OPENGIS PROJECT DOCUMENT 07-145
TITLE:

WCS 1.1 Application Profile for JPEG 2000

Coverage Encoding, 1.0

AUTHORS:

Peter Giacovelli, ITT

peter.giacovelli@itt.com

Michael P. Gerlek, LizardTech

mpg@lizardtech.com

DATE:

28 November 2007
CATEGORY:
Draft Proposal
This is a draft document. Editorial comments, unresolved issues, etc, are noted with italics and/or highlighting. Send comments to the authors listed above.
1. Overview
This document provides an application profile to enable WCS 1.x clients and servers to support coverages expressed as JPEG 2000 (JP2) data. This document is specific to JPEG 2000 coverage formats.
This document is based on work done in 2006 for the OWS-4 project, as described in “OWS-4 IPR for WCS Support for JPEG 2000” (06-128).
Note that this document does not address support for streaming JPEG 2000 data via the JPIP protocol; that is covered in a separate document, “WCS Application Profile for JPIP Coverage Encoding” (07-146).

1.1 JPEG 2000 for WCS

[mpg will complete this section]

Short blurb on the basic properties of JPEG 2000 encoding, emphasizing why JP2 requires more API-level control than, say, GeoTIFF. (point to uses cases in Section 1.4)

Emphasize that in this first version of the JP2 application profile we want to “lock down” as little as possible, so as to allow for future expansion when more community practice / experience is available. Note that, indeed, in this document we are recommending a profile with a substantially smaller “API footprint” than was originally discussed in document 06-128.
1.2 Summary of Changes

This application profile makes the following sets of changes to WCS:

· A new MIME type is added

· DescribeCoverage has three new parameters:
· SupportedJP2Profiles
· SupportedGMLJP2Profiles
· SupportsJP2CompressionRatio
· GetCoverage has three new parameters:
· JP2Profile
· GMLJP2Profile
· JP2CompressionRatio
1.3 The Application Profile

As implied by Section 9.3.2.2 of the WCS 1.1 specification (07-067r2), an application profile must consist of several specific components. This document addresses these components as follows:

· “MIME type(s) and brief description” – see Sections 3, 4, and 5
· “Pointers to documentation” – see Section 2
· “Data model mapping” – see Section 6
· “Examples” – see Section 7
· “Pointers to implementing software” – see Section 8
· “Compliance testing” – see Section 9
1.4 Use Cases

We can identify a number of (possibly overlapping) workflows that occur when using JPEG 2000 with WCS. As much as possible, this application profile should satisfy all these cases.

Case 1: “Drop-in replacement for GeoTIFF”

The WCS client is currently asking for coverage data as GeoTIFF (or some other “simple” file format), and indeed the server is storing the coverage data as simple GeoTIFF images. The server now additionally is storing coverage data as JP2 images, and the client now wishes to just get access to these coverages in their native JP2 format without any need for re-encoding.
This application profile supports this workflow with only a simple switch of the MIME types being used, from image/geotiff to image/jp2.
Case 2: “Using GMLJP2”

The client wishes to receive the coverage as JPEG 2000, with no particular notion of the encoding of the data natively on the server. The client desires the returned coverage be a self-contained, georeferenced file, i.e. following the GMLJP2 specification.

This application profile supports this workflow by extending the server to indicate whether the coverage is available using a GMLJP2 profile. The client may use an optional parameter to request the use of one of those profiles.
Case 3: “Encoded as NPJE”
The client again wishes to receive the coverage as JPEG 2000, again with no particular notion of the encoding of the data natively on the server. This time, however, the client desires the returned coverage to follow the NPJE encoding profile for JPEG 2000 as defined by NGA, in order to be interoperable with other downstream NGA workflows.

This application profile supports this workflow by extending the server to indicate what encoding profiles the coverage is available with, including both predefined ones (such as NPJE) and user-defined ones. The client may use an optional parameter to request the use of one of those profiles.

Case 4: “At 20:1”
The client again wishes to receive the coverage as JPEG 2000, and again with no particular notion of the encoding of the data natively on the server. The client now desires the returned coverage to be sent with some given degree of (possibly lossy) compression, so as to save network bandwidth and/or because full quality of the image is not required.
This application profile supports this workflow by extending the server to indicate whether the coverage is available at user-specified compression ratios. The client may use an optional parameter to request such compression.

Case 5: “Coverage data from a single GeoTIFF”
The client wishes to receive the coverage as JPEG 2000, but the coverage data being requested is stored behind the server as a single GeoTIFF image (or other similar format). The geographic area being requested does not extend beyond the extents of the full GeoTIFF image. Specific JP2 encodings may be requested, as in use cases 2, 3, and 4 above.
This workflow requires the server to be able to encode the image data to JP2 format on the fly, perhaps with arbitrary encoding parameters. Not all servers may choose to support this workflow, as it would require a full JPEG 2000 encoder.
Case 6: “Coverage data from multiple GeoTIFFs”
The client wishes to receive the coverage as JPEG 2000, but the coverage data being requested is stored behind the server as multiple GeoTIFF images. The geographic area being requested spans these image boundaries, and may even include “no-data” regions outside the extents of the GeoTIFF images.

This workflow again requires the server to be able to encode the image data to JP2 format on the fly, with the additional ability to mosaic multiple images together. Not all servers may choose to support this workflow.
Case 7: “Coverage data at specific resolutions”
The client wishes to receive the coverage as JPEG 2000, using a particular resolution not equal to the data as it is stored natively behind the server.

This workflow is problematic, as discussed in Section 10.1: JPEG 2000 has its own, internal support for “resolution” and it is not clear how to reconcile the existing WCS notion of resolution (and, worse, user-specified interpolation) with the JP2 native methods. In this workflow, therefore, we expect the server to resort to performing the necessary scaling operations in “raw” pixel space, such as it would for GeoTIFF, and not use the native JP2 wavelet resolution support.
Finally, we note that it would be beneficial for the specifications in this application profile to lend themselves to supporting WCS 1.0 clients and servers to the extent practical. Our use of MIME types, as discussed below, seems to meet this goal.
2. References

to be filled out with full document references
· OGC 06-128
· OGC 07-146

· GMLJP2 v1.0

· WCS v1.1.1c1 (07-067r2)
· JPEG 2000 / Parts 1 and 2
· OGC Topic 6

· NGA EPJE and NPJE

· RFCs for MIME types (2045, 2046)

· RFC for MIME type for JPEG 2000 (3745)
3. MIME Type and Coverage Encoding Format
The MIME type for JPEG 2000 is defined in RFC 3745 to be image/jp2. Use of this MIME type indicates that the coverage is to be represented using JPEG 2000, as discussed in Section 7.

This specification defines a set of optional parameters that may be used with this MIME type in order to specify certain “profiles” of the JPEG 2000 format. These parameters are discussed in Section 5.

As per Section 10.3.11.2 of the WCS specification, the GetCoverage response uses the “role” attribute, as in the following example:
<Reference xlink:href=http://ows.example.com/wcs/image.jp2
xlink:role="urn:ogc:def:role:WCS:1.1:coverage"/>
4. Changes to DescribeCoverage
This section details changes required to the DescribeCoverage interface in order to support JPEG 2000. Following the WCS 1.1 model, the purpose of these changes is to allow the server to provide some additional, JPEG 2000 specific information about the coverage offerings and how a client may take advantage of the JPEG 2000 format when requesting coverage data.
The encoding of the parameters in this section is, without loss of generality, assumed to be represented as XML elements within the CoverageDescription XML response. (But, see Section 4.5 for additional joy.)
4.1 Extension to SupportedFormats
Description
The SupportedFormats parameter is mandatory for the CoverageDescription data structure. As described in Section 3, the MIME type to be used for JPEG 2000 is image/jp2.
Discussion
Use of this MIME type indicates the server is capable of representing the coverage using JPEG 2000.

Example
tbd
4.2 Addition of SupportedJP2Profiles
Description
The optional parameter SupportedJP2Profiles is used to indicate in which JPEG 2000 encoding profiles the coverage is offered.

The value of this parameter is a comma-separated list of words, each being the name of a profile. Three well-known values are defined by this specification:

· urn:ogc:wcs:jp2:1.0.0:default: indicates the profile of the returned JPEG 2000 coverage will be determined by the server
· urn:ogc:wcs:jp2:1.0.0:npje: indicates the profile of the returned JPEG 2000 coverage follows NGA’s NPJE specification
· urn:ogc:wcs:jp2:1.0.0:epje: indicates the profile of the returned JPEG 2000 coverage follows NGA’s EPJE specification
[Note the exact spelling of “default”, “npje”, etc, are still subject to change. –mpg]
In addition to these three, the server may offer additional values not defined by this specification. It is recommended, but not required, that a Metadata element be supplied to describe any profiles used which are not part of this specification. The format of the contents of such a metadata element are not defined by this specification, but the contents should include the following at a minimum:
· the URL of a document describing the profile in more detail

· the number of resolution levels used, if possible

· the tile size used when encoding, if any

· a comma-separated list of the quality levels
[I think only the first (the document) should be required “at a minimum”, as at least two of the remaining three items are not necessarily well-defined for all use-cases. The others should be “recommended as appropriate” or some such. E.g. number of resolution levels is not always defined in absolute terms, and quality levels would need to be defined in terms of what units? –mpg]
If this parameter is not specified, the value shall be assumed to be urn:ogc:wcs:jp2:1.0.0:default.

This parameter is only relevant with respect to coverages offered as JPEG 2000 via the SupportedFormats parameter described in Section 4.1 above.

Discussion
This parameter can be used to allow the client some flexibility in the “style” of JP2 image it will receive, but without having to extend WCS to express even a small subset of all possible JP2 encoding options. Consider the case of a client wishing to know if it can request a JP2 image that uses 1Kx1K “tiles” or that has a certain number of “quality layers”.

Example
tbd
4.3 Addition of SupportedGMLJP2Profiles
Description

The optional parameter SupportedGMLJP2Profiles is used to indicate whether the server can serve the coverage as JPEG 2000 in a format defined in the GMLJP2 specification. Four well-known values are defined by this specification:

· none: indicates GMLJP2 is not to be used
· default: indicates the server may use its own discretion as to whether to use any GMLJP2 encoding or not
· minimal: indicates the “minimal instance” form of GMLJP2 should be used, i.e. no schemas

 [Note the exact spelling of “none”, “default”, etc, are likely to change, in favor of a more OGC-style URN notation, such as “urn:ogc:gmljp2:1.0.0:minimal”. These names are to be taken from a set currently being defined within the GMLJP2-1.1 WG. –mpg]
In addition to these three, the server may offer additional values not defined by this specification. It is recommended, but not required, that a Metadata element be supplied to describe any profiles used which are not part of this specification. The format of the contents of such a metadata element are not defined by this specification, but the contents should include at a minimum the URL of a document describing the profile in more detail.
If this parameter is not specified, the value shall be assumed to be default.

This parameter is only relevant with respect to coverages offered as JPEG 2000 via the SupportedFormats parameter described in Section 4.1.

Discussion
This parameter can be used to allow the client to receive a JPEG 2000 image which contains metadata indicating various georeferencing attributes.

Distinction is made between the minimal instance and full profile cases is made because the latter format can incur an overhead of ~250KB over the former.
When encoding GMLJP2 using the full profile, the server may choose to include additional data, such as features, annotations, etc, that it considers appropriate.

Example
tbd
4.4 Addition of SupportsJP2CompressionRatio
Description

The optional boolean parameter SupportsCompressionRatio is used to indicate whether the WCS can deliver the JPEG 2000 image using less bytes than the source data, at a corresponding possible cost of image quality. A value of false indicates that the coverage can only be returned at the quality level and file size available to the server. A value of true indicates that the coverage can be returned using a user-specified number of bytes.
This parameter is only relevant with respect to coverages offered as JPEG 2000 via SupportedFormats as described above.
Discussion
This feature is used when the client wishes to determine whether the server can support the needed transcoding operations required to present a smaller JP2 file than the original source coverage.
Note that use of the term “compression” is somewhat misleading. When encoded losslessly, a JPEG 2000 image may be typically reduced in file size by a factor of two; this is a result of efficiencies inherent in the encoding process, not any discarding of actual pixel data precision, and is not the kind of “compression” being referred to for this parameter. Compression in this sense refers to the numerically lossy reduction process performed by removing excess data precision, generally used for file size reductions of 10x to 50x.

This parameter does not allow for specifying the amount or range of compression supported. Note also that specification of compression amount is outside the realm of the “profile” mechanism described in Section 4.2.

[Within the JPEG 2000 standard, an encoding parameter known as “quality levels” can be used to define, at encode time, certain degrees of quality available for the image. Peter suggests tying the description and discussion of this parameter to the quality levels parameter. Michael disagrees, arguing that (1) compression can be discussed and achieved without exposing the “implementation-level” notion of quality levels to the user and (2) quality levels are not necessarily defined to any particular “unit of measure” that makes sense to the user. Issue not yet resolved… -mpg]
Example
tbd
4.5 Nonorthogonality of Parameters (aka “The Icky Part”)
The above three parameters – GMLJP2 profile, JP2 encoding profile, and compression ratio support – are not mutually exclusive. For example, we can envision a server which might offer a given coverage in two very different ways:
· using GMLJP2, but under no JP2 encoding profiles and with no support for additional compression

· as NPJE, with compression support, but no GMLJP2

This implies that the coverage description parameters cannot be specified in the following naïve manner (syntax left very loose for the sake of exposition):

<Coverage>

Format = jp2

GMLJP2Profile = yes

JP2Profile = NPJE

SupportsCompression = true

</Coverage>

Rather, we must do something like this:

<Coverage>

Format = jp2

<Style>

GMLJP2Profile = yes

JP2Profile = none

SupportsCompression = false

</Style>

<Style>

GMLJP2Profile = no

JP2Profile = NPJE

SupportsCompression = true

</Style>

</Coverage>

[I have no idea how to resolve this, or what prior art might look like. Suggestions very welcome. –mpg]
5. Changes to GetCoverage
This section details changes required to the GetCoverage interface in order to support JPEG 2000.

5.1 Impact on Format
The Format parameter is a mandatory part of the GetCoverage request. The range of values of this parameter is defined as being limited to one of the strings listed in the SupportedFormats field of the DescribeCoverage response. This application profile adds a JPEG 2000 type (see Section 4.1), and so therefore this new type may now be used for the GetCoverage request.
5.2 Addition of JP2Profile
Description
This optional parameter indicates the encoding profile with which the coverage should be encoded.

The value of this parameter must be one of the profiles indicated via the SupportedJP2Profiles parameter, as per Section 4.2.
This parameter is only relevant with respect to coverages offered as JPEG 2000 via SupportedFormats as described above.
Discussion
This parameter allows the client to control the “style” of JP2 encoding used by the server to create the coverage. See Section 4.2 for further discussion.
Example
tbd
5.3 Addition of GMLJP2Profile
Description
This optional parameter indicates the manner of GMLJP2 encoding to be used, if any.

The value of this parameter must be one of the format options indicated via the SupportedGMLJP2Profiles parameter, as per Section 4.3.
This parameter is only relevant with respect to coverages offered as JPEG 2000 via SupportedFormats as described above.

Discussion
This parameter allows the client to control the “style” of JP2 encoding used by the server to create the coverage. See Section 4.3 for further discussion.
Example
tbd
5.4 Addition of JP2CompressionRatio
Description
This optional parameter indicates what compression ratio the coverage is to be returned with. The value of this parameter should be a positive integer, indicating the compression ratio desired. This parameter is valid if the SupportsJP2CompressionRatio parameter is true as indicated above (see Section 4.5).
NOTE: The server may not be able to honor this request precisely in some circumstances, and so is only required to perform a best effort; it is the client’s responsibility to be aware of this limitation.

Discussion
This parameter allows the client to control the size of the coverage to be served, albeit typically with some corresponding loss of quality.
Example
tbd
5.4.1 Calculation of Compression Ratio

The “compression ratio” is defined as the ratio of the nominal image size to the physical image size.

The nominal size is the size, in bytes, as if the image were to be encoded in a raw, uncompressed format, excluding any metadata. Formally, the nominal size is computed as:

image rows * image columns * number of bands * bytes per sample
The physical size is the number of bytes actually used to represent the image, e.g. on disk.

For example, consider a 1024x124 image with three bands, using 8-bit samples. The nominal size is:

1024 * 1024 * 3 * 1 = 3145728 bytes
If the client wishes a 20:1 compression ratio, the resultant image file should be approximately 160K (3145728 / 20 =157286).
5.5 Request Parameter Encodings

The three GetCoverage request parameters in this section may be encoded using KVP (key-value pair) parameters or XML elements, consistent with prior OWS specifications.

The authors of this specification suggest a third option as well: the use of optional parameters in the MIME type, as allowed by RFCs 2045 and 2046. The syntax for this encoding follows the descriptions given above for the KVP encodings.

Such a new MIME-based approach may offer significant backwards compatibility advantages, as well as compatibility with other emerging specifications (such as GMLJP2) and workflows. As this departs from prior OWS practice, further work on this front is pending discussion of this issue within Architecture WG within OGC (as per email thread 26 Nov 2007).
6. File Format and Data Model

6.1 Data Model Mapping

The JPEG 2000 format is designed to represent “bi-level, continuous-tone grey-scale, palletized color, or continuous-tone colour digital still images”. As such, this file format is limited in the types of coverages it can be used to represent: generally speaking, JP2 can be used with a subset of the Grid Coverage type and Image type, as discussed in sections 2.4 and 2.11 of OGC’s Abstract Specification Topic 6.

The JPEG 2000 data model is described in detail in Annex B of the JPEG 2000 (Part 1) standard. For the purposes of this specification, JP2 coverages are subject to the following restrictions:

· sample size: integer samples of up to 23(?) bits, signed or unsigned

· gridding: two-dimensional, discrete, uniform grid of up to 4,294,967,295 rows by 4,294,967,295 columns (232-1 by 232-1)

· bands: up to 16,384 (214) bands (also known as channels or components)

These limits aside, there is no limit as to the size in bytes of a JPEG 2000 file.

Note especially the following further restrictions:

· only one image per file (due to Part 1 compliance)

· no support for floating point data sets

· no support for a temporal axis

JPEG 2000 has no support for representing any geospatial attributes, such as position, coordinate reference system, etc. Some such support can be provided, however, through the use of the GMLJP2 specification.

6.2 File Format

This application profile requires the use of JPEG 2000 (Part 1) as the encoding format.

We note in particular the following several allowances given by and constraints imposed by this application profile.

· The JPEG 2000 ISO standard defines a number of “profiles”, such as the “unrestricted” profile 0. These ISO profiles are unrelated to the encoding profiles and GMLJP2 profiles discussed in this document. This specification makes no reference to any such ISO profile.

· Use of the extensions in Part 2 of the JPEG 2000 standard is allowed only to the extent required for the use of GMLJP2 (specifically, use of the ASSOC and LABEL boxes).

· This specification allows for both “jp2” (boxed) and “jpc” (codestream) styles of representing JPEG 2000 data.

· No restriction is placed on the use of UUID or XML boxes.
· Codestream 0 shall contain the requested coverage data. Part 1 of the JPEG 2000 standard allows the additional codestreams to be present, but also allows the client to ignore them.
7. Examples

tbd
8. Reference Software

We are aware of two WCS implementations which conform to some or all of this application profile.

· ITT IAS – http://www.ittvis.com/ias/index.asp

· LizardTech Express Server – http://www.lizardtech.com
9. Compliance Testing

[tbd. I’ve no idea what this section is supposed to contain. –mpg]
10. Future Work (informative)
The following items are left for possible inclusion in a future version of this specification. We feel it is not appropriate to include specification for these items at this time because the items present a number of important tradeoffs – tradeoffs which the OGC community does not have sufficient practice and experience to be able to evaluate fully at this time.

10.1 Resolution and Interpolation

The number of resolution levels in the coverage can be offered in the coverage description, and the client can then request a number of levels to be returned. This is a fast and efficient thing to do with JP2.

However, the ability to ask for an image at a certain scale has significant overlap with the features already present in WCS allowing for coverages to be returned with given resolutions (resx/resy, or GridOffset).

It is not clear how this should be resolved.

Consider, for example, requesting a 32x32 subset of a 1024x1024 pixel coverage. If the image were to be encoded as JP2 with a sufficient number of levels, the WCS interpolation parameter could be extended to allow for saying “rather than bicubic or something, use the native JP2 wavelet method”. This would only apply, however, if the image indeed had been encoded with a sufficient number of wavelet decomposition levels to accommodate that interpolation style – and the client would need additional information to be able to be sure of that. Further, and worse, consider the more general case where the client asks for a 31x33 pixel subset of the image. Not being a proper power of two reduction, the wavelet interpolation method can’t be directly applied: should the server first use the native JP2 method to get as “close” as possible, and then use some other, additionally supplied method to go the rest of the way?

10.2 Tile-based Bounding Boxes
For efficiency, a server processing JP2 data would like to be able to respond to a coverage request with an image possibly of a different size than what was requested. Specifically, we would like to be able to adjust the size of the requested bounding box to align with the internal tile boundaries inside the JP2 image data structure. One would like to specify a policy such as one of the following:

· none: honor the size in the bounding box request

· up: from the original bounding box request, sub-section to the next larger tile boundary (where applicable)

· down: from the original bounding box request, sub-section to the next smaller tile boundary (where applicable)

· closest: from the original bounding box request, sub-section to the next closest tile boundary that matches the original request

Current practice for WCS does not let the server arbitrarily change the requested bounding box; such a change would require notification back to the client, etc. Therefore, we are deferring this item for consideration at a future date.

OpenGIS Project Document 07-145

Page 5

