
OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

1

Open Geospatial Consortium, Inc.

Date: 2008-09-12

Reference number of this document: OGC 08-079

Version: 0.9.0

Category: Discussion PaperDiscussion Paper

Editor(s): John R. Herring

OWS5: OGC® Web feature service, core and extensions

Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document is an OGC Discussion Paper and is therefore

not an official position of the OGC membership. It is distributed for review and comment. It is subject

to change without notice and may not be referred to as an OGC Standard. Further, an OGC Discussion

Paper should not be referenced as required or mandatory technology in procurements.

http://www.opengeospatial.org/legal/

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

i. Preface

Suggested additions, changes, and comments on this draft report are welcome and encouraged. Such

suggestions may be submitted by email message or by making suggested changes in an edited copy of this

document.

The changes made in this document version, relative to the previous version, are tracked by Microsoft Word,

and can be viewed if desired. If you choose to submit suggested changes by editing this document, please first

accept all the current changes, and then make your suggested changes with change tracking on.

ii. Forward

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent

rights. The Open Geospatial Consortium Inc. shall not be held responsible for identifying any or all such

patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent

claims or other intellectual property rights of which they may be aware that might be infringed by any

implementation of the standard set forth in this document, and to provide supporting documentation.

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

3

Contents and Mandatory Requirements Page

Introduction .. 8

1 Scope ... 9

2 Conformance ... 10

2.1 Introduction ... 10

2.2 Conformance class parameters .. 10

2.2.1 Introduction ... 10
2.2.2 Operation Conformance Classes ... 10
2.2.3 Interface Protocol parameter .. 11
2.2.4 Data Representation Language parameter .. 11
2.2.5 Schema Representation Language parameter .. 11
2.2.6 Query/Manipulation Language parameter ... 11

3 Normative references .. 13

4 Terms and definitions ... 15

5 Conventions .. 17

5.1 Abbreviated terms ... 17

5.2 UML notation ... 17

6 Data metamodel... 18

6.1 Data uses ... 18

6.2 Data structures and representations.. 18

6.3 The use of discriminating labels .. 19

6.4 Type and member naming conventions .. 19

6.5 General models ... 19

6.6 General feature model... 19

6.6.1 Scoped Names, Local Names ... 19
6.6.2 Feature ... 21
6.6.3 Types, properties and property types .. 22
6.6.4 References ... 23
6.6.5 Feature Collections ... 25
6.6.6 Namespace concerns for features and properties .. 27

6.7 General URI model and HTTP function call variable ... 28

6.8 Common request parameters ... 28

7 WFS Core Class... 32

7.1 Semantics .. 32

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

7.2 Core::Capabilities.. 32

7.2.1 Semantics .. 32
7.2.2 Request .. 32
7.2.3 Response ... 33
7.2.4 Protocols ... 41

7.3 Core::Feature operation .. 42

7.3.1 Introduction ... 42
7.3.2 Request .. 43
7.3.3 Response ... 52
7.3.4 Protocols ... 54
7.3.5 Response ... 57

7.4 Core::Property operation .. 58

7.4.1 Introduction ... 58
7.4.2 Request .. 58
7.4.3 Response ... 58
7.4.4 Protocols ... 58

7.5 Core::DescribeFeatureType operation ... 58

7.5.1 Introduction ... 58
7.5.2 Request .. 59
7.5.3 Response ... 59
7.5.4 Exceptions ... 59

7.6 Core::DescribeFilterModel operation ... 59

7.6.1 Introduction ... 59
7.6.2 Request .. 60
7.6.3 Response ... 61
7.6.4 Exceptions ... 61

8 WFS Data Maintenance extension .. 62

8.1 Introduction ... 62

8.2 LockFeature action ... 62

8.2.1 Request .. 62
8.2.2 <expiry> parameter ... 62
8.2.3 <lockAction> parameter ... 62
8.2.4 Response ... 63
8.2.5 <LockID> return parameter .. 64
8.2.6 Exceptions ... 64

8.3 Request Schema definition .. 64

8.3.1 LockID element .. 64
8.3.2 release Action attribute ... 65

8.4 Insert action ... 65

8.4.1 Encoding ... 65
8.4.2 <inputFormat> parameter ... 66
8.4.3 <srsName> parameter ... 66
8.4.4 <IDgen> parameter ... 66

8.5 Update action .. 67

8.5.1 Request .. 67
8.5.2 <Property> parameter ... 68
8.5.3 <Filter> parameter ... 68
8.5.4 <handle> parameter ... 68

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

5

8.5.5 <typeName> parameter ... 68
8.5.6 <inputFormat> parameter ... 68
8.5.7 <srsName> parameter ... 68
8.5.8 <action>, <context> and <position> parameter ... 68

8.6 Delete action .. 69

8.6.1 Schema .. 69

Annex A (Normative) Conformance Test Suite .. 70

A.1 Conformance Classes ... 70

A.2 Core or read ... 70

A.3 Data Maintenance extension or write ... 70

Annex B (informative) Common Variables Used .. 71

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

Figures

Figure 6-1: Name Space Class Diagram ... 21

Figure 6-2: Feature Class Diagram ... 22

Figure 6-3: Reference Class Diagram ... 24

Figure 6-4: Feature and property Collection Class Diagram .. 26

Figure 6-5: PropertyType and Schema .. 27

Figure 7-3 : Feature Request .. 44

Figure 7-4 : Query Actions Class Diagram .. 46

Tables

Table 2-1: Conformance Class Parameters and their variables ... 10

Table 6-1: Common parameters for WFS requests ... 28

Table 6-2: Operations possible within a WFS service .. 31

Table 7-1: Elements to describe feature types... 35

Table 7-2: Query Actions on Features ... 38

Table 7-3: Feature Operation constraints .. 39

Table 7-4: Operation parameters .. 40

Table 7-5: Values for resultType attribute .. 51

Table 7-6: Example Values for outputFormat attribute .. 52

Table 7-7: Feature Parameters ... 55

Table 7-8: Example Values for the outputFormat attribute .. 59

Table 7-9: Values for the outputFormat attribute ... 60

Table8-1: IDgen Attribute Values .. 67

Table B 1: Common Variables used in URIs and HTTP function calls .. 71

Table B 2: Commonly used file types and extensions for use in REST requests .. 75

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

7

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

Introduction

A Web Feature Service (WFS) provides operations to create, modify, delete and query feature instances from

an underlying data store. WFS operations are invoked using any HTTP-transportable distributed computing

platform to send a request message to a service, which then processes the request and generates a response

message. This specification defines the logical structure of these request and response messages. The content

and format of a request or response messages depends on the operation being invoked however.

This International Standard defines eight general operations:

 Capabilities

The Capabilities operation provides service-level metadata about the operations that a particular service

instances offers and data-level metadata about the features types that the service instance offers.

 DescribeFeatureType

The DescribeFeatureType operation generates an XML Schema document that defines zero or more of

the feature types that the service offers.

 DescribeFilterModel

The DescribeFilterModel operation generates an XML Schema document that defines zero or more filter

models that the service offers. Filter models define feature properties that may be used in the

construction of Filter or Query expressions.

 Feature

The Feature operation allows feature instances to be retrieved based on client specified query constraints.

The query predicates, encoded using a Filter expression, can include both spatial and non-spatial

constraints.

 FeatureWithLock

The FeatureWithLock operation behaves exactly like the Feature operation except that all the features

instances identified by the operation are locked in anticipation of forthcoming Transaction operations.

 Property

The Property operations supports requests to retrieve element instances by traversing internal references

to them.

 LockFeature

The LockFeature operation allows feature instances to be locked in anticipation of forthcoming

Transaction operations.

 Transaction

The Transaction operation allows persistent feature instances to be created, modified and deleted.

All Wed Feature Services offer the operations: Capabilities, DescribeFeatureType, Feature and Property.

The remaining operations will be optionally provided in extensions.

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

9

1 Scope

This International Standard specifies the behavior of a service that provides transactions on and access to

geographic features in a manner independent of the underlying data store. It specifies discovery operations,

query operations and transaction operations. Discovery operations allow the service to be interrogated to

determine its capabilities and to retrieve the application schema that defines the feature types that the service

offers. Retrieval operations allow features to be retrieved from the opaque underlying data store based upon

constraints on spatial and non-spatial feature properties defined by the client. Transaction operations allow

features to be created, changed and deleted from the opaque underlying data store.

 10

2 Conformance

2.1 Introduction

This specification defines conformance classes based on the operations that a web feature service implements,

the structures that it supports and the protocols it uses.

In any statement of a requirement that is tested in a test case in the test suite, each mandatory, testable

requirement is given a ―Req‖ number and set off as distinct from the rest of the text in red and underlined.

Any optional or untested suggestion to the implementation that appears in the text will be similarly set in red

and underlined but not receive a ―Req‖ number. Each test in the test suite will reference those mandatory

requirements which it is to test. Each mandatory requirement will be in at least one test.

The framework, concepts, and methodology for testing, and the criteria to be achieved to claim conformance

is specified in ISO 19105: Geographic information — Conformance and Testing.

2.2 Conformance class parameters

2.2.1 Introduction

Each conformance Class will be determined and named with four, possibly related variables, as indicated in

Table 2-1:

Table 2-1: Conformance Class Parameters and their variables

Conformance Class Parameter Variable Name

Operation Conformance Test Class

(e.g. read (core), or modify(extension))

<conformanceClass>

Interface protocol

(e.g.. KVP, SOAP, REST)

<interfaceProtocol

>

Data representation language

(e.g. XML, GML, GeoJson, SQL etc.)

<dataLanguage>

Schema representation language

(XML Schema, DTD, SQL-DDL, UML/XMI, etc.)

<schemaLanguage>

Query/Manipulation language with possible Conformance Test Class <queryLanguage>

References to these parameters in this standard can use either the full parameter name or the ―< >‖ delimited

―BNF‖ style variable name.

Req 1 Conformance with this specification shall be checked using all the relevant tests specified in

the Test Suite based on the parameters Conformance Class, Interface Protocol, Data

Representation Language, Schema Representation Language, and Query/Manipulation

Language

2.2.2 Operation Conformance Classes

There are two values for the operation parameter <ConformanceClass>.

The first is covered in Clause 7, and is the core class included the capability to read the capabilities of the

service, and to read the feature data of the opaque feature store associated to the WFS.

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

11

The second is covered in Clause 8, which extends the firs by adding functions to insert, update and delete

data from the datastore.

2.2.3 Interface Protocol parameter

The Interface Protocol parameter in this standard is written as <interfaceProtocol>.

Req 2 The Interface Protocol <interfaceProtocol> shall be one or more of KVP, SOAP and

REST.

Req 3 The Interface Protocol <interfaceProtocol> shall be given a default value in the

capabilities document.

Req 4 The Interface Protocol <interfaceProtocol> shall be listed in the capabilities

document.

Req 5 All parameters in all protocol-specific implementations will be uniquely named so that a

flattening of the parameters into a list of atomic values in unambiguous.

This standard, all of its extensions, profiles and implementation will be subject to this last

requirement.

2.2.4 Data Representation Language parameter

The Data Representation Language parameter in this standard is written as <dataLanguage>.

Req 6 Any Data Representation Language <dataLanguage> shall be capable of representation

any information that is consistent with ISO 19109’s General Feature Model.

Req 7 The Data Representation Language <dataLanguage> shall be given a default value in the

capabilities document.

Req 8 All supported values of the Data Representation Language <dataLanguage> shall be listed

in the capabilities document.

Req 9 The Data Representation Language <dataLanguage> shall be capable of supporting

anonymous types as required by the conformance class of the WFS service.

2.2.5 Schema Representation Language parameter

The Schema Representation Language parameter in this standard is written as <schemaLanguage>.

Req 10 The Schema Representation Language <schemaLanguage> shall be capable of

representing the structure of data elements in the Data Representation Language to a

degree sufficient for the Data Representation Language to perform its functions as required

by this standard.

Req 11 The Schema Representation Language <schemaLanguage> shall be given a default value

in the capabilities document.

Req 12 All supported values of the Schema Representation Language <schemaLanguage> shall be

listed in the capabilities document.

2.2.6 Query/Manipulation Language parameter

 12

The Query/Manipulation Language parameter in this standard is written as <queryLanguage>.

Req 13 The Query/Manipulation Language <queryLanguage> shall be capable of specifying

anonymous types that would allow the service to construct appropriate Data

Representation Language representations of the results of any actions supported by the

conformance class of the WFS.

Req 14 The Query/Manipulation Language <queryLanguage> shall be capable of expressing

complete representations of its accessible data in the Data Representation Language which

are uses as the parameters for or the results of any actions supported by the conformance

class of the WFS.

Req 15 The Query/Manipulation Language <queryLanguage> shall be capable of invoking any

actions supported by the conformance class of the WFS.

Req 16 The Query/Manipulation Language <queryLanguage> shall be given a default value in

the capabilities document.

Req 17 All supported values of the Query/Manipulation Language <queryLanguage> shall be

listed in the capabilities document.

The major functions of the query language are to SELECT, UPDATE, DELETE, or LOCK/UNLOCK

feature collections and query feature collections. See Clause 6.6.2

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

13

3 Normative references

The following normative documents contain provisions, which, through reference in this text, constitute

provisions of this document. For dated references, subsequence amendments to, or revisions of, any of these

publications do not apply. For undated references, the latest edition of the normative document referred to

applies.

[1] ISO 8601:2004, Data elements and interchange formats – Information interchange – Representation
of dates and times

[2] ISO 19013: 2005, Geographic Information – Conceptual schema language

[3] ISO 19105: 2005, Geographic Information – Conformance and Testing

[4] ISO 19109: 2005, Geographic Information – Rules for application schema

[5] ISO 19119: 2005, Geographic Information – Services

[6] ISO 191361, Geographic Information - Geography Markup Language (GML)

[7] ISO 191431, Geographic Information - Filter Encoding

[8] IETF RFC 2045 (November 1996), Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies, Freed, N. and Borenstein N., eds.,
http://www.ietf.org/rfc/rfc2045.txt

[9] IETF RFC 2046 (November 1996), Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types, Freed, N. and Borenstein N., eds., http://www.ietf.org/rfc/rfc2046.txt

[10] IETF RFC 2141 (May 1997), URN Syntax, R. Moats, http://www.ietf.org/rfc/rfc2141.txt

[11] IETF RFC 2396 (August 1998), Uniform Resource Identifiers (URN): Generic Syntax, Berners-Lee,
T., Fielding, N., and Masinter, L., eds., http://www.ietf.org/rfc/rfc2396.txt

[12] IETF RFC 2616 (June 1999), Hypertext Transfer Protocol – HTTP/1.1, Gettys, J., Mogul, J.,
Frystyk, H., Masinter, L., Leach, P., and Berners-Lee, T., eds., http://www.ietf.org/rfc/rfc2616.txt

[13] NAMESPACE, Namespaces in XML, World Wide Web Consortium Recommendation, Bray, T.,
Hollander, D., Layman, A., eds., available at http://www.w3.org/TR/1999/REC-xml-names-
19990114

[14] XML INFOSET, XML Information Set, World Wide Web Consortium Recommendation, Cowan, J.,
Tobin, R., eds., available at http://www.w3.org/TR/xml-infoset/

[15] XML 1.0, Extensible Markup Language (XML) 1.0 (Third Edition), World Wide Web Consortium
Recommendation, Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F., eds.,
available at http://www.w3c.org/TR/REC-xml

[16] XMLSCHEMA1, XML Schema Part 1: Structures, World Wide Web Consortium Recommendation,
Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N., eds., available at
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028

1) To be published.

 14

[17] XMLSCHEMA2, XML Schema Part 2: Datatypes, World Wide Web Consortium Recommendation,
Biron, P.V., Malhotra, A., eds, available at http://www.w3.org/TR/2004/REC-xmlschema-2-
20041028

[18] XLINK 1.0, XML Linking Language (XLink) Version 1.0, World Wide Web Consortium
Recommendation, DeRose, S., Maler, E., Orchard, D., eds. Available at
http://www.w3.org/TR/2001/REC-xlink-20010627/

[19] OGC 05-008, OGC Web Services Common Specification, OGC Document #05-008, Whiteside, A.,
ed., available at https://portal.opengeospatial.org/files/?artifact_id=8798

[20] OGG 05-010, URNs of definitions in OGC namespace, OGC Document #05-010, Whiteside, A., ed.,
available at http://portal.opengeospatial.org/files/?artifact_id=8814&version=1

[21] CGI, The Common Gateway Interface, National Centre for Supercomputing Applications, available at
http://hoohoo.ncsa.uiuc.edu/cgi/

[22] W3C Recommendation (24 June 2003): SOAP Version 1.2 Part 1: Messaging Framework,
http://www.w3.org/TR/SOAP/

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

15

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.1

client

software component that can invoke an operation of a service

4.2

coordinate reference system
set of mathematical rules for specifying how coordinates are to be assigned to points [ISO19111]

4.3

feature
abstraction of real world phenomena [ISO 19101]

4.4

feature identifier
identifier that can be used to access a particular feature

4.5

feature reference

scoped name that identifies a feature

4.6

interface

named set of operations that characterize the behavior of an entity [ISO 19119]

4.7

local name

name assigned by a namespace to an entity that can then be located by that namespace by using that name

4.8

lock
limitation or the act of placing that limitation against a data element placed by a client that prevents its modification
by any requests except those from that same client

4.9

Multipurpose Internet Mail Extensions (MIME) type
media type and subtype of data in the body of a message and fully specifies the native representation (canonical
form) of such data [IETF RFC 2045].

4.10

namespace

authority for assigning scoped names and accessing by those names which can be located by another scoped

name called the namespace id or name

4.11

opaque

not directly accessible to a client application

Note Opaque data structures are normally accessed by functions supplied to the client application

4.12

operation
specification of a transformation or query that an object may be called to execute [ISO 19119]

4.13

request

 16

invocation by a client of an operation

4.14

response

result of an operation returned from a server to a client

4.15

scoped name

combination of namespace name and local name that identifies an entity to which the namespace has assigned

that local name

4.16

service
distinct part of the functionality that is provided by an entity through interfaces [ISO 19119]

4.17

service metadata

metadata describing the operations and features offered by a service

4.18

server

service instance

particular instance of a service [ISO 19119]

4.19

spatial reference system

same as coordinate reference system

4.20

traversal

using or following an XLink link for any purpose [XLINK 1.0]

4.21

Uniform Resource Identifier (URI)
unique identifier, usually taking the form of a short string or address that is used to identify the location of a resource
[IETF RFC 2396]

NOTE The general syntax is <scheme>::<scheme-specified-part>. The hierarchical syntax with a

namespace is <scheme>://<authority><path>?<query>&

4.22

unlock

act of removing the limitations of a previous lock

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

17

5 Conventions

5.1 Abbreviated terms

CGI Common Gateway Interface

DAG Directed Acyclic Graph

DCP Distributed Computing Platform

DTD Document Type Definition

EPSG European Petroleum Survey Group

GIS Geographic Information System

GML Geography Markup Language

HTTP Hypertext Transfer Protocol

HTTP

S

Secure Hypertext Transfer Protocol

IETF Internet Engineering Task Force

KVP Keyword-value pairs

MDA Model Driven Architecture

MIME Multipurpose Internet Mail Extensions

OGC Open Geospatial Consortium

OMG Object Management Group

OWS OGC Web Service

OWS Open Web Services (in OGC)

REST Representational State Transfer

ROA Resource Oriented Architecture

SOA Service Oriented Architecture

SOAP Simple object access protocol

SSL Secure Socket Layer

UML Unified Modeling Language

URI Uniform Resource Identity

URL Uniform Resource Locator

URN Uniform Resource Name

WFS Web Feature Service

XML Extensible Markup Language

5.2 UML notation

UML diagrams and class descriptions used in this standard are consistent with UML 2 from the OMG.

 18

6 Data metamodel

6.1 Data uses

Much of the discussion in this standard deals with abstract descriptions of data that will be realized in various

representations formats depending on the parameter of conformance first defined in 2.2.4, Data

Representation Language parameter. This is similar to the REST model in that a resource can have multiple

equivalent representations; where the nature of that equivalence is not described. For the purposes of this

standard, data will be transferred between client and server, including but not limited to information on:

1. Capabilities of the server,

2. Metadata about the content of the resources,

3. Metadata about the logical structure of the resources,

4. Query or Filters for creating, selecting, editing and deleting elements of a resource for client purposes,

5. Requests by the client to the server for resources, either existing or created by the server in response to the

request, or

6. Responses from the server back to the client in answer to the above requests.

6.2 Data structures and representations

The implementation of data structures in Web Services will be some form of tagged text (like XML), or some

text serialization of a programming language (like JSON). The following basic assumptions are made that

allow the mapping of these abstract data structures into either UML or XML:

1. Each data element contains either a value (is a property), or a collection of other elements (is a class, or feature

type).

2. Each element has either a global identifier (such as a URI or other scoped name) or a local identifier (such as a

property name; which is scoped to the context of its container) that distinguishes it from all other elements

within its same context.

3. The context of an element with a global identifier is globally universal

4. The context of an element without a global identifier but having a name, is the immediately containing element.

Thus each element is the namespace for its subelements and each locally named element in unique in its local

context.

5. An element without a name nor a global identifier, is considered a data value (data type in UML). Data types

cannot be directly referenced but may be referenced by a namespace and local name, as described above.

6. A data value may be a single instance of a data type or an array of instances of a single data type. The

significance of the order in the array of these instances is defined by closest non-data-type container.

This metamodel is consistent with the UML metamodel, and may be represented in UML diagrams.

This metamodel is consistent with XML Schema and may be represented by XML Schema instances

as long as the mechanism for mapping to a UML model is defined in a manner consistent with the

UML representation of the model.

In general in this standard, the inline text representations of data structures are given in a ―boxless‖ UML

structure, where:

1. The first line contains the stereotype of the classifier, the Name, and any Inheritance (specialization - ―under‖ or

realization - ―realizes‖)

2. The remainder (if any) is set of in brackets ―{― and ―}‖ and contains member UML attributes, association roles

and operations. Since members of a classifier are named and not ordered, the ordering of the member

declarations in not semantically meaningful.

3. Cardinality is expressed on the ―type-side‖ of any declaration consistent with UML 2, and is in square brackets

―[― and ―]‖, and consist of an extended integer (with the star character (*) being infinity), or a pair of extended

integers (minimum and maximum) separated by an ellipsis ―…‖ indicating every integer in between these two.

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

19

Multiply dimensioned arrays will have multiple ―[—]‖ expressions, one for each dimension. Optional values

will have one ―[0…1]‖ dimension

6.3 The use of discriminating labels

In programming, there is a concept call the ―discriminated union.‖ Its content is one of several value types

whose instances are labeled as to which type they are. The discriminator holds the semantics of the value,

while the type holds the value interpreted by the semantics. This is similar to XML ―choice blocks‖ where

element names (the things in the ―< >‖ braces) allow the parser to determine the meaning of the included

values.

In most cases in this standard, data is assumed to be ―discriminated‖ that is labeled in such a manner as not

only its value is understood, but so is its purpose and semantics. Thus a request-block set of parameters holds

in its ―discriminators‖ the operation for which the parameters apply. Thus, a request block can be considered

as simply yet another representation of the value that would be returned by the operation for which the

request was constructed. For example, a feature query collection is first defined by its ―selection query‖ and

then realized by executing the query to explicitly list the features that satisfy the query. These two

―representations‖ are logically equivalent and will, for example, be two different representations of the same

resource in a RESTful ROA.

6.4 Type and member naming conventions

In the core presentation of the data structures, all ―class names‖ will appear in UpperCamelCase, and all

member names in lowerCamelCase. In using Model Driven Architecture (MDA) and deriving other

formats, it is advisable to use the naming conventions specific to the particular representation

language that is being targeted. This could involve using a different case structure, a set of prefixes or

suffixes, or classifier types not used in the base UML. It could also involve using namespace prefixes.

Req 18 When writing a profile of this standard for a particular environment, the mapping of

naming conventions shall be well defined and well documented.

The terms ―well defined‖ and ―well documented‖ are mathematical in nature. They in combination mean that

there is a fully described and unambiguous mechanism to accomplish the required function; in this case the

mapping of naming conventions from one to another and back again. Such ―perfectly mapped‖ structures are

said to be ―isomorphic‖ (meaning ―having the same structure‖) and are considered identical for all logical

purposes.

6.5 General models

6.6 General feature model

6.6.1 Scoped Names, Local Names

A great deal of the functionality in this standard will depend on keeping track of information quanta. In the

OGC feature model, consistent with the ISO 19109 General Feature Model (GFM), the most usual

information atom is a feature or a feature property. In both cases, the standard expects them to be identifiable

in a reasonable fashion. While the details of this can vary somewhat, it should be consistent with the resource

model used in the World Wide Web, which uses a namespace hierarchy for URIs, URLs and URNs. Since

this mechanism is the most common, any other mechanism used should map to it. The core of the abstraction

is the ―scoped name‖ which is a combination of the namespace identifier and a local name, which can then be

used to navigate to the item referenced by the local name, through the namespace.

Req 19 Scoped names (namespace plus local name) shall be universally unique identifiers.

 20

Req 20 Within a namespace local names shall be unique identifiers.

Req 21 The values of members (attributes and operations) within an instance of a type shall be

scoped to the containing element or object (the namespace of the member name).

Req 22 Local names within a schema definition are the same local names used with a

representation or instance based on that schema for the data corresponding to the similarly

named local element of the schema specification.

Note This is not as complex as it sounds. A data definition of an element type in a schema names the subelement
definitions using a local name. That same local name is used when identifying the instances of those definitions in
instances of the original data definition. These scoped names are shifted from the schema namespace to the
instance namespace, while retaining the same local name. This makes the mapping from schema to instance simply
a matter of name matching. All reasonable mappings from data definition languages to data languages work in this
manner, and a standardization target would be hard-pressed to be in violation of this requirement.

Req 23 The namespace of the scoped name of a feature type or property type shall be the name of

the schema or part of the schema in which the type is defined.

Req 24 The namespace of the scoped name of the value of a feature shall be name of the datastore

or part of the datastore in which the “definitive” value of the feature is stored.

Note Following this requirement means that mirrored, value-identical copies of the “definitive” value of a feature should
carry the scoped name of the “definitive” value, not of the local value.

Req 25 The namespace of the scoped name of an instance of a feature property shall be the name of

the instance of the feature to which the instance of the property is associated.

The ―scoped names‖ have a locally unique part call the ―local name‖ or simply ―name‖ and are contained in a

―namespace‖ that acts as a collector of local names into a larger context: Each namespace may be contained

in yet a larger namespace. Most naming conventions have a notation for following this hierarchy, but it varies

widely. This standard will normally use the ―dot‖ notation of object languages in the classifier and below, and

a ―::‖ (double colon) for package name and above. This is consistent with UML 2. Other implementations are

far more complex, such as the notation for the HTTP URL, which mixes and matches separators and ordering

based on its own logic. Whichever logic is used there are the same common and overriding requirements; that

the hierarchical logic of the namespace model should be preserved, and that the parallelism of schema

and data instances should be reflected in the common use of local names between parts of the schema

and their corresponding parts of the instance data. These suggested limitations are not mandatory

because the control of the namespace structure of existing implementation may vary from this strict

parallelism between schema and instance as is the case in XML schema which inserts a global element

definition between types and element instances that often uses a shifting and unforced name shifting pattern

between type and global element.

The UML diagram for namespaces is in Figure 6-1.

Req 26 The mechanism for finding an information atom (resource, object, property) from its

scoped name shall be well-defined and well documented as part of the implementation of

the namespace.

Class ScopedName

{

nameSpace : NameSpace

localName : String {alias(id)}

}

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

21

Class NameSpace

{

id : ScopedName

member (name : String) : Object

}

A namespace is a named object (usually in a larger namespace, but may be universal such as ―http‖).

Figure 6-1: Name Space Class Diagram

Note The use of the “localName” qualifier on the member role in Figure 6-1 implies that the cardinality marked if for each
value of localName. Thus this means that a local name in a scoped name in a namespace is unique. The member

function of the NameSpace object means that the “local name” can be mapped to the object with that scoped

name. This all implies that given access to the namespace, access to the members is by localName.

 The target of the scoped name is not restricted to uniqueness, so any object can have multiple scoped names; but

each scoped name is the one and only one instance with that value of localName in the NameSpace.

Req 27 The mapping from scoped name to namespace is a child to parent mapping of a hierarchy,

and shall form a directed, acyclic graph (DAG).

Req 28 There shall be a well defined operation or protocol for finding members within a namespace

by their local name.

For example in http URLs, the full name can be linked by the web to the resource it identifies, hence the

―moniker‖ ―universal resource location.‖

6.6.2 Feature

Features are data elements with identity (local or global) which contain a collection of properties elements,

each named locally with the feature store and feature type both supplying a viable namespace.

Class Feature under NameSpace

{

name : FeatureName[0…1]

type : FeatureType[0..*] {set}

property : Property[0..*] {set}

«readonly» lock : Lock[0…1] */ settable by the WFS service

}

Class FeatureName under ScopedName

Note The lock on a feature is only non-NULL when a client request a feature lock.

Class Lock

{

«readonly» name : ScopedName

«readonly» expiry : DateTime

«readonly» owner : ScopedName[0…*]

}

A lock may be referenced by anyone by its name, but modification of lock information is only valid on

the service side of the interaction and should be done from the client side by requests (usually through a

query).

 22

Figure 6-2: Feature Class Diagram

Req 29 The feature’s name <featureName> which is a scoped name shall be universally unique.

Req 30 A Feature “value” shall be independent of the order in which the properties of that feature

are stored. Comparisons for equality shall not differentiate between the order in which a

feature stores its properties.

Req 31 If a feature instance (value) is associated to a set of types, then the feature shall have all the

properties required by each of that set of types.

Note A property value may be an ordered set (such as an array or list), but the order of the named attributes within a
feature has no semantical implications.

A Feature instance may realize multiple feature types. The decision to support multiple realization (each

feature instance supporting more than one type other than that required by inheritance is usually a system-

wide decision.

Note A Feature type is realized by a feature if it contains all required properties of the type, properly named; and makes
the claim that it supports the feature type.

6.6.3 Types, properties and property types

In what is to follow, there are a set of primitive types (integer, character, bit, byte, etc.) that are the basis of

the type system, which are defined in the basis of the data definition language used by the service. These

primitive act as a ―bootstrap‖ upon which the type system is built. There are also primitive constructors

(array, list, set, bag, data structure, enumeration, etc.) that are assumed to also be available.

Metaclass Type under NameSpace

{

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

23

id : TypedName

propertyType : Type[0…*]

}

Note A metaclass has classes for instances.

Class FeatureType under Type

{

id : FeatureTypeName

propertyType : PropertyType[0…*]

}

Class TypeName under ScopedName

Class FeatureTypeName under TypeName

Class PropertyTypeName under TypeName

Req 32 A property type which is unique and used in multiple feature types shall have the

namespace of the schema in which it is defined. Such globally unique properties shall have

the same semantics regardless of where they are use.

Req 33 A property type which is unique only within the feature type shall have the namespace of

the feature type in which it is defined and used. Such locally defined properties shall only

be considered valid within the context of the “namespace” of the feature type in which they

reside.

A FeatureType most likely resides in a FeatureSchema. A Feature most likely resides in a FeatureCollection.

Its ―id‖ will be a scoped name for the representation. Its name is a FeatureName referring to the Features

―home datastore‖, i.e. the one holding the ―official copy‖ of the feature instance. Thus it may be case that a

particular representation of a feature may distinct id and name, which would mean that the value is a mirror of

the official feature.

Class FeatureSchema under NameSpace

{

id : ScopedName

featureType : FeatureType [0..*]

}

Req 34 The feature schema shall be the namespace for all property and feature types defined

within it.

A feature instance (value) may use multiple feature schemas, and if it has naming conflicts between its

property values, it may use the schema namespace of those property values to differentiate between them.

6.6.4 References

The fully scoped name of a feature may be used as a reference. The nature of the operation of finding the

feature given its scoped name is dependent on the choice of data representation. The UML diagram for these

objects is in Figure 6-3

Class Reference

{

id : ScopedName / fully scoped name of the referenced element

}

A type-safe reference is a scope-name acting as a pointer to an instance of a particular type. The following

type inherits the ―id‖ reference from the class Reference, and adds a type reference to insure the type of the

target of the reference.

Class TypedReference under Reference

{

 24

type : TypeName */ scoped name of the type of the reference element

}

Note By inheritance from Reference, a Typed reference is a scoped name plus the name of the type that the reference
should point to. If the target of the reference is not of that type, one of its subtypes (or derivations) or one of its
realizations, then the typed reference is invalid.

Figure 6-3: Reference Class Diagram

Class FeatureReference under TypedReference realize Feature

{

Reference : FeatureName */ the name of the feature

type : FeatureType */ scoped name of the feature’s type

}

Note A feature reference is simple a typed reference that has to refer to some specified type of feature (must be a subtype
or realization of feature). In all cases where type is used in a name, the “type” is a metaclass of the correspondingly
named instances.

Class PropertyReference under TypedReference realize Property

{

Reference : PropertyName */ scoped name of the property

type : PropertyType */ scoped name of the property’s type

}

A reference to an element with a scoped name may be used in place of the referenced element regardless of

other circumstances. Service response data instances should carry local copies of any item that is referenced

in their data element. The use of references without local copies would require additional service request to

retrieve this data. The use of local reference within the response data has no such issue.

DiscriminatedUnion FeatureToken under Token realize Feature

{

id : FeatureReference

value : Feature alias feature

}

DiscriminatedUnion PropertyToken under Token realize Property

{

id : PropertyReference

value : Property alias property

}

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

25

6.6.5 Feature Collections

A feature collection is a by-value, by reference or by-selection logical container for feature instances. If the

feature collection is by value or reference, it is said to be ―explicit.‖ It is specified by a query selection, it is

implicit. A implicit feature collection is ―realized‖ by making its contents explicit. Any modification of the

features in the feature store that are referenced by the query makes the query-defined feature collection

―stale‖ in that any explicit representation of the collection might be no longer valid.

Class FeatureCollection under Feature

{

member[0…*] : FeatureToken

}

Note The lock on a feature collection is inherited from feature. If its value is non-null the each feature in the collection
shares that same lock. The granularity of locking is the feature.

Class FeaturTuple under FeatureCollection

{

member[0…*] : FeatureToken {ordered}

}

Feature Tuples are ordered sets of features that are usually the result of a query filter involving relations

involving sets of related feature.

Class QueryFeatureCollection under FeatureCollection

{

filter : Filter

«readonly» lastComputed : DateTime */ settable only by the WFS

}

If multiple queries are defined within a Query Feature Collection, then each query creates a selection set,

which is one element of the Query Feature Collection. If only a single query is contained, then the collection

is the result of that query. If no query is given, then the collection is the universal collection, i.e. the collection

of all features (logically only limited by the datastore or WFS service to which it is associated).

DiscriminatedUnion FeatureCollectionToken under FeatureToken

Note Since a Feature Token is a typed reference, and Feature Collections are a type of feature, there is no distinction
between the two types of token. A single feature can be considered a feature collection with one element.

 26

Figure 6-4: Feature and property Collection Class Diagram

A Query Feature Collection may lazily execute (calculate its explicit value from its query

representation) so that the element array set of features may be unpopulated until it is accessed.

Req 35 Access of the features of a query feature collection shall invoke its realization (to make it

explicit) if it has not been evaluated since the last time a modification to tha datastore may

have modified its implicit value.

The auto-refresh of an query feature collection may be skipped by explicit client request. Features and

Feature Collections are often used in passing parameters in and out of WFS service actions. In general, a

reference is a good as the instance it reference for input or output parameters. In general, outputs or

responses will normally be labeled copies of data store features, complete with scoped names.

Query Feature Collections give an alternate representation, and can be used in or as input parameters, can be

used directly in HTTP ―GET‖ calls to retrieve ―concrete‖ representations of feature instances that satisfy a

given query.

Properties are locally named holders of value. The type of that value will be defined in the feature schema, but

there are no a priori restrictions on these property values.

Class Property

{

id : ScopedName

value : Any

Type() : PropertyType[0…*]

}

Class PropertyType

{

id : PropertyTypeName / scoped name of this property definition

valueType : TypeName / scoped name of its contents

}

Class PropertySchema under NameSpace

{

id : ScopedName

propetyType : PropertyType[1..*]

}

Req 36 Any property shall be associated to a property type and a value type. The value of the

opeations (or attribute to support that operation) of the property shall be the property type

name. The value type shall be the type of the properties value.

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

27

Figure 6-5: PropertyType and Schema

The mechanism to associate the various types to instances of those types is function of the

<dataLanguage> and <schemaLanguage>.

6.6.6 Namespace concerns for features and properties

The namespace of a property instance (value) is always derived from the containing feature. The namespace

of a property type (if it is from a feature type) is derived from the feature type or the schema (see

requirements Req 32 and Req 33 in Clause 6.6.2) .

The property type of a feature may be limited by its schema to particular value types. This is not strictly a

requirement, and is left up to the datastore of the feature to ensure any such limitations.

Each property value has at least one scoped name based on it containing property. So if the Feature instance

has a id of <featureID>, then its contained property instances have a namespace of <featureID> and a

local name equal to the property name. Using a dot notation:

 <featureID>.<propertyName> = <propertyID>

 <propertyID>.value = the property’s value

Use of a reference within a property may break this pattern. Each feature is a ―first class‖ entity, carrying the

namespace of the datastore within which it primary value is kept.

Req 37 A feature property having, as its value, the ID (scoped name) of another feature or of the

property of another feature shall be interpreted as the current value is by definition the

current value of the referenced data element.

 28

A single WFS can serve data out of multiple datastores, so it may serve feature, even of the same type, within

a single response which have different namespaces associated to their scoped names.

6.7 General URI model and HTTP function call variable

If any of these values are lists, then the usual representation of lists of strings should be used as appropriate

for the context and representation language. In a URI, a list is comma separated list with no additions

whitespace. If whitespace is needed, the usually character codes may be used such as ―%20‖ for a space, etc.

Req 38 In an XML or similar document, a list of values shall be whitespace delimited.

Req 39 In a list giving the value of a KVP value shall be comma delimited, as is usual in URI

representations.

Req 40 If reserved characters or whitespace is needed, it shall be properly escaped or represented

as character codes of the appropriate type.

6.8 Common request parameters

Table 6-1 describes parameters common to all WFS requests. Subsequent tables can redefine some of the

facets of one or more of the parameters in this table.

Table 6-1: Common parameters for WFS requests

Parameter Cardinality

DEFAULT Description

<host> =http:/host/path/script [1] URL prefix of web service

version=<version> [1] 2.0 Service version requested

service=<service> [1] WFS Service type requested.

request=<request> [1] Type of WFS request.

namespace=<namespace> [0..*] Any namespaces needed each with a prefix.

NOTES: VERSION is mandatory for all operations except the Capabilities operation.

The request type holds information on the service being accessed and the request being made. Thus the URI

use to address the service need not embed any of this information unless it is for convenience.

Req 41 If the URI includes information that is also specified in the request, then the service shall

use the information encoded in the request as opposed to that encoded in the URI. If this is

impossible, the service shall raise an exception.

Req 42 If the URI includes information that could be but is not specified in the request, then the

service shall use that included information as the default value for the request parameters

left NULL.

Thus the usual URI for a service request (except capabilities) may use the URI address:

<host>/<service>

Parameters are passed according to the <interfaceProtocol> as defined in Clause 2.2.2.

Additional parameters may be added to any request by subtyping. This puts the new values at the end of the

list. Since in most data representations, values are associated to keys or tags, the order of the list of

parameters should not cause in issue for a well-implemented service. This brings up the generalized

―robustness principle‖ (also known as Postel's Law):

Be conservative in what you do; be liberal in what you accept from others.

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

29

Req 43 A service operation receiving a request with an unambiguously labeled set of parameters in

an order other than what the service expected, shall respond to that request in a manner

identical with a request in which the order was what was expected.

Req 44 A service operation receiving an extended request structure shall ignore any parameters in

that request that are not advertised in their capabilities document.

Req 45 If a service supports multiple interface protocols, the results of logically equivalent request

from different protocols shall be functionally identical.

The ―version‖ parameter specifies the protocol version number and allows for negotiation. For the purposes

of this standard, ―2.0‖ is the default value of version. In most cases, a service should support as many

previous versions as possible.

The ―service‖ parameter specifies which of the available service types at a particular service instance is being

invoked. The value WFS is used to indicate that the Web Feature Service should be invoked. For the

purposes of this standard, WFS is the default required value of service.

The parameter REQUEST parameter indicates which of the web feature service operations to invoke. The

possible values of the REQUEST parameters are given in Table 6-2.

The optional parameter ―namespace‖ is included to support qualified feature and property names such as

myns:InWaterA_1M where the prefix myns is bound to a particular namespace. The format of the parameter

values for XML data encoding is as follows:

xmlns(prefix=EscapedNamespaceName)

where EscapedNamespaceName is the escaped URL of the namespace and is defined in CGI (see [21]). The

prefix may be omitted to denote a default namespace. The ―namespace‖ parameter may contain a list of

namespace declaration values in order to bind all the namespaces being referenced in an URI-only (such as an

HTTP GET) request.

The eventual intent is to make a WFS a full ―datastore‖ interface to an on-line geographic feature datastore

(or database), exposing all the functionality of a fully capable supporting database (if that is the

implementation chosen. This would eventually involve:

 The retrieval and manipulation of data (CRUD — create, retrieve, update, delete) with as much data

integrity protection as possible

 The retrieval and manipulation of the feature schema.

 Query and filtering capabilities to fully support the ―feature collections defined by query filters‖

defined above as ―query feature collections‖ (Clause 0)

 Equal support of all web service models, including at least KVP, SOAP and REST both SOA and

ROA, in a logically consistent manner derived from the abstract models of feature data defined in

OGC’s abstract specification.

Req 46 A WFS shall be prepared to encounter parameters that are not part of the specification

(<lagniappe>) that may be part of a later extension or vendor-specific parameters.

Req 47 A WFS shall produce valid results even if additional parameters are missing or malformed.

 30

Req 48 A WFS shall declare new parameters that it wishes to support within its Capabilities

Document as delivered to a client.

Clients may read the capabilities schema and formulate requests using any vendor-specific parameters

advertised therein.

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

31

Table 6-2: Operations possible within a WFS service

Default

Request

Name

Allowable Alias Access Purpose

FeatureType DescribeFeatureType «read»

Get the schema information for one or more feature

types. Currently the default is that the schema is

readonly.

PropertyType DescribePropertyType «read»
Get the schema information for one or more property

types.

Schema

(future)

FeatureType,

PropertyType

«read»

«write»

Reserved for future use to support schema change

functions.

FilterModel DescribeFilterModel «read»
Information on the ―selection‖ Booleans qualifications

possible when specifying a ―query.‖

Feature GetFeature
«read»

«write»

Any operation on features, such as CRUD (create,

retrieve, update or delete), lock and unlock.

Alternatively from SQL syntax: INSERT, SELECT,

UPDATE, DELETE, LOCK, RELEASE. The most

common action is to get (retrieve or select). GetFeature

will normally only be used for SELECT and LOCK.

Locking granularity is currently the feature.

Property GetProperty
«read»

«write»

An alias for FEATURE, usually used when retrieving

partial features, i.e. only some properties as opposed to

complete feature objects. Supports the full ―CRUD +

Lock‖ semantics above, but may requires fully scoped

names for properties such as

<featureName>.<propertyName> to fully identify

which properties are being targeted. GetProperty will

normally only be used for SELECT.

Locking by property is currently not supported.

Capabilities GetCapabilities. «read»

Access to service specific metadata about various

functionalities and protocols. The capabilities document

can be thought of as a static metadata document, but it is

usually not since it can change with modifications of the

feature schema.

Capabilities may also be user specific; e.g. the

capabilities of a server may depend on who the client is

and what services and data he may have rights to access.

This is a matter for Access Control or Digital Rights

Management and will not be fully addressed in this

standard.

 32

7 WFS Core Class

7.1 Semantics

The Core class of the WFS standard defines a core set of requirements that all WFS service implementation

must satisfy. Because CORE does not require specific data encodings or representations, but relies instead on

abstract definitions of requests, responses and data structures, it is not directly testable until the parameters

described in Clause 2 are specified.

7.2 Core::Capabilities

7.2.1 Semantics

The Capabilities or GetCapabilities operation is usually a static read-only data member that includes the

information as required by OWS common in addition to specific WFS information on feature types and

operations associated to the service. The decision to allow Capabilities in addition to GetCapabilities is to

make the model more consistent with a Resource Oriented Architecture, without damaging the Service

Oriented Architecture view of the WFS service. In any service operation used solely in a GET HTTP function

may use a ―Get‖ prefix without any change in interpretation.

7.2.2 Request

The Capabilities request is used to request a capabilities document from a web feature service.

Figure 7-1: Capabilities Request Class Diagram

Class Request

(

version : String[0…1] = “2.0”

service : String[0…1] = “WFS”

request : String[0…1] = “Capabilities”

namespace : String[0…*]

}

Class OWS::Capabilities under Request

(

acceptVersion : String[0…*]

acceptFormat : ScopedName[0…*]

updateSequence : String[0…1]

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

33

Section : SectionName[0…1]

Class WFS::Capabilities under OWS::Capabilities

{

serviceProvider : ScopedName[0…1]

serviceIdentification : ScopedName[0…1]

featureType : FeatureTypeName[0…*]

propertyType : PropertyTypeName[0…*]

queryCapabilities : QueryMetadata[0…1]

}

Any WFS request data block may include information on the service, version being requested; any number of

namespace declarations that may be needed for the request, and the request body itself.

7.2.3 Response

7.2.3.1 Data Definitions

The root of the response to a Capabilities request is the Capabilities element which is defined by the

following:

Class OWS:CapabilitiesResponse under Response

{

acceptVersion : String[0..*]

acceptFormat : String[0..*]

updateSequence : String

section : SectionName[0..*]

}

Class WFS:CapabilitiesResponse under OWS:CapabilitiesResponse

{

serviceProvider : ScopedName[0…1]

serviceIdentification : ScopedName[0…1]

featureType : FeatureTypeName[0…*]

propertyType : PropertyTypeName[0…*]

queryCapabilities : QueryMetadata[0…1]

}

Enumeration OWS::SectionName

{

acceptVersion

acceptFormat

updateSequence

}

Enumeration WFS::SectionName under OWS::SectionName

{

serviceIdentification

serviceProvider

actionMetadata

contents

all

featureType

propertyType

outputFormat

queryCapabilities

}

Class Capabilities under GetCapabiliites

{

featureType : ScopedNames[0..*]

propertyType : ScopedNames[0..*]

filterCapabilities : String[0..*]

}

 34

The base type, OWS:CapabilitiesResponse, is defined in the OWS Common Implementation

Specification [OGC 05-008].

Figure 7-2: Capabilities

7.2.3.2 Service Provider section

Req 49 The service provider section shall provide metadata about the organization offering the web

feature service as defined in the OWS Common Implementation Specification.

7.2.3.3 Service Identification section

Req 50 The service identification section shall provide information about the web feature service

itself, as defined in the OWS Common Implementation Specification.

7.2.3.4 Feature Types section

Req 51 The feature types section shall define the list of feature types (and operations on each

feature type) that are offered by a web feature service. Any feature type used in a WFS

response shall be listed in the feature types section of its Capabilities document.

The purpose of the <FeatureTypes> element is to contain a list of feature types, that a WFS offers and

defines the transaction and query operations that are supported on each feature type.

The following schema defines the Feature Type List element:

Class FeatureTypeList

{

action : QueryActionName [0…*]

featureType : FeatureTypeDescription[1…*]

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

35

}

Class Capabilities::FeatureTypeDescription

{

name : FeatureTypeName

title : Title[0…*]

abstract : Abstract[0…*]

keywords : Keywords[0…*]

SRS : SRSChoice

outputFormats : ScopedName[1…*]

boundingBox : BoundingBox[1…*]

metadata : MetadataReference

extendedDescription : PropertyTypeName[0…*]

}

DiscriminatedUnion SRSchoice

SRS : SRSDescription

noSRS : NULL

}

Class SRSDescription

{

defaultSRS : SRS

otherSRS : SRS[0…*]

}

Class Abstract under String

Class MetadataReference

{

document : ScopedName[1..*]

about : ScopedName[1..*]

}

Class QueryReference

{

document : ScopedName[1..*]

about : ScopedName[1..*]

}

Class BoundingBox

{

minimums : Number[1..*] */ minimum value for each coordinate

maximums : Number[1..*] */ maximum value for each coordinate

SRS : SRSDescription[0…1]

}

Table 7-1 lists the elements that may be used to describe each feature type in a <FeatureType> element:

Table 7-1: Elements to describe feature types

Element Description

Name The namespace-scoped name of the feature type. This element is mandatory.

Title An unordered list of zero or more human-readable titles that briefly identify this

feature type in menus.

Abstract An unordered list of zero or more <Abstract> text elements. Each <Abstract>

element is a descriptive narrative for more information about the feature type.

Keyword The <Keyword> element contains a list of short words to aid catalog searching.

 36

Element Description

SRS.DefaultSRS The <SRS> element indicates which spatial reference system shall be used by a WFS

to express the state of a spatial feature if not otherwise explicitly identified within a

query or transaction request. For example, if a Feature request specifies noSRS value

for the <Query>.<srsName> attribute, any spatial properties of feature data

satisfying the request shall be expressed using the <DefaultSRS> value. The SRS

may be indicated using either the European Petroleum Survey Group form

'EPSG:<POSC Code>' or the URL format defined in URNs of definitions in OGC

namespace (URN) [OGC 05-010]. The <DefaultSRS> shall not necessarily be the

internal storage SRS used for the feature data, and therefore should not be

interpreted as such. If the <DefaultSRS> is different from the internal storage SRS,

then the WFS shall support a transformation between the <DefaultSRS> and the

internal storage SRS. The effects of such a transformation shall be considered when

determining and declaring the guaranteed data accuracy.

SRS.OtherSRS The <OtherSRS> element is used to indicate other supported SRSs within query

transaction and query requests. A 'supported SRS' means that the WFS supports the

transformation of spatial properties between the <OtherSRS> and the internal

storage SRS. The effects of such a transformation shall be considered when

determining and declaring the guaranteed data accuracy.

SRS.NoSRS The <NoSRS> element is used for feature types that have no spatial properties, and

therefore no SRS whatsoever. It is not a requirement for features and feature

collections to have spatial properties. The <NoSRS> element shall never imply, and

therefore cannot be used for, semantics of "Unknown SRS". This element is used as

an identifying label only, and therefore has no element or attribute content.

OutputFormat The <OutputFormat> element is a list of MIME types indicating the output

formats that may be generated for a feature type. If this optional element is not

specified, then all the result formats listed for the Feature operation are assumed to be

supported.

BoundingBox The <BoundingBox> element is used to indicate the edges of an enclosing rectangle

in decimal degrees of latitude and longitude in WGS84. Its purpose is to facilitate

geographic searches by indicating where instances of the particular feature type exist.

Since multiple latitude-longitude bounding boxes may be specified, a WFS may

indicate where various clusters of data exist. This knowledge aids client applications

by letting them know where they should query in order to have a high probability of

finding feature data.

Metadata A WFS may use zero or more <MetadataLink> elements to offer detailed,

standardized metadata about the data in a particular feature type. The optional

<about> attribute may be used to reference the aspect of the element which includes

this <MetadataLink> element that this metadata provides more information about.

https://portal.opengeospatial.org/files/?artifact_id=8814
https://portal.opengeospatial.org/files/?artifact_id=8814
https://portal.opengeospatial.org/files/?artifact_id=8814

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

37

Element Description

ExtendedDescription A WFS may optionally add elements to the description of a feature type, without

have to redefine the capabilities schema, using the <ExtendedDescription>

element. The <ExtendedDescription> element contains one or more property

values.

In all cases, clients may safely ignore all or some of the extended descriptive

properties.

7.2.3.5 Supports Property Types section

Req 52 The supports property types section shall define all property types that a WFS is capable of

serving. Any property used in a WFS response shall be listed in the property section of its

Capabilities document.

The following schema defines the <SupportsPropertyTypes> element:

Class Capabilities::SupportsProperty under Capabilities::PropertyCatalog

Class Capabilities::PropertyCatalog

{

Properties : PropertyDescription[0…*]

Abstract : MetadataReference[0…*]

Keywords : Stings[0…*]

outputFormat : ScopedName[0..*]

}

Class Capabilities::PropertyDescription

{

property : ProptertyTypeName

title : String[0…*]

abstract : Abstract[0…*]

keywords : Stings[0…*]

SRS : SRSDescription[0…1]

metadata : MetadataReference

}

Class Capabilities::ParameterDescription under Capabilities::PropertyDescription

Class Capabilities::OperationDescription under Capabilities::PropertyDescription

{

id : LocalName =”return”

parameter : ParameterDescription

The information values used to define each offer are identical to those used to describe feature types and are

described in detail in.

7.2.3.6 Query Action Metadata section

Req 53 The action metadata section shall provide metadata about the actions defined in this

specification and implemented by the target web feature service being described. All data

operations that a WFS service supports using this standard shall be listed in the operation

metadata section of its Capabilities document.

Req 54 All services capable of creating a lock shall be capable of deleting that lock.

Req 55 All update, delete and select (retrieve) actions shall target existing features.

 38

Req 56 All WFS services that are capable of query shall also be capable of creating query

collections that shall be substitutable for any collection of the appropriate type in any

action request.

Enumeration QueryActionName

{

select \ to be able to select feature or properties from the datastore

insert \ to be able to insert features or properties into the datastore

update \ to be able to change feature or property values in the datastore

delete \ to be able to delete features or properties from the datastore

lock \ to be able to lock features in the datastore for future actions

}

Class Lock under QueryAction

{

lockID : ScopedName[0…*] \ name by which the lock will be identified

\ usually defined by the service

lockRange : AllSome[0…*] = “All”

lockAction : LockAction[0…1] = “Lock

expiry : Duration[0…*] = “ 5 minutes”

}

Enumeration AllSome

{

All \ all feature locked or none locked

Some \ lock what can be locked

}

Enumeration LockAction

{

Lock alias Set

Release alias Unlock

Renew

}

Discriminated Union FeaturePropertySelection

{

feature : FeatureTypeName

property : PropertyTypeName

featureTuple : FeatureTypeName[1…*] \ tuple result of a join

propertyTuple : PropertyTypeName[1…*] \ non-homogeneous tuple of properties

mixedTuple : TypeName[1…*]

}

The contents of the operation metadata section are defined in the OWS Common Implementation

Specification. This metadata includes the DCP, parameters and constraints for each operation.

The possible actions that may be specified in this section are described in Table 7-2.

Table 7-2: Query Actions on Features

Action Alias Description

<insert
>

<create> The <insert> <create> action is used to create new instances of a feature type.

<update
>

 The <update> action is used to change the existing state of a feature.

<delete
>

 The <delete> action is used to remove instances of a feature type from the data store.

<select
>

<retrieve
>

The <select> or <retrieve> action is used to filter only some features based on a ―filter‖
or set of Boolean (true-false) criteria.

<lock> The <lock> action is used to lock (limit the modification by others for a certain time) or unlock
(release a lock) feature values. Rest of request is a ―feature select‖ to determine those to be locked.

Transaction and query operations may be specified globally for all feature types or locally for each specific

feature type contained in the <FeatureType> element. Globally specified transaction and query operations

are inherited by every feature type contained in the <FeatureType> element and may be augmented by

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

39

specifying local transaction and query operations using the <Operation> element contained by each

<FeatureType> element.. For example, the Query operation may be specified globally for all feature types

contained in the <FeatureType>, but the Update operation may only be specified locally for a small number

of feature types. If no transaction or query actions are defined either globally for all feature types of locally

for specified features type, then the default operation, Query (indicating the query operation) shall be implied

for all feature types contained in the <FeatureType> element.

Table 7-3: Feature Operation constraints

Constraint Name Possible Values

and/or Value

Types

Description

<PostEncoding> One or more of:

"SOAP"

"XML"

―GeoJson‖

―GML‖

―KML‖

Etc.

Specifies the formats that can be used with HTTP POST

transfer of operation requests. The value ―SOAP‖ shall

indicate that SOAP encoded operation requests can be

handled, The value ―XML‖ shall indicate that (bare) XML

encoded operation requests can be handled.

If the connect point URL is the same for all SOAP-encoded

and bare-XML operation requests, this Constraint element

shall be included in the ActionMetadata element.

If the connect point URL is different for SOAP-encoded

and bare-XML operation requests, this Constraint element

shall be included in each Post element.

<DefaultMaxFeatures> Integer value

greater than

zero.

Specifies the default value for the <maxFeatures>

attribute of the <Feature> element. If the constraint is not

specified then there is no limit on the number of features

that a Feature request may return.

<DefaultLockExpiry> ISO 8601

duration.

Define the default lock expiry duration (e.g. PT5S for 5

seconds). If the constraint is not specified then locks will

be held indefinitely unless clear using some administrative

function.

<PreservesSiblingOrder> Boolean value;

either "TRUE"

or "FALSE"

Specified whether the WFS support sibling element

ordering for actions. See clause 12.2.5 for an explanation of

the significance of sibling element ordering.

<SupportsSubtype> Boolean value;

either "TRUE"

or "FALSE"

Specifies that the service is capable to process the

subtypesOf() function in query

<SortLevelLimit> Integer value

greater than

zero.

Specifies that the service supports a set maximum of

<SortProperty> elements to be processed in the Query

portion of a Feature request

 40

Constraint Name Possible Values

and/or Value

Types

Description

<SupportsSpatialJoin> Boolean value;

either "TRUE"

or "FALSE"

Indicates that the server has the capability to process joins

with a spatial join predicate.

<SupportsJoins> Boolean value;

either "TRUE"

or "FALSE"

Indicates that the server has the capability to process joins

with non-spatial predicates.

<SupportsTransactions> Boolean value;

either "TRUE"

or "FALSE"

Indicates whether transactions are atomically committed.

7.2.3.7 Filter capabilities section

The schema of the Filter Capabilities Section is defined in ISO document 19143.

Req 57 The WFS shall support the operations advertised in the Filter Capabilities Section of its

Capabilities Document.

Req 58 All filter operations required by this document and the Filter conformance class of the

service shall be listed in the Filter Capabilities Section of its Capabilities Document.

Req 59 No conformant client shall use hidden filter capabilities of a service not listed in the Filter

Capabilities Section of its Capabilities Document.

7.2.3.8 Serves Parameter Types section

Req 60 The serves parameter type section shall define the parameter types that are available from a

web feature service that supports the Property operation. These types may be defined in a

base schema, or in an application schema. Any parameter used in a WFS request shall be

listed in the serves parameter section of its Capabilities document.

The <Parameter> and <Constraint> elements are defined in the OWS Common Implementation

Specification [OGC 05-008] and allow valid domain values and constraints to be defined globally for all

operations or locally for specific operations that a web feature service offers.

The following table defines the parameter domains which may be defined in the capabilities document of a

web feature service.

Table 7-4: Operation parameters

Operation Name Parameter Name Value Type Values

All <version> String List version number of the service supported.

Capabilities <acceptFormat> ScopedName Includes types the server is capable of

generating.

DescribeFeatureType <outputFormat> ScopedName Includes any data format that the server

supports.

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

41

Operation Name Parameter Name Value Type Values

DescribeFilterModel <outputFormat> ScopedName Includes any data format that the server

supports.

Feature <srsName> ScopedName List of SRS's that the WFS is capable of

handling.

Feature <IDgen> String Includes one or more of the values:

"GenerateNew", "UseExisting" or

"ReplaceExisting".

Feature <inputFormat> ScopedName Shall include the value "text/xml;

subtype=gml/3.2.0". May include any other

string or MIME type that the server supports

including previous version of GML.

Feature <lockAction> String[] Shall include the values "ALL" and "SOME".

Feature <outputFormat> ScopedName Includes any data format that the server

supports.

Feature <releaseAction

>

String Shall include the values "ALL" and "SOME".

Feature <resultType> String Shall include the values "results" and "hits".

Feature <resultType> String Shall include the values "results" and "hits".

Feature <vendorID> String Any string that is used as a vendor identifier.

Feature

Property

<outputFormat> ScopedName Includes any data format that the server

supports.

In general the domain of a parameter is specific to a web feature service implementation. For example the

allowed values for the <srsName> parameter are dictated by the particular transformations that a WFS

supports. In some cases, however, a parameter domain is defined in this specification (e.g. <IDgen>). In

such cases a web feature service may only restrict the domain.

The following table defines constraints, which may be specified by a web feature service in its capabilities

document.

7.2.4 Protocols

7.2.4.1 KVP protocol

The standard way to retrieve a capabilities document is defined in OWS Common. Since the actually

document is the same in all cases, the KVP user can use the REST protocols, which are equivalent. The most

common protocols is as follows:

 GET <host>/WFS/Capabilities HTTP/1.1

 GET <host>/WFS/Capabilities/<sectionName> HTTP/1.1

 GET <host>/WFS/Capabilities?SECTION=<sectionName>& HTTP/1.1

 GET <host>/WFS/Capabilities/FeatureTypes/<featureTypeName> HTTP/1.1

 42

 GET <host>/WFS/Capabilities?SECTION=FeatureTypes&

 FEATURE=<featureTypeName>& HTTP/1.1

 GET <host>/WFS/Capabilities/FeatureTypes?FEATURE=<featureTypeName>& HTTP/1.1

Note: The HTTP GET function does not support body content.

7.2.4.2 SOAP protocol

A SOAP request for capabilities can use the <host> URI as the recipient of the SOAP request. The SOAP

body shall contain the following information in a format that the Capabilities document of the service specifies

it will accept.

 <service>

 <version> which will default to unspecified

 <sectionName>, <featureTypeName>, <propertyTypeName>.

 <outputFormat> which will default to XML if not specified

7.2.4.3 REST protocol

A REST request for the capabilities document assumes that the capabilities request is a subelement of the

service (no version is required), so the two following URIs will answer to a HTTP GET call with the

capabilities document

 <host>/<service>/<capabilities>

 <host>/<service>/<version>/<capabilities>

This gives HTTP get request of the following format:

 GET <host>/WFS/Capabilities HTTP/1.1

 GET <host>/WFS/Capabilities/<sectionName> HTTP/1.1

 GET <host>/ WFS/Capabilities/FeatureTypes HTTP/1.1

 GET <host>/ WFS/Capabilities/FeatureTypes/<featureTypeName> HTTP/1.1

 GET <host>/ WFS/Capabilities/PropertyTypes HTTP/1.1

 GET <host>/ WFS/Capabilities/PropertyTypes/<propertyTypeName> HTTP/1.1

 GET <host>/ WFS/Capabilities/FeatureTypes/roads HTTP/1.1

*/to get data on the road feature type

7.3 Core::Feature operation

7.3.1 Introduction

Req 61 The Feature operation shall return a selection of features from a data store in a format

derived by negotiation.

A WFS processes a Feature request and returns a response to the client that contains zero or more feature

instances that satisfy the query constraints specified in the request.

Req 62 The Feature operation shall be implemented by all web feature services

Req 63 The content of a <feature> element shall be a set of <property> elements, each of which

partially describes the feature.

The name of the property element indicates the property semantics, conventionally given in lowerCamelCase,

such as boundedBy or collarLocation.

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

43

The value of a property is given either by the content of the property element, or by-reference as the value of

a resource identified in the property element. The value of a property may be any element type, but is usually

restricted by the schema of the feature-type. In some cases the value of a property of feature may be another

feature, for example a School feature may have a property frontsOn, whose value is a Road, which may itself

have further properties, etc. However, note that the properties of the second feature (the Road) are not

properties of the first feature (the School) and it is an error to refer to them as such.

7.3.2 Request

7.3.2.1 Data Structures

The encoding of a Feature request is defined by the following abstract schema:

Class FeatureRequest under Request

{

query : Query[0..*]

maxFeatures : Integer[0..1] constraint {>0}

resultType : ResultType[0..1] default = “results”

outputFormat : Format[0..1] */ default format given in Capabilities

}

Enumeration Feature::ResultType

{

results

count

}

Class Feature::FeatureResult under Result

{

results : Collection

timeStamp : DateTime

«readonly» numberOfFeatures : Integer[0..*] */ number of non-NULL elements

«readonly» lockID : ScopedName[0..*]

}

Class Feature::Query

{

action : QueryAction = “select features”

filter : Filter[0…1]

lockID : ScopedName[0…1]

lockRange : AllSome[0…*] = “Some”

lockAction : LockAction[0…*] = “Release”

}

DiscriminatedUnion Collection

{

feature : FeatureCollection[0..*]

property : PropertyCollection[0..*]

}

Req 64 A Feature request shall contain one or more Query that describe a query action operation

to be performed on a specific feature type.

 44

Figure 7-3 : Feature Request

«abstract» Class QueryAction

Class Select alias Retrieve, Projection Clause under QueryAction

{

ResultType : FeaturePropertySelection */ query response structure

sourceAlias : String[0…*]

}

Class Insert alias Create under QueryAction

{

features : FeatureCollection[1…*]

localTypeName : ScopedName[1…*]

overWrite : Boolean[0…1] = “False”

}

Class Update alias UpdateProperty under Select

{

selection : FeaturePropertyCollection[1…*]

alias : String[1…*]

}

Class Delete under QueryAction

A Query action is defined be the following schema fragment:

Class Query

{

Feature : Feature[0…*] */ feature list to be acted upon

featureType : String[0…*] */ feature type names

featureAlias : String[0…*] */ featuer type aliases used in filter

propertyType : String[0…*] */ property type names

propertyAlias : String[0…*] */ property type aliases used in filter

filter : Filter[0…1] */ coditions on features or propeties to search

Action : QueryAction */ Action to take

sortBy : SortBy[0…1] */ sorting instructions for response

handle : String[0…1] */ identity reference for later use

srsName : ScopedName */ SRS of the response

}

DiscriminatedUnion DataElement

{

featureTypeName : FeatureTypeName[0…*] */ complete features to be retireved

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

45

propertyName : String */ propeties to be retrieved

queryFunction : QueryFunction */ function of the features

constant : ValueExpression

}

Enumeration LogicalFunction

{ */ Boolean valued function to perform on simple types

and

or

not

equals

notEquals

lessThan

greaterThan

}

«abstract» DiscriminatedUnion QueryTypeName

{ */ Boolean valued functions to perform on element types

type : TypeName

alias : String

}

DiscriminatedUnion LocalFeatureName Under QueryTypeName

{ */ Boolean valued functions to perform on element types

type : FeatureTypeName

}

DiscriminatedUnion LocalpropertyName Under QueryTypeName

{ */ Boolean valued functions to perform on element types

type : PropertyTypeName

Function : QueryFunction

}

Class QueryFunction

{ */ Boolean valued functions to perform on element types

functionName : String

operands[0..*] : Value

}

union QueryFunction

{

functionValue : QueryFunction

elementValue : QueryElement

}

Class LockFeatureRequest under GetFeatureRequest

{

lock : Lock

lockAction : LockAction

}

Enumeration LockAction

{

lock

release

}

Class Lock

{

handle : ScopedName */ defaults to system generated id

expiry : Duration[0..1] */ default advertized in capabilities

}

Enumeration LockAction

{

Some

All

}

 46

Req 65 Actions in a Feature request shall be processed in order in which they appear in the

request.

Figure 7-4 : Query Actions Class Diagram

7.3.2.2 Query elements

7.3.2.2.1 General structure

Each individual query packaged in a Feature request is defined using the <query> value. The <query>

value defines which feature type(s) to query, what properties to retrieve and what constraints (spatial and

non-spatial) to apply to the feature properties in order to select the valid feature set. The <query> value

includes:

a filter (selection) clause, that describes the rule used to specify which instances of listed feature types will be

reported using the syntax of the <queryLanguage>

a projections clause, that specifies the model for the response, in terms of the requested feature types and the

properties of the features to be presented (given by the <propertyName>, or <function> values)

Req 66 In the event that no selection clause is specified in a <query> value, a WFS shall respond

by generating a response document that contains all instances of the explicitly requested

feature types (subject to the value of the maxFeatures attribute.

Req 67 In the event that no projection clause is specified in a <query> value, then a WFS shall

include complete instances of all of the explicitly requested feature types in its response.

Req 68 The schema of a feature-based query response shall be equivalent to the feature schema

except that all properties are “optional” and are listed if only if requested in the <query>.

Req 69 The schema of a property-based query response shall be equivalent to the property schema

from the DescribeFeatureType.

7.3.2.2.2 Projection clause

7.3.2.2.2.1 Introduction

The purpose of the projection clause is to define the structure of the returned response as an anonymous type.

This will contain some set of features or properties organized so that the results of the various filters and joins

can be interpreted in the structure.

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

47

Req 70 The response to a Feature or Property request shall contain a document with a root element

of some subtype of Feature, Feature Collection or Property Collection which has the

semantics and structure of an structured list of features or properties as defined in the

projection clause.

7.3.2.2.3 FeatureName elements and Aliases

Req 71 The value of each <featureTypeName> element shall be a scoped name matching the

name of one of the features or one of the properties of one of the features referenced in the

typeName attribute of the parent Query element in the representation of the relevant

feature.

7.3.2.2.4 PropertyName elements and Aliases

Req 72 The value of each <propertyName> element shall be a scoped name matching the name of

one of the features or one of the properties of one of the features referenced in the

typeName attribute of the parent Query element in the representation of the relevant

feature.

Req 73 The names of the property elements shall be discoverable from the schema description of

the feature types, being the names of the immediate child elements of the feature elements.

Req 74 The schema description shall be discoverable as the result of a DescribeFeatureType

operation.

There is typically some flexibility in the structure of the description of a feature type of interest, especially

concerning the optional or mandatory nature of each property. For the purposed of the query response, the

WFS service shall return only those properties requested, essentially treating the query specification as

containing an anonymous type defined by its projection clause.

Req 75 The <propertyName> elements shall be used to enumerate which of the properties shall be

included in the response to a Feature request.

Depending on the purpose of the request, the client may select complete features as defined in the

schema or may use the projection clause to define anonymous types that do not match the defined

features. In the latter case, it is the responsibility of the client to use the information with care since it will not

be capable of being parsed by schema aware processes using the datastore schema.

Req 76 A WFS client shall thus be prepared to deal with a situation where it receives a response

that does not agree with its application schema, but does agree with the anonymous types

defined in its query specification.

In the case that a client wishes to assure itself that a particular feature is application schema

compliant, it should request an unprojected version of that feature, or ask specifically for all

mandatory feature properties. This it the preferred manner in which features are acquired with the intent to

later update them. The local copies are precise mirrors of the datastore definitive versions, and therefore

given proper locking procedures, an update using the modified local copies would have the precise semantics

that would logically be expected by the client. If the intent is to copy for later update, the client should

lock the features in the datastore by including a lock request in this query.

 48

7.3.2.2.5 Function element

The <function> value may be used to apply a function, to the value of a feature property. The function

shall be one of the functions that the WFS declares it supports in its filter capabilities [clause 20, ISO 19143].

Application of the function must result in a feature instance that is valid according to the application schema

that the WFS advertises using the DescribeFeatureType operation.

Req 77 If the application of a function would result in an invalid feature instance then the service

shall raise an exceptions.

7.3.2.2.6 Filter or Selection limitations clause

The <filter> value may be used to define constraints on a query. Both spatial and/or non-spatial

constraints may be specified as described in ISO document 19143.

Req 78 If no filter is contained within the query, then the query is unconstrained and the maximum

number of feature instances shall be returned in the response.

The value of the <filter> expression is based on values of elements within a representation of a feature

instance. The mechanism for storing these values is dependent on the logical structure of the feature model

and not its physical realization.

In the default case (i.e. no Filter Model) the model for the <filter> expression is identical to the model for

the features reported in the response or that generated using the DescribeFeatureType request [clause 8].

However, if the <FeatureType> section of the Capabilities response [subclause 14.3.4] includes any

<FilterModel> elements, then any <filter> element within the Feature request MUST indicate one of

these filter models when the value of the typeName attribute on the <query> value is this feature type. If a

filter model is specified, then the filter expression must include conditions for all properties according to the

cardinality and value-space constraints indicated in the filter model. For example, a condition must be

provided for all properties with minOccurs greater then zero; or if a set of properties are specified in a

<sequence>, then conditions for all members of the sequence must be provided. Conditions may not be set

for any property that does not occur in the filter model.

7.3.2.2.7 Join operation

A WFS may optionally support the join operation.

Req 79 If a web feature service does support joins, it shall advertise this fact in its capabilities

document.

A join operation finds tuples (i.e. pairs, triples, etc.) of features, among a list of feature types, that satisfy

some join condition specified using a filter expression [ISO 19143]. If the join condition is satisfied then that

tuple of features is considered to be in the result set of the query. A join operation is encoded by:

listing the feature types to join using the typeName attribute and

specifying a join predicate using a filter expression [ISO 19143]

Web feature services that implement the join operation shall implement an inner join meaning that only feature

tuples that match the join condition shall be returned in the result set. This means that all slots in any tuple

returned will be populated, either by a feature or a feature reference depending on

the capabilities of the <outputFormat> and

the contends of the <query> specification

The following sequence of REST calls performs such a query using the contains operator.

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

49

 POST <host>/<service>/<version>/FEATURE HTTP 1.1

 <query>

 <filter>

 <contains>Park.geometry Lake.geometry</contain>

 </filter>

 <alias>Park Lake</alias>

 <typeName>myns:Park myns:Lake</typeName>

 <propertyName>myns:Park myns:Lake</propertyName>

 </query>

This operation returns a URI to a request posted to the appropriate FEATURE storage on the servers, say
<request###>

 GET <host>/<service>/<version>/FEATURE/<request###> HTTP 1.1

The list of feature types to join is specified using the <typeName> attribute (e.g. typeName="myns:Park

myns:Lake") on the <query> value. The join predicate is specified using the <filter> element and finds

all pairs of myns:Park and myns:Lake features whose geometries satisfy the spatial operator used in the

filter. The response to a request with a join is described in subclause 10.3.1.

A projection clause, selecting specific properties from each feature type being queried, may be specified

subject to the discussion above.

Representation overrides for REST protocols may be done in the GET call by apply an appropriate ―file

suffix‖ to the resource name. The following examples will return the indicated types (as associated to the

suffix in the services capabilities document).

 GET <host>/<service>/<version>/FEATURE/<request###>.gml HTTP 1.1

 GET <host>/<service>/<version>/FEATURE/<request###>.json HTTP 1.1

 GET <host>/<service>/<version>/FEATURE/<request###>.bxfs HTTP 1.1

7.3.2.2.8 Sorting

The <sortBy> value [ISO 19143] may be used to define content ordering in a query response. If no

<sortBy> value is contained within the <query> value, then the query response is unordered and the order

in which the feature instances are returned shall not be interpreted by the client as having any significance.

7.3.2.2.9 Parameter discussions

7.3.2.2.9.1 typeName parameter

The mandatory typeName attribute shall list the names of all feature types to be used in the query queried. Its

value is a list of scoped names including namespace and local names (e.g. myns:School) or

subtypesOf() functions returning a scoped name. Each typeName value shall match one of the feature

types advertised in the service's capabilities document.

If the list contains only one typeName then the subtypesOf() function may be used to indicate that not

only the specified feature type shall be queried but also all features of feature types whose object element are

in the substitutable for the feature type mentioned and which meet the criteria expressed in the filter

expression. ―Substitutability‖ is defined by the schema language. In XML this is the substitution group, in

object structures this is the inheritance structure. For example,

Example: typeName="subtypesOf(ns1:Vehicle)"

might along query the feature types ns1:Cars, ns1:Boats, etc …

 50

If the list contains more that one scoped name this indicates that a join operation is being performed between

the feature of the listed feature types. The join predicate is specified is specified using a filter as described in

ISO 19143.

Example: typeName="ns1:FeatureTypeOne ns2:FeatureTypeTwo"

The subtypesOf() function shall not be used if a join operation is being performed.

Req 80 In the event that a subtypesOf() function is present within a <query> value that encodes a

join operation, the WFS shall raise an exception.

7.3.2.2.9.2 <aliases> parameter

The optional <aliases> parameter may be used to specify a list of alternate names for the feature type and

feature property names specified as the value of the <typeName> attribute. A feature type alias may be used

anywhere the feature type name may be used within the context of a <query> action within a Feature

request.

Req 81 The server shall recognize an properly apply any alias defined by a client within its proper

scope in a query.

Req 82 The number of list elements in the value of the <aliases> attribute shall match the

number of feature type names in the value of the <typeName> attribute and shall be

correlated 1:1.

Req 83 Each alias specified in the value of aliases attribute shall be unique.

Req 84 If the <aliases> attribute is used, an alias shall be specified for each feature type name

listed in the value of <typeName> attribute.

Aliases are typically used in queries, that perform a join operation, to support self-joins. That is a join of one

feature type back to itself.

Example: typeName="myns:Feat1 myns:Feat1" aliases="a b"

In this example, the first feature type, myns:Feat1, is aliased to the name "a" and the second feature type,

myns:Feat1, is aliased to the name "b". Thus, ―/myns:Feat1/boundedBy‖ and ―/b/boundedBy‖ is

considered equivalent by the WFS. In this sort of query the alias is an independent role for the feature type,

and the values taken on during query for both aliases will range over all instances of the feature type

myns:Feat1.

7.3.2.2.9.3 <srsName> parameter

Req 85 The optional <srsName> attribute of the <query> value shall be used to specify a specific

WFS-supported SRS to be used for returned feature geometries. Its value may be the

<DefaultSRS> or any of the <OtherSRS> values listed for the feature type in WFS

capabilities document. If no <srsName> value is supplied, then the features shall be

returned using the advertised <DefaultSRS> value.

This attribute may have no meaning for responses that contain no spatial properties.

Any valid URI value may be assigned to the <srsName> attribute. However, in order to enhance

interoperability, a WFS shall be able to process <srsName> attribute values with the following format

models:

Examples: EPSG:<EPSG code>

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

51

http://www.opengis.net/gml/srs/epsg.xml#<EPSG code>

urn:ogc:def:crs:EPSG:version:<EPSG code> [OGC 05-010]

In these format models, the values <EPSG code> are placeholders for actual EPSG code values.

Example: srsName="urn:ogc:def:crs:EPSG:6.3:26986"

7.3.2.3 <maxFeatures> parameter

Req 86 The <maxFeatures> shall be used to limit the number of explicitly requested features that

a Feature request presents in the response document.

The maxFeatures value applies to the entire result set (i.e. the result set generated by processing one or more

Query actions contained is a Feature request) and the constraint shall be applied to the features in the order in

which they are presented. In addition, feature members contained in an explicitly requested feature collection

do not count – the requested feature collection counts as one feature. Furthermore, if more than one feature

type name is specified as the value of the Feature.Query.typeName attribute then each resulting join tuple

shall be counted as one feature. Once the maxFeatures limit is reached, request processing can terminate and

the response document, containing at most maxFeatures features, may be presented to the client as a valid

response. There is no default value defined for the maxFeatures attribute and the absence of the value means

that all feature type instances in the result set are to be presented to the client if possible, given other

limitations

7.3.2.4 <maxSize> parameter

Req 87 The <maxSize> shall be used to limit the data volume of any response document. The limit

shall be given in bytes (b), kilobytes (kb) or megabytes (mb) with the units explicitly given.

7.3.2.5 <resultType> parameter

A WFS can respond successfully to a Feature request in one of two ways.

1. It may either generate a complete response document that contains the explicitly requested features

(i.e. features specified via the Feature.Query.typeName attribute) that satisfy the query

constraints in the request, or

2. it may simply return a count of the total number of features that satisfy the request.

Which of these two responses a WFS generates is determined by the value of the optional <resultType>

attribute. The possible values for the attribute are summarized in the following Table 7-5:

Req 88 The <resultType> shall determine the type of a result to a Feature request.

Req 89 If the value of <resultType> is “results” the return shall be a complete response

document with explictly represented features that satisfy that request subject to the

restrictions of <maxFeatures>.

Req 90 If the value of <resultType> is “hits” the return shall be a count of the number of

features that satisfy the request.

Table 7-5: Values for resultType attribute

resultType
Value

Description

 52

resultType
Value

Description

<results> The default value results indicates that a WFS shall generate a complete response that contains

all explicitly requested features that satisfy the query constraints in the request.

<hits> The value hits indicates that a WFS shall process the Feature request and rather than return the

complete result set, it shall simply indicate the total number of explicitly requested features that

would be contained in the response document. The total feature count is simply be the sum of

the number of explicitly requested feature that each Query action in a Feature request would

return. Only instances of the types specified as values of the Feature.Query.typeName

attribute shall be included in total count. If more than one feature type is specified as the value

of the Feature.Query.typeName attribute, then the resulting join tuple shall count as one

feature instance..

7.3.2.6 <outputFormat> parameter

The optional <outputFormat> specifies the format of the response to a Feature request. Table 7-6

summarizes the example values for the <outputFormat> for generating some common types of response.

Req 91 The value of <outputFormat> in a service request shall be the type of the data return

part of the response

Table 7-6: Example Values for outputFormat attribute

outputFormat Value Description

text/xml;

subtype=gml/3.2.0

This value indicates that an XML instance document shall be generated that

validates against a GML 3.2.0 application schema.

text/xml;

subtype=gml/3.1.1

This value is kept for backward compatibility and indicates that an XML

instance document shall be generated that validates against a GML 3.1.1

application schema.

text/xml;

subtype=gml/2.1.2

This value is kept for backward compatibility and indicates that an XML

instance document shall be generated that validates against a GML 2.1.2

application schema.

GML2 Same as text/xml; subtype=gml/2.1.2

text; subtype=geojson A GeoJson text file containing the requested information.

text/xml;

subtype=bxfs/1.0.0
This value indicates that an XML instance document shall be generated that

validates against the BXFS 1.0.0 XML Schema.

Req 92 Any output format shall be usable by a client if and only if the appropriate value for

<outputFormat> is advertised in the Capabilities document.

A descriptive narrative should be included in the capabilities document for each output format listed

there.

7.3.3 Response

Req 93 The response to a Feature request with a <resultType> = <results> shall be a set of

Feature Collections, each of which is one instance of a selected feature tuple; and a time

stamp indicating the time at which this collection was constructed.

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

53

Req 94 If the number of features exceed the <maxFeatures> or <maxSize> value of the request

or the default value of <maxFeatures> or <maxSize> then the last feature collection in

the response shall be a reference to the next set of features in the aggregated result. The

number of feature collection results shall contain at least one non-NULL instance, and no

more than <maxFeatures> instances.

The actual number of features or size of the response in the “partial results” case may be chosen by

the server by any criteria for the optimization of the delivery of the response. The decision mechanism

may be included in the capabilities document as part of the service’s metadata, but this description is

not required. The details of the implementation strategy for this mechanism is strictly an implementation

decision.

Req 95 The response to a Feature request with a <resultType> = <hits> shall be the count of

the cardinality of a set of Feature Collections, each of which is one instance of a selected

feature tuple.

Class FeatureResponse under Response

{

features : FeatureCollection[0..*]

numberOfFeatures : Integer[0…1]

timeStamp : DateTime[0…1]

}

The content of the <FeatureCollection> value is controlled by the value of the <resultType>

attribute on the <Feature> request.

Req 96 If the specified value of the <resultType> attribute is <results> (the default value) then

a WFS shall generate a complete response with the feature instances in the result set as the

content of the <FeatureCollection>.

Req 97 If the value of the <resultType> attribute is specified as <hits>, a WFS shall generate a

result value with no content (i.e. empty) but shall populate the values of the <timeStamp>

attribute and the <numberOfFeatures> attribute.

In the case where <resultType> = <hits> then the time stamp and number of feature values need

not include a feature collection. In this way a client may obtain a count of the number of features that a

Feature operation would return without having to incur the cost of transmitting the entire result set.

Req 98 In the case of a Feature request with multiple <query> values a web feature service shall

return a <FeatureCollection> corresponding to each <query> value in the Feature

request. The outer <FeatureCollection> shall contain the component feature collections

(one for each <query> value in the Feature request) and shall have the other

<FeatureCollection> values as subelements.

Alternatively, the WFS may return handles expressed as a URI for any or all of these feature

collections. This URI can be navigated to and though as can any URI with simple HTTP calls.

Note that a feature member that satisfies more than one <query> value in the Feature request will be

duplicated in the response. Depending on the <outputFormat> value chosen, these repeating feature

values may be given as local references to single full value.

 54

7.3.3.1 Join operation response

Req 99 In the case of a Query action performing a join operation a WFS shall use the

<featureTuple> (a subtype of feature collection) element in the response to report each

set of features that satisfy the join predicate. The order of the features in the feature tuple

will correspond to the order specified by feature type specified in the selection clause of the

query filter.

Class FeatureTuple under FeatureCollection

7.3.3.2 <timeStamp> attribute

Req 100 The optional <timeStamp> attribute in a returned <featureCollection> shall be used

by a WFS to indicate the time and date when a response was generated. The optional

<timeStamp> attribute in a response may be used if there is no non-NULL feature

collection to be returned.

7.3.3.3 <numberOfFeatures> attributes

Req 101 The optional <numberOfFeatures> attribute in a returned <featureCollection> shall

be used to indicate the number of features that are in the response document. The optional

<numberOfFeatures> attribute in a response may be used if there is no non-NULL

feature collection to be returned.

The same counting rules described in subclause 10.2.2.3 shall be used to set the value of the

numberOfFeatures attribute.

7.3.3.4 Exceptions

Req 102 In the event that a web feature service encounters an error servicing a Feature or another

operation derived from it, in a situation not specifically covered in detail by this standard,

the operation shall raise an appropriate exception as described in this standard.

7.3.4 Protocols

7.3.4.1 KVP protocol

In KVP encodings, the request structure is flattened so that all parameters of a request use only their local

names.

Req 103 In using a KVP propocol to implement a service as defined in this standard, the base URL

shall be that of the service, and the parameters shall follow in key-value pairs as defined in

The Common Gateway Interface (CGI).

The simplest Feature protocol is as follows

GET <host>/?SERVICE=<service>&REQUEST=Feature&VERSION=2.0

 &TYPENAME=<featureType>& HTTP/1.1

The following gets a property collection:

GET <host>/?SERVICE=<service>&REQUEST=Feature&VERSION=2.0

 &TYPENAME=<featureType>&PROPERTYNAME=<propertyName>& HTTP/1.1

The complete list of possible parameters are listed in Table 7-7.

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

55

Table 7-7: Feature Parameters

Feature Parameters Cardinalit
y

DEFAULT Containing
Type

Description

REQUEST=[Feature] [1] Feature
Request

The name of the WFS request.

VERSION [1] Feature
Request

RESULTTYPE [0,1] results Feature
Request

The resulttype parameter is used to indicate
whether a WFS should generate a complete
response document or whether it should generate
an empty response document indicating only the
number of features that the query would return. A
value of results indicates that a full response
should be generated. A value of hits indicates that
only a count of the number of features should be
returned.

OUTPUTFORMAT [0,1] text/xml;
subtype=gml/3.2.0

Feature
Request

The output format to use for the response.
text/xml; subtype=gml/3.2.0 shall be supported.
Other output formats are possible as well as long as
their MIME type is advertised in the capabilities
document.

MAXFEATURES=N [0,1] Feature
Request

A positive integer indicating the maximum number
of features that the WFS should return in response
to a query. If no value is specified then all result
instances should be presented.

FEATUREID

(Mutually exclusive
with FILTER and
BBOX)

[0,1] Feature
Request

An enumerated list of feature instances to fetch
identified by their feature identifiers.

BBOX

(Prerequisite:
TYPENAME)

(Mutually exclusive
with FEATUREID and
FILTER)

[0,1] Feature
Request

In lieu of a FEATUREID or FILTER, a client may
specify a bounding box as described in subclause
14.3.3.

PROPERTYNAME

[0,1] Query A list of properties may be specified for each
feature type that is being queried. Refer to
subclause Error! Reference source not found. on
how to form lists of parameters. A "*" character
may be used to indicate that all properties should
be retrieved. There is a 1:1 mapping between each
element in a FEATUREID or TYPENAME list
and the PROPERTYNAME list. The absence of a
PROPERTYNAME value indicates that all
properties shall be fetched.

TYPENAME

(Optional if
FEATUREID is
specified.)

[0,1] Query A list of feature type names to query. Multiple
feature type name values shall be interpreted to
mean multiple distinct queries analogous to
multiple <query> values within a
<Feature> value. Multiple feature type name
values shall NOT be interpreted as a single query
performing a join operation on the multiple feature
types. Joins shall not be supported for KVP
encoded WFS requests.

 56

Feature Parameters Cardinalit
y

DEFAULT Containing
Type

Description

SRSNAME [0,1] Query This parameter is used to specify a WFS-supported
SRS that should be used for returned feature
geometries. The value may be the Default SRS or
any of the Other SRS values that a WFS declares it
supports in the capabilities document. The SRS
may be indicated using EPSG codes or the URL
form defined in [ISO 19136]. If the parameter is
not specified then the value of the Default SRS for
the feature type being queried shall be used.

FILTER

(Prerequisite:
TYPENAME)

(Mutually exclusive
with FEATUREID and
BBOX)

[0,1] Query A filter specification describes a set of features to
operate upon. The filter is defined as specified in
ISO 19143. If the FILTER parameter is used, one
filter shall be specified for each feature type listed
in the TYPENAME parameter. Individual filters
encoded in the FILTER parameter are enclosed in
parentheses ―(― and ―)‖.

SORTBY [0,1] Query The SORTBY parameter is used to specify a list of
property names whose values should be used to
order (upon presentation) the set of feature
instances that satisfy the query. The value of the
SORTBY parameter shall have the form
―PropertyName [ASC|DESC][,PropertyName
[AASC|DESC],…]” where the letters ASC are
used to indicate an ascending sort and the letters
DESC are used to indicate a descending sort. If
neither ASC nor DESC are specified, the default
sort order shall be ascending. An example value
might be: “SORTBY=Field1 DESC,Field2
DESC,Field3”. In this case the results are sorted
by Field 1 descending, Field2 descending and
Field3 ascending.

7.3.4.2 SOAP protocol

A SOAP request for capabilities can use the <host> URI as the recipient of the SOAP request. The SOAP

body shall contain the following information in a format that the Capabilities document of the service specifies

it will accept.

 <service>

 <version> which will default to unspecified

 <outputFormat> which will default to XML if not specified

 Feature request parameters

 <query>[0..*]

 <queryString>[0..*]

 <filter>[0..1]

 <sortBy>[0..1]

 <handle>[0..1]

 <alias>[0..*]

 <typeName>

 <propertyName>[0..1]

 <srsName>[0..1]

 <maxFeatures>[0..1]

 <resultType>[0..1]

 <outputFormat>[0..1]

 <featureID>[0..1]

 <bBox>[0..1]

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

57

7.3.4.3 REST protocol

A REST request for features can be done in two separate manners based upon the assumption of the

structuring of the resources. assumes that the capabilities request is a subelement of the service (no version is

required), so the two following URIs will answer to a HTTP GET call with the capabilities document

<host>/<service>/<version>/<operation> HTTP 1.1

This gives HTTP post request of the following format:

POST <host>/WFS/<version>/Feature HTTP/1.1
< requestValue >

Which will return a URI value something like

<host>/WFS/<version>/Feature/<request###>

Which will lead to getting the result using the following GET:

GET <host>/WFS/<version>/Feature/<request###>/results HTTP/1.1

GET <host>/WFS/<version>/Feature/<request###>/hits HTTP/1.1

In addition to the standard Feature requests using a query filter, there shall also be a direct feature and

property access using the <featureID> of a particular feature. For example

GET <host>/WFS/<version>/Feature/<featureID> HTTP/1.1

Which returns a complete single feature i.e. ―<feature> to </feature>‖.

GET <host>/WFS/<version>/Feature/<featureID>/<propertyName> HTTP/1.1

Which returns a complete feature property i.e. ―<property> to </property>‖.

The first of which will return a complete feature with the <featureID>, and the second will return the value

of a property of that feature of the given name; assuming one exist. If any URI reaches a ―feature value‖ then

augmentation of a <propertyName> value will produce another such GET URI. So, given the following

has a schema that works this way (―road segments‖ are ―linked‖ to ―intersections‖ by the ―startIntersection

role‖ and ―intersections‖ have a ―location property‖), the Get will return the location of the start intersection

of ―roadSegment 45‖:

GET <host>/WFS/<version>/Feature/roadSegment45/startIntersection/location HTTP/1.1

As discussed above, a REST user can modify the output format in the GET call by applying an acceptable file

extension as defined in the services capabilities document. For examples, the following may work given the

proper Capabilities document:

GET <host>/WFS/<version>/Feature/roadSegment45/startIntersection/location.gml HTTP/1.1

GET <host>/WFS/<version>/Feature/roadSegment45/startIntersection/location.json HTTP/1.1

GET <host>/WFS/<version>/Feature/roadSegment45/startIntersection/location.bxfs HTTP/1.1

7.3.5 Response

The response to any of these calls is a complete <feature> or <featureCollection> as asked for in

the request contained in a <FeatureResponse>.

 58

7.4 Core::Property operation

7.4.1 Introduction

The Property operation is a variant of the Feature operation where property collections are returned instead

of feature collections. It uses Feature request parameters that limit the return type to a single property value

or list of property values. The Property operation allows retrieval of features and elements by ID from a

WFS. A Property request is processed by a WFS, and an document fragment, containing the result set, is

returned to the client. The Property request provides the interface through which a WFS may be asked to

traverse and resolve references to the features and elements it serves. This should be of no consequence to

the user and the response should not be affected by the internal data representation of the WFS database.

7.4.2 Request

The Property request is defined by either of the following parameter sets:

 <propertyName> and <featureID> or

 a query that returns a set of properties through its projection clause.

The <Property> element is used to request the return an element with a ID value by an PropertyID. A

Property element contains exactly one <PropertyID>. The value of the ID attribute on the PropertyID

element is used as a unique key to retrieve the complex element with a ID attribute with the same value. The

requested element could be any identified element of the GML data being served by a WFS, such as a feature,

a geometry, a topology, or a complex attribute.

The outputFormat attribute defines the format to use to generate the result set. All possible formats

supported by the service (including GML versions, non-XML and binary formats) shall be declared in the

capabilities document.

7.4.3 Response

The format of the response to a Property request is controlled by the outputFormat attribute. The default

value for the outputFormat attribute shall be text/xml; subtype=gml/3.2.0. This will indicate that a WFS

shall generate a GML document fragment of the result set that conforms to ISO 19136.

The response to a Property request is the referenced GML element returned as an XML document fragment.

This differs from the response to a Feature request, which returns a complete document containing a

FeatureCollection.

7.4.4 Protocols

The protocols of a Property request are identical to that of GetFeature with the exception that the value of

<operation> is now ―Property.‖ All Property invocation are still valid if the <operation> value is

replaced by GetFeature.

7.5 Core::DescribeFeatureType operation

7.5.1 Introduction

The <DescribeFeatureType> operation returns a schema description of feature types offered by a WFS

instance. The schema descriptions define how a WFS expects feature instances to be encoded on input (via

Insert and Update requests), how feature instances will be generated on output (in response to Feature and

Property requests). The DescribeFeatureType operation shall be implemented by all web feature

services.

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

59

7.5.2 Request

A <DescribeFeatureType> request element contains zero or more <TypeName> elements that encode

the names of feature types that shall be described. If the content of the <DescribeFeatureType> element

is empty, then all the feature types offered by a WFS shall be described in the response. The following XML

Schema fragment defines the XML encoding of a DescribeFeatureType request:

Class DescribeFeatureType under Request

{

featureType : ScopedNames[0…*] = [ALL]

outputFormat : ScopedNames[0…1] =

[<schemaLangauge>]
}

The default value for <featureType> is a complete list of all types of features in the schema associated to

the WFS to which the particular client has access. The <outputFormat> attribute is used to indicate the

schema description language that shall be used to describe feature types, the default value being the default or

first <schemaLanguage> in the capabilities document.

Table 7-8 provides well known values for the <outputFormat> attribute that also ensures backward

compatibility with previous versions of the OGC Web Feature Service specifications :

Table 7-8: Example Values for the outputFormat attribute

outputFormat Value Description

text/xml;
subtype=gml/3.2.0

This values indicates that the feature types offered by a WFS shall be described using a GML 3.2.0
application schema.

text/xml;
subtype=gml/3.1.1

If a WFS implementation supports multiple versions of GML, this value shall be used to indicate that
the feature types offered by the WFS should be described using a GML 3.1.1 application schema.

text/xml;
subtype=gml/2.1.2

If a WFS implementation supports multiple versions of GML, this value shall be used to indicate that
the feature types offered by the WFS shall be described using a GML 2.1.2 application schema.

7.5.3 Response

In response to a <DescribeFeatureType> request, a WFS service shall return a valid application schema

that defines the feature types listed in the request, in the <schemaLanguage>. The document(s) returned by

the <DescribeFeatureType> request may be used to validate feature instances generated by the WFS in

the form of feature collections on output or feature instances specified as input for transaction operations.

7.5.4 Exceptions

In the event that a web feature service encounters an error servicing a <DescribeFeatureType> request,

it shall raise an exception.

7.6 Core::DescribeFilterModel operation

7.6.1 Introduction

The <Query> of a Feature or Property request allow WFS clients to construct a request containing a filter

expression using an arbitrary combination of tests on any or all of the properties of the requested feature type

or types.

The Filter Model will often be a modification of the associated feature type, perhaps with certain properties

suppressed, with additional properties added, or with a specified value-space for a property. However, this

specification provides no specific constraints on the design of a filter model: it is the responsibility of the

provider of the particular WFS instance to design filter models that enforce the desired business rules or

 60

ensure the required performance protection, and if the filter model deviates from the response model, to

devise a suitable mapping from the filter model to the response model.

The function of the Describe Filter Model operation is to generate a description of filter models for feature

types offered by a web feature service implementation. The descriptions generated in response to this

operation define how feature instances may be constrained in the filter expression of GetFeature requests.

The only mandatory output in response to a Describe Filter Model request is a GML [ISO19136] application

schema.

For the purposes of experimentation, vendor extension, or even extensions that serve a specific community of

interest, other acceptable output format values may be advertised by a web feature service in its capabilities

document. The meaning of such values in not defined by this International Specification. The only proviso in

such cases is that WFS clients may safely ignore <outputFormat> values that they do not recognize.

7.6.2 Request

The XML encoding of a <DescribeFilterModel> request is defined by the following:

Class DescribeFeatureMode under Request

{

modelName : ScopedName[0…*]

outputFormat : ScopedName[0…*]

}

A Describe Filter Model element contains zero or more Model Name elements that encode the names of filter

models that are to be described. If the content of the Describe Filter Model element is empty, then that shall

be interpreted as requesting a description of all filter models that a WFS offers.

The output format attribute is used to indicate the schema description language that should be used to

generate the description of filter models. Other schema languages may also be used to describe filter models

as long as the MIME type value for the output format attribute is advertised in the capabilities document

[clause 14]. Table 6 defines other values for the output format attribute that may be specified to request

application schemas that conform to other versions of GML:

Table 7-9: Values for the outputFormat attribute

outputFormat Value Description

text/xml;

subtype=gml/3.2.0

This value indicates that a GML 3.2.0 application schema, using XML Schema,

should be generated in response to a DescribeFilterModel request. This is the default

values for the outputFormat attribute in the event that it is not specified.

text/xml;

subtype=gml/3.1.1

This value indicates that a GML 3.1.1 application schema, using XML Schema,

should be generated in response to a DescribeFilterModel request.

text/xml;

subtype=gml/2.1.2

This value indicates that a GML 2.1.2 application schema, using XML Schema,

should be generated in response to a DescribeFilterModel request.

For the purposes of experimentation, vendor extension, or even extensions that serve a specific community of

interest, other acceptable output format values may be advertised by a WFS in the capabilities document

[clause 14]. The meaning of such values in not defined in the WFS specification.

As specified by GML [ISO19136], the filter model schema definition is entirely at the discretion of the

particular WFS implementation. The only caveats are:

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

61

Geometry must be expressed using the GML [ISO 19136] geometry description.

Spatial Reference Systems must be expressed as defined in GML [ISO19136].

The schema must be consistent with the GML feature model. This means that the filter model schema defines

properties of a feature. The GML interpretation of this statement is that the elements nested immediately

below the root element of a feature type define properties of that feature.

7.6.3 Response

In response to a <DescribeFilterModel> request, where the value of the <outputFormat> attribute

has been set to text/xml; subtype=gml/3.2.0, a WFS shall generate a valid GML [ISO 19136] application

schema that defines the schema of the filter model(s) listed in the request. The document presented by the

Describe Filter Model request may be used to construct Filter clauses within a GetFeature request for the

associated feature type(s).

7.6.4 Exceptions

In the event that a web feature service encounters an error servicing a Describe Filter Model request, it shall

raise an exception as described subclause 7.4.

 62

8 WFS Data Maintenance extension

8.1 Introduction

The Data Maintenance extensions are data transformation operations to be applied to feature instances

under the control of a web feature service. This adds actions to the Feature operation via extensions to the

query language actions. Using the Feature operation and these action clients can create, modify and delete

features in the web feature services’ opaque data store. The Data Representation Language, denoted as the

parameter <dataLanguage> of the conformance class and as described in Clause 2.2.4, is used to pass

feature and property information both into and out of the datastore.

Req 104 All communication of feature and property information between client and server shall use

the <dataLanguage>.

The WFS implementation is responsible for any representational transformation required to do this server-

side process.

Req 105 When the transaction specified has been completed, a web feature service shall generate an

response document, indicating the completion status of the operation.

Req 106 Web feature services that support the Data Maintenance extension actions shall advertise

this fact in their capabilities document.

8.2 LockFeature action

8.2.1 Request

The following parameters defines the contents of a LockFeature action:

1. A feature or feature collection subject to the lock (A Feature Request returning a feature or list of features,

usually of the same type)

2. <lock> including a <handle> and a <expiry>

8.2.2 <expiry> parameter

The <expiry> value is used to set a limit on how long a WFS should hold a lock on feature instances in the

event that a action is never issued that would release the lock. This limit is specified using an ISO 8601:2004

duration. The lock timer may be started once the entire lock request has been processed and the lock

response has been completely transmitted to the client.

Req 107 Once the specified <expiry> time period and elapsed (the lock expires), a WFS shall

release the lock if it still exists and there is no ongoing or scheduled actions using that lock.

Once all actions received befor the expiration of the lock have been processed, any

remaining locks from this original request will be released.

This means that the time limit is on the client to issue its request, not on the WFS to complete its operations.

Req 108 Once a lock has been release, for any reason, then any further actions issued against that

lock will not be honored, and the service shall return an exception message indicating that

the lock is no longer valid.

This default and maximum time for the <expiry> value should be specified by the service.

8.2.3 <lockAction> parameter

The <lockAction> value is used to control how feature locks are acquired.

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

63

Req 109 A lock action of <All> indicates that the WFS shall acquire a lock on all requested feature

instances. If all feature instances cannot be locked, then the operation shall fail, the service

shall return an exception and no feature instances shall remain locked.

Req 110 If the lock action is set to Some, then the WFS shall lock as many of the requested feature

instances as it can.

Req 111 The default lock action shall be All.

Req 112 A value of <Some> indicates that the WFS shall lock as many feature in the result set as

possible. The response document shall only contain those features that were successfully

locked

Req 113 If any features are successfully locked, the WFS shall return to the client a lock identifier

(using the <lockID> attribute on the <FeatureCollection> element).

Req 114 The client shall use this value for subsequent actions on the locked features and to release

the locks, until that time that the lock is released or has reached expiration.

Req 115 The result Type attribute shall be ignored in the case of a FeatureWithLock request. A

WFS shall always generate a complete response (i.e. resultType="results") in response to a

FeatureWithLock request.

8.2.4 Response

A LockFeature Request creates a feature collection consistent with the GetFeature Request except that in

general , there are two collections in the response, those successfully locked and those not locked. The

following defines the contents of a LockFeature request:

Class LockFeatureResponse

{

lockedFeature : FeatureCollectionWithLock[1..*]

otherFeaure : FeatureCollection[0..1]

}

In response to a LockFeature request, a web feature service shall generate an XML document. This

document will contain a lock identifier that a client application may use in subsequent WFS operations to

operate upon the set of locked feature instances. The response may also contain the optional elements

feature collections <lockedFeature> and <otherFeature> depending on the value of the

<lockAction> attribute.

If the lock action is specified as <ALL> and all identified feature instances may be locked, a WFS shall

respond with a <LockFeatureResponse> element that contains the <LockedFeature> element and no

<OtherFeature> element (since either all identified feature instances may be locked or none at all). If some

or all feature instances cannot be locked, a WFS shall response with an exception indicating that the lock

request failed because some or all feature instances are locked by other clients.

If the lock action is specified as <SOME>, then the < LockFeatureResponse> element shall contain the

<lockedFeature> and <otherFeature> elements.. The <LockedFeature> element shall list the

feature identifiers of all the feature instances that were locked by the LockFeature request. The

<OtherFeature> element shall contain a list of feature identifiers for the feature instances that could not be

locked by the web feature service (possibly because they were already locked by someone else).

 64

No assumption is made about the format of the lock identifier. The only requirement is that it can be

expressed in the character set of the transaction request.

If a lock request results in no features being locked, then a WFS shall respond with

<LockFeatureResponse> document that contains a value for the lockID attribute but that contains

neither a <LockedFeature> element nor a <otherFeature> element. In other words, an empty

response. After the request is completed, the lockID shall be immediately released since no resources were

locked. If that same lockID is used in a subsequent transaction an exception shall be raised, as described in

subclause 7.4, since that lockID value for longer exists.

8.2.5 <LockID> return parameter

For a FeatureWithLock request, a WFS shall generate a response document that includes the lock identifier

used to lock features in the result set. The lock identifier is encoded using the <lockID> attribute that is

returned with the <FeatureCollection> value.

8.2.6 Exceptions

If a WFS does not implement the LockFeature operation then it shall generate an exception, indicating that

the operation is not supported, if such a request is encountered.

In the event that a web feature service does support the LockFeature operation and encounters an error

servicing the request, it shall raise an exception as described in subclause 7.4.

8.3 Request Schema definition

The encoding of a query <request> is defined by the following:

Class WfsRequest under Request

{

lockID : LockID[0…1]

operationRequest : DataActionRequest[0…*]

releaseAction : LockAction[0…1]

}

DiscriminatedUnion DataAction under Request

{

insert : InsertRequest

update : UpdateRequest

delete : DeleteRequest

lock : LockRequest

unlock : UnlockRequest

}

A <request> element may contain zero or more <Insert>, <Update>, or <Delete> elements that

describe operations to create, modify or destroy feature instances. A WFS shall process <Insert>,

<Update> and <Delete> elements in the order in which they are presented in the request. Subsequent

update and delete actions, in a <request>, may operate on feature instances created by previous insert

actions in the same transaction <request>. An empty <request> is valid but not very useful. Any lock

releases occur at the end of the entire <request>.

8.3.1 LockID element

In the event that a transaction request operates on locked features, then the content of the <LockID>

element shall be a lock identifier obtained from a previous FeatureWithLock or LockFeature operation. If a

WFS does not support feature locking but is presented with a transaction containing the <LockID> element,

the service shall ignored the <LockID> element.

If a WFS is presented with a transaction request that does not modify any locked features but contains a

<LockID> element then the service shall ignore the <LockID> element.

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

65

If a WFS is presented with a transaction request that modifies locked feature and the Transaction request

does not contain a <LockID> element or does not contain the matching lock identifier, the transaction

operation shall fail and the service shall raise as exception as described in subclause 7.4.

8.3.2 release Action attribute

In a LockFeature and/or FeatureWithLock operations, the value of the releaseAction attribute controls how

locked features are treated when a transaction request is completed.

A value of <ALL> indicates that the locks on all feature instances locked using the specified <LockID>

should be released when the transaction completes, regardless of whether or not a particular feature instance

in the locked set was actually operated upon. This is the default action if no value is specified for the

releaseAction attribute.

A value of <SOME> indicates that only the locks on feature instances modified by the transaction shall be

released. The others, unmodified but locked feature instances, shall remain locked using the same lock

identifier so that subsequent transactions may operate on those feature instances. In the event that the

releaseAction attribute is set to the value <SOME>, and an expiry period was specified on the

<LockFeature> or <FeatureWithLock> elements using the expiry attribute, the expiry counter shall be

reset to its initial value after each transaction unless all feature instances in the locked set have been operated

upon.

For example, if a client application locks 20 feature instances and then submits a transaction request that only

operates on 10 of those locked feature instances, a <releaseAction> of <SOME> would mean that the 10

remaining unaltered feature instances shall remain locked when the request completes. Subsequent transaction

operations may then be submitted by the client application, using the same lock identifier to modify the

remaining 10 feature instances.

8.4 Insert action

8.4.1 Encoding

The following declarations describe the <Insert> element:

Class Insert under Request

{

feature : Feature[1…*]

idgen : IdentifierGenerationOption[0…*] = “generateNew”

handle : ScopedName[0…1]

inputFormat : ScopedName[0…1]

srsName : ScopedName[0…1]

}

Enumeration IdentifierGenerationOption

{

useExisting

replaceDuplicate

generateNew

}

The <insert> element is used to create new feature instances in a web feature service's opaque data store.

By default, the initial state of a feature to be created is expressed using GML [ISO 19136] and shall validate

relative to a GML application schema generated by the DescribeFeatureType operation. Multiple <Insert>

elements may be enclosed in a single Transaction request and multiple feature instances may be created using

a single <insert> element.

 66

8.4.2 <inputFormat> parameter

The <inputFormat> attribute may be used to support older versions of GML by indicating which version

of GML is being used to encode the new feature to be created.

Req 116 Any output format supported by a WFS server shall also be an allowable input format.

Req 117 Any input format supported by a WFS server shall also be an allowable output format.

This will both be advertised in the Capabilities document as output formats. .

8.4.3 <srsName> parameter

The optional <srsName> attribute is used to assert the SRS of the incoming feature data, which can be

useful if the incoming feature data does not have an SRS declared for each geometry. If the <srsName>

attribute exists on an <Insert> element, its value shall be equivalent to the value of <DefaultSRS> or any

of the <OtherSRS> of the relevant feature types.

Req 118 If the SRS passed requested in any request is not supported, the service shall raise an

exception.

Req 119 If the srsName is not specified in the request element, the service shall interpret this to

mean that the feature data is given in the <DefaultSRS> unless an SRS is specified on the

feature geometry.

In this case, if the SRS for such a geometry is one of the <DefaultSRS> or <OtherSRS> values for the

respective feature types, it will be transformed as required before insertion.

Req 120 If SRS is not supported for the respective feature type, the entire transaction shall fail and

the WFS shall raise an exception

If atomic transactions are not supported by the underlying opaque data store, the WFS shall skip any feature

with an unsupported SRS and continue. No exception shall be raised in this case.

The <srsName> attribute on the <Insert> element cannot be specified if the features types being inserted

have no spatial properties, which is indicated via the <NoSRS> element in the capabilities document.

In response to an <Insert> operation, a WFS shall generate a list of identifiers assigned to the new feature

instances as described in clause 13.3.

8.4.4 <IDgen> parameter

Feature identifiers may be generated by a WFS or specified by the client upon input using ID attribute values

on inserted features and elements. A specific WFS implementation shall support one of these methods of

assigning feature identifiers to new feature instances and may support all methods. The capability of the WFS

shall be advertised in the capabilities document as described in clause 14.

The <IDgen> attribute may be used to indicate the method of assigning feature identifiers to new feature

instances being inserted into a WFS's opaque data store. Table8-1 defines the possible values for the attribute

and their meaning:

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

67

Table8-1: IDgen Attribute Values

IDgen Value Action

<GenerateNew>
(default)

The web feature service shall generate unique identifiers for all newly inserted feature instances.

<UseExisting> The web feature service shall not generate new unique identifiers for the new feature instances
being inserted into the WFS's data store but shall, instead, use the existing ID values specified
with the new feature instances. If a new feature instance does not have a value specified for the ID
attribute then the WFS shall raise an exception. If the ID value specified on a new feature
instance already exists in the WFS's data store then the WFS shall raise an exception.

<ReplaceDuplicate> The web feature service shall not generate new unique identifiers for the new feature instances
being inserted into the WFS's data store but shall, instead, use the existing ID values specified
with the new feature instances. If a new feature instance does not have a value specified for the ID
attribute then the WFS shall raise an exception. If the ID value specified on a new feature
instance already exists in the WFS's data store then the WFS shall replace the corresponding
feature instance in the data store with the new feature instance with the corresponding ID value
contained in the Insert action.

Req 121 In the response to a <Insert> request, the feature identifiers for successfully inserted

features shall be presented in the order in which the <Insert> operations were

encountered in the request.

These feature identifiers will have either originated from the input data or have been generated by the WFS

according to the identifier generation policy described in Table 10.

8.5 Update action

8.5.1 Request

The following declares the <Update> element:

Class Update

{

property : Property[0…*]

typeName : PropertyTypeName

inputFormat : ScopedName[0…1]

handle

srsName

action : UpdateAction

context : String

position : PropertyPosition

}

Enumeration UpdateAction

{

modifyProperty

insertProperty

deleteProperty

}

Enumeration PropertyPosition

{

beforeProperty

afterProperty

anywhere

}

The <Update> element contains one or more <Property> elements that describe a value change to be

made to one of the properties of the explicitly named feature type. Multiple <Update> elements can be

contained in a single <Transaction> request so that multiple changes can be made to features of the same

or different types.

 68

8.5.2 <Property> parameter

Req 122 The <property> parameter shall contain a list of feature property instances contains the

new value of each property to be updated. The property instance shall be consistent with

the property type and feature type bing modified according to the feature schema for the

datastore If this is not the case, the WFS implementation shall return an error message. .

8.5.3 <Filter> parameter

Req 123 The scope of the <Update> element shall be the defined by <filter> element defined in

the <queryLanguage>. The <filter> element shall limit the scope of an update operation

to an enumerated set of features or a set of features defined using query constraints. If the

<filter> element does not identify any feature instances to work on, the update action

shall have no effect and no error message shall be generated

8.5.4 <handle> parameter

Req 124 The <handle> attribute if set by the a client shall be used by the server as an identifier for

any response to this request.

8.5.5 <typeName> parameter

Req 125 The value of <typeName> shall be one of the feature types listed in the feature type list

found in the web feature service's capability document and shall be used to specify the

feature type to be modified by this request.

8.5.6 <inputFormat> parameter

Req 126 The <inputFormat> parameter if set shall describes the format in the request for the data

to be used in the update action . If not set the format shall be identifiable by its cotent such

as headers or tags or associated metadata information.

8.5.7 <srsName> parameter

Req 127 The <srsName> parameter if set shall describes the SRS of the geometry elements in the

data to be used fin the update action. If not supplied, the SRS should be the default or

specifed in the data.

8.5.8 <action>, <context> and <position> parameter

The <Update> element contains one or more <Property> elements that specify the name and the update

action to be applied to the value of the named feature property. The update action is specified by the

<action> attribute on the <Value> element. The supported update actions are:

Req 128 If the action parameter is set to <modifyProperty> then the contained value shall be

used in place of the current value of the selected property

Req 129 If the action parameter is set to <insertProperty>- then the contained value shall be

inserted into a new the property.

Since the feature model does not assign any meaning to the order of properties in a feature intance,

the position of the insert in the feature may be controlled by the server in accordance with its own

internal requirements.

Req 130 If the action parameter is set to <removeProperty>- meaning to remove the specified

child object of the named property.

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

69

Req 131 If no <action> parameter is specified, the content of the <Value> element shall replace

the current value of the property specified using the <Name> element.

Req 132 When all actions have been accomplished the feature instances modified shall be in valid

representations of instances of their type; if not the server shall undo any modifications and

report an error in the response to the client.

8.6 Delete action

8.6.1 Schema

The following XML Schema fragment declares the <Delete> element:

Class Delete under QueryAction

{

typeName : FeatureTypeName

queryFilter : Filter

Handle : String

Name : ScopedName

}

Req 133 The <Delete> action shall to remove some number of feature instances from a web feature

service's opaque datastore. The <typeName> attribute shall explicitly name the type for

feature instances to be deleted. The scope of a delete operation shall be constrained by the

<filter>. In the event that the <filter> does not identify any feature instances to

delete, the delete action will simply have no effect. This is not an exception condition.

 70

Annex A
(Normative) Conformance Test Suite

A.1 Conformance Classes

There are two conformance classes in the specification for each set of parameters described in Clause 2.

These classes are:

1. Core or read

2. Data maintenance or write.

Specific conformance tests for Web Feature Services have not yet been determined for this version of the

specification and will be added in a future revision of this specification.

A.2 Core or read

The first conformance class will test Req 1 up to but not including Req 104.

A.3 Data Maintenance extension or write

The second conformance class will test Req 104 and onward to the end of the document, Req 133.

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

71

Annex B
(informative)

Common Variables Used

In defining URI structures and parameter/message contents below and to support the Web Resource

hierarchical model, the ―BNF‖ style variables in Table B 1 are used throughout this standard. In the text, a

variation of this name without the ―<…>‖ and with spaces where the ―camel case‖ changes can be used.

Table B 1: Common Variables used in URIs and HTTP function calls

Symbol Format Type Definition

<version> Text

URI part,

localName,

or parameter

The version of the service, which can be

carried as part of the URI or as part of the

passed parameters of the operations being

called. Only operations or requests for

―Capabilities‖ can omit the <version>

variable.

<host> Text
URI part,

localName

The root of all of the URI’s, including the

HTTP prefixes, the actual host name and

portal number and any other layers required

locally to get the the Service container

<service> Text URI part
The name of the service, usually a 3-letter

abbreviation, and here ―WFS‖ always.

<<operation>Result>

Data

representation

language

return

parameter
Value returned from an <operation>.

<result>
Data

representation

language

return

parameter
Value returned from an unspecified operation.

<feature>
Data

representation

language

return

parameter

A feature record in the format requested,

including both it name and value (properties).

Possibly defined anonymously by the query

that produced it.

<featureCollection>
Data

representation

language

return

parameter

A ordered list of features. This may be used in

place of a feature

<featureTuple>
Data

representation

language

return

parameter

A ordered list of features of a fixed length

(number of entries not length in bytes). This

will be an instance of a tuple type, where each

offset is a specific feature type

 72

Symbol Format Type Definition

<featureSchema>
Schema

representation

language

return

parameter
A collection of feature types.

<featureType> Text
return

parameter

A ordered list of property types included in a

particular feature type.

<propertyCollection

>

Data

representation

language

return

parameter
A ordered list of properties.

<propertyTuple>
Data

representation

language

return

parameter

A ordered list of a fixed number of property

instances. Usually defined anonymously by the

query that produced it.

<propertyType>
Schema

representation

language

return

parameter

A ordered list of typed subelements included

in a particular property type.

<lockID> Text
return

parameter

Optional in a returned result

<featureCollection> that tells gives the

user an key to the features locked in his

behalf.

<numberOfFeatures> Text
return

parameter
The number of features contained in a
<featureCollection>

<property>
Data

representation

language

return

parameter

A feature-property record in the format of the

response, including both its name and value

<timestamp> Text
return

parameter

The time that the associated information was

created from its primary source.

<expiry> Text

parameter or

return

parameter

Time a feature lock is asked to scheduled to

expire

<featureName> Text

parameter or

return

parameter

The scoped name of a feature type.

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

73

Symbol Format Type Definition

<propertyName> Text

parameter or

return

parameter

The name of a property type. This will use a

―dot‖ notation if an object view is being used,

or the appropriate path notation if some other

feature representation is being used as the

default view. For example, a service based on

use of GML or some other XML based

representation might use XPATH. If a

<featureName> in included in a list of

<propertyName>s, it means that the entire

feature value of that type will be treated as a

single property value.

<request###> Text

parameter or

return

parameter

A particular request block for an operation

given a ―identity extension‖ by the server so

that it can be used in a separate call (such as in

REST, where the ―put of the request‖ and the

―get of the answers‖ are consecutive but

separate HTTP function calls.

<<operation>Request>

Data

representation

language

parameter
A set of values needed as the parameter of an

<operation>.

<request>
Data

representation

language

parameter

A set of values needed as the parameter to a

service, which will include an indication if

needed of the operation to perform.

<request-block>
Data

representation

language

parameter

A hierarchical structure consisting of one or

more requests to the same service, possibly

with different <handles>.

<bBox>
Data

representation

language

parameter
Bounding Box used in lieu of a spatial query

in a feature request,

<featureID> Text parameter

ID of a feature used to retrieve property

information. This may or may not be the

features name.

<propertyID> Text parameter
Scoped name of a property. The name space

of a property is always its containing feature.

<function> Text parameter

The name of a function supported by the

service as specified in the capabilities

document for that service.

 74

Symbol Format Type Definition

<lagniappe> Any parameter

Any extra parameter or set of parameters

required for reasons not directly associated to

the semantics of the service itself. This can

include for example license or user

information or timing constraints required for

referenced data that may not be under the

direct control of the services host system. All

parameters will be tagged, and so the order of

the parameters in a message does not affect

behavior.

<lockAction> Text parameter

An Enumeration of possible locking strategies

(ALL or SOME) requested in a transaction

sequence.

<maxFeatures> Text parameter
Maximum number of features to return in a

request.

<maxSize> Text parameter

Maximum volume of data to return in a

request; in either kilobytes (kb) or megabytes

(mb). The units of the specification will always

be specified.

<namespace> Text parameter Set of namespaces used in a message or file.

<outputFormat> Text parameter

The requested format for the response. For

tracking the types of files, each format should

be associated to a file extension for use in

REST when specifying which representation

of a resource is being requested.

<query>
Data

representation

language

parameter
The query or filter that restricts the return of

the particular features.

<requestValue>
Data

representation

language

parameter
The contents of a request for the operation

being invoked.

<resultType> Text parameter
The switch between ―hits‖ and ―results‖ which

determines the contents of a return value.

<section> Text parameter
A name for a section of a document, usually

the Capabilities document for the service.

OGC 08-079

 Copyright © 2008 Open Geospatial Consortium, Inc. All Rights Reserved.

75

Symbol Format Type Definition

<subtypesOf> Text parameter

A description the feature types associated to

some particular feature type by

substitutability. In XML this is defined by the

substitution group of the particular feature. In

an object environment, this is defined by

inheritance of the feature type. In an SQL

environment, this is probably implemented by

a substitution group represented by a view

defined by a union query.

<srsName> Text parameter

The name of the spatial reference system being

used. The definition of the SRS should be

somewhere available, and linked to in the

capabilities document. The ordering of the

SRS coordinates should be maintained, and if

a service wishes to use a different coordinate

ordering for a more classic SRS, then that

should be also specified in the capabilities or

in a ―proxy‖ SRS acting as a reordering

―façade‖ of the more-classic root SRS.

<SRS>
Data

representation

language

parameter A spatial reference system.

<acceptVersion>
Data

representation

language

parameter A list of acceptable version of the service.

<acceptFormat>
Data

representation

language

parameter

A list of acceptable output formats from the

service. For tracking the types of files, each

format should be associated to a file extension

as in the output format.

Table B 2: Commonly used file types and extensions for use in REST requests

Format File or Resource Extension

Undifferentiated XML .xml

GML .gml

GeoJson, or Json .json

HTML .html or .htm

XML schema files .xsd

 76

Format File or Resource Extension

SQL text file .sql

	Scope
	Conformance
	Introduction
	Conformance class parameters
	Introduction
	Operation Conformance Classes
	Interface Protocol parameter
	Data Representation Language parameter
	Schema Representation Language parameter
	Query/Manipulation Language parameter

	Normative references
	Terms and definitions
	Conventions
	Abbreviated terms
	UML notation

	Data metamodel
	Data uses
	Data structures and representations
	The use of discriminating labels
	Type and member naming conventions
	General models
	General feature model
	Scoped Names, Local Names
	Feature
	Types, properties and property types
	References
	Feature Collections
	Namespace concerns for features and properties

	General URI model and HTTP function call variable
	Common request parameters

	WFS Core Class
	Semantics
	Core::Capabilities
	Semantics
	Request
	Response
	Data Definitions
	Service Provider section
	Service Identification section
	Feature Types section
	Supports Property Types section
	Query Action Metadata section
	Filter capabilities section
	Serves Parameter Types section

	Protocols
	KVP protocol
	SOAP protocol
	REST protocol

	Core::Feature operation
	Introduction
	Request
	Data Structures
	Query elements
	General structure
	Projection clause
	Introduction

	FeatureName elements and Aliases
	PropertyName elements and Aliases
	Function element
	Filter or Selection limitations clause
	Join operation
	Sorting
	Parameter discussions
	typeName parameter
	<aliases> parameter
	<srsName> parameter

	<maxFeatures> parameter
	<maxSize> parameter
	<resultType> parameter
	<outputFormat> parameter

	Response
	Join operation response
	<timeStamp> attribute
	<numberOfFeatures> attributes
	Exceptions

	Protocols
	KVP protocol
	SOAP protocol
	REST protocol

	Response

	Core::Property operation
	Introduction
	Request
	Response
	Protocols

	Core::DescribeFeatureType operation
	Introduction
	Request
	Response
	Exceptions

	Core::DescribeFilterModel operation
	Introduction
	Request
	Response
	Exceptions

	WFS Data Maintenance extension
	Introduction
	LockFeature action
	Request
	<expiry> parameter
	<lockAction> parameter
	Response
	<LockID> return parameter
	Exceptions

	Request Schema definition
	LockID element
	release Action attribute

	Insert action
	Encoding
	<inputFormat> parameter
	<srsName> parameter
	<IDgen> parameter

	Update action
	Request
	<Property> parameter
	<Filter> parameter
	<handle> parameter
	<typeName> parameter
	<inputFormat> parameter
	<srsName> parameter
	<action>, <context> and <position> parameter

	Delete action
	Schema

	(Normative) Conformance Test Suite
	Conformance Classes
	Core or read
	Data Maintenance extension or write

	(informative) Common Variables Used

