

Open Geospatial Consortium Inc.

Date: 2010-08-04

Reference number of this document: OGC 06-104r4

Version: 1.2.1

Status: Corregendum

Category: OpenGIS® Implementation Standard

Editor: John R. Herring

OpenGIS
®
 Implementation Standard for Geographic

information - Simple feature access - Part 2: SQL option

Copyright © 2010 Open Geospatial Consortium, Inc.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/

Document type: OpenGIS® Implementation Standard

Document subtype: (none)
Document stage: Approved Corrigendum

Document language: English

http://www.opengeospatial.org/legal/

ii Copyright © 2012 Open Geospatial Consortium

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this
Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable,
and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be
construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in
violation of U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction
which may impact your right to import, export or use the Intellectual Property, and you represent that you have complied with any
regulations or registration procedures required by applicable law to make this license enforceable

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. iii

Contents Page

Foreword ... vii

Introduction .. viii

1 Scope .. 2

2 Conformance .. 3

3 Normative references .. 3

4 Terms and definitions ... 3

5 Symbols and abbreviated terms .. 4
5.1 Abbreviations ... 4
5.2 Symbols .. 4

6 Architecture .. 5
6.1 Architecture — SQL implementation using predefined data types .. 5
6.1.1 Overview ... 5
6.1.2 Identification of feature tables and geometry columns ... 6
6.1.3 Identification of Spatial Reference Systems ... 7
6.1.4 Feature tables .. 7
6.1.5 Geometry tables... 7
6.1.6 Text ... 9
6.1.7 Use of numeric data types .. 13
6.1.8 Notes on SQL/CLI access to Geometry values stored in binary form ... 13
6.2 Architecture — SQL implementation using Geometry Types ... 13
6.2.1 Overview ... 13
6.2.2 Identification of feature tables and geometry columns ... 14
6.2.3 Identification of Spatial Reference Systems ... 15
6.2.4 Feature tables .. 15
6.2.5 Background information on SQL User Defined Types .. 15
6.2.6 SQL Geometry Type hierarchy ... 16
6.2.7 Geometry values and spatial reference systems ... 17
6.2.8 Access to Geometry values in the SQL with Geometry Type case .. 17
6.2.9 Text ... 17

7 Clause component specifications ... 19
7.1 Components — Implementation of feature tables based on predefined data types 19
7.1.1 Conventions ... 19
7.1.2 Spatial reference system information ... 19
7.1.3 Geometry columns information ... 20
7.1.4 Feature tables .. 24
7.1.5 Geometry tables... 25
7.1.6 Operators .. 29
7.2 Components — SQL with Geometry Types implementation of feature tables 29
7.2.1 Conventions ... 29
7.2.2 SQL Geometry Types .. 29
7.2.3 Feature tables .. 29
7.2.4 SQL routines for constructing a geometry object given its Well-known Text Representation ... 30

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

iv Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

7.2.5 SQL routines for constructing a geometric object given its Well-known Binary
Representation .. 30

7.2.6 SQL routines for obtaining Well-known Text Representation of a geometric object 31
7.2.7 SQL routines for obtaining Well-known Binary Representations of a geometric object 31
7.2.8 SQL routines on type Geometry .. 31
7.2.9 SQL routines on type Point ... 37
7.2.10 SQL routines on type Curve .. 40
7.2.11 SQL routines on type LineString ... 41
7.2.12 SQL functions on type Surface ... 42
7.2.13 SQL functions on type Polygon .. 43
7.2.14 SQL functions on type Polyhedral Surface .. 45
7.2.15 SQL routines on type GeomCollection ... 47
7.2.16 SQL routines on type MultiPoint ... 48
7.2.17 SQL routines on type MultiCurve .. 48
7.2.18 SQL routines on type MultiLineString .. 49
7.2.19 SQL routines on type MultiSurface ... 50
7.2.20 SQL routines on type Text ... 51

Annex A (normative) Abstract Test Suite .. 56
A.1 Purpose of this annex .. 56
A.2 Conformance Tests .. 56
A.2.1 Feature tables .. 56
A.2.2 Geometry tables or type ... 57
A.2.3 Spatial reference systems ... 57
A.2.4 Geometric format supported ... 58
A.2.5 Geometric categories supported .. 59
A.2.6 Text ... 59
A.3 Composite Conformance Clauses .. 60
A.4 Conformance Classes .. 60
A.4.1 Types of conformance classes ... 60

Annex B (informative) Comparison of Simple feature access/SQL and SQL/MM – Spatial 62

Annex C (informative) Conformance tests from version 1.1 .. 64
C.1 Purpose of this annex .. 64
C.2 Test data .. 64
C.2.1 Test data semantics.. 64
C.2.2 Test data points and coordinates ... 66
C.3 Conformance tests ... 69
C.3.1 Normalized geometry schema ... 69
C.3.2 Binary geometry schema ... 79
C.3.3 Geometry types and functions .. 89

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. v

Figures

Figure 1: Schema for feature tables using predefined data types .. 6

Figure 2: Example of geometry table for Polygon Geometry using SQL ... 8

Figure 3: Schema for feature tables using SQL with Geometry Types .. 14

Figure 4: Figure: SQL Geometry Type hierarchy ... 16

Figure C 1: Test Data Concept — Blue Lake vicinity map ... 65

Figure C 2: Points in the Blue Lake data set .. 67

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

vi Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Tables

Table 1: Example of geometry table for Polygon Geometry ...9

Table 2: Column definitions for Annotation Text metadata .. 11

Table 3: Text metadata attributes .. 18

Table 4: Geometry type codes ... 22

Table A 1 - Equivalences between V1.1 and V1.2 complinace classes .. 61

Table B 1 Comparison of SFA-SQL and SQL/MM: Spatial ... 62

Table C 1: Coordinates associated with each point in the Blue Lake data set .. 68

Table C 2: Queries to determine that test data are accessible via the normalized geometry schema 69

Table C 3: Queries to determine that test data are accessible via the binary geometry schema 79

Table C 4: Queries that accomplish the test of geometry types and functions ... 89

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. vii

Foreword

This standard consists of the following parts, under the general title Geographic information — Simple feature
access:

— Part 1: Common architecture

— Part 2: SQL option

This version supersedes all previous versions of OpenGIS® Simple Features Implementation Standard for SQL,
including OGC 99-049 "OpenGIS Simple Features Specification for SQL Rev 1.1," and OGC 05-134 ―OpenGIS®
Implementation Specification for Geographic information - Simple feature access - Part 2: SQL option.‖

Version 1.1 of this standard is a profile of this version in the sense that it is a proper subset of the technology
included here, except for some technical corrections and clarification.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights.
The Open Geospatial Consortium Inc. shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent
claims or other intellectual property rights of which they may be aware that might be infringed by any
implementation of the standard set forth in this document, and to provide supporting documentation

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

viii Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Introduction

This second part of OpenGIS® Simple Features Access (SFA), also called ISO 19125, is to define a standard
Structured Query Language (SQL) schema that supports storage, retrieval, query and update of feature
collections via the SQL Call-Level Interface (SQL/CLI) (ISO/IEC 9075-3:2003). A feature has both spatial and non-
spatial attributes. Spatial attributes are geometry valued, and simple features are based on two-or-fewer
dimensional geometric (point, curve and surface) entities in 2 or 3 spatial dimensions with linear or planar
interpolation between vertices. This standard is dependent on the common architectural components defined in
Part 1 of this standard.

In a SQL-implementation, a collection of features of a single type are stored as a "feature table" usually with some
geometric valued attributes (columns). Each feature is primarily represented as a row in this feature table, and
described by that and other tables logically linked to this base feature table using standard SQL techniques. The
non-spatial attributes of features are mapped onto columns whose types are drawn from the set of SQL data
types, potentially including SQL3 user defined types (UDT). The spatial attributes of features are mapped onto
columns whose types are based on the geometric data types for SQL defined in this standard and its references.
Feature-table schemas are described for two sorts of SQL-implementations: implementations based a more
classical SQL relational model using only the SQL predefined data types and SQL with additional types for
geometry. In any case, the geometric representations have a set of SQL accessible routines to support geometric
behavior and query.

In an implementation based on predefined data types, a geometry-valued column is implemented using a
"geometry ID" reference into a geometry table. A geometry value is stored using one or more rows in a single
geometry table all of which have the geometry ID as part of their primary key. The geometry table may be
implemented using standard SQL numeric types or SQL binary types; schemas for both are described in this
standard.

The term ―SQL with Geometry Types‖ is used to refer to a SQL-implementation that has been extended with a set
of ―Geometry Types.‖ In this environment, a geometry-valued column is implemented as a column whose SQL
type is drawn from this set of Geometry Types. The mechanism for extending the type system of an SQL-
implementation is through the definition of user defined User Defined Types. Commercial SQL-implementations
with user defined type support have been available since mid-1997 and an ISO standard is available for UDT
definition. This standard does not prescribe a particular UDT mechanism, but specifies the behavior of the UDTs
through a specification of interfaces that must be supported. These interfaces are describe for SQL3 UDTs in
ISO/IEC 13249-3.

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Geographic information — Simple feature access —

Part 2:
SQL option

1 Scope

This standard specifies an SQL schema that supports storage, retrieval, query and update of geospatial features
with simple geometry via the SQL Call Level Interface (SQL/CLI) (ISO/IEC 9075-3:2003).

This standard

a) Establishes an architectural framework for the representation of feature,

b) Establishes a set of definitions for terms used within that framework,

c) Defines a simple geometric profile of ISO 19107 for the definition of the geometric attributes used in that
framework

d) Describes a set of SQL Geometry Types together with SQL functions on those types.

The Geometry Types and Functions described in this standard represent a profile of ISO 13249-3. This standard
does not attempt to standardize and does not depend upon any part of the mechanism by which Types are added
and maintained in the SQL environment including the following:

a) The syntax and functionality provided for defining types;

b) The syntax and functionality provided for defining SQL functions;

c) The physical storage of type instances in the database;

d) Specific terminology used to refer to User Defined Types, for example, UDT.

This standard does standardize:

a) Names and geometric definitions of the SQL Types for Geometry;

b) Names, signatures and geometric definitions of the SQL Routines for Geometry.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. iii

This standard describes a feature access implementation in SQL based on a profile of ISO 19107. ISO 19107 is a
behavioral standard and does not place any requirements on how to define the internal structures of Geometry
Types in the schema. ISO 19107 does not place any requirements on when or how or who defines the Geometry
Types. In particular, a compliant system may be shipped to the database user with the set of Geometry Types and
Functions already built into the SQL-implementation, or with the set of Geometry Types and Functions supplied to
the database user as a dynamically loaded extension to the SQL-implementation or in any other implementation
consistent with the behavior described in this standard, in ISO 19107 and in ISO/IEC CD 13249-3:2006.

2 Conformance

In order to conform to this standard, an implementation shall satisfy the requirements of one of the following three
conformance classes, as well as the appropriate components of Part 1:

a) SQL implementation of feature tables based on predefined data types:

1) using numeric SQL types for geometry storage and SQL/CLI access,

2) using binary SQL types for geometry storage and SQL/CLI access;

b) SQL with Geometry Types implementation of feature tables supporting both textual and binary SQL/CLI
access to geometry.

Annex B provides conformance tests for each implementation of this standard.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

[1] ISO/IEC 9075-1, Information technology — Database languages — SQL — Part 1: Framework (SQL/Framework)

[2] ISO/IEC 9075-2, Information technology — Database languages — SQL — Part 2: Foundation (SQL/Foundation)

[3] ISO/IEC 9075-3, Information technology — Database languages — SQL — Part 3: Call-Level Interface (SQL/CLI)

[4] ISO/IEC 9075-4, Information technology — Database languages — SQL — Part 4: Persistent Stored Modules

(SQL/PSM)

[5] ISO/IEC 9075-5, Information technology — Database languages — SQL — Part 5: Host Language Bindings

(SQL/Bindings)

[6] ISO/IEC CD 13249-3:2006(E) – Text for FDIS Ballot Information technology – Database languages – SQL

Multimedia and Application Packages — Part 3: Spatial, May 15, 2006.

[7] ISO 19107, Geographic information ― Spatial schema

[8] ISO 19109, Geographic information ― Rules for application schema

[9] ISO 19119, Geographic information ― Services

[10] ISO 19125-1, Geographic information — Simple feature access — Part 1: Common architecture

4 Terms and definitions

For the purposes of this standard, the following terms and definitions apply.

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

4.1
feature table
table where the columns represent feature attributes, and the rows represent features

4.2
geographic feature
representation of real world phenomenon associated with a location relative to the Earth

5 Symbols and abbreviated terms

5.1 Abbreviations

FID Feature ID column in the implementation of feature tables based on predefined data
types

GID Geometry ID column in the implementation of feature tables based on predefined data
types

MM Multimedia

SQL Structured query language, not an acronym, pronounced as "sequel"

SQL/MM SQL Multimedia and Application Packages

SRID Spatial Reference System Identifier

SRTEXT Spatial Reference System Well Known Text

WKB Well-Known Binary (representation for example, geometry)

WKT Well-Known Text

WKTR Well-Known Text Representation

5.2 Symbols

nD n-Dimensional, where n may be any integer

n
 n-Dimensional coordinate space, where n may be any integer

 empty set, the set having no members

 intersection, operation on two or more sets

 union, operation on two or more sets

 difference, operation on two sets

 is a member of, relation between an element and a set

 is not a member of

 is a proper subset of, i.e. a smaller set not containing all of the larger

 is a subset of

 if and only if, logical equivalence between statements

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. v

 implies, logical implication where the second follows from the first statement

 there exists

 for all

 such that

f: D R Function "f" from domain "D" to range "R"

 X | s } set of "X" such that the statement "s" is TRUE

 and, logical intersection

 or, logical union

 not, logical negation

 equal

 not equal

 less than or equal to

 less than

 greater than or equal to

 greater than

 topological boundary operator, mapping a geometric object to its boundary

6 Architecture

6.1 Architecture — SQL implementation using predefined data types

6.1.1 Overview

This standard defines a schema for the management of feature table, Geometry, and Spatial Reference System
information in an SQL-implementation based on predefined data types. This part of ISO 19125 does not define
SQL functions for access, maintenance, or indexing of Geometry in an SQL-implementation based on predefined
data types.

Figure 1 illustrates the schema to support feature tables, Geometry, and Spatial Reference Information in an SQL-
implementation based on predefined data types.

a) The GEOMETRY_COLUMNS table describes the available feature tables and their Geometry properties.

b) The SPATIAL_REF_SYS table describes the coordinate system and transformations for Geometry.

c) The FEATURE TABLE stores a collection of features. A feature table‘s columns represent feature

attributes, while rows represent individual features. The Geometry of a feature is one of its feature
attributes; while logically a geometric data type, a Geometry Column is implemented as a foreign key to a
geometry table.

d) The GEOMETRY TABLE stores geometric objects, and may be implemented using either standard

SQL numeric types or SQL binary types.

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Figure 1: Schema for feature tables using predefined data types

Depending upon the storage type specified by the GEOMETRY_COLUMNS table, a geometric object is stored
either as an array of coordinate values or as a single binary value. In the former case, predefined SQL numeric
types are used for the coordinates and these numeric values are obtained from the geometry table until the
geometric object has been fully reconstructed. In the latter case, the complete geometric object is obtained in the
Well-known Binary Representation as a single value.

6.1.2 Identification of feature tables and geometry columns

Feature tables and Geometry columns are identified through the GEOMETRY_COLUMNS table. Each Geometry
Column in the database has an entry in the GEOMETRY_COLUMNS table. The data stored for each geometry
column consists of the following:

a) the identity of the feature table of which this Geometry Column is a member;

b) the name of the Geometry Column;

c) the spatial reference system ID (SRID) for the Geometry Column;

d) the type of Geometry for the Geometry column;

e) the coordinate dimension for the Geometry Column;

f) the identity of the geometry table that stores geometric objects for this Geometry Column;

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. vii

g) the information necessary to navigate the geometry table in the case of normalized geometry storage.

6.1.3 Identification of Spatial Reference Systems

Every Geometry Column and every geometric entity is associated with exactly one Spatial Reference System.
The Spatial Reference System identifies the coordinate system for all geometric objects stored in the column, and
gives meaning to the numeric coordinate values for any geometric object stored in the column. Examples of
commonly used Spatial Reference Systems include ―Latitude Longitude‖ and ―UTM Zone 10‖.

The SPATIAL_REF_SYS table stores information on each Spatial Reference System in the database. The
columns of this table are the Spatial Reference System Identifier (SRID), the Spatial Reference System Authority
Name (AUTH_NAME), the Authority Specific Spatial Reference System Identifier (AUTH_SRID) and the Well-
known Text description of the Spatial Reference System (SRTEXT). The Spatial Reference System Identifier
(SRID) constitutes a unique integer key for a Spatial Reference System within a database.

Interoperability between clients is achieved via the SRTEXT column which stores the Well-known Text
representation for a Spatial Reference System.

6.1.4 Feature tables

A feature is an abstraction of a real-world object. Feature attributes are columns in a feature table. Features are
rows in a feature table. The Geometry of a feature is one of its feature attributes; while logically a geometric data
type, a geometry column is implemented as a foreign key to a geometry table.

Relationships between features may be defined as foreign key references between feature tables.

6.1.5 Geometry tables

6.1.5.1 Normalized geometry schema

The normalized geometry schema stores the coordinates of geometric objects as predefined SQL numeric types.

One or more coordinates (X, Y and optionally Z and M ordinate values) will be represented by pairs of numeric

types in the geometry table, as shown in Figure 2. Each geometric object is identified by a key (GID) and consists
of one or more primitive elements ordered by an element sequence (ESEQ). Each primitive element in the
geometric object is distributed over one or more rows in the geometry table, identified by a primitive type (ETYPE),
and ordered by a sequence number (SEQ).

The rules for geometric object representation in the normalized schema are defined as follows.

a) ETYPE designates the Geometry Type.

b) Geometric objects may have multiple elements. The ESEQ value identifies the individual elements.

c) An element may be built up from multiple parts (rows). The rows and their proper sequence are identified by
the SEQ value.

d) Polygons may contain holes, as described in the Geometry object model.

e) PolygonRings shall close when assembled from an ordered list of parts. The SEQ value designates the part
order.

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

f) Coordinate pairs that are not used shall be set to Nil in complete sets (both X and Y). This is the only way to
identify the end of the list of coordinates.

g) For geometric objects that continue onto an additional row (as defined by a constant element sequence
number or ESEQ), the last Point of one row is equal to the first Point of the next.

h) There is no limit on the number of elements in the geometric object, or the number of rows in an element.

Figure 2: Example of geometry table for Polygon Geometry using SQL

6.1.5.2 Binary geometry schema

The binary Geometry schema is illustrated in Table 1, uses GID as a key and stores the geometric object using
the Well-known Binary Representation for Geometry (WKBGeometry). The geometry table includes the minimum
bounding rectangle for the geometric object as well as the WKBGeometry for the geometric object. This permits
construction of spatial indexes without accessing the actual geometric object structure, if desired.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. ix

Table 1: Example of geometry table for Polygon Geometry
Using the Well-known Binary Representation for Geometry

GID XMIN YMIN XMAX YMAX Geometry

1 0 0 30 30 < WKBGeometry >

2 30 0 60 30 < WKBGeometry >

3 0 30 30 60 < WKBGeometry >

4 30 30 60 60 < WKBGeometry >

6.1.5.3 SQL/MM geometry schema

The geometric attributes of a feature may also be specified using an extension of SQL/MM

6.1.6 Text

6.1.6.1 ANNOTATIONS Metadata Table

Each feature table/geometry column pair that has associated annotation text entities will be represented as a row
in the ANNOTATIONS metadata table, or view. The data stored for each for annotation is:

 The identity of the feature table containing the text column

 The column in the feature table that contains the text entity key for associating multiple text elements to a
single text entity

 A base scale for which the text placement is designed

 Optionally, a geometry column in the feature table for associated geometry representing an envelop for
the text

 The identity of the text element table containing the geometry column

 The column name in the text element table that contains the text to be placed

 The column name in the text element table that contains the location geometry of the text

 The column name in the text element table that contains the optional leader line that may be associated
with the text.

 The column name in the text element table that contains text rendering data

 Default values for the text element, either by value of by using ―sql-value expressions‖ that can be
evaluated on the feature entry associated to the text.

 Default values for the text rendering data, as a collection of XML elements as a single text string.

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

The base scale for all size values that will be given in points1 (1 point = 0.35146 mm). Each text object has a font size from

the style. To enable annotation text, a mechanism is needed whereby text may be defined in points but (usually) based on a

specific map scale. Thus, a text object would be placed using a font size of 24 point at 1:1000000 and client-rendering

engines would use this information to scale the text size appropriate to changes in the map scale. This base scale would be

stored once in the metadata. Any point size values in the metadata attributes column (see below) or in individual rows would

be relative to this value, as would letter-spacing and word-spacing, stroke-width (for text and leader line) and both vertical

and horizontal margins. Application may round to the nearest point during scaling.

6.1.6.2 Table or View Constructs for structural metadata

The following CREATE TABLE statement creates an appropriately structured table to be included in the schema,
describing how text is stored in a feature table. This should be either an actual metadata table or an updateable
view so that insertion of reference system information can be done directly with SQL.

Note that there is no requirement that the annotated feature have any other attributes. Unattributed annotations
are in essence context-free, and may be used to place any text on the data, such as collection metadata or notes
to user about unusual situations of which he may wish to be aware.

1 There is some minor d isagreement on the s tandard for a text po int . The US -UK standard is 1 /72.27
inch, Adobe Pos tscr ip t use 1/72

inch. Tradi t ional typeset ters use 1/64 inch and European (based on a

French s tandard) use approximate ly 1 /67

inch. At the s izes of normal text a t normal d isp lay scale,

none of these d i f ferences are s ign i f icant . These manor d i f ferences man make f ine scale compar ison
of output d i f f icu l t to make.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xi

CREATE TABLE ANNOTATION_TEXT_METADATA AS

{

F_TABLE_CATALOG AS CHARACTER VARYING NOT NULL,

F_TABLE_SCHEMA AS CHARACTER VARYING NOT NULL,

F_TABLE_NAME AS CHARACTER VARYING NOT NULL,

F_TEXT_KEY_COLUMN AS CHARACTER VARYING NOT NULL,

F_TEXT_ENVELOPE_COLUMN AS CHARACTER VARYING NOT NULL,

A_ELEMENT_TABLE_CATALOG AS CHARACTER VARYING NOT NULL,

A_ELEMENT_TABLE_SCHEMA AS CHARACTER VARYING NOT NULL,

A_ELEMENT_TABLE_NAME AS CHARACTER VARYING NOT NULL,

A_ELEMENT_TEXT_KEY_COLUMN AS CHARACTER VARYING NOT NULL

A_ELEMENT_TEXT_SEQ_COLUMN AS CHARACTER VARYING NOT NULL

A_ELEMENT_TEXT_VALUE_COLUMN AS CHARACTER VARYING NOT NULL,

A_ELEMENT_TEXT_LEADERLINE_COLUMN AS CHARACTER VARYING NOT NULL,

A_ELEMENT_TEXT_LOCATION_COLUMN AS CHARACTER VARYING NOT NULL,

A_ELEMENT_TEXT_ATTRIBUTES_COLUMN AS CHARACTER VARYING NOT NULL,

A_MAP_BASE_SCALE AS NUMBER NOT NULL,

A_TEXT_DEFAULT_EXPRESSION AS CHARACTER VARYING,

A_TEXT_DEFAULT_ATTRIBUTES AS CHARACTER VARYING

}

Note that there are no constraints on row in this table, allowing a single feature table/geometry column pair to be
annotated using text from different feature table columns.

6.1.6.3 Field Description

The fields in the Annotations metadata information view are given in

Table 2: Column definitions for Annotation Text metadata

Columns Description

F_TABLE_

CATALOG,

SCHEMA,

NAME

the fully qualified name of the feature table containing the geometry column to be
annotated

F_TEXT_

KEY_COLUMN.

ENVELOPE_CO

LUMN,

The names of the column in the feature table that contain:

A KEY for the text to which the text elements can use as a point of aggregation.

An ENVELOPE_COLUMN that contains a geometry object that acts as an

envelope for the set of text elements in this text entity. This column should also be
a valid geometry column.

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Columns Description

A_ELEMENT_TABLE

CATALOG,

SCHEMA,

NAME

the fully qualified name of the text element table containing the text elements used

for the F_Text columns column defined above

A_TEXT_ELEMENT

KEY_COLUMN

SEQ_COLUMN

VALUE_COLUM

N

LEADERLINE_

COLUMN

LOCATUIN_CO

LUMN

ATTRIBUTES_

COLUMN

The names of the columns in the ELEMENT_TABLE that contain the:

a) The foreign KEY for the text entity as specified in the

F_TEXT_KEY_COLUMN.

b) A sequence (SEQ) column which will be used to order the text elements
in this text entity. Any sortable type is valid for this column in the table,
although integers would be the obvious choice.

c) A text string VALUE for this text element.

d) The LEADERLINE for this text element if it has one (should also be

a geometry column).

e) The LOCATION for this text element (should also be a geometry

column).

f) The local text ATTRIBUTES providing the opportunity to override the

text attributes currently in force. This is an XML type, and will be a
collection of XML elements each describing a text attribute of the current
text element. Unspecified attributes take the value most recently defined.

A_MAP_BASE_SCALE The base scale for all size values that will be given in points2 (1 point = 0.35146 mm).

Each text object has a font size from the style. To enable annotation text, a mechanism is

needed whereby text may be defined in points but (usually) based on a specific map scale.

Thus, a text object would be placed using a font size of 24 point at 1:1000000 and client-

rendering engines would use this information to scale the text size appropriate to changes

in the map scale. This base scale would be stored once in the metadata. Any point size

values in the metadata attributes column (see below) or in individual rows would be

relative to this value, as would letter-spacing and word-spacing, stroke-width (for text and

leader line) and both vertical and horizontal margins. Application may round to the nearest

point during scaling.

2 There is some minor d isagreement on the s tandard for a text po int . The US -UK standard is 1 /72.27
inch, Adobe Postscr ip t use 1/72

inch. Tradi t ional typeset ters use 1/64 inch and European (based on a

French s tandard) use approximate ly 1 /67

inch. At the s izes of normal text a t normal d isp lay scale,

none of these d i f ferences are s ign i f icant . These manor d i f ferences man make f ine scale compar ison
of output d i f f icu l t to make.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xiii

Columns Description

A_TEXT_DEFAULT_

EXPRESSION

ATTRIBUTES

The default values for the corresponding ―A_TEXT_‖ columns above, for cases
where these columns are NULL in the feature table. They may be values or
―query‖ expressions in terms of other columns in the database. These defaults
shall be overridden on a row by row basis when the corresponding columns in the
feature table row are not NULL. Formats, which are large text strings, and
interpretation for these columns are discussed in Part 1.

6.1.7 Use of numeric data types

SQL-implementations usually provide several numeric data types. In this standard, the use of a numeric data type
in examples is not meant to be binding. The data type of any particular column can be determined, and casting
operators between similar data types are available. Any particular implementation may use alternative data types
as long as casting operations shall not lead to difficulties.

6.1.8 Notes on SQL/CLI access to Geometry values stored in binary form

SQL/CLI provides standard mechanisms to bind character, numeric and binary data values.

This subclause describes the process of retrieving geometric object values for the case where the binary storage
alternative is chosen.

The WKB_GEOMETRY column in the geometry table is accessed in SQL/CLI as one of the binary SQL data
types (SQL_BINARY, SQL_VARBINARY, or SQL_LONGVARBINARY).

EXAMPLE The application would use the SQL_C_BINARY value for the fCType parameter of SQLBindCol (or
SQLGetData) in order to describe the application data buffer that shall receive the fetched Geometry data value. Similarly, a

dynamic parameter whose value is a Geometry would be described using the SQL_C_BINARY value for the fCType
parameter of SQLBindParameter.

This allows binary values to be both retrieved from and inserted into the geometry tables.

6.2 Architecture — SQL implementation using Geometry Types

6.2.1 Overview

This standard defines a schema for the management of feature table, Geometry, and Spatial Reference System
information in an SQL-implementation with a Geometry Type extension.

Figure 3 illustrates the schema to support feature tables, Geometry, and Spatial Reference Information in an SQL-
implementation with a Geometry Type extension.

a) The GEOMETRY_COLUMNS table describes the available feature tables and their Geometry properties.

b) The SPATIAL_REF_SYS table describes the coordinate system and transformations for Geometry.

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

c) The feature table stores a collection of features. A feature table‘s columns represent feature attributes, while
rows represent individual features. The Geometry of a feature is one of the feature attributes, and is an SQL
Geometry Type.

Figure 3: Schema for feature tables using SQL with Geometry Types

6.2.2 Identification of feature tables and geometry columns

Feature tables and Geometry columns are identified through the GEOMETRY_COLUMNS table. Each Geometry
Column in the database has an entry in the GEOMETRY_COLUMNS table. The data stored for each geometry
column consists of the following:

a) the identity of the feature table of which this Geometry Column is a member;

b) the name of the Geometry Column;

c) the spatial reference system ID for the Geometry Column;

d) the coordinate dimension for the Geometry column;

The columns in the GEOMETRY_COLUMNS table for the SQL with Geometry Types environment are a subset of
the columns in the GEOMETRY_COLUMNS table defined for the SQL-implementation based on predefined data
types.

An alternative method for identification of feature tables and Geometry Columns may be available for
SQL-implementations with Geometry Types. In the SQL-implementation with Geometry Types, the Geometry
Column may be represented as a row in the COLUMNS metadata view of the SQL INFORMATION_SCHEMA.
Spatial Reference System Identity and coordinate dimension is, however, not a standard part of the

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xv

SQL INFORMATION_SCHEMA. To access this information, the GEOMETRY_COLUMNS table would still need to
be referenced.

6.2.3 Identification of Spatial Reference Systems

Every Geometry Column is associated with a Spatial Reference System. The Spatial Reference System identifies
the coordinate system for all geometric objects stored in the column, and gives meaning to the numeric coordinate
values for any geometric object stored in the column. Examples of commonly used Spatial Reference Systems
include ―Latitude Longitude‖ and ―UTM Zone 10‖.

The SPATIAL_REF_SYS table stores information on each Spatial Reference System in the database. The
columns of this table are the Spatial Reference System Identifier (SRID), the Spatial Reference System Authority
Name (AUTH_NAME), the Authority Specific Spatial Reference System Identifier (AUTH_SRID) and the Well-
known Text description of the Spatial Reference System (SRTEXT). The Spatial Reference System Identifier
(SRID) constitutes a unique integer key for a Spatial Reference System within a database.

Interoperability between clients is achieved via the SRTEXT column which stores the Well-known Text
representation for a Spatial Reference System.

6.2.4 Feature tables

A feature is an abstraction of a real-world object. Feature attributes are columns in a feature table. Features are
rows in a feature table. The Geometry of a feature is stored in a Geometry Column whose type is drawn from a
set of SQL Geometry Types.

Relationships between features may be defined as foreign key references between feature tables.

6.2.5 Background information on SQL User Defined Types

The term User Defined Type (UDT) refers to a data type that extends the SQL type system.

UDT types can be used to define the column types for tables, this allows values stored in the columns of a table to
be instances of UDT.

SQL functions may be declared to take UDT values as arguments, and return UDT values as results.

An UDT may be defined as a subtype of another UDT, referred to as its supertype. This allows an instance of the
subtype to be stored in any column where an instance of the supertype is expected and allows an instance of the
subtype to be used as an argument or return value in any SQL function that is declared to use the supertype as
an argument or return value.

The above definition of UDT is value based.

SQL implementations that support User Defined Types may also support the concept of References to User
Defined Types instances that are stored as rows in a table whose type corresponds to the type of the User
Defined Type. The terms RowType and Reference to RowType are also used to describe such types.

This standard allows Geometry Types to be implemented as either pure value based Types or as Types that
support persistent References.

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

The Types for Geometry are defined in black-box terms, i.e. all access to information about a Geometry Type
instance is through SQL functions. No attempt is made to distinguish functions that may access Type instance
attributes (such as the dimension of a geometric object) from functions that may compute values given a Type
instance (such as the centroid of a Polygon). In particular, an implementation of this standard would be free to
nominate any set of functions as observer methods on attributes of a User Defined Type, as long as the
signatures of the SQL functions described in this standard are preserved.

6.2.6 SQL Geometry Type hierarchy

The SQL Geometry Types are organized into a type hierarchy shown in Figure 4.

Geometry
ReferenceSystems::

SpatialReferenceSystem

Point Curv e Surface GeometryCollection

MultiSurface MultiCurv e MultiPoint

MultiPolygon MultiLineString

LineString

Line LinearRing

Polygon PolyhedralSurface

ReferenceSystems::

MeasureReferenceSystem

+spatialRS

1
+mesureRS

0..1

+element0..*

+element

0..*

+element

0..*

+vertex
2..*

+ring

1..*

+patch1..*

Figure 4: Figure: SQL Geometry Type hierarchy

The root type, named Geometry, has subtypes for Point, Curve, Surface and Geometry Collection. A Geometry
Collection is a Geometry that is a collection of possibly heterogeneous geometric objects. MultiPoint, MultiCurve
and MultiSurface are specific subtypes of Geometry Collection used to manage homogenous collections of Points,
Curves and Surfaces. The 0 dimensional Geometry Types are Point and MultiPoint.

The one-dimensional Geometry Types are Curve and MultiCurve together with their subclasses. The
two-dimensional Geometry Types are Surface and MultiSurface together with their subclasses.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xvii

SQL functions are defined to construct instances of the above Types given Well-known Text or Binary
representations of the types. SQL functions defined on the types implement the methods described in the
Geometry Object Model.

6.2.7 Geometry values and spatial reference systems

In order to model Spatial Reference System information, each geometric object in the SQL with Geometry Types
implementation is associated with a Spatial Reference System as specified by SQL/MM.

In addition to the SQL/MM

6.2.8 Access to Geometry values in the SQL with Geometry Type case

Spatial data are accessed using the SQL query language extended with SQL routines to create Geometry Types
as well as routines to observe or mutate their attributes, as specified by SQL/MM..

6.2.9 Text

6.2.9.1 Text Object Implementation

6.2.9.1.1 Text Objects

The text object, and their component elements which can be used either as a feature attribute or as a free-floating
object, is defined in 7.2.20.

6.2.9.2 Metadata Table (View)

The metadata at a table level allows common information to be stored at a common level and not for each record.
This keep the data for each record as compact as possible. There is no specific specification for this metadata
table. But the data requirements in Table 3 must be available from the metadata store. This data if created as a
table would look like this:

CREATE TABLE ANNOTATION_TEXT_METADATA AS

{

F_TABLE_CATALOG AS CHARACTER VARYING NOT NULL,

F_TABLE_SCHEMA AS CHARACTER VARYING NOT NULL,

F_TABLE_NAME AS CHARACTER VARYING NOT NULL,

F_TEXT_COLUMN AS CHARACTER VARYING NOT NULL,

A_TEXT_DEFAULT_MAP_BASE_SCALE AS CHARACTER VARUONG,

A_TEXT_DEFAULT_EXPRESSION AS CHARACTER VARYING,

A_TEXT_DEFAULT_ATTRIBUTES AS CHARACTER VARYING

}

The fields in the table above are described in shall be a view of database administration tables and must contain
the following fields for each text column (column of a ANNOTATION_TEXT type):

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Table 3: Text metadata attributes

FIELD DEFINITION COMMENT

F_TABLE_CATALOG

F_TABLE_SCHEMA

F_TABLE_NAME

Name of the table in

which the text type

values are stored.

Databases have format for this based on

SQL:1999.

F_TEXT_COLUMN_NAME Name of the column in

which the text type

value are stored.

Databases have format for this based on

SQL:1999. This column in the feature table

described above must be of type

ANNOTATION_TEXT.

A_TEXT_DEFAULT_MAP_BASE_SCALE The base map scale for

which the text will be

displayed

A_TEXT_DEFAULT_EXPRESSION This column allows the

actual text of a text

object to come from

data outside the text

object VALUE field.

Any valid database column expression resulting

in a string is acceptable. The expression is

evaluated for the each row. If this field is null, the

individual text objects may have their own

embedded text or nothing shall be displayed. Any

embedded text shall override this expression

value.

During query to support display, client

applications should add this expression to their

select list so that any returned records will have

the information needed to evaluate this expression

without round tripping back to the database. .

Note that this is the one case where the data

critical to the display of text is stored outside the

text object or metadata. It should be obvious to

anyone changing the VALUE field that they are

changing the text object. It may not be obvious to

someone updating a column covered by the text

expression that they are affecting the text object

display.

A_TEXT_DEFAULT_ATTRIBUTES As many text attributes

may be common in one

table, the database may

store the common ones

once here and allow for

individual row (record)

overrides.

The Text Style, Layout and Leader Line Style

described below may be stored in the metadata as

well as the individual rows. Any values in the

individual rows shall override the metadata

values. The resulting attributes are an overlay of

the metadata attributes and individual row

attribute values.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xix

7 Clause component specifications

7.1 Components — Implementation of feature tables based on predefined data types

7.1.1 Conventions

Table components are described in the context of a CREATE TABLE statement. Implementations may use base

tables with different names and properties, exposing these components as updateable views, provided that the
base tables defined by the implementation enforce the same constraints.

Table names and column names have been restricted to 18 characters in length to allow for the widest possible
implementation.

7.1.2 Spatial reference system information

7.1.2.1 Component overview

The Spatial Reference Systems table, which is named SPATIAL_REF_SYS, stores information on each spatial

reference system used in the database.

7.1.2.2 Table constructs

The following CREATE TABLE statement creates an appropriately structured SPATIAL_REF_SYS table. This table

may be an updatable view of an implementation-specific table. Implementations shall either use this table format
or provide stored procedures to create, to populate and to maintain this table

CREATE TABLE SPATIAL_REF_SYS

 (

SRID INTEGER NOT NULL PRIMARY

KEY,

AUTH_NAME CHARACTER VARYING,

AUTH_SRID INTEGER,

SRTEXT CHARACTER VARYING(2048)

)

7.1.2.3 Field description

These fields are described as follows:

a) SRID — an integer value that uniquely identifies each Spatial Reference System within a
database;

b) AUTH_NAME — the name of the standard or standards body that is being cited for this reference
system. EPSG would be an example of a valid AUTH_NAME;

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

c) AUTH_SRID — the ID of the Spatial Reference System as defined by the Authority cited in

AUTH_NAME;

d) SRTEXT — The Well-known Text Representation of the Spatial Reference System.

7.1.2.4 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

7.1.3 Geometry columns information

7.1.3.1 Component overview

The GEOMETRY_COLUMNS table provides information on the feature table, spatial reference, geometry type, and

coordinate dimension for each Geometry column in the database. This table may be an updatable view of an
implementation-specific table. Implementations shall either use this table format or provide stored procedures to
create, to populate and to maintain this table

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xxi

7.1.3.2 Table or view constructs

CREATE TABLE GEOMETRY_COLUMNS (

F_TABLE_CATALOG CHARACTER VARYING NOT NULL,

F_TABLE_SCHEMA CHARACTER VARYING NOT NULL,

F_TABLE_NAME CHARACTER VARYING NOT NULL,

F_GEOMETRY_COLUMN CHARACTER VARYING NOT NULL,

G_TABLE_CATALOG CHARACTER VARYING NOT NULL,

G_TABLE_SCHEMA CHARACTER VARYING NOT NULL,

G_TABLE_NAME CHARACTER VARYING NOT NULL,

STORAGE_TYPE INTEGER,

GEOMETRY_TYPE INTEGER,

COORD_DIMENSION INTEGER,

MAX_PPR INTEGER,

SRID INTEGER NOT NULL

REFERENCES SPATIAL_REF_SYS,

CONSTRAINT GC_PK PRIMARY KEY

(F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME, F_GEOMETRY_COLUMN)

)

7.1.3.3 Field description

These fields are described as follows:

a) F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME — the fully qualified name of the feature table

containing the geometry column.

b) F_GEOMETRY_COLUMN — the name of the column in the feature table that is the Geometry Column. This

column shall contain a foreign key reference into the geometry table for an implementation based on
predefined data types. For a geometry types implementation, this column may contain either a foreign key to
a geometry extent table or a SQL UDT.

c) G_TABLE_CATALOG, G_TABLE_SCHEMA, G_TABLE_NAME — the name of the geometry table and its schema and

catalog. The geometry table implements the geometry column. In a geometry types implementation that
stores the geometry in the F_GEOMETRY_COLUMN, these columns will be identical to the F_TABLE_CATALOG,

F_TABLE_SCHEMA, F_TABLE_NAME column values.

d) STORAGE_TYPE — the type of storage being used for this geometry column:

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

0 = normalized geometry implementation,

1 = binary geometry implementation (Well-known Binary Representation for Geometry).

NULL = geometry types implementation,

e) GEOMETRY_TYPE — the type of geometry values stored in this column. The use of a non-leaf Geometry class

name from the Geometry Object Model for a geometry column implies that domain of the column corresponds
to instances of the class and all of its subclasses. The suffixes "Z", "M" and "ZM" are three distinct copies of
the geometry hierarchy as presented in Figure 4. If the value is NULL, then the appropriate GEOMETRY

subtype is used consistent with the COORD_DIMENSION and SRID is implied. This code list is a subset of the

list presented in Part 1, Table 7.

Table 4: Geometry type codes

Code Geometry type Coordinates

0 GEOMETRY \\ IN X Y

1 POINT \\ IN X Y

2 LINESTRING \\ IN X Y

3 POLYGON \\ IN X Y

4 MULTIPOINT \\ IN X Y

5 MULTILINESTRING \\ IN X Y

6 MULTIPOLYGON \\ IN X Y

7 GEOMCOLLECTION \\ IN X Y

13 CURVE \\ IN X Y

14 SURFACE \\ IN X Y

15 POLYHEDRALSURFACE \\ IN X Y

1000 GEOMETRYZ \\ IN X Y Z

1001 POINTZ \\ IN X Y Z

1002 LINESTRINGZ \\ IN X Y Z

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xxiii

Code Geometry type Coordinates

1003 POLYGONZ \\ IN X Y Z

1004 MULTIPOINTZ \\ IN X Y Z

1005 MULTILINESTRINGZ \\ IN X Y Z

1006 MULTIPOLYGONZ \\ IN X Y Z

1007 GEOMCOLLECTIONZ \\ IN X Y Z

1013 CURVEZ \\ IN X Y M

1014 SURFACEZ \\ IN X Y M

1015 POLYHEDRALSURFACEZ \\ IN X Y Z

2000 GEOMETRY \\ IN X Y M

2001 POINTM \\ IN X Y M

2002 LINESTRINGM \\ IN X Y M

2003 POLYGONM \\ IN X Y M

2004 MULTIPOINTM \\ IN X Y M

2005 MULTILINESTRINGM \\ IN X Y M

2006 MULTIPOLYGONM \\ IN X Y M

2007 GEOMCOLLECTIONM \\ IN X Y M

2013 CURVEM \\ IN X Y M

2014 SURFACEM \\ IN X Y M

2015 POLYHEDRALSURFACEM \\ IN X Y M

3000 GEOMETRYZM \\ IN X Y Z M

3001 POINTZM \\ IN X Y Z M

3002 LINESTRINGZM \\ IN X Y Z M

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Code Geometry type Coordinates

3003 POLYGONZM \\ IN X Y Z M

3004 MULTIPOINTZM \\ IN X Y Z M

3005 MULTILINESTRINGZM \\ IN X Y Z M

3006 MultiPolygonZM \\ IN X Y Z M

3007 GEOMCOLLECTIONZM \\ IN X Y Z M

3013 CURVEZM \\ IN X Y Z M

3014 SURFACEZM \\ IN X Y Z M

3015 POLYHEDRALSURFACEZM \\ IN X Y Z M

f) COORD_DIMENSION — the number of ordinates used in the complex, usually corresponds to the number of

dimensions in the spatial reference system. If an "M" ordinate is included it shall be one greater than the
number of dimensions of the spatial reference system.

g) MAX_PPR — (This value contains data for the normalized geometry implementation only) Points per row, the

number of Points stored as ordinate columns in the geometry table. This value may be NULL only if a binary
storage or SQL geometry type implementation is used.

h) SRID — the ID of the Spatial Reference System used for the coordinate geometry in this table. It is a foreign

key reference to the SPATIAL_REF_SYS table and must be specified.

7.1.3.4 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns for SQL/CLI.

7.1.4 Feature tables

The columns in a feature table are defined by feature attributes; one or more of the feature attributes will be a
geometric attribute. The basic restriction in this standard for feature tables is that for each geometric attribute,

they include geometry via a FOREIGN KEY to a geometry table. Features may have a feature attribute that is

unique, serving as a PRIMARY KEY for the feature table. Feature-to-feature relations may similarly be defined as

FOREIGN KEY references where appropriate.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xxv

The general format of a feature table shall be as follows:

CREATE TABLE <feature table name> (

<primary key column name> <primary key column type>,

… (other attributes for this feature table)

<geometry column name> <geometry column type>,

… (other geometry columns for this feature table)

PRIMARY KEY <primary key column name>,

FOREIGN KEY <geometry column name> REFERENCES <geometry table name>,

… (other geometry column constraints for this feature table)

)

The geometric attribute foreign key reference applies only for the case where the geometry table stores geometry
in binary form. In the case where geometry is stored in normalized form, there may be multiple rows in the
geometry table corresponding to a single geometry value. In this case, the geometry attribute reference may be
captured by a check constraint that ensures that the Geometry Column value in the feature table corresponds to
the geometry-ID value for one or more rows in the geometry table.

7.1.5 Geometry tables

7.1.5.1 Component overview

Each Geometry table stores geometric objects corresponding to a Geometry column in a feature table. Geometric
objects may be stored as individual ordinate values, using SQL numeric types, or as binary objects, using the
Well-known Binary Representation for Geometry. Table schemas for both implementations are provided.

7.1.5.2 Geometry stored using SQL numeric types

7.1.5.2.1 Table constructs

The following CREATE TABLE statement creates an appropriately structured table for Geometry stored as individual

ordinate values using SQL numeric types. Implementations shall either use this table format or provide stored
procedures to create, to populate and to maintain this table.

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

CREATE TABLE <table name>

(

GID INTEGER NOT NULL,

ESEQ INTEGER NOT NULL,

ETYPE INTEGER NOT NULL,

SEQ INTEGER NOT NULL,

X1 <ordinate type>,

Y1 <ordinate type>,

Z1 <ordinate type>,

!Optional if Z-value is included

M1 <ordinate type>,

!Optional if M-value is included

... <repeated for each ordinate, repeated for each point>

X<MAX_PPR> <ordinate type>,

Y<MAX_PPR> <ordinate type>,

Z1<MAX_PPR> <ordinate type>,

!Optional if Z-value is included

M1<MAX_PPR> <ordinate type>,

!Optional if M-value is included

...,

<attribute> <attribute type>

CONSTRAINT GID_PK PRIMARY KEY (GID, ESEQ, SEQ)

)

7.1.5.2.2 Field descriptions

These field descriptions are follows:

a. GID — identity of this geometric object;

b. ESEQ — identifies multiple components within a geometric object;

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xxvii

c. ETYPE — element type of this primitive element for the geometric object. The following values are defined

for ETYPE:

 1 Point,

 2 LineString,

 3 Polygon;

d. SEQ — identifies the sequence of rows to define a geometric object;

e. X1 — first ordinate of first Point;

f. Y1 — second ordinate of first Point;

g. Z1 — third ordinate of first Point;

h. M1 — fourth ordinate of first Point;

i. ...— (repeated for each ordinate, for this Point);

j. ... — (repeated for each coordinate, for this row);

k. X<MAX_PPR> — first ordinate of last Point. The maximum number of Points per row ‗MAX_PPR' is

consistent with the information in the GEOMETRY_COLUMNS table;

l. Y<MAX_PPR> — second ordinate of last Point;

m. .Z<MAX_PPR> — third ordinate of first Point;

n. M<MAX_PPR> fourth ordinate of first Point;

o. .. — (repeated for each ordinate, for this last Point);

p. <attribute> — other attributes can be carried in the Geometry table for specific feature schema.

7.1.5.2.3 Exceptions, errors and error codes

Error handling shall use the standard SQL status returns for SQL/CLI.

7.1.5.3 Geometry stored using SQL binary types

7.1.5.3.1 Table constructs

The following CREATE TABLE statement creates an appropriately defined table for Geometry stored using the Well-

known Binary Representation for Geometry. The size of the WKB_GEOMETRY column is defined by the

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

implementation. Implementations shall either use this table format or provide stored procedures to create,
populate and maintain this table.

CREATE TABLE <table name>

(

GID NUMERIC NOT NULL PRIMARY KEY,

XMIN <ordinate type>,

YMIN <ordinate type>,

ZMIN <ordinate type>,

MMIN <ordinate type>,

XMAX <ordinate type>,

YMAX <ordinate type>,

ZMAX <ordinate type>,

MMAX <ordinate type>,

WKB_GEOMETRY BIT VARYING(implementation size limit),

{<attribute> <attribute type>}*

)

7.1.5.3.2 Field descriptions

These fields are described as follows:

a. GID — identity of this geometric object;

b. XMIN — the minimum x-coordinate of the geometric object bounding box;

c. YMIN — the minimum y-coordinate of the geometric object bounding box;

d. ZMIN — the maximum y-coordinate of the geometric object bounding box;

e. MMIN — the maximum y-coordinate of the geometric object bounding box;

f. XMAX — the maximum x-coordinate of the geometric object bounding box;

g. YMAX — the maximum y-coordinate of the geometric object bounding box;

h. ZMAX — the maximum y-coordinate of the geometric object bounding box;

i. MMAX — the maximum y-coordinate of the geometric object bounding box;

j. WKB_GEOMETRY — the Well-known Binary Representation of the geometric object;

k. <attribute> — other attributes can be carried in the Geometry table for specific feature schema.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xxix

7.1.5.3.3 Exceptions, errors and error codes

Error handling shall use the standard SQL status returns for SQL/CLI.

7.1.6 Operators

No SQL spatial operators are defined as part of this standard.

7.2 Components — SQL with Geometry Types implementation of feature tables

7.2.1 Conventions

The components of this standard for feature table implementation in a SQL with Geometry Types environment
consist of the tables, SQL types and SQL functions discussed in 7.2 with routines as specified by SQL/MM.

7.2.2 SQL Geometry Types

7.2.2.1 Component overview

The SQL Geometry Types extend the set of available predefined data types to include Geometry Types.

7.2.2.2 Language constructs

A conforming implementation shall support a subset of the following set of SQL Geometry Types: {Geometry,

Point, Curve, LineString, Surface, Polygon, PolyhedralSurface

GeomCollection, MultiCurve, MultiLineString, MultiSurface,

MultiPolygon, and MultiPoint}. The permissible type subsets that an implementer may choose to

implement are described in SQL/MM.

Note: Class names in SQL/MM carry a "ST_" prefix. This is optional and implementations may chose to drop
this prefix as has been done in various places in this standard.

The new type listed above is PolyhedralSurface shall be subtyped from Surface, and implements

the required constructors, routines and interfaces of Surface and MultiSurface. To maintain a size

limit on class names, the class name in SQL for PolyhedralSurface will be PolyhedSurface.

7.2.3 Feature tables

7.2.3.1 Component overview

The columns in a feature table are defined by feature attributes; one or more of the feature attributes will be a
geometric attribute. The basic restriction in this standard for feature tables is that each geometric attribute is
modeled using a column whose type corresponds to a SQL Geometry Type. Features may have a feature

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

attribute that is unique, serving as a PRIMARY KEY for the feature table. Feature-to-feature relations may be

defined as FOREIGN KEY references where appropriate.

7.2.3.2 Table constructs

The general format of a feature table in the SQL with Geometry Types implementation shall be as follows:

CREATE TABLE <feature table name> (

<primary key column name> <primary key column type>,

… (other attributes for this feature table)

<geometry column name> <geometry type>,

… (other geometry columns for this feature table)

PRIMARY KEY <primary key column name>,

CONSTRAINT SRS_1 CHECK (SRID(<geometry column name>)

 in (

 SELECT SRID from GEOMETRY_COLUMNS

 where F_TABLE_CATALOG = <catalog> and

 F_TABLE_SCHEMA = <schema> and

 F_TABLE_NAME = <feature table name> and

 F_GEOMETRY_COLUMN = <geometry column>

)

… (spatial reference constraints for other geometry columns

 in this feature table)

)

The use of any SQL Geometry Type for any of the columns in the table identifies this table as a feature table.

Alternatively, applications may check the GEOMETRY_COLUMNS table, where all Geometry Columns and their

associated feature tables and geometry tables are listed.

7.2.3.3 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

7.2.4 SQL routines for constructing a geometry object given its Well-known Text Representation

The routines ST_WKTToSQL used to construct geometric objects from their text representations are specified by
SQL/MM..

7.2.5 SQL routines for constructing a geometric object given its Well-known Binary Representation

The routines ST_WKBToSQL used to construct geometric objects from their Well-known Binary Representations
are specified in SQL/MM.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xxxi

7.2.6 SQL routines for obtaining Well-known Text Representation of a geometric object

The SQL routines ST_AsText for obtaining the Well-known Text Representation of a geometric object are
specified in SQL/MM.

7.2.7 SQL routines for obtaining Well-known Binary Representations of a geometric object

The SQL routines ST_AsBinary for obtaining the Well-known Binary Representation of a geometric object are
specified in SQL/MM.

7.2.8 SQL routines on type Geometry

7.2.8.1 Supported routines

The SQL/MM ST_Dimension, ST_GeometryType, ST_AsText, ST_AsBinary,

ST_SRID, ST_IsEmpty, ST_IsSimple, ST_Boundary, and ST_Envelope routines shall be

supported for all Geometry Types. Also included are SQL routines for obtaining the Well-known Binary and Text
Representation of a geometric object and creating values from them.

Consistent with the definitions of relations in Part 1, Clause 6.1.2.3, the SQL/MM ST_Equals,

ST_Disjoint, ST_Intersects, ST_Touches, ST_Crosses, ST_Within,

ST_Contains, ST_Overlaps and ST_Relate routines shall be supported to test named spatial

relationships between two geometric objects.

The SQL/MM ST_Distance routines shall be supported to calculate the distance between two geometric

objects.

Consistent with the set theoretic operations defined in ISO 19103, and ISO 19107, the SQL/MM

ST_Intersection, ST_Difference, ST_Union, ST_SymDifference, ST_Buffer,

and ST_ConvexHull routines shall be supported to implement set-theoretic and constructive operations on

geometric objects. These operations are defined for all types of Geometry.

7.2.8.2 Declarations from SQL/MM (informative)

CREATE TYPE ST_Geometry

AS (

ST_PrivateDimension SMALLINT DEFAULT -1,

ST_PrivateCoordinateDimension SMALLINT DEFAULT 2,

ST_PrivateIs3D SMALLINT DEFAULT 0,

ST_PrivateIsMeasured SMALLINT DEFAULT 0

)

NOT INSTANTIABLE

NOT FINAL

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

METHOD ST_Dimension()

RETURNS SMALLINT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_GeometryType()

RETURNS CHARACTER VARYING(ST_MaxTypeNameLength)

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_AsText()

RETURNS CHARACTER LARGE OBJECT(ST_MaxGeometryAsText)

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT

RETURNS NULL ON NULL INPUT,

METHOD ST_AsBinary()

RETURNS BINARY LARGE OBJECT(ST_MaxGeometryAsBinary)

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_SRID()

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xxxiii

METHOD ST_SRID (ansrid INTEGER)

RETURNS ST_Geometry

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

CALLED ON NULL INPUT,

METHOD ST_IsEmpty()

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_IsSimple()

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Boundary()

RETURNS ST_Geometry

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Envelope()

RETURNS ST_Polygon

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_WKTToSQL (awkt CHARACTER LARGE OBJECT(ST_MaxGeometryAsText))

RETURNS ST_Geometry

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

METHOD ST_WKBToSQL(awkb BINARY LARGE OBJECT(ST_MaxGeometryAsBinary))

RETURNS ST_Geometry

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Equals(ageometry ST_Geometry)

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Disjoint(ageometry ST_Geometry)

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Intersects (ageometry ST_Geometry)

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Touches(ageometry ST_Geometry)

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xxxv

METHOD ST_Crosses(ageometry ST_Geometry)

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Within (ageometry ST_Geometry)

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Contains(ageometry ST_Geometry)

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Overlaps(ageometry ST_Geometry)

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Relate(ageometry ST_Geometry, amatrix CHARACTER(9))

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

METHOD ST_Distance(ageometry ST_Geometry)

RETURNS DOUBLE PRECISION

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Distance(ageometry ST_Geometry,

aunit CHARACTER VARYING(ST_MaxUnitNameLength))

RETURNS DOUBLE PRECISION

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Intersection(ageometry ST_Geometry)

RETURNS ST_Geometry

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Difference(ageometry ST_Geometry)

RETURNS ST_Geometry

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Union(ageometry ST_Geometry)

RETURNS ST_Geometry

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xxxvii

METHOD ST_SymDifference (ageometry ST_Geometry)

RETURNS ST_Geometry

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Buffer (adistance DOUBLE PRECISION)

RETURNS ST_Geometry

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Buffer (adistance DOUBLE PRECISION,

aunit CHARACTER VARYING(ST_MaxUnitNameLength))

RETURNS ST_Geometry

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_ConvexHull()

RETURNS ST_Geometry

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT

7.2.9 SQL routines on type Point

7.2.9.1 Supported routines

The SQL/MM ST_X, ST_Y, ST_Z and ST_M routines and all routines supported by type Geometry

shall be supported for geometries of type Point.

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

7.2.9.2 Declarations from SQL/MM (informative)

CREATE TYPE ST_Point

UNDER ST_Geometry AS

(

ST_PrivateX DOUBLE PRECISION DEFAULT NULL,

ST_PrivateY DOUBLE PRECISION DEFAULT NULL,

ST_PrivateZ DOUBLE PRECISION DEFAULT NULL,

ST_PrivateM DOUBLE PRECISION DEFAULT NULL

)

INSTANTIABLE

NOT FINAL

METHOD ST_X()

RETURNS DOUBLE PRECISION

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_X (xcoord DOUBLE PRECISION)

RETURNS ST_Point

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

CALLED ON NULL INPUT,

METHOD ST_Y()

RETURNS DOUBLE PRECISION

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xxxix

METHOD ST_Y (ycoord DOUBLE PRECISION)

RETURNS ST_Point

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

CALLED ON NULL INPUT,

METHOD ST_Z()

RETURNS DOUBLE PRECISION

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Z (zcoord DOUBLE PRECISION)

RETURNS ST_Point

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

CALLED ON NULL INPUT,

METHOD ST_M()

RETURNS DOUBLE PRECISION

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

METHOD ST_M (mcoord DOUBLE PRECISION)

RETURNS ST_Point

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

CALLED ON NULL INPUT

7.2.10 SQL routines on type Curve

7.2.10.1 Supported routines

The SQL/MM ST_StartPoint, ST_EndPoint, ST_IsRing and ST_Length routines and all

routines supported by type Geometry shall be supported for geometries of type Curve.

7.2.10.2 Declarations from SQL/MM (informative)

CREATE TYPE ST_Curve

UNDER ST_Geometry

NOT INSTANTIABLE

NOT FINAL

METHOD ST_StartPoint()

RETURNS ST_Point

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_EndPoint()

RETURNS ST_Point

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xli

METHOD ST_IsRing()

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Length()

RETURNS DOUBLE PRECISION

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Length (aunit CHARACTER VARYING(ST_MaxUnitNameLength))

RETURNS DOUBLE PRECISION

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT

7.2.11 SQL routines on type LineString

7.2.11.1 Supported routines

The SQL/MM ST_NumPoints and ST_PointN routines and all routines supported by type Curve shall

be supported for geometries of type LineString.

7.2.11.2 Routing declarations from SQL/MM (informative)

CREATE TYPE ST_LineString

UNDER ST_Curve

AS (

ST_PrivatePoints

ST_Point ARRAY[ST_MaxGeometryArrayElements] DEFAULT ARRAY[]

)

INSTANTIABLE

NOT FINAL

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

METHOD ST_NumPoints()

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_PointN(aposition INTEGER)

RETURNS ST_Point

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT

7.2.12 SQL functions on type Surface

7.2.12.1 Supported routines

The SQL/MM ST_Centroid, ST_PointOnSurface and ST_Area routines and all routines

supported by type Geometry shall be supported for geometries of type Surface.

7.2.12.2 Declarations from SQL/MM (informative)

CREATE TYPE ST_Surface

UNDER ST_Geometry

NOT INSTANTIABLE

NOT FINAL

METHOD ST_Area()

RETURNS DOUBLE PRECISION

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xliii

METHOD ST_Area (aunit CHARACTER VARYING(ST_MaxUnitNameLength))

RETURNS DOUBLE PRECISION

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Centroid ()

RETURNS ST_Point

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT

METHOD ST_PointOnSurface()

RETURNS ST_Point

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT

7.2.13 SQL functions on type Polygon

7.2.13.1 Supported routines

The SQL/MM ST_ExteriorRing, ST_NumInteriorRing, and ST_InteriorRingN

routines and all routines supported by type Geometry shall be supported for geometries of type Polygon.

7.2.13.2 Declarations from SQL/MM (informative)

CREATE TYPE ST_Polygon

UNDER ST_CurvePolygon

INSTANTIABLE

NOT FINAL

METHOD ST_ExteriorRing()

RETURNS ST_LineString,

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

METHOD ST_ExteriorRing (acurve ST_LineString)

RETURNS ST_Polygon,

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

CALLED ON NULL INPUT,

METHOD ST_InteriorRings()

RETURNS ST_LineString ARRAY[ST_MaxGeometryArrayElements]

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_InteriorRings (acurvearray ST_LineString

ARRAY[ST_MaxGeometryArrayElements])

RETURNS ST_Polygon

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

CALLED ON NULL INPUT,

METHOD ST_NumInteriorRing()

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xlv

METHOD ST_InteriorRingN(aposition INTEGER)

RETURNS ST_LineString

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT

7.2.14 SQL functions on type Polyhedral Surface

7.2.14.1 Supported routines

The routines supported by type Geometry, Surface and MultiPolygon shall be supported for

geometries of type Polyhedral Surface, PolyhedSurface. In the SQL below, the "max<thing>size" parameters

are local implementation specific maximum sizes for the things so specified. Attributes of types names as "private"
may be implemented in any manner as long as the semantics of the functions is consistent. When integrating this
SQL with that of SQL/MM, the type-name prefix "ST_" should be used as appropriate.

7.2.14.2 Declarations proposed to be added to SQL/MM

CREATE TYPE PolyhedSurface

UNDER Surface

AS (

 PrivatePatches Surface ARRAY[MaxArraySize] DEFAULT ARRAY[]

)

INSTANTIABLE

NOT FINAL

CONSTRUCTOR METHOD PolyhedSurface

 (awktorgml CHARACTER LARGE OBJECT(MaxTextSize))

RETURNS ST_MultiSurface

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

CONSTRUCTOR METHOD PolyhedSurface

 (awktorgml CHARACTER LARGE OBJECT(MaxTextSize),

 srsid INTEGER)

RETURNS ST_MultiSurface

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

CONSTRUCTOR METHOD PolyhedSurface

 (awkb BINARY LARGE OBJECT(MaxBinarySize))

RETURNS ST_MultiSurface

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

CONSTRUCTOR METHOD PolyhedSurface

 (awkb BINARY LARGE OBJECT(MaxBinarySize),

 srsid INTEGER)

RETURNS PolyhedSurface

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

CONSTRUCTOR METHOD PolyhedSurface

 (asurfacearray Surface ARRAY[MaxArraySize])

RETURNS PolyhedSurface

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xlvii

CONSTRUCTOR METHOD PolyhedSurface

 (asurfacearray Surface ARRAY[MaxArraySize]

 srsid INTEGER)

RETURNS PolyhedSurface

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Geometries()

RETURNS Surface ARRAY[MaxArraySize],

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD NumSurfaces()

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD SURFACE (aposition INTEGER)

RETURNS Surface

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT

7.2.15 SQL routines on type GeomCollection

The SQL/MM ST_NumGeometries and ST_GeometryN routines shall be supported for geometries of

type GeomCollection.

CREATE TYPE ST_GeomCollection

UNDER ST_Geometry

AS (

ST_PrivateGeometries ST_Geometry

ARRAY[ST_MaxGeometryArrayElements] DEFAULT ARRAY[]

)

INSTANTIABLE

NOT FINAL

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

METHOD ST_NumGeometries()

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_GeometryN (aposition INTEGER)

RETURNS ST_Geometry

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT

7.2.16 SQL routines on type MultiPoint

7.2.16.1 Supported routines

The SQL/MM routines supported by GeomCollection shall be supported for geometries of type MultiPoint.

7.2.16.2 Declarations from SQL/MM (informative)

CREATE TYPE ST_MultiPoint

UNDER ST_GeomCollection

INSTANTIABLE

NOT FINAL

7.2.17 SQL routines on type MultiCurve

7.2.17.1 Supported routines

The SQL/MM ST_IsClosed and ST_Length routines and all routines supported by GeomCollection shall

be supported for geometries of type MultiCurve.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xlix

7.2.17.2 Declarations from SQL/MM (informative)

CREATE TYPE ST_MultiCurve

UNDER ST_GeomCollection

INSTANTIABLE

NOT FINAL

METHOD ST_IsClosed()

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Length()

RETURNS DOUBLE PRECISION

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Length(aunit CHARACTER VARYING(ST_MaxUnitNameLength))

RETURNS DOUBLE PRECISION

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

7.2.18 SQL routines on type MultiLineString

7.2.18.1 Supported routines

The SQL/MM routines supported by GeomCollection shall be supported for geometries of type

MultiLineString.

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

7.2.18.2 Declarations from SQL/MM (informative)

CREATE TYPE ST_MultiLineString

UNDER ST_MultiCurve

INSTANTIABLE

NOT FINAL

OVERRIDING METHOD ST_Geometries()

RETURNS ST_LineString ARRAY[ST_MaxGeometryArrayElements],

OVERRIDING METHOD ST_Geometries(ageometryarray ST_Geometry

ARRAY[ST_MaxGeometryArrayElements])

RETURNS ST_MultiLineString

7.2.19 SQL routines on type MultiSurface

7.2.19.1 Supported routines

The SQL/MM ST_Centroid, ST_PointOnSurface, and ST_Area routines and the routines

supported by GeomCollection shall be supported for geometries of type MultiSurface.

7.2.19.2 Declarations from SQL/MM (informative)

CREATE TYPE ST_MultiSurface

UNDER ST_GeomCollection

INSTANTIABLE

NOT FINAL

METHOD ST_Centroid()

RETURNS ST_Point

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. li

METHOD ST_PointOnSurface()

RETURNS ST_Point

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Area()

RETURNS DOUBLE PRECISION

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ST_Area(aunit CHARACTER VARYING(ST_MaxUnitNameLength))

RETURNS DOUBLE PRECISION

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

OVERRIDING METHOD ST_Geometries()

RETURNS ST_Surface ARRAY[ST_MaxGeometryArrayElements],

OVERRIDING METHOD ST_Geometries

(ageometryarray ST_Geometry

ARRAY[ST_MaxGeometryArrayElements])

RETURNS ST_MultiSurface

7.2.20 SQL routines on type Text

The Annotation_Text, Annotation_Text_Element, and Annotation_Text_Element_Array

provide text functionality as SQL objects.

CREATE TYPE ANNOTATION_TEXT AS

{

PrivateEnvelope AS GEOMETRY,

PrivateElement_Array AS ANNOTATION_TEXT_ELEMENT_ARRAY

 }

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

CONSTRUCTOR METHOD ANNOTATION_TEXT(anArray ANNOTATION_TEXT_ELEMENT_ARRAY)

RETURNS ANNOTATION_TEXT

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD CONCAT(b ANNOTATION_TEXT)

RETURNS ANNOTATION_TEXT

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD ENVELOPE ()

RETURNS GEOMETRY

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT

METHOD ELEMENT_ARRAY ()

RETURNS ANNOTATION_TEXT_ELEMENT_ARRAY

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT

CREATE TYPE ANNOTATION_TEXT_ELEMENT_ARRAY AS

VARING ARRAY (MaxArraySize) OF ANNOTATION_TEXT_ELEMENT,

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. liii

METHOD ElementN (aposition INTEGER)

RETURNS ANNOTATION_TEXT_ELEMENT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT

METHOD ElementN (element ANNOTATION_TEXT_ELEMENT

 aposition INTEGER)

RETURNS ANNOTATION_TEXT_ELEMENT_ARRAY

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT

CREATE TYPE ANNOTATION_TEXT_ELEMENT AS

(

privateValue AS CHARACTER VARYING (MaxArraySize),

privateLocation AS GEOMETRY,

privateLeaderLine AS GEOMETRY,

privateTextAttributes AS CHARACTER VARYING (MaxArraySize)

)

CONSTRUCTOR METHOD AnnotationTextElement

(value CHARACTER VARYING (MaxArraySize),

 location GEOMETRY,

 leaderLine GEOMETRY,

 textAttributes CHARACTER VARYING (MaxArraySize))

RETURNS ANNOTATION_TEXT_ELEMENT

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD Value ()

RETURNS CHARACTER VARYING (MaxArraySize)

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

METHOD Value (value RETURNS ANNOTATION_TEXT_ELEMENT

RETURNS ANNOTATION_TEXT_ELEMENT

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD TextAttributes ()

RETURNS CHARACTER VARYING (MaxArraySize)

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD TextAttributes (attributes CHARACTER VARYING (MaxArraySize))

RETURNS ANNOTATION_TEXT_ELEMENT

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD Location ()

RETURNS GEOMETRY

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD Location (location GEOMETRY)

RETURNS ANNOTATION_TEXT_ELEMENT

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. lv

METHOD LeaderLine ()

RETURNS GEOMETRY

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT,

METHOD LeaderLine (leaderLine GEOMETRY)

RETURNS ANNOTATION_TEXT_ELEMENT

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

RETURNS NULL ON NULL INPUT

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Annex A
(normative)

Abstract Test Suite

A.1 Purpose of this annex

This annex outlines the requirements for a comprehensive test suite for each class of compliance for this standard.
Each conformance clause defined in Section A.2 will address testing methods for a coherent set of requirements
from the normative Clauses in this standard or other standards. Each compliance level or class, defined in Section
A.4 below, will address a specified set of conformance clauses.

Some of the conformance clauses are "parameterize" in the sense that they specify use of "appropriate" test from
another clause. This is done to keep the number of clauses to a minimum while allowing for a finer degree of
separation between conformance classes. Each time a parameterized conformance clause is used in defining an
conformance class, it parameter must be specified.

A.2 Conformance Tests

A.2.1 Feature tables

Test Purpose: To test the capability to create, access, query and modify feature tables (Section 7.1.4 or 7.2.3)
and using the appropriate geometric types, as defined in the associated geometry conformance clause.

Test Method: Each test will consist of:

a) Reading a feature schema from a set of SQL statements

b) Loading feature and geometry tables from a set of text load files containing SQL statements, or file of
similar content as defined for the SQL version being used.

c) Making attribute and spatial queries against the table so loaded above

d) Getting an acceptable answer as tested by an export of the query results defined above.

A.2.1.1 Features using geometry in predefined types

Use the feature implementation defined in 7.1.4.

A.2.1.2 Features using Binary or SQL geometry types

Use the feature implementation defined in 7.2.3.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. lvii

A.2.2 Geometry tables or type

A.2.2.1 Normalized geometry schema

Test Purpose: To test the capability to create, access, query and modify feature spatial attributes using the
appropriate geometric implementation as described in Clauses 6.1.5.1 Normalized geometry schema, 7.1.5.2
Geometry stored using SQL numeric types with metadata as in 7.1.5,Geometry columns information.

Test Method: Each test will consist of:

a) Incorporating the appropriate geometric types in the feature table test of A.2.1

A.2.2.2 Binary geometry

Test Purpose: To test the capability to create, access, query and modify feature spatial attributes using the
appropriate geometric types, Section 6.1.5.2 Binary geometry schema, 7.1.5.3 Geometry stored using SQL binary
types with metadata as in 7.1.3,Geometry columns information.

Test Method: Each test will consist of:

a) Incorporating the appropriate geometric types in the feature table test of A.2.1

A.2.2.3 SQL/MM geometry schema

Test Purpose: To test the capability to create, access, query and modify feature spatial attributes using the
appropriate geometric types, Section 6.1.5.3 SQL/MM geometry schema, 7.2 Components — SQL with Geometry
Types implementation of feature tables, with metadata as in 7.1.3,Geometry columns information.

Test Method: Each test will consist of:

a) Incorporating the appropriate geometric types in the feature table test of A.2.1

A.2.3 Spatial reference systems

A.2.3.1 2D Spatial reference systems

Test Purpose: To test the capability of creating, and using 2D coordinate systems, coordinates in X and Y.

Test Method: Each test will consist of:

a) Defining a 2D coordinate systems compatible with a test feature and geometry test as defined in A.2.1,
and A.2.1.1, for geometries compatible with a 2D coordinate system

b) Execute the test as defined, and obtain appropriate query results.

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

A.2.3.2 3D Spatial reference systems

Test Purpose: To test the capability of creating, and using 3D coordinate systems, coordinates in X, Y and Z. This
includes the capability to create both 2D and 3D coordinate systems and to use them to describe geometry values.

Test Method: Each test will consist of:

a) All tests in A.2.3.1

b) Defining a 3D coordinate systems compatible with a test feature and geometry test as defined in A.2.1,
and A.2.1.1, for geometries compatible with a 3D coordinate system

c) Execute the test as defined, and obtain appropriate query results.

Note: Spatial reference systems must still be defined on a column basis, and a feature table shall not mix
geometry values from different spatial reference systems within a single attribute column.

A.2.3.3 Measured Spatial reference systems

Test Purpose: To test the capability of creating, and using Measured coordinate systems coordinates having an M.
This includes the ability to create geometry values both with and without measured coordinates.

Test Method: Each test will consist of:

a) Defining a measured coordinate systems compatible with a test feature and geometry test as defined in
A.2.1, and A.2.1.1, for geometries compatible with a measured coordinate system

b) Execute the test as defined, and obtain appropriate query results.

Note: Spatial reference systems must still be defined on a column basis, and a feature table shall not mix
geometry values from different spatial reference systems within a single attribute column.

A.2.4 Geometric format supported

Test Purpose: To test the capability of creating and using geometric values in a particular representation format
from one of the following Clauses.

A.2.4.1 Geometry stored using SQL numeric types

Perform the test using Section 7.1.5.2 Geometry stored using SQL numeric types (Table)

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. lix

A.2.4.2 Geometry stored using SQL binary types

Perform the test using Section 7.1.5.3 Geometry stored using SQL binary types (Binary Type)

A.2.4.3 SQL Geometry Types

Perform the test using Section 7.2.2 SQL Geometry Types (SQL Type)

A.2.5 Geometric categories supported

Test Purpose: To test the capability of creating and using geometric types as defined in the subclauses below

Test Method: Each test will consist of

a) Perform a test from Conformance Clause A.2 using appropriate geometry types.

b) Creating and using geometry types including those defined in this Section according to the types defined
in the appropriate section as listed below.

A.2.5.1 Basic Geometric categories supported

Perform the test with types in Part 1 Section 6.1.3 through 6.1.15, except 6.1.12

A.2.5.2 Tins and Basic Geometric categories supported

Perform the test with types the basic test and with the addition of TINs for 6.1.12.

A.2.5.3 Full Geometric categories supported

Perform the test with types in Part 1 Section 6.1.3 through 6.1.15.

A.2.6 Text

Test purpose: To test the capability of creating and using annotations of the appropriate types from one of the
following Clauses.

a) Section 6.2.9 (using predefined types – a table implementation)

b) Section 7.2.20 (using SQL UDT types)

Note: No binary implementation of annotations has been specified.

A.2.6.1 Text using predefined types supported

Perform the test with annotation text as defined in Section 6.2.9 (using predefined types – a table implementation)

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

A.2.6.2 Text using SQL UDT types supported

Perform the test with annotation text as defined in Section 7.2.20 (using SQL UDT types)

A.3 Composite Conformance Clauses

A.4 Conformance Classes

A.4.1 Types of conformance classes

All conformant applications (SQL data servers) must support features (one of the tests in A.2.1), but may support
the other aspects of this standard dependent on a set of five choices. Conformance class choices are base on the
following parameters:

a) Format of geometry supported

gT (table using predefined types) (not valid with M, 3D, or Text S)) A.2.4.1 and A.2.1.1

gB (binary type) (tests A.2.4.2 and A.2.1.2) or

gS (SQL type) (tests A.2.4.3 and A.2.1.2)

b) Types of geometry supported

b - Basic (no polyhedral surfaces) A.2.5.1,

t - Basic plus TINS (must be 3D) A.2.5.2 or

f - Full (must be 3D) A.2.5.3

c) Dimension of coordinate systems supported

2D (two-dimensional) A.2.3.1 or

3D (3-dimensional) includes 2D (test A.2.3.2) (only valid with geometry choices gB or gS)

d) Measured or unmeasured Coordinate system

M (measured) (only valid with geometry B or S) (test A.2.3.3) or

N (not measured) (no additional test)

e) Types of annotation text supported

tT - table using predefined types) (test A.2.6.1) (valid only with geometry gB) (no additional test) or

tS - SQL type (only valid with geometry gS) (test A.2.6.2) or

tN - no text support (no additional tests), included for compatibility of SFA v1.1 (earlier) versions

This means that a conformance class may be defined by a string of 5 characters from the list above in order sbject
to the restrictions listed.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. lxi

For example, the maximum compliance level for SQL types is (gS, f, 3D, M, tS). The minimal compliance level for
v1.1, table geometry is (gT, b, 2D, N, tN). The other equivalences between V1.1 conformance classes () and
those in this version are given in Table A 1.

Table A 1 - Equivalences between V1.1 and V1.2 complinace classes

V1.1 Conformance Class Equivalent V1.2 Conformance Class

Normalized geometry schema (gT, b, 2D, N, tN)

Binary geometry schema (gB, b, 2D, N, tN)

Geometry types and functions (gS, b, 2D, N, tN)

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Annex B
(informative)

Comparison of Simple feature access/SQL and SQL/MM – Spatial

This informative annex provides a comparison of SFA-SQL and SQL/MM — Spatial.

Table B 1 Comparison of SFA-SQL and SQL/MM: Spatial

 SQL with geometry type
ISO/IEC 13249-3:2003

(SQL/MM-Spatial)
Description

Geometry Types Point

Curve

Linestring

Surface

Polygon

PolyhedralSurface

GeomCollection

Multipoint

Multicurve

Multilinestring

Multisurface

Multipolygon

ST_Point

ST_Curve

ST_Linestring

ST_Circularstring

ST_CompoundCurve

ST_Surface

ST_CurvePolygon

ST_Polygon

ST_PolyhedralSurface

ST_Collection

ST_Multipoint

ST_MultiCurve

ST_Multilinestring

ST_Multisurface

ST_Multipolygon

The type ST_PolyhedralSurface

is currently not in SQL/MM but will be

proposed as a result of this document.

Storage Binary Type, Text Type,
Object Type

Object Type —

Operations Equals

Disjoint

Touches

Within

Overlaps

Crosses

Intersects

Contains

Relate

ST_Equals

ST_Disjoint

ST_Touches

ST_Within

ST_Overlaps

ST_Crosses

ST_Intersects

ST_Contains

ST_Relate

—

Functions: — — —

Point

X()

Y()

Z()

M()

—

ST_Point()

ST_X()

ST_Y()

ST_Z()

ST_M()

ST_ExplicitPoint()

Return the Point
Return the X-coordinate of point

Return the Y-coordinate of point
Return the Z-coordinate of point

Return the M-coordinate of point

—

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. lxiii

 SQL with geometry type
ISO/IEC 13249-3:2003

(SQL/MM-Spatial)
Description

Curve Length()

StartPoint()

EndPoint()

IsClosed()

IsRing()

—

ST_Length()

ST_StartPoint()

ST_EndPoint()

ST_IsClosed()

ST_ISRing()

ST_CurveToLine

Return the length of curve

Return the first Point of curve
Return the last Point of curve

Check whether curve is closed
Check whether curve is closed and simple

Transform Curve to LineString

LineString —

—

NumPoints()

PointN()

ST_LineString

ST_Points

ST_NumPoints

ST_PointN

Return the LineString

Return a collection of points
Return the number of points

Return a Point containing Point n of LineString

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Annex C
(informative)

Conformance tests from version 1.1

C.1 Purpose of this annex

This conformance test is for an earlier 2D version of this standard, and has been replaced by an Abstract test
suite that will be used to define a more complete set of conformance tests for the various options in this version of
the standard.

In order to conform to this standard for feature collections, an implementation shall satisfy the requirements of one
of the following three conformance classes:

a) SQL implementation of feature tables based on predefined data types:

a. using numeric SQL types for geometry storage and SQL/CLI access,

b. using binary SQL types for geometry storage and SQL/CLI access;

a. SQL with Geometry Types implementation of feature tables supporting both textual and binary SQL/CLI
access to geometry.

This annex provides a conformance test for this standard. In general, the scope of the tests is to exercise each
functional aspect of the standard at least once. The test questions and answers are defined to test that the
specified functionality exists and is operable. Care has been taken to ensure that the tests are not at the level of
rigor that a product quality-control process or certification test might be. However, some of the answers are further
examined for reasonableness (for example, the area of a polygon is tested for correctness to two or three
significant figures). The following sections further describe each test alternative.

C.2 Test data

C.2.1 Test data semantics

The data for all of the test alternatives are the same. It is a synthetic data set, developed by hand, to exercise the
functionality of the standard. It is a set of features that makes up a map (see Figure B.1) of a fictional location
called Blue Lake. This section describes the test data in detail.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. lxv

Key: X Easting Y Northing

1 watercourse

2 Route 5

indicates where Route 5 is two lanes wide;

indicates where Route 5 is four lanes wide

3 Route 75

4 Main Street

5 one-lane road

6 bridge

7 buildings

8 fish ponds

Figure C 1: Test Data Concept — Blue Lake vicinity map

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

The semantics of this data set are as follows.

a) A rectangle of the Earth is shown in UTM coordinates. Horizontal coordinates take meaning from POSC
Horizontal Coordinate System #32214. Note 500,000 m false Easting, and WGS 72 / UTM zone 14N. Units
are metres.

b) Blue Lake (which has an island named Goose Island) is the prominent feature.

c) There is a watercourse flowing from north to south. The portion from the top neatline to the lake is called Cam
Stream. The portion from the lake to the bottom neatline has no name (Name value is ―Null‖).

d) There is an area place named Ashton.

e) There is a State Forest whose administrative area includes the lake and a portion of Ashton. Roads form the
boundary of the State Forest. The ―Green Forest‖ is the State Forest minus the lake.

f) Route 5 extends across the map. It is two lanes wide where shown as a heavy black line. It is four lanes wide
where shown as a heavy grey line.

g) There is a major divided highway, Route 75, shown as a heavy double black line, one line for each part of the
divided highway. These two lines are seen as a multiline.

h) There is a bridge (Cam Bridge) where the road goes over Cam Stream, a point feature.

i) Main Street shares some pavement with Route 5, and is always four lanes wide.

j) There are two buildings along Main Street; each can be seen either as a point or as a rectangle footprint.

k) There is a one-lane road forming part of the boundary of the State Forest, shown as a grey line with black
borders.

l) There are two fish ponds, which are seen as a collective, not as individuals; that is, they are a multi-polygon.

C.2.2 Test data points and coordinates

Figure B.2 depicts the points that are used to represent the map.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. lxvii

Dimensions in metres

Key

X Easting, in metres

Y Northing, in metres

Figure C 2: Points in the Blue Lake data set

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Table B.1 gives these coordinates associated with each point.

Table C 1: Coordinates associated with each point in the Blue Lake data set

Point Easting Northing Point Easting Northing

1 0 48 26 52 31

2 38 48 27 52 29

3 62 48 28 50 29

4 72 48 29 52 30

5 84 48 30 62 34

6 84 42 31 66 34

7 84 30 32 66 32

8 84 0 33 62 32

9 76 0 34 64 33

10 28 0 35 59 13

11 0 0 36 59 18

12 0 18 37 67 18

13 44 41 38 67 13

14 41 36 39 10 48

15 28 26 40 10 21

16 44 31 41 10 0

17 52 18 42 16 48

18 48 6 43 16 23

19 73 9 44 16 0

20 78 4 45 24 44

21 66 23 46 22 42

22 56 30 47 24 40

23 56 34 48 26 44

24 70 38 49 28 42

25 50 31 50 26 40

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. lxix

C.3 Conformance tests

C.3.1 Normalized geometry schema

C.3.1.1 Conformance test overview

The scope of this test is to determine that the test data (once inserted) are accessible via the schema defined in
the standard. Table B.2 shows the queries that accomplish this test.

Table C 2: Queries to determine that test data are accessible via the normalized geometry schema

ID Functionality Tested Query Description Answer

N1 GEOMETRY_COLUMNS
table/view is created/updated

properly

For this test, we will check to see
that all of the feature tables are

represented by entries in the
GEOMETRY_COLUMNS

table/view.

lakes, road_segments, divided_routes,
buildings, buildings, forests, bridges,

named_places, streams, ponds,
map_neatlines

N2 GEOMETRY_COLUMNS

table/view is created/updated
properly

For this test, we will check to see

that all of the geometry tables are
represented by entries in the

GEOMETRY_COLUMNS
table/view.

lake_geom, road_segment_geom,

divided_route_geom, forest_geom,
bridge_geom, stream_geom,

building_pt_geom,
building_area_geom, pond_geom,

named_place_geom,
map_neatline_geom

N3 GEOMETRY_COLUMNS

table/view is created/updated
properly

For this test, we will check to see

that the correct storage type for
the streams table is represented

in the GEOMETRY_COLUMNS
table/view.

0

N4 GEOMETRY_COLUMNS
table/view is created/updated

properly

For this test, we will check to see
that the correct geometry type for

the streams table is represented
in the GEOMETRY_COLUMNS

table/view.

3 (corresponds to‗LINESTRING‘)

N5 GEOMETRY_COLUMNS
table/view is created/updated

properly

For this test, we will check to see
that the correct coordinate

dimension for the streams table
is represented in the

GEOMETRY_COLUMNS
table/view.

2

N6 GEOMETRY_COLUMNS
table/view is created/updated

properly

For this test, we will check to see
that the correct value of max_ppr

for the streams table is
represented in the

GEOMETRY_COLUMNS
table/view.

3

N7 GEOMETRY_COLUMNS

table/view is created/updated
properly

For this test, we will check to see

that the correct value of srid for
the streams table is represented

in the GEOMETRY_COLUMNS
table/view.

101

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

N8 SPATIAL_REF_SYS table/view

is created/updated properly

For this test, we will check to see

that the correct value of srtext is
represented in the

SPATIAL_REF_SYS table/view.

'PROJCS["UTM_ZONE_14N",

GEOGCS["World Geodetic System 72",
DATUM["WGS_72",

ELLIPSOID["NWL_10D", 6378135,
298.26]], PRIMEM["Greenwich", 0],

UNIT["Meter", 1.0]],
PROJECTION["Transverse_Mercator"],

PARAMETER["False_Easting",
500000.0],

PARAMETER["False_Northing", 0.0],
PARAMETER["Central_Meridian", -

99.0], PARAMETER["Scale_Factor",
0.9996],

PARAMETER["Latitude_of_origin",
0.0], UNIT["Meter", 1.0]]'

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. lxxi

C.3.1.2 Normalized geometry schema construction

-- CREATE SPATIAL_REF_SYS METADATA TABLE

CREATE TABLE spatial_ref_sys (

srid INTEGER NOT NULL PRIMARY KEY,

auth_name CHARACTER VARYING,

auth_srid INTEGER,

srtext CHARACTER VARYING(2048));

-- CREATE GEOMETRY_COLUMNS METADATA TABLE

CREATE TABLE geometry_columns (

f_catalog_name CHARACTER VARYING,

f_table_schema CHARACTER VARYING,

f_table_name CHARACTER VARYING,

f_geometry_column CHARACTER VARYING,

g_catalog_name CHARACTER VARYING,

g_table_schema CHARACTER VARYING,

g_table_name CHARACTER VARYING,

storage_type INTEGER,

geometry_type INTEGER,

coord_dimension INTEGER,

max_ppr INTEGER,

srid INTEGER REFERENCES spatial_ref_sys,

CONSTRAINT gc_pk PRIMARY KEY (f_catalog_name, f_table_schema,

f_table_name, f_geometry_column));

-- Create geometry tables

-- Lake Geometry

CREATE TABLE lake_geom (

gid INTEGER NOT NULL,

eseq INTEGER NOT NULL,

etype INTEGER NOT NULL,

seq INTEGER NOT NULL,

x1 INTEGER,

y1 INTEGER,

x2 INTEGER,

y2 INTEGER,

x3 INTEGER,

y3 INTEGER,

x4 INTEGER,

y4 INTEGER,

x5 INTEGER,

y5 INTEGER,

CONSTRAINT l_gid_pk PRIMARY KEY (gid, eseq, seq));

-- Road Segment Geometry

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

CREATE TABLE road_segment_geom (

gid INTEGER NOT NULL,

eseq INTEGER NOT NULL,

etype INTEGER NOT NULL,

seq INTEGER NOT NULL,

x1 INTEGER,

y1 INTEGER,

x2 INTEGER,

y2 INTEGER,

x3 INTEGER,

y3 INTEGER,

CONSTRAINT rs_gid_pk PRIMARY KEY (gid, eseq, seq));

-- Divided Route Geometry

CREATE TABLE divided_route_geom (

gid INTEGER NOT NULL,

eseq INTEGER NOT NULL,

etype INTEGER NOT NULL,

seq INTEGER NOT NULL,

x1 INTEGER,

y1 INTEGER,

x2 INTEGER,

y2 INTEGER,

x3 INTEGER,

y3 INTEGER,

CONSTRAINT dr_gid_pk PRIMARY KEY (gid, eseq, seq));

-- Forest Geometry

CREATE TABLE forest_geom (

gid INTEGER NOT NULL,

eseq INTEGER NOT NULL,

etype INTEGER NOT NULL,

seq INTEGER NOT NULL,

x1 INTEGER,

y1 INTEGER,

x2 INTEGER,

y2 INTEGER,

x3 INTEGER,

y3 INTEGER,

x4 INTEGER,

y4 INTEGER,

x5 INTEGER,

y5 INTEGER,

CONSTRAINT f_gid_pk PRIMARY KEY (gid, eseq, seq));

-- Bridge Geometry

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. lxxiii

CREATE TABLE bridge_geom (

gid INTEGER NOT NULL,

eseq INTEGER NOT NULL,

etype INTEGER NOT NULL,

seq INTEGER NOT NULL,

x1 INTEGER,

y1 INTEGER,

CONSTRAINT b_gid_pk PRIMARY KEY (gid, eseq, seq));

-- Stream Geometry

CREATE TABLE stream_geom (

gid INTEGER NOT NULL,

eseq INTEGER NOT NULL,

etype INTEGER NOT NULL,

seq INTEGER NOT NULL,

x1 INTEGER,

y1 INTEGER,

x2 INTEGER,

y2 INTEGER,

x3 INTEGER,

y3 INTEGER,

CONSTRAINT s_gid_pk PRIMARY KEY (gid, eseq, seq));

-- Bulding Point Geometry

CREATE TABLE building_pt_geom (

gid INTEGER NOT NULL,

eseq INTEGER NOT NULL,

etype INTEGER NOT NULL,

seq INTEGER NOT NULL,

x1 INTEGER,

y1 INTEGER,

CONSTRAINT bp_gid_pk PRIMARY KEY (gid, eseq, seq));

-- Bulding Area Geometry

CREATE TABLE building_area_geom (

gid INTEGER NOT NULL,

eseq INTEGER NOT NULL,

etype INTEGER NOT NULL,

seq INTEGER NOT NULL,

x1 INTEGER,

y1 INTEGER,

x2 INTEGER,

y2 INTEGER,

x3 INTEGER,

y3 INTEGER,

x4 INTEGER,

y4 INTEGER,

x5 INTEGER,

y5 INTEGER,

CONSTRAINT ba_gid_pk PRIMARY KEY (gid, eseq, seq));

-- Pond Geometry

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

CREATE TABLE pond_geom (

gid INTEGER NOT NULL,

eseq INTEGER NOT NULL,

etype INTEGER NOT NULL,

seq INTEGER NOT NULL,

x1 INTEGER,

y1 INTEGER,

x2 INTEGER,

y2 INTEGER,

x3 INTEGER,

y3 INTEGER,

x4 INTEGER,

y4 INTEGER,

CONSTRAINT p_gid_pk PRIMARY KEY (gid, eseq, seq));

-- Named Place Geometry

CREATE TABLE named_place_geom (

gid INTEGER NOT NULL,

eseq INTEGER NOT NULL,

etype INTEGER NOT NULL,

seq INTEGER NOT NULL,

x1 INTEGER,

y1 INTEGER,

x2 INTEGER,

y2 INTEGER,

x3 INTEGER,

y3 INTEGER,

x4 INTEGER,

y4 INTEGER,

CONSTRAINT np_gid_pk PRIMARY KEY (gid, eseq, seq));

-- Map Neatline Geometry

CREATE TABLE map_neatline_geom (

gid INTEGER NOT NULL,

eseq INTEGER NOT NULL,

etype INTEGER NOT NULL,

seq INTEGER NOT NULL,

x1 INTEGER,

y1 INTEGER,

x2 INTEGER,

y2 INTEGER,

x3 INTEGER,

y3 INTEGER,

x4 INTEGER,

y4 INTEGER,

x5 INTEGER,

y5 INTEGER,

CONSTRAINT mn_gid_pk PRIMARY KEY (gid, eseq, seq));

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. lxxv

-- Lakes

CREATE TABLE lakes (

fid INTEGER NOT NULL PRIMARY KEY,

 name CHARACTER VARYING(64),

shore_gid INTEGER);

-- Road Segments

CREATE TABLE road_segments (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

aliases CHARACTER VARYING(64),

num_lanes INTEGER,

centerline_gid INTEGER);

-- Divided Routes

CREATE TABLE divided_routes (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

num_lanes INTEGER,

centerlines_gid INTEGER);

-- Forests

CREATE TABLE forests (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

boundary_gid INTEGER);

-- Bridges

CREATE TABLE bridges (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

position_gid INTEGER);

-- Streams

CREATE TABLE streams (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

centerline_gid INTEGER);

-- Buildings

CREATE TABLE buildings (

fid INTEGER NOT NULL PRIMARY KEY,

address CHARACTER VARYING(64),

position_gid INTEGER,

footprint_gid INTEGER);

-- Ponds

CREATE TABLE ponds (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

type CHARACTER VARYING(64),

shores_gid INTEGER);

-- Named Places

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

CREATE TABLE named_places (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

boundary_gid INTEGER);

-- Map Neatline

CREATE TABLE map_neatlines (

fid INTEGER NOT NULL PRIMARY KEY,

neatline_gid INTEGER);

C.3.1.3 Normalized geometry schema data loading

--Spatial Reference System

INSERT INTO spatial_ref_sys VALUES(101, 'POSC', 32214,

'PROJCS["UTM_ZONE_14N", GEOGCS["World Geodetic System

72",DATUM["WGS_72", ELLIPSOID["NWL_10D", 6378135,

298.26]],PRIMEM["Greenwich",

0],UNIT["Meter",1.0]],PROJECTION["Transverse_Mercator"],

PARAMETER["False_Easting", 500000.0],PARAMETER["False_Northing",

0.0],PARAMETER["Central_Meridian", -99.0],PARAMETER["Scale_Factor",

0.9996],PARAMETER["Latitude_of_origin", 0.0],UNIT["Meter", 1.0]]');

-- Lakes

INSERT INTO lake_geom VALUES(101, 1, 5, 1, 52,18, 66,23, 73,9, 48,6,

52,18);

INSERT INTO lake_geom VALUES(101, 2, 5, 1, 59,18, 67,18, 67,13, 59,13,

59,18);

INSERT INTO lakes VALUES (

101, 'BLUE LAKE', 101);

-- Road segments

INSERT INTO road_segment_geom VALUES (

101, 1, 3, 1, 0,18, 10,21, 16,23);

INSERT INTO road_segment_geom VALUES (

101, 1, 3, 2, 28,26, 44,31, NULL,NULL);

INSERT INTO road_segment_geom VALUES (

102, 1, 3, 1, 44,31, 56,34, 70,38);

INSERT INTO road_segment_geom VALUES (

103, 1, 3, 1, 70,38, 72,48, NULL,NULL);

INSERT INTO road_segment_geom VALUES (

104, 1, 3, 1, 70,38, 84,42, NULL,NULL);

INSERT INTO road_segment_geom VALUES (

105, 1, 3, 1, 28,26, 28,0, NULL,NULL);

INSERT INTO road_segments VALUES(102, 'Route 5', NULL, 2, 101);

INSERT INTO road_segments VALUES(103, 'Route 5', 'Main Street', 4, 102);

INSERT INTO road_segments VALUES(104, 'Route 5', NULL, 2, 103);

INSERT INTO road_segments VALUES(105, 'Main Street', NULL, 4, 104);

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. lxxvii

INSERT INTO road_segments VALUES(106, 'Dirt Road by Green Forest', NULL,

1, 105);

-- DividedRoutes

INSERT INTO divided_route_geom VALUES(101, 1, 9, 1, 10,48, 10,21, 10,0);

INSERT INTO divided_route_geom VALUES(101, 2, 9, 1, 16,0, 10,23, 16,48);

INSERT INTO divided_routes VALUES(119, 'Route 75', 4, 101);

-- Forests

INSERT INTO forest_geom VALUES(101, 1, 11, 1, 28,26, 28,0, 84,0, 84,42,

28,26);

INSERT INTO forest_geom VALUES(101, 1, 11, 2, 52,18, 66,23, 73,9, 48,6,

52,18);

INSERT INTO forest_geom VALUES(101, 2, 11, 1, 59,18, 67,18, 67,13, 59,13,

59,18);

INSERT INTO forests VALUES(109, 'Green Forest', 101);

-- Bridges

INSERT INTO bridge_geom VALUES(101, 1, 1, 1, 44, 31);

INSERT INTO bridges VALUES(110, 'Cam Bridge', 101);

-- Streams

INSERT INTO stream_geom VALUES(101, 1, 3, 1, 38,48, 44,41, 41,36);

INSERT INTO stream_geom VALUES(101, 1, 3, 2, 44,31, 52,18, NULL,NULL);

INSERT INTO stream_geom VALUES(102, 1, 3, 1, 76,0, 78,4, 73,9);

--

INSERT INTO streams VALUES(111, 'Cam Stream', 101);

INSERT INTO streams VALUES(112, 'Cam Stream', 102);

-- Buildings

INSERT INTO building_pt_geom VALUES(101, 1, 1, 1, 52,30);

INSERT INTO building_pt_geom VALUES(102, 1, 1, 1, 64,33);

INSERT INTO building_area_geom VALUES(101, 1, 5, 1, 50,31, 54,31,

 54,29, 50,29, 50,31);

INSERT INTO building_area_geom VALUES(102, 1, 5, 1, 66,34, 62,34, 62,32,

 66,32, 66,34);

INSERT INTO buildings VALUES(113, '123 Main Street', 101, 101);

INSERT INTO buildings VALUES(114, '215 Main Street', 102, 102);

-- Ponds

INSERT INTO pond_geom VALUES(101, 1, 11, 1, 24,44, 22,42, 24,40, 24,44);

INSERT INTO pond_geom VALUES(101, 2, 11, 1, 26,44, 26,40, 28,42, 26,44);

INSERT INTO ponds VALUES(120, NULL, 'Stock Pond', 101);

-- Named Places

INSERT INTO named_place_geom VALUES(101, 1, 5, 1, 62,48, 84,48, 84,30,

56,30);

INSERT INTO named_place_geom VALUES(101, 1, 5, 2, 56,30, 56,34, 62,48,

NULL,NULL);

INSERT INTO named_place_geom VALUES(102, 1, 5, 1, 67,13, 67,18, 59,18,

59,13);

INSERT INTO named_place_geom VALUES(102, 1, 5, 2, 59,13, 67,13,

NULL,NULL, NULL,NULL);

INSERT INTO named_places VALUES(117, 'Ashton', 101);

INSERT INTO named_places VALUES(118, 'Goose Island', 102);

-- Map Neatlines

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

INSERT INTO map_neatline_geom VALUES(101, 1, 5, 1, 0,0, 0,48, 84,48,

84,0, 0,0);

INSERT INTO map_neatlines VALUES(115, 101);

-- Geometry Columns

INSERT INTO geometry_columns VALUES (

'lakes', 'shore_gid',

'lake_geom',0, 5, 2, 5, 101);

INSERT INTO geometry_columns VALUES (

'road_segments', 'centerline_gid',

'road_segment_geom',0, 3, 2, 3, 101);

INSERT INTO geometry_columns VALUES (

'divided_routes', 'centerlines_gid',

'divided_route_geom',0, 9, 2, 3, 101);

INSERT INTO geometry_columns VALUES (

'forests', 'boundary_gid',

'forest_geom',0, 11, 2, 5, 101);

INSERT INTO geometry_columns VALUES (

'bridges', 'position_gid',

'bridge_geom',0, 1, 2, 1, 101);

INSERT INTO geometry_columns VALUES (

'streams', 'centerline_gid',

'stream_geom',0, 3, 2, 3, 101);

INSERT INTO geometry_columns VALUES (

'buildings', 'position_gid',

'building_pt_geom',0, 1, 2, 1, 101);

INSERT INTO geometry_columns VALUES (

'buildings', 'footprint_gid',

'building_area_geom',0, 5, 2, 5, 101);

INSERT INTO geometry_columns VALUES (

'ponds', 'shores_gid',

'pond_geom',0, 11, 2, 4, 101);

INSERT INTO geometry_columns VALUES (

'named_places', 'boundary_gid',

'named_place_geom',0, 5, 2, 4, 101);

INSERT INTO geometry_columns VALUES (

'map_neatlines', 'neatline_gid',

'map_neatline_geom',0, 5, 2, 5, 101);

C.3.1.4 Normalized geometry schema test queries

-- Conformance Item N1

SELECT f_table_name

FROM geometry_columns;

-- Conformance Item N2

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. lxxix

SELECT g_table_name

FROM geometry_columns;

-- Conformance Item N3

SELECT storage_type

FROM geometry_columns

WHERE f_table_name = 'streams';

-- Conformance Item N4

SELECT geometry_type

FROM geometry_columns

WHERE f_table_name = 'streams';

-- Conformance Item N5

SELECT coord_dimension

FROM geometry_columns

WHERE f_table_name = 'streams';

-- Conformance Item N6

SELECT max_ppr

FROM geometry_columns

WHERE f_table_name = 'streams';

-- Conformance Item N7

SELECT srid

FROM geometry_columns

WHERE f_table_name = 'streams';

-- Conformance Item N8

SELECT srtext

FROM SPATIAL_REF_SYS

WHERE SRID = 101;

C.3.2 Binary geometry schema

C.3.2.1 Conformance test overview

The scope of this test is to determine that the test data (once inserted) are accessible via the schema defined in
the standard. Table B.3 shows the queries that accomplish this test.

Table C 3: Queries to determine that test data are accessible via the binary geometry schema

ID Functionality Tested Query Description Answer

B1 Table B.1 —
GEOMETRY_COLUMNS

table/view is created/updated
properly

For this test, we will check to see
that all of the feature tables are

represented by entries in the
GEOMETRY_COLUMNS

table/view.

lakes, road_segments, divided_routes,
buildings, buildings, forests, bridges,

named_places, streams, ponds,
map_neatlines

B2 GEOMETRY_COLUMNS

table/view is created/updated
properly

For this test, we will check to see

that all of the geometry tables are
represented by entries in the

GEOMETRY_COLUMNS
table/view.

lake_geom, road_segment_geom,

divided_route_geom, forest_geom,
bridge_geom, stream_geom,

building_pt_geom,
building_area_geom, pond_geom,

named_place_geom,
map_neatline_geom

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

B3 GEOMETRY_COLUMNS
table/view is created/updated

properly

For this test, we will check to see
that the correct storage type for

the streams table is represented
in the GEOMETRY_COLUMNS

table/view.

1

B4 GEOMETRY_COLUMNS

table/view is created/updated
properly

For this test, we will check to see

that the correct geometry type for
the streams table is represented

in the GEOMETRY_COLUMNS
table/view.

3 (corresponds to ‗LINESTRING‘)

B5 GEOMETRY_COLUMNS

table/view is created/updated
properly

For this test, we will check to see

that the correct coordinate
dimension for the streams table

is represented in the
GEOMETRY_COLUMNS

table/view.

2

B6 GEOMETRY_COLUMNS

table/view is created/updated
properly

For this test, we will check to see

that the correct value of srid for
the streams table is represented

in the GEOMETRY_COLUMNS
table/view.

101

B7 SPATIAL_REF_SYS table/view
is created/updated properly

For this test, we will check to see
that the correct value of srtext is

represented in the
SPATIAL_REF_SYS table/view.

'PROJCS["UTM_ZONE_14N",
GEOGCS["World Geodetic System 72",

DATUM["WGS_72",
ELLIPSOID["NWL_10D", 6378135,

298.26]], PRIMEM["Greenwich", 0],
UNIT["Meter", 1.0]],

PROJECTION["Transverse_Mercator"],
PARAMETER["False_Easting",

500000.0],
PARAMETER["False_Northing", 0.0],

PARAMETER["Central_Meridian", -
99.0], PARAMETER["Scale_Factor",

0.9996],
PARAMETER["Latitude_of_origin",

0.0], UNIT["Meter", 1.0]]'

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. lxxxi

C.3.2.2 Binary geometry schema construction

CREATE TABLE spatial_ref_sys (

srid INTEGER NOT NULL PRIMARY KEY,

auth_name CHARACTER VARYING,

auth_srid INTEGER,

srtext CHARACTER VARYING(2048));

-- Geometry Columns

CREATE TABLE geometry_columns (

f_table_schema CHARACTER VARYING,

f_table_name CHARACTER VARYING,

f_geometry_column CHARACTER VARYING,

 g_table_schema CHARACTER VARYING,

g_table_name CHARACTER VARYING,

storage_type INTEGER,

geometry_type INTEGER,

coord_dimension INTEGER,

max_ppr INTEGER,

srid INTEGER REFERENCES spatial_ref_sys,

CONSTRAINT gc_pk PRIMARY KEY (f_table_schema, f_table_name,

f_geometry_column));

-- Lake Geometry

CREATE TABLE lake_geom (

gid INTEGER NOT NULL PRIMARY KEY,

xmin INTEGER,

ymin INTEGER,

xmax INTEGER,

ymax INTEGER,

wkbgeometry VARBINARY);

-- Road Segment Geometry

CREATE TABLE road_segment_geom (

gid INTEGER NOT NULL PRIMARY KEY,

xmin INTEGER,

ymin INTEGER,

xmax INTEGER,

ymax INTEGER,

wkbgeometry VARBINARY);

-- Divided Route Geometry

CREATE TABLE divided_route_geom (

gid INTEGER NOT NULL PRIMARY KEY,

xmin INTEGER,

ymin INTEGER,

xmax INTEGER,

ymax INTEGER,

wkbgeometry VARBINARY);

-- Forest Geometry

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

CREATE TABLE forest_geom (

gid INTEGER NOT NULL PRIMARY KEY,

xmin INTEGER,

ymin INTEGER,

xmax INTEGER,

ymax INTEGER,

wkbgeometry VARBINARY);

-- Bridge Geometry

CREATE TABLE bridge_geom (

gid INTEGER NOT NULL PRIMARY KEY,

xmin INTEGER,

ymin INTEGER,

xmax INTEGER,

ymax INTEGER,

wkbgeometry VARBINARY);

-- Stream Geometry

CREATE TABLE stream_geom (

gid INTEGER NOT NULL PRIMARY KEY,

xmin INTEGER,

ymin INTEGER,

 xmax INTEGER,

ymax INTEGER,

wkbgeometry VARBINARY);

-- Bulding Point Geometry

CREATE TABLE building_pt_geom (

gid INTEGER NOT NULL PRIMARY KEY,

xmin INTEGER,

ymin INTEGER,

xmax INTEGER,

ymax INTEGER,

wkbgeometry VARBINARY);

-- Bulding Area Geometry

CREATE TABLE building_area_geom (

gid INTEGER NOT NULL PRIMARY KEY,

xmin INTEGER,

ymin INTEGER,

xmax INTEGER,

ymax INTEGER,

wkbgeometry VARBINARY);

-- Pond Geometry

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. lxxxiii

CREATE TABLE pond_geom (

gid INTEGER NOT NULL PRIMARY KEY,

xmin INTEGER,

ymin INTEGER,

xmax INTEGER,

ymax INTEGER,

wkbgeometry VARBINARY);

-- Named Place Geometry

CREATE TABLE named_place_geom (

gid INTEGER NOT NULL PRIMARY KEY,

xmin INTEGER,

ymin INTEGER,

xmax INTEGER,

ymax INTEGER,

wkbgeometry VARBINARY);

-- Map Neatline Geometry

CREATE TABLE map_neatline_geom (

gid INTEGER NOT NULL PRIMARY KEY,

xmin INTEGER,

ymin INTEGER,

xmax INTEGER,

ymax INTEGER,

wkbgeometry VARBINARY);

-- Lakes

CREATE TABLE lakes (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

shore_gid INTEGER);

-- Road Segments

CREATE TABLE road_segments (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

aliases CHARACTER VARYING(64),

num_lanes INTEGER,

centerline_gid INTEGER);

-- Divided Routes

CREATE TABLE divided_routes (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

num_lanes INTEGER,

centerlines_gid INTEGER);

-- Forests

CREATE TABLE forests (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

boundary_gid INTEGER);

-- Bridges

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

CREATE TABLE bridges (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

position_gid INTEGER);

-- Streams

CREATE TABLE streams (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

centerline_gid INTEGER);

-- Buildings

CREATE TABLE buildings (

fid INTEGER NOT NULL PRIMARY KEY,

address CHARACTER VARYING(64),

position_gid INTEGER,

footprint_gid INTEGER);

-- Ponds

CREATE TABLE ponds (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

type CHARACTER VARYING(64),

shores_gid INTEGER);

-- Named Places

CREATE TABLE named_places (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

boundary_gid INTEGER);

-- Map Neatline

CREATE TABLE map_neatlines (

fid INTEGER NOT NULL PRIMARY KEY,

neatline_gid INTEGER);

C.3.2.3 Binary geometry schema data loading

-- Spatial Reference Systems

INSERT INTO spatial_ref_sys VALUES

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. lxxxv

(101, 'POSC', 32214,

'PROJCS["UTM_ZONE_14N",

GEOGCS["World Geodetic System 72",

DATUM["WGS_72",ELLIPSOID["NWL_10D",6378135,298.26]],

PRIMEM["Greenwich",0],

UNIT["Meter",1.0]],

PROJECTION["Transverse_Mercator"],

PARAMETER["False_Easting", 500000.0],

PARAMETER["False_Northing", 0.0],

PARAMETER["Central_Meridian", -99.0],

PARAMETER["Scale_Factor", 0.9996],

PARAMETER["Latitude_of_origin", 0.0],

UNIT["Meter", 1.0]]'

);

-- Lakes

INSERT INTO lake_geom VALUES(101, 48.0, 6.0, 73.0, 23.0,

HEXTOVARBINARY('010300000002000000050000000000000000004a400000000000

00324000000000008050400000000000003740000000000040524000000000000022

40000000000000484000000000000018400000000000004a40000000000000324005

0000000000000000804d4000000000000032400000000000c0504000000000000032

400000000000c050400000000000002a400000000000804d400000000000002a4000

00000000804d400000000000003240');

INSERT INTO lakes VALUES (

101, 'BLUE LAKE', 101);

-- Road segments

INSERT INTO road_segment_geom VALUES (

101, 0.0, 18.0, 44.0, 31.0,

HEXTOVARBINARY('0102000000050000000000000000000000000000000000324000

00000000002440000000000000354000000000000030400000000000003740000000

0000003c400000000000003a4000000000000046400000000000003f40');

INSERT INTO road_segment_geom VALUES (

102, 44.0, 31.0, 70.0, 38.0,

HEXTOVARBINARY('01020000000300000000000000000046400000000000003f4000

00000000004c40000000000000414000000000008051400000000000004340');

INSERT INTO road_segment_geom VALUES (

103, 70.0, 38.0, 72.0, 48.0,

HEXTOVARBINARY('0102000000020000000000000000805140000000000000434000

000000000052400000000000004840');

INSERT INTO road_segment_geom VALUES (

104, 70.0, 38.0, 84.0, 42.0,

HEXTOVARBINARY('0102000000020000000000000000805140000000000000434000

000000000055400000000000004540');

INSERT INTO road_segment_geom VALUES (

105, 28.0, 0.0, 28.0, 26.0,

HEXTOVARBINARY('0102000000020000000000000000805140000000000000434000

000000000055400000000000004540');

INSERT INTO road_segments VALUES(102, 'Route 5', NULL, 2, 101);

INSERT INTO road_segments VALUES(103, 'Route 5', 'Main Street', 4, 102);

INSERT INTO road_segments VALUES(104, 'Route 5', NULL, 2, 103);

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

INSERT INTO road_segments VALUES(105, 'Main Street', NULL, 4, 104);

INSERT INTO road_segments VALUES(106, 'Dirt Road by Green Forest', NULL,

1, 105);

-- DividedRoutes

INSERT INTO divided_route_geom VALUES(101, 10.0, 0.0, 16.0, 48.0,

HEXTOVARBINARY('0105000000020000000102000000030000000000000000002440

00000000000048400000000000002440000000000000354000000000000024400000

00000000000001020000000300000000000000000030400000000000000000000000

0000002440000000000000374000000000000030400000000000004840');

INSERT INTO divided_routes VALUES(119, 'Route 75', 4, 101);

-- Forests

INSERT INTO forest_geom VALUES(101, 28.0, 0.0, 84.0, 42.0,

HEXTOVARBINARY('0106000000020000000103000000020000000500000000000000

00003c400000000000003a400000000000003c400000000000000000000000000000

55400000000000000000000000000000554000000000000045400000000000003c40

0000000000003a40050000000000000000004a400000000000003240000000000080

50400000000000003740000000000040524000000000000022400000000000004840

00000000000018400000000000004a40000000000000324001030000000100000005

0000000000000000804d4000000000000032400000000000c0504000000000000032

400000000000c050400000000000002a400000000000804d400000000000002a4000

00000000804d400000000000003240');

INSERT INTO forests VALUES(109, 'Green Forest', 101);

-- Bridges

INSERT INTO bridge_geom VALUES(101, 44.0, 31.0, 44.0, 31.0,

HEXTOVARBINARY('010100000000000000000046400000000000003f40');

INSERT INTO bridges VALUES(110, 'Cam Bridge', 101);

-- Streams

INSERT INTO stream_geom VALUES(101, 38.0, 18.0, 52.0, 48.0,

HEXTOVARBINARY('0102000000050000000000000000004340000000000000484000

00000000004640000000000080444000000000008044400000000000004240000000

00000046400000000000003f400000000000004a400000000000003240');

INSERT INTO stream_geom VALUES(102, 73.0, 0.0, 78.0, 9.0,

HEXTOVARBINARY('0102000000030000000000000000005340000000000000000000

00000000805340000000000000104000000000004052400000000000002240');

INSERT INTO streams VALUES(111, 'Cam Stream', 101);

INSERT INTO streams VALUES(112, 'Cam Stream', 102);

-- Buildings

INSERT INTO building_pt_geom VALUES(101, 52.0, 30.0, 52.0, 30.0,

HEXTOVARBINARY('01010000000000000000004a400000000000003e40');

INSERT INTO building_pt_geom VALUES(102, 64.0, 33.0, 64.0, 33.0,

HEXTOVARBINARY('010100000000000000000050400000000000804040');

INSERT INTO building_area_geom VALUES(101, 50.0, 29.0, 54.0, 31.0,

HEXTOVARBINARY('0103000000010000000500000000000000000049400000000000

003f400000000000004b400000000000003f400000000000004b400000000000003d

4000000000000049400000000000003d4000000000000049400000000000003f40')

;

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. lxxxvii

INSERT INTO building_area_geom VALUES(102, 62.0, 32.0, 66.0, 34.0,

HEXTOVARBINARY('0103000000010000000500000000000000008050400000000000

0041400000000000004f4000000000000041400000000000004f4000000000000040

400000000000805040000000000000404000000000008050400000000000004140')

;

INSERT INTO buildings VALUES(113, '123 Main Street', 101, 101);

INSERT INTO buildings VALUES(114, '215 Main Street', 102, 102);

-- Ponds

INSERT INTO pond_geom VALUES(101, 22.0, 40.0, 28.0, 44.0,

HEXTOVARBINARY('0106000000020000000103000000010000000400000000000000

00003840000000000000464000000000000036400000000000004540000000000000

38400000000000004440000000000000384000000000000046400103000000010000

00040000000000000000003a4000000000000046400000000000003a400000000000

0044400000000000003c4000000000000045400000000000003a4000000000000046

40');

INSERT INTO ponds VALUES(120, NULL, 'Stock Pond', 101);

-- Named Places

INSERT INTO named_place_geom VALUES(101, 56.0, 30.0, 84.0, 48.0,

HEXTOVARBINARY('010300000001000000060000000000000000004f400000000000

0048400000000000005540000000000000484000000000000055400000000000003e

400000000000004c400000000000003e400000000000004c40000000000000414000

00000000004f400000000000004840');

INSERT INTO named_place_geom VALUES(102, 59.0, 13.0, 67.0, 18.0,

HEXTOVARBINARY('010300000001000000050000000000000000c050400000000000

002a400000000000c0504000000000000032400000000000804d4000000000000032

400000000000804d400000000000002a400000000000c050400000000000002a40')

;

INSERT INTO named_places VALUES(117, 'Ashton', 101);

INSERT INTO named_places VALUES(118, 'Goose Island', 102);

-- Map Neatlines

INSERT INTO map_neatline_geom VALUES(101, 0.0, 0.0, 84.0, 48.0,

HEXTOVARBINARY('0103000000010000000500000000000000000000000000000000

00000000000000000000000000000000004840000000000000554000000000000048

40000000000000554000')

;

INSERT INTO map_neatlines VALUES(115, 101);

--Geometry Columns

INSERT INTO geometry_columns VALUES (

'lakes', 'shore_gid',

'lake_geom',1, 5, 2, 0);

INSERT INTO geometry_columns VALUES (

'road_segments',

'centerline_gid', 'road_segment_geom',1, 3, 2, 0);

INSERT INTO geometry_columns VALUES (

'divided_routes',

'centerlines_gid', 'divided_route_geom',1, 9, 2, 0);

INSERT INTO geometry_columns VALUES (

'forests', 'boundary_gid',

'forest_geom',1, 11, 2, 0);

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

INSERT INTO geometry_columns VALUES (

'bridges', 'position_gid',

'bridge_geom',1, 1, 2, 0);

INSERT INTO geometry_columns VALUES (

'streams', 'centerline_gid',

'stream_geom',1, 3, 2, 0);

INSERT INTO geometry_columns VALUES (

'buildings', 'position_gid',

'building_pt_geom',1, 1, 2, 0);

INSERT INTO geometry_columns VALUES (

'buildings', 'footprint_gid',

'building_area_geom',1, 5, 2, 0);

INSERT INTO geometry_columns VALUES (

'ponds', 'shores_gid',

'pond_geom',1, 11, 2, 0);

INSERT INTO geometry_columns VALUES (

'named_places', 'boundary_gid',

'named_place_geom',1, 5, 2, 0);

INSERT INTO geometry_columns VALUES (

'map_neatlines', 'neatline_gid',

'map_neatline_geom',1, 5, 2, 0);

C.3.2.4 Normalized geometry schema test queries

-- Conformance Item B1

SELECT f_table_name

FROM geometry_columns;

-- Conformance Item B2

SELECT g_table_name

FROM geometry_columns;

-- Conformance Item B3

SELECT storage_type

FROM geometry_columns

WHERE f_table_name = 'streams';

-- Conformance Item B4

SELECT geometry_type

FROM geometry_columns

WHERE f_table_name = 'streams';

-- Conformance Item B5

SELECT coord_dimension

FROM geometry_columns

WHERE f_table_name = 'streams';

-- Conformance Item B6

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. lxxxix

SELECT srid

FROM geometry_columns

WHERE f_table_name = 'streams';

-- Conformance Item B7

SELECT srtext

FROM SPATIAL_REF_SYS

WHERE SRID = 101;

C.3.3 Geometry types and functions

The scope of this test determines that

a) the database of the test (once inserted) is accessible via the schema defined in this standard;

b) that the functionality defined in this standard is implemented as described.

Table B.4 shows the queries that accomplish the first part of this test.

Table C 4: Queries that accomplish the test of geometry types and functions

ID Functionality Tested Query Description Answer

T1 GEOMETRY_COLUMNS
table/view is created/updated

properly

For this test, we will check to see
that all of the feature tables are

represented by entries in the
GEOMETRY_COLUMNS

table/view.

lakes, road_segments, divided_routes,
buildings, forests, bridges,

named_places, streams, ponds,
map_neatlinesa

T2 GEOMETRY_COLUMNS

table/view is created/updated
properly

For this test, we will check to see

that the correct geometry column
for the streams table is

represented in the
GEOMETRY_COLUMNS

table/view.

Centerline

T3 GEOMETRY_COLUMNS
table/view is created/updated

properly

For this test, we will check to see
that the correct coordinate

dimension for the streams table
is represented in the

GEOMETRY_COLUMNS
table/view.

2

T4 GEOMETRY_COLUMNS
table/view is created/updated

properly

For this test, we will check to see
that the correct value of srid for

the streams table is represented
in the GEOMETRY_COLUMNS

table/view.

101b

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

ID Functionality Tested Query Description Answer

T5 SPATIAL_REF_SYS table/view
is created/updated properly

For this test, we will check to see
that the correct value of srtext is

represented in the
SPATIAL_REF_SYS table/view.

'PROJCS["UTM_ZONE_14N",
GEOGCS["World Geodetic System 72",

DATUM["WGS_72",
ELLIPSOID["NWL_10D", 6378135,

298.26]], PRIMEM["Greenwich", 0],
UNIT["Meter", 1.0]],

PROJECTION["Transverse_Mercator"],
PARAMETER["False_Easting",

500000.0],
PARAMETER["False_Northing", 0.0],

PARAMETER["Central_Meridian", -
99.0], PARAMETER["Scale_Factor",

0.9996],
PARAMETER["Latitude_of_origin",

0.0], UNIT["Meter", 1.0]]'

T6 Dimension(g Geometry) : Integer For this test, we will determine

the dimension of Blue Lake.

2

T7 GeometryType(g Geometry) :
String

For this test, we will determine
the type of Route 75.

'MULTILINESTRING'

T8 AsText(g Geometry) : String For this test, we will determine
the WKT representation of

Goose Island.

'POLYGON((67 13, 67 18, 59 18, 59
13, 67 13))' c

T9 AsBinary(g Geometry) : Blob For this test, we will determine
the WKB representation of

Goose Island. We will test by
applying AsText to the result of

PolyFromText to the result of
AsBinary.

'POLYGON((67 13, 67 18, 59 18, 59
13, 67 13))' c

T10 SRID(g Geometry) : Integer For this test, we will determine
the SRID of Goose Island.

101b

T11 IsEmpty(g Geometry) : Integer For this test, we will determine

whether the geometry of a
segment of Route 5 is empty.

0

Some commercial SQL
implementations with type extensibility

systems support only BOOLEAN return
values. Expected test results should be

adjusted accordingly.

T12 IsSimple(g Geometry) : Integer For this test, we will determine

whether the geometry of a
segment of Blue Lake is simple.

1

Some commercial SQL
implementations with type extensibility

systems support only BOOLEAN return
values. Expected test results should be

adjusted accordingly.

T13 Boundary(g Geometry) :
Geometry

For this test, we will determine
the boundary of Goose Island.

'LINESTRING(67 13, 67 18, 59 18, 59
13, 67 13)'

or
‗MULTILINESTRING ((67 13, 67 18,

59 18, 59 13, 67 13))'

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xci

ID Functionality Tested Query Description Answer

T14 Envelope(g Geometry) : Integer For this test, we will determine
the envelope of Goose Island.

‗POLYGON((59 13, 59 18, 67 18, 67
13, 59 13))'

T15 X(p Point) : Double Precision For this test we will determine the
X coordinate of Cam Bridge.

44,00

T16 Y(p Point) : Double Precision For this test we will determine the

Y coordinate of Cam Bridge.

31,00

T17 StartPoint(c Curve) : Point For this test, we will determine

the start point of road
segment 102.

'POINT(0 18)'

T18 EndPoint(c Curve) : Point For this test, we will determine

the end point of road
segment 102.

'POINT(44 31)'

T19 IsClosed(c Curve) : Integer For this test, we will determine
the boundary of Goose Island.

1
Some commercial SQL

implementations with type extensibility
systems support only BOOLEAN return

values. Expected test results should be
adjusted accordingly.

T20 IsRing(c Curve) : Integer For this test, we will determine

the boundary of Goose Island.

1

Some commercial SQL
implementations with type extensibility

systems support only BOOLEAN return
values. Expected test results should be

adjusted accordingly.

T21 Length(c Curve) : Double

Precision

For this test, we will determine

the length of road segment 106.

26,00 (in metres)

T22 NumPoints(l LineString) : Integer For this test, we will determine
the number of points in road

segment 102.

5

T23 PointN(l LineString, n Integer) :

Point

For this test, we will determine

the 1st point in road
segment 102.

'POINT(0 18)'

T24 Centroid(s Surface) : Point For this test, we will determine

the centroid of Goose Island.
'POINT(53 15.5)' d

T25 PointOnSurface(s Surface) :

Point

For this test, we will determine a

point on Goose Islande.

1

Some commercial SQL
implementations with type extensibility

systems support only BOOLEAN return
values. Expected test results should be

adjusted accordingly.

T26 Area(s Surface) : Double
Precision

For this test, we will determine
the area of Goose Island.

40,00 (square metres)

T27 ExteriorRing(p Polygon) :
LineString

For this test, we will determine
the exterior ring of Blue Lake.

'LINESTRING(52 18, 66 23, 73 9, 48
6, 52 18)'

T28 NumInteriorRings(p Polygon) :

Integer

For this test, we will determine

the number of interior rings of
Blue Lake.

1

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

ID Functionality Tested Query Description Answer

T29 InteriorRingN(p Polygon, n
Integer) : LineString

For this test, we will determine
the first interior ring of Blue Lake.

'LINESTRING(59 18, 67 18, 67 13, 59
13, 59 18)'

T30 NumGeometries(g
GeomCollection) : Integer

For this test, we will determine
the number of geometries in

Route 75.

2

T31 GeometryN(g GeomCollection, n
Integer) : Geometry

For this test, we will determine
the second geometry in

Route 75.

'LINESTRING(16 0, 16 23, 16 48)'

T32 IsClosed(mc MultiCurve) :

Integer

For this test, we will determine if

the geometry of Route 75 is
closed.

0

Some commercial SQL
implementations with type extensibility

systems support only BOOLEAN return
values. Expected test results should be

adjusted accordingly.

T33 Length(mc MultiCurve) : Double
Precision

For this test, we will determine
the length of Route 75.

96,00 (in metres)

T34 Centroid(ms MultiSurface) : Point For this test, we will determine
the centroid of the ponds.

'POINT(25 42)' d

T35 PointOnSurface(ms

MultiSurface) : Point

For this test, we will determine a

point on the ponds.e

1

Some commercial SQL
implementations with type extensibility

systems support only BOOLEAN return
values. Expected test results should be

adjusted accordingly.

T36 Area(ms MultiSurface) : Double

Precision

For this test, we will determine

the area of the ponds.

8,00 (in square metres)

T37 Equals(g1 Geometry, g2
Geometry) : Integer

For this test, we will determine if
the geometry of Goose Island is

equal to the same geometry as
constructed from it's WKT

representation.

1
Some commercial SQL

implementations with type extensibility
systems support only BOOLEAN return

values. Expected test results should be
adjusted accordingly.

T38 Disjoint(g1 Geometry, g2
Geometry) : Integer

For this test, we will determine if
the geometry of Route 75 is

disjoint from the geometry of
Ashton.

1
Some commercial SQL

implementations with type extensibility
systems support only BOOLEAN return

values. Expected test results should be
adjusted accordingly.

T39 Touches(g1 Geometry, g2

Geometry) : Integer

For this test, we will determine if

the geometry of Cam Stream
touches the geometry of Blue

Lake.

1

Some commercial SQL
implementations with type extensibility

systems support only BOOLEAN return
values. Expected test results should be

adjusted accordingly.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xciii

ID Functionality Tested Query Description Answer

T40 Within(g1 Geometry, g2
Geometry) : Integer

For this test, we will determine if
the geometry of the house at

215 Main Street is within Ashton.

1
Some commercial SQL

implementations with type extensibility
systems support only BOOLEAN return

values. Expected test results should be
adjusted accordingly.

T41 Overlaps(g1 Geometry, g2
Geometry) : Integer

For this test, we will determine if
the geometry of Green Forest

overlaps the geometry of
Ashton.

1
Some commercial SQL

implementations with type extensibility
systems support only BOOLEAN return

values. Expected test results should be
adjusted accordingly.

T42 Crosses(g1 Geometry, g2

Geometry) : Integer

For this test, we will determine if

the geometry of road
segment 101 crosses the

geometry of Route 75.

1

Some commercial SQL
implementations with type extensibility

systems support only BOOLEAN return
values. Expected test results should be

adjusted accordingly.

T43 Intersects(g1 Geometry, g2

Geometry) : Integer

For this test, we will determine if

the geometry of road
segment 101 intersects the

geometry of Route 75.

1

Some commercial SQL
implementations with type extensibility

systems support only BOOLEAN return
values. Expected test results should be

adjusted accordingly.

T44 Contains(g1 Geometry, g2
Geometry) : Integer

For this test, we will determine if
the geometry of Green Forest

contains the geometry of Ashton.

0
Some commercial SQL

implementations with type extensibility
systems support only BOOLEAN return

values. Expected test results should be
adjusted accordingly.

T45 Relate(g1 Geometry, g2
Geometry, PatternMatrix String) :

Integer

For this test, we will determine if
the geometry of Green Forest

relates to the geometry of Ashton
using the pattern "TTTTTTTTT".

1
Some commercial SQL

implementations with type extensibility
systems support only BOOLEAN return

values. Expected test results should be
adjusted accordingly.

T46 Distance(g1 Geometry, g2

Geometry) : Double Precision

For this test, we will determine

the distance between Cam
Bridge and Ashton.

12 (in metres)

T47 Intersection(g1 Geometry, g2
Geometry) : Geometry

For this test, we will determine
the intersection between Cam

Stream and Blue Lake.

'POINT(52 18)'

T48 Difference(g1 Geometry, g2
Geometry) : Geometry

For this test, we will determine
the difference between Ashton

and Green Forest.

'POLYGON((56 34, 62 48, 84 48, 84
42, 56 34))'

or
'MULTIPOLYGON((56 34, 62 48, 84

48, 84 42, 56 34))'c

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

ID Functionality Tested Query Description Answer

T49 Union(g1 Geometry, g2
Geometry) : Integer

For this test, we will determine
the union of Blue Lake and

Goose Island.

'POLYGON((52 18,66 23,73 9,48 6,52
18))'

or
'MULTIPOLYGON((52 18,66 23,73

9,48 6,52 18))' c

T50 SymDifference(g1 Geometry, g2

Geometry) : Integer

For this test, we will determine

the symmetric difference of Blue
Lake and Goose Island.

'POLYGON((52 18,66 23,73 9,48 6,52

18))'
or

'MULTIPOLYGON((52 18,66 23,73
9,48 6,52 18))' c

T51 Buffer(g Geometry, d Double

Precision) : Geometry

For this test, we will make a 15

mbuffer about Cam Bridge.f

1

Some commercial SQL
implementations with type extensibility

systems support only BOOLEAN return
values. Expected test results should be

adjusted accordingly.

T52 ConvexHull(g Geometry) :

Geometry

For this test, we will determine

the convex hull of Blue Lake.

'POLYGON((52 18,66 23,73 9,48 6,52

18))'
or

 'MULTIPOLYGON((52 18,66 23,73
9,48 6,52 18))'c

a Additional feature tables that are not part of this test will be also be returned if present.

b If SRID 101 already exists, or if the system assigns SRID values, appropriate adjustments should be made in the test suite.

c Polygon rotation is not defined by this standard; actual polygon rotation may be in a clockwise or counter-clockwise direction.

d No specific algorithm is specified for the Centroid function; answers may vary with implementation.

e For this test we will have to uses the Contains function (which we don't test until later).

f This test counts the number of buildings contained in the buffer that is generated. This test only works because we have a single

bridge record, two building records, and we selected the buffer size such that only one of the buildings is contained in the buffer.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xcv

C.3.3.1 Geometry types and functions schema construction

CREATE TABLE spatial_ref_sys (

srid INTEGER NOT NULL PRIMARY KEY,

auth_name CHARACTER VARYING,

auth_srid INTEGER,

srtext CHARACTER VARYING(2048));

-- Lakes

CREATE TABLE lakes (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

shore POLYGON);

-- Road Segments

CREATE TABLE road_segments (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

aliases CHARACTER VARYING(64),

num_lanes INTEGER,

centerlineLINESTRING);

-- Divided Routes

CREATE TABLE divided_routes (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

num_lanes INTEGER,

centerlines MULTILINESTRING);

-- Forests

CREATE TABLE forests (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

boundary MULTIPOLYGON);

-- Bridges

CREATE TABLE bridges (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

position POINT);

-- Streams

CREATE TABLE streams (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

centerline LINESTRING);

-- Buildings

CREATE TABLE buildings (

fid INTEGER NOT NULL PRIMARY KEY,

address CHARACTER VARYING(64),

positionPOINT,

footprint POLYGON);

-- Ponds

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

CREATE TABLE ponds (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

type CHARACTER VARYING(64),

shores MULTIPOYLGON);

-- Named Places

CREATE TABLE named_places (

fid INTEGER NOT NULL PRIMARY KEY,

name CHARACTER VARYING(64),

boundaryPOLYGON);

-- Map Neatline

CREATE TABLE map_neatlines (

fid INTEGER NOT NULL PRIMARY KEY,

neatlinePOLYGON);

C.3.3.2 Geometry types and functions schema data loading

-- Spatial Reference System

INSERT INTO spatial_ref_sys VALUES

(101, 'POSC', 32214, 'PROJCS["UTM_ZONE_14N",

GEOGCS["World Geodetic System 72",

DATUM["WGS_72",

ELLIPSOID["NWL_10D", 6378135, 298.26]],

PRIMEM["Greenwich", 0],

UNIT["Meter", 1.0]],

PROJECTION["Transverse_Mercator"],

PARAMETER["False_Easting", 500000.0],

PARAMETER["False_Northing", 0.0],

PARAMETER["Central_Meridian", -99.0],

PARAMETER["Scale_Factor", 0.9996],

PARAMETER["Latitude_of_origin", 0.0],

UNIT["Meter", 1.0]]');

-- Lakes

INSERT INTO lakes VALUES (

101, 'BLUE LAKE',

PolyFromText(

'POLYGON(

 (52 18,66 23,73 9,48 6,52 18),

 (59 18,67 18,67 13,59 13,59 18)

)',

101));

-- Road segments

INSERT INTO road_segments VALUES(102, 'Route 5', NULL, 2,

LineFromText(

'LINESTRING(0 18, 10 21, 16 23, 28 26, 44 31)' ,101));

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xcvii

INSERT INTO road_segments VALUES(103, 'Route 5', 'Main Street', 4,

LineFromText(

'LINESTRING(44 31, 56 34, 70 38)' ,101));

INSERT INTO road_segments VALUES(104, 'Route 5', NULL, 2,

LineFromText(

'LINESTRING(70 38, 72 48)' ,101));

INSERT INTO road_segments VALUES(105, 'Main Street', NULL, 4,

LineFromText(

'LINESTRING(70 38, 84 42)' ,101));

INSERT INTO road_segments VALUES(106, 'Dirt Road by Green Forest', NULL,

1,

LineFromText(

'LINESTRING(28 26, 28 0)',101));

-- DividedRoutes

INSERT INTO divided_routes VALUES(119, 'Route 75', 4,

MLineFromText(

'MULTILINESTRING((10 48,10 21,10 0),

(16 0,16 23,16 48))', 101));

-- Forests

INSERT INTO forests VALUES(109, 'Green Forest',

MPolyFromText(

'MULTIPOLYGON(((28 26,28 0,84 0,84 42,28 26),

(52 18,66 23,73 9,48 6,52 18)),((59 18,67 18,67 13,59 13,59 18)))',

101));

-- Bridges

INSERT INTO bridges VALUES(110, 'Cam Bridge', PointFromText(

'POINT(44 31)', 101));

-- Streams

INSERT INTO streams VALUES(111, 'Cam Stream',

LineFromText(

'LINESTRING(38 48, 44 41, 41 36, 44 31, 52 18)', 101));

INSERT INTO streams VALUES(112, NULL,

LineFromText(

'LINESTRING(76 0, 78 4, 73 9)', 101));

-- Buildings

INSERT INTO buildings VALUES(113, '123 Main Street',

PointFromText(

'POINT(52 30)', 101),

PolyFromText(

'POLYGON((50 31, 54 31, 54 29, 50 29, 50 31))', 101));

INSERT INTO buildings VALUES(114, '215 Main Street',

PointFromText(

'POINT(64 33)', 101),

PolyFromText(

'POLYGON((66 34, 62 34, 62 32, 66 32, 66 34))', 101));

-- Ponds

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

INSERT INTO ponds VALUES(120, NULL, 'Stock Pond',

MPolyFromText(

'MULTIPOLYGON(((24 44, 22 42, 24 40, 24 44)),

((26 44, 26 40, 28 42, 26 44)))', 101));

-- Named Places

INSERT INTO named_places VALUES(117, 'Ashton',

PolyFromText(

'POLYGON((62 48, 84 48, 84 30, 56 30, 56 34, 62 48))', 101));

INSERT INTO named_places VALUES(118, 'Goose Island',

PolyFromText(

'POLYGON((67 13, 67 18, 59 18, 59 13, 67 13))', 101));

-- Map Neatlines

INSERT INTO map_neatlines VALUES(115,

PolyFromText(

'POLYGON((0 0, 0 48, 84 48, 84 0, 0 0))', 101));

C.3.3.3 Geometry types and functions schema test queries

-- Conformance Item T1

SELECT f_table_name

FROM geometry_columns;

-- Conformance Item T2

SELECT f_geometry_column

FROM geometry_columns

WHERE f_table_name = 'streams';

-- Conformance Item T3

SELECT coord_dimension

FROM geometry_columns

WHERE f_table_name = 'streams';

-- Conformance Item T4

SELECT srid

FROM geometry_columns

WHERE f_table_name = 'streams';

-- Conformance Item T5

SELECT srtext

FROM SPATIAL_REF_SYS

WHERE SRID = 101;

-- Conformance Item T6

SELECT Dimension(shore)

FROM lakes

WHERE name = 'Blue Lake';

-- Conformance Item T7

SELECT GeometryType(centerlines)

FROM lakes

WHERE name = 'Route 75';

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. xcix

-- Conformance Item T8

SELECT AsText(boundary)

FROM named_places

WHERE name = 'Goose Island';

-- Conformance Item T9

SELECT AsText(PolyFromWKB(AsBinary(boundary),101))

FROM named_places

WHERE name = 'Goose Island';

-- Conformance Item T10

SELECT SRID(boundary)

FROM named_places

WHERE name = 'Goose Island';

-- Conformance Item T11

SELECT IsEmpty(centerline)

FROM road_segments

WHERE name = 'Route 5'

 AND aliases = 'Main Street';

-- Conformance Item T12

SELECT IsSimple(shore)

FROM lakes

WHERE name = 'Blue Lake';

-- Conformance Item T13

SELECT AsText(Boundary((boundary),101)

FROM named_places

WHERE name = 'Goose Island';

-- Conformance Item T14

SELECT AsText(Envelope((boundary),101)

FROM named_places

WHERE name = 'Goose Island';

-- Conformance Item T15

SELECT X(position)

FROM bridges

WHERE name = ‘Cam Bridge’;

-- Conformance Item T16

SELECT Y(position)

FROM bridges

WHERE name = 'Cam Bridge';

-- Conformance Item T17

SELECT AsText(StartPoint(centerline))

FROM road_segments

WHERE fid = 102;

-- Conformance Item T18

SELECT AsText(EndPoint(centerline))

FROM road_segments

WHERE fid = 102;

-- Conformance Item T19

SELECT IsClosed(LineFromWKB(AsBinary(Boundary(boundary)),SRID(boundary)))

FROM named_places

WHERE name = 'Goose Island';

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

-- Conformance Item T20

SELECT IsRing(LineFromWKB(AsBinary(Boundary(boundary)),SRID(boundary)))

FROM named_places

WHERE name = 'Goose Island';

-- Conformance Item T21

SELECT Length(centerline)

FROM road_segments

WHERE fid = 106;

-- Conformance Item T22

SELECT NumPoints(centerline)

FROM road_segments

WHERE fid = 102;

-- Conformance Item T23

SELECT AsText(PointN(centerline, 1))

FROM road_segments

WHERE fid = 102;

-- Conformance Item T24

SELECT AsText(Centroid(boundary))

FROM named_places

WHERE name = 'Goose Island';

-- Conformance Item T25

SELECT Contains(boundary, PointOnSurface(boundary))

FROM named_places

WHERE name = 'Goose Island';

-- Conformance Item T26

SELECT Area(boundary)

FROM named_places

WHERE name = 'Goose Island';

-- Conformance Item T27

SELECT AsText(ExteriorRing(shore))

FROM lakes

WHERE name = 'Blue Lake';

-- Conformance Item T28

SELECT NumInteriorRing(shore)

FROM lakes

WHERE name = 'Blue Lake';

-- Conformance Item T29

SELECT AsText(InteriorRingN(shore, 1))

FROM lakes

WHERE name = 'Blue Lake';

-- Conformance Item T30

SELECT NumGeometries(centerlines)

FROM divided_routes

WHERE name = 'Route 75';

-- Conformance Item T31

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. ci

SELECT AsText(GeometryN(centerlines, 2))

FROM divided_routes

WHERE name = 'Route 75';

-- Conformance Item T32

SELECT IsClosed(centerlines)

FROM divided_routes

WHERE name = 'Route 75';

-- Conformance Item T33

SELECT Length(centerlines)

FROM divided_routes

WHERE name = 'Route 75';

-- Conformance Item T34

SELECT AsText(Centroid(shores))

FROM ponds

WHERE fid = 120;

-- Conformance Item T35

SELECT Contains(shores, PointOnSurface(shores))

FROM ponds

WHERE fid = 120;

-- Conformance Item T36

SELECT Area(shores)

FROM ponds

WHERE fid = 120;

-- Conformance Item T37

SELECT Equals(boundary,

PolyFromText('POLYGON((67 13, 67 18, 59 18, 59 13, 67 13))',1))

FROM named_places

WHERE name = 'Goose Island';

-- Conformance Item T38

SELECT Disjoint(centerlines, boundary)

FROM divided_routes, named_places

WHERE divided_routes.name = 'Route 75'

 AND named_places.name = 'Ashton';

-- Conformance Item T39

SELECT Touches(centerline, shore)

FROM streams, lakes

WHERE streams.name = 'Cam Stream'

 AND lakes.name = 'Blue Lake';

-- Conformance Item T40

SELECT Within(boundary, footprint)

FROM named_places, buildings

WHERE named_places.name = 'Ashton'

 AND buildings.address = '215 Main Street';

-- Conformance Item T41

SELECT Overlaps(forests.boundary, named_places.boundary)

FROM forests, named_places

WHERE forests.name = 'Green Forest'

 AND named_places.name = 'Ashton';

-- Conformance Item T42

OGC 06-104r4 Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.

SELECT Crosses(road_segments.centerline, divided_routes.centerlines)

FROM road_segments, divided_routes

WHERE road_segment.fid = 102

 AND divided_routes.name = 'Route 75';

-- Conformance Item T43

SELECT Intersects(road_segments.centerline, divided_routes.centerlines)

FROM road_segments, divided_routes

WHERE road_segments.fid = 102

 AND divided_routes.name = 'Route 75';

-- Conformance Item T44

SELECT Contains(forests.boundary, named_places.boundary)

FROM forests, named_places

WHERE forests.name = 'Green Forest'

 AND named_places.name = 'Ashton';

-- Conformance Item T45

SELECT Relate(forests.boundary, named_places.boundary, 'TTTTTTTTT')

FROM forests, named_places

WHERE forests.name = 'Green Forest'

 AND named_places.name = 'Ashton';

-- Conformance Item T46

SELECT Distance(position, boundary)

FROM bridges, named_places

WHERE bridges.name = 'Cam Bridge'

 AND named_places.name = 'Ashton';

-- Conformance Item T47

SELECT AsText(Intersection(centerline, shore))

FROM streams, lakes

WHERE streams.name = 'Cam Stream'

 AND lakes.name = 'Blue Lake';

-- Conformance Item T48

SELECT AsText(Difference(named_places.boundary, forests.boundary))

FROM named_places, forests

WHERE named_places.name = 'Ashton'

 AND forests.name = 'Green Forest';

-- Conformance Item T49

SELECT AsText(Union(shore, boundary))

FROM lakes, named_places

WHERE lakes.name = 'Blue Lake'

 AND named_places.name = ‘Goose Island’;

-- Conformance Item T50

SELECT AsText(SymDifference(shore, boundary))

FROM lakes, named_places

WHERE lakes.name = 'Blue Lake'

 AND named_places.name = 'Ashton';

-- Conformance Item T51

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. OGC 06-104r4

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. ciii

SELECT count(*)

FROM buildings, bridges

WHERE Contains(Buffer(bridges.position, 15.0), buildings.footprint)

= 1;

-- Conformance Item T52

SELECT AsText(ConvexHull(shore))

FROM lakes

WHERE lakes.name = 'Blue Lake';

