

Copyright © 2009 Open Geospatial Consortium, Inc. i

Open Geospatial Consortium, Inc.

Date: 2009-08-17

Reference number of this document: OGC 09-012

Version: 0.3.0

Category: Public Engineering Report

Editor: Craig Bruce

OGC
®
 OWS-6 Symbology-Encoding Harmonization

Copyright © 2009 Open Geospatial Consortium, Inc.

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document is an OGC Public Engineering

Report created as a deliverable in an OGC Interoperability Initiative and is not an

official position of the OGC membership. It is distributed for review and comment. It

is subject to change without notice and may not be referred to as an OGC Standard.

Further, any OGC Engineering Report should not be referenced as required or

mandatory technology in procurements.

Document type: OpenGIS
®

Engineering Report

Document subtype: NA

Document stage: Approved for Public Release

Document language: English

http://www.opengeospatial.org/legal/

OGC 09-012

ii Copyright © 2009 Open Geospatial Consortium, Inc.

Preface

Suggested additions, changes, and comments on this draft report are welcome and

encouraged. Such suggestions may be submitted by email message or by making

suggested changes in an edited copy of this document.

The changes made in this document version, relative to the previous version, are tracked

by OpenOffice.org, and can be viewed if desired. If you choose to submit suggested

changes by editing this document, please first accept all the current changes, and then

make your suggested changes with change tracking on.

Forward

Attention is drawn to the possibility that some of the elements of this document may be

the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held

responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of

any relevant patent claims or other intellectual property rights of which they may be

aware that might be infringed by any implementation of the standard set forth in this

document, and to provide supporting documentation.

Copyright © 2009 Open Geospatial Consortium, Inc. iii

OWS-6 Testbed

OWS testbeds are part of OGC's Interoperability Program, a global, hands-on and

collaborative prototyping program designed to rapidly develop, test and deliver Engineering

Reports and Change Requests into the OGC Specification Program, where they are

formalized for public release. In OGC's Interoperability Initiatives, international teams of

technology providers work together to solve specific geoprocessing interoperability problems

posed by the Initiative's sponsoring organizations. OGC Interoperability Initiatives include

test beds, pilot projects, interoperability experiments and interoperability support services -

all designed to encourage rapid development, testing, validation and adoption of OGC

standards.

In April 2008, the OGC issued a call for sponsors for an OGC Web Services, Phase 6 (OWS-

6) Testbed activity. The activity completed in June 2009. There is a series of on-line

demonstrations available here: http://www.opengeospatial.org/pub/www/ows6/index.html

The OWS-6 sponsors are organizations seeking open standards for their interoperability

requirements. After analyzing their requirements, the OGC Interoperability Team

recommended to the sponsors that the content of the OWS-6 initiative be organized around

the following threads:

1. Sensor Web Enablement (SWE)

2. Geo Processing Workflow (GPW)

3. Aeronautical Information Management (AIM)

4. Decision Support Services (DSS)

5. Compliance Testing (CITE)

The OWS-6 sponsoring organizations were:

 U.S. National Geospatial-Intelligence Agency (NGA)

 Joint Program Executive Office for Chemical and Biological Defense (JPEO-CBD)

 GeoConnections - Natural Resources Canada

 U.S. Federal Aviation Agency (FAA)

 EUROCONTROL

 EADS Defence and Communications Systems

 US Geological Survey

 Lockheed Martin

OGC 09-012

iv Copyright © 2009 Open Geospatial Consortium, Inc.

 BAE Systems

 ERDAS, Inc.

The OWS-6 participating organizations were:

52North, AM Consult, Carbon Project, Charles Roswell, Compusult, con terra, CubeWerx,

ESRI, FedEx, Galdos, Geomatys, GIS.FCU, Taiwan, GMU CSISS, Hitachi Ltd., Hitachi

Advanced Systems Corp, Hitachi Software Engineering Co., Ltd., iGSI, GmbH, interactive

instruments, lat/lon, GmbH, LISAsoft, Luciad, Lufthansa, NOAA MDL, Northrop Grumman

TASC, OSS Nokalva, PCAvionics, Snowflake, Spot Image/ESA/Spacebel, STFC, UK, UAB

CREAF, Univ Bonn Karto, Univ Bonn IGG, Univ Bunderswehr, Univ Muenster IfGI,

Vightel, Yumetech.

Copyright © 2009 Open Geospatial Consortium, Inc. v

Contents Page

1 Introduction ... 1

1.1 Scope 1

1.2 Document contributor contact points 1

1.3 Revision history 1

1.4 Future work 2

2 References ... 2

3 Terms and definitions ... 3

4 Conventions .. 3

4.1 Abbreviated terms 3

4.2 UML notation 4

5 Harmonization overview ... 4

6 Harmonization between OGC SLD/SE and ISO 19117 ... 5

6.1 Overview comparison 5

6.1.1 History 5

6.1.2 Terminology differences 5

6.1.3 Scope differences 6

6.1.4 XML Schema vs. UML 6

6.1.5 Property- and class-name capitalization 6

6.1.6 Harmonization objective 7

6.2 Map handling 7

6.3 Layer handling 8

6.4 Schema mapping 8

6.4.1 ISO Overview 8

6.4.2 ISO Rule-based schema mapping 9

6.4.3 Other ISO schema-mapping methods 11

6.4.4 SE feature selection 13

6.5 Portrayal feature & portrayal specification 14

6.6 Feature & style catalogs 16

6.7 Symbolization 16

6.7.1 Root classes 16

6.7.2 Coordinate reference systems 18

6.7.3 Parameterization 19

6.7.4 Line symbolization 20

6.7.5 Area symbolization 25

6.7.6 Point symbolization 28

6.7.6.1 ISO point symbolization 28

6.7.6.2 SE point symbolization 32

6.7.7 Text symbolization 34

6.8 Conclusions 38

7 IHO S-52 symbology .. 38

7.1 Introduction 38

7.2 Complex line styles 38

7.3 Pivot points 42

7.4 Geometry delineation 42

7.5 ISO 19117 alignment 43

7.6 S-52 symbology examples 44

8 USGS symbology ... 48

8.1 Simple styles 48

8.2 Complex styles 52

9 Emergency management symbology .. 57

Figures Page

Figure 1: ISO Rule Statement .. 9

Figure 2: ISO Presentation ... 16

Figure 3: ISO Parameterization ... 19

Figure 4: ISO Line Symbol ... 20

Figure 5: ISO Line Pattern ... 21

Figure 6: ISO Stroke ... 24

Figure 7: ISO Area Symbol .. 25

Figure 8: ISO Area Fill ... 26

Figure 9: ISO Fill ... 27

Figure 10: ISO Point Symbol .. 29

Figure 11: ISO Graphic .. 30

Figure 12: ISO Bit Map .. 31

Figure 13: ISO Colour .. 32

Figure 14: ISO Text Symbol ... 35

Figure 15: ISO Text Style ... 36

Figure 16: S-52 Sample Complex Line Styles And Portrayals .. 40

Figure 17: S-52 Line Styles With Line-Crossing Components .. 41

Figure 18: S-52 Line Styles With Perpendicularly Offset Components 41

Figure 19: S-52 Buoy Examples ... 44

Figure 20: S-52 Composite-Line Examples ... 45

Figure 21: S-52 Navigation-Symbol Examples ... 46

Figure 22: S-52 Traffic-Route Examples ... 46

Figure 23: S-52 Depth-Contour Example .. 47

Figure 24: S-52 Composite Shore Example ... 48

Figure 25: USGS Simple Line Styles ... 49

Figure 26: USGS Simple Area Styles ... 50

Figure 27: USGS Simple Point Styles .. 51

Figure 28: USGS Coastal-Feature Examples .. 52

Figure 29: USGS Contour-Line Examples .. 53

Figure 30: USGS Ford & Ferry Examples .. 54

Figure 31: USGS Airport & Helipad Examples ... 55

Figure 32: USGS Railroad Examples .. 55

Figure 33: USGS Church & School Examples .. 57

Figure 34: EMS Ambulance Symbol & Frame ... 58

 1

OGC
®
 OWS-6 Symbology-Encoding Harmonization

1 Introduction

1.1 Scope

This OGC
®

 document reports the results achieved in the Decision Support Services

(DSS) subtask of the OWS-6 testbed initiative as it relates to the harmonization of OGC

Styled Layer Descriptor (SLD) and Symbology Encoding (SE) symbology formats with

ISO 19117 symbology format, International Hydrographic Organization S-52 symbology,

USGS Topomap symbology, and Homeland Security Emergency Management

symbology.

Attention is drawn to the possibility that some of the elements of this document may be

the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held

responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of

any relevant patent claims or other intellectual property rights of which they may be

aware that might be infringed by any implementation of the standard set forth in this

document, and to provide supporting documentation.

1.2 Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Name

Organization

Dr. Craig S. Bruce

CubeWerx Inc.

1.3 Revision history

Date Release Editor Primary clauses
modified

Description

2009-04-27 1.0.0 C. Bruce Main body OWS-6 project final release

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 2

1.4 Future work

Improvements in this document are desirable to further harmonize the OGC SLD/SE

formats with ISO 19117 and other symbology standards.

2 References

The following documents are referenced in this document. For dated references,

subsequent amendments to, or revisions of, any of these publications do not apply. For

undated references, the latest edition of the normative document referred to applies.

OGC 09-015 (April 2009), OWS-6 Styled Layer Descriptor (SLD) Changes (Engineering

Report), Craig Bruce (ed.)

OGC 09-016 (April 2009), OWS-6 Symbology Encoding (SE) Changes (Engineering

Report), Craig Bruce (ed.)

OGC 05-078r4 (June 2007), Styled Layer Descriptor profile of the Web Map Service

Implementation Specification (version 1.1.0), Markus Lupp (ed.),

<http://portal.opengeospatial.org/files/?artifact_id=22364>

OGC 05-077r4 (July 2006), Symbology Encoding Implementation Specification (version

1.1.0), Markus Müller (ed.), <http://portal.opengeospatial.org/files/?artifact_id=16700>

ISO 19117:2005 (2005), Geographic information — Portrayal,

<http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=403

95>

ISO 19117:Revision (Revision Draft, January 2009), Geographic information —

Portrayal

IHO S-52 (1996), Specifications for Chart Content and Display Aspects of ECDIS, 5th

Edition (amended 1999)

IHO S-52 C&S (March 2004), IHO COLOUR & SYMBOL SPECIFICATIONS (C&S

Specs) for ECDIS, S-52 Appendix 2 – Edition 4.2, and IHO PRESENTATION LIBRARY

(PresLib) – Edition 3.3

TENET Report (July 2008), Some Unresolved Issues With The OGC Symbology Encoding

(SE), Neil Kirk, <http://portal.opengeospatial.org/files/?artifact_id=29160>

OGC 09-043 (April 2009), OWS-6 DSS Enhancements to Symbology Encoding in

Support of IHO S-52 and UKHO AML, Alessandro Triglia,

<http://portal.opengeospatial.org/files/?artifact_id=32917&version=1>

 3

USGS, National Mapping Program Technical Instructions — Part 5 — Publication

symbols, <http://rockyweb.cr.usgs.gov/nmpstds/acrodocs/qmaps/5psym202.pdf>

USGS, National Mapping Program Technical Instructions — Part 6 — Publication

symbols, <http://rockyweb.cr.usgs.gov/nmpstds/acrodocs/qmaps/6psym403.pdf>

USGS, Topographic Map Symbols,

<http://erg.usgs.gov/isb/pubs/booklets/symbols/topomapsymbols.pdf>

ANSI INCITS 415-2006 (July 2006), Homeland Security Mapping Standard — Point

Symbology for Emergency Management,

<http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+INCITS+415-2006>

3 Terms and definitions

For the purposes of this report, the definitions specified in Clause 4 of the OWS Common

Implementation Specification [OGC 06-121r3] shall apply. In addition, the following

terms and definitions apply.

3.1

graphic

Small icon picture drawn at a point or filling an area

3.2

layer

User-selectable content for a map

3.3

map

Pictorial representation of geographic data

3.4

style

Determines the appearance geographic data

4 Conventions

4.1 Abbreviated terms

CRS Coordinate Reference System

CSS Cascading Style Sheets

EMS Emergency Management Symbology

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 4

GML Geography Markup Language

HTTP Hypertext Transfer Protocol

IHO International Hydrographic Organization

ISO International Organization for Standardization

OGC Open Geospatial Consortium

SE Symbology Encoding

SLD Styled Layer Descriptor

SQL Structured Query Language

SVG Scalable Vector Graphics

UML Unified Modeling Language

URI Uniform Resource Identifier

USGS United States Geological Survey

W3C World Wide Web Consortium

WMS Web Map Service

XML Extensible Markup Language

4.2 UML notation

Many diagrams that appear in this document are presented using the Unified Modeling

Language (UML) static structure diagram, as described in Subclause 5.2 of [OGC 06-

121r3].

5 Harmonization overview

This OGC
®

 document reports the results achieved in the Decision Support Services

(DSS) subtask of the OWS-6 testbed initiative as it relates to the harmonization of OGC

Styled Layer Descriptor (SLD) and Symbology Encoding (SE) symbology formats with

revised ISO 19117 symbology format, International Hydrographic Organization S-52

symbology, USGS Topomap symbology, and Homeland Security Emergency

Management symbology.

 5

6 Harmonization between OGC SLD/SE and ISO 19117

6.1 Overview comparison

6.1.1 History

SLD was initially developed by OGC during the WMT-2 (Web-Mapping Testbed)

project in 2000. WMT-2 was an Interoperability Program project, so the development

was specifically focused on producing implementations quickly. ISO 19117 apparently

predated SLD as a draft specification. It was considered during the WMT-2 project, but

was dismissed as being practically empty.

By the end of the WMT-2 project, SLD 0.7.0 was defined and had multiple interoperable

implementations. SLD had the capability to do simple to somewhat complex renderings

for vector features and raster coverages. Most of the changes between version 0.7.0 and

1.1.0 have been syntactic in nature.

The official published version of ISO 19117:2005 was little different from the version

dismissed in 2000. It included only feature styles and rules. All symbolization was

provided by user-defined textual descriptions, so it is fair to say it had no symbolization

capability at all.

ISO 19117:Revision is being revised in 2009 and has considerably more detailed content,

especially in the area of graphic parameterization. In fact, it has more graphical

capability than SLD 1.1.0.

SLD/SE are also currently being revised as part of the OWS-6 project, to refine the

encoding and increase its capability. The harmonization comparison is made mostly

between ISO 19117:Revision and the OWS-6 change requests for SLD and SE.

6.1.2 Terminology differences

Terminology differences between SLD and ISO 19117 pose significant challenges for

direct harmonization. Field names are not going to match if the concepts these names

encode use different terms. Some examples are that SLD refers to “styles” whereas ISO

refers to “schema remapping” and “portrayal”.

SE refers to “symbolizers” whereas ISO refers to “symbols”. In the SE design, “symbol”

is considered a vague and overloaded term, sometimes meaning a style and sometimes

meaning an icon or portrayed feature, so “symbolizer” was chosen instead, avoiding

direct use of the term “symbol”. In ISO, “symbol” means a (low-level) style.

SE refers to “graphics” whereas ISO appears to refer to “icons”. Perhaps “icon” is a

better term, as “graphic” is rather overloaded.

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 6

6.1.3 Scope differences

ISO includes a feature schema remapping mechanism in its definition whereas this is

considered out-of-scope for SE. A significant amount of the ISO specification is

dedicated to the definition of this mechanism. However, this ability to remap feature data

from one application schema to another is a generally useful mechanism that really does

not belong specifically in a portrayal system. SE assumes that whatever transformations

are needed have already been applied to the feature data before rendering is applied.

SLD includes a concept of map layers but ISO does not include this concept.

6.1.4 XML Schema vs. UML

The design of SLD/SE is defined using XML Schema and the design of ISO 19117 is

defined using UML. XML Schema contains some capabilities and concepts that are not

portable to other schema languages such as UML. The most notable non-portable

concept is XML attributes. In general, XML attributes should be avoided in OGC

specifications because no other structuring language can represent this concept.

During the initial development of SLD/SE, it was decided that it would be preferable to

make all fields of of an element be elements for improved portability. This principle is

evident in the SLD 1.1.0 definition of a NamedLayer, since Name is a sub-element

where names are normally given in attributes in XML. This principle was forgotten,

however, with the addition of version attributes to SE and SLD.

This principle was also not followed with the SE 1.1.0 SvgParameter definition, though

there it is more out of convenience, since the XML encoding of graphic properties would

be significantly more verbose using sub-elements. However, an alternative proposal to

SvgParameter is provided in the revised SLD/SE designs.

XML attributes should be replaced by sub-elements where feasible in the revised SLD

and SE designs.

6.1.5 Property- and class-name capitalization

The standard practice for property and class names in many programming languages is to

use “lowerCamelCase” for property names and “UpperCamelCase” for class names. In

“CamelCase”, spaces are removed between words of a phrase and the initial letter of each

word is capitalized instead. In lowerCamelCase, the initial letter of the first word is made

into lowercase. Letter case is significant in many programming environments, so a class

name of LineString and a property name of lineString could be used in the same

declaration without ambiguity.

In ISO UML-design practice, the programming-language paradigm is utilized but an

additional two-letter capitalized package identifier (namespace) with a trailing underscore

character is placed before class names. For example, a class name might be

SY_LinePointSymbol and a property of this class might be lineIcon.

 7

Unfortunately, OGC does not seem to have a standard practice for naming classes and

properties, so a variety of conventions are used. In SLD/SE and various other

specifications, UpperCamelCase is used for both properties and classes, where classes

normally have the same base name as the archetypal property (element) of the class, with

the additional word “Type” appended to the name. Properties that are represented as

XML attributes use lowerCamelCase names. GML uses a mix of UpperCamelCase and

lowerCamelCase for element names, essentially at random.

The general recommendation here is that OGC adopt the ISO practice, but with arbitrary-

length namespaces. In XML realizations of the designs, the XML namespace mechanism

with lowerCamelCase names should be used rather than the ISO underscore mechanism.

For instance, a design class name of SE_FeatureTypeStyle would be realized in XML as

se:FeatureTypeStyle (or with an implicit namespace).

However, this recommendation will be an awkward and contentious issue, involving

renaming every identifier in most existing specifications. Therefore, it is recommended

that no action be taken on this issue at this time.

6.1.6 Harmonization objective

It is not practical to make SLD/SE have an identical physical representation to ISO 19117

for numerous reasons, including differing OGC and ISO practices and conventions,

differing terminology, and the practical need for backward compatibility with existing

SLD/SE designs and implementations. Instead, the objective is to provide all of the

important functionality offered by the revised ISO design, with a particular focus on the

graphical parameters, while retaining the basic character and purpose of the existing

SLD/SE designs.

6.2 Map handling

ISO does not address map handling but SLD does with its root StyledLayerDescriptor

element. The map handing is realized mostly as just a list of map layers (which are

discussed in clause 0). This allows an SLD document to contain all of the content of a

map (minus specific rendering-environment parameters like image type and map

bounding box). In fact, the XML encoding for an OGC WMS GetMap request uses an

SLD body to specify the map content. An SLD document can also be used as a simple

style library, defining many different styles for many different map layers. An SLD

document is also a convenient bundle to use to save, load, and edit all of the styling

information for a data store. An SLD-enabled WMS provides public operations for this

purpose. An SLD file can also be used to supply the symbology for various feature-file

formats. For instance, a Shapefile with *.shp, *.dbf, etc. files could include a companion

*.sld file to supply the styling information. (CubeWerx implements this and it is rather

handy.)

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 8

The revised SLD element hierarchy has a StyledLayerDescriptor that references

multiple Layers which reference multiple Styles which reference multiple

FeatureTypeStyles or CoverageStyles. The ISO design starts at handling feature types.

6.3 Layer handling

A “layer” in SLD provides a means of grouping many different but related

feature/coverage types in potentially different styles into a single convenient user entity.

This reflects the OGC WMS design where the relevant user-selectable content objects are

layer and style. Layers often have a one-to-one correspondence with feature types, but

sometimes they are more complicated. For example, a layer called “Context” could be

defined which includes boundaries, roads, land usage, built-up areas, waterways,

buildings, etc. where the content is filtered so that only some feature types are displayed

when zoomed out and all are displayed when zoomed in. Many systems such as Google

Maps work in this way, altering the feature types selected based on zoom level.

ISO 19117 does not include a layer concept. An intermediate ISO draft from 2007

(ISO/TC 211 N 2167) contained a class called PF_PortrayalMapping which is logically

equivalent to a layer/style pair (grouping multiple feature-type portrayals and a style

description into a single entity), but this class has been dropped in ISO 19117:Revision.

Without layers, a user will always work at the level of feature types, which may be an

inconveniently fine granularity for some purposes.

6.4 Schema mapping

6.4.1 ISO Overview

ISO 19117:Revision defines a complex mechanism for converting features from one

schema (type) to another. The concept is that the portrayal mechanism does not have any

rule selection built into it but instead relies on the schema-mapping mechanism to take

each input user feature and transform it into a (essentially virtual) portrayal feature (or

features) that corresponds to one (or more) particular type of symbol to be drawn. I.e.,

the portrayal features will have a one-to-one correspondence to the legend of the map.

For example, consider a user feature type for roads that have a line-geometry property, a

name property, and a road-type property with possible values “minor street”, “collector

road”, and “highway”, which the user wishes to portray differently. The schema mapping

mechanism would take each input feature and convert it into one of the three portrayal

feature types which correspond to the road types. These portrayal features would only

have the geometry property and name because the road-type property is no longer

relevant after the portrayal-feature type has been discerned.

 9

6.4.2 ISO Rule-based schema mapping

The rule-based schema-mapping mechanism represents a “program” of statements that

are executed sequentially by the runtime system. The crux of the mapping mechanism is

the MA_RuleStatement class and its derived classes defined in the UML diagram in

Figure 1 [ISO 19117:Revision].

The MA_ConditionStatement allows an if/then/else statement to be represented. It

references an MA_ConditionExpression. Expressions are represented with two string

values, one representing the language of the expression and the other representing the

expression content. This is certainly better than defining an ad-hoc expression language,

though leaving the language open is also problematic. Interoperability requires people to

choose the same expression language.

The MA_FeatureSpecification statement constructs an output feature by assigning

expression values to a list of the properties of the output feature. The data type of the

expression result is open, so it can handle integers, geometries, etc. An

MA_RulesBasedMapping could construct any number of output features, including

Figure 1: ISO Rule Statement

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 10

zero, and gives the option to produce a default feature(s) if none are produced by the

normal program.

The MA_VariableAssignment statement assigns a value to a runtime variable by

evaluating an expression. A variable is scoped to a specific MA_RuleCollection and its

subordinate statements.

The MA_RuleCollection class allows a block of statements to be treated as a single

statement, like the curly braces (“{” and “}”) in C-derived languages. Since

MA_RuleCollection has an open diamond UML notation on its 1..* element link to

MA_RuleStatement, it does not “contain” or “own” the statements; it merely

“references” them. This means that statements can be referenced (executed) more than

once, which allows the semantic equivalent of goto statements in other programming

languages and allows loops.

ISO 19117:Revision says, “These classes define a grammar that, lacking a looping

capability, is not Turing complete,” but this appears to be false because of the open

diamond. In the simplest case, a MA_RuleCollection could reference itself with its

element property, which would be valid since MA_RuleCollection is derived from

MA_RuleStatement, assuming that this is an allowed interpretation of the UML open

diamond with a class that has such a link that points back to itself. If an object can refer

to any object of the same class, then it can refer to itself. Loops could be more indirect as

well; rule collection A could refer to rule collection B as an element and rule collection B

could refer back to rule collection A. If the open diamond remains, then an explicit “no-

loops” requirement needs to be added to the specification to disallow loops. This appears

to be the intention of the authors, so the subject of the computational complexity of

Turing completeness will not be pursued here.

The semantics of rule-based mapping indicate that it is a many-to-many feature mapping,

i.e., it converts one or more input features to zero or more portrayals (portrayal features).

It is clear how the zero or more output features are generated (by zero or more

MA_FeatureSpecification instructions being executed in the program); however it is

unclear how more than one feature is selected to be fused together. Also, the practical

benefit of many-to-many feature mapping is unclear and perhaps dubious. What

crucially important portrayal work requires a many-to-many mapping and cannot

adequately be simulated by a much simpler and more efficient one-to-many mechanism?

The variable-assignment mechanism and the rule-statement-reuse capability do no appear

to provide any additional expressive power to the mapping mechanism since loops appear

to be disallowed. The practical value of reuse is to reduce the total number and

redundancy of rule statements in a symbology collection by reusing statements between

portrayal specifications, which also reduces the management effort, and the practical

value of variable assignment appears to be to allow a greater degree of reuse by allowing

statement blocks to be parameterized. For example, if one feature type specified the

number of road lanes with a property called nlanes and another feature type with

width_per_side, then the total number of lanes could be computed assigned to a variable

 11

and a common statement block could be used to generate the portrayal feature. On the

down side, variable assignment will complicate and in most practical cases eliminate

runtime optimization.

The runtime model implied by the rule-based mechanism is quite inefficient. The

runtime system supplies the program with one feature or overlapping groups of features

at a time and it executes the statements of the program sequentially and builds temporary

features one property at a time to be used for portrayal. The portrayal mechanism then

examines these temporary features and disposes of them.

Performing these micro-operations for each input feature (or worse, each overlapping

group of input features) will be slow to execute. Analyzing these mapping programs at

runtime and transforming them into some more efficient mechanism will be the only

means to make execution efficient. This kind of optimization will likely be practical only

with certain simple patterns of mapping statements. Without program transformation,

spatial and attribute indexing will likely be unusable, and these are very powerful query

optimization mechanisms. A literally-executed rule-mapping program may fetch every

feature in a feature table or multiple feature tables where only a few features would have

been fetched with query optimization. A lack of index utilization will most likely be a

much larger practical problem than the relative inefficiency of the execution of the micro-

operations of rule-based programs.

An author of ISO 19117:Revision informally indicated that a recommended practice for

encoding symbology will be to maximize the reuse of statement blocks by substituting

AND, OR, and NOT logical operators with conditional branches to reused code. This

will complicate query optimization or make it infeasible. For example, if a portrayal

system is implemented on top of a relational database system, an objective for query

optimization may be to reduce the program to a minimal number of independent SQL

query conditions that can be executed to retrieve the necessary features for each different

style of portrayal. To do this, the AND, OR, and NOT logical operations will need to be

extracted from the structure of the program and placed back into the query conditions.

In general, either rule-based mapping will be slow to execute or implementations will

need sophisticated rule-based-program analysis and query-optimization capabilities to be

efficient. All implementations will need the internal mechanisms to execute the

programs verbatim since query optimization will not always be feasible or possible. In

other words, practical implementations will need two different rule-based runtime

systems.

6.4.3 Other ISO schema-mapping methods

Two other schema-mapping methods known as transformation mapping and population

mapping are also defined for use with ISO 19117:Revision.

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 12

Transformation mapping models relational-algebra operations of Select (filter those

features selected), and Project (select only certain properties for retrieval), and Join

(combine multiple tables together into one based on a matching property value). The ISO

revision draft does not have this section fleshed out at the time of writing this report, but

one can imagine how it works. Combinations in sequence of the given basic operations

can extract any information from a set of database tables (features in this case). One

could consult any number of sources to learn more about the well-known subject of

“relational algebra” ([3] Wikipedia)

A practical problem with the transformation-mapping approach is that it imposes a

burden on implementors to supply a relational-algebra execution system in their portrayal

system. A portrayal system that is implemented on top of relational database system will

provide a relational-algebra execution for free, but one implemented on top of a directory

of Shapefiles will not. Select and Project are relatively easy to implement in any feature-

retrieval system, but Join is much more complicated, especially to do efficiently (which

needs indexing), even though the need for Joins should be rather rare in most styling.

The execution of a transformation mapping will be much more efficient than the rule-

based approach, since large macro-operations are involved and decades of research have

gone into optimizing these macro-operations and many practical (database) systems

provide these optimizations for use.

Population mapping is completely undefined in the ISO 19117:Revision draft.

Apparently, it is the baby of one person involved in the design process. One could argue

that international standards are not a suitable place to conduct experimental research.

An overall problem with the ISO approach to feature mapping is that the multiplicity of

equivalent methods either imposes the burden on all implementations to support all three

(really, four) methods, or the practical interoperability of the styling encoding will be

reduced. If some systems support some methods and different symbology encodings use

different methods, then some ISO symbology encodings will not work on some systems.

Also, the people who manage and exchange symbology encodings will need to be

proficient in all of the methods and so will the editing tools they use. Automatically

translating between the different methods and between external symbology encodings

(such as OGC SE) may be difficult or impossible.

Another overall problem is in the complexity and verbosity of the design. The design

spans dozens of classes, not even considering all of the unspecified classes of the

transformation and population mapping mechanisms and the parallel Portrayal Feature

mechanism. The description goes on for 43 pages and is still quite terse. By comparison,

the description of the equivalent material in SLD 1.1.0 goes on for 8 pages describing

two classes and includes several examples and an extended discussion of scale handling.

With “implementation-free” designs, there is always the temptation to add more and

more layers of abstractions. There will be no push-back from implementors because

there are none. If mechanisms like this were added to SE, the implementors would

revolt, and perhaps the style designers along with them.

 13

6.4.4 SE feature selection

OGC SE, along with ISO 19117:2005, uses a simple declarative rule-based mechanism

for selecting the portrayal to apply to features. The FeatureTypeStyle in SE contains a

FeatureTypeName to select (identify) the feature type and a Rule which contains an

OGC Filter expression and a MinScaleDenominator and a MaxScaleDenominator. A

Filter expression contains an (unfortunately verbose) XML encoding of common

expressions like “a > 5 and b = 11”. The scale elements identify the fixed range of

scales for which the rule is applicable. Special dimensional constraints can be applied

using a DomainConstraints sub-element and (raster) coverages are handled with a

CoverageStyle element that is parallel to FeatureTypeStyle.

The SE runtime model is simple. Features of one feature type are passed as input to the

rendering engine which uses an SE document plus instance-specific parameters (e.g., map

extent and resolution, background color) as control information and the rendering engine

produces a rendered map as output (e.g., a PNG image).

The SE design is easy to use and straightforward to implement and optimize. A

FeatureTypeStyle is limited to a single feature type and the the rules are simple filters

that can be implemented in numerous different ways and are easy to optimize. An

implementation could retrieve all relevant features in one query or make a separate query

for each rule (or each symbolizer or each rule). The queries are simple conditions for

which indexing may be available. The implementors can choose between execution

efficiency and implementation simplicity.

The fixed scale filtering means that out-of-scope rules can simply be discarded before

query-execution begins (thereby eliminating all effort in executing the other constraints

of these rules). ISO 19117 uses an external function (say, Scale()) as an embedded part

of a rule expression. This makes optimization more difficult since a static analysis of a

rule condition is needed to determine if it contains a Scale() invocation and if it is used in

a simple way (such as “a == 11 and Scale() >= 20000”) versus a complex way (such as

“Scale() >= b” or “a == 11 or Scale() >= 20000”). Combined with the difficulty in

optimizing ISO 19117:Revision schema mappings, ISO implementations may waste a

significant or even an enormous amount of time executing schema-mapping programs

that always produce zero features as output because the scale condition is buried inside of

the mapping program and the query optimizer could not determine that the entire

program or branches of the program need not be executed. An enormous amount of time

could be wasted since portrayal at finer scales tends to access a much greater density of

data than at coarser scales. For example, a road portrayal may include all city streets at a

fine scale but only major highways at a coarse scale, so the mapping program may be run

for every city street in America even though the user is viewing the whole country and

only seeing the major highways. Really, scale conditions must be optimized for efficient

execution. A symbology-encoding design that impedes this optimization does so at its

own peril.

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 14

On the other hand, SE could easily be extended to include a runtime scale function in its

Filter language if this should ever be required. However, the use of the static scales

would be strongly recommended for all cases where it is sufficient (almost all) because of

the ease of optimization.

SE provides a one-to-many feature-to-portrayal mapping with no feature transformations.

However, an optional symbolizer parameterization mechanism has been devised for SE

and is described in Clause 6.7.1. This mechanism allows formal parameters to be

identified by name for a symbolizer and for argument values to be passed into the

symbolizer from outside, normally through a remote symbolizer reference in a

FeatureTypeStyle. This mechanism can be implemented in a straightforward way by

essentially substituting the argument content in every place a feature-property reference

is made within the symbolizer. This mechanism allows symbolizers to be reused to the

same extent as the ISO schema-mapping approach. It is made optional for backward

compatibility and for simplicity when symbolizers are included inline with feature type

styles (where there is no opportunity to reference them remotely).

On the other hand, a general schema-remapping mechanism could be useful with SE

portrayal to fuse multiple source features together to achieve a many-to-many mapping

should this ever be necessary. Such a mechanism would generally useful to OGC for

numerous purposes and so should be designed outside of SE and could be utilized in a

way that is orthogonal to SE: a feature-processing pipeline could transform the features

into the portrayal schema before the SE processing is performed. The SE design itself

does not need to be complicated by this capability. Feature transformation should be

approached in a “pay more, get more” fashion. With the ISO 19117:Revision design, you

“pay more” even when most of the time you only want to use simple conditional styling.

Also keep in mind that an individual remapping program must be supplied for each

different source feature type that is to be mapped to a particular portrayal. There is no

free lunch.

The ISO 19117:Revision schema-mapping concept sounds interesting, but the mechanism

described is convoluted and over-complex, and the benefits over the relatively simple

mechanism in SE are somewhat dubious. It would be difficult to implement, difficult to

optimize, and difficult to design and transform styles for ISO 19117:Revision. The SE

feature-selection approach should remain as-is.

6.5 Portrayal feature & portrayal specification

ISO 19117:Revision contains a great deal of verbosity and redundancy in specializing

feature catalogues and all descendent classes, feature schema mapping and rule-statement

classes, and feature instances and all descendent classes for portrayal features. A

portrayal feature is a feature that is suitable for drawing. This approach may step over

the line into the dark side of object-oriented design methodology — overstructuring. SE

has none of this redundancy. Even if a schema-remapping facility were added directly

into SE, there would be no need for specialized type of feature for portrayal. You would

 15

remap from an ordinary feature to a different ordinary feature with the schema and

semantics that a style was designed for and draw that.

The specialized portrayal feature catalog has the differences of having an

SY_Presentation be part of a feature type and has default values for feature attributes

and associations. In SE, the Symbolizer is identified in a Rule of a FeatureTypeStyle

and there is no need for default property values since the input feature is styled as-is.

The specialized portrayal-feature instance includes a display-priority value, portrayal sub-

features, and portrayal-feature attribute values. It is unclear what a sub-feature is or why

it is indispensable and the attributes seem to be handled in an odd way; they are a list of

key/value pairs rather than objects with direct attributes of the appropriate types, which

seems rather wasteful. Is this how features are modeled in the ISO general feature

model? Perhaps sub-feature is another name for feature association.

The PF_DisplayPriority class has an odd circular definition. Its sole member is a

compare function that takes a PF_DisplayPriority as an argument and returns a

Boolean. There appears to be no means by which a style designer may assign a display

priority; it seems to be inherent. The semantic of the priority value is defined as being

“used to determine the order in which symbols and symbol elements are displayed. A

realization of this type will allow a total ordering of portrayal features for display.” The

total ordering explains why there need only be two comparison-result values (less-than or

greater-than), though the semantic of the return value is not defined (i.e., does false mean

less-than?). The circular definition and the use of an internal function which is not

feasible to realize in a heterogeneous web environment hint that this is really a virtual

mechanism that is handled automatically and opaquely by the runtime system, perhaps in

coordination with an ordered list of feature types to portray in the user interface of a

viewing program.

In SE, display priority is implied by using the painter’s model for processing and SLD/SE

from start to finish. The lists of layers, styles, feature-type styles, and symbolizers are

ordered and succeeding elements are drawn over top of preceding elements. Since ISO

19117:Revision does not have map or layer concepts, the display priority mechanism

appears to be a roundabout way to determine the order of the map from some external

source.

The portrayal specification package in ISO 19117:Revision appears to be redundant

retelling of the portrayal-feature-instance story, which itself is a redundant retelling of the

feature-instance story. It adds an optional fallback portrayal feature should the

construction of a primary portrayal feature fail. It is unclear how this fallback would be

populated with a sensible geometry for the map being drawn. The purpose of

PF_PortrayalSpecification appears to be supply feature properties to the symbolization

mechanism. This explains the presence of the ability to include static features inline;

these can be used to manufacture graphic icons. SE just uses the input-data features as-is

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 16

and SE graphic icons can be built up from “mark” graphics which can include internal

geometries.

6.6 Feature & style catalogs

ISO 19117:Revision defines or references catalogs for many classes, including the feature

catalog, portrayal-feature catalog, portrayal catalog, and portrayal-rule catalog. In fact,

ISO does not appear to be able to function without catalogs that are populated for the data

one wishes to use. What is one wishes to use a standalone Shapefile?

OGC and SLD/SE approach catalogs and repositories in a generic way. A catalog

supplies generic metadata for any type of object and repositories can store any type of

object. SLD and SE classes can be realized as small individual XML documents that can

reference subordinate objects through hyperlinks, so repository services are not required

for operation (ordinary web-accessible files can be used). Also, rather than just being

abstract designs, OGC catalogs and repositories exist as deployed interoperable web

services.

6.7 Symbolization

ISO 19117:2005 was practically empty in terms of defining symbols, supplying only the

means to specify generic textual metadata for the graphical parameterization you would

like to have exist. This approach is non-interoperable to the point of being useless, so

one of the primary (and perhaps the only important) focus of ISO 19117:Revision is to

flesh out the graphical parameterization of symbols.

6.7.1 Root classes

The root class for symbolization in ISO 19117:Revision is SY_Presentation. Its UML

diagram is shown in Figure 2 [ISO 19117:Revision].

SY_Presentation includes a list of browseGraphics which give an icon or icons to use

for browsing or generating legends.

Figure 2: ISO Presentation

 17

The root symbolizer element in SE is Symbolizer and the OWS-6 change proposal for

SE (referred to as SE throughout this section) includes numerous changes over SE 1.1.0

which were inspired by the ISO 19117 revised design and W3C SVG format. The name

“symbolizer” is used in SE because it is felt that the term “symbol” is too overloaded.

Symbolizer is an abstract element which has Version, Name, Description,

LegendGraphic, ArgumentList, and FormalParameters properties. Version is an

important practical concept for SE since XML-encoded SE fragments may be strewn

about the Web and users may build up their styling from numerous fragments of different

versions of SE. Portrayal systems need to recognize the different versions and parse

them appropriately. ISO uses the concept that each dataset has a complete and coherent

symbology and schema specifications integrated into a set of catalogs, which is likely not

realistic. Description gives multi-lingual text metadata, including titles, abstracts, etc.

making use of the OWS-Common mechanism. The ISO equivalent merely uses a single

character string. ISO should take a more general approach to descriptions.

LegendGraphic has the same purpose as browseGraphic in ISO.

ArgumentList and FormalParameters provide an optional mechanism to parameterize

symbolizers to enable them to be reused among incompatible feature types.

ArgumentList is optional and gives a list of named arguments and values which may be

either constants or Filter expressions. FormalParameters is optional and gives a list of

formal parameters and descriptions for the symbolizer. If the FormalParameters

element is not present, then the symbolizer uses the formal parameters of its parent or the

feature properties directly if no parent takes formal parameters. If FormalParameters

are present, then the current symbolizer or a nearest parent symbolizer must provide an

ArgumentList that matches the formal parameters exactly, including argument order and

the symbolizer shall not make use of any variable names that are not included in the

formal parameters (to avoid defeating the purpose of symbolizer parameterization). The

arguments are named to increase the chance of detecting any drift between the SE

fragments where the arguments are generated and the symbolizers where they are

consumed. The normal use case will be for the argument list to be given in a

SymbolizerReference and the formal parameters to be declared in the referenced remote

symbolizer.

Symbolizer has derived elements PointSymbolizer, LineSymbolizer, AreaSymbolizer,

TextSymbolizer, and RasterSymbolizer, CompositeSymbolizer,

SymbolizerReference. The first four correspond to the obvious ISO symbols, but ISO

lacks a specific means to symbolize raster data. CompositeSymbolizer allows multiple

sub-symbolizers to be combined into one, giving SE a one-to-many feature-to-portrayal

mapping. The term “composite” is used instead of “compound” since the sub-symbolizer

contents may over-plot each other. It is unclear if ISO can achieve the x-to-many

mapping in this same simple way. Suppose that you wish to portray a city as a small

circle plus a text label. In SE, this would be accomplished using a

CompositeSymbolizer with PointSymbolizer and TextSymbolizer components. In

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 18

ISO, it appears that you would need to write a mapping program that builds two different

portrayal features, which seems like significantly more style-design effort. Mind you,

there are compounding sub-classes for the point, line, and area symbols, but none that

compound different symbol types. SymbolizerReference allows an external symbolizer

to be referenced using a hyperlink.

ISO includes SY_LinePattern and SY_AreaFill as top-level symbols to enable reuse.

This is a little conceptually odd considering that they are not actually symbols like the

rest of the subclasses of SY_Presentation. Perhaps this is why the name was changed

from SY_Symbol in earlier ISO drafts. SE provides this capability using the

StrokeReference subclass of Stroke and a FillReference subclass of Fill. One could

also imagine a LabelReference subclass of text label. Putting the reuse mechanism at

the graphic level rather than the symbol level makes more conceptual sense.

The CompositeSymbolizer was added to SE to realize the conceptually cleaner ISO-

based design of having a Rule reference exactly one Symbolizer. SE 1.1.0 achieved the

same functionality by allowing a Rule to directly reference multiple Symbolizers, but

this means that a group of symbolizers that are intended to be used together are awkward

to reuse in different Rules. SymbolizerReference was added to SE to clean up the

previously less-explicit referencing mechanism. PolygonSymbolizer of SE 1.1.0 was

changed to AreaSymbolizer because the style can be used with more geometry types

than just polygons.

6.7.2 Coordinate reference systems

In the ISO symbol design, most classes include at least one function that returns the

coordinate reference system in use for instances. For example, SY_LinePattern includes

the public functions lineCRS() : SC_CRS and localCRS(measure: Real) : SC_CRS.

The localCRS function takes a parameter which is the linear distance along a line. This

mechanism is very abstract, and given that functions are used, it cannot be encoded into

an interoperable concrete form. It is equivalent to saying that a coordinate reference

system exists for every object, but the style designer cannot know what it is or redefine it.

The SC_CRS class appears to be defined in ISO 19115 which costs US$189.00 to look

at.

ISO 19117:Revision does not even directly include a unit-of-measure concept; it is

implied by the CRS that the style designer cannot know or change. The user needs to

know or explicitly specify what units are meant when a stroke width of 0.8 is given or a

geometry translation of -4,6. This issue needs to be addressed in the ISO design. How

does the user make the stroke width 0.8 mm?

SE uses a much more pragmatic coordinate-reference-system model, based on the SVG

approach. All symbolizers can include a UnitOfMeasure element. Within a symbolizer,

the view box for plotting the map is defined as a rectangle with coordinates 0,0 being the

upper left corner and coordinate values advancing leftward (X) and downward (Y) in the

active unit of measure. Geometries to be plotted are logically converted into the

 19

symbolizer CRS. The source-data and map geographic CRSes are irrelevant in this

context. Many sub-elements can also include a UnitOfMeasure, which overrides the

global scope within the local scope. Graphical parameters such as stroke width are in the

local unit of measure. A similar CRS concept is used within graphic icons.

Defining the Y coordinate to advance downward may be awkward to deal with, but this is

how SVG is defined, which is where SE borrows many of its graphical semantics. SE

1.1.0 had a simpler CRS model (pixels only) and limited geometry-transformation

capabilities. The pixels-only approach poses problems when plotting at different

resolutions.

6.7.3 Parameterization

Parameterization provides the means by which graphic parameters may access feature

properties to give them variable values. The UML diagram for the ISO parameterization

is shown in Figure 3 [ISO 19117:Revision].

SE provides the corresponding functionality with the hidden class

ParameterValueType. It is defined to take either a literal value or use an OGC Filter

expression. In SE 1.1.0, it could also mix filters and literal values, but this is awkward

and redundant. The variable names used in the expression refer to source-feature

properties unless formal parameters are in scope, in which case they refer to the formal

parameters. SE parameters may include arbitrarily complex expressions where ISO

parameters may only reference a portrayal-feature property. However, an ISO portrayal

feature may have arbitrary properties with values computed from arbitrary expressions.

The SE approach would seem to be more convenient, since the expression is placed

Figure 3: ISO Parameterization

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 20

directly where it is needed rather than being pushed back into a conceptually different

part of the process. The ISO mechanism is hampered by remaining within the direct

expressive capabilities of UML.

6.7.4 Line symbolization

The ISO SY_LineSymbol is defined by the UML diagram in Figure 4 [ISO

19117:Revision].

«type»

SY_LineSymbol

+ pattern: PF_PortrayalSpecification<SY_LinePattern>

+ localCRS(measure :Real) : SC_CRS

«type»

SY_LinePointSymbol

+ measure: Real

+ pointSymbol: PF_PortrayalSpecification<SY_PointSymbol>

Is measure absolute

or proportional?

+lineIcon 1.. *

It causes a line to be styled with an SY_LinePattern plus optional

SY_LinePointSymbols which are over-plotted along the line. Since the lineIcons are

supplied manually, one would presume this would generally be used for arrowheads or a

graphic annotation in the middle of a line, in which case, the measure would need to be

proportional or else the capability would be unusable in practice. How long is a line?

The SE LineSymbolizer element extends the Symbolizer abstract element and adds sub-

elements Geometry, UnitOfMeasure, PerpendicularOffset, Transform, and Stroke.

Symbolizer sub-elements are placed in the order of the flow of processing. Most sub-

elements are optional. Symbolization is carried out in the context of the current source-

data feature.

The Geometry element extracts the geometry to use from the source-data feature (there

can be more than one). UnitOfMeasure gives a well-known identifier for the unit of

measure to use and is discussed further in Clause 6.7.2. The geometry is transformed into

the map view-box CRS with the indicated or default unit of measure. The

PerpendicularOffset and Transform elements manipulate the geometry and the Stroke

element supplies the style to use to draw the line, as discussed below.

ISO SY_LinePattern is defined in Figure 5 [ISO 19117:Revision]. It has subclasses

SY_CompoundLinePattern, SY_PointSymbolLinePattern,

SY_GraphicsLinePattern, and SY_TransformedLinePattern.

Figure 4: ISO Line Symbol

 21

«type»

SY_PointSymbolLinePattern

+ unitLength: Real

+ masking: Real = 0

+ patternIcon: PF_PortrayalSpecification<SY_PointSymbol>

«type»

SY_LinePattern

+ lineCRS() : SC_CRS

+ localCRS(measure :Real) : SC_CRS

«type»

SY_ CompoundLinePattern

+ element: PF_PortrayalSpecification<SY_LinePattern> [1..*] {ordered}

«type»

SY_TransformedLinePattern

+ translation: TVector<dimension->2>

+ scale: Real

+ stretch: Real

+ transformElement: PF_PortrayalSpecification<SY_LinePattern>

«type»

SY_GraphicsLinePattern

+ specification: CI_Citation

SE supplies all stroke styling with the abstract Stroke element which has derived

elements PenStroke, GraphicStroke, TextStroke, CompoundStroke, and

StrokeReference. StrokeReference references a remote stroke using a hyperlink.

ISO SY_CompoundLinePattern appears to supply an ordered list of SY_LinePattern

objects, allowing a composite stroke pattern to be built from simpler stroke patterns. The

true meaning of PF_PortrayalSpecification<SY_LinePattern> is a unclear. It

templatizes the presentation properties of PF_InlinePortrayal and

PC_PortrayalFeatureType and perhaps other related classes. The real meaning of this

is very convoluted and poorly explained. Does each element instance cause a portrayal

feature to be constructed? If so, then how does one make the constructed geometry have

the right coordinate values?

SE CompoundStroke allows a stroke pattern to be built from simple stroke types. It

includes sub-elements PreGap, list of StrokeElements and/or

AlternativeStrokeElements, PostGap, and an optional list of

StrokeAnnotationGraphics. The PreGap gives the distance to advance along the line

before plotting anything and is in the unit of measure in context and PostGap gives the

distance from the end of the line to stop plotting (to clear the way for arrowheads, for

example). StrokeAnnotationGraphics allow a stroke to include arrowheads at either

end or other annotations, same as ISO SY_LinePointSymbol.

StrokeAnnotationGraphic includes a RelativePosition, which is a decimal number

between 0 and 1 where 0 means the starting point of the line, and RelativeOrientation,

which is described below with GraphicStroke.

SE StrokeElement includes a PreGap, a simple sub-stroke element, a Length, and a

PostGap. PostGap gives the distance to advance after rendering the sub-stroke. Both

Figure 5: ISO Line Pattern

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 22

PreGap and PostGap are allowed, though they are normally redundant, to give more

flexibility in AlternativeStrokeElements (below). Gaps can be supplied in ISO using

SY_TransformedLinePattern. Length gives the distance to plot using the sub-stroke

style. SE Length is needed with simple strokes because they are inherently infinitely

long. With a GraphicStroke sub-stroke, Length overrides the previous value. ISO does

not appear to have the capability to limit compound-stroke element lengths in all cases,

which is a crucial requirement.

SE AlternativeStrokeElements supplies a list of alternative StrokeElements in order of

preference. Normally, the first StrokeElement in the list will be used for styling, but if

using it would produce an undesirable appearance, the rendering system can consider the

alternatives in turn, choosing the first one that can be used successfully. Normally, this

capability will only be used with a GraphicStroke StrokeElement to supply an

alternative PenStroke StrokeElement to use instead of the GraphicStroke on sharp

corners when the graphic would overshoot the line segment or over-plot previously

plotted graphics, as discussed further in Clause 7.2. This mechanism does not add

fundamentally more implementation complexity to SE, and simple implementations can

always choose the first alternative.

ISO SY_PointSymbolLinePattern allows a graphic icon to be repeated along the length

of a line. The unitLength property gives the repetition length. ISO does not specify

where in the repetition length the point is plotted (e.g., the start or the middle). The

masking property gives the distance around the point symbol to erase from of the super-

pattern. This erasing may be difficult to implement.

SE GraphicStroke repeatedly plots a graphic along a line and includes sub-elements

Graphic, Length, and RelativeOrientation. Graphic specifies the graphic icon to plot.

Length gives the linear length to reserve for the graphic, which is plotted at the midpoint.

The default length is the width of the view box of the graphic. RelativeOrientation tells

how to orient the graphic with respect to the line and is an enumerated type which allows

the values normal, line, portrayal, and normalUp. The value normal means

perpendicular to the line; line means in the direction of the line; portrayal means straight

up with respect to the parent portrayal environment, which will normally be the map; and

normalUp means perpendicular to the line but to rotate an additional 180° to avoid the

graphic facing downward with respect to the portrayal environment. The ISO relative

orientation is unclear, as discussed in Clause 6.7.6.1.

ISO SY_TransformedLinePattern allows a subordinate line pattern to be transformed

with respect to the line coordinate system. It has properties translation, scale, and

stretch. They are all unparameterized. The translation property specifies a translation

in two dimensions, along the line and perpendicular to the line. The new line pattern may

be longer than or shorter than the original pattern because of corners in the line. ISO

does not specify how to handle corners, which have a discontinuity in the translated

position. The scale property specifies scaling perpendicular to the line and the stretch

property stretches a pattern out along the line. Use of the dimensions along and

 23

perpendicular to the line is rather clever. However, the generality of this mechanism may

make it difficult to implement.

SE PerpendicularOffset of the LineSymbolizer transforms the line geometry in the

same way that perpendicular translation in ISO transforms the line pattern. The SE

method may be easier to implement because it is a very specific mechanism; it transforms

one complete geometry and not fragments of styles. Translation along the line is

supplied by gaps in CompoundStroke. Scaling a pattern perpendicular to the line and

stretching a pattern along the line are not specifically needed since the same effect can be

realized by using wider stroke styles or scaling graphic-stroke icons vertically and/or

horizontally in their own coordinate spaces.

SE also includes a Transform element in every symbolizer. This element allows a 2D

affine transformation to be specified with respect to the map coordinate space using

translation, rotation, scaling, and/or a full 3×3 affine-transformation matrix. This

capability could be used with a composite symbolizer to produce a shadow effect, for

instance. ISO does not appear to offer this capability for line styles.

ISO GR_Stroke is defined in Figure 6 [ISO 19117:Revision]. It gives a stroking style

for use with SY_GraphicsLinePattern, though the binding is considered to be loose,

allowing ISO to use any number of different graphic languages.

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 24

GR_Stroke and descendent classes supply a number of graphical parameters for strokes,

including startCap, endCap, join, width, offset, fill, shape, and dash start, length, and

space. The properties startCap and endCap give the pen shape with which to start and

end lines. The join property gives the shape to use to join line segments together. The

properties startCap, endCap, and join are not parameterized even though similar

enumerated properties in GR_TextStyle are. The properties width and offset are used to

give the drawing width of the pen and the purpose of offset is unspecified. Perhaps it is a

linear or perpendicular offset, similar to the functionality provided by

SY_TransformedLinePattern. The fill property gives the filling pattern for the pen

plotting. The shape property gives an optional linear geometry to stroke. This capability

seems a little out of place since stroke should be a style and not a graphic element. The

repeated start, length, and space elements give a dash pattern.

SE PenStroke defines a stroke style in a very similar way to ISO. PenStroke includes

sub-elements Color, Stipple, Opacity, Width, LineJoin, LineCap, DashArray, and

DashOffset. All but Stipple are derived from SVG. A Stroke must have a Color or a

Stipple but not both. Color gives a solid color encoded in the simple SVG/HTML

Figure 6: ISO Stroke

 25

“#RRGGBB” form. Stipple refers to a graphic fill pattern. Opacity is self-explanatory

and ISO does not provide it. Width gives the pen width. LineJoin and LineCap give

the pen shapes at line corners and line ends. SE does not include specific caps for each

end of the line and neither does SVG, so this capability may not be very important.

DashArray gives a list of pen-down/pen-up drawing lengths and DashOffset gives the

distance before the first pen-down. This is the similar dashing information to ISO though

organized in the SVG way. The ISO dash start and space are redundant in all but the

first dash pattern.

SE provides a TextStroke which ISO does not have. This allows a line style to include

an embedded text label along the line. It includes a lone LineLabel sub-element which

specifies the label content and style and is described in Clause 0. This capability is

necessary, for example, to draw some USGS contour lines which have a solid line that is

interrupted by numeric elevation values.

The SE design for OWS-6 is greatly improved over SE 1.1.0. SE 1.1.0 had very poor

support for complex line styles.

6.7.5 Area symbolization

ISO area symbolization is provided by SY_AreaSymbol which is defined in Figure 7

[ISO 19117:Revision].

«type»

SY_AreaSymbol

+ fi l l : PF_PortrayalSpecification<SY_AreaFill> [0..1]

+ boundaryPattern: PF_PortrayalSpecification<SY_LinePattern> [0..1]

+ areaIcon: PF_PortrayalSpecification<SY_PointSymbol> [0..1]

+ areaCRS() : SC_CRS

«type»

Presentation Root::

SY_Presentation

The fill property gives an optional area-fill pattern; the boundaryPattern property gives

an optional boundary-line stroking pattern; and the areaIcon property gives an optional

point symbol to plot at a specific location within the area.

SE AreaSymbolizer extends abstract element Symbolizer and has sub-elements

Geometry, UnitOfMeasure, PerpendicularOffset, Transform, Fill, and Stroke. They

Figure 7: ISO Area Symbol

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 26

are all optional. Geometry to Transform and Stroke are described with the

LineSymbolizer in Clause 6.7.4. The PerpendicularOffset transformation applies only

to the boundary outline of an area geometry, not its internal area. Fill specifies a fill

pattern. SE does not have an areaIcon equivalent, but an area geometry can be rendered

with a PointSymbolizer if necessary.

ISO SY_AreaFill and subordinate classes are defined in Figure 8 [ISO 19117:Revision].

«type»

SY_ PatternFill

+ tileOffset: TVector<dimension->2> [2]

+ patternIcon: PF_PortrayalSpecification<SY_PointSymbol> [1..*] {ordered}

+ ti leCRS() : SC_CRS

«type»

SY_ HatchFill

+ direction: TVector<dimension->2>

+ interval: TVector<dimension->2>

+ hatchElement: PF_PortrayalSpecification<SY_LinePattern> [1..*] {ordered}

+ hatchCRS() : SC_CRS

«type»

SY_AreaFill

+ areaCRS() : SC_CRS

«type»

SY_CompoundAreaFill

+ element: PF_PortrayalSpecification<SY_AreaFill> [1..*] {ordered}

«type»

SY_TransformedAreaFill

+ transformation: TMatrix<rows-->3,columns-->3>

+ relativePlacement: SY_RelativePlacement = portrayal

+ transformedElement: PF_PortrayalSpecification<SY_AreaFill>

«type»

SY_GraphicsFill

+ specification: CI_Citation

SE Fill has subordinate classes SolidFill, GraphicFill, and FillReference.

ISO SY_CompoundAreaFill includes a list of sub-fill elements. The semantics of how

the compounding works are not spelled out. Unlike with stroke styles, fill styles are

inherently two-dimensional, so one would expect compounding to be defined in two

dimensions. SE does not include this mechanism as it seems unnecessary since external

graphic icons (for example, in SVG or PNG format) can be used which contain any tiling

pattern desired or many can be built using the internal graphic-icon-styling mechanism.

ISO SY_TransformedAreaFill allows a fill pattern to be transformed with a 3×3 affine-

transformation matrix with a relative placement. SE does not include this functionality

since tiling graphics can include any content.

ISO SY_HatchFill defines a hatching pattern for fills using a line style, direction, and

interval. It cannot achieve cross-hatching since only a single line can be specified.

Perhaps this is what SY_CompoundAreaFill is for, composing fill patterns (making one

pattern be plotted over top of another). In SE, graphic composition is handled inside the

Graphic mechanism. SE does not include hatching functionality since tiling graphics

can include any content.

ISO SY_PatternFill produces a repeated-icon fill and has properties tileOffset and

patternIcon. The tileOffset property provides two two-dimensional vectors giving the

intervals between successive icons in two directions. The patternIcon property gives a

list of graphic icons.

Figure 8: ISO Area Fill

 27

SE GraphicFill produces a repeated-icon fill and has sub-elements UnitOfMeasure,

Graphic, and TileGap. Graphic supplies a single graphic icon and TileGap gives X

and Y gaps between successive tiles. In SE, graphic icons have an inherent “view box”

(sometimes a bounding box) and this rectangle is what determines how they are tiled

together. Formats like SVG and PNG have very explicit view boxes. With no TileGap,

the view boxes are plotted to abut each other, with the pattern repeating in rows and

columns. This makes it feasible to produce, say, a PNG of the desired pattern with some

elements straddling the edge between two repetitions and be confident that they will be

plotted with no interruption. They are true rectangular “tiles”. The TileGap can be used

of the inherent view box of the graphic icon is not satisfactory.

SE relies on the rectangular-tile semantic to produce all of the complicated fill patterns.

The problem of producing these tiles is pushed into the Graphic element or external

formats. External formats can supply the most professional-looking patterns. In ISO,

graphic icons appear to be plotted in a strictly point-oriented way and it offers more

control in producing fill patterns.

ISO SY_GraphicsFill is used in conjunction with GR_Fill (or some other graphic

language) to produce simple fill patterns. GR_Fill is defined in Figure 9 [ISO

19117:Revision].

Figure 9: ISO Fill

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 28

ISO GR_SolidFill provides fills of a solid color. SE supplies this functionality using the

SolidFill type of Fill. It has sub-elements Color and Opacity.

ISO GR_BitMapFill references a bitmap image (matrix of colored pixels) and allows it

to be scaled in the X and Y directions. The exact meaning of the scaling factors is

unclear, since neither the bitmap nor the fill have an inherent CRS. GR_BitMapFill is

the closest ISO match to how SE GraphicFill works. The ISO bitmap image can include

any complex pattern, though only in a raster format. SE can use vector formats like SVG

in the same way just as easily.

ISO GR_GraduatedFill provides a graduated fill at an angle between multiple colors. In

a graduated fill, the fill color smoothly changes from one value to another perpendicular

to the angle. The specifics of the mechanism are not described at all. SE does not

provide this capability directly. However, in cases where graduated fills are used within

graphic icons and not specifically for filling feature geometries, an external format such

as SVG which includes graduated fills can be used for these icons rather than relying on

the internal graphic-icon-building mechanism. There probably are not many symbology

standards that use graduated fills for feature geometries.

The splitting of the fill mechanism between SY_AreaFill, et al. and GR_Fill, et al. seems

a bit odd, considering that they both define graphical patterns. In SE, the symbolizers

operate at the feature-presentation level and the Stroke, Fill, etc. elements operate at the

graphic-pattern level, and Fill is integrated to supply both solid fills and repeated-graphic

fills. The odd split causes a problem in ISO in that that the more complex stroke and fill

patterns are unavailable for use in building GR_Graphic icons. In SE, internally built

graphic icons can make full use of all of the Stroke functionality. In ISO, a

GR_Graphic stroke cannot have a repeated graphic pattern, even though

implementations will have this functionality available.

6.7.6 Point symbolization

6.7.6.1 ISO point symbolization

ISO point symbolization is provided by SY_PointSymbol which is defined in Figure 10

[ISO 19117:Revision].

 29

«type»

SY_PointSymbol

+ pointSymbolCRS() : SC_CRS

«type»

SY_CompoundPointSymbol

+ element: PF_PortrayalSpecification<SY_PointSymbol> [1..*] {ordered}

«type»

SY_TransformedPointSymbol

+ transformation: TMatrix<rows-->3,columns-->3>

+ relativeOrientation: SY_RelativePlacement = notApplicable

+ transformedElement: PF_PortrayalSpecification<SY_PointSymbol>

«type»

SY_GraphicsSymbol

+ specification: CI_Citation

«code list»

SY_ Relativ ePlacement

+ portrayal

+ geometry

+ notApplicable

ISO SY_CompoundPointSymbol produces a composition of sub-symbols. The

corresponding SE element is CompositeGraphic. The term “composite” is used instead

of “compound” in SE since sub-graphics can overlap. If they do, they are rendered

according to the painter’s model.

ISO SY_TransformedPointSymbol produces an affine transformation of a point symbol

using a 3×3 matrix of homogeneous coordinates. It includes a relativeOrientation

property which can take the values portrayal, geometry, or notApplicable, which

“specifies if the transformation is relative to the superordinate presentation, relative to the

portrayal coordinate reference system, or not applicable” [ISO 19117:Revision]. It is

unclear which is which between portrayal and geometry, and the exact semantics of

each is not clear. Does this mechanism provide a means to show highway shields

straight-up with respect to a map that are plotted along a line? If so, it seems a little odd

that ISO includes the relative-orientation property within the icon-symbol definition

itself, since this might limit the reuse of the icon. In SE, a relative orientation property is

present only in a GraphicStroke to tell how to orient the contained Graphic with respect

to the linear geometry.

In SE, transformations are available at two levels, in the PointSymbolizer for the feature

geometry and in the ExternalGraphic and MarkGraphic elements for sub-graphic

geometries, using the Transform sub-element which is discussed in Clause 6.7.4.

ISO SY_GraphicSymbol uses GR_Graphic, or perhaps an external graphic language, to

construct graphic icons. GR_Graphic and related classes are defined in Figure 11 [ISO

19117:Revision].

Figure 10: ISO Point Symbol

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 30

The GR_Graphic mechanism seems to be technically redundant in ISO. Since All of the

symbols reference and transform sub-symbols and static features can be included in a

symbology specification inline, this means that a graphic icon could be built up as being a

mini-map of static features. However, passing source-data feature properties through to

the mini-map would require features to be constructed from a static geometry plus the

required properties of the source feature, and ISO provides this functionality. SE

Graphic could be approached in a similar way. ISO GR_Graphic provides an easier-to-

use mechanism than using symbols with static or constructed features, though it is less

powerful since it is isolated from the transformation and complex-pattern mechanisms

available in the symbols.

Figure 11: ISO Graphic

 31

ISO GR_Graphic includes a list of GR_GraphicElements, which derives various

classes. GR_CurveShape and GR_SurfaceShape include a geometry of the appropriate

type and reference stroke and/or fill styles as appropriate. GR_GraphicText and

GR_PathText include a text label, a geometry, and font-styling information.

GR_BitMapGraphic gives an origin point and references a GR_BitMap image. Just

giving an origin point is insufficient since the pixel size is unspecified. A bitmap cannot

be rescaled to match the size of other graphic elements. A width and a height or

equivalent in the graphic CRS are needed for rescaling. GR_BitMapFill includes

scaling factors which can supply this information when used in that context.

GR_BitMap is defined in Figure 12 [ISO 19117:Revision].

The term “bitmap” is a somewhat of a misnomer since a literal bitmap stores only one bit

of information for each pixel. Perhaps “pixel map” or “raster” would be a more

appropriate term. Also, the matrix representation will be quite bulky since GR_Colour

is a complex type, compression is not specified, and a structured realization in an

encoding such as XML will add even more bulk. SE does not include an inherent raster

concept but instead uses external formats such as PNG for this purpose. PNG is compact,

compressed, and even when it is included inline in an XML graphic, it is base-64

encoded, which only adds 35% overhead (as opposed to a full XML structuring of every

color component). Also, PNG is a standard format, meaning that there are many tools for

manipulating and viewing such images.

GR_Colour is defined in Figure 13 [ISO 19117:Revision].

«parameterizable»

GR_BitMap

+ height: Integer

+ width: Integer

+ rasterData: Matrix<height,width,PF_Color>

Figure 12: ISO Bit Map

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 32

This organization includes an enormous amount of structuring for such a basic

component of styling. There will also be an issue with the British spelling of the term

“color” instead of the American spelling, though some people will be irritated either way.

SE uses the American spelling of the term and uses the simple and standard HTML/SVG

“#RRGGBB” format. This format can also be computed at runtime as a string expression.

6.7.6.2 SE point symbolization

SE point symbolization is provided by PointSymbolizer which is derived from

Symbolizer. It includes sub-elements Geometry, UnitOfMeasure, and Transform

which are discussed in Clause 6.7.4 and Graphic which defines the graphic icon to plot.

Graphic is an abstract element with derived elements ExternalGraphic, MarkGraphic,

PointTextGraphic, AlternativeGraphics, CompositeGraphic, and GraphicReference.

SE could take a mini-map approach to defining graphic icons, but this would be

semantically awkward since symbolizers deal with features rather than just geometries

and SE does not include (and does not need) an internal feature-construction mechanism.

On the other hand, the non-mini-map approach implies redundancy between the Graphic

elements and the Symbolizer elements.

ExternalGraphic imports a graphic in an external encoding such as SVG for use with

SE. This capability is crucial in practice, since most icons will already be available in

Figure 13: ISO Colour

 33

some standard format, and converting them to an internal graphic language like with ISO

would be awkward and time-consuming for the style designer any may result in an

unprofessional appearance, since implementations may not support sophisticated

rendering (e.g., antialiasing), whereas standard-format tools will (e.g., librsvg SVG

rasterization library). ISO makes vague references to supporting external formats, but

includes no specific mechanism for this purpose.

ExternalGraphic contains sub-elements OnlineResource/InlineContent, Format,

UnitOfMeasure, ViewBox, Transform, Opacity, and Halo. OnlineResource

references external-format content by hyperlink and InlineContent allows the external-

format content to be included inline with the ExternalGraphic content encoded in XML

or Base64. Format identifies the format of the external content using a MIME type (e.g.,

image/svg+xml). Implementations are expected to support common external formats.

ViewBox is optional and supplies a simple and convenient method to change the “view

box” of the external graphic. The default view box will be based on the inherent

coordinate values used in the external content. The view box is important in SE for two

reasons: it determines the “anchor point” or “pivot point” that will be used to plot the

graphic and it determines the physical size of the graphic when rendered, in the context of

the UnitOfMeasure. The anchor point is the location within the graphic that will be

aligned with the symbolizer control point when rendering and is the origin of the

coordinate reference system of the view box (i.e., the (0,0) point). The coordinate space

has the X axis pointing rightward and the Y axis pointing downward, as with the map

viewport.

ViewBox contains an optional Width and an optional Height. The inherent view box of

the external graphic and all of its internal coordinate values will be changed so that the

view box will have the indicated width and/or height and will be centered around the

origin of the CRS. If a width or height is negative, the coordinates will be flipped about

the origin. This is useful with formats like TrueType fonts which are defined to have the

Y axis pointing upward. If one of Width or Height is omitted, its value will be derived

from the other based on the aspect ratio of the inherent view box. If both are omitted, the

original view-box span will be retained, but it will be recentered around the origin.

ViewBox offers a very simple mechanism to recenter and resize external graphics, and

Transform offers the full capacity to perform affine transformations on coordinate

values. Transform, if present, is applied to the results of ViewBox, if present, or the

inherent external-graphic coordinate values.

Opacity changes the opacity of the entire external graphic and Halo causes a halo to be

rendered behind the graphic. Halos are discussed in Clause 0.

MarkGraphic is similar to ExternalGraphic, except that the format provides a

geometry to be stroked and filled rather than a complete graphic. The geometry of a

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 34

mark can be supplied as an external format using WellKnownName, using

OnlineResource/InlineContent and Format and MarkIndex elements, or using a GML

geometry. WellKnownName references a shape by a well-known name such as

“square” or “circle”. The external-format mechanism is similar to ExternalGraphic

and includes an additional MarkIndex to dereference a specific mark within a collection

of marks, such as a font file. Alternatively, the geometry can be given by an inline GML

geometry object using any member of the gml:_Geometry abstract class, though points

are not useful.

MarkGraphic includes sub-elements ViewBox, UnitOfMeasure, Transform, and Halo

which were discussed with ExternalGraphic, plus Fill and Stroke, which fill and/or

stroke the geometry according to user-supplied styles. MarkGraphic supplies the means

for the use to build a graphic manually, using GML geometries, if the user should choose

to do so.

PointTextGraphic provides a text label within a graphic icon at a point. It includes sub-

elements Position giving the point, UnitOfMeasure, and PointLabel giving the label

style. An example use case would be to paint the highway number on a highway shield.

Label styles are discussed in Clause 0. These text labels should not be repositioned by

the rendering system to deconflict them with other text labels, as this would damage the

integral presentation of the graphic.

AlternativeGraphics provides a means for alternatives to be given for a graphic, in order

of preference, in case a portrayal system does not support some external formats. SE

portrayal is defined to be best-effort. A list of Graphics to choose from is given. Each

graphic should provide a semantically equivalent portrayal and the last one should be as

simple as possible.

CompositeGraphic binds together a group of Graphics to be treated as a single unit.

Each member graphic needs to be compatible with the other members of the group. For

example, they need to be laid out so their relative coordinate positions produce the

desired appearance. The origin point of the CRS(es) is used for point positioning and the

composite view box is the minimum bounding rectangle of the view boxes of the

members.

GraphicReference refers to a Graphic through a hyperlink. This mechanism can be

used to facilitate graphic-icon libraries.

6.7.7 Text symbolization

ISO SY_TextSymbolizer is defined in Figure 14.

 35

«type»

SY_TextSymbol

«type»

SY_GraphicsTextPoint

+ specification: CI_Citation

«type»

SY_GraphicsTextCurve

+ specification: CI_Citation

Text can be portrayed at a point or along a curve, and repetition of the text label may be

useful if a very large area is given or a very long curve. The real work of text portrayal is

performed using GR_GraphicText for points and GR_PathText for curves. These were

both shown in Figure 11 in Clause 6.7.6.1.

SE TextSymbolizer provides text symbolization. It includes sub-elements Geometry,

UnitOfMeasure, PerpendicularOffset, and Transform, which are discussed in

Clause 6.7.4, plus Label. Label is an abstract element which has derived types

PointLabel and LineLabel, which correspond to the expected ISO classes. It is odd that

ISO uses the term “line” at the top symbolizer level, “curve” at the second symbolizer

level, and “path” within the graphics library to refer to the same concept. SE uses “line”

throughout.

ISO GR_GraphicText includes properties text, position, rotation, and a reference to a

GR_TextStyle object. The text property gives the text label to be plotted and is

parameterized, but the other properties are not parameterized. The position property

gives direct coordinate values for the label location. This is suitable for plotting a label

within a graphic icon, but it is unclear how to take the position from a feature geometry.

The rotation property gives to rotation to apply to the label. GR_TextStyle is defined in

Figure 15.

Figure 14: ISO Text Symbol

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 36

GR_ FontSpecification

+ writingSystem: CharacterString

+ family: CharacterString

+ size: Real

+ stretch: Real

+ style: CharacterString

+ variant: CharacterString

+ weight: CharacterString

+ writingMode: CharacterString

+ spacing: Real

+ anchor: CharacterString

+ decoration: CharacterString

+ colour: GR_ Colour

«enumeration»

GR_VerticalAlignment

 top

 center

 bottom

«enumeration»

GR_HorizontalAlignment

 lef t

 center

 right

GR_TextStyle

+ masking: property<Real> = 0

+ horizontalAlignment: property<PF_HorizontalAlignment>

+ verticalAlignment: property<PF_VerticalAlignment>

+font

1

ISO GR_TextStyle includes properties masking, horizontalAlignment, and

verticalAlignment, and font. The masking property presumably supplies a radius

around the text glyphs to blank out the super-pattern as it did with

SY_PointSymbolLinePattern in Clause 6.7.4. The alignment properties indicate which

point within the area occupied by the rendered point label is to be aligned with the

plotting position, with three options for each alignment.

SE PointLabel includes sub-elements UnitOfMeasure, LabelText, Font,

HorizontalAlignment, VerticalAlignment, Rotation, ExclusionZone, Halo, Fill, and

Stroke. LabelText gives the text value to plot. The alignments give the anchor point

within the label area and there is an additional vertical-alignment value over ISO of the

baseline of the font. Rotation gives the label rotation in clockwise decimal degrees. Fill

and Stroke have their usual meaning.

SE ExclusionZone provides either a circle or rectangle around the plotting point where

the text label should not be plotted. This is to facilitate the combination of graphic icon

with a text label in a composite symbolizer. A zone is given rather than a specific offset

since it is recognized that a sophisticated portrayal system will include some kind of

label-deconfliction mechanism. An explicit label alignment can be considered to be a

hint of the most desired position. ISO does not include an exclusion-zone concept, which

will make deconfliction more difficult to implement, as the portrayal system must

automatically determine that it should be labeling a graphic icon rather than just a point

in space in applicable cases.

Figure 15: ISO Text Style

 37

SE Halo provides a fill underneath a text glyph (or graphic icon) to a specified radius

around the exterior (and interior) of the shape. This can prevent text labels from

becoming illegible when plotted over a cluttered background. ISO provides a masking,

which erases the superpattern rather than providing a positive fill. Whether this will

make text illegible sometimes depends on exactly what the term “superpattern” means.

The most obvious meaning would be that it only applies to the styling of a single source

feature type (or integrated group), meaning that other portrayed feature types may have

content that crosses the label making it illegible. A positive-fill mechanism should be

added to ISO.

ISO GR_FontSpecification includes many font properties, presumably derived from

CSS/SVG. None of the properties is parameterizable, which is a significant limitation for

size. SE Font includes only sub-elements UnitOfMeasure, FontFamily, FontStyle,

FontWeight, and FontSize. The font-specific sub-elements are name after the CSS/SVG

font parameters and have the same semantics, except that the unit of measure can only be

supplied by the UnitOfMeasure element. CSS/SVG defines numerous font/text

parameters and SE can be extended to include them using XML extensibility

mechanisms. The previous SvgParameter mechanism of SE could supply any CSS/SVG

parameters without needing XML schema changes.

ISO GR_PathText includes properties text, path, fontType, masking, and offset.

These have familiar meanings, but it is not clear whether offset is along the line or

perpendicular to the line. A perpendicular offset is needed to avoid the label over-

plotting the line stroke if desired.

The organization of GR_PathText is inconsistent with GR_GraphicText, as

GR_PathText includes its properties inline whereas GR_GraphicText splits the

corresponding properties between itself and GR_TextStyle for no apparent reason.

Nothing else refers to GR_TextStyle.

SE LineLabel has properties UnitOfMeasure, LabelText, Font, HorizontalAlignment,

VerticalAlignment, Halo, Fill, and Stroke. These were all discussed with PointLabel.

ISO does not include corresponding horizontal and vertical alignments.

HorizontalAlignment indicates to which end of the line to anchor the label, which may

loosely correspond to ISO offset if that is intended to be linear. However, a label-

deconfliction mechanism may choose to plot the label at any position along the line,

which would make an explicit value a hint. VerticalAlignment is an important

parameter that ISO should include. It could be crudely simulated by ISO offset if that is

intended to be perpendicular. SE also includes a PerpendicularOffset in the

TextSymbolizer to move the label away from the line stroke in a composite symbolizer,

when drawing labeled roads, for example. How would the example work in ISO? If two

portrayal-feature types are needed, one for the road line and another for the road-label

text, how would these show up in a map legend as a single integrated style?

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 38

6.8 Conclusions

ISO 19117:Revision and OGC SLD/SE are two different systems for encoding

symbology. They are too conceptually different for a syntactic and/or semantic merge to

be feasible at this time. SLD includes useful high-level Map and Layer concepts that ISO

does not. ISO includes a complicated schema-remapping mechanism that appears to be

experimental research and is therefore really not suitable for international

standardization. SE achieves similar functionality using a simple condition-based

mechanism that should be suitable in almost all practical use cases. The SE mechanism

is easy to use, easy to implement, and easy to optimize. The ISO mechanism will be

difficult to use, difficult to implement, and almost impossible to optimize.

The feature-symbolization mechanism in ISO is much more straightforward and sensible

than the feature-remapping mechanism. SE symbolization has been extended in the

OWS-6 project to provide all of the important functionality of the ISO design, while

prioritizing implementation simplicity, concrete functionality in the Web environment,

and compatibility with existing deployed versions of SE.

7 IHO S-52 symbology

7.1 Introduction

International Hydrography Organization (IHO) S-52 is both a symbology-encoding

mechanism and a symbology library [IHO S-52]. The S-52 symbology-encoding

mechanism uses terse commands encoded in character strings, for example,

“SPC;SW3;PU500,500,1000,1000;SCsample99,1;PD1000,500;”. An automatic

translation between S-52 encoding and SE would be desirable, but is out of scope. The

objective here is to make sure that SE has sufficient expressive power to encode the S-52

symbology library.

A report on S-52 harmonization with SE 1.1.0 was written by TENET Technology Ltd

[TENET Report] and an additional change proposal was written by OSS Nokalva [OGC

09-043] relative to the TENET report and CubeWerx SE changes proposed for the OWS-

6 project [OGC 09-016]. These reports discuss the issues of complex line styles, graphic-

icon pivot points, and geometry-type delineations.

7.2 Complex line styles

SE 1.1.0 has a very simple mechanism for complex line patterns that is inadequate for

many purposes. It includes only the capability to repeat a single graphic icon with gaps

between. The intention was that the single graphic could be arbitrarily long and the

rendering system could sensibly twist it around corners, but this is not realistic,

considering that the graphic could be a raster and the rendering system would therefore

have no means to analyze the content. The problem is probably also intractable even

with a vector-graphic icon.

 39

As described in Clause 6.7.4, SE has been extended for the OWS-6 project to include a

much more capable complex-line-pattern facility. By using the CompoundStroke with

PenStroke and GraphicStroke elements with alternatives, complex patterns can be

realized.

The S-52 specification [ISO S-52 C&S] defines two different types of complex line

styles, which can be summarized as follows [TENET]:

Single unit type: this linestyle consists of a single repeating graphic symbol

which is concatenated to form a string of symbols between two vertices of the

line, using one orientation. Implemented verbatim, this type of complex linestyle

can only symbolise a straight line. In order to change orientation at a vertex an

additional simple linestyle is required to fill any gap between the last symbol and

the vertex; a dashed style is typically used.

Composite type: this linestyle uses a composite graphic symbol, constructed from

a sequence of multiple sub-symbols and horizontal lines. This style is more

suitable for rendering non-linear curves: the composite graphic symbol being

repeated along the line but, being constructed from smaller symbols and

horizontal lines, can change its orientation at the line’s vertices. This complex

linestyle can be thought of as a simple linestyle with additional symbols rendered

at defined points along the line.

The S-52 Presentation Library Part I specification [ISO S-52 C&S], Clause 14.4.4 states:

In order to fit all digitised lines (including curved lines), the complex linestyle is

designed to bend around curves … If the curve is too sharp for the ECDIS to

follow the digitised line exactly for part, or all, of the run-length of the line, the

linestyle should default to a dashed line of the same color and lineweight as the

original linestyle symbol (see 5.2.2).

Clause 5.2.2 states:

... If the run length of a linestyle symbol does not fit between two vertices of a

line object, a simple linestyle should be used **to join the vertices**. A dashed

line is preferred, but a solid line may be used.

The single-unit type line style does not seem to actually be used to define any symbols,

just the composite type, so it is a guideline on how to handle awkward situations when

rendering complex lines. Note in particular that the S-52 statements quoted above say

“should” instead of “shall” or “must”, meaning that the pen-line-style-substitution

behavior described is not an absolute requirement. SE generally uses a best-effort

approach to styling and leaves the fine details of symbology “finishing” to

implementations, which should attempt to make their portrayals as aesthetically pleasing

as feasible.

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 40

Some sample S-52 complex line styles and renderings are shown in Figure 16 [IHO S-52

C&S].

The “CBLARE51” at the top of the figure is the complex line style for the sample

rendering labeled “472” at the bottom of the figure. The style is defined to have four

consecutive graphic icons repeated in a row with gaps between them. The rendering

process runs into a problem when plotting the bottom two corners of the sample rectangle

in that the line segment makes a sharp 90° turn in the middle of the run length of the dash

with the chevron. The sample rendering solves this problem by drawing a dash without a

chevron, as the S-52 specification suggests. In the sample rendering labeled “498” at the

lower right-hand corner, the renderer actually bends the dash component of the graphic

icon around the corner. These approaches require either information in addition to the

graphic icon or the ability to analyze the composition of the graphic icon, the latter of

which is not feasible in the general SE environment. Other possible approaches would be

to render the graphic icon beyond the corner of the line or to render it at some

intermediate point and angle in the vicinity of the line span to reduce the discontinuity in

the pattern. On the other hand, falling back to a pen stroke will portray the exact path of

the line.

The OSS Nokalva proposal includes new elements within StrokeElement to address the

line-bending problem called DrawOnlyWhereLineIsStraight,

DrawOnlyWhereLineIsNotStraight, and ReturnAfterDrawing. They are defined as

follows [OGC 09-043]:

A DrawOnlyWhereLineIsStraight element with a value of true indicates that a

copy of the stroke element is to be drawn only when it would represent a straight

line segment. The default value is false.

A DrawOnlyWhereLineIsNotStraight element with a value of true indicates

that a copy of the stroke element is to be drawn only when it would represent

either a line segment that is not straight or multiple consecutive line segments

(e.g., at or near a vertex). The default value is false.

A ReturnAfterDrawing element with a value of true indicates that the drawing

position is to be reset to the current position once the stroke element (which may

be any type of stroke) has been completely drawn. The default value is false.

Figure 16: S-52 Sample Complex Line Styles And Portrayals

 41

The straight/not-straight elements are too specific. There will often be cases where there

is only a small change in angle between two line segments and the graphic icons can be

plotted more aesthetically than the (simple) alternative. There will also often be other

cases where the the line segments of a geometry are very short relative to the graphic

icons in a line style, which would cause (simple) not-straight stroke element to almost

always be selected.

The CubeWerx SE proposal adds an more general element called

AlternativeStrokeElements (based on the S-52 and OSS Nokalva designs) which

includes a list of alternatives in order of preference for plotting the next stroke element.

The renderer chooses among them using its own internal rules of aesthetics. For S-52

styles, the preferred stroke would be the GraphicStroke and the secondary stroke would

be a simpler PenStroke that matches the color and dashing of the graphic icon. The

fallback stroke may be ignored in simple implementations. This mechanism is sufficient

to honor the S-52 semantics.

Over-plotting (compositing) stroke elements can also be utilized to a degree in the

CubeWerx design. It can be an effective technique with the S-52 line styles

“DWRTCL05” and “DWRTCL06” shown in Figure 17 [ISO S-52 C&S].

With these two line styles, the sideways-chevron graphic icon crosses the line only

touching it at one point. A pen stroke can be used to draw the dashed or continuous lines

in the patterns and the chevron can be over-plotted at a normal to the line at the

intersection point using a GraphicStroke with a Length of 0. This allows the otherwise

complex pattern to bend around corners. The “DW” in the patterns would remain one

awkwardly long graphic icon, however, since the underscore binds the two letters

together.

Some S-52 line styles that are even more complex are shown in Figure 18 [ISO S-52

C&S].

These styles include components at a perpendicular offset to the main stroke pattern. The

offset patterns can be realized with pen strokes plus a sideways chevron. OSS Nokalva

argues for defining complex nested stroke patterns with internal perpendicular offsets and

restarts to support these styles. Using internal perpendicular offsets will not work

Figure 17: S-52 Line Styles With Line-Crossing Components

Figure 18: S-52 Line Styles With Perpendicularly Offset

Components

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 42

properly because the line lengths will be different on the insides and outsides of corners;

the patterns will not stay aligned. A different approach could be used to realize all of the

styles in Figure 18 except for the “RCRDEF11” style; the line could be styled as three

line symbolizers inside of a composite symbolizer, one for the main line, one for the

outer dashed-arrow line and one for the inner dashed-arrow line. The relative patterns

would fall out of alignment, however, though this may not be a significant concern. With

the “RCRDEF11” symbol, the question mark makes the pattern rigid and unsuitable for a

compound symbolizer. The two sides would remain awkwardly long graphics that are

substituted with a dashed pen stroke around sharp corners.

7.3 Pivot points

The TENET and OSS Nokalva reports both raise the issue of pivot points relative to SE

1.1.0 graphic icons. The SE 1.1.0 mechanism is ill-defined about allowing an anchor

point to be outside of the bounding box of a graphic and lacks a mechanism to rotate a

graphic about an explicit pivot point. The anchor point controls how the graphic icon is

aligned with the plotting-destination point. The TENET report suggests clarifying the SE

1.1.0 design and the OSS Nokalva report suggests extending the poor SE 1.1.0 design.

The CubeWerx SE design changes SE pivot points completely by following the SVG

graphic-transformation paradigm. Graphics exist in a coordinate space and the

coordinate values of the graphic components can be manipulated using a 3×3 affine-

transformation matrix (including simplified sub-operations like rotate and translate) using

the new Transform element. The style designer can control the pivot point for rotation

and the anchor/pivot point for aligning the graphic with the control point for plotting is

defined to be the (0,0) point in the graphic coordinate space, which is allowed to be far

outside the bounding box of the graphic components. ISO 19117:Revision does not have

any explicit anchor/pivot points, so it probably works in the same way.

7.4 Geometry delineation

S-52 and other symbology standards include the concept of delineation and are used to

style feature data that may have geometries of varying types (e.g., point, line, polygon) in

different features within a single feature type. Delineation makes styles specific to

features of a feature type with geometries of a specific dimensional classification.

The TENET report suggests five possible alternatives for handling delineations: add a

specific delineation element to the FeatureTypeStyle; change the meaning of a feature

type to be delineation specific, i.e., break a single source feature type into more than one

logical feature type and process each independently; overload the

SemanticTypeIdentifier element to select delineations; add a Filter function to select

features of a specific type; or extend the Filter PropertyName mechanism to return a

geometry of a specific type or a Null.

The OGC architecture does not treat delineation as an explicit concept and is in fact

incompatible with the notion since an OGC feature can contain more than one geometry

 43

property, so a single feature may have multiple delineations, one for each geometry

property. The only suggested approach that is compatible with the OGC architecture is to

add a Filter function to check the delineation type of a feature.

The CubeWerx SE proposal includes a new Filter function called Dimension after the

operations specified in ISO 19125-1 ([2] ISO 19125-1:2003 (E) (November 2003)). This

function returns the inherent dimensionality of the geometry feature property gives as its

argument. In other words, a point or multipoint geometry returns a 0, a curve returns a 1,

a surface returns a 2, and a solid returns a 3. This function can be combined with a

comparison to a numeric literal in the Filters of the Rules of a FeatureTypeStyle to

achieve the style delineation. The Dimension function is generally useful and should be

added directly to the Filter specification instead, like the string-manipulation functions

defined in SE 1.1.0. The TENET reports suggests an isKindOf function, but Dimension

is simpler in that it does not require enumerated geometry-type names to be available,

only simple integers.

The OSS Nokalva goes off on a tangent about the need to handle features with a different

geometry property for each different kind of geometry. This is unlikely to be an

important consideration with any existing data; however, SE and Filter can handle this

case by examining the different geometry properties and using the PropertyIsNull

operation. OSS Nokalva also seems to indicate that different features may have different

properties present, which breaks the concept of “feature type”. But even so, a Filter

function to detect a property being present or not (or overloading PropertyIsNull) still

handles the situation.

7.5 ISO 19117 alignment

The TENET report discusses alignment issues between SE 1.1.0 and an intermediate

revision of ISO 19117 between ISO 19117:2005 and ISO 19117:Revision that they

discovered as part of their S-52 study.

TENET states “ISO 19117 models portrayal mapping conditions such as scale, lighting

and display medium using the interface PF_Context attached to a higher level interface

PF_PortrayalMapping; SE supports scale conditions at the level of the

FeatureTypeStyle element.”

The PF_Context class has been removed from ISO 19117:Revision. It included a static

description of suitable viewing-environment conditions for using a

PF_PortrayalMapping (which is roughly equivalent to an SE Layer). An important

thing to keep in mind is that PF_Context gave passive information and was not executed

like Rules are. This means that PF_Context is roughly equivalent to the Description of

an SLD Style. In principle, Description could include all kinds of metadata describing a

style, including the information that was offered through PF_Context, though in practice

this is mostly limited to providing a title.

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 44

TENET also states “A PF_PortrayalRule instance is associated with a single

SR_Symbol — a composition of other subordinate SR_Symbols and leaf

SR_SymbolElements; whereas an SE Rule element may consist of multiple

Symbolizers but these do not support the hierarchical structure of SR_Symbol.”

The revised SE design has been changed to allow hierarchical Symbolizers and have a

Rule reference exactly one Symbolizer. This design is logically cleaner and offers easier

reuse of styling.

7.6 S-52 symbology examples

Here are some additional S-52 symbology example portrayals to consider. Some buoy

symbols are shown in Figure 19 [IHO S-52 C&S].

Buoys appear to have multiple definitions in S-52. The base bell-shaped symbol is

defined as one icon, each light and other symbol are defined separately as one icon, and

they are defined together as the icons on the top row of the figure. Other add-ons are

shown in the second row. The third and fourth rows of buoys show different top marks,

which are defined individually and in composite with the buoy. Perhaps there are more

combinations of the elements than are shown above.

There are two ways that these symbols could be approached in SE, either as a single

precomposed graphic icon or as different graphic icons that are plotted over top of each

other. The former approach is easier and is presumably why the precomposed icons have

specific symbol numbers. With the latter approach, the top marks and light graphics will

need to be selected by different Rules in the FeatureTypeStyle, since only Rules can

include the necessary conditions to select the different pieces. It is unclear whether a

buoy is represented by a single point feature or by multiple point features, but a single

feature with property values distinguishing the exact type of buoy makes the most sense.

Figure 19: S-52 Buoy Examples

 45

Both composition approaches cause legend-generation problems. The most

straightforward way to generate SE legends is to generate a different legend entry for

each Rule that is present. In the precomposed case, this would equate to hundreds of

legend entries just for buoys. In the post-composed case, there would be fewer legend

entries, but each would be for only a component of a buoy portrayal. If the legend is

generated in coordination with a map, only the Rules that evaluated to true need to be

included in the legend. Perhaps SE should provide an optional legend graphic for an

entire FeatureTypeStyle so the style designer can supply a suitably abstracted legend

graphic instead of allowing the rendering system to generate an overly bulky one.

Some composite line styles are shown in Figure 20 [IHO S-52 C&S].

Composite line styles of this kind are easy to realize using a CompoundSymbolizer.

Even the slash marks around the anchor area are just symbols. The central anchor

symbol itself can be realized by using a PointSymbol with the anchor graphic icon

within the CompoundSymbolizer, since a PointSymbolizer can be used with any

feature-geometry type and a suitable point location(s) (perhaps the centroid if that is

within the area) will be determined at runtime.

Figure 20: S-52 Composite-Line Examples

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 46

Some navigation symbols are show in Figure 21 [IHO S-52 C&S].

Assuming that the boat information on the left of the figure is represented by a point

feature, all of the information displayed can be built into a single Graphic, as they can be

arbitrarily complex (though any conditional portrayal differences would need different

Rules in the FeatureTypeStyle). The routing information on the right of the figure can

be represented by simple point and line symbolizers.

Some lines, areas, and icons are shown in Figure 22 [IHO S-52 C&S].

Figure 22: S-52 Traffic-Route Examples

Figure 21: S-52 Navigation-Symbol

Examples

 47

The lines are realized using complex line styles discussed in Clause 7.2 and the central

graphic icon can be realized using a PointSymbolizer within a CompositeSymbolizer.

However, it is unclear what the source is of the second and/or third icons in three of the

examples. If they are from attributes of the same route feature, they could be put into a

CompositeGraphic (with appropriate offsets to avoid overlapping) and plotted with the

PointSymbolizer. The “anchor point” of the composite graphic would be positioned in

the center of the direction icon to maintain the appearance in the examples.

Oddly, in the hatch-filled example, the fill pattern is actually plotted over top of the

strokes and the central graphic icons. Assuming that this is intentional and assuming that

the route is represented by a polygon feature, the polygon will need to be stroked and

filled in separate symbolizers within the composite symbolizer, since the fill of a single

area symbolizer is plotted underneath the stroking. The fill-only area symbolizer will

need to be the last one in the composite symbolizer.

An abstracted depth-contour example is shown in Figure 23 [IHO S-52 C&S].

The solid contour lines can be drawn using a simple PenStroke and the boxes can be

drawn using little rectangles in a GraphicStroke within a CompoundStroke to achieve

the spacing. The fills can be drawn using a simple SolidFill, assuming that an area

geometry is used, though sometimes the contour-line and fill-area data is available as two

separate feature types, in which case two FeatureTypeStyles would be needed. Splitting

this into two feature types allows different segments along the same fill area to have the

different stroke styles (low-accuracy and normal accuracy). The depth values can be

drawn using a TextSymbolizer with a white Halo within a CompositeSymbolizer for

Figure 23: S-52 Depth-Contour

Example

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 48

the contour-line feature type. The obstruction icon would presumably be in a separate

feature type and would be drawn using a PointSymbolizer with the appropriate Graphic.

A composite shore example is shown in Figure 24 [IHO S-52 C&S].

The pen strokes and solid fills are easy to achieve. The cable towers are presumably

supplied by an independent point-feature type, and are thus easy to draw. The purple

icon on top of the bridge indicates that it is an opening bridge. A

StrokeAnnotationGraphic with a relative position of 0.5 (the middle of the bridge)

should be used to draw this. A PointSymbolizer could also be used with the line

geometry, though the rendering system decides where to plot the icon. It is unclear what

the target-shaped black icon in the middle of the cable represents. Perhaps it is a

overhead obstruction from the lowest point of the cable. If it is supplied from a point

feature that is independent from the cable, then it is easy to plot; otherwise, it will be very

difficult to determine the proper plotting location.

8 USGS symbology

USGS provides Publication Symbols and Topographic Map Symbols [USGS].

8.1 Simple styles

The simpler USGS styles have been implemented using SLD 1.0.0 for National

Hydrographic Data (NHD) ([4] USGS) available from:

http://frameworkwfs.usgs.gov/

A description of the development effort is available from:

http://frameworkwfs.usgs.gov/framework/nhd/nhd_styles.html

SLD encodings are available from:

http://frameworkwfs.usgs.gov/framework/sld/sld_content.html

Figure 24: S-52 Composite Shore Example

 49

A WMS serving this data as maps is available at:

http://frameworkwfs.usgs.gov/framework/wms/wms.cgi.

SLD 1.0.0 has the capacity to render pen strokes, arbitrarily complex (but

unparameterized) fill patterns, and arbitrarily complex (but unparameterized) point

graphic icons. Samples of these SLD styles are included in Figures 25, 26, and 27.

Figure 25: USGS Simple Line Styles

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 50

Figure 26: USGS Simple Area Styles

 51

Figure 27: USGS Simple Point Styles

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 52

8.2 Complex styles

USGS defines many complex styles and defines finishing rules for professional

portrayals. Unfortunately, applying professional portrayal finishing is an artificial-

intelligence problem. Only a certain degree of complexity is feasible to be expressed in

SE and the rest will need to be programmed into portrayal systems.

Some USGS complex-symbol examples follow. Some coastal features are shown in

Figure 28.

The scalloped edges in the corals and reefs can be supplied by GraphicStrokes within a

CompoundStroke to allow the pattern to bend around curves smoothly. The coral-

scallop pattern only needs a single GraphicStroke since only one shape is present. The

scalloped-reef pattern appears to need 17 different scallops with explicitly given short

GraphicStroke Lengths that cause the taller graphics to overlap the shorter ones.

If the group of rocks is represented using an area geometry, it is easy to style using a

dashed or graphic stroke and a fill pattern of asterisks. However, this would cause some

of the asterisks to be cut off. If the rock locations are precise, then individual point

features or a single multi-point feature would be needed for them. With individual point

features, the outline would need to be supplied in the source data by a polygon or line

feature type, since it would be very difficult to compute. With a multi-point geometry,

functions could be supplied to compute a buffer zone around a convex hull of the

Figure 28: USGS Coastal-Feature Examples

 53

geometry, though these functions are not defined in SE. The OGC Filter specification

should define all of these common geometry and other functions.

The label within the depth curve can be rendered using a TextStroke within a

CompoundStroke with gaps specified for both ends of the text stroke. This will cause

the depth value to be printed repeatedly. A RelativeOrientation is not supplied inside of

a TextStroke, but the only sensible choice is normalUp. If only one depth value is

desired, the stroke could be defined to be infinitely long after the label is plotted.

Some contour-line examples are shown in Figure 29.

The elevation value of an index contour line can be plotted in the same way as with depth

curves above, or, since the gap is so narrow between the digits and the line, it could

conceivably be plotted using a CompositeSymbolizer with a PenStroke

LineSymbolizer and a TextSymbolizer with a white Halo of one or two pixels.

The barbs on the depression lines can be plotted using CompositeSymbolizer with a

LineSymbolizer with a PenStroke and another LineSymbolizer with a GraphicStroke

of a Graphic of a tick mark. Probably a better idea is to use a CompoundStroke with a

PenStroke and a GraphicStroke with a Length of 0. This causes the rendering position

not to advance after plotting the graphic, so the solid line continues. There is no plot-

order issue since the line and the tick are the same color. In the example, the tick marks

are more widely spaced apart in the longer rings. If desired, this could be achieved by

using a function to compute the linear length of the contour line and fudging this value in

Figure 29: USGS Contour-Line Examples

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 54

some way and using it as the Length of the GraphicStroke. SE does not define such a

function.

The bunching together of the contour lines with gaps between the roads in the Cut and

Fill examples would need to be supplied by the source data, as this kind of inter-feature

geometric manipulation would be very difficult or impossible to achieve. Fortunately,

roads are relatively level, so the real world probably resembles this pattern.

Ford and ferry examples are shown in Figure 30. (A “ford” is a place where a body of

water is shallow enough to be crossed by wading.)

An issue with the ford and ferry crossings is the differing label placements for wide and

narrow crossings. If the source data had a property that told which type was needed, this

could be handled with two different Rules. If not, then one could conceivably formulate

an expression using geometry functions to decide whether a crossing is long or short. An

issue with symbol 148 is that, assuming the ford is represented by a different feature from

the road, the dash pattern will restart for the ford, unless the rendering system does a

great deal of awkward work to try to match the patterns up.

Airport and helipad examples are shown in Figure 31.

Figure 30: USGS Ford & Ferry Examples

 55

Both styles have different rules depending on how much space the features occupy on the

map. Special geometry and rendering-environment-access functions would be needed to

compute this.

Some railroad examples are shown in Figure 32.

Figure 31: USGS Airport & Helipad Examples

Figure 32: USGS Railroad Examples

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 56

The tick marks can be supplied using a CompoundStroke with a PenStroke and a

GraphicStroke with Length 0. The multiple parallel lines used in the railroad in

highway and railroad tunnel can be plotted using a CompositeSymbolizer with multiple

different LineSymbolizers with different PerpendicularOffsets, plus the symbolizer for

the highway. The ticks can be attached to a specific rail line and made long enough to

cover all of them. The tunnel and bridge edges can be plotted using

StrokeAnnotationGraphics. The ring in the middle of the drawbridge poses a difficult

problem, since the bridge line needs to be not drawn beneath it. This could be crudely

simulated using a solid fill of the water color in the middle of the ring graphic.

The overpass and underpass cases pose a more general problem of the same kind as the

drawbridge: the road or railway beneath the overpass needs to be not drawn within 0.02”

of the overpass (called a “break space”). USGS highways have the same rule in the more

difficult circumstance that features of the same type may pass over each other, so the

distinction would be an elevation coordinate or property value. SE presently provides no

means to address break spacing. The most plausible general way to approach this would

be to provide an erasing mechanism with an eraser shape, some means of specifying

when content should be erased, and a means of identifying what content should be erased.

The application of erasing would be easy to implement in a raster portrayal environment,

as it would mean simply changing the pixel opacity values to 0, but in a vector portrayal

environment, it would mean clipping graphic elements. Break spacing is an issue to

consider in the future.

Railroad yards are also difficult to deal with. The instruction for the first railroad yard

style is “Show primary line(s) through RAILROAD YARD and the outermost tracks.

Show fill on black separate (plate 515B).” This presents the problem of knowing which

tracks are outermost and/or primary and computing the area of the railroad yard for the

fill. In principle, the source features could have a property indicating the class of the rail

line and railroad-yard areas could be supplied by a separate feature type. Computing this

information on the fly would be next to impossible. Also note that the tick marks on the

various rail lines in the railroad yard have a high degree of alignment. This would also be

difficult to achieve. It would be best left to the portrayal system to try to align similar

things as part of its portrayal “finishing” procedures.

Some church and school examples are shown in Figure 33.

 57

The style 169 requires that the portrayal system know when an area is “congested” and

that some Filter function be available to SE to convey this information. Style 171

indicates that a suitable building be chosen and that the flag be drawn in such a way as to

avoid other features, which is not something that can be reasonably expressed in SE.

Style 173 has a similar issue in that the flags and crosses are drawn in such a way as to

avoid other features.

In general, USGS and probably all professional symbology definitions include numerous

“finishing rules” that would be difficult to express adequately in an interoperable

language and be very difficult to implement. ISO 19117 also defers “finishing rules” to

be considered later. Professional mapping is an artificial-intelligence problem that is

normally performed in practice with iterations of manual and automatic adjustments to a

specific concrete map. SE can address many of the USGS styling requirements, but is

unable to address them all.

9 Emergency management symbology

Homeland Security Point Symbology for Emergency Management [ANSI INCITS 415-

2006] defines only point symbols which are very easy to encode in SE. In fact, these

very symbols were encoded in SLD 1.0.0 for a previous OGC project in 2005,

“Emergency Mapping Symbology, Phase 1” (EMS-1) ([5] OGC).

The symbols were supplied to the project in SVG format and the SLD/SE encoding used

very simple PointSymbolizers to refer to the SVG files. Some of these SLD files are

still available online, for example:

http://demo.cubewerx.com/sld/libraries/ers/EMS_SVG.xml

The SVG files are also still available online, for example:

http://demo.cubewerx.com/sld/libraries/ers/graphics/SVG_ERS_Symbols/CGM_Operatio

ns_S1/Fire_Station_S1.svg

Figure 33: USGS Church & School Examples

OpenGIS
®

Public Engineering Report OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 58

The emergency-management symbols are officially distributed in TrueType font files:

http://www.mirrorservice.org/sites/www.ibiblio.org/gentoo/distfiles/ers_v220.zip

One issue with the font files is that all of the the supplied symbols include an outline

frame with each font glyph, which means that extra steps would be needed to render the

symbols with frames colored according to Annex A of the EMS specification. In other

words, font glyphs are meant to be rendered in a uniform color, and there is no way to

distinguish the symbol from frame within a glyph. However, glyphs including only

frames are also supplied, so they can be plotted over the symbol glyphs, though there

may still be issues with the underlying black frames bleeding through around the

translucent edges of the frames. If the frame coloring is required, the symbols should be

distributed without included frames but should be aligned to be composited with the

frame-only glyphs.

Figure 34 shows an ambulance symbol with a frame and a frame symbol alone (the frame

style here means “destroyed or totally incapacitated”). The ambulance should be

rendered as black, but the frame should be rendered as red. There is no glyph supplied

with only the ambulance and not the frame.

Figure 34: EMS Ambulance Symbol & Frame

OGC 09-012

Copyright © 2009 Open Geospatial Consortium, Inc. 59

Bibliography

 OGC 06-042 (2006), OpenGIS Web Map Service (WMS) Implementation

Specification, <http://portal.opengeospatial.org/files/?artifact_id=14416>

 ISO 19125-1:2003 (E) (November 2003), Geographic information — Simple

feature access — Part 1: Common architecture

 Wikipedia, Relational algebra, <http://en.wikipedia.org/wiki/Relational_algebra>

 USGS, Framework Web Feature Services, <http://frameworkwfs.usgs.gov/>

 OGC, Emergency Mapping Symbology, Phase 1 (project),

<http://www.opengeospatial.org/projects/initiatives/ems1>

 OGC RFQ (July 2008), Request for Quotation (RFQ) And Call for

Participation — OGC Web Services Initiative - Phase 6 (OWS-6), pp. 106–107, 117–121.

	Introduction
	Scope
	Document contributor contact points
	Revision history
	Future work

	References
	Terms and definitions
	Conventions
	Abbreviated terms
	UML notation

	Harmonization overview
	Harmonization between OGC SLD/SE and ISO 19117
	Overview comparison
	History
	Terminology differences
	Scope differences
	XML Schema vs. UML
	Property- and class-name capitalization
	Harmonization objective

	Map handling
	Layer handling
	Schema mapping
	ISO Overview
	ISO Rule-based schema mapping
	Other ISO schema-mapping methods
	SE feature selection

	Portrayal feature & portrayal specification
	Feature & style catalogs
	Symbolization
	Root classes
	Coordinate reference systems
	Parameterization
	Line symbolization
	Area symbolization
	Point symbolization
	ISO point symbolization
	SE point symbolization

	Text symbolization

	Conclusions

	IHO S-52 symbology
	Introduction
	Complex line styles
	Pivot points
	Geometry delineation
	ISO 19117 alignment
	S-52 symbology examples

	USGS symbology
	Simple styles
	Complex styles

	Emergency management symbology

