, there is no nonempty directed path that starts and ends on t.

However, some service chains require iterations and for this reason the graph has to be
cyclic and therefore has to make use of conditions in the control function to address
convergence.

In addition, there are four more characteristics of a service chain according to ISO19119
(ISO 2001):

 Parallel or serial chains

 Variations in the links between nodes reflecting different methods for transporting
data or invoking the service

 Parameters in nodes

 pull processing vs. push processing

Besides, there are three different architectural patterns for service chains defined
according to Alameh (Alameh 2003) and ISO19119 (ISO, 2001): User Transparent
chaining, translucent chaining and opaque chaining.

4.2.1 Transparent Chaining

In the transparent chaining pattern, the knowledgeable user defines a service chain. Since
all service details are visible to the user, this pattern is called transparent chaining. Thus,
the user is responsible for discovering and evaluating available services as well as for
defining the execution order, invoking the services and pass around process results as
inputs. Furthermore, the user has to make sure that input and output messages have to be
compatible and all required resources are available. Figure 6 presents this pattern as an
UML collaboration diagram.

OGC 09-053r5

10 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

 Figure 6. Transparent Chaining Pattern

In step 1, the user sends a search request to a catalog service in order to discover service
availability. The catalog service returns metadata about services fulfilling the search
request. The user creates an execution order and invokes the first service in step 3. The
processed results (or a reference) are returned back to the user in step 4. These results (or
a reference) are passed in the second service in step 5. If the user supplies a reference, the
service has to obtain the actual data in step 6 from the previous service. Again, the
processed results (or a reference) are returned back to the user as can be seen in step 7. In
step 8, the user invokes the third service with the results from the two previous services.
If a reference to actual data is delivered, the third service requests the actual data from the
corresponding in step 9 and 10. After processing, the final results are returned to the user
in step 11.

For instance, typical applications of transparent chaining are Web 2.0 style mash-ups.
These mash-ups allow e.g. adding a geotagged pictures to a map.

4.2.2 Translucent Chaining

The translucent chaining pattern allows a user to execute a predefined chain managed by
a workflow service. In this pattern, the chain is already abstractly predefined and stored
on a workflow engine. The user is aware of all services participating in the chain, but
does not have to deal with the execution order or passing around processing results. But
since the user knows all participating services, he is able to poll the current status of each
participating service (if supported by the service). Figure 7 gives an overview of this
pattern.

1

2

3

4
5

6

7

8

9

10

11

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

11

Figure 7. Translucent Chaining Pattern

In step 1, the user invokes an existing chain on the workflow service. The workflow
service starts now the predefined execution order. The first service is invoked in step 2.
Since the user knows, that this service is invoked first, he/she can poll the current
processing status of the service. The processed results (or a reference) are returned back
to the workflow service in step 4. These results (or a reference) are passed in the second
service in step 5. If the workflow service supplies a reference, the service has to obtain
the actual data in step 6 from the previous service. Again, the user can poll the status in
step 7 and after processing, the results (or a reference) are returned back to the workflow
service as can be seen in step 8. In step 9, the workflow service invokes the third service
with the results from the two previous services. If a reference to actual data is delivered,
the third service requests the actual data from the corresponding in step 10 and 11. As
seen before, the user is enabled to poll the current service status in step 12. After
processing, the final results are returned to the workflow service in step 13 and from there
back to the user in step 14.

4.2.3 Opaque Chaining

The opaque chaining pattern exposes a chain as a single service and hides all details from
the user. The user is not even aware of the fact that the aggregate service hides a chain
nor is the user aware of the types of services being used. Therefore, the aggregate service
is responsible for all service coordination. Figure 8 describes this pattern.

3

7

2
4

5

6

8

9

10
 11

13

12
1 14

OGC 09-053r5

12 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

Figure 8. Opaque Chaining Pattern

In step 1, the user invokes an aggregate service unaware of the implementation details
(e.g. if the aggregate service uses a service chain and what kind of services are involved).
The aggregate service starts now the predefined execution order at this point, so the first
service is invoked in step 2. The processed results (or a reference) are returned back to
the aggregate engine in step 3. These results (or a reference) are passed in the second
service in step 4. If the aggregate service supplies a reference, the service has to obtain
the actual data in step 5 from the previous service. Again, after processing, the results (or
a reference) are returned back to the aggregate service as can be seen in step 6. In step 7,
the aggregate service invokes the third service with the results from the two previous
services. In case a reference to actual data is delivered, the third service requests the
actual data from the corresponding service as presented in step 8 and 9. After processing,
the final results are returned to the aggregate service in step 10 and from there back to the
user in step 11.

4.2.4 Business Process Execution Language (BPEL)

The de-facto standard for Web Service workflow composition (van der Aalst et al.,
2003a) is the Business Process Execution Language for Web Services (BPEL4WS,
commonly referred as BPEL), which is a standard proposed by IBM, Microsoft and BEA
(Andrews et al., 2003a), that evolved from former standards, such as graph based WSFL
or block based and algebraic XLANG. BPEL descriptions (scripts) are XML based
documents, which describe the roles involved in the message exchange, supported port
types and orchestration information of a process. BPEL is also a service composition
model (Wohed et al., 2003), which supports composition and coordination protocols
(Chen et al., 2006). It consists of an activity-based component model, an orchestration
model that allows the definition of structured activities, XML schema data types, a
service selection model and a mechanism for exception and event handling.

2
3

4

5

6
7

8
 9

10

1 11

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

13

A BPEL process does not only interact with a set of partners through Web Service
interfaces but also represents a Web Service from an external point of view (figure 9).
This process is internally implemented by the interaction of participating Web Services,
whose interfaces are specified by WSDL documents. Reuse and simplicity of BPEL
processes are guaranteed by operating only on the “abstract” PortType definitions instead
of the concrete Port definitions of a Web Service. Thereby, specific binding and
deployment issues remain at the Web Service and not at the BPEL process itself
(Leymann et al., 2003).

Figure 9. BPEL Process Overview

Since BPEL is strongly related to Web Services, BPEL4WS is build on top of numerous
XML based specifications: WSDL 1.1, XML Schema 1.0 and XPath 1.0. WSDL
describes all external resources and participating Web Services. XML Schema specifies
the datatypes in conjunction with the WSDL messages and XPath is needed for internal
data manipulation.

OGC 09-053r5

14 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

4.2.4.1 BPEL process lifecycle

BPEL is built on WSDL by assuming that all external interactions of the business process
occur through Web Service operations. However, a BPEL process is only a model that
represents a stateful long-running interaction in which each interaction has a beginning, a
defined behaviour during its lifetime, and an end. Thus, BPEL processes are instantiated
at run-time and not a design time.

Creating a BPEL process instance is always implicit in the way that activities which
receive external messages (<receive>) can be annotated to indicate that a new instance
of the business process has to be created. This is achieved by setting the
createInstance attribute to "yes". When a message is received, an instance of the
process is created if it does not already exist.

A BPEL process instance is terminated if either all activities that characterize the
behaviour of a process are completed (normal termination) or if an error occurs.
Occurring errors can be either handled or not but. In either case, a response is sent to the
requestor.

4.2.4.2 BPEL process general structure

A BPEL process follows a general structure presented in listing 1

Listing 1. General Structure of a BPEL process

A <process> root element is equipped with a mandatory name attribute representing
the name of the process. All listed child elements are optional but at least one activity has
to be provided. This activity can be either a basic activity like invoking a Web Service
operation or a control structure activity. The following Sections give a brief overview of
the elements.

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

15

4.2.4.3 Partner Handling

The most important aspect of a BPEL process is the interaction with other Web Services
(partner). The relationship of a process to a partner is typically peer-to-peer. This
aspect requires a two-way dependency at the service level. Therefore, a partner can
represent both a consumer of a service provided by the process and a provider of a
service to the process. The interaction is generally handled through operation calls
offered by the Web Service’s interface and described by the corresponding WSDL.
WSDL describes the Web Service’s functionality only and does not include the
relationships between different partners. Therefore BPEL offers the concept of
<partnerLinks> and <partnerLinkTypes>.

A <partnerLinkType> determines the relationship between two services and also
characterizes the roles of both partners. Additionally, the interaction pattern is specified
between two partners by defining the <portType> provided by each service to receive
messages within the context of the conversation. Hence, a <partnerLink> specifies
only the interaction at an abstract level by simply defining just the <roles> and
<portTypes> and not the concrete ports. Listing 2 shows the general structure of a
<partnerLinkType>.

Listing 2. General partnerLinkType structure

Each <partnerLinkType> construct is named after the name attribute. Furthermore,
the Web Service’s role (e.g. buyer and seller) is specified by the role element, which is
also named. Each role specifies exactly one <portType> provided for the
corresponding role. A <partnerLinkType> is different from other BPEL constructs,
since it is specified in the context of a WSDL document on the basis of the WSDL
extension mechanism and hence can be placed inside a WSDL document.

All Web Services, which participate in the process and therefore interact with the process
are specified as <partnerLinks>. Each <partnerLink> is characterized by a
<partnerLinkType>. But more than one <partnerLink> can be characterized by

OGC 09-053r5

16 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

the same <partnerLinkType>. Listing 3 shows the general structure of a
<partnerLink>.

Listing 3. Sample PartnerLink structure

Each <partnerLink> has a name attribute and references the corresponding
<partnerLinkType> by the partnerLinkType attribute. The role of the process
is represented by the attribute myRole and the role of a Web Service represented by this
<partnerLink> is indicated by the attribute partnerRole.

4.2.4.4 Data Handling

BPEL processes are usually long-time running and time consuming. For the interaction of
the process with its partners, BPEL offers the concept of variables to temporally store
data. Variables can be allocated with received data from a partner and act as input data
for another partner. The BPEL specification defines several constructs to handle, extract
and manipulate data and variables. The most important elements are described below.

Variables serve in the context of BPEL to hold data received or send to partners. Hence,
they represent the state of the BPEL process. Due to BPEL’s strong type-safety, variables
have to be declared before being used. The datatype of variables can be determined by
either WSDL messages, complex XML schema elements or simple XML schema
elements, e.g. xsd:int. Listing 4 presents a sample variable declaration.

Listing 4. Sample Variable Declaration

Inside the enclosing <variables> element, there are variables which can be defined.
A <variable> has a name under which it is available for other constructs inside the
BPEL process. One of the following elements has to be provided in order to specify the
datatype: <messageType> for WSDL messages, <type> for simple XML types and
<element> for XML schema elements.

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

17

Variables are only useful if they can be assigned with data and moreover the data can be
copied or modified. BPEL offers the <assign> activity to copy data between variables.
This activity is characterized by one or many <copy> activities, which copy data from
one source (<from>) to a type compatible source (<to>). Listing 5 shows an example
for copying data between WSDL messages.

Listing 5. Sample assign activity

The source variable is determined by its name. Since listing 5 shows the syntax for
copying data between WSDL messages, the part of the WSDL message is obtained by
the part attribute and an optional XPath query can be executed on the part specified
by the query attribute. The target variable mechanism is analogous to the source
variable behaviour.

4.2.4.5 Basic Activities

Basic activities are the building blocks of the actual process workflow. Only the major
activities <invoke>, <receive> and <reply> are briefly described in this Section.
Besides, there are other activities as mentioned in previous sections, such as the
<assign> activity and the <throw>, <wait> and <empty> activity which are not
covered here.

The <invoke> activity characterizes an operation call on an interface provided by a
web service and specified by the <partnerLink> element. Input and output data has
to be copied from or to BPEL variables, which are typed as WSDL message.
Synchronous request/response operations and asynchronous one-way operations are
supported by the BPEL specification. Listing 6 shows a typical <invoke> activity.

Listing 6. Sample invoke element structure

OGC 09-053r5

18 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

The inputVariable and the outputVariable have to be specified by their name.
The operation attribute characterizes the operation to be called on the interface
identified by the portType attribute and at the partner specified by the partnerLink
attribute.

From an external point of view, every BPEL process is represented as a simple Web
Service, the required input data and the generated output data have to be transformed as
served/requested by the interface operations. The <receive> activity is triggered when
an associated operation is called. This activity writes the incoming data into a dedicated
variable for further use. If a process is not a one-way process, a <reply> activity
performs the opposite of the <receive> operation. The <reply> activity returns
variable data back to a waiting requestor1. Listing 7 presents both activities.

Listing 7. Principle Receive-Reply structure

The <receive> activity fetches the incoming data and assigns them to the variable
indicated by the variable attribute. In case of the <reply> activity, the variable
attribute represents the variable, which value should be returned to the requestor. In both
cases, the operation attribute characterizes the operation to be used for
fetching/returning the data of the interface identified by the portType attribute and the
partner specified by the partnerLink attribute.

Besides these basic activities, the BPEL specification offers a set of control structure
activities as known from high level programming languages (e.g. switch, while etc.) for
controlling and structuring the sequence of activities. In the scope of this report, the
<sequence> control structure activity is only relevant. The <sequence> control
structure activity orders a containing set of activities in a sequential order. This becomes
necessary for synchronous processes while asynchronous processes rely on the <flow>
control structure activity.

1 For synchronous calls

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

19

4.2.5 XPDL

XPDL provides an XML file format that can be used to interchange process models
between tools. This specification forms part of the documentation relating to Interface 1 -
supporting Process Definition Import and Export shown in the diagram above. This
interface includes a common meta-model for describing the process definition (this
specification) and also a companion XML schema for the interchange of process
definitions.

An XPDL package corresponds to a Business Process Diagram (BPD) in Business
Process Markup Notation (BPMN), and consists of a set of Process Definitions. The
WfMC defines a process as:

The representation of a business process in a form that supports automated
manipulation, such as modeling, or enactment by a workflow [or business]
management system. The process definition consists of a network of activities
and their relationships, criteria to indicate the start and termination of the
process, and information about the individual activities, such as participants,
associated IT applications and data, etc. (WfMC Glossary - WfMC-TC-1011)

The process definition provides an environment for a rich description of a process that
can be used for the following:

� Act as a template for the creation and control of instances of that process during
process enactment.

� For simulation and forecasting.

� As a basis to monitor and analyse enacted processes.

� For documentation, visualization, and knowledge management.

The process definition may contain references to subflows, separately defined, which
make up part of the overall process definition.

XPDL as a workflow language was used in the Restful part of the OWS-6 GPW testbed
but no specific implementation details were available to be included in this ER.

4.2.6 WSMO/WSML/WSMX

Workflow generation and execution is also an emerging topic within the Semantic Web
community. Considering related technology in the context of Geospatial workflow is
highly relevant. In particular, because issues of web service discovery and mediation can
be addressed. For these reasons the Web Services Modeling Ontology (WSMO) has been
considered for OWS-6 implementations. Due to the current status of the software and a
lack in support for web service security, developments were not completed. As we see a

OGC 09-053r5

20 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

strong requirement for semantic technologies in near future, the core principles of
WSMO are detailed in the following. This overview serves a connection to further work.

The WSMO is introduced as solution to semantic discovery and composition of Web
Services. Opposed to other Semantic Web technology, WSMO provides an integrated
conceptual model for Web Service discovery, composition, and execution. WSMO
defines a conceptual SWS model. It defines four basic conceptual modelling elements
(Scicluna et al., 2006):

WSMO Ontologies define a common agreed-upon terminology for an application domain.
Following Guarino, ontology is defined as “an engineering artifact, constituted by a
specific vocabulary used to describe a certain reality, plus a set of explicit assumptions
regarding the intended meaning of the vocabulary words” (Guarino, 1998).

WSMO Web Services are descriptions that formalize various aspects of a Web Service. A
service capability defines the Web Service functionality in terms of non-functional
properties, pre-conditions and post-conditions. The choreography defines how a service
interacts with its clients. It is similar to a WSDL end point, and represents the external
visible behaviour of a service, including its communication structure and grounding.
WSMO Choreography is based on Abstract State Machines (ASMs). The orchestration
describes how the provided functionality is realized internally, i.e. it specifies the
interaction with the composed Web Services. A WSMO Orchestration is state-based and
describes the desired workflow together with control and data flow. The orchestration
description consists of a vocabulary that denotes the information space from the
perspective of the Web Service. It consists of guarded transition of the form: if
<condition> then invoke <Goal, Web Service>. WSMO Web Service descriptions use the
available WSMO Ontologies. Invoking a Web Service means direct execution.

WSMO Goals describe the user’s desires with respect to the requested functionality. A
Goal description consists of a requested capability and required choreography interfaces.
WSMO Goals use WSMO Ontologies. Achieving a WSMO Goal means that the
appropriate service has to be discovered, and executed by using choreography and
orchestration.

WSMO Mediators are used to deal with syntactical, structural and semantic
heterogeneities inherent in open and flexible architectures, such as the Service Oriented
Architecture (SOA).These heterogeneities can be on mismatches between different used
terminologies (data level), on communicative behavior between services (protocol level),
and on the business process level. A WSMO Mediator connects elements and provides
mediation facilities for resolving such mismatches. They act as connectors between
WSMO components.

Semantic Web Service (SWS) frameworks such as WSMO allow attaching meaning to
terminology used in service and data description by using ontologies. For instance,
service inputs, outputs and operations can be clearly defined, and hence ambiguities and
heterogeneities in terminologies are reduced (Fitzner and Hoffmann, 2007). In this way

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

21

WSMO addresses poorly defined semantics, shared syntax with different semantics, as
well as, different syntax with shared semantics.

A comparison of WSMO and BPEL can be found in (Gone and Schade, 2008). Opposed
to BPEL, a WSMO service composition does not have to exist at the time when a user
poses the request i.e. formulates the WSMO Goal. Compositions may employ different
services, which is more flexible than using pre-selected services. The concept of goals is
used in WSMO. Goals allow the specification of processes and tasks, for which suitable
Web Services can be detected dynamically at execution time. WSMO includes discovery
mechanisms for identifying Web Services with suited semantics.

The reference implementation of a WSMO is the Web Service Execution Engine
(WSMX). WSMX uses the Web Service Modeling Language (WSML) as its internal
language. Conditions are WSML axioms, which describe the states for which the
transition rule should fire. By serving a modeling ontology for Web Services, WSMX is a
general conceptual framework which remains open for extensions. In the following we
introduce the internal workings of WSMX and the required language elements.

4.2.6.1 Overall Architecture

WSMX itself is based on SOA principles. It is divided into self-contained components
which provide different functionality to the system. From a service point of view, the
components act as middleware service providers. The communication between the
components is event-based, using a publish-subscribe mechanism.

The central component in WSMX is the Core, which provides middleware framework
functionality such as finding and loading components, handling the messaging between
components, and defining paths of execution (“execution semantics”, see below). The
Core also defines the types of components in the Integration API. In essence, the Core is
responsible for all cross-cutting concerns regarding the other components (i.e. the Core
realizes the vertical layer as described in (Hoffmann et al., 2008).

The other components are decoupled from the each other (incl. from the Core itself) by
wrappers. This architecture enables to easily plug in additional components and to switch
any of the provided components to a third-party component that realizes the same
functionality.

The currently available components, apart from the Core, include: choreography,
communication manager, data mediator, invoker, orchestration, parser, resource manager,
service discovery, and web service discovery. The following section gives an example
how they are used in WSMX to process SWS.

OGC 09-053r5

22 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

Figure 10. WSMX Architecture.

WSML (deBruijn et al., 2006) is a family of formal description languages used for the
precise specification of the elements in the WSMO framework. The different variants of
WSML (WSML-Core, WSML-Flight, WSML-Rule, WSMLDL, and WSML-Full)
correspond to different logical language paradigms, namely Description Logic, Logic
Programming and First-Order Logic.

4.2.6.2 WSMX Execution Semantics - exemplified by AchieveGoal

Execution semantics can be viewed as executable processes that define a path through the
system. Thus they enable the combined execution of functional components. Execution
semantics are specified by the core and are triggered by specific requests to the system.

Currently, there is one execution semantic specified: AchieveGoal. It defines the goal-
based invocation of services, i.e. the process to be executed in order to get a response for
a specified goal.

AchieveGoal comprises of the following steps

 1. Late Binding: Service Discovery and Selection (the following steps are executed
sequentially and just once each):

a. Web Service Discovery: The given goal definition is used to find web service
definitions in the repository which can fulfil that goal.

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

23

b. Service Discovery (optional): It may be necessary that web services need to be
invoked with the actual instance data that was provided with the goal in order to
determine whether a service can actually fulfil the concrete goal2. (not used in swing)

c. Service Selection (optional): Additional criteria like Quality of Service (QoS) and
user preferences are used to rank the discovered services.

2. Execution:

a. Process Mediation (Orchestration/Choreography) resolves process
heterogeneity between requester and provider. This may e.g. be needed when the
provider service has a different granularity and multiple invocations need to be made
to fulfill a goal. To achieve this, the choreography interfaces of both goal (requester)
and service (provider) are processed, taking into account any concrete data. This data
can be initially provided with the goal, changed by choreography rules, or received
from a service. This subprocess can be seen as a conversation between requester and
provider. There may be several steps involving updating the processing memory of
the choreography component regarding requester or provider, mediating data, and
invoking a service.

b. Data Mediation resolves data heterogeneity between requester and provider. It
transforms instances of the ontologies known to the requester to instances of the
ontologies known to the provider, or vice versa. Assuming there is a data
heterogeneity problem, data mediation is performed two times: at the beginning, to
convert the instances provided by the goal to instances of the web service; and at the
end, to convert the response instances of the web service to instances comprehensible
by the goal. (not used in swing)

c. Service Invocation and Grounding: The information which WSDL operation of a
web service needs to be called with what instance data and the type of instances that
is returned is specified in the grounding information of the WSMO web service
description. For the actual invocation of the WSDL-based web service, the input data
needs to be lowered from ontology instances to an XML-based message and later the
response lifted to ontology instances.

It should be noted that none of the WSMO xx-Mediator conceptual elements are actually
used in WSMX yet. They will be integrated at some later time. Nonetheless, process and
data mediation are available; only the way they work might diverge in some details from
the description in WSMO conceptual documents.

4.2.6.3 WSML Language Elements

A semantic composition framework must provide meaningful service descriptions and
enhance the composition process. In WSMO, the following elements are specific to
descriptions of Geospatial Web Services:

OGC 09-053r5

24 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

Non-functional properties are used to describe service metadata similar to those specified
by OGC Capability Documents.

Pre-conditions state that a valid request, for example an instance of for example a get-
Feature request, must exist before the WFS service can be invoked.

Post conditions define constraints on the output of a service invocation. for example, if
WFS is successfully executed, it will return a GML Feature Collection.

Choreography describes, in case of WFS, that each instance of a getFeature request
causes an invocation of the OGC service and the result is translated into a WSML
encoding of a GML Feature Collection. Adapters have to be defined, in order to
implement Web Service requests from WSMX to OGC Services and to parse responses
back into WSMX. Specific adapters can be built based on the generic Adapter
Framework (Bussler et al., 2005).

Orchestration describes the interaction with further services.

Considering the WFS description as example, “getFeatureRequest” is modelled as a
WSML concept, which is part of a globally available WFS ontology describing in- and
outputs of WFSs. The concept “getFeatureRequest” is used in the state signature, which
is part of the choreography of a WSML Web Service description; it provides the means
for grounding a Web Service request to the actual service instance. The
“FeatureCollection” concept is part of an extensive GML ontology that captures the GML
semantics.

Application specific concepts are part of domain ontology. The example use case covers
the domain of fire, meterology, plume dispersion and airports. Concepts of the domain
ontology, like “Building”, "Airport" or “Runway”, are used to capture the semantics of
application specific feature types, i.e. models for the geospatial data that is returned by
the WFS. The link between the data model and the real world model is defined as an
annotation (Klien et al., 2007; Schade et al., 2008; Grcar and Klien, 2007). A graphical
tool guiding users in implementing such annotation has been developed (JSI) (Schade et
al., 2008). More details about service and workflow semantics are described in section
5.7

Defining Geospatial Task as WSMO Goal

Capturing a user goal sufficiently is one of the main tasks in using frameworks such as
WSMO. For instance, the application user might pose a question such as “Give me the
recent weather conditions near airport X”. Such a goal must be formulated in a way that a
service advertising such capability is found. The graphical tool that has been
implemented for defining annotations can be reused for defining such goals (Andrei et al.,
2008). The discovered service needs to be invoked based on available information and
correct meterologic data for “airport X” have to be returned. In case no single service can
satisfy the goal, services should be found that in combination resolve the user's goal.

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

25

A WSMO Goal for discovering and invoking of an anapplication logic resembles a
service description, including both the capability and the interface section. The
choreography of a Goal does not only express the users preferred mode of interaction
with a WFS, it is also used in service discovery. Discovery is implemented using the
WSMX reasoning engine IRIS (Vasiliu, 2006). Web Service descriptions are matched
against the previously generated goals, which both follow the WFS annotation pattern as
described in (Schade et al., 2008). A service will be selected if its capability and its
choreography interface match that of the Goal. A case study of extending the discovery
approach to processing services, especially WPS, can be found in (Hoffmann et al, 2008),
and (Schade et al., 2008).

4.3 Asynchronous Web Services

The typical communication pattern of web services is synchronous, meaning a request is
followed by a response. The HTTP protocol is a typical representative of this class.
However, in some cases, especially long running computations, a requestor does not want
to wait and be idle until the sever has finished the computation. In this case, the
asynchronous communication pattern could be applied. The mainstream IT world has
several protocols for this case such as:

 HTTPR

 JMS

 IBM MQSeries Messaging

 MS Messaging

In the OGC Web Service context, only the synchronous HTTP protocol is of interest.
Two basic patterns are applicable here to allow asynchronous communication on top of
HTTP and partly exercised in some specifications (e.g. WPS & WCS).

4.3.1 Pull Model

The pull mechanism obliges the server to provide a reference back to the requestor on an
initial request to allow the requestor to observe the status via this reference. Therefore,
the requestor has to periodically call the server via this reference. This pattern has the
advantage of requesting the status on demand but on the other side comes along with
several disadvantages:

OGC 09-053r5

26 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

Figure 11. Pull Model

The message volume is increased, because for each status request, messages have to be
exchanged. Besides, the requestor is not directly informed when the process has finished
and might not notice when the process has finished because the requestor needs to request
the status and will not get any status information automatically form the server.

4.3.2 Push Model

The push mechanism allows requestors to specify a callback endpoint which should be
notified whenever the process has finished. This eliminates interim status requests to the
server and thus reduces the communication traffic especially for long running processes
as typically seen in Grid computing environments. Additionally, the push mechanism
allows the integration of OGC services in mainstream IT asynchronous workflow
environments and reuse by reusing existing standards and tools. The WS-Addressing
(W3C 2003) specification is in this case the prime candidate.

Figure 12. Push Model

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

27

As a disadvantage can be seen, that interim status messages are not directly foreseen by
this pattern. A publish/subscribe mechanism would be one solution to this problem.

5 Developed Concepts

The following sections describe the concepts either considered or practically evaluated in
the context of the OWS-6 Scenario.

5.1 Workflow Exposition

There are several ways to expose a workflow. For translucent and especially opaque
workflows, many workflow engines are offered by the market. In order to exchange
information between different workflow engines and use different workflow language via
a single interface, interoperability and thereby standards come into the picture.

However, each vendor has its own interface or relies on standards from different
standardization bodies. This section elaborates different ways of wrapping an opaque
workflow in a standardized way and lays out the experience gained in the scenario
exercised in this testbed.

5.1.1 Plain WS-*

One option to expose an opaque workflow is to apply mainstream IT standards.
Particularly, standard web services invokable via HTTP GET, POST or SOAP have to be
considered. To gain interoperability, common practice is to describe a web service with a
Web Service Description Language (WSDL) document. This document explicitly
describes the message structure for the input and output messages. The plain Web Service
approach has the advantage of being compatible to mainstream IT enterprise
architectures. However, plain Web Services are not based on OWS-Common and
therefore do not fit in traditionally OGC based architectures. Additionally asynchronous
invocation is not guaranteed and there is no standard about how the input and output
message structure should look like which limits the level of interoperability.

5.1.2 Web Processing Service

The OGC Web Processing Service (WPS) Specification (OGC 2007) describes a
standardized way to perform (geo) processes in SDIs. These processes can be as simple
as the sum of two numbers (e.g. population) or as complex as a global climate model. The
data required by the service can be delivered across a network or made available on a
server. Image data formats or data exchange standards such as Geography Markup
Language (GML) can be used for the resulting data.

OGC 09-053r5

28 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

Figure 13. Basic WPS interaction

Therefore, the interface is held very generic and is mainly based on three operations as
shown in figure 13. Since a WPS should be able to be integrated in to the OpenGIS
framework, it has to offer the GetCapabilites operation generally described by the OWS
Common specification. Besides the OWS Common metadata (see Section 2.3.4), and
basic service metadata, all processes offered by the WPS are briefly described in the
capabilities document. The GetCapabilities operation can only be invoked via HTTP-
GET and the request should be Key-Value-Pair (KVP) encoded. A minimal request can
be found in (OGC, 2007)

A requestor first requests the service metadata via the GetCapabilities operation. Detailed
information is obtained by calling the DescribeProcess operation for an operation listed in
the service metadata. Finally, the execute operation is invoked with all required input data
identified by the DesribeProcess response. Especially, the flexibility of the WPS
specification can be used for the workflow wrapping approach: All required workflow
input data can be mapped to WPS input data.

Since any kind of calculation or algorithm can be exposed as a WPS process, the same
principle can be applied for workflows.

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

29

Figure 14. Workflow Engine Wrapping Architecture

As depicted in figure 14, the client sees the Workflow engine as a simple WPS process
and is not necessarily aware of the underlying Workflow engine. The OGC Discussion
Paper 08-123 discusses a transactional extension for the WPS, which applies a generic
approach and a concrete profile for BPEL. This profile allows clients to dynamically
deploy and undeploy workflows as WPS processes. In the case of OWS-6, a static-non
transactional approach is applied which wires a WPS process directly to a workflow in a
BPEL engine.

This architecture has the advantage, that different Workflow engines can be exposed as a
WPS processes without changing the workflow appearance to the client. The client
always can invoke a WPS process independent of the underlying workflow engine or
workflow script language. Besides, by encapsulating a workflow engine with a WPS, the
advantages of a WPS can be used, such as integration into the OGC service stack,
asynchronous execution and basic message structure interoperability combined with the
flexibility of input data description.

5.1.3 Web Coverage Service

A Web Coverage Service (WCS) allows standardized access to spatial raster data
organized as coverage layers. In terms of wrapping a workflow as a WCS, only
workflows that output raster data could be used. The workflow engine could be
encapsulated by a WCS and exposed as a WCS coverage layer. Since the WCS
specification only offers a well-structured and limited request schema, workflow input
parameters not expressible as WCS parameters could not be used. Therefore, wrapping a
workflow as WCS coverages has only a limited usage. However, since many clients can
understand coverage data and can interact with a WCS, standardized access to (a limited
class of workflows) is possible.

OGC 09-053r5

30 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

5.1.4 Web Feature Service

A Web Feature Service (WFS) allows standardized access to spatial vector data
organized as features inside feature collections.

In principle, this approach faces similar limits to the WCS exposition described above.

In detail, once a composition is deployed to the execution engine, invocation is
encapsulated in an OGC WFS. In cases where a composition does not require specific
input parameters, i.e. all service requests are set within the composition, and where the
execution results is a collection vector data, a WFS interface can be used for
encapsulation. This approach has the advantage to allow any WFS client executing the
complex composition. If a getFeature request is send to the encapsulating WFS, the
service internally calls the execution and translates the result into a GML feature
collection.

5.1.5 WF-XML

Wf-XML utilizes a loosely coupled, message-based approach to facilitate rapid
implementation using existing technologies. It will describe the syntax of these messages
in an open, standards-based fashion that allows for the definition of a structured, robust
and customizable communications format.

Wf-XML can be used to implement three models of interoperability; specifically, chained
workflows, nested workflows and parallel-synchronized workflows. Wf-XML supports
these three types of interchanges both synchronously and asynchronously, and allows
messages to be exchanged individually or in batch operations. Furthermore, this
specification describes a language that is independent of any particular implementation
mechanism, such as programming language, data transport mechanism, OS/hardware
platform, etc.

However, Wf-XML has no SOAP binding defined and Wf-XML based services do not fit
into the OGC service stack directly, because it e.g. does not support a GetCapabilities
operation.

A RESTful Wf-XML (Wf-XML-R) developed in OWS-5 was used in this testbed, but
but no specific implementation details were available to be included in this ER.

5.2 Data Transfer Patterns

Patterns for transferring and managing data have been studied extensively in the
workflow research community. (see e.g. Russel et al., 2005) In terms of this testbed, only
the transfer of data from the client to the workflow engine and from one workflow
participant to another was relevant.

In this sense, two different aspects have to be regarded:

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

31

1. Keeping data in a centralized repository vs. keeping the data by the data generating
entity

2. Sending data by value vs. send data by reference

Both aspects are discussed in the following sections.

5.2.1 Data Management

In the OWS-6 testbed, all data (input data to the workflow and to the services) was kept
at the corresponding entities. In other words, one participant has sent the data which
serves as input for another participant either by value or reference (see next sub section)
to the workflow engine, which dispatches the data (reference) to the relevant workflow
partner. No centralized repository was used where workflow partners store and access the
data.

5.2.2 Data Transfer

5.2.2.1 By Value

Sending data by value sends the whole data set from one participant to another. The
workflow engines, as orchestrating entity, passes the data to the target participant. This
concept has been proven useful only for small datasets and simple data structures, such as
coordinate pairs, buffer distances etc, because the data has to pass the workflow engine
and its pre determined communication channel. More efficient communication channels
or timeframes could not be considered. Therefore, for larger datasets, sending data by
reference seems to be more useful.

5.2.2.2 By Reference

Sending data by reference does not send the actual dataset but only a pointer to the data.
In the OWS-6 testbed, the data prevailed on the data generating services (e.g. WCS,
WPS) and a URL was passed to fetch the data over the internet. The reference is passed
via the workflow engine to the target participant. The actual data is then transferred via
an external channel. This approach seems to be more applicable for large data sets,
because, the data does not go through an intermediary and could be fetched via a chosen
transport channel, which seems to be more efficient.

5.3 Workflow Response Delivery

As the last step in the lifecycle, the result data has to be delivered back to the initial
requestor. Obviously, the response will be delivered according to

OGC 09-053r5

32 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

a) the interface of the workflow (see section 5.1)

b) the initial request based on a)

However, there are three different patterns for obtaining the result, which will be
elaborated in the following sub sections.

5.3.1 Raw Data result

The data is delivered back as plain raw data. This pattern is related to Section 5.2.2.1 but
is more strict in a sense that the data is delivered without any interface specific overhead.
For instance, if a Geotiff image is requested, the image is delivered in binary format and
not wrapped into other message structures.

For instance, WPS or WMS offer explicitly the option for delivering raw data but this
concept can be used beyond these interfaces. In the OWS-6 testbed, this was especially
useful for WPS delivering binary data, since the binary data had not to be encoded e.g. as
base64 data. However, only one result can be delivered at a time.

5.3.2 Referenced Result

This pattern delivers only a reference to the data back in the meaning of section 5.2.2.2.
In the OWS-6 testbed, this pattern was successfully combined with the previously
described pattern: The raw data is referenced and only the reference is delivered back to
the requestor. This has the advantage that multiple results could be returned back at once.

5.3.3 Encapsulated Result

Another option is to explicitly wrap the data in an interface specific encoding. For
instance, gml features could be encapsulated in a wfs:FeatureCollection or in a
ExecuteResponse document. This could be especially useful if the workflow is exposed
via a known interface and only the specific interface response encoding is understood by
the client.

In the OWS-6 testbed, the final workflow partner was a data providing service (WCS-T).
The workflow engine stored all relevant results as new layers in that service and returned
only a reference to the newly added layers. In other words, the results were encapsulated
as WCS layers inside of the workflow and the requests and response message to fetch the
data had to be according to this interface description.

5.4 Architectural Style Independent Workflows

Development Environment

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

33

The development environment is developed by SINTEF. It provides support for
constructing (W3C and OGC) Web Services compositions and allows a user to annotate
and discover Web Services including an extension for semantic information. The
SINTEF Composition Studio has been chosen as the basis for the development
environment because it is open source and operates on an abstract UML level when
composing Web Services (Hoff et al., 2006).

Top-level processes

The main functionalities of the development environment are the creation of Web Service
compositions, semantic annotation of Web Services and compositions, discovery of
services, deployment of compositions and execution of compositions. Use of the
development environment will typically only utilize parts of the available functionality.
We will show two process models supported by the development environment.

Figure 15. Composing and execution of a service composition.

Figure 14 shows the process of creating and testing a service composition. This process
will typically start with the creation of a new, empty service composition. To populate the
empty composition with existing services a search for services will be performed. The
result of the search can then be added to the composition. The service composition will
then be edited, for instance to describe the control flow. After finishing the composition it
must be translated to a language the execution engine understands. To test the finished
service composition it can be deployed on the execution engine and executed within the
development environment. This will allow a service composition developer to have
access to both composing and testing facilities in the same environment.

OGC 09-053r5

34 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

Import of Web Feature and Processing Service

The Composition Studio has a local repository for resources transformed into UML
representations, called Local Dictionary. With use of the import of service description
menu it is possible to import a Web Feature Service. or WPS Figure 16 shows how to
access the menu for importing WFS.

Figure 16. Import of Service Description.

After activating the import service description menu item a dialog window will appear, as
seen in Figure 17. To import a WFS enter the base URL to the service. This will be used
to parse the WFS description and create a UML representation in the Local Dictionary of
the WFS. The local name is used for better naming of the UML resource.

Figure 17. Enter an URL and a local name.

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

35

The transformation from WFS to UML is quite simple. Given the URL to the WFS the
WFS document is parsed and transformed into a UML package containing a UML class
with a WFS stereotype. Then each of the features of a WFS is transformed into a UML
property contained in the UML class. Table 1 shows how a Web Feature Service is
represented in UML.

Table 1. An overview of the mapping between WFS and UML.

Deployment of a composition

After a user has designed a composition, he or she must deploy the service so that it may
be executed and discovered. Compositions may for example be stored , i.e. registered at a
BPEL engine or (if including Semantic Web Technology) in WSMX. In order to store a
composition in WSMX, the user must translate the composition into WSML, the
Composition Studio has automatic support for translation. This creates a WSML file in
the same project folder as the composition. The user may right-click on the WSML file
(to open the context menu) and select menu option “SEE Store”. The development
environment will open the window shown in Figure 18. This window allows the user to
select the WSMX server that should receive the WSML-file. When user has selected the
server, he may press the “OK” button to store the WSML file. He may also cancel the
deployment of the WSML file by pressing the “Cancel” button. A similar export
functionality is provided for BPEL.

OGC 09-053r5

36 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

Figure 18. The deployment dialogue window.

5.4.1 BPMN vs. UML 2.0 Activity Diagrams

The reason for using UML Activity Diagrams in favour of BPMN diagrams is that UML
does also provide profiles that makes it easy to extend models with specific fields and
annotations. For complex project, often UML Class diagrams UML Sequence diagrams
are necessary, which could be easily integrated with UML Activity Diagrams.

Additionally BPMN 1.0 does not support data flow as well as UML activity diagrams.
However, in BPMN 2.0, there are plans to increase the BPMN support for
data/information models, and we will then look further into how to use BPMN as an
alternative to UML activity diagrams in the future.

5.5 Asynchronous Workflow Participants

Message exchange in workflows can be either synchronous or asynchronous.
Synchronous workflows have been studied in previous testbeds (see Section 4).

This testbed focuses on asynchronous workflows, meaning in this scope, message
exchange between the workflow engine and the workflow partner in an asynchronous
fashion.

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

37

The workflow language and the workflow partners both have to support asynchronous
message exchange. Since BPEL and WPS were the prominent representatives, this
sections focus only on these technologies.

5.5.1 WPS-Push Model

Since the WPS was heavily used in the OWS-6 GPW exercise, the asynchronous
capabilities of this service have to be analyzed. The WPS specification states in table 50
that the status attribute in the ResponseDocument element should be used to indicate an
asynchronous pull request. The immediate status response would look for instance like:

Listing 8. WPS Pull Response Message

The statusLocation="http://geoserver.itc.nl:8080/wps/RetrieveResultServlet?id=1239702
719520" attribute (line 1) can be used to pull additional status requests. Until process
completion, the status message will not change except the optional percentCompleted
attribute.

When the status URL is requested and the process has finished, the general WPS execute
response as specified in (OGC 2007) will be delivered back. An example can be found in
Listing 9.

OGC 09-053r5

38 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

Listing 9. WPS Pull Final response.

In order to invoke such a pull based WPS with BPEL, the principle above could be
applied by frequently checking the statusLocation in a loop (lines 12-17, Listing 10) over
an invoke (line 16, Listing 10) statement, as shown in Listing 10.

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

39

Listing 10. BPEL mechanism for WPS pull invocation.

Unfortunately, push support (see Section 4.3.1) is not yet specified in the current WPS
specification.

There are generally two approaches to solve this problem:

5.5.1.1 Extending the WPS execute request

One option would be to directly extend the WPS request. The ResponseDocument would
get two optional attributes in the <wps:ResponseDocument> element

 callbackAddress

this attribute points to an endpoint where the process result is pushed to upon completion.

 callbackType

OGC 09-053r5

40 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

this attribute specifies the callback mechanism type. An urn shall be used which is
indicated in the extended Capabilities metadata. To indicate the supported callback
mechanisms, the service metadata should be extended with the following structure:

Listing 11. WPS Capabilities Extension

A <wps:CallbackOfferings> element has 0..n <wps:CallbackType> each containing a
urn.

For instance, the urn:ogc:wps:async:push:url will be used to indicate that the process
results shall be send to the url stated in the callbackAddress attribute.

Both attribute have always to be used in conjunction. The status attribute has to be
therefore always turned to false.

5.5.1.2 Use optional message parts

WS-Addressing (OASIS, 2004) is a mainstream IT solution to this problem. The OASIS
specification utilized the SOAP header to send a XML structure containing a callback
address. This callback address should be used to push the data back, when the process has
finished.

A typical example can be seen in listing 12.

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

41

Listing 12. WS-Addressing Header Example

The WS-Addressing specification specifies its elements in detail. In the context of the
WPS specification, if a WS-Addressing header is used, the expected response message to
a request will be delivered to a the given address stated in the <wsa:Address> element.
Therefore, this mechanism can be used in conjunction with the request methods outlined
in the WPS specification.

In BPEL, the pattern described in listing 13 could be used to invoke a service with WS-
Adressing.

Listing 13. WS-Addressing with BPEL

5.5.1.3 Comparison of both approaches

Both presented approach have certain advantages and disadvantages. Table 2 gives an
overview:

Criteria WPS Inline Approach WS-Addressing

Use within mainstream IT-
architectures

- +

SOAP + +

HTTP-POST + -

HTTP-GET (+) -

OGC 09-053r5

42 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

Publish/Subscribe - +

 Table 2. Comparison of WS-Addressing and OGC approach

Enterprise IT architectures beyond the OGC scope uses in most cases the WS-* stack.
WS-Addressing is used in this context for asynchronous message exchange. Therefore,
utilizing WS-Addressing would foster the integration of OGC services in Enterprise IT
architectures. On the other side, an OGC approach of extending the WPS schemata would
not be beneficial for this goal.

Both approaches could be used with a SOAP binding, but when it comes to HTTP-POST
and HTTP-GET the WS-Addressing approach fails, due to its orientation on the SOAP
header.

Newer developments in the direction of event architecture publish/subscribe mechanisms
for automated status updates require additional technology such as WS-Notification. For
further details see the OWS-6 Event Architecture Engineering Report (OGC 2009a).

Another topic is the use of different message protocols than HTTP. By utilizing the WPS
inline approach, different protocols could be requested such as Skype or email (SMTP)
depended on the service offerings. Nevertheless, the WPS inline approach offers a greater
flexibility in this direction.

5.6 Security Aspects in Workflows

Workflows are a powerful mechanism to efficiently streamline business processes. The
delegation of certain processing steps of a business process to external partners fosters the
quick adaptation of changing environments and leads to higher flexibility and scalability
of those processes. Research in this field identified standardization as the key factor to
take advantage of economies of scale and economies of scope. Standardized OGC Web
Services enable the required interoperability among software of different vendors to
allow the creation of workflows across enterprise boundaries.

However, partners will only conduct business if their (geo)rights, trust and security
requirements are met.

In the context of OGC testbeds, experimental workflows have been developed and first
attempts were made to address security aspects. Nevertheless, no generic solution could
be found for security in workflows (e.g. the OWS-5 Testbed only regarded a RESTful
security workflow approach which is not compatible to the OGC Security Architecture
developed in the same testbed nor to Business to Business SOA based workflows also
developed in OWS-5, see section 4.1).

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

43

The OWS-6 Security Engineering report (OGC 2009b) describes in detail approaches for
securing plain OGC Web Services. Workflows that incorporate those secured OWS from
different domains/enterprises have to deal with additional problems. This testbed focused
especially on the aspect of trust between different domains (see OGC 2009b) and the
delegation of authority between different domains.
Figure 19 visualizes this problem conceptually.

Figure 19. Conceptual Delegation Problem

Service A is known and trusted by Service C and furthermore has rights to access Service
C. Service B is neither known nor trusted or has any rights to access Service C. In order
to allow Service B to act on Service A’s behalf to access Service C restricted to only
dedicated resources more than simple trust is required: The delegation of authority. In
this context, Service A has the delegator role, Service B is the delegate and Service C is
the targeted Service.

In general, the concept of delegation has been studied e.g. in (Gasser and McDermott
1990) and with regard to role based access control, e.g. in (Zhang et al, 2003) In
principle, a delegator delegates authority to a delegatee, which can act on behalf of the
delegator. The delegatee’s rights could be constrained for a dedicated resource.
Therefore, delegation consist of the tuple

(Delegator, Delegatee, Resources, Constraints)

Additionally, two types of delegation could be distinguished: Direct delegation and
indirect delegation.

In direct legation, the delegator A directly delegates the authority to a delegatee B to act
on his behalf in regards to resource C. Resulting in

OGC 09-053r5

44 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

(A, B,C,{})
Indirect delegation lets B delegate the gained authority from A further to B1. In this
context, B becomes the delegator and B1 the delegatee. This leads to

(A,(B,B1,C,{}),C,{})
and could be regarded as delegation chains (figure 4).

An applicable concept for geoprocessing workflows with special regards to OGC web
service is still missing. For the o the Grid computing world, proxy certificates were
introduced (Welch et al., 2004), but have not been accepted and supported widely.

Besides, Wang (2005) proposed to extend SAML and use attribute statements, because
SAML is widely accepted. However, the presented approach is not applicable to
geoprocessing workflows, because the special requirements of OGC web services and
workflows are not regarded. This results mainly in leaving open, how service should
announce the requirements of such tokens, the non-spatial related constrainability and use
of timestamps as security mechanism which are not useful in workflows, since the
execution time is often not predicable.

The work presented in this paper picks up the basic idea of using SAML, but takes a
different and more flexible path applicable to the OGC world and geoprocessing
workflows as explained in the following section.
For enterprise architectures, WS-Trust and WS-Federation focus only on trust issues and
not on full delegation of authority. Employing WS-Secure Conversation could be one
solution to establish sessions (via key negotiation) but can be problematic in terms of
delegation chains and non-repudiation, since only 1:1 relationships are established.

A solution for workflows composed of loosely coupled OGC Web Services is still
missing.

In the context of the three different workflow architectures introduced in section 4.2

5.6.1 Transparent

In the transparent case, the client directly orchestrates the services. Hence, only direct
interactions between the client and the workflow partner services exist and no delegation
is required. The client needs to be trusted and needs to have access rights on each
workflow partner service. Security aspects for direct interactions are covered by the
OWS-6 Security Engineering Report.

5.6.2 Translucent

In the translucent case, a workflow engine is responsible for orchestration and thus
invoking the services. Even though, the client knows which services are involved, the
general problem here is that a Workflow Engine, which might have no rights to access a
service on its own, has to invoke that service. Mapped to figure 20, the client is Service
A, the workflow engine Service B and the secured OWS is service C.

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

45

In principle the attempt to invoke a secured service, where the secured service is not able
to indentify the requestor because there is either no trust relationship or the requestor has
no rights to access the secured service, would fail.

Therefore, the workflow engine (Service B) has to act on behalf of the initial requestor
(Service A) which needs a trust relationship to the targeted secured service (Service C)
and access rights as visualized in figure 18.

To solve this problem, figure 20 shows a generic approach to this problem.

Figure 20. Generic Delegation Concept for OWS

5.6.2.1 Preconditions

In a workflow scenario, the first step is to ask the WFE for service metadata and
preconditions. For OGC Web Service, the GetCapabilties operation common to all OGC
Web Services would be the first step. An alternative or additional way would be to use
the WS-Metadataexchange (BAE Systems, IBM, Microsoft, IBM 2004) method to obtain
service metadata like it is exercised in the mainstream IT-world. In one way or the other,
metadata have to be collected from the WFE.

Preconditions play a key role in security enabled web services and therefore in GeoRM
enabled OWS as well. In general, preconditions publicly announce a potential Web
Service requestor, which conditions (in the context of security-which security model,

OGC 09-053r5

46 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

tokens, encryption mechanism) are required/supported. This concept ensures
interoperability by allowing services to fulfil all required preconditions prior to the
service invocation. A general workflow should follow the principle depicted in 20
according to (Kanneganti and Ramarao 2008).

Figure 21. Precondition Processing

In terms of the using a GetCapabilities approach, a solution for indicating preconditions
is to extend the GetCapabilities response with the following structure under the root
element:

Listing 14. Preconditions Extension

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

47

A <PreconditionList> element which serves as a container for 1..n <Precondition>
elements. Each of these elements has a mandatory type attribute, which should contain a
urn indicating the encoding of the document represented by the url given as the node
value. In listing 14, urn:oasis:WS-Policy indicates a WS-Policy encoding for the
document represented by http://foo/bar/ws-policy-precondin.xml url.

Other encodings are also possible. However, the preconditions have to state that the
workflow engine requires a delegation token in order to access the secured (and known to
the client) service.

A WS-Policy precondition encoding for a delegation token could follow the pattern
described in listing 15.

Listing 15. WS-Policy Precondition

The WS-Policy document follows the OASIS WS-Policy and WS-SecurityPolicy
specifications. To enable delegation, a DelegationToken element was stated in the first
and only policy. This extension of WS-Policy is anticipated by WS-Policy and WS-
SecurityPolicy to allow a flexible use of the specification.

In this case, the policy is marked as Required by using the wsp:Usage Attribute. The
token type is given by the del:TokenType element. In the example from figure 22, a
delegation token is indicated by the urn:

OGC 09-053r5

48 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

urn:ogc:ows6:gpw:DelegationToken:Simple

which in this case requires a simple delegation token (SDT).

Figure 22. Delegation Token Hierarchy

In this testbed, a basic delegation token was engineered which servers as an anchor point
for multiple extensions for specific requirements (see section 5.6.2.2)

In order to identify the target service, which should be invoked on behalf of the
preconditions issuing service, the del:Target element is used. This element should contain
the URL of the targeted service.

The del:ResourceID element should be used to indicate the type of resource requested by
the delegate. Again, a urn is used. In the example used in this testbed, a WPS operation is
indicated. This could be extended to different OWS types and resources.

The del:Resource element could be used to specify the actual resource. Since a wps
operation is indicated by the urn given in the ResouceID element, the actual operation is
stated here. This concept is also held flexible to allow different types and georesources,
such as layers for e.g. WMS etc.

As the last element, an del:AuxillaryToken is provides a SAML assertion which serves as
an identity token of the delegatee. It also includes a public key of the delegator, which

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

49

can be used by the target services to ensure non repudiation if this identity token is signed
by a trusted authority such as the delegator.

5.6.2.2 Delegation Token Issuing

After the client has received the service metadata and has fetched the preconditions
indicating a required delegation token, it can proceed to obtain that token. In this testbed,
a SecuredTokenServices (STS) defined by WS-Trust was used to issue identity tokens.
Because of the WS-Trust specification is held general, it could be extended to issue
different tokens such as delegation tokens.

Therefore, an extension was developed for issuing delegation tokens. As depicted in
figure 22, all delegation tokens are based on the well known and established SAML (1.1)
format to allow COTS software to read and extract the relevant information easily. The
SAML basis was extended by a basic delegation token (BDT). A BDT includes all
relevant information except access rights restrictions. The restriction could be handled by
different BDT profiles such as for instance a potential (Geo)XACML Delegation Token
Profile. In this testbed only a Simple Delegation Token (SDT) as a profile was
implemented but as indicated before the approach is held flexible to allow other profiles
such as XACML.

Simple Delegation Token (SDT) Request

Listing 16 shows the essentials of Simple Delegation Token sample request.

Listing 16. Simple Delegation Token sample request

The wst:RequestSecurityToken (line 1) defined by WS-Trust serves as the container
for the SDT request. Line 7 requests the token type

OGC 09-053r5

50 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

urn:ows6:gpw:DelegationToken:Simple

which is requested by the delegatee and stated in the preconditions.

The extended elements are:

Delegateable (line 10): Boolean value indicating whether or not the delegatee is
allowed to delegate the token further. This could lead to delegation chains as depicted
in figure 23.

Figure 23. Delegation Chain

Delegator Service A could delegate the authority for a specific resource on Service C
to Service Bi which can delegate it further Service Bi+1 etc. In case this element is set
to true, further delegators have to put the received delegation token as the delegator
node value analogous to section II. B. For instance, if Service Bi delegates it authority
(which was delegated to Service Bi by Service Bi-1) to Service Bi+1, the SDT issued by
Bi-1 should go in there to allow Service C to determine that Service Bi+1 is acting on
behalf of Bi acting on behalf of Bi-1 .

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

51

Delegator (line 11): Contains an identity token for the delegator, in this case a SAML
Assertion, which could be fetched previously from a STS. This element is optional, if
not provided, the delegation token issuing STS should embed the identity information
directly based on other authentication means of the requestor. Other identity tokens
could also be possible, but SAML was chosen, because it is widely accepted and
supported.

Delegatee (line 77): Contains an identity token for the delegatee, in this case a SAML
Assertion, which was extracted from the preconditions.

Transaction (line 144): The transaction has four parts:

TransactionID: UUID indicating the whole transaction with the delegatee. The main
purpose is to prevent replay attacks. If a TransactionID has been previously used it
should not be accepted by the target anymore as long as not stated differently in the
rights section.

Target: Contains the target URL which was extracted from the preconditions.

Resource: Contains the actual resource which was extracted from the preconditions.

ResourceID: Contains ResourceID urn which was extracted from the preconditions.

Rights (line 150): The simple delegation token adds the Rights section to the basic
delegation token. In case of the simple delegation token, URNs are defined indicating
certain rights. Up to now only:

urn:ogc:def:delegation:rights:absolute:one-time-use

is defined which grants full access but the TransactionIDs have to be accepted only
once. This concept is also held flexible in order to allow different rights encodings,
such as (Geo)XACML.

Simple Delegation Token (SDT) Response

The STS responds with a SDT. A sample token is shown in listing 17. The STS basically
wraps all input data in a single token and signs the token. The whole token is delivered
back.

OGC 09-053r5

52 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

The delegatee is transformed to the saml:subject element native for SAML assertion.
Thereby, the SDT SAML assertion is only valid for the delegatee.

When it comes to revocation of delegated authorities (which is not covered in this ER),
issuing only references would be the better solution because entities that want to validate
the token have to request it which will only be possible if the token is still valid.

Listing 17. Simple Delegation Token example

Please note that the SDT can include a del:DelegationChain element, which would
contain previously issued SDT tokens in that chain. For instance, if Service Bi delegates it
authority (which was delegated to Service Bi by Service Bi-1) to Service Bi+1, the SDT
issued by Bi-1 should go in there to allow Service C to determine that Service Bi+1 is
acting on behalf of Bi acting on behalf of Bi-1 .

Furthermore, the Target, Resource and ResourceID elements are optional since they
could be encoded directly in the rights section.

5.6.2.3 Authentication with a Delegation Token

Once the secured target Service C is invoked by Service Bn (figure 23) on behalf of
Service A, with a signed request including the SDT, Service C has to authenticate the
requesting service. Since Service Bn is unknown and untrusted to Service C, Service C
cannot authenticate Service Bn. In a role based access control system the request would
be rejected.

However, a SDT tells Service C, that it does not need to know or trust service Bn. Only
the predecessor (or respectively the known root of the delegation chain). Therefore,
Service C can authenticate Service Bn by means of Service A. Therefore, the SDT is
extracted, and the subject is analyzed. Since the SDT is issued by a trusted party, the
public key included in the SAML subject element belonging to Service Bn could be
extracted and trusted transitively. The public key could be used to validate the signature
of the incoming request. Thus, Bn could be authenticated and also Service A, which
identity token is included in the SAML del:delegator attribute. For delegation chains, this
process has to be repeated recursively.

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

53

5.6.2.4 Authorization with a Delegation Token

After the requesting entity is authenticated, authorization is required. In RBAC systems,
this is based on roles assigned to identities. With the delegation approach, it becomes
possible to restrict access by the rights element in the SDT and delegate authority to a
priori unknown entities. Therefore, Service C has to extract, understand and enforce the
rights stated in the SDT token.

Interoperability is ensured, since Service C would announce which token types and
profiles it can understand in its preconditions. These preconditions would be collected
statically or dynamically by Service B and exposed to Service A which has to gather the
required token in order to request the Services.

5.6.3 Opaque

Opaque workflows do not expose the workflow participants to the client. Therefore, the
workflow orchestrating entity (workflow engine) is required to have access rights on each
workflow participant analogous to the transparent case. However, it is thinkable that a
workflow engine does not have access rights on each workflow participant, like in the
OWS-6 Airport scenario. In this case, the workflow engine has to require a delegation
token for this particular service according to the translucent case. Thus, the workflow is
not anymore opaque and not totally translucent. Hybrid or selectively translucent would
be the right terms to describe this kind of workflow.

5.7 Workflow Semantics

5.7.1 Requirements for WEBSERVICE specification for Geographic Information
Services

Semantic Annotation refers to making the semantics of the service’s underlying
functionality or data explicit by establishing a link to Domain Ontologies. The goal of the
annotation process is to generate a WSMO WEBSERVICE (written in WSML) for a
specific OGC service that integrates explicit semantic descriptions of the functionality or
data that is served. Figure 23 gives an overview on all the items that are involved in the
process of annotating WFS in WSMX. Everything starts and depends on the lower right
of the picture: the real-world entities, which are represented as spatial information
objects. These spatial information objects are encoded as features in the Geographic
Markup Language (GML) and served via OGC data services. In the following we will
concentrate on the requirements for annotating WFS, but WCS and WMS can be
described according to the same principles. In brief, first service documents are translated
into WSML, second, links to Domain Ontologies are established.

OGC 09-053r5

54 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

The effects of semantic annotation on OGC standards are currently discussed within
OGC (Duchesne et al, 2008).

Figure 23. Information items involved in the annotation of a WFS in WSMX (Klien (2007), modified).

5.7.2 Requirements for WEBSERVICE specification for Geoprocessing Services

So far, most approaches in the context of geospatial Web Services that use formalized
domain knowledge for annotation solely deal with geographic data services. Processing
services are different to data providing services in the respect that their functional
descriptions have to specify the service’s input and its relation to the output, which makes
them much more complex (Fitzner and Hoffmann, 2007). For example, since distances
can be calculated on almost every two objects that have a spatial attribute, it is not
sufficient for a service offering distance calculations only to consider the output (the
distance) in its functional description; the functional description also has to include the
types of input that are accepted by a specific service.

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

55

In the context of the testbed, we can thus formulate the following requirements that
functional descriptions (i.e. semantic annotations) of geo-processing services should
fulfill:

 they have to consider the types of in- and output and also constraints on them (e.g.
a service that calculates a distance between two spatial objects requires both
objects to be in the same coordinate reference system)

 they have to consider the relation from input to output

 can be integrated into the underlying SWS-framework.

As illustrated in Figure 25, the description of the service functionality takes into account
background ontologies on operations and geographic data-types, in order to ensure a
consistent use of terminology as defined in the OGC specification. The typology of
operations is based on a set of well-known atomic GIS operations (e.g. as specified in
ISO 19107 Spatial Schema (ISO/TC211, 2003).

Figure 24. Information items involved in the annotation of a WPS in WSMX (in analogy to Figure 1).

OGC 09-053r5

56 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

Against this background, the generation of a WEBSERVICE for a WPS requires to use
generic GIS operation types defined in the Domain Ontolog and to further constrain the
parameters in the pre- and postconditions of the Web Service according to the specific
WPS functionalities.

5.7.3 Semantic validation based on semantic annotation

The aim of validating a service composition semantically is to avoid unexpected behavior
or wrong results at the thematic level. This kind of behavior is likely to appear, when a
service in the composition either does have different semantics then the creator of the
composition had in mind or a service is invoked with input data which has unsuitable
semantics. The following section discusses validation mechanisms, which try to minimize
the risk of creating such a faulty composition.

 Semantic validation of service chains is useful for compositions containing web services
offered by different organizations. Since the combination of different services for
information exchange is one of the motivations to use workflows, this is a likely scenario.
In contrast the workflow used in OWS-6 is uses services which were created with the
purpose to fit for this special task. Therefore in this case semantic heterogeneities are
very unlikely. We take another example for a composition, where semantic validation
makes sense. We assume the combination of a WFS providing a road network with a
WPS that calculates a noise distribution map. The creator of a workflow discovers a
service which has the keyword infrastructure attached but is offering waterways. The
WPS would syntactically also able to process waterways, which would produce a result
which is semantically invalid. This can be avoided by using semantic service descriptions
and would be identified as an error by the validation engine.

 In contrast to web service discovery, the requirements regarding the semantic
descriptions for semantic validation are slightly different. Fitzer and Hoffmann (2007)
state that semantic discovery should be based on descriptions containing at least:

 type signatures
 constraints on input and output
 the operation that is performed
 the dependencies between input and output

The strategy for a semantic validation requires less information. The type signatures are
not relevant since the syntactic issues are expected to be solved in a working service
composition and there are a number of tools available to support the creation of
compositions at syntactic level. Also, the performed operation is of no interest, since the
validation aims at finding heterogeneities at the invocation of services. Of course the
descriptions of the operations carry information that might be helpful to judge if the
overall functionality of the service composition is valid, but this is not subject of the

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

57

validation at the moment. The same holds for the dependencies between input and output.
At the time of the service invocation in a composition only the constraints on the input
are of interest. These constraints specify the semantic annotations with concepts from
some domain ontology. Therefore it is possible to use subsumption reasoning to judge if
the annotated input satisfies the constraints on the input by the service. This approach on
validation can be used to validate the waterway / road network example.

The example WFS delivers infrastructure data about waterways. Therefore output
constraints for a semantic validation would contain the information shown in Listing 18.
Namespaces are followed by the ‘#’ character. Words, which begin with ‘?’ are WSML
variables, elements in ‘[]’ indicate local attributes and words followed by parentheses
global relations. The annotate relation is central, because it connects elements of the data
model to a domain ontology. Following this, Listing 18. reads like: the WFS returns
instances of the type ‘WFSOutputType’, which have the two attributes: ‘hasGeometry’
and ‘hasTrafficDensity’. The annotation relations reveal that the second attribute provides
information about the density of traffic on water ways.

Listing 18 WSML description of a WFS output.

While the input constraints of the WPS that calculates the noise level look like Listing 19.
As in the case of the WFS output, the input type has two attributes: ‘hasGeometry’ and
‘hasTrafficDensity’. But this time, the density is linked to road networks. i.e. the
‘hasTrafficDencity’ attribute has another meaning.

Listing 19 WSML description of a WPS input.

A subsumption reasoner, like IRIS (Vasiliu, 2006), which evaluates the containment
query with these two expressions would clearly give a negative result and therefore the
validation could inform the user that the input is not suitable.

This simple example illustrates the value of semantic validation of (geo-) processing
workflows. When workflows become operational in heterogeneous environments,

OGC 09-053r5

58 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

semantic annotation is unavoidable. Support in discovery and validation is a core
component of future SDI interoperability.

6 Scenario

The OWS-6 GPW scenario is constructed around an airport fire emergency case. First
responders have to be coordinated with stakeholders from different domains. The
workflow related concepts developed in this testbed and described in section 5 are
applied to a specific part of the overall scenario:

The First Respondence Officer (FRDO) from the regional authority domain coordinates
all actions. In order to determine, whether or not the plume generated by the fire will
cross the runway or the entry lane, the plume has to be simulated with temporal and
spatial constraints.

A workflow will be invoked by the FRDO which generates the desired plume simulation.
The workflow is realized as an opaque workflow exposed as a WPS process and spans
across security domains.

The following section provides a static overview of all participants followed by a
dynamic view focusing on the interaction between different workflow partners and the
message exchange against the background of the developed concepts in this testbed.

6.1 Architecture

The scenario involves several entities from three different security domains as depicted in
figure 26.

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

59

Figure 25. Scenario Architecture

Regional Authority Domain

The previously mentioned FRDO resides in the regional authority domain.
Figure 27 shows the simple interface the FRDO can use to invoke the workflow.

 Figure 26. FRDO interface

OGC 09-053r5

60 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

The X and Y coordinate have to be inserted along with the URL of the WPS that exposes the
workflow as a WPS process. There, from the FRDO's perspective, the plume is generated by a simple
WPS process. The complex internal logic is encapsulated.

Besides the simple client, the regional authority domain contains a Security Token
Service (STS) created by University of Muenster-IfGI. The STS interface is in general
specified by WS-Trust. The service is responsible for issuing security tokens that could
be understood by trusted parties.

Airport Authority Domain

The airport authority domain consists of several parties.

A Web Processing Service (WPS) created by University of Muenster-IfGI wraps the
workflow with a WPS interface and therefore is the workflow front end.

A BPEL Workflow Engine created by GMU responsible for orchestrating the workflow.

A Security Token Service (STS) created by University of Muenster-IfGI in charge of
issuing identity tokens for the Airport Authority Domain.

A Web Processing Service (WPS) created by UK Science and Technology Council
calculates weather predictions.

A Transactional Web Coverage Service (WCS-T) created by GMU responsible for
storing the workflow results as WCS coverages.

Commercial Level Domain

A Policy Enforcement Point (PEP) created by ConTerra/IfGI enforces access rights for
the secured plume model WPS.

A Policy Decision Point (PDP) created by ConTerra/IfGI decides whether or not a
requestor has access to the secured service.

A Web Processing Service (WPS) created by University of Muenster-IfGI calculates a
plume model based on weather predictions.

6.2 Dynamic Model

The dynamic model focuses on the interaction between the workflow participants. Figure
28 visualizes the interaction. Requests are orange, responses green.

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

61

Figure 27. Scenario Interaction Model

At first the FRDO enters the coordinates of the fire incident and initiates the workflow in
order to generate the desired plume simulation using the simple client interface shown in
figure 27.

Internally the simple client initiates the workflow: In Transaction 1 (1), the service
metadata from the workflow wrapped as a WPS process is requested via the
GetCapabilities operation. In (2), the metadata is responded back and is analyzed to
identify any preconditions. In our case, the preconditions are attached to the
GetCapabilities Response as described in section C and encoded as WS-Policy. In the
next step, the reference URL is extracted and since the client understands WS-Policy, the
preconditions are obtained from the WPS workflow wrapper in (3).

According to section 5.6, an Identity Token is needed to be attached to the WS-Policy
document. Therefore, in (4) an identity token is requested from the Airport Authority
domain’s STS and delivered in (5). The WS-Policy document with embedded identity
token is returned back to the client in (6).

OGC 09-053r5

62 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

The WS-Policy response is analyzed and noted that a delegation token is required to
invoke the workflow. A delegation token will allow the workflow engine to act on the
client's behalf for dedicated purposes.

Therefore, two steps are required:

First: An identity token for the client is requested from the Regional Authority domain’s
STS (7)(8).

Second: The client’s identity token as the delegator and the workflow engines identity
token (extracted from the WS-Policy) as the delegate are send to the STS to retrieve a
delegation Token (9)(10)

After all required tokens are gathered, the client sends an execute request to the workflow
wrapper(11).

 The operator now sees that the workflow is invoked and processing as shown in figure
29.

Figure 28. The workflow was initiated

The WPS workflow wrapper checks if all required token are present and invokes the
BPEL workflow engine including the security tokens (12).

In the next step, the first workflow partner (Trajectory WPS) is invoked asynchronously
(13). In this case, the pull model is used which lets the workflow engine directly response
with a status document (14) (see Annex X for full documents).

The workflow engine is now obliged to periodically request (15)(17) the trajectory WPS
(intermediate response (16))until the process has finished (18). When the requested
process indicates that the process results are available, the workflow engine has to extract
the URL provided from the trajectory service in the process finalization message

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

63

representing the process results. With this URL, the workflow engine can obtain (19) the
simulated plume data from the trajectory WPS (20).

In the next step, the workflow engine has to take the results from the trajectory service
and use them as input for the plume service WPS. Since the plume service is secured,
first an identity token from the domain's STS has to be obtained (21) (22) in order to
authenticate at the workflow participant.

This Secured Plume WPS is also invoked asynchronously via the WS-Addressing Push
Mechanism described in section 5. (23). Since the workflow engine has no previously
established trust relationship nor has any rights stored in the security system of the plume
service WPS, the delegation token has to be attached to the request and used for this
purpose. Besides, the request is digitally signed for non repudiation purposes.

The policy enforcement point (PEP) proofs if the requestor has provided all required
security tokens and formulates a request to the policy decision point (24).

The policy decision point (PDP) recognizes that the workflow engine is not allowed to
request the secured WPS. But it also recognizes that the client (which is allowed to
request the secured WPS) has issued a delegation token which delegates the access rights
on a one time use basis to the workflow engine. It also recognized that the delegation
token was not issued by the client itself, but by a STS which was also authorized by the
client to issue the token. Therefore, the policy decision point allows the unknown
workflow engine to access the secured WPS (25).

Upon the positive decision by the PDP, the policy enforcement point forwards the request
to the plume WPS (26). The WPS calculates the plume prediction and returns it back to
the call back address which is the workflow engine (27).

After receiving the process results, the workflow engine can now dynamically store the
process results in a Web Coverage Service via the transactional interface (WCS-T) (28).
The resulting GetCoverage request (29) to the newly store WCS Layer is then delivered
back to the WPS wrapper (30).

And the WPS wrapper delivers the GetCoverage URL back to the client (31) which is
then presented to the FRDO as shown in figure 30.

OGC 09-053r5

64 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

Figure 29. Workflow Result reference as WCS coverage

The FRDO is then able to extract the GetCoverage URL representing the workflow
results from the WPS response and can fetch the data from the WCS (32)(33).

The resulting WCS coverage (figure 30) can then be used for further analysis, e.g.
overlay it with the airport geometry.

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

65

Figure 30. Visualized workflow results fetched from a WCS.

7 Summary

This OWS-6 Geoprocessing Workflow Architecture Engineering Report presented
several methods for Geoprocessing Workflows in a SOA environment. Starting with a
definition of the term Geoprocessing Workflow, going over different methods of
exposing GPW in a standardized way up to data patterns. Besides security aspects and in
particular the delegation of authority aspects, the ER showed also how to model
workflows in a language independent fashion and utilize asynchronous methods and as
well as how to enrich workflows with semantic aspects.

The Fire Threat Scenario served as a successful proof of concept implementation in order
to demonstrate the applicability of the various concepts developed in this testbed.

Even thought many aspects have been covered by this ER, there are still some open
questions in the GPW arena:

 How to use hybrid workflow with SOA and ROA workflow participants?

 How to map security aspects from SOA to ROA and vice versa?

 How to advance the security concepts with licensing in workflows?

 How to automatically assemble workflows?

 How to bring Human Interaction in a workflow?

 How does cloud computing relates to GPW?

 How to include semantics in standard service descriptions?

 How to use semantics in standard discovery and in data retrieval?

 How to make semantic validation operational? What is the required support
infrastructure?

 ...

OGC 09-053r5

66 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

67

References

Alameh N. (2003): Chaining geographic information Web Services. IEEE Internet
Computing, Sept-Oct 2003, pp. 22-29.

Andrei, M., A. Berre, L. Costa, P. Duchesne, D. Fitzner, M. Grcar, J. Hoffmann, E.
Klien, J. Langlois, A. Limyr, P. Maue, S. Schade, N. Steinmetz, F. Tertre, L. Vasiliu, R.
Zaharia, and N. Zastavni (2008). SWING: An Integrated Environment for Geospatial
Semantic Web Services. Demonstration Paper at the European Semantic Web Conference
(ESWC'08).

Andrews, T., Cubera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K.,
Roller, D. Smith, D., Thatte, S., Trickovic, I. and Veerawarana. S. (2003): Business
process execution language for Web Services version 1.1., OASIS, Online:
:http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf.

BAE Systems, IBM, Microsoft, SAP (2004). Web Services Metadata Exchange

Bussler, C., E. Cimpian, D. Fensel and J.M. Gomez (2005). Web Service Execution
Environment (WSMX). W3C Member Submission.
http://www.w3.org/Submission/WSMX/, [last accessed 15/04/2009].

Chen, L., Wassermann, B., Emmerich, W., Foster, H (2006): Web Service Orchestration
with BPEL. London Software Systems; Dept. of Computer Science, University College
London. Online: http://sse.cs.ucl.ac.uk/omii-bpel/publications/tut15-emmerich.pdf.

de Bruijn, J., H. Lausen, et al. (2006). The Web Service Modelling Language WSML: An
Overview. Berlin and Heidelberg, Springer.

Duchesne, P., P. Maué, et al. (2008). "Semantic annotations in OGC standards - OGC
Discussion Paper." Retrieved 15.04., 2009, from
http://portal.opengeospatial.org/files/?artifact_id=31102&version=1.

Gasser, M.and McDermott, E. (1990) "An architecture for practical delegation in a
distributed system," in IEEE Computer Society Symposium on Research in Security and
Privacy, 1990. Proceedings, pp. 20-30, 1990.

Gone, M. and S. Schade (2008): Towards Semantic Composition of Geospatial Web
Services – Using WSMO in Comparison to BPEL, International Journal of Spatial Data
Infrastructures Research (IJSDIR), Vol 3.

Grcar, M. and E. Klien. (2007). Using Term-matching Algorithms for the Annotation of
Geo-services. In Proceedings of Web Mining 2.0 Workshop. In conjunction with ECML-
PKDD 2007, Warsaw, Poland.

OGC 09-053r5

68 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

Guarino, N. (1998). Formal Ontology and Information Systems. Formal Ontology in
Information Systems. N. Guarino. Amsterdam, IOS Press: 3-18. Fitzner, D. and J.
Hoffmann : Functional Description of Geoprocessing Services as Conjunctive Queries .
In Geographic Information Science Days Workshop 2007 (GI-Days 2007).

Hoff, H., A. Limyr, H. Midelfart, D. Skogan, and A.J. Berre (2006). SWING: D6.1 The
Architecture of the Development Environment. Project Deliverable.

Hoffmann, J., N. Steinmetz and D. Fitzner. (2008). SWING: D2.4 Semantic Web
Geoprocessing Services. Project Deliverable.

ISO 19119 (2001): Geographic Information - Services, ISO TC211 document number
N1203.

ISO/TC211 (2003). 19107 Geographic information - Spatial Schema. ISO/TC211
Standards. ISO/TC211.

Kanneganti, R., Chodavarapu, P. (2008). SOA Security. Manning

Kiehle C., Greve K., and Heier C. (2006): Standardized Geoprocessing - Taking Spatial
Data Infrastructures one Step Further.In: 9th AGILE Conference on Geographic
Information Science,Visegrad, Hungary, pp273-282.

Klien, E. (2007). "A Rule-Based Strategy for the Semantic Annotation of Geodata."
Transactions in GIS, Special Issue on the Geospatial Semantic Web 11(3).

Klien, E., S. Schade, and J. Hoffmann (2007). SWING: D3.1 Ontologies in the SWING
Application. Project Deliverable.

Lembo, A, (2004): Illustrating Classic GIS Tasks, Cornell University, Online:
http://dspace.library.cornell.edu/handle/1813/165?mode=full

Leymann, F., Roller, D., Thatte, S. (2003): Goals of the BPEL4WS Specification.
Working document submitted to the OASIS Web Services Business Process Execution
Language, OASIS, Online: http://xml.coverpages.org/BPEL4WS-DesignGoals.pdf .

OGC (2003). Web Notification Service. Discussion Paper. OGC# 03-

OGC (2004). OWS-2 IH4DS Service Chaining IPR. OGC #04-078

OGC (2006). OWS-4 Workflow IPR. OGC #06-178r1

OGC (2007). OGC Web Services Common Specification version 1.1.0 with Corrigendum
1. OGC# 06-121r3

OGC 09-053r5

Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009 Open
Geospatial Consortium, Inc.

69

OGC (2007). Web Processing Service. OGC Implementation Specification. OGC# 05-
007r7

OGC (2008) Transactional Web Processing Service. Discussion Paper. OGC# 08-123

OGC (2009) OWS-6 SWE Event Architecture Engineering Report. OGC# 09-032

OGC (2009) OWS-6 Security Engineering Report. OGC# 09-035

Russell, N., ter Hofstede, A.H.M. ,Edmond, D., and van der Aalst, W.M.P. (2005).
Workflow Data Patterns. QUT Technical report, FIT-TR-2004-01, Queensland
University of Technology, Brisbane

Schade, S., Klien, E., Maué, P., Fitzner, D., and Kuhn, W. (2008). SWING: D3.2 Report
on Modelling Approach and Guideline. SWING Project.

Scicluna, J., Polleres, A., and Roman, D. (2006). Ontology-based Choreography and
Orchestration of WSMO Services, at http://www.wsmo.org/TR/d14/v0.2/, [last accessed
15/04/2009].

Stollberg, B. (2006): Geoprocessing in Spatial Data Infrastructures - Design and
Implementation of a Service for Aggregating Spatial Data. Master Thesis. FH Mainz.
(2006)

Vasiliu, L. (2006). SWING: D2.2 Web Service Execution Environment Integrated with a
Reasoning Engine. SWING Project Deliverable.

van der Aalst, W.M.P (2003): Don’t go with the flow: Web services composition
standards exposed. In: IEEE Intelligent Systems, 01/02 2003, pp.72-76, Online:
Electronically accessible from http://www.tm.tue.nl/it/research/patterns/ieeewebflow.pdf

W3C (2003). Web Services Adressing. Online:
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/

Welch, V., Foster, I., Kesselman, C., Mulmo, O., Pearlman, L., Tuecke, S., Gawor, S.
Meder, S. and Siebenlist, F. (2004) X. 509 proxy certificates for dynamic delegation, in
3rd Annual PKI R&D Workshop, 2004,

Wang, J., Del Vecchio, D. and M. Humphrey (2005) Extending the security assertion
markup language to support delegation for web services and grid services, in ICWS 2005.
Proceedings. 2005 IEEE International Conference on Web Services, 2005., pp. 67-74.

Weiser, A., Neis, P. and Zipf, A. (2006): Orchestrierung von OGC Web Diensten im
Katastrophenmanagement - am Beispiel eines Emergency Route Service auf Basis der
OpenLS Spezifikation. In: GIS - Zeitschrift für Geoinformatik, pp.c35-41.

OGC 09-053r5

70 Copyright © 2009 Open Geospatial Consortium, Inc.Copyright © 2009
Open Geospatial Consortium, Inc.

Wohed, P., van der Aalst, W.M.P., Dumas, M. and ter Hofstede, A.H.M. (2003): Analysis
of Web Services Composition Languages: The Case of BPEL4WS. In: ER, LNCS 2813,
Springer-Verlag Berlin Heidelberg, pp.200–215.

Zhang, L., Ahn, G. J. and Chu, B. T. (2003) "A rule-based framework for role-based
delegation and revocation," ACM Transactions on Information and System Security
(TISSEC), vol. 6, 2003, pp. 404-441.

