
OGC 07-056r1

Open Geospatial Consortium Inc.

Date: 2007-07-12

Reference number of this OGC® project document: OGC 07-056r1

Version: 0.0.9

Category: OGC® Policy Specification Discussion Paper

Editor: John R. Herring

Annex to OGC Policy and Procedures — The Specification Model —
Structuring an OGC specification to encourage implementation

Copyright notice

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document is an OGC Discussion Paper and
is therefore not an official position of the OGC membership. It is distributed for review
and comment. It is subject to change without notice and may not be referred to as an OGC
Standard. Further, an OGC Discussion Paper should not be referenced as required or
mandatory technology in procurements.

http://www.opengeospatial.org/legal/

OGC 07-056r1

Contents Page
Foreword .. iv

Introduction ... v

1 Scope ... 1

2 Conformance ... 1

3 Normative references .. 1

4 Terms and definitions.. 2

5 Conventions... 4
5.1 Symbols (and abbreviated terms) ... 4
5.2 Abbreviations.. 4

6 Requirements... 5
6.1 Specification model .. 5
6.2 Requirements .. 6

6.2.1 Conformance classes are Modules ... 6
6.2.2 There is a Defined Core ... 6
6.2.3 Modules test all requirements .. 6
6.2.4 Profiles (subsets of the base) are modules ... 6
6.2.5 Extensions are modules.. 7
6.2.6 Options are modules... 7
6.2.7 Modules intersect only by reference .. 7

7 Mappings this standard to types of models ... 7
7.1 Semantics .. 7
7.2 Conformance Test Suite ... 7
7.3 UML or other object models... 8
7.4 XML Schema.. 9
7.5 SQL... 10

Annex A (normative) Abstract Conformance Test Suite .. 11
A.1 General.. 11
A.2 Conformance Class: Modularity... 11

A.2.1 Conformance classes are Modules ... 11
A.2.2 There is a Defined Core ... 11
A.2.3 Modules test all requirements .. 11
A.2.4 Profiles (subsets of the base) are modules ... 11
A.2.5 Extensions are modules.. 12
A.2.6 Options are modules... 12
A.2.7 Modules intersect only by reference .. 12

Annex B (normative) Changes required in the OGC Specifications 13
B.1 Existing standards and specifications ... 13
B.2 New standards and specifications... 13

Annex C (informative) Standards Metamodels... 14
C.1 Abstract... 14
C.2 A little bit of history ... 14
C.3 Basic Model for Standards.. 15

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page ii

OGC 07-056r1

C.4 Software implementations of standards ..18
C.5 Standards metamodels ...19

C.5.1 An equivalence Lemma: ...20
C.5.2 Core and Extension advantages: ...21
C.5.3 Base and Profiles advantages:...21
C.5.4 Default hybrid approach ...21

C.6 Fundamental Conclusions ...22
C.6.1 The design of good modular code is core + extensions................................22
C.6.2 The design of a good standard must fit core + extensions............................22

C.7 The root source of interoperability..22
C.8 Formal Description..23

C.8.1 Definitions ..23
C.8.2 Theoretical Conclusions ...24

C.9 Standards Creation Scenarios..25
C.9.1 CASE 1: You have a viable "Theory of Everything" (a complete reference

model) - at least for the industries you are worried about.25
C.9.2 CASE 2: You do not have a viable "Theory of Everything" - at least not one

that covers everyone's idea of everything. ..26
C.10 Einstein’s 2-cents worth ..26

Bibliography ..29

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page iii

OGC 07-056r1

Foreword

This specification is a reflection of discussions in the OGC Architecture Board (OAB), and
contains general principals of application development taken from the OAB members’ collective
experience.

Since this specification is a summary of collective experience, no one should claim intellectual
properties rights to its contents. This standard may be used by anyone as long as its source is
specified.

This standard, while it specifies the structures of other standards, does not supply them with
specific content, since its level of abstraction is one level higher than any standard that might
claim conformance. All content in this standard, unless specified otherwise in its title, is
normative.

Since this standard specifies requirements for standards to be acceptable by the OGC TC, it is
logically an annex of the TC Policy and Procedures (TC-PnP). It is however a radically different
document, since the TC-PnP is a procedural set of rules, and this document is a set of testable
constraints against a finished document. The mechanism for enforcement of this standard is the
purview of the TC and its subgroups, and in particular the OAB.

Recent OAB discussions have identified the need for a “check list” for each candidate
specification to assure its conformance to OGC policy and rules. Conformance to this document
should be added to that list.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page iv

OGC 07-056r1

Introduction

“A really Useful Engine”
Thomas the Tank Engine,
by Rev. W. V. Awdry, 1946

Our friend Thomas, in a Zen-like moment unusual for a child’s story and definitely unusual for a
steam locomotive, decides that his purpose in life is to be a “Really Useful Engine1.” A
standard’s usefulness and hence worth can be measured by:

− The ease with which it can be implemented.

− The number of times it has been implemented.

− The number of times those implementations are used.

− The ease with which those implementations interact.

− The number of times it has been extended through inclusion in other useful standards.

Some of these are affected by the choice of topic, but all are affected by the internal logical
structure of the standard. This standard will specify generic rules for this internal structure
conducive to being a true RUE (really useful engine).

A standard presents requirements, which must be satisfied by the proofs as defined by the tests
of the conformance suite. These tests are organized into conformance classes, each of which
represents a mechanism for partial satisfaction of the standard. These give the standard a
modular structure, each module represented by a conformance class. In a well written standard,
the normative clauses and any model or schema are organized in a manner that parallels the
conformance clause.

1 The capitalization is the Rev. Audrey’s. See http://en.wikipedia.org/wiki/Thomas_the_Tank_Engine

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page v

http://en.wikipedia.org/wiki/Thomas_the_Tank_Engine

OGC 07-056r1 OGC

Annex to OGC Policy and Procedures — The Specification
Model — Structuring an OGC specification to encourage
implementation

1 Scope

This standard specifies some desirable characteristics of a standards specification that will
encourage implementations by minimizing difficulty and optimizing usability and
interoperability.

2 Conformance

Conformance to this standard by technical implementation standards and specifications can be
tested by inspection. The test suite is in Annex A.

Clause 4 formally defines the terms used in the conformance tests.

Clause 7 gives information on how this standard is to be applied to requirements, conformance
clauses, UML models, XML Schemas and SQL specifications.

All numbered clauses and any Annexes that are marked as normative may contain normative
language and thus place requirements on conformance or mechanism for adoption of candidate
specifications to which this standard applies.

Clause 6.2 specifies the basic requirements which shall be met by a conformant standard. They
are:

1. Conformance classes are Modules

2. There is a Defined Core

3. Modules test all requirements

4. Profiles (subsets of the base) are modules

5. Extensions are modules

6. Options are modules

7. Modules intersect only by reference

3 Normative references

There are no normative technical references for this document. While this document references
UML, SQL and XML, and their technical specification, it does not derive any of its
requirements from these documents. While this standard may be applied to extensions of those
standards, conformance to them is the purview of those standards, not this one.
Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 1 of 35

OGC 07-056r1

Since this document adds requirements to the procedure for the adoption of OGC
specification, it shall be considered as a normative annex to the “current” OGC TC Policy and
Procedures2. The effect on these procedures and a transition plan of existing and "soon to be
adopted" specifications is detailed in Annex B.

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply. Terms not
defined here take on their meaning from computer science or from their Standard English
(common US and UK) meanings. The form of the definitions is defined by ISO Directives.

4.1
aspect
testable requirement

NOTE The implementation of an aspect is dependent on the type of specification being written. A data specification
requires data structures, but a procedural specification required software implementations. The view of a
standard in terms of a set of testable requirements allows us to use set descriptions of both the standard and its
implementations.

 Specification of an aspect are usually expressed in terms of a model of the implementation, such as a UML
model, or and XML or SQL schema.

4.2
base
unique module that includes all aspects of a standard

NOTE A base is unique at any given time, but may vary over time as new extensions are added.

4.3
certificate of conformance
proof of conformance to all or part of a standard

NOTE “Certificates” do not have to be instantiated documents, having proof of conformance is sufficient. The OGC
currently keeps an online list of conformant applications at http://www.opengeospatial.org/resource/products.

4.4
condition
constraint
requirement not strictly testable but which limits implementation

NOTE Conditions are generally global in nature, such as “all data types will be defined in XML schema” or “all
implementations will contain WDSL and SOAP.” Conditions are in effect general rules as opposed to local
restrictions on a specific entity; as such they cannot be restricted to portion of the standard. There are several
ways to handle conditions; to be consistent with the testable requirements; general conditions will be restricted
to the core, which must always be applied to implementations.

 Conditions are most often expressed in terms of items in a model, such as “class” for UML or “type” or
“element” for XML.

2 The reference to the OGC TC PnP is floating, and does not apply to a particular document, but to the policy and procedures
of the Open Geospatial Consortium whether defined by an OGC document, by Roberts Rules of Order, or by common consent
and practice of the membership.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 2

http://www.opengeospatial.org/resource/products

OGC 07-056r1

4.5
conformance class;
conformance level
set of conformance tests that must be applied to receive a single certificate of conformance

NOTE The set of required aspects in a conformance class is a module. If a conformance class
contains no optional aspects, it is a single module. Each optional aspects will be in a separate
module.

4.6
conformance suite
set of conformance classes that test all aspects of a standard

NOTE The conformance suite is the union of all conformance classes. It is by definition the
conformance class of the base.

4.7
conformance test
test, abstract or real, of aspects contained within a standard, or set of standards

4.8
core
unique module that must be implemented by any conformant system

NOTE The core module is unique because if there is more than one, each core would have to be implemented to
pass any conformance test, and thus would have to be contained in any other core. The core may be
empty, or all or part of another specification.

4.9
extension
module dependent on (including) all of the aspects of another module

NOTE Multiple modules may be included in a single conformance test. Such bundles while legal are
discouraged since the may hide implementation dependencies not intended by the specification and thereby
interfere with interoperability of modules within the bundle with external invocation.

4.10
module
aggregate of normative aspects of a specification that must all be implemented as a whole to
satisfy an atomic set of conformance tests

NOTE A module refers to a part of a specification, but the term, and other related to it, can be used for
implementations modules that implement a particular atomic set of conformance tests. Hence, the XYZ
specification module from a conformance suite may be implemented by the XYZ implementation
module from a particular software suite. Thus the term module is context sensitive and can be applied to a
subset of a specification, to a conformance class testing that subset, and to a implementation capable of passing
all the tests in that conformance class. When the context is not clear, the adjectives “specification,”
“conformance” and “implementation” or their equivalents are suggested.

 In cognitive linguistics, this is part of a conceptual metaphor (see
http://en.wikipedia.org/wiki/Conceptual_metaphor). The term module is part of the mapping between the
target and source domain of the metaphor. In this case, the source domain (in which the term was first used) is
software, although even there it is derived from manufacture and specifically the concept of interchangeable
parts that enables modular construction in an assembly line. This standard links into that usage and applies the
term module to just about anything that relates to a software module, including models and schemata.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 3

http://en.wikipedia.org/wiki/Conceptual_metaphor

OGC 07-056r1

4.11
profile
module defined by a subset of the aspects of another module

NOTE Profile has been used both as subset and extension, and in terms of requirements it is really just a set of
requirements that can be expressed as a union of modules, assuming conformance to this standard.

 In this standard, only the subset meaning is meant unless specifically stated.

4.12
standard
document containing aspects

NOTE This definition is included for completeness. In this standard’s model, a standard is a set of testable requirements
applied against implementations. In the real meaning of the word “standard” there are other conditions that may
be required, but this standard has chosen to ignore them in the process of abstraction.

5 Conventions

5.1 Symbols (and abbreviated terms)

All symbols used in this document are either:

1. common mathematical symbols

2. UML 2 (Unified Modeling Language as defined by OMG)

5.2 Abbreviations

In this document the following abbreviations and acronyms are used or introduced:

ERA Entity, Relation, Attribute (pre-object modeling technique)

ISO International Organization for Standards (from Greek for “same”)

OGC Open Geospatial Consortium (http://www.opengeospatial.org/)

OOP Object Oriented Programming

OOPL OOP Language (such as C++ or Java)

RUE Really Useful Engine

SQL Sequel, sometimes mistakenly “Structured Query Language (relational query
language)

UML Unified Modeling Language (an object modeling language)

XML eXtensible Markup Language

OMG Object Management Group (http://www.omg.org/)

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 4

http://www.opengeospatial.org/
http://www.omg.org/

OGC 07-056r1

6 Requirements

6.1 Specification model

The primary difficulty in speaking of standards as a whole is diverse nature of the group. Some
standard use UML to define behavior, others use XML to define data structures, and others use
no modeling language at all. The only thing they have in common is that they define testable
requirements against some design mechanism for something that could be described as an
implementation of the standard. Thus, this standard lays requirements against other standards
by using a set-theoretic description of those standards based on their structure as organized
sets of testable requirements (“aspects”). All standards create an abstraction of the things to
which they apply (called a “model”) in order to provide a context for stating requirements. In
this sense, this standard is a subject of its own terminology.

First this standard defines an “aspect” of a standard as an atomic testable requirement (see
4.1). The aspect will have a variety of parts spread throughout the standard. Somewhere in the
normative clauses, the aspect will be defined in terms of the local modeling paradigm. In the
conformance clause there will be a test defined to verify the validity of the claim that an
implementation of the standard satisfies the aspect’s requirement. Assuming an ISO-structure,
this will be in one of the annexes, usually a “conformance test suite” that list all tests and
associated structures.

Conformance tests are aggregated into conformance classes that specify how certain
“certificates of conformance” are achieved; the natural inclination is to similarly aggregate
aspects in this manner. The issue that blocks this approach is that some aspects’ tests are listed
as optional while others are listed as mandatory. To achieve a cleaner separation of aspects,
this standard separates them into sets which have no optional components.

So, this standard defines a “module” as a set of aspects that must be all passed to achieve a
particular level of conformance (see 4.3). Optional requirements thus become modules by
themselves. This means that as far as this standard is concerned, modules may be optional, but
each aspect within a module is mandatory. Some modules may contain only a single aspect.

NOTE Care must be taken, since the modules are not always in a one-to-one correspondence to conformance classes in
other standards which may be the source of requirements for a standard conformant to this one. If other standard
are used then their options must be specified to be useable within this standard.

Conformance classes contain dependencies on one another. These are represented by tests in
one conformance class that state that another conformance class must be passed to qualify to
pass this one. In terms of aspects, that says that the dependent conformance class contains tests
(by the reference) for all mandatory aspects of the “included” conformance class.

Translating this into this standards view of modules, one module is dependent on another if the
other is included through such a reference. In this manner, modules can be treated as sets of
aspects (each physically in a single module). The set containment lattice (partial ordering)
defined by:

[A < B] ⇔ [{aspects in A} ⊂ {aspects in B}]
This says that to pass “B”, an implementation must pass “A.” If “A<B”, we say that A is a
profile of B (see 4.11) and that B extends A (see 4.9).

A “core” module is one which is a requirement of all others (see 4.8). So, if we consider a
standard “S” as a set of normative modules:

[A is core in standard S] ⇔ [∀ B ∈ S: A < B}]

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 5

OGC 07-056r1

A “base” module is one which contains all requirements (see 4.2). So, if we consider a
standard “S” as a set of normative modules:

[A is base in standard S] ⇔ [∀ B ∈ S: A > B}]
So, a core is a “universal lower bound,” and a base is a “universal upper bound.”

6.2 Requirements

6.2.1 Conformance classes are Modules

Conformance classes shall not contain optional elements. Modules may be optional as a whole,
but not piecemeal. This means that every implementation that passed a particular conformance
class satisfies exactly the same requirements. Differences between implementations will be
ascertainable by which classes are passed, not in the listing of which options within a class
were chosen.

6.2.2 There is a Defined Core

Every standard shall define a core module as a separate conformance class. The core should be
as simple as possible. The core module may be contained as a conformance class in another
standard, in which case the current standard should define a disposition of all of the optional
components in that conformance class that are required by the current standard’s core module.

All general conditions will be in the core. Since the core module is contained (by reference) in
each other module, general conditions are universal to all modules. Further, since the basic
concept of some standard is mechanism not implementation, the core may be only constraints,
and no content.

6.2.3 Modules test all requirements

All non-core aspects of the standard shall be contained in some module extending the core.
Unless a requirement is contained in a conformance test and thus in a conformance class, it
cannot be considered an aspect. If possible, the structure of the normative clauses of the
standard should parallel the structure of the conformance tests “modules” in the conformance
clause.

There shall be a natural structure on the modules so that each may be implemented on top of
any implementations of its dependencies and independent of its extensions. Thus, no module
shall redefine the requirements of one of its dependencies, unless that redefinition is for an
entity derived from but not contained in its dependencies.

In OOP terms, subclassing is okay, redefinition is not.

6.2.4 Profiles (subsets of the base) are modules

The totality of all conformance classes specified in the standard form a base (an upper bound
of all conformance modules). Subset profiles of this base shall be specified by a list of
conformance classes (modules) that are to be included in that profile’s conformance test.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 6

OGC 07-056r1

6.2.5 Extensions are modules

Each standard that extend a standard conformant to this standard should consist of a core
which is a subset profile as defined in 6.2.4, and some number of modules defined as
extensions to that core. A standard conformant to this standard shall require all conformant
extension to itself to be conformant to this standard.

6.2.6 Options are modules

The only options acceptable in a standard conformant to this standard shall be expressible as a
list of conformance class modules to be passed.

NOTE Standards and implementations are restricted by this, but not instances of schemas. For example, a XML schema
standard can specify optional element, which data instances may use or not, but schema-aware processors
claiming conformance to the standard should be able to handle all element in the schema, whether they are
required by the schema or not.

 Requirements of the form “if the implementation does this, it must do it this way” are considered to be options
and must be in a separate module.

6.2.7 Modules intersect only by reference

The common portion of any two modules consists only of references to other modules. This
implies that each requirement or aspect in directly in exactly one module, and all reference to
that aspect include complete conformance to its “home” module.

NOTE All general conditions are in the core module. The core module contains tests that all other modules must pass.

7 Mappings this standard to types of models

7.1 Semantics

The previous section defined requirements for conformance to this standard, but testing for
that conformance may depend on how the various forms and parts of a candidate conformant
standard are viewed. This clause will define how those views are to be defined in most of the
common cases. Standard that take an alternative mechanism to the ones listed here must be
tested solely on the structure of their conformance test suite.

Standards are often structured about some form of modeling language, or implementation
paradigm. This clause looks at some common types of models and defines a mechanism to
map parts of the model (language, schema, etc.) to the conformance classes used as the
specification model from Clause 6.1.

As suggested in Clause 6.2.3, the structure of the normative clauses in a standard should
parallel the structure of the conformance modules in that standard. The structure of the
normative clauses in a well written specification will follow the structure of its model; this
means that all three are parallel.

7.2 Conformance Test Suite

This is the model used in this standard. The test defined here may be applied directly to the
test suite.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 7

OGC 07-056r1

In each of the other profiles defined in the other Clauses to follow, some set of entities, types,
elements or objects are defined and segregated into implementation modules that correspond
to the test suite conformance modules. This strict parallelism of implementation and
governance is the essence of this standard.

7.3 UML or other object models

UML is an OMG) and an ISO standard for expressing object models. If the organizing
mechanism for the standard is an object model, then the mapping from parts of the model to
the requirements shall follow the logical mechanism describe here. This clause used UML
terminology, but other object modeling language and if needed, the object code itself can be
mapped to a UML model. An ERA model can be considered as a partial OOP model. To be
conformant to this standard, UML shall be used to express the object model, either as the core
mechanism of the standard or as a normative adjunct to formally explain the standard in a
standard model.

In a UML organized standard, the requirements modules shall be associated to UML packages
and their content. If a requirement crosses package lines, then one of the packages will be
called the source of the requirement, and the other the targets. This shall be consistent with the
usual mechanism for describing the source and target of dependencies between packages. By
Clause 6.2.3, only classes in the source module will be affected by the requirement. A source
package shall always be dependent on the target packages (and therefore, the source module
will always extent all of its target modules in the terms of this standard).

The things in a UML model are:

1. Package

2. Class or more properly “Classifier” (classes, interface, types, data types,
enumerations, code lists3), contained in a package or (rarely) another class. In all
cases, eventually in a package

3. Attributes of a class, consisting of a name and a type (possibly modified with a
cardinality), contained in the class and dependent on its type

4. Association role, consisting of a role name (if it is visible from its containing class)
and a target type (possibly with cardinality); if navigable, it is considered to be in
its source class and dependent on its target class; if not navigable, it is neither (a
non-navigable role while still part of an association, does not affect class
implementations. All association must have at least one navigable role).

5. Operation, consisting of parameters and a return type, contained in its defining
class.

6. Parameters parallel to the structure of an attribute, contained in the operation that
uses it. This creates dependencies similar to an attribute.

7. Return type containing the results of the operation, considered to be part of the
operation. This creates dependencies similar to an attribute.

Packages have dependencies upon one another based on usage. Any of the following
conditions will produce a direct package dependency between package A and package B:

3 Code list is an ISO TC 211 extension to UML.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 8

OGC 07-056r1

a) A class in A references a class in B by using it as:

1. the type of a attribute

2. the target of a navigable association role

3. the link class of an association that has one of these navigable role

4. the key class for a navigable association role

5. the type of a parameter used in an operation

6. the return type of an operation

b) The package B is one of A's subpackages

Other package dependencies (indirect) will arise from the transitive closure of the above direct
dependencies. That means if A depends on B, and B depends on C then A depend on C. Since
these indirect dependencies will show up in the cascade of included conformance tests based
solely on the direct dependencies, we can ignore them for affects on structure.

Since a package can consist solely of other packages, there is always the capability to define in
a UML a single package that will correspond to a particular test suite module. All test modules
in a conformant standard will be associated to one and only one UML package. If the core
module contains only constraints, it may be an exception to this constraint. If two packages
have a two-way dependency, they will be contained in the same module. For example, if two
classes have a two-way navigable association, then these two classes must be (transitively) in
the same conformance module package.

Assuming all legitimate direct packages dependencies are included in the UML model, the
conformance module associated to a package A will directly reference the conformance
module associated to another package B, if and only if A is dependent on B. Indirect
dependencies will be dealt with as the conformance classes cascade.

7.4 XML Schema

XML Schema is defined by W3C. Each XML schema file (.xsd) carries a namespace
specification. The XML Schema specification lists those namespace and schema resolution
strategies that a schema aware process may use. They work in a predictable fashion if and only
if the schemas are in a one to one correspondence to their namespace. Schemas may be
dependent on other schemata and may contain inclusion directives that load those schemata
whenever they are loaded.

XML schemas are truly independent only if they are in different namespaces. XML schema A
is directly dependent on XML schema B if and only if a valid schema parser will validate
schema A only if contains a reference (include) for schema B.

If a standard defines a set of schemata, it shall associate each schema with a well-defined set
of namespaces (usually only one). If a standard defines constraints against a yet-to-be-defined
set of schemata, it shall associate each schema to a namespace variable. A namespace set
referenced in the standard's conformance test suite shall be referenced by a namespaces or
namespace variable from the standard. Most text modules should contain one and only one
namespace, but especially if there are two-way dependencies between namespace, it may be
necessary to associated a test module to multiple namespaces. In no case shall a single
namespace be directly included in two modules. By Clause 6.2.3, no module shall modify
elements, types or any other aspect from a namespace to which it is not associated.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 9

OGC 07-056r1

Each conformance module of an XML schema organized standard shall be associated to a
particular namespace set. No namespace or namespace variable shall be assigned requirements
in two different modules.

7.5 SQL

The organizing sets of SQL type definitions are schemas. An SQL organized specification will
treat these schemas in an analogous manner as defined above for XML namespaces.

Each conformance module of an SQL schema organized standard shall be associated to a
particular schema set. No schema or schema variable shall be assigned requirements in two
different modules.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 10

OGC 07-056r1

Annex A
(normative)

Abstract Conformance Test Suite

A.1 General

The conformance requirements are contained in Clause 6.

A.2 Conformance Class: Modularity

A.2.1 Conformance classes are Modules

a) Test Purpose: Verify that all conformance classes contain no optional tests

b) Test Method: Inspect the document.

c) Reference: Clause 6.2.1

d) Test Type: Conformance.

A.2.2 There is a Defined Core

a) Test Purpose: Verify that there is a modular test that defines a core module, and that all
general conditions in the standard are tested by the core.

b) Test Method: Inspect the document.

c) Reference: Clause 6.2.2

d) Test Type: Conformance.

A.2.3 Modules test all requirements

a) Test Purpose: Verify that all requirements in the normative clauses are tested in at least
one conformance class, and that no module redefines or adds tests that would restrict or
modified the requirements of another module.

b) Test Method: Inspect the document.

c) Reference: Clause 6.2.3

d) Test Type: Conformance.

A.2.4 Profiles (subsets of the base) are modules

a) Test Purpose: Verify that subset profiles are defined only by the listing of conformance
test to be performed.

b) Test Method: Inspect the document.

c) Reference: Clause 6.2.4

d) Test Type: Conformance.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 11

OGC 07-056r1

A.2.5 Extensions are modules

a) Test Purpose: Verify that all extensions of the subject standard are required to conform to
this standard

b) Test Method: Inspect the document.

c) Reference: Clause 6.2.5

d) Test Type: Conformance.

A.2.6 Options are modules

a) Test Purpose: Verify that the only option in any conformance class is to apply a class' test
or to not do so.

b) Test Method: Inspect the document.

c) Reference: Clause 6.2.6

d) Test Type: Conformance.

A.2.7 Modules intersect only by reference

a) Test Purpose: Verify that each aspect is directly in only one module, and that any other
use is by a reference by a module that another conformance class must also be satisfied.

b) Test Method: Inspect the document.

c) Reference: Clause 6.2.7

d) Test Type: Conformance.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 12

OGC 07-056r1

Annex B
(normative)

Changes required in the OGC Specifications

B.1 Existing standards and specifications

This standard does not apply to existing specifications nor those adopted before its adoption.
This standard shall apply to new major versions of such specifications.

Failure to conform to this standard should be specifically noted and reasons given for such
non-compliance in the conformance clauses of any new or new version of such specifications.
Adoption of such documented not compliant with this standard shall be considered as an
authorized exception to the requirements of this standard by the OGC. This "exception by
majority vote" will be a valid approach only before the 1-year anniversary of the adoption of
this standard.

B.2 New standards and specifications

Any new standard, specification or major revision of an existing standard shall comply with
this standard in the structure of its internal models and its conformance tests.

Failure to conform to this standard should be specifically noted and reasons given for such
non-compliance in the conformance clauses of any new or new version of such specifications.

Adoption of such documents not compliant with this standard shall be considered as an
authorized exception to the requirements of this standard by the OGC. This type of
"exceptions" will be considered as an exception to the rules of the OGC and will require a 2/3
majority of all the voting members of the Technical Committee. A similar vote is required
within the Planning Committee.

This vote is a vote to override the rules of the consortium, and not a vote on the merits of the
proposed specification which has failed to conform to this standard. Voting to override the
rules carries no intellectual property implications in addition to that consistent with a non-
participating member role for the proposed specification as provided in the TC PnP.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 13

OGC 07-056r1

Annex C
(informative)

Standards Metamodels

This annex contains information and arguments that first circulated in the OGC Architecture
Board. It does not necessarily represent a full consensus of the OAB, but does justify the
approach taken in this standard. This annex is needed since the rest of this standard is written
as a standard, a lot of what to do but very little why to do it.

C.1 Abstract

One topic that increasingly the center of debate in the OGC is how to structure a standard or
set of standards so that they are used to the widest extent possible and in the most useful way
possible as defined by the OGC’s core mission statement. To inform and expedite those
discussions, we need to have a common conceptual model for how we need to put together
specification for use in standardization, and how those standards should be factored, extended
or profiled to meet this need.

The first step in such an endeavor is to establish a common vocabulary and a common
methodology for analyzing a standard’s structure – either new or existing. We need to do this
because this is what a standard is – a conceptual model of a domain against which criteria and
constraints can be crafted. Thus a standard for writing a standard is a model of a model or a
metamodel. To document this is an attempt to explore the standards metamodels that the OGC
already has in use and to determine which criteria and constraints on those metamodels best
serve our purpose.

This paper is divided into three parts:

1. A proposed model of how standards are constructed and how they relate

2. A survey of the most common patterns seen in standards and how the model above
describes the differences in these patterns.

3. An investigation of the perceived properties of these standards patterns as they affect our
core mission – “useful standards being used usefully”.

This is not a pure logical construct and the behavior patterns of both the writers and
implementers of standards will affect these properties and will affect our perception of these
properties. This paper will not “solve” the problem, but will point a way to the discussion that
will at least arrive at a consensus of what the problems and potential problems are in the
domain of writing the standards we are writing.

C.2 A little bit of history

The concept of a “standard metamodel” or a model of how to write standards arose out of
discussions in the OGC Architecture Board. There were several issues that revolved around
how specifications in the OGC standards baseline have been put together, how they are
received and implemented, and how the resulting systems interoperate. The following surface
issues all seem to have this conceptual framework at their core:

1. How can an existing standard be extended if that extension exhibits a conceptual
dissonance with one of the base standards original parts? For example, how can the

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 14

OGC 07-056r1

new Observation and Measurement (O&M) XML based candidate specification be
properly integrated with GML 3.2, which already has a different (possibly not
incompatible) O&M model implementation. Can the two coexist or should GML be
modified to affect the change in itself originally set forth as an extension.

2. Why is community perception of a particular standard being overly complex not
diminished with the advent of simple profiles? Is there a better way than we are using
to construct base standards and profiles that will be better received in the market? This
issue arose separately within the context of WFS and of GML.

3. How can a standard be written so that there is a natural and easy point-of-entry
application that can successfully and usefully be implemented by neophytes so that the
larger structure gain “market” acceptance in the broader non-core GIS market? This
may be a variation of the above issue.

C.3 Basic Model for Standards

To understand how standards should be structured and related to one another, it is logical to
produce a model of the items to be constructed so that aspects of that construction can be
analyzed, and best practices can be “discovered” and, in their turn, standardized.

Several fundamental relationships that create dependencies between Standards are:

1. “profile” where a profile is a proper subset of its base standard and

2. “extension” where the extension logically includes the entire core. This includes such
things as “application schemas” which define extensions of the concepts in the core
specification. For example, CityGML is an extension of GML, within the XML
Schema metalanguage, but consistent with the GML “rules for application schemas.”

3. “reference” where one standard normatively adopts in whole or in part, the aspects of
another standard.

4. “factor” or “part” where a larger standard is broken down internally into parts that
supply a default factorization of the aspects of the overall system being described.

5. “implement” where a software module (here represented by a UML package)
implements a “part” of a standard.

Right away we are in trouble since “implement” really needs to be against an object, not some
subset of an object. For this reason, we will represent the parts of a larger standard as
standards in their own right, even though they are sometimes not separate documents, but
specified by conformance classes within the parent standard. This includes such things as
“optional” aspects in a standard, which in their nature allow bifurcation of the classic ISO
concept of a conformance class – to not do an optional is one class, to do it is another. This
“modularization assumption” where conformance classes (levels) can be seen in the software
modularization is not a logical necessity, but it so resembles that which is done, the no
discernible difference in the logic should be seen.

This basic model is given in Figure C.1. It should be noted that the targeting of the base class
“Standard” by the roles “base” and “core” mean that these associations can be recursive, and
thus for example, the same instance standard can be a profile of one standard, and the base of
another profile. The same is true for recursion on extensions (an extension can be extended).
Further, profiles can be used as core to extensions. For these reasons, the concept of “base”
and “core” should not be seem as absolutes but a distinction of usage. Any standard can:

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 15

OGC 07-056r1

• Be a base if it is profiled.

• Be a core if it extended.

Figure C.1: Basic relationships of standards

If the factors of a standard correspond to separable conformance classes, we can now think of
standards being separable. That is, if a parent standard contains conformance classes that allow
a factor to be conformed to independently of the parent; we can then consider the factor as an
independent standard, and the parent as an extension of the factor. For example, in ISO 19107,
which is the geometry volume of the OGC abstract specification, there are conformance
clauses of a variety of implementation, including one that fits Simple Features, one that fits
GML, and others that add extensions for applications for Road design (include clothoids).
From this we can define a canonical form of object graph where separable factors are
distinguished elements while non-separable parts are not. For the purpose of this discussion,
we will think of parts (factors)according to the concepts of extension and profile depending on
whether the parts are separable or not. Thus a fully factorable standard is really a set of core
standards (maybe only one) and a set of extensions, where a non-factorable standard, with
profiles that cannot be really exist independent of the base standard, is really a base standard
with some number of profiles.

Care must be taken in doing this analysis, since form is not the only thing involved in this
separation. For example, the main parts of GML are in one namespace, and thus because of the
defined XML Schema namespace resolution strategies, GML parts are distinguished as
separate schema files within the same namespace are not separable factors. As such they must
be “profiled” from the base GML standard to have a pseudo independent existence, but even
then they are somewhat tethered back to GML by the “profile has same namespace”
conformance criteria in the GML specification. This means that even though the various parts
of GML are only semi-independent, as major modifications to only one part forces GML to
step the version of the parent schema, and thus all of the parts. The caveat is that independence
of parts has to take into consideration aspects that may not be visible in the parent standard,
but are in normative references used as structure.

If we think of a standard as containing atomic aspects of information about its subject, then
profile, extension and factoring fundamental relations are subsets of a subset relation based on
these “atomic aspects” of this information. A profile or factor is a subset of its base or parent
standard. A core standard is a subset of its extensions (inclusion in this case is by reference).
Using a Venn diagram representation of this set metaphor, when we create a profile or
extension of an existing standard, we get one of the following cases:

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 16

OGC 07-056r1

New Extension

Core

Base

New Profile

Figure C.2: Extension and Profiling as Set Relations

The real difference is in the order in which the two standards are written, and the manner in
which they reference one another.

• Extension.date ≥ Extension.core.date
(the “smaller” core is published first;
an extension cannot exist without a core)

• Profile.date ≥ Profile.base.date
(the “larger” base is published first,
a profile cannot exist without a base)

This means that under normal circumstances, the inclusion of one standard in another (as sets
of aspects) for a core-extension relation agrees with the age of the specification, i.e. the
smaller core is older. For a base-profile relation, the smaller profile is newer.

One could argue that if all details are known, then the publication order can be controlled and
should not matter, but the deciding requirement is that a standard cannot reference another
standard until it exists. So we have the following driving reference requirements:

• X in Extension.core ⇒ X in Extension.reference
(reference are from the larger extensions to the “smaller”
core)

• X in Profile.base ⇒ X in Profile.reference
(references are from the “smaler” profile to the “larger” base)

Note: The terms “larger” and “smaller” refer to the size of the logical content as a collection of “aspect” information,
and not to the size of the documents.

Another way to look at this issue is to consider the standard producing process model. If a
standard can reference standards as yet not written, (say via a registry) then we could build an
extension hierarchy (rooted at a core, and each step branching out to its extension). If we then
take the base as the logical union of the leaves of the tree, and the core becomes the ultimate
profile we get a profile tree as the inversion of the extension tree.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 17

OGC 07-056r1

C.4 Software implementations of standards

The relationship between standards and software products, at least the default logic, should be
to implement each incremental expansion of functionality by extending the existing software
packaging modules in a manner that parallels the standards structure. This is not the only way
to get conformance, and in some standards based on “best engineering practice” many
software modules may predate the standards to which they are compliant.

For the sake of the narrative, let us consider the software design of the module a type of
“private” standard, specific to the implementor of the software. As such, it has to be an
extension of each standard to which the software module will be conformant.

If M a ModuleDesign, S a SoftwareModule then
 S.design = {M} ⇒ M.core = S.implements

Figure C.3: Software Package implementing Standard

When we look at UML packages for the implementation of a specification, and look at core
and extension we get what is referred to as a temporally covariant functor that is:

For M1 and M2, SoftwareModules, and S1 and S2, Standards then
[M1.implements S1 and M2. implements S2 and M2.extends M1]

⇒
[it is possible that S2 extends S1 (that is S2.core = S1)]

This means that it is feasible to build UML packages in the manner suggested by Figure . Note
that the newer software module (which is an extension of the older module) corresponds to the
newer standard, an extension of the older core standard.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 18

OGC 07-056r1

Figure C.4: Default relation between software extensions and standards

The same diagram for base and profiles is temporally contra-variant. Thus, if we are to
structure software to take advantage of object extensions, we get Figure :

Figure C.5: Default relation between profile implementation and standards

If the larger, older standard is implemented to get maximal code reuse, it has to be
implemented by the newer software module (an extension of the module implementing the
profile). Under normal practice (implementation of standards in the order they are written, and
a lag between base standards and profiles) this would not happen, and hence the natural
modularization of the implementation of the base standard based on the way the profiles will
factor it, is impossible unless all of the profile standards are published at the same time as the
base standard, essentially as factors (preferably separable) of the base standard.

C.5 Standards metamodels

From what was discussed above, we will try to describe the way to specify the relationships
between standards that are paralleled in the object-oriented concepts of extension. For this
purpose, there are at least two simple forms of groupings for related standards, for this paper
we will refer to the two metamodels as described above as:

1. Core and Extension

2. Base and Profiles

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 19

OGC 07-056r1

The Core and Extension model builds a minimalist "simple" core specification - one that
logically everyone must use to even think about working in the arena. The Core is then
augmented via extensions, each extension addressing a specific set of requirements. A user
assembles the core and those extensions needed, and adds local extensions (such as feature
definitions, property types, etc.) to create what 19109 calls an Application Schema.
Chronologically the default logic would be that the Core is written first, and the extensions are
added as needed.

The Base and Profiles model builds an all-encompassing specification - one that covers a
broad area and includes solutions to all of the most common interoperability issues. The Base
is then cut back to a subset (restricted) to form a Profile (as defined in ISO/TS 10000). A user
selects (or constructs) a profile, and adds local extensions to create an Application Schema.
Chronologically, the default logic would be that the Base is written first, and the profiles are
added as needed.

These examples obviously do not form an exhaustive list of metamodels. It is possible to
imagine a central standard that is both the Base of a limited number of profiles, and the Core
of all future extensions. It is also common for a Base standard to be written as a collection of
separable factors as described in Figure C.1 which can then be combined into profiles via a
simple selection. This is essentially a core-extension model since the base is pre-factored into
a useable core with predefined extension (this is how the ISO REL (rights expression
language) ISO 21000-5 is structured).

Examining the extremes is useful since it begins to enumerate the parts that will get involved
in the eventual balancing act of optimization (which will depend on criteria currently not
determined).

The "Core and Extension" metamodel is precisely how mathematics is built. Everyone starts
out learning to count - the Core is the Natural Numbers (1, 2, 3,) with a "next" function.
Simple arithmetic adds addition and subtraction, which leads to issues of negative numbers
which leads to the Integers. We add multiplication and then divisions (quotient and remainder
style), which brings up issues on "parts" and so we get the Rational Numbers. We add
symbolic problem statements (algebra) and geometry, and then coordinate geometry, and
discover not all "numbers" are rational, like the square root of 2 or PI. We get to the Real
Numbers. Then in turn, we add functions and get to Calculus, we add the square root of minus
1 and get Imaginary numbers, and thence complex calculus; we add multiple dimensions
product spaces and get Vectors and Vector Calculus. And so on. Note that everyone uses the
same counting techniques, regardless if they know any of the other stuff.

The "Base and Profile" metamodel starts with a "Theory of Everything" and culls out useful
subsets as profiles. Since there is no viable "Theory of Everything." we usually get an
approximation "as best as known at the moment" and so every example eventually devolves
into a "really big core, profiles and extensions" as we learn things we did not know before.

C.5.1 An equivalence Lemma:

Before we begin the discussion, we need to observe one basic fact noted earlier:

LEMMA
Given a completed set of specifications, the two metamodels can support exactly the
same things in terms of the content of the standards documents.

Essentially the Base of the second model is the union of the Core and all the extensions of the
first model, and the various pieces of profile in the second, will eventually define a core and

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 20

OGC 07-056r1

set of extensions for the first. The Core is the interaction of all profiles, and the extensions are
the various differences needed to construct a profile hierarchy.

One might be tempted to go for a pre-modularized Base, and build profiles based on
combinations of these modules. This will work only if the factoring of the Base is a priori
obvious and if profiles can successfully be restricted to combinations of modules. If this is
possible, and there is no external consideration that would force the Base’s factors to be not
separable, then this design model may give the advantages of both, with a minor restriction on
how profiles are to be defined (via selection of predefined parts, as opposed some uncontrolled
decomposition independent of the Base’s conformance classes).

C.5.2 Core and Extension advantages:

The biggest advantage to using a smallish core and multiple extensions is the ability to build in
a "curriculum" of evolving functionality. Just like the Math Curriculum in schools systems, the
core has to be minimalist and thereby easy to understand and implement (a metaphorical
learning process). By starting with a very small core, we lay out step by step migration paths
where users (here probably application implementors) can migrate to the complexity they need
by picking and choosing among extensions. What you have is a set of specifications that can
grow without bounds (just add a new extension if you need it, and can get the votes) but need
only be implemented in parts based on the extensions. A universal implementation (one that
covers everything) is universal only until the next extension hits the list. This is fundamentally
the temporal argument for Figure C.4.

From a flexibility point of view, this is an ideal configuration. As new uses and requirements
are discovered, new extensions come into being, and only those who need it, implement it.

C.5.3 Base and Profiles advantages:

The biggest advantage is predictability. At the beginning you define your universe - the base,
and folks who want to be all things to all people implement the base. They can then handle all
profiles, as long as they do not need to distinguish between them (unless they are separable
factors as discussed earlier).

This works best for systems where the basic requirement is that everything must works on day-
one of operation. To do this “day-one” gets postponed until everything that may affect the base
specification has been handled. Welcome to the world of government procurement.

C.5.4 Default hybrid approach

As can be seen from the discussion above the distinction between the two metamodels can be
only a matter of attitude. As a hybrid solution, a pre-modularized base made of separable
factors recognized in the conformance classes can fit both models. This is in opposition to
defining a universal, seamless base. The unfactored base standard can create two potential
problems:
4. Complexity hinders Modification

5. Extensibility is Mandatory (see C.10.1.1).

It is obvious that a large complex specification is harder to fix than a small one. The suggested
hybrid solution is to pre-factor the base into a core and a set of extensions. These seams act
somewhat how the bulkheads in a ship work: they limit damage to small (hopefully fixable

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 21

OGC 07-056r1

areas). They also provide a modular means to build profiles by the simple selection of the
predefined modules.

C.6 Fundamental Conclusions

A more formal argument is given in C.7, but there are some fundamental conclusions that are
intuitive from the discussions above.

C.6.1 The design of good modular code is core + extensions

This is object programming 101, but it does not imply that specification must be written to
parallel the design of the code or system that implements it. But that is what happens most of
the time. Case in point is the ISO TC 211 standards, many of which are behavioral in nature.
As such they describe distinct behaviors that are exhibited by the elements of a systems, but do
not imply any correspondence of that behavior to specific instances in the system.

C.6.2 The design of a good standard must fit core + extensions

Design and standards have the same form

QED

C.7 The root source of interoperability.

The most basic question is "what is the source of interoperability?" The long-accepted
paradigm in standards creation has always been "common things done in a common manner."
There is no reason to change that position. But this says the Base can never be the true source
of widespread interoperability because it does not address the primary question of "what things
are common among small groups."

In this case, the ‘80-20 rule’ usually applies, i.e. 80% of the work is covered by 20% of the
design. This means a Core covering only one-fifth of the aspects of the rhetorical "theory of
everything" will probably cover 80% of the interoperability needs. A Base specification is
therefore a classic case of diminishing returns.

• The first 20% covers 80%,

• the second 20% covers 80% of what's left, or 16%,

• the third 20% covers 3.2%, and

• A 60% Base covers 99.2% of the interoperability problems encountered, a better score
than anything we have, and still 40% to go.

But, there is a second problem. The second 20% of the Base is twice the work of the first 20%,
and it gets worse. That is because the first 20% is the obvious stuff, the stuff that everyone has
been doing for years, and have come to some ilk of a consensus in figuring out how to do it.
That second 20% starts to get into things most folks don't do often enough to really care if they
line up with other folks, and begin to contain what marketing wonks refer to as
"differentiators" which are things the vendors do differently just so they can claim "cutting
edge" technology - even though truth be known, it is more often "bleeding edge" technology
with a fairly short life-span.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 22

OGC 07-056r1

I would argue that the more a Core contains, the less likely it is to be Core-quality stuff. A
small 20% Core probably reflects a complete consensus, and the extensions become the
proving grounds for the "cutting edge." The cause of interoperability is better served by the
20% Core that truly reflect consensus than by a near 100% Base that is inherently unstable
because it contains "bleeding-edge" technology that tomorrow will be truthfully referred to as
"so yesterday."

C.8 Formal Description

The paper covered the definition of the two specification metamodels; this one extends the
discussion to what impact the models have on use, implementation, market and mechanisms of
adoption by various participants in the processes.

Being the Mathematical type, I'll state my conclusions as Definitions, Lemmas and Theorems,
and summarize the line of reasoning behind them as informal proofs.

C.8.1 Definitions

C.8.1.1 simpler (of two alternative designs)

requires less effort to implement, including but not limited to efforts to understand the
specification and to actually design and implement the part of an application for which the
specification applies.

Note: Because simpler has the implication of smaller, we will treat it metaphorically like “less than.” Hence, its
opposite “more complex” works like “greater than.”

C.8.1.2 simple

lower limits of comparison “simpler”

Note: That is one that is simpler than the majority, if not all of the examples,

C.8.1.3 complex

extreme opposite of simple; the upper limits of the comparison “simpler”

C.8.1.4 player:

person or group of people working in organization who are really good at doing that work

Note: From a belief that a master of a discipline will appear to act with his natural intuition in such a manner as to
appear to be “playing at” the discipline for which he is a master.

C.8.1.5 core player:

player in the current market, with both a knowledge base (usually people, mostly designers
and engineers), and an implementation base (code that works and is commercially viable)

C.8.1.6 implementation base

owned store of source code for the discipline that works and is commercially viable

C.8.1.7 knowledge base

store of knowledge about the discipline

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 23

OGC 07-056r1

Note: A knowledge base usually consists of people who are masters of the discipline, in this case mostly designers and
engineers.

C.8.1.8 new player:

player who is not a core player

Note: A new player has the ability, but not necessarily the implementation or knowledge base to be a core player. In
some cases this is a distinct advantage, since implementations have to be maintained, and what is perceived as
knowledge may be really be “old but mistaken belief.”

C.8.2 Theoretical Conclusions

C.8.2.1 LEMMA: Complexity within a specification favors adoption by
core players, but is a barrier to new players.

The argument here is quite simple: a complex specification requires a larger implementation
than a less-complex one. A specification that is aligned with "classical" knowledge can
leverage existing code, design and expertise. Thus, a specification that uses what is commonly
known allows existing players to leverage knowledge base and code base advantages in
implementation. Since a complex specification is most likely to leverage common practices or
concepts; they will tend to give advantage those already in the game as opposed to those not in
it, i.e. potential new players.

C.8.2.2 COROLLARY: Extreme simplicity within a specification favors
new players over existing core players.

This one is actually a result of the previous one, but may be non-obvious to those unfamiliar
with the way most software engineers work, and a phenomena associated to the over-
abundance of tools. Suppose we have a simple specification that can be implemented from
scratch without much effort. Both the new player and the core player can implement the thing
in a vacuum without much trouble. For the sake of argument, let's assume that the effort of this
phase is about equal (we'll use that as the definition of "extreme simplicity"). Now a new
player is finished, but the core player is not, because he now has to integrate the new
functionality (or the new interfaces to the old functionality) into the existing commercial
products, and often wait some time for the "next release" of part of that core before can release
the "new product or functionality." Depending on how modular his old stuff is, this might be
easy or hard, but it is not the "zero-work" issue that it is for the new player.

There is a second phenomenon at work, which might be called the "full toolbox paradox."
Given a simple task, a true expert may use more tools that are needed to accomplish it whereas
the neophyte might look for a simpler solution, using his limited tools and find it. For example,
in the 1950's cortisone was the new arthritis wonder drug, but very expensive, because it
required a long and complex chain or organic chemical reactions. In 1953, a little know
company called Upjohn in Kalamazoo, Michigan trumped all the great organic chemistry labs
by finding a common mold that would collapse most of the steps into a single fermentation
step. Given a simple, easy to understand specification (like the chemical structure of a new
drug like cortisone), there is always the chance that a single inventive solution derived from a
fresh look at the problem will out-perform all existing implementations. After the process was
up and running, the cost of cortisone dropped from “10 times more than the same weight of
gold” to a more favorable comparison to aspirin.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 24

OGC 07-056r1

C.8.2.3 THEOREM: Core and Extensions Metamodel standards give
simpler specifications for the same functionality as Base and
Profile Standards.

The argument is that since Base and Profile standards have to "build down" to a specific level;
that they require the reader to understand not only what is being done, but also what is not
being done (i.e. parts of the Base eliminated from a particular profile and why they were
eliminated). Core and Extension standards only require understanding of what is being done.
This may not affect the implementation effort, but does slow the understanding and design
effort.

C.8.2.4 CONJECTURE: Core and Extension Metamodel standards
favor the extension of the GI market to new players and thus, to
some extent, undermines the advantage of current core player.

The first part of this is a direct result of the above discussion; the second part is conjectural,
because it can be over-ridden to some degree by acceptance of the new rules by the designers
and software engineers of the core players involved. It also can be overcome by the "head-
start" that participants in the specification process can "pre-learn" and "prototype" the new
paradigm while it is being designed (the period during the writing of the specification,
especially if a test-bed or interoperability initiative or experiment is involved), giving them an
advantage if they are willing to take it. Thus, the conjectural part is dependent on the mind-set
and the level of participation of the core player. Since "forewarned is forearmed" the core
players willing to participate fully in the "standards setting body" that is writing the
specification, may still have a time advantage, as great or greater than the advantage dependent
on their better implementation base. That means that the "some extent" of the second clause
may ultimately go to zero or even flip to an advantage to the "participants" in the process -
usually the core players.

Finally, there is a connection to the "core mission statement" discussions:

C.8.2.5 COROLLARY: The Core and Extension Metamodel standards
approach favors the expansion of the GI market well beyond the
current GI core players.

C.9 Standards Creation Scenarios

This section describes some specification-creation scenarios, and how they might work and
why.

C.9.1 CASE 1: You have a viable "Theory of Everything" (a complete
reference model) - at least for the industries you are worried about.

In this case, you can go either way.

A Base specification would be feasible because you have your Reference Model finished and
you know which things need to be covered. It would be a bit of long job, but essentially
doable. Then you get to start profiles. In each profile, you start with the Base specification and
start hacking things off of it. To understand a profile properly you need a grasp of the base,
and an understanding of why things were kept in the profile, and why things might have been
whacked off. In other words, a proper understanding of the profile may be actually more
complex then understanding the base, mainly because you are doing a negative requirements
analysis, i.e. you are not only finding out what you need, you are also finding out what you

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 25

OGC 07-056r1

don't need, in spite of the fact that the "High and Mighty Guru and Avatar of All Knowledge"
(the writers of the Base) told you in the Base specification that the thing your are rejecting was
a fundamental part of creation. Okay, I overcooked the metaphor, but it works for me.

In a Core and Extension specification, you could still write a Base specification, but put it in
Volumes so that the seams between things are obvious. This is pretty much what ISO 21000:
MPEG-21 did. They wrote a 14 part specification, and some parts had parts (ISO REL has 3 -
basic, standard extensions (a bit of an oxymoron), and multimedia extensions). Building an
Application schema is then fairly easy - start with the Core (identified as being used by
everyone), and pick extension based on need, and create extension only if needed by the
"special case" of your particular application.

One could argue that this is no different than the previous approach but, there is a difference in
that the classical Base specification does not come in modules - the Core and Extension model
does. If this is the case, the profile process has to inspect every aspect of the Base for
usefulness, but in the Core and extension, one has the choice menu pre-divided into modules
and building your brick wall of an application schema is simply a matter of picking out the
bricks you need.

C.9.2 CASE 2: You do not have a viable "Theory of Everything" - at least
not one that covers everyone's idea of everything.

This is actually where we are. Regardless of the "Abstract Specification" process, we have
never completed our model of all of GI science - which may be an inherently impossible task,
and so we may not need to be too hard on ourselves for not completing it. But we have what
we have because it reflects what we know at the moment.

This is really hard for a Base and Profiles model. Since the Base is never complete, it gets
modified from time to time (always more often than you want - or planned for - see Murphy's
Law). This creates two distinct problems:

1. The Base is a large document, and unless modularized as "Core and Extension" can be
a really nasty thing to fix.

2. The Base is the source document for all the profiles, and a modification to the Base
(especially one involving a "major revision") may have to ripple through all profiles,
cascading into the modification of a lot of very large documents (remember profiles are
inherently bigger than extensions because of the issues discussed above).

The only really viable solution to these issues is shifting to a more "Core and extensions"
model. The core should be one of the few documents that is referenced by all second tier
specification, and it should be the most stable of all. Additions to the extensions list affects no
current specification, and can lead to versioning of such only if the application level
specification finds it needs the new functions. If extensions are part of the application
specification process, most of the new additions should arise from local extension being
accepted into the global pantheon. Core and extension modification is a much more elegant
and much less disruptive process than a modification of the base.

C.10 Einstein’s 2-cents worth

Einstein is purported to have said:

Everything should be made as simple as possible, but not simpler.

Fortunately for Einstein, he did not have to define "simple" nor build a comparison operator.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 26

OGC 07-056r1

Regardless of which specification metamodel you pick, you run into this problem at some
point. In building profiles of a base document or building extension of a core document, you
have to choose modular boundaries that make sense. One "advantage" of the base and profile
model is that each profile can redefine it building blocks by refactoring the base document.
One "advantage" of the core and extensions model is that you do not have to factor each time,
since the modules (building blocks defined by the extension boundaries) are defined in the
specification, and the application specification needs only to assemble them. So the difference
is taking a marble block and chipping away that which is not David, versus building a
skyscraper with understood, predefined and fixed components. (No concept of relative ease is
intended as I suspect a good building is as complex as a good statue).

Consider the example of GML. It is right to point out that this "finding the modules in the
marble" of GML is not a new task, and some of it was attempted in building GML as a
collection of files. We probably could take the factoring of GML into multiple files as a first
approximation to a core and extension alternative for GML if that is what we wanted to do.
But that is not the battle we should engage in now. We should be much more interested in the
question as a "go-forward" strategy as opposed to a "relive the past" exercise.

This is also reflected in the belief that the factoring of OGC technology into modules as a "do
what works" program, not a "derivation exercise from first principles." For example, I am not
sure I would want to factor geometry by coordinate dimension. Most of the distinction of
geometric computational complexity is a question of representation, not dimension. For
example, line strings and other linearly interpolations are easy in any dimension but splines are
not. A 2D spline curve is much more complex computationally than a 3 or 4D line string. I
believe that the flavor of Simple Features specification is much more in the restriction to linear
interpolation than the restriction to 2D for version 1. Going to version 2 did not represent an
issue for line strings in 3D, but we never even considered even 2D splines.

In factoring a domain into Core and Extensions, the real question is "where are the natural
breaks that get reflected in folk's products?" Say for example we had some number of
implementations of a generally equivalent type. We could then build a matrix cross-walk that
mapped functions in each to a common descriptive base. This would give us a base
categorization of the functions covered in the arena. The core is the collection of all parts that
everyone does, and the various extensions are things that some do and some others don't.
Building our common modules this way would mean that any two implementations that shared
common functions could interoperate using the module with those function in it, and each
vendor could completely categorized his functionality by listing the modules he supported.

C.10.1.1 Gödel Incompleteness Theorem and its role

Gödel (First) Incompleteness Theorem states:

For any consistent formal theory that proves basic arithmetical truths, an arithmetical
statement that is true but not provable in the theory can be constructed. That is, any
theory capable of expressing elementary arithmetic cannot be both consistent and
complete.

This seems a little out of left field, but it has important implication. It basically says that if you
construct a formal description of a discipline (consistent formal theory) of any complexity (it
is hard to avoid arithmetic, especially in a computer system design) then you either missed
something that is true that you can’t prove (not complete), or you’ve got a bug in your theory
(inconsistent statements that cannot both be true).

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 27

OGC 07-056r1

What that means for us is there is no “theory of everything” for our field or any field of any
complexity. So, a base standard that represents a “theory of everything” must be flawed in
some manner – it is either inherently buggy, or it missed something. This means any standard
will eventually have to be extended to cover something important it missed.

For the curious, the first known near example in Mathematics is the Continuum hypothesis (or
its negation, we do not know which). It is actually an undecidable in standard set theory. One
could add it (or its negation) as an axiom, but a statement about trans-infinite cardinalities
would seem out of place in a list of statements about set inclusion, and operations.

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 28

OGC 07-056r1

Bibliography

[1] Object Management Group (OMG), February 2007, Unified Modeling Language:
Superstructure, version 2.1.1 , formal/07-02-05, available from OMG.org at
http://www.omg.org/cgi-bin/doc?formal/07-02-05

[2] Object Management Group (OMG), February 2007, Unified Modeling Language:
Infrastructure , version 2.1.1 , formal/07-02-06, available from OMG.org at
http://www.omg.org/cgi-bin/doc?formal/07-02-06

[3] ISO/IEC JTC 1, ISO/IEC 9075:2003 -- Information Technology -- Datatbase Languages –
SQL.

[4] ISO/IEC JTC 1, ISO/IEC 13249-3:2006 -- Information technology -- Database
languages -- SQL multimedia and application packages -- Part 3: Spatial

[5] W3C, XML Schema 1.1 Part 1: Structures, 31 August 2006, available from W3C at
http://www.w3.org/TR/xmlschema11-1/

[6] W3C, XML Schema 1.1 Part 2: Datatypes, 17 February 2006, available from W3C at
http://www.w3.org/TR/xmlschema11-2/

Copyright © 2007 Open Geospatial Consortium, Inc. All Rights Reserved. Page 29

http://www.omg.org/cgi-bin/doc?formal/07-02-05
http://www.omg.org/cgi-bin/doc?formal/07-02-06
http://www.w3.org/TR/xmlschema11-1/
http://www.w3.org/TR/xmlschema11-2/

	Scope
	Conformance
	Normative references
	Terms and definitions
	Conventions
	Symbols (and abbreviated terms)
	Abbreviations

	Requirements
	Specification model
	Requirements
	Conformance classes are Modules
	There is a Defined Core
	Modules test all requirements
	Profiles (subsets of the base) are modules
	Extensions are modules
	Options are modules
	Modules intersect only by reference

	Mappings this standard to types of models
	Semantics
	Conformance Test Suite
	UML or other object models
	XML Schema
	SQL

