

Open Geospatial Consortium, Inc.

Date: 2009-07-16

Reference number of this document: OGC 09-031r1

Version: 0.3.0

Category: Public Engineering Report

Editor: Thomas Everding

OGC® OWS-6 SWE Information Model Engineering Report

Copyright © 2009 Open Geospatial Consortium, Inc.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document is an OGC Public
Engineering Report created as a deliverable in an OGC Interoperability Initiative
and is not an official position of the OGC membership. It is distributed for review
and comment. It is subject to change without notice and may not be referred to as
an OGC Standard. Further, any OGC Engineering Report should not be referenced
as required or mandatory technology in procurements.

Document type: Public Engineering Report
Document subtype: NA
Document stage: Approved for public release
Document language: English

http://www.opengeospatial.org/legal/

OGC 09-031r1

ii Copyright © 2009 Open Geospatial Consortium, Inc.

Preface

This Engineering Report (ER) is a deliverable for the Open Geospatial Consortium
(OGC) Interoperability Program Open Web Service (OWS) Testbed phase 6 (OWS-6).

This work was supported by the European Commission through the OSIRIS project, an
Integrated Project, contract number 033475, Information Society and Media DG of the
European Commission within the RTD activities of the Thematic Priority Information
Society Technologies.

This work was supported by the European Commission through the GENESIS project, an
Integrated Project, contract number 223996.

Suggested additions, changes, and comments on this draft report are welcome and
encouraged. Such suggestions may be submitted by email message or by making
suggested changes in an edited copy of this document.

The changes made in this document version, relative to the previous version, are tracked
by Microsoft Word, and can be viewed if desired. If you choose to submit suggested
changes by editing this document, please first accept all the current changes, and then
make your suggested changes with change tracking on.

Forward

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

OGC 09-031r1

Copyright © 2009 Open Geospatial Consortium, Inc. iii

OWS-6 Testbed

OWS testbeds are part of OGC's Interoperability Program, a global, hands-on and
collaborative prototyping program designed to rapidly develop, test and deliver
Engineering Reports and Chnage Requests into the OGC Specification Program, where
they are formalized for public release. In OGC's Interoperability Initiatives, international
teams of technology providers work together to solve specific geoprocessing
interoperability problems posed by the Initiative's sponsoring organizations. OGC
Interoperability Initiatives include test beds, pilot projects, interoperability experiments
and interoperability support services - all designed to encourage rapid development,
testing, validation and adoption of OGC standards.

In April 2008, the OGC issued a call for sponsors for an OGC Web Services, Phase 6
(OWS-6) Testbed activity. The activity completed in June 2009. There is a series of on-
line demonstrations available here:
http://www.opengeospatial.org/pub/www/ows6/index.html

The OWS-6 sponsors are organizations seeking open standards for their interoperability
requirements. After analyzing their requirements, the OGC Interoperability Team
recommended to the sponsors that the content of the OWS-6 initiative be organized
around the following threads:

1. Sensor Web Enablement (SWE)

2. Geo Processing Workflow (GPW)

3. Aeronautical Information Management (AIM)

4. Decision Support Services (DSS)

5. Compliance Testing (CITE)

The OWS-6 sponsoring organizations were:

• U.S. National Geospatial-Intelligence Agency (NGA)

• Joint Program Executive Office for Chemical and Biological Defense (JPEO-
CBD)

• GeoConnections - Natural Resources Canada

• U.S. Federal Aviation Agency (FAA)

• EUROCONTROL

• EADS Defence and Communications Systems

• US Geological Survey

• Lockheed Martin

OGC 09-031r1

iv Copyright © 2009 Open Geospatial Consortium, Inc.

• BAE Systems

• ERDAS, Inc.

The OWS-6 participating organizations were:

52North, AM Consult, Carbon Project, Charles Roswell, Compusult, con terra,
CubeWerx, ESRI, FedEx, Galdos, Geomatys, GIS.FCU, Taiwan, GMU CSISS, Hitachi
Ltd., Hitachi Advanced Systems Corp, Hitachi Software Engineering Co., Ltd., iGSI,
GmbH, interactive instruments, lat/lon, GmbH, LISAsoft, Luciad, Lufthansa, NOAA
MDL, Northrop Grumman TASC, OSS Nokalva, PCAvionics, Snowflake, Spot
Image/ESA/Spacebel, STFC, UK, UAB CREAF, Univ Bonn Karto, Univ Bonn IGG,
Univ Bunderswehr, Univ Muenster IfGI, Vightel, Yumetech.

OGC 09-031r1

Copyright © 2009 Open Geospatial Consortium, Inc. v

Contents Page

1 Introduction ..1
1.1 Scope ...1
1.2 Document contributor contact points ..1
1.3 Revision history ...2
1.4 Future work ...2

2 References ..2

3 Terms and definitions ..3

4 Conventions ...4
4.1 Abbreviated terms ...4
4.2 UML notation ..5

5 SWE Information Model Harmonization overview ...6

6 Harmonization of SWE information models ...6
6.1 Introduction ...6

6.1.1 Goal ...6
6.1.2 Sensor Model Language ...6
6.1.3 Geography Markup Language ..7
6.1.4 Issues ...8

6.1.4.1 Target for harmonization ...8
6.1.4.2 Archictectural differences ...8
6.1.4.3 Platform independent models ..8

6.2 Class level mapping between GML and SWE Common9
6.2.1 Introduction ...9
6.2.2 valueObjects and simple data types ..9
6.2.3 Temporal data types ..13
6.2.4 Positional data types ...16

6.3 Mapping of SWE Common basic data types to ISO/TC211 data types18
6.3.1 Introduction ...18
6.3.2 Data types from ISO/TC211 standards ...19
6.3.3 Data types from XML Schema ...19

6.4 Conclusion ...20

7 Using UncertML in SWE ...21
7.1 Individual observations ...21

7.1.1 Full description of uncertainty ..22
7.1.2 Description by sampling ...22

7.2 Collections of observations and dependent errors ...23
7.2.1 Partial description by a number of samples ..23
7.2.2 Full description by a multivariate Gaussian distribution23

7.3 Positional error: a GPS example ...23
7.4 Integration in the SWE information models ..24

7.4.1 Integration into SWE Common & SensorML ..25

OGC 09-031r1

vi Copyright © 2009 Open Geospatial Consortium, Inc.

7.4.2 Integration into O&M ...26
7.5 UncertML and MathML ..27

8 Integration of other Markup Languages in SensorML ..28
8.1 Integration of MathML ..29

8.1.1 MathML in SensorML ..30
8.1.2 Definition of an assignment operator for MathML33
8.1.3 Execution of MathML...33
8.1.4 Comparison of MathML and other options for process descriptions34

8.2 Integration of EML ..35

Figures Page

Figure 1 - SWE Common Simple Data Types equivalent to GML valueObject classes .. 10

Figure 2 - GML valueObjects Equivalent to SWE Common Simple Data Types 11

Figure 3 - SWE Common Data Aggregates equivalent to GML valueObjects 12

Figure 4 - GML valueObjects Classes Equivalent to SWE Common Generic Data
Aggregates .. 12

Figure 5 - Temporal data types from SWE Common ... 14

Figure 6 - Temporal data types from ISO 19108 .. 15

Figure 7 - Modified temporal data types for SWE Common ... 16

Figure 8 - Positional data types from SWE Common... 17

Figure 9 - Positional data types from ISO 19107 ... 18

Figure 10 - UncertML in a 3-tier architecture .. 24

Figure 11 - Example of presentation MathML within the UncertML dictionary 28

Figure 12 - SensorML ProcessMethodType ... 29

Figure 13 - MathML element in SensorML process methods .. 31

Figure 14 - Name field in SensorML input descriptions .. 31

Tables Page

Table 1 - Sensor Web Enablement (SWE) Standards ... 6

Table 2 - GML Dependencies on other ISO/TC211 Standards .. 7

Table 3 - Leaf Classes from GML valueObjects Package and SWE Common Equivalents
 .. 9

Table 4 - Attributes of SWE Common Simple Data Types .. 11

OGC 09-031r1

Copyright © 2009 Open Geospatial Consortium, Inc. vii

Table 5 - Data types in ISO/TC211 standards .. 19

Table 6 - Data types from XML Schema .. 19

Listings Page

Listing 1 - Exemplary use of UncertML in O&M .. 23

Listing 2 – UncertML used within the quality property of the SWE Common simple data
type “Quantity” .. 25

Listing 3 - Extending SWE Common to add a RandomQuantity type whose value is any
UncertML ... 26

Listing 4 - UncertML used to encode a noise model for a particular sensor in conjunction
with the O&M standard .. 26

Listing 5 - MathML Presentation Markup example ... 30

Listing 6 - MathML Content Markup example... 32

Listing 7 - MathML example using the csymbol element .. 33

OpenGIS® Engineering Report OGC 09-031r1

Copyright © 2009 Open Geospatial Consortium, Inc. 1

OGC® OWS-6 SWE Information Model Engineering Report

1 Introduction

1.1 Scope

This OGC® document is an OGC Engineering Report for the “Harmonization of SWE
Information Models” activity within the OWS-6 SWE thread.

The document discusses relations between OGC standards SensorML, SWE Common
and GML and investigates solutions for increased synergy between these standards. This
activity also created UML models of the data types used in SWE and GML.

This report shows how UncertML can be integrated into different SWE encodings,
namely SWE Common and Observations and Measurements.

This report further discusses the integration of MathML and EML into the SWE
environment with an emphasis on SensorML processes and processing.

This document does not discuss the SWE information model related aspects of catalog
entries for sensor services and discovery. This topic is covered in a separate Engineering
Report.

1.2 Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Name Organization
Thomas Everding Institute for Geoinformatics, University of Muenster
Charles Rosswell Individual
Matthew Williams Aston University, Birmingham
Edzer Pebesma Institute for Geoinformatics, University of Muenster
Jan Dürrfeld Institute for Geoinformatics, University of Muenster
Dan Cornford Aston University, Birmingham
Lucy Bastin Aston University, Birmingham

OGC 09-031r1

2 Copyright © 2009 Open Geospatial Consortium, Inc.

1.3 Revision history

Date Release Editor Primary clauses
modified

Description

23.10.2008 0.0.0 TE all Initial draft
20.03.2009 0.0.2 TE 6 and 7 Second draft
17.04.2009 1.0.0 TE all release version
10.07.2009 0.3.0 Carl Reed Various Prepare for public release

1.4 Future work

Try to realize the recommendations as described in chapter 6 for the harmonization of
SWE Common and GML in future versions of these standards.

The work regarding the integration of UncertML into SWE should be extended towards
the integration into the whole OGC standards suite. As the next step it is recommended to
investigate the integration of UncertML in coverages and the Web Coverage Service.

2 References

The following documents are referenced in this document. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply. For
undated references, the latest edition of the normative document referred to applies.

ISO 19103:2005, Conceptual Schema Language.

ISO 19107:2003, Spatial Schema

ISO 19108:2002, Temporal Schema

ISO 19109:2005, Rules for Application Schema

ISO 19111:2007, Spatial Referencing by Coordinates

ISO 19115:203, Metadata

ISO 19118:2005, Encoding

ISO 19123:2005, Coverage Geometry and Functions

ISO 19136:2007, Geography Markup Language (GML)

ISO 19139:2007, Metadata – XML Schema Implementation

OGC 04-095, OpenGIS® Filter Encoding Implementation Specification

OGC 06-121r3, OpenGIS® Web Services Common Specification

OGC 09-031r1

Copyright © 2009 Open Geospatial Consortium, Inc. 3

OGC 07-000, OpenGIS® Sensor Model Language (SensorML) Implementation
Specification

OGC 07-036, OpenGIS® Geography Markup Language (GML) Encoding Standard

OGC 08-132, Event Pattern Markup Language (EML)

W3C Recommendation 21 October 2003, Mathematical Markup Language (MathML)
Version 2.0 (Second Edition)

W3C Working Draft 17 November 2008, Mathematical Markup Language (MathML)
Version 3.0

3 Terms and definitions

For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Specification [OGC 06-121r3] shall apply. In addition, the following
terms and definitions apply.

3.1
event
Anything that happens or is contemplated as happening at an instant or over an interval of
time.

NOTE: The term event may also be used for event objects. The current meaning depends on the
context.

3.2
event object
An object that represents, encodes, or records an event, generally for the purpose of
computer processing.

3.3
event pattern language
event processing language
A high level computer language for defining the behavior of event processing agents.

3.4
event processing
Computing that performs operations on events, including reading, creating, transforming
and deleting events.

3.5
feature
An abstraction of real world phenomena.

OGC 09-031r1

4 Copyright © 2009 Open Geospatial Consortium, Inc.

3.6
observation
An act of observing a property or phenomenon, with the goal of producing an estimate of
the value of the property.

3.7
phenomenon
A physical property that can be observed and measured, such as temperature, gravity,
chemical concentration, orientation, number-of-individuals.

A characteristic of one or more feature types, the value for which must be estimated by
application of some procedure in an observation.

3.8
process
A process that takes one or more inputs, and based on parameters and methodologies,
generates one or more outputs.

3.9
sensor
An entity capable of observing a phenomenon and returning an observed value.

4 Conventions

4.1 Abbreviated terms

CEP Complex Event Processing

EML Event Pattern Markup Language

ER OGC Interoperability Program Engineering Report

ESP Event Stream Processing

GML Geography Markup Language

GPS Global Positioning System

GUM Guide to the Expression of Uncertainty in Measurement

IEC International Electrotechnical Commission

ISO International Organization for Standardization

ISO/TC211 ISO Technical Committee 211

ISO/TS ISO Technical Specification

MathML Mathematical Markup Language

OGC 09-031r1

Copyright © 2009 Open Geospatial Consortium, Inc. 5

MC Monte Carlo

NO2 Nitrogen Dioxide

O&M Observations and Measurements

OGC Open Geospatial Consortium

OWS-6 OGC Web Services, Phase 6

PM10 Particulate Matter 10

RELAX NG Regular Language Description for XML New Generation

SAS Sensor Alert Service

SensorML Sensor Model Language

SOS Sensor Observation Service

SPS Sensor Planning Service

SWE Sensor Web Enablement

TML Transducer Markup Language

UML Unified Modeling Language

UncertML Uncertainty Markup Language

URL Uniform Resource Locator

UTC Coordinated Universal Time

W3C World Wide Web Consortium

WNS Web Notifications Service

XML Extensible Markup Language

4.2 UML notation

Some diagrams that appear in this document are presented using the Unified Modeling
Language (UML) static structure diagram, as described in subclause 5.2 of [OGC 06-
121r3].

OGC 09-031r1

6 Copyright © 2009 Open Geospatial Consortium, Inc.

5 SWE Information Model Harmonization overview

In chapter 6 of this Engineering Report (ER), solutions for synergy between SensorML
and GML are investigated. The goal is to gain a better understanding of interoperability
issues between SWE and GML. Therefore UML models were used or developed.

In the following chapter it is described how UncertML can be used in SWE and how it
can be integrated into the SWE encodings.

Chapter 8 discusses different additional markup languages and their usage in SWE. These
languages are mainly MathML for the representation of mathematical terms and EML for
the description of complex event processing.

6 Harmonization of SWE information models

6.1 Introduction

6.1.1 Goal

The goal of this task is to develop or make use of existing UML models and application
schemas to gain a better understanding of interoperability issues between SWE and
GML. The Statement of Work identifies SensorML, GML, UncertML, and MathML as
standards of interest in this context.

6.1.2 Sensor Model Language

Sensor Model Language (SensorML) provides general models and XML encodings for
describing sensors and observation processing. It has evolved in OGC as a member of the
SWE family of standards (Table 1).

Table 1 - Sensor Web Enablement (SWE) Standards

Sensor Model Language (SensorML)

Observations and Measurements (O&M)

Transducer Markup Language (TML)

Sensor Observation Service (SOS)

Sensor Planning Service (SPS)

Sensor Alert Service (SAS)

Web Notification Service(WNS)

OGC 09-031r1

Copyright © 2009 Open Geospatial Consortium, Inc. 7

Although SensorML serves as a component of the SWE framework, it does not depend
upon other SWE components and may be used independently of those components. The
current Version 1.0 of SensorML (Document 07-000) specifies a number of elements
used by other components of the SWE family, which are therefore grouped under the
heading of SWE Common. This section of the document is currently being revised and
spun off as a separate standard (SWE Common 2.0).

6.1.3 Geography Markup Language

Geography Markup Language (GML) is an XML grammar written in XML Schema for
the description of application schemas and the interchange of geographic information.
GML has been developed by OGC beginning in 1999. It was submitted to ISO/TC211 in
2001 for revision and publication as an ISO International Standard under the cooperative
agreement between OGC and ISO/TC211. OGC GML Version 3.2.1 is identical to ISO
19136:2007. A consequence of the revision done under the auspices of ISO TC211 is that
GML Version 3.2.1 has been harmonized with and depends upon a number of other
geographic information standards developed within ISO/TC211 (Table 2), some of which
have been adopted as OGC Abstract Specification Topics. With the exceptions of ISO
19118 and ISO 19139, these are abstract standards; i.e., they are platform and processing
language independent. GML is effectively an XML implementation of the abstract
concepts specified in these International Standards.

Table 2 - GML Dependencies on other ISO/TC211 Standards

Standard Number Title OGC Abstract Specification
Topic Number

ISO/TS 19103: 2005 Conceptual Schema Language

ISO 19107:2003 Spatial schema 1

ISO 19108:2002 Temporal schema

ISO 19109:2005 Rules for application schema

ISO 19111:2007 Spatial referencing by coordinates 2

ISO 19115:2003 Metadata 11

ISO 19118:2005 Encoding

ISO 19123:2005 Coverage geometry and functions 6

ISO 19139:2007 Metadata – XML schema
implementation

OGC 09-031r1

8 Copyright © 2009 Open Geospatial Consortium, Inc.

6.1.4 Issues

6.1.4.1 Target for harmonization

The domains of SensorML and GML are, in fact, quite different. SensorML is focused on
the description of sensors and of the processes applied to sensor observations. GML is
focused on the description of geographic features and their characteristics. The
intersection between these two domains is to be found not in SensorML per se, but in
SWE Common.

Since GML, as noted above, is dependent upon a number of other ISO/TC211 standards,
harmonization with GML necessarily requires harmonization with the suite of
ISO/TC211 standards. The analysis described below, therefore, involves a search for
those concepts that are shared by both SWE Common and the ISO/TC211 standards.

6.1.4.2 Archictectural differences

There is a fundamental difference in the structure of GML as compared to SWE
Common.

As an implementation of the ISO/TC211 abstract standards, GML follows a database
organization paradigm that involves a top-down view of the data. A feature description
includes a list of its attributes; an attribute description includes a characterization of the
data type of its values; a value is ultimately no more than string or a number.

SWE Common, on the other hand, follows a value tagging paradigm or bottom-up view
of the data, whereby a value carries information about its data type as well as information
about the phenomenon it represents.

This difference has a major impact on the degree to which harmonization can be
accomplished.

6.1.4.3 Platform independent models

ISO 19119, which has been adopted by OGC as Abstract Specification Topic 12, requires
each service specification to contain a platform independent UML model of the service,
in addition to specifications of one or more platform dependent implementations. OGC is
moving toward a policy of requiring this of all OGC standards. Thus, one of the
principles applied to this harmonization activity is that the SWE Common specification
currently in development will contain a platform independent UML model.

One aspect of platform independence is the use of language independent data types such
as those specified in ISO/IEC 11404 and represented as UML classes in ISO/TS 19103.
Given its historic connection to the XML implementation specified in SensorML, the
current version of SWE Common uses a number of data types specified in the XML
Schema specification.

OGC 09-031r1

Copyright © 2009 Open Geospatial Consortium, Inc. 9

6.2 Class level mapping between GML and SWE Common

6.2.1 Introduction

There are three areas where GML and SWE Common seem to have equivalent classes:
the classes of the GML valueObjects package are similar to many of the SWE Simple
Data Types and Aggregate Data Types; the temporal classes from ISO 19108 that are
implemented in GML resemble temporal classes specified in SWE Common; finally, the
position classes from ISO 19107 that are implemented in GML are equivalent to parts of
the position classes specified in SWE Common. Each of these groups is treated in a
separate subclause below.

6.2.2 valueObjects and simple data types

Classes from the valueObjects package of GML seem to match many of the Simple Data
Types and Generic Data Aggregates of SWE Common (07-000 Figures 8.1 and 8.2).
These SWE Common data types are reused throughout SWE Common and SensorML.
Table 3 lists the leaf classes from the GML valueObjects package and the classes in SWE
Common that seem to be equivalent.

Table 3 - Leaf Classes from GML valueObjects Package and SWE Common Equivalents

GML 3.2.1 (ISO 19136) SWE Common 1.0
BooleanValue Boolean
Category Category
Count Count
Quantity Quantity
CountExtent CountRange
QuantityExtent QuantityRange
CategoryList tokenList
CountList doubleList
QuantityList doubleList
ValueArray DataArray
Value DataValue

It should be noted that doubleList and tokenList are not specified as UML classes in 07-
000, although they are used as data types in Figure 8.1; tokenList is specified as a
simpleType in the basicTypes.xsd schema of Annex B.2.

Although these classes can be aligned at the class name level, there are a number of
significant differences in both properties and relationships. Compare Figure 1 to Figure 2
and Figure 3 to Figure 4.

The most obvious difference is in attribution. The simple GML value objects (Figure 3)
have a only a mandatory value attribute, while the SWE Common simple data types
(Figure 2) have up to eleven attributes (Table 4); all, including value, are optional. The

OGC 09-031r1

10 Cop

difference seems to reflect a fundamental difference in approach between GML and
SensorML. GML follows the typical ISO/TC211 pattern in which feature types and their
properties are described quite specifically. The description of attribute type includes the
data type of its value, usually a simple value type. The attributes of the SensorML
AbstractProcess class, on the other hand, are very generic. Each of their values is a
description of a more specific property possibly including its value. The differences rule
out any possibility of harmonizing by simple substitution of classes from one standard
into the other.

class Package Content

AbstractDataComponent

+ name: string [0..*]
+ description: string [0..1]
+ definition: anyURI [0..1]
+ fixed: boolean [0..1]

Quantity

+ constraint: AllowedValues [0..1]
+ quality: Quality [0..1]
+ uom: UomIdentifier [0..1]
+ value: double [0..1]

Count

+ constraint: AllowedValues [0..1]
+ quality: Quality [0..1]
+ value: integer [0..1]

Category

+ constraint: AllowedValues [0..1]
+ quality: Quality [0..1]
+ codeSapce: CodeSpace [0..1]
+ value: token [0..1]

Boolea n

+ quality: Quality [0..1]
+ value: boolean [0..1]

QuantityRange

+ constaint: AllowedValues [0..1]
+ quality: Quality [0..1]
+ uom: UomIdentifier [0..1]
+ value: doublePair [0..1]

CountRange

+ constraint: AllowedValues [0..1]
+ quality: Quality [0..1]
+ value: integer [0..1]

SimpleComponentAttributeGroup

+ axisID: ID [0..1]
+ referenceFrame: anyURI [0..1]

Figure 1 - SWE Common Simple Data Types equivalent to GML valueObject classes

yright © 2009 Open Geospatial Consortium, Inc.

OGC 09-031r1

Cop

class Analogy to SensorML Simple Data Types

AbstractObject

«type»
AbstractValue

«type»
AbstractScalarValue

«type»
BooleanValue

{leaf}

+ value: booleanOrNilReason

«type»
Category

{leaf}

+ value: CodeOrNilReason

«type»
Count

{leaf}

+ value: integerOrNilReason

«type»
CountEx tent

{leaf}

+ value: integerOrNilReasonList

«type»
Quantity

{leaf}

+ value: MeasureOrNilReason

«type»
QuantityEx tent

{leaf}

+ value: MeasureOrNilReasonList

Figure 2 - GML valueObjects Equivalent to SWE Common Simple Data Types

Table 4 - Attributes of SWE Common Simple Data Types

 B
oolean

C
ategory

C
ount

C
ount

R
ange

Q
uantity

Q
uantity

R
ange

Text

Tim
e

Tim
e R

ange

name X X X X X X X X X
description X X X X X X X X X
definition X X X X X X X X X

fixed X X X X X X X X X
axialID X X X X X X

referenceFrame X X X X X X
constraint X X X X X X X

quality X X X X X X X X
uom X X X X
value X X X X X X X X X

codeSpace X
localFrame X X

referenceFrame X X
referenceTime X X

Comparison of Figure 3 and Figure 4 reveals the same problem. Although the
ValueArray and Value classes of GML superficially resemble the DataArray and
DataValue classes of SWE Common, their attribution is quite different.

yright © 2009 Open Geospatial Consortium, Inc. 11

OGC 09-031r

12 Cop

1

yright © 2009 Open Geospatial Consortium, Inc.

class Data Agregates

AbstractDataArray

+ elementCount: integer

DataArray

+ elementCount: AnyData
+ encoding: BlockEncoding
+ values: DataValue

DataValue

+ recordCount: positiveInteger

Simple Data Types::
AbstractDataComponent

+ name: string [0..*]
+ description: string [0..1]
+ definition: anyURI [0..1]
+ fixed: boolean [0..1]

Figure 3 - SWE Common Data Aggregates equivalent to GML valueObjects

class Analogy to SWE Common generic data aggregates

«type»
CompositeValue

AbstractObject

«type»
AbstractValue

«Union»
Value

{root,leaf}

+ abstractValue: AbstractValue
+ gm_Object: GM_Object
+ tm_Object: TM_Object

«type»
ValueArray

{leaf}

+ uom [0..1]: UnitOfMeasure
+ codeSpace [0..1]: NameSpace

0..*

+valueComponent 0..*

Figure 4 - GML valueObjects Classes Equivalent to SWE Common Generic Data Aggregates

OGC 09-031r1

Copyright © 2009 Open Geospatial Consortium, Inc. 13

In addition to differences in the numbers and names of attributes, there are differences in
the basic data types used for attribute values.

Other differences are structural. SWE Common specifies atomic data types, ranges, and
aggregate data types all as direct subclasses of AbstractDataComponent and uses the
<<Union>> classes AnyNumerical, AnyScalar, and AnyRange to point to related groups
of these data types. GML does not use the <<Union>> stereotype. It classes its atomic
data types under the intermediate subclass AbstractScalarValue and its equivalents to the
aggregate data types under the intermediate subclass CompositeValue. GML does not
provide an equivalent to AnyRange.

The GML valueObjects package includes a set of list data types grouped under the
intermediate subclass AbstractScalarValueList. Each of these specifies a list of values of
one of the atomic data types. SWE Common does not specify list data types at this level,
but does use doubleList, tokenList, and timePositionList as data types of attributes in its
allowed values classes. As noted above, none of these are modeled as UML classes in 07-
000, although tokenList is specified in the basicTypes.xsd schema of Annex B.2 and
TimePositionListType is specified in the temporalAggregatges.xsd schema of Annex B.9.

There are two possibilities for partial harmonization between the GML valueObjects and
the SWE Common Simple Data Types. One is to adopt a set of common basic data types.
Under the concept of developing a platform independent model, these should be
conceptual (language independent) data types. This is discussed in subclause 6.3. The
other possibility is to consider subclassing of SWE simple data types from the
valueObjects of GML 3.2. This would require SWE Common to adopt the GML concept
of requiring a value or a reason for not providing a value.

6.2.3 Temporal data types

SWE Common specifies several classes for time values (Figure 5). There is already some
harmonization with the ISO/TC211 standards, but more can be achieved.

Note: The discussion of harmonization in this chapter is generally based on SWE
Common 1.0 (Document 07-000) as specified by the Statement of Work. However,
modeling of time in SWE Common 1.0 suffers from a number of errors and omissions
that have been corrected during the development of SWE Common 2.0. This subclause
therefore considers the temporal data types specified in the January 2009 UML model for
SWE Common 2.0.

The referenceTime attribute of AbstractTimeComponent does not appear to be necessary.
ISO 8601 date and time values are referenced to the Gregorian calendar and Coordinated
Universal Time (UTC), for which reference times are specified. If dates and times are
provided in this format, it is not necessary to provide an additional reference time. Each
of the subclasses of the TM_ReferenceSystem class that is used as the data type for the
referenceFrame and localFrame attributes carries an attribute to provide a reference to
Gregorian calendar and UTC.

OGC 09-031r1

14 Cop

The two <<Union>> classes TimePosition and TimeISO8601 are equivalent to the ISO
19108 classes TM_Position and TM_TemporalPosition (Figure 6). The <<Union>> class
TM_Position supports all the options of TimeISO8601 with an option for alternative
methods of identifying temporal position. The TM_Coordinate subclass of
TM_TemporalPosition supports the byReal option of TimePosition, although it allows
the value to be any Number rather than restricting it to Real. The other subclasses of
TM_TemporalPosition allow referencing temporal position to an ordinal system such as
the geologic time scale, or to a calendar/time system other than the Gregorian calendar
and UTC. TM_Position and the subclasses of TM_TemporalPosition have been
implemented in GML 3.2.

class SWE 2 Time

AbstractTimeComponent

«Property»
+ referenceTime: TimeISO8601 [0..1]
+ referenceFrame: TM_ReferenceSystem [0..1]
+ localFrame: TM_ReferenceSystem [0..1]
+ uom: UomIdentifier [0..1]
+ quality: Quality [0..1]

«DataType»
TimeConstraint

«Property»
+ id: ID [0..1]
+ enumeration: TimeList [0..1]
+ interval: TimePair [0..1]
+ significantFigures: Integer [0..1]

«DataType»
Time

«Property»
+ value: TimePosition [0..1]

«DataType»
TimeRange

«Property»
+ value: TimePair [0..1]

«Union»
TimeISO8601

«Property»
+ byDate: Date [0..1]
+ byTime: Time [0..1]
+ byDateTime: DateTime [0..1]
+ byIndeterminateValue: TM_IndeterminateValue [0..1]

«Union»
TimePosition

«Property»
+ byReal: Real [0..1]
+ byTimeISO8601: TimeISO8601 [0..1]

TimePair

«Property»
+ item: TimePosition [2]

TimeList

«Property»
+ item: TimePosition [1..*]

Figure 5 - Temporal data types from SWE Common

yright © 2009 Open Geospatial Consortium, Inc.

OGC 09-031r1

Cop

class ISO 19108 Time Data Types

«Union»
TM_Position

+ anyOther: TM_TemporalPosition
+ date8601: Date
+ time8601: Time
+ dateTime8601: DateTime

TM_TemporalPosition

+ indeterminatePosition: TM_IndeterminateValue [0..1]

«DataType»
TM_Coordinate

«DataType»
TM_CalDate

«DataType»
TM_ClockTime

«DataType»
TM_OrdinalEra

«DataType»
TM_DateAndTime

Figure 6 - Temporal data types from ISO 19108

Using TM_Position and TM_TemporalPosition in place of TimePosition and
TimeISO8601 results in replacing TimePosition as the data type of the ‘value’ attribute of
the SWE Common Time class and the ‘item’ attributes of TimePair and TimeList with
TM_Position.

This report recommends that the SWE Common temporal classes shown in Figure 5 be
replaced with the modified classes show in Figure 7 that make use of the two classes
TM_Position and TM_TemporalPosition from ISO 19108.

yright © 2009 Open Geospatial Consortium, Inc. 15

OGC 09-031r1

16 Cop

class New Time Data Types

AbstractTimeComponent

«Property»
+ referenceFrame: TM_ReferenceSystem [0..1]
+ localFrame: TM_ReferenceSystem [0..1]
+ uom: UomIdentifier [0..1]
+ quality: Quality [0..1]

AbstractTimeComponent
Time

«Property»
+ value: TM_Position [0..1]

AbstractTimeComponent
TimeConstraint

«Property»
+ id: ID [0..1]
+ enumeration: TimeList [0..1]
+ interval: TimePair [0..1]
+ significantFigures: Integer [0..1]

AbstractTimeComponent
TimeRange

«Property»
+ value: TimePair [0..1]

TimeList

«Property»
+ item: TM_Position [1..*]

TimePair

«Property»
+ item: TM_Position [2]

Figure 7 - Modified temporal data types for SWE Common

6.2.4 Positional data types

The positional data types specified in the UML model of SWE Common (Figure 8) are
similar to two of the data types specified in ISO 19107:2003 (Figure 9) and implemented
in GML 3.2. However, the SWE Common Position class has a much broader scope than
the DirectPosition class of ISO 19107. DirectPosition identifies only spatial or temporal
position relative to a coordinate reference system. Position includes an additional
capability to identify temporal position in ISO 8601 format, as well as the capability to
carry a number of position-related characteristics of an object that occupies a spatio-
temporal position. Two elements of Position can be harmonized with GML. First, the
data type of the ‘time’ attribute could be changed from Time as specified in SWE
Common to TM_Position as specified in ISO 19108. TM_Position does not carry the
descriptive attributes that Time inherits from AbstractDataComponent, but, given the fact
that Position does carry these attributes, there does not seem to be a need for the value of
its ‘time’ attribute to carry them as well. Likewise, the data type of the ‘location’ attribute
could be changed from Vector as specified in SWE Common to DirectPosition specified
in ISO 19107. DirectPosition, like TM_Position, does not carry the descriptive attributes
that Vector inherits from AbstractDataComponent, but, given the fact that Position does
carry these attributes, there does not seem to be a need for the value of its ‘location’
attribute to carry them as well.

yright © 2009 Open Geospatial Consortium, Inc.

OGC 09-031r1

Cop

class SWE Position Data Types

AbstractVector

+ localFrame: anyURI [0..1]
+ referenceFrame: anyURI [0..1]

AbstractDataRecord

AbstractDataComponent

+ name: string [0..*]
+ description: string [0..1]
+ definition: anyURI [0..1]
+ fixed: boolean [0..1]

Vector

+ coordinate: anyNumerical [1..*]

Env elope

+ lowerCorner: Vector
+ upperCorner: Vector

Position

+ time: Time [0..1]
+ location: Vector [0..1]
+ velocity: Vector [0..1]
+ acceleration: Vector [0..1]
+ orientation: VectorOrSquareMatrix [0..1]
+ angularVelocity: VectorOrSquareMatrix [0..1]
+ angularAcceleration: VectorOrSquareMatrix [0..1]
+ state: VectorOrSquareMatrix [0..1]

Figure 8 - Positional data types from SWE Common

yright © 2009 Open Geospatial Consortium, Inc. 17

OGC 09-031r1

18 Cop

class ISO 19107 Position Data Types

«DataType»
DirectPosition

+ coordinate: Sequence<Number>
+/ dimension: Integer

SC_ CRS

«DataType»
GM_Env elope

+ upperCorner: DirectPosition
+ lowerCorner: DirectPosition

+coordinateReferenceSystem 0..1

+directPosition 0..*

Figure 9 - Positional data types from ISO 19107

The Envelope data type specified in SWE Common 1.0 is like GM_Envelope of ISO
19107, except that the data type of its attributes upperCorner and lowerCorner is Vector
rather than DirectPosition. It is understood that Envelope has been deleted from the draft
of SWE Common 2.0 on the grounds that there is no requirement for it. If a requirement
is found in the future, SWE Common should use GM_Envelope, which is implemented
by the gml:Envelope specified in GML 3.2.

6.3 Mapping of SWE Common basic data types to ISO/TC211 data types

6.3.1 Introduction

Examination of the basic data types of the attributes specified in the UML model for
SWE Common reveals that several of them are conceptual data types drawn from the
ISO/TC211 standards and that many of the remainder are mappable or potentially
mappable to conceptual data types specified in the ISO TC211 standards. Such mapping
is the subject of this section of this report.

The data types under consideration fall into two groups: data types that are identical to
conceptual data types from the ISO/TC211 standards and may have been drawn from
those standards (6.3.2) and data types from the XML Schema specification that are
obvious implementations of ISO/TC211 conceptual data types (6.3.3).

The first column of the tables below contains the names of mappable data types from
version 1.0 of the SWE Common specification included in document 07-000. The second
column in each row lists the classes and attributes of the UML models that use that data
type. Column 3 of these tables identifies the ISO/TC211 conceptual data type to which
the SWE Common data type is or could be mapped.

yright © 2009 Open Geospatial Consortium, Inc.

OGC 09-031r1

Copyright © 2009 Open Geospatial Consortium, Inc. 19

6.3.2 Data types from ISO/TC211 standards

Six of the data types used in the UML model of SWE Common 1.0 are identical in name
and description to conceptual data types specified in ISO/TC211 standards (Table 5).

Table 5 - Data types in ISO/TC211 standards

Data Type Class/Attribute where used TC211 Source
Any TypedValue.value ISO 19103
CharacterString ConstrainedPhenomenon.otherConst

raint
PhenomenonSeries.otherConstraint

ISO 19103

ScopedName TypedValue.property ISO 19103
TM_Duration TM_Grid.offset

TM_Grid.duration
TM_IntervalGrid.windowDuration

ISO 19108

TM_Position TM_Instant.position ISO 19108
UomIdentifier Quantity.uom

Time.uom
QuantityRange.uom
TimeRange.uom

ISO 191361

Notes:
1. UomIdentifier is specified in the GML “Xlinks and basic types”

schema, but is not in the UML package “basicTypes.”

6.3.3 Data types from XML Schema

Nine of the data types used in the UML model of SWE Common 1.0 appear to be
primitive or derived data types from the XML Schema specification. All of these can be
mapped to conceptual data types specified in the ISO/TC211 standards (Table 6).

Table 6 - Data types from XML Schema

Data Type Class/Attribute where used TC211 Equivalent
anyURI AbstractDataComponent.definition

SimpleComponentAttributeGroup.referen
ceFrame
TRSAttributeGroup.localFrame
TRSAttributeGroup.referenceFrame
TRSAttributeGroup.referenceTime
AbstractVector.localFrame
AbstractVector.referenceFrame
Abstractmatrix.referenceFrame
AbstractMatrix. localFrame
MultiplexedStreamFormat.type
Block.encryption
Block.compression
Component.encryption

ISO 19136
URI?

boolean AbstractDataComponent.fixed
Boolean.value

19103
Boolean

dateTime Time.value ISO 19103
DateTime1

OGC 09-031r1

20 Copyright © 2009 Open Geospatial Consortium, Inc.

double Quantity.value ISO 19103
Real

ID AllowedValues.id
AllowedTokens.id
AllowedTimes.id
AbstractEncoding.ID

ISO 19115
MD_Identifier

integer Count.value
abstractDataArray.elementCount
TM_GridEnvelope.high
TW_GridEnvelope.low
CompoundPhenomenon.dimension

ISO 19103
Integer

positiveInteger DataValue.recordCount
BinaryBlock.byteLength
Block.byteLength
Block.paddingBits-before
Block.paddingBites-after
Component.significantBits
Component.bitLength
Component.paddingBits-before
Component.paddingBit-after

ISO 19103
Integer

string AbstractDataComponent.name
AbstractdataComponent.description
Text.value
MultiplexedStreamFormat.version

19103
CharacterString

token Category.value
SimpleComponentAttributeGroup.axisID
GeolocationArea.name
TextBlock.tokenSeparator
TextBlock.tupleSeparator
TextBlock.decimalSeparator
Block.ref
Component.ref

ISO 19103
ScopedName

Notes:
1. Both XML dateTime and ISO 19103 DateTime are based on ISO 8601

representation of Gregorian Calendar & UTC with time zone offsets. This is a
string representation, not a number.

Note that the XML implementation data type ‘string’ is currently used four times in the
UML model although its ISO/TC211 conceptual equivalent ‘CharacterString’ is used
twice. In all cases, the ISO/TC211 conceptual data types should be used in the UML
model rather than the XML implementation data types, which should be used only in the
XML schemas.

6.4 Conclusion

This chapter has identified issues involved in the harmonization of GML with SWE
Common. It includes recommendations for limited harmonization of GML valueObjects
with SWE Common Simple Data Types, for harmonization of Temporal Data Types of
the two specifications, and for harmonization of spatial position elements of the two
specifications.

OGC 09-031r1

Copyright © 2009 Open Geospatial Consortium, Inc. 21

7 Using UncertML in SWE

This section explains why UncertML is useful to express error information in sensor data.
UncertML is generic, and can be used to describe any form of uncertainty which can be
represented within a probabilistic framework. In the sensor context, two sources of error
can be distinguished: positional errors (i.e. uncertainty in the location of the sensor) and
attribute error (i.e. uncertainty in the measured/sensed value). Positional errors are
commonly characterized using probability distributions, via indices such as the Root
Mean Squared Error, which summarizes the locational errors observed at a set of sample
sites, assuming a symmetrical Gaussian distribution of spatial uncertainty. Attribute
errors are also commonly represented in terms of variation around the ‘truth’, by error
bars which represent significance or tolerance limits. Since UncertML represents
Gaussian distributions using the standard parameters of mean and variance, it can be
straightforwardly employed to convey these familiar error measures. However, it can also
be used to represent subtler and more complex forms of error, such as biased, skewed and
bounded distributions, and error which varies in space or time, or otherwise across a
dataset. These ‘non-standard’ uncertainty measures may be represented as user-defined
distributions, histograms, covariance matrices or even (for stochastic modeling purposes)
as a set of raw data samples, or realizations from a hypothetical distribution. Specific
uncertainty measures (e.g., ‘Attribute value uncertainty at 95 percent significance level’)
may also be defined by users through data dictionaries, and some examples of these
statistics may be seen at http://dictionary.uncertml.org/statistics.As a self-contained and
specific language for representing pure numerical uncertainty, UncertML can be
combined with other XML schemata which convey spatial, physical or other information
about the measurement and the instrument. It is in this context that we envisage
UncertML combining with SWE, to expand the current quality element available in
SWE.

7.1 Individual observations

When a sensor senses a phenomenon, there will inevitably be a difference between the
true value of that phenomenon, and the reported value from that sensor. One reason for
this disparity is limited precision in the instrument; for example, a temperature could be
reported as 12.1 whereas the real temperature is 12.083151298. The operation of the
measurement device itself may influence accuracy, and this effect will not always be
consistent – for example, the sensor may have a self-effect, may generate heat over the
course of operation or may adapt slowly. Experimental calibration or factory
specifications can give detailed information on expected sensor error for the various
ranges of the measured phenomenon. This is highly valuable information, especially
when we consider how errors propagate as sensor data is combined and further processed
for decision-making applications., Whether this information on sensor error is reported
routinely, or supplied only on requested, it should be as rich and representative as
possible..

For many simple devices, (e.g. temperature sensors) errors may be relatively small and
the need to quantify these errors does not seem compelling unless the context calls for
great precision. However, when we extend the interpretation of what “sensed data” is to
highly-manipulated datasets, the errors can become substantial. Satellite imagery, for

OGC 09-031r1

22 Copyright © 2009 Open Geospatial Consortium, Inc.

example, may be recalibrated and classified to generate estimated coverages showing
total column NO2 or soil moisture. Similarly, complex models may be applied to
spatially-distributed networks of sensor measurements, combining them with the sensor
data such as meteorological sources, to generate, for example, estimates of PM10 or
interpolated gamma dose rates. In these contexts, input sensor error must be tackled and
communicated openly and clearly, in order to gauge the reliability of the outputs and
make properly-informed decisions.

7.1.1 Full description of uncertainty

Ideally, it would be possible to characterize the uncertainty of a sensor’s measurements
fully by specifying a pattern with strict numerical parameters: for example: “the mean
value is 12.1, the standard deviation is 1, and the error distribution is normal”. If we
assume that the fit of the observed uncertainty to a normal distribution was indeed close,
then this information enables many useful predictions to be made; for example, ‘what is
the probability that, given a certain real value, the value of the sensor measurement will
exceed a certain threshold, or fall within a certain range?’ More importantly, we can
begin to address issues such as sensitivity and specificity, for example by considering the
likelihood of false negatives (a radiation sensor reports a tolerable value, but the real
value exceeds the danger level). Commonly-used distributions (e.g. Poisson and
Gaussian) are embedded within UncertML via a dictionary which defines their
parameters and their formulae. For example, a normal (Gaussian) distribution is defined
by two parameters: mean and variance – knowing these values and the nature of the
distribution allows the sort of inference described above about the meaning of observed
values. The normal distribution is commonly used to represent uncertainty in
environmental data, since its symmetrical shape approximates many observed patterns,
and non-normal data can often be easily transformed to satisfactorily fit a normal
distribution. For this reason, it is one of the distributions which is already defined in the
UncertML dictionary. However, uncertainty in many measured values (rainfall, for
example) will be bounded, non-normal or non-negative. UncertML therefore has been
designed to be extensible in that it allows users to characterize their own distributions,
either by creating a dictionary entry which defined the mathematical characteristics of the
distribution, or by using a histogram to represent its specific shape.

7.1.2 Description by sampling

In many contexts, one is not certain how exactly error is distributed, but one is able to
provide a sample from it, e.g. by giving 100 alternative values for a particular point in
space and/or time. These 100 numbers might be real samples, or could be realizations
output from a Monte Carlo experiment, e.g. ensemble weather forecasts. While this
description is not complete, if the sample is large enough, one can derive valuable
information experimentally about the underlying pattern. Even for small samples, the
range is of interest in addition to the mean value. UncertML has elements specifically
designed to store and represent such sets of samples or realizations, and as with all
UncertML types, these can be embedded within other XML objects which convey full
information about the spatial, temporal and physical context.

OGC 09-031r1

Copyright © 2009 Open Geospatial Consortium, Inc. 23

7.2 Collections of observations and dependent errors

7.2.1 Partial description by a number of samples

As mentioned in 7.1.2, the output from a large MC experiment could provide spatially-
distributed sets of samples of the field “sensed”. From an analysis of these samples, it
should be possible to identify spatial structure, autocorrelation and dependency in the
errors observed, and to make useful predictions about the likely error in novel locations.

7.2.2 Full description by a multivariate Gaussian distribution

One multivariate distribution that can easily be parameterized is the Gaussian
distribution; its parameters are the mean vector (mean values for all sensor locations) and
covariance matrix. The covariance matrix is the matrix with all variances of sensors and
all covariances of pairs of sensors. If the number of sensors is large (1000) then the
number of covariances is equal to the number of pairs (roughly 1000 x 1000/2). Storing
this matrix may become prohibitive for problems of a certain size, but UncertML allows
you to do so.

7.3 Positional error: a GPS example

Listing 1 shows one conceivable example using UncertML for positional errors is the
description of a position measured by a GPS Sensor.

Listing 1 - Exemplary use of UncertML in O&M

<?xml version="1.0" encoding="UTF-8"?>
<om:ObservationCollection
xmlns:om="http://www.opengis.net/om/1.0"
xmlns:gml="http://www.opengis.net/gml"
xmlns:un="http://www.uncertml.org"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:sa="http://www.opengis.net/sampling/1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/om/1.0
http://schemas.opengis.net/om/1.0.0/observation.xsd
http://www.uncertml.org
http://schemas.uncertml.org/1.0.0/UncertML.xsd
http://www.opengis.net/sampling/1.0
http://schemas.opengis.net/sampling/1.0.0/sampling.xsd">
 <om:member>
 <om:Observation gml:id="OBSERVATION1">
 <om:samplingTime/>
 <om:procedure/>
 <om:resultQuality>
 <un:Statistic definition ="
http://dictionary.uncertml.org/statistics/covariance_matrix">
 <un:value>9.2 2.7 2.7 9.2</un:value>
 </un:Statistic >
 </om:resultQuality>
 <om:observedProperty><!--...--></om:observedProperty>

OGC 09-031r1

24 Cop

 <om:featureOfInterest><!--...--></om:featureOfInterest>
 <om:result>
 <gml:Point>
 <gml:pos>51.9408968 7.6095461</gml:pos>
 </gml:Point>
 </om:result>
 </om:Observation>
 </om:member>
 <om:member>
 <om:Observation gml:id="OBSERVATION2">
 <om:samplingTime/>
 <om:procedure/>
 <om:resultQuality>
 <un:Statistic definition ="
http://dictionary.uncertml.org/statistics/covariance_matrix">
 <un:value >9.4 2.8 2.8 9.4</un:value>
 </un:Statistic >
 </om:resultQuality>
 <om:observedProperty><!--...--></om:observedProperty>
 <om:featureOfInterest><!--...--></om:featureOfInterest>
 <om:result>
 <gml:Point>
 <gml:pos>51.9408968 7.6095461</gml:pos>
 </gml:Point>
 </om:result>
 </om:Observation>
 </om:member>
</om:ObservationCollection>

7.4 Integration in the SWE information models

UncertML concentrates on how to encode and implement uncertain information into
existing standards. It does not instruct on how to encode supporting information such as
units of measure and spatial domains. In geospatial contexts, it is anticipated that
UncertML may be used in a 3-tier architecture as demonstrated in Figure 10, with each
supporting layer in this architecture adding an extra level of detail. Delegating
appropriate responsibilities to supporting schemata decouples UncertML from any one
existing standard and ensures that it may be integrated into a wide range of domains.

Figure 10 - UncertML in a 3-tier architecture

yright © 2009 Open Geospatial Consortium, Inc.

OGC 09-031r1

Copyright © 2009 Open Geospatial Consortium, Inc. 25

UncertML does not provide a mechanism for describing units of measure, geospatial
domains or any other such properties. The removal of such constraints allows UncertML
to be utilized in a variety of different domains.

Given the wide applicability of UncertML, this tiered arrangement may consist of as
many levels as are necessary to clearly characterize a measurement, using the most
appropriate schemata for that problem domain. Sections 7.4.1- 7.4.2 discuss how
UncertML may be integrated into existing SWE standards.

7.4.1 Integration into SWE Common & SensorML

The SWE Common standard provides a neat framework for describing primitive data
types, aggregations of these data types and related semantics. Each of the ‘simple data
types’ within SWE Common (Quantity, Count, Boolean etc) contain a property for
attaching quality information. However, there is no defined mechanism for quantifying
the quality. With a simple extension it would be possible to allow UncertML to reside
within the SWE Common quality property.

Listing 2 – UncertML used within the quality property of the SWE Common simple data type
“Quantity”

<swe:Quantity definition="urn:ogc:def:phenomenon:Temperature">
 <swe:uom>Cel</swe:uom>
 <swe:quality>
 <un:Statistic definition="standard_deviation">
 <un:value>3.4</un:value>
 </un:Statistic>
 </swe:quality>
 <swe:value>12.6</swe:value>
</swe:Quantity>

The example in Listing 2 describes a temperature quantity of 12.6 degrees Celsius with a
standard deviation of 3.4. While this typical use case of UncertML within SWE Common
provides some description of uncertainty, a more complete description is often necessary.
In such circumstances it is useful to regard quantities as ‘random’, i.e. the value is not
known with certainty. Extending SWE Common to allow for the addition of a
‘RandomQuantity’ whose value property is any UncertML type allows a variable to be
described completely by its parametric distribution (Listing 3).

OGC 09-031r1

26 Copyright © 2009 Open Geospatial Consortium, Inc.

Listing 3 - Extending SWE Common to add a RandomQuantity type whose value is any UncertML

<swe:RandomQuantity
definition="urn:ogc:def:phenomenon:Temperature">
 <swe:uom>Cel</swe:uom>
 <swe:value>
 <un:Distribution definition="gaussian_distribution">
 <un:parameters>
 <un:Parameter definition="mean">
 <un:value>12.6</un:value>
 </un:Parameter>
 <un:Parameter definition="variance">
 <un:value>11.56</un:value>
 </un:Parameter>
 </un:parameters>
 </un:Distribution>
 </swe:value>
</swe:RandomQuantity>

SensorML uses the SWE Common data types as inputs and outputs of process methods.
Extending SWE Common to allow UncertML to be integrated, automatically propagates
the benefits to SensorML.

7.4.2 Integration into O&M

Listing 4 demonstrates how to encode a sensor noise model in an Observations &
Measurements (O&M) document. The ‘sa’ and ‘gml’ namespaces are used, in keeping
with common practice, to encode the results of a measurement sampled by the sensor in
question, and the point location of the sensor.

Listing 4 - UncertML used to encode a noise model for a particular sensor in conjunction with the
O&M standard

<om:Observation>
 <om:samplingTime>
 <gml:TimeInstant>
 <gml:timePosition>2008-07-07T13:59</gml:timePosition>
 </gml:TimeInstant>
 </om:samplingTime>
 <om:procedure
xlink:href="http://www.mydomain.com/sensor_models/temperature"/>
 <om:resultQuality>
 <un:Distribution
definition="http://dictionary.uncertml.org/distributions/gaussian
">
 <un:parameters>
 <un:Parameter
definition="http://dictionary.uncertml.org/distributions/gaussian
/parameters/mean">
 <un:value>0.0</un:value>
 </un:Parameter>

OGC 09-031r1

Copyright © 2009 Open Geospatial Consortium, Inc. 27

 <un:Parameter
definition="http://dictionary.uncertml.org/distributions/gaussian
/parameters/variance">
 <un:value>3.6</un:value>
 </un:Parameter>
 </un:parameters>
 </un:Distribution>
 </om:resultQuality>
 <om:observedProperty xlink:href="urn:x-
ogc:def:phenomenon:OGC:AirTemperature"/>
 <om:featureOfInterest>
 <sa:SamplingPoint>
 <sa:sampledFeature
xlink:href="http://www.mydomain.com/sampling_stations/ws-04231"/>
 <sa:position>
 <gml:Point>
 <gml:pos srsName="urn:ogc:def:crs:EPSG:4326">
 -1.89538836479 52.4773635864
 </gml:pos>
 </gml:Point>
 </sa:position>
 </sa:SamplingPoint>
 </om:featureOfInterest>
 <om:result xsi:type="gml:MeasureType"
uom="urn:ogc:def:uom:OGC:degC">19.4</om:result>
</om:Observation>

The result property contains a temperature measurement of 19.4° Celsius. However, the
resultQuality property indicates (through the use of an encapsulated UncertML
Distribution) that this temperature has an associated variance of 3.6 around the measured
value with no bias, as indicated by the mean value of 0.0. An assumption is made that the
units of measure within UncertML are the same as those specified within the result
property (degrees Celsius). The Observations & Measurements schema accommodates
any XML type inside the resultQuality-property, therefore, no extensions to the standard
are necessary to allow the use of UncertML.

7.5 UncertML and MathML

UncertML seeks to provide a simple mechanism for describing complex concepts such as
parametric distributions. In order to achieve this goal a decision was made to exclude any
mathematical functions from within the uncertainty data types (Statistic, Distribution etc).
Instead these mathematical functions are described within the UncertML dictionary using
presentation MathML (Figure 11). It can be argued that allowing functions to be
described in-line, using content MathML, could act as an interoperable mechanism for
automatically exchanging any distribution or statistic. However, in a context where users
are working with previously unknown distributions or statistics, it would be necessary to
spend time developing the required mathematics for processing, negating the need for
content MathML. Delegating the description of these functions into an accompanying
dictionary is in line with the vision of the ISO/IEC guide to the expression of uncertainty

OGC 09-031r1

28 Cop

in measurement (GUM), in which they facilitate the need for a worldwide consensus on
the evaluation and expression of uncertainty in measurement, not dissimilar to the
International System of Units.

Figure 11 - Example of presentation MathML within the UncertML dictionary

8 Integration of other Markup Languages in SensorML

This chapter discusses how different markup languages can be integrated into SensorML
for the description of sensor process methods. In SensorML every sensor is described as a
process. These processes are divided in physical and non-physical processes where the
former have a relation to space and time.

All of these process descriptions contain of parts for the description of process inputs,
outputs, parameters and methods. The method part is where different markup languages
can be integrated and is encoded as a ProcessMethodType (see Figure 12). Besides
standard GML attributes and metadata it contains sections for rules, algorithms and
implementations.

The rules for a method can be encoded using RELAX NG or Schematron. They can for
instance be utilized to constrain the inputs of a process to a specific set. The
implementation section points to implementations of the given process. This may be a
SensorML process chain or program code in source or binary form. The algorithm

yright © 2009 Open Geospatial Consortium, Inc.

OGC 09-031r1

Cop

description of a process may contain a MathML document as a link or embedded. All of
these sections may contain a textual description.

Figure 12 - SensorML ProcessMethodType

8.1 Integration of MathML

The Mathematical Markup Language (MathML) is an XML application developed by the
World Wide Web Consortium (W3C). It is available in the version 2.0 (Second Edition)
whereas version 3.0 is under progress. MathML can be used to describe mathematical
terms and enables the visualization, exchange and automated execution.

The specification describes two markups which can be used separate or in a combined
form. The first one is the presentation markup (see Listing 5). It is used to “describe the
layout structure of mathematical notation” [W3C 2003]. Therefore about 30 possible
XML elements are defined. The semantics of these elements are defined for rendering
and visualization of mathematical terms. If the presentation markup is used it is therefore
difficult to interpret and process them. The following listing gives an example of the
following formula in presentation markup:

8.1/)32(−= TfTc (Transformation from °F to °C)

yright © 2009 Open Geospatial Consortium, Inc. 29

OGC 09-031r1

30 Copyright © 2009 Open Geospatial Consortium, Inc.

Listing 5 - MathML Presentation Markup example

<math xmlns="http://www.w3.org/1998/Math/MathML">
 <mrow>
 <msub>
 <mi>T</mi>
 <mi>C</mi>
 </msub>
 <mo stretchy="false">=</mo>
 <mfrac>
 <mrow>
 <msub>
 <mi>T</mi>
 <mi>F</mi>
 </msub>
 <mo stretchy="false">−</mo>
 <mn>32</mn>
 </mrow>
 <mn>1.8</mn>
 </mfrac>
 </mrow>
</math>

The content markup of MathML is used to describe the “underlying structure” of a
mathematical expression. It provides an encoding with clearly defined semantics for each
of the about 120 elements. Hence automated interpreting and processing is easier and less
error-prone. The drawback of this is that not every term can be represented.

The following areas are supported to some degree [W3C 2003]:

− Arithmetic, algebra, logic and relations

− Calculus and vector calculus

− Set theory

− Sequences and series

− Elementary classical functions

− Statistics

− Linear algebra

8.1.1 MathML in SensorML

In a SensorML sensor (or process) description MathML can be used to describe the
mathematic background. It can be used to give information about a calculation that takes
place inside of a sensor (for instance mapping of a measured voltage to a temperature
value) or to define further processing instructions that can be applied when needed. In the

OGC 09-031r1

Cop

latter it is necessary, that the provided mathematics can be interpreted and executed
automatically. Therefore only the content markup of MathML is allowed for integration
in SensorML [OGC 07-000].

Figure 13 shows the element that shall be used to integrate MathML documents in
SensorML process descriptions:

Figure 13 - MathML element in SensorML process methods

Besides the embedded MathML document a processor has to know how to map the
inputs, outputs and parameters of the SensorML process to the mathematical expression.
Input, output and parameter descriptions in SensorML provide a name field which shall
be used for the mapping (see Figure 14). This name shall also be used for the variables in
the MathML document that are related to process inputs or parameters.

Figure 14 - Name field in SensorML input descriptions

In order to use the names of the process outputs as well for the connection between
SensorML and MathML a function has to be defined for every output. Such an
assignment of a value (or calculation result) to a variable cannot be done easily with
MathML because it aims on encoding mathematic terms and not on algorithms using
mathematics. The equals-operator for instance is only used for comparison.

yright © 2009 Open Geospatial Consortium, Inc. 31

OGC 09-031r1

32 Copyright © 2009 Open Geospatial Consortium, Inc.

The definition of functions in MathML is done by the use of the declare- and lambda-
operators. The first parameter of the declare-operator is the name of the function to
declare. In the case of the MathML integration in SensorML this could be the name of the
process output. The second declare parameter is a lambda operator defining the function
itself.

The lambda part takes two groups of parameters. At first all variables (for instance names
of the process inputs and parameters) are listed following by an apply block describing
the calculation. Listing 6 shows the MathML content markup version of Listing 5:

Listing 6 - MathML Content Markup example

<math xmlns="http://www.w3.org/1998/Math/MathML">
 <declare type=“function”>
 <ci>Tc</ci>
 <lambda>
 <bvar><ci>Tf</ci></bvar>
 <apply>
 <divide/>
 <apply>
 <minus/>
 <ci>Tf</ci>
 <cn>32</cn>
 </apply>
 <cn>1.8</cn>
 </apply>
 </lambda>
 </declare>
</math>

In detail the MathML document consists of a single math-block. Inside of it a function is
declared (<declare type=“function”>). The output operator is defined as the first
parameter (<ci>Tc</ci>) followed by a lambda block. This block at first lists all input
variables (here only <bvar><ci>Tf</ci></bvar> for the temperature measured in
°Fahrenheit) and an apply block defining how the results are calculated.

A disadvantage of this solution is that a declaration does not mean the same as an
assignment. Once a declaration is made it is valid forever (in its declaration scope), while
values could be reassigned. This means that it is possible to emulate declarations via
assignments, but not the other way around.

The way described above is valid for version 2.0 of MathML (October 21st, 2003). In the
meantime there is work on version 3.0 ongoing and available as a draft specification
(dated on November 17th, 2008). In terms of the integration of MathML in SensorML
version 3.0 contains one major change: the declare element is deprecated. Because of that
it should not be used or introduced as standard practice.

To obtain this another possible way to encode assignments in MathML has to be used.
This is to define a new assignment operator via the csymbol element which is available in

OGC 09-031r1

Copyright © 2009 Open Geospatial Consortium, Inc. 33

version 2.0 as well as 3.0 of MathML [W3C 2003, W3C 2008]. Listing 7 gives an
example how the previous formula can be encoded.

Listing 7 - MathML example using the csymbol element

<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply>
 <csymbol definitionURL=”TBD”>assign</csymbol>
 <ci>Tc</ci>
 <apply>
 <divide/>
 <apply>
 <minus/>
 <ci>Tf</ci>
 <cn>32</cn>
 </apply>
 <cn>1.8</cn>
 </apply>
 </apply>
</math>

Note that the csymbol element contains a definitionURL attribute that is used to point to a
definition of the newly defined operator. This URL could point to a public available
version of this document or any other public available document containing the following
section (8.1.2).

8.1.2 Definition of an assignment operator for MathML

The operator is encoded using the csymbol element of MathML. The value of the
definitionURL attribute has to point to a public available document containing this
definition. The value of the csymbol element itself is “assign”.

The first following element shall be a ci element defining the variable where a value is
assigned to.

The second following element shall be an apply element containing a mathematical
expression that is used to calculate a result value that is assigned to the prior given
variable.

8.1.3 Execution of MathML

The execution of MathML is a large task. There are many operators with multiple
parameters to interpret. Although there are programs and program libraries to solve
MathML expressions, not all of them cover the full extent. Therefore a service that is
capable of executing SensorML processes with embedded MathML should provide a
kind of MathML capabilities. These would announce the supported operators rather like
the filter capabilities of the OGC filter encoding [OGC 04-095].

OGC 09-031r1

34 Copyright © 2009 Open Geospatial Consortium, Inc.

8.1.4 Comparison of MathML and other options for process descriptions

There are several different ways to describe and define the method that is performed by a
process. In this clause some of them are discussed and compared with a focus on the
representation of mathematical expressions.

In addition to MathML there are other possibilities given in SensorML. Thus, process
method descriptions may contain textual descriptions, SensorML process chains, source,
or compiled binary code and rules described using RELAX NG or Schematron.
Furthermore one could think of including mathematical expressions as a simple character
string or to utilize other (markup) languages like Formula 3 used in the S@ny project1 or
EML (see clause 8.2).

Textual descriptions can be the easiest way to provide information to a human reader if
they are well written. They do not provide useful information to machines because it is
nearly impossible to parse their content.

SensorML process chains can also be used to describe process methods. But they again
contain process methods that finally rely on other techniques to define mathematical
expressions or algorithms.

Compiled binary code can be used to provide implementations of the process method that
can be read and executed by a machine. Human beings are in most cases not able to read
and understand binary code. If the implementation is provided as source code it is at least
possible for experts to read and understand it. If the code cannot be executed by an
interpreter it has to be compiled before execution which can be too complex for an
application. In both cases it is necessary that the framework for the execution is known to
the developer in advance.

RELAX NG and Schematron can be included into SensorML process methods to define
restrictions to the process instead of describing the method itself. They can for instance
be used in addition to compiled binary code to verify that the inputs and outputs of the
process are correctly described for the given implementation.

Using character strings one can define mathematical expressions in a similar manner as
one does it using a pen and paper. Simple expressions can be easily written and read by
humans and they are also readable and executable by machines. When describing more
complex expressions, this can become more difficult for various reasons. First it is
difficult to write constructs in one row that usually take multiple rows like matrices. This
is the same for operators with a complex representation like the sigma sign. It is possible
to encode these constructs in character strings but it results in a worse readable
representation. Also the semantics of all allowed constructs have to be clearly defined.
But due to cultural differences in the representation of mathematical this also comes with
a reduced readability at least for members of some cultures. Furthermore some
abbreviations in common use with mathematical expressions can cause problems such as

1 http://www.sany-ip.eu/

OGC 09-031r1

Copyright © 2009 Open Geospatial Consortium, Inc. 35

juxtaposition in multiplication. In addition a string based mathematical expression can in
SensorML only be integrated as a textual description without a kind of a schema
definition or other rule definition.

Formula 3 is more a time sequence algebra than an encoding for mathematical
expressions. Though it is possible to encode such expressions via Formula 3 it comes
with a lot overhead for this purpose. It is recommended to use mainly in a time sequence
domain.

The content markup of MathML as introduced earlier can be used to encode a large set of
mathematical expressions. The semantics are clear for each such expression and it is
possible to read and execute them by machines. It is also human readable to some degree.
This can be improved when using a renderer software and if necessary a combination
with the presentation markup of MathML. In this case the cultural context of the
rendering of mathematical expressions could also be respected. The major disadvantage
of MathML is that it can be complex even for simple expressions.

It is recommended to use the content markup of MathML or compiled binary code if the
expressions have to be executed. Use MathML if possible to describe the process
methods that should be read or may be reused complete or in parts. Here the focus is on
clearly defined process methods. Use compiled code for problems that cannot be solved
with MathML or where MathML is too complex. Add precise textual descriptions in
these cases. Here the focus is on easy executable process methods using a known
framework. Special languages like Formula 3 or EML can be used for special purposes
like calculations on time sequences or complex event processing.

If the focus is on readability MathML, string based expressions (if unambiguous), textual
descriptions or a combination of them can be used. Meaningful textual descriptions
should always be used.

8.2 Integration of EML

Besides MathML there can be use of integrating other markup languages for the
description of process methods. One of them is the Event Pattern Markup Language
(EML). It is used to define patterns to perform Complex Event Processing (CEP) and
Event Stream Processing (ESP). These techniques can be useful when dealing with large
amounts of input data to detect patterns and derive information of higher value.

The main obstacle for embedding EML patterns into SensorML is that there is no element
where to put it right now. One solution could be to introduce a new element to
SensorML. On the other hand there is an element for MathML descriptions of process
methods. This element accepts any content so it can be used for EML as well. In order to
prevent confusion with EML patterns found in the MathML element it should be
renamed. This element could then be used to embed process method description in
whatever (markup) language is most suitable. There also would not be the need to add a
new element for further markup languages. This matter is committed in a change request
to the SensorML standards working group (document number OGC 08-192r1).

OGC 09-031r1

36 Copyright © 2009 Open Geospatial Consortium, Inc.

To map inputs and outputs to EML patterns the names can be utilized just like when
using MathML. Dynamic parameters are not supported in the current version of the EML
and should therefore not be used. Another possibility is to handle parameters as
additional inputs to the process. Methods to access properties of data collections in EML
processes are described in the EML specification. [OGC 08-132]

	1 Introduction
	1.1 Scope
	1.2 Document contributor contact points
	1.3 Revision history
	1.4 Future work

	2 References
	3 Terms and definitions
	4 Conventions
	4.1 Abbreviated terms
	4.2 UML notation

	5 SWE Information Model Harmonization overview
	6 Harmonization of SWE information models
	6.1 Introduction
	6.1.1 Goal
	6.1.2 Sensor Model Language
	6.1.3 Geography Markup Language
	6.1.4 Issues
	6.1.4.1 Target for harmonization
	6.1.4.2 Archictectural differences
	6.1.4.3 Platform independent models

	6.2 Class level mapping between GML and SWE Common
	6.2.1 Introduction
	6.2.2 valueObjects and simple data types
	6.2.3 Temporal data types
	6.2.4 Positional data types

	6.3 Mapping of SWE Common basic data types to ISO/TC211 data types
	6.3.1 Introduction
	6.3.2 Data types from ISO/TC211 standards
	6.3.3 Data types from XML Schema

	6.4 Conclusion

	7 Using UncertML in SWE
	7.1 Individual observations
	7.1.1 Full description of uncertainty
	7.1.2 Description by sampling

	7.2 Collections of observations and dependent errors
	7.2.1 Partial description by a number of samples
	7.2.2 Full description by a multivariate Gaussian distribution

	7.3 Positional error: a GPS example
	7.4 Integration in the SWE information models
	7.4.1 Integration into SWE Common & SensorML
	7.4.2 Integration into O&M

	7.5 UncertML and MathML

	8 Integration of other Markup Languages in SensorML
	8.1 Integration of MathML
	8.1.1 MathML in SensorML
	8.1.2 Definition of an assignment operator for MathML
	8.1.3 Execution of MathML
	8.1.4 Comparison of MathML and other options for process descriptions

	8.2 Integration of EML

