
OGC 05-102r1

Open Geospatial Consortium Inc.

Date: 2006-03-09

Reference number of this OGC® initiative document: OGC 05-102r1

Version: 0.0.5

Category: OpenGIS® Discussion Paper

Editors: David S. Burggraf, Stan Tillman

OWS 3 GML Topology Investigation

Copyright notice

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. It is distributed for review and comment. It
is subject to change without notice and may not be referred to as an OGC Standard.

Recipients of this document are invited to submit, with their comments, notification
of any relevant patent rights of which they are aware and to provide supporting
documentation.

Document type: OpenGIS® Discussion Paper
Document stage: Draft
Document language: English

http://www.opengeospatial.org/legal/

OGC 05-102r1

ii Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Contents

Preface.. vii

i. Submitting organizations ... vii

ii. Document contributor contact points ... vii

iii. Revision history.. viii

iv. Changes to the OpenGIS® Abstract Specification.. viii

Foreword... ix

Introduction..x

1 Scope..1

2 Conformance ..1

3 Normative references...1

4 Terms and definitions ..1

5 Conventions ..2
5.1 Symbols (and abbreviated terms)...2
5.2 UML notation...3
5.3 Document terms and definitions...3

6 Part 1: Galdos Topology Investigation ..4
6.1 Introduction to GML Topology..4
6.1.1 GML Nodes, Edges and Faces ..4
6.1.2 More Complex Topology Primitives ..6
6.1.3 Geometric Realizations..9
6.1.4 Spatial Representations of a GML Feature...10
6.1.5 Lossless Topology Representations in GML ...15
6.2 Introduction to Oracle Spatial 10g Topology..22
6.2.1 Oracle topology model...23
6.2.2 Building the topology...23
6.2.3 Querying the topology ...26
6.2.4 Oracle Feature and Topology Tables...26
6.2.5 Editing the topology...29
6.3 GML to Oracle Topology Development Approaches29
6.3.1 Build Spatial Topology Tables from Geometry (Oracle 10.2 only).................30
6.3.2 Direct Representation of GML in Oracle Topology ...33
6.4 Lossless Topology Representations in Oracle Spatial 10.2g37
6.5 Summary and Conclusions..38

7 Part 2: Integraph Topology Study ...39
7.1 Overview ...39

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. iii

7.2 Overview of topology ...39
7.3 Response to the Paper..41
7.4 GML: Transfer Format vs. Storage Format ..42
7.5 Complexity and Duplication Added by Topology...43
7.6 Summary...48
7.7 Possible Solutions ...48

Bibliography ...50

OGC 05-102r1

iv Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Figures Page

Figure 6-1: A Simple Two-dimensional Topology Network ... 4

Figure 6-2: Two Solid half-balls in the Co-Boundary of a Face ... 7

Figure 6-3: Complex Boundary Configuration of a Face.. 8

Figure 6-4: Geometric Realization of Topology ... 10

Figure 6-5: A Feature with Separate Geometry and Topology. .. 11

Figure 6-6: A Feature with Merged Geometry and Topology... 11

Figure 6-7: A Feature with Separate but linked Geometry and Topology 12

Figure 6-8: Sample Feature Collection.. 13

Figure 6-9: Bus Route Member of the City Feature Collection .. 15

Figure 6-10: A planar and non-planar road network with identical edges and nodes 16

Figure 6-11: Topology Network 1... 17

Figure 6-12: Topology Network 2... 17

Figure 6-13: PLA Structures are not Lossless on General Surfaces.. 20

Figure 6-14: A Lossless Representation of Topology Network 1 ... 21

Figure 6-15: A Lossless Representation of Topology Network 2 ... 22

Figure 6-16: Mapping Feature Tables to Topology Tables. .. 26

Figure 7.2-1 Data Edits and Impacts on Topology.. 41

Figure 7.4-1 Introduction of Nodes at Intersections.. 43

Figure 7.6-1 Topology Service.. 49

Figure 7.6-2 Optional Topology for any WFS .. 50

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. v

Tables

Table 6-1 Column Headings in the <topology-name>_NODE$ Table .. 26

Table 6-2 Column Headings in the <topology-name>_EDGE$ Table .. 27

Table 6-3 Column Headings in the <topology-name>_FACE$ Table... 27

Table 6-4 SDO_TOPO_GEOMETRY Type Attributes.. 28

Table 6-5 GML/Oracle Node Comparison.. 34

Table 6-6 GML/Oracle Edge Comparison .. 35

Table 6-7 GML/Oracle Face Comparison... 36

Table 6-8 Oracle Support for Features, Topology Expressions and TopoSolid............................ 36

Table 7.4-1 — Size Comparison of Small MSD3 Data Set with Topology.................................. 47

Table 7.4-2 — Size Comparison of Larger MSD3 Data Set with Topology. 47

OGC 05-102r1

vi Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. vii

Preface

Suggested additions, changes, and comments on this draft report are welcome and
encouraged. Such suggestions may be submitted by OGC portal message, email message,
or by making suggested changes in an edited copy of this document.

The changes made in this document version, relative to the previous version, are tracked
by Microsoft Word, and can be viewed if desired. If you choose to submit suggested
changes by editing this document, please first accept all the current changes, and then
make your suggested changes with change tracking on.

i. Submitting organizations

The following organizations submitted this document to the Open GIS Consortium Inc:

• Galdos Systems Inc.

• Intergraph Corporation

ii. Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Contact Company Address
D. Burggraf, PhD Galdos Systems Inc. 1300-409 Granville St.

Vancouver, BC
V6C 1T2
Canada

Darko
Androsevic

Galdos Systems Inc. 1300-409 Granville St.
Vancouver, BC
V6C 1T2
Canada

Stan Tillman Intergraph Corp.

OGC 05-102r1

viii Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

iii. Revision history

Date Release Editor Primary clauses
modified

Description

2005-31-08 0.0.1 S. Tillman All First draft
2005-25-10 0.0.2 S. Tillman All Incorporate comments from NGA and Galdos
2005-27-10 0.0.3 D. Burggraf All Incorporated content from Galdos

investigation, harmonized DIPR documents.
2005-12-21 0.0.4 D. Burggraf 4, 6 Documentation of Galdos GML to Oracle

topology development
2006-03-09 0.0.5 M. Kyle 7.5, 7.7 Update after GML WG comments:

• Using xlink would make a large
impact on the topology encoding size
that is documented

• An additional alternative to a
Topology Service is extending the
existing WFS specification

iv. Changes to the OpenGIS® Abstract Specification

The OpenGIS® Geography Markup Language Implementation Specification requires
changes to accommodate the technical contents of this document. In particular clauses
6.1.5 Lossless Topology Representations in GML and 6.3.2.1 Mapping GML elements to
Oracle Topology of this report provides suggestions for minimal changes to the GML
specification to meet the requirements of lossless topology representations in the plane,
which is supported by Oracle Spatial 10g. For more rigorous details on lossless topology
representations in the plane see ([3], Kuijpers). The suggested changes are summarized as
follows:

1. Introduce a mandatory requirement that a counter-clockwise cyclic order of
directedEdges be followed on Node instances (documentation change only).

2. Add an optional Boolean-valued attribute called universal on both gml:Face and
gml:TopoSolid. The contents of the Note of term 4.84 universal face ISO 19107
makes reference to universal faces and their use in applications:

4.84
universal face
unbounded face in a 2-dimensional complex
NOTE The universal face is normally not part of any feature, and is used to represent the
unbounded portion of the data set. Its interior boundary (it has no exterior boundary) would
normally be considered the exterior boundary of the map represented by the data set. This
standard does not special case the universal face, but application schemas may find it convenient
to do so.

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. ix

Foreword

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open GIS Consortium Inc. shall not be held responsible
for identifying any or all such patent rights.

OGC 05-102r1

x Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Introduction

The encoding and storage of topological relationships between geospatial features can
offer several advantages for the storage and retrieval of geospatial data. A few such
advantages are listed as follows:

1. Topological operations—the following questions can be answered using stored
topology: (i) Are two polygons adjacent? (ii) Are two nodes connected by path?
(iii) How many edges are incident at a node? (iv) What is the counter-clockwise
sequence of edges around a node? (v) Are there any gaps in the data?

2. Data integrity—policy enforcement can be put in place that does not allow certain
users to change the topology when updating feature data, e.g. roads can be
resurveyed but disconnection or reconnection is not allowed.

3. Topological algorithms such as routing applications can be applied directly on the
stored topology (using an OGC Web Processing Service or a database front-end
application). A weighted network graph (where the weights on edges might be the
curve length, expected travel time, scenic index, etc.) can be assembled from the
topology model together with the other properties of the feature members in the
collection.

Part 1 (Clause 6) of this investigation is conducted by Galdos Systems. In this part, the
OWS3 MSD3 geometric description is extended to include a topology encoding as
defined by the MSD3 schema. This MSD3 topology model makes use of the three GML
topology primitives: Node, Edge, Face, and the GML topological “expressions”: TopoPoint,
TopoCurve, and TopoSurface. This topology enhanced GML dataset is to be supported by the
Galdos Cartalinea WFS with an Oracle Spatial 10g database. The main purpose of this
investigation is to determine if the GML topology representation in Oracle topology is
lossless.

Part 2 (Clause 6.2) of this investigation is conducted by Intergraph Corp. and describes
and discusses the impacts of encoding topology within the GML data. Although this
study addresses a number of issues dealing with GML encoded topology, the basis for the
study is in response to the paper written by John Vincent and David Danko titled,
“Impacts of Topology on WFS Transactions: Observations from OWS2 Information
Interoperability Thread”.

OpenGIS® Discussion Paper OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 1

OWS 3 GML Topology Investigation

1 Scope

This OpenGIS® document consists of two parts.

Part 1 (Clause 6) of this investigation is conducted by Galdos Systems. In this part, the
OWS3 MSD3 geometric description is extended to include a topology encoding as
defined by the MSD3 schema. The topology enhanced dataset is to be inserted into an
Oracle Spatial 10g database using the Galdos Cartalinea WFS. The main purpose of this
investigation is to determine if the GML topology representation in Oracle topology is
lossless.

Part 2 (Clause 6.2) of this investigation is conducted by Intergraph Corp. and describes
and discusses the impacts of encoding topology within the GML data. Although this
study addresses a number of issues dealing with GML encoded topology, the basis for the
study is in response to the paper written by John Vincent and David Danko titled,
“Impacts of Topology on WFS Transactions: Observations from OWS2 Information
Interoperability Thread”.

2 Conformance

Not required for an IP IPR, DIPR, or Discussion Paper.

3 Normative references

The following normative documents contain provisions which, through reference in this
text, constitute provisions of this document. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. For undated
references, the latest edition of the normative document referred to applies.

ISO DIS 19107, Geographic Information – Spatial Schema

OGC 03-105r1, OpenGIS® Geography Markup Language (GML) Implementation
Specification, Version 3.1.1, April 2004.

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

OGC 05-102r1

2 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

4.1 boundary
A set that represents the limit of an entity [ISO 19107]

4.2 edge
1-dimensional topological primitive (topological element) [ISO 19107]

4.3 face
2-dimensional topological primitive (topological element) [ISO 19107]

4.4 node
0-dimensional topological primitive (topological element) [ISO 19107]

4.5 set
An unordered collection of related items (objects or values) with no repetition [ISO
19107]

4.6 topology geometry
An Oracle term for a spatial representation of a feature or real world object

5 Conventions

5.1 Symbols (and abbreviated terms)

API Application Program Interface

COM Component Object Model

CORBA Common Object Request Broker Architecture

COTS Commercial Off The Shelf

DCE Distributed Computing Environment

DCP Distributed Computing Platform

DCOM Distributed Component Object Model

GML Geography Markup Language

ISO International Organization for Standardization

OGC Open GIS Consortium

UML Unified Modeling Language

WFS Web Feature Service

XML eXtensible Markup Language

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 3

1D One Dimensional

2D Two Dimensional

3D Three Dimensional

5.2 UML notation

Most diagrams that appear in this specification are presented using the Unified Modeling
Language (UML) static structure diagram, as described in Subclause 5.2 of the OGC
Web Services Common Implementation Specification [OGC 04-016r2].

5.3 Document terms and definitions

This document uses the specification terms defined in Subclause 5.3 of [OGC 04-016r2].

OGC 05-102r1

4 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

6 Part 1: Galdos Topology Investigation

6.1 Introduction to GML Topology

Topology is a branch of mathematics devoted to the study of the properties of spatial
objects that remain invariant under continuous deformation (i.e. “twisting” and
“stretching”). In GML, topology is encoded using the topology primitives—nodes,
edges, faces, and solids—together with a description of their connective relationships.
Topology in its purest sense is not concerned with the position nor the shape of nodes,
edges, faces and solids. Hence, GML topology is coordinate free, unlike GML geometry,
which explicitly encodes elements such as <pos>, <posList>, <coordinates>. However, GML
topology primitives, Node, Edge, Face, and TopoSolid, do have the option of being
geometrically realized by the geometry primitives, Point, Curve, Surface, and Solid,
respectively, using the GML Object/property encoding pattern:
TopologyPrimitive/property/GeometricPrimitive. In this way, the position and shape of feature
topology can be implicitly assigned. GML topology is primarily concerned with the
encoding of spatial relationships between the primitives and enables the explicit encoding
these associations, such as the isolation of a node in a face, coincidence of edges at a
node, bounding edges of a face, and the adjacency of faces and solids.

6.1.1 GML Nodes, Edges and Faces

Figure 6-1 shows an example of a simple topology model for a road network. This
example has three Nodes (A, B, C), four Edges (a, b, c, d) and two Faces (F1, F2)

A

C

B

c b

a

F1

d
F2

Figure 6-1: A Simple Two-dimensional Topology Network

The minimal instances of the nodes and edges are as follows:

<gml:Node gml:id="A"/>
<gml:Node gml:id="B"/>
<gml:Node gml:id="C"/>

<gml:Edge gml:id="a">
 <gml:directedNode orientation="-" xlink:href="#A"/>
 <gml:directedNode orientation="+" xlink:href="#B"/>
</gml:Edge>

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 5

<gml:Edge gml:id="b">
 <gml:directedNode orientation="-" xlink:href="#B"/>
 <gml:directedNode orientation="+" xlink:href="#C"/>
</gml:Edge>

<gml:Edge gml:id="c">
 <gml:directedNode orientation="-" xlink:href="#A"/>
 <gml:directedNode orientation="+" xlink:href="#C"/>
</gml:Edge>

<gml:Edge gml:id="d">
 <gml:directedNode orientation="-" xlink:href="#B"/>
 <gml:directedNode orientation="+" xlink:href="#C"/>
</gml:Edge>

In this example, the xlink:href attribute is used to reference Nodes that were previously
defined. The orientation attribute is used to assign a negative orientation "-" to some of the
nodes signifying that these nodes are at the start of the corresponding edge and positive
orientation "+" to signify that these nodes are at the end.

Note that each Edge is inherently directed by its start and end node but can be traversed in
two ways: positively or negatively. For example, the directed edge “+a” corresponds to
traversing the path along “a” from A to B and “-a” traverses the path from B to A. The
directed edge “-a” can be encoded in GML using the directedEdge property which uses the
orientation attribute "-", as shown below:

<gml:directedEdge orientation="-" xlink:href="#a"/>

One of the possible routes from A to B can be expressed as a TopoCurve in GML, which
contains a list of directed edges {+c, -b} forming a connected path. An example of this is
given in the following instance:

<gml:TopoCurve>
 <gml:directedEdge orientation="+" xlink:href="#c"/>
 <gml:directedEdge orientation="-" xlink:href="#b"/>
</gml:TopoCurve>

In GML, each face is defined by its boundary, which consists of a list of directed edges.
The directed edges in the boundary of each face are traversed in a counter-clockwise
direction (following the convention in ISO TC 211/DIS 19107 Spatial Schema) as
indicated by the arrow surrounding F1 and F2 in Figure 6-1. The orientation of each
directed edge in the boundary of a face is either “+” or “-”, depending on whether the
inherent direction of the edge agrees or disagrees with the counter-clockwise orientation
of the face. For example, the boundary of the Face labelled F1, which is traversed counter-
clockwise, corresponds to the directed edges in the set {c,-b,-a}. The minimal instance of
the faces are encoded as follows:

<gml:Face gml:id="F1">
 <gml:directedEdge orientation="+" xlink:href="#c"/>
 <gml:directedEdge orientation="-" xlink:href="#b"/>
 <gml:directedEdge orientation="-" xlink:href="#a"/>
</gml:Face>

OGC 05-102r1

6 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

<gml:Face gml:id="F2">
 <gml:directedEdge orientation="+" xlink:href="#b"/>
 <gml:directedEdge orientation="-" xlink:href="#d"/>
</gml:Face>

In Figure 6-1, b is the only Edge that has a face on either side of it, that is, both faces F1
and F2 contain the directedEdge b—with either a positive or negative orientation—in their
boundary lists. In this case, the faces F1 and F2 are said to be in the co-boundary of b. In
GML, the Edge primitive has an optional property called directedFace, whose value must be
a Face that is in the co-boundary of the Edge. In the case of planar topology, the left and
right co-bounding face of b is distinguished by assigning an orientation. A positive
orientation corresponds to the left face and a negative orientation corresponds to the right
face. Note that if the orientation of a directedFace in the co-boundary of an Edge is “+”, then
the Face must contain the directedEdge with the same orientation “+” in its boundary list of
directed edges. The encoding of the Edge b that describes its co-boundary information in
bold is as follows:

<gml:Edge gml:id="b">
 <gml:directedNode orientation="-" xlink:href="#B"/>
 <gml:directedNode orientation="+" xlink:href="#C"/>
 <gml:directedFace orientation="-" xlink:href="#F1"/>
 <gml:directedFace orientation="+" xlink:href="#F2"/>
</gml:Edge>

Similarly, each Node can be encoded with a co-boundary list of directedEdges to represent the
edges that are incident upon the Node. A positive orientation on directedEdge corresponds to
an edge that points towards the Node and a negative orientation corresponds to an edge
emanating from the Node. For example, the co-bounding edges of Node B from Figure 6-1
are encoded as:

 <gml:Node gml:id="B">
 <gml:directedEdge orientation="+" xlink:href="#a"/>
 <gml:directedEdge orientation="-" xlink:href="#b"/>
 <gml:directedEdge orientation="-" xlink:href="#d"/>
 </gml:Node>

6.1.2 More Complex Topology Primitives

The co-boundary of a Face is a list of directed TopoSolids. For example, consider the Face F
that represents the equatorial plane of the solid ball in Figure 6-2.

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 7

H1

H2

F

e

TopoSolid S2

TopoSolid S1

N

Figure 6-2: Two Solid half-balls in the Co-Boundary of a Face

The solid upper and lower half-balls are represented by the TopoSolids S1 and S1
respectively and taken together they form the solid ball shown in Figure 6-2. The
boundary of S1 consists of two faces, representing the upper hemisphere H1 and the
equatorial plane F. The TopoSolid S2 also has two faces in its boundary, F (with opposite
orientation as used with S1) and the lower hemisphere H2. The Face F and the two TopoSolids
S1 and S2 can be encoded as follows:

<gml:Face gml:id="F">
 <gml:directedEdge orientation="-">
 <gml:Edge gml:id="e">
 <gml:directedNode orientation="-">
 <gml:Node gml:id="N"/>
 </gml:directedNode>
 <gml:directedNode orientation="+" xlink:href="#N"/>
 </gml:Edge>
 </gml:directedEdge>
 <gml:directedTopoSolid orientation="+" xlink:href="#S1"/>
 <gml:directedTopoSolid orientation="-" xlink:href="#S2"/>
</gml:Face>

<gml:TopoSolid gml:id=”S1”>
 <gml:directedFace orientation="+">
 <gml:Face gml:id="H1">
 <gml:directedEdge orientation="+" xlink:href="#e"/>
 </gml:Face>
 </gml:directedFace>
 <gml:directedFace orientation="+" xlink:href="#F"/>
</gml:TopoSolid>

<gml:TopoSolid gml:id="S2">
 <gml:directedFace orientation="+">
 <gml:Face gml:id="H2">
 <gml:directedEdge orientation="+" xlink:href="#e"/>
 </gml:Face>
 </gml:directedFace>

OGC 05-102r1

8 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

 <gml:directedFace orientation="-" xlink:href="#F"/>
</gml:TopoSolid>

The shaded face in Figure 6-3 shows a more complex use of planar topology. The face F3
has an exterior boundary Edge e1 and interior boundary edges e2, e3, e4, and e5. There is
also an isolated Node N5 in the interior of F3 that is encoded using the gml:isolated property.

N1

F3

e1

e3

e2

N5

N4

N3

N2

e5

e4

Figure 6-3: Complex Boundary Configuration of a Face

The directed edges “+e1” and “-e3” each form a boundary ring (a simple closed loop in the
boundary) of the face F3 that agrees with the counter-clockwise orientation of F3. The
directed edges “+e2” and “-e4” together form another boundary ring of F3 in agreement
with the orientation of F3 and likewise, the directed edges “+e5” and “-e5” together form
another boundary ring. Notice that the “dangling” edge e5 has F3 on both the left and the
right and thus e5 occurs twice as a directedEdge in the following definition of F3, once with
positive orientation and once with negative orientation. The boundary ring {+e1} in this
case is referred to as the “exterior” boundary of F3 and the boundary rings formed by the
sets {-e3}, {+e2, -e4}, {+e5, -e5} are all considered “interior” boundary rings following the
convention used by ISO TC 211/IS 19107 Spatial Schema. Note that the notions of
“interior” and “exterior” in the context of boundaries are not explicitly encoded in GML
Topology unlike GML Geometry. Note also that any number of boundary rings can
intersect at a common Node, but boundary rings cannot intersect along a common Edge.
The Face F3 is encoded in GML as follows:

<gml:Face gml:id="F3">
 <gml:isolated>
 <gml:Node gml:id="N5"/>
 </gml:isolated>
 <gml:directedEdge orientation="+">
 <gml:Edge gml:id="e1">
 <gml:directedNode orientation="-">
 <gml:Node gml:id="N1"/>
 </gml:directedNode>
 <gml:directedNode orientation="+" xlink:href="#N1"/>
 </gml:Edge>
 </gml:directedEdge>
 <gml:directedEdge orientation="+">

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 9

 <gml:Edge gml:id="e2">
 <gml:directedNode orientation="-">
 <gml:Node gml:id="N1"/>
 </gml:directedNode>
 <gml:directedNode orientation="+" xlink:href="#N2"/>
 </gml:Edge>
 </gml:directedEdge>
 <gml:directedEdge orientation="-">
 <gml:Edge gml:id="e3">
 <gml:directedNode orientation="-" xlink:href="#N2"/>
 <gml:directedNode orientation="+" xlink:href="#N2"/>
 </gml:Edge>
 </gml:directedEdge>
 <gml:directedEdge orientation="-">
 <gml:Edge gml:id="e4">
 <gml:directedNode orientation="-">
 <gml:Node gml:id="N1"/>
 </gml:directedNode>
 <gml:directedNode orientation="+">
 <gml:Node gml:id="N2"/>
 </gml:directedNode>
 </gml:Edge>
 </gml:directedEdge>
 <gml:directedEdge orientation="-">
 <gml:Edge gml:id="e5">
 <gml:directedNode orientation="-">
 <gml:Node gml:id="N4"/>
 </gml:directedNode>
 <gml:directedNode orientation="+">
 <gml:Node gml:id="N3"/>
 </gml:directedNode>
 </gml:Edge>
 </gml:directedEdge>
 <gml:directedEdge orientation="+" xlink:href="#e5"/>
</gml:Face>

6.1.3 Geometric Realizations

In GML, there is symmetry between the geometric and topological primitives. The
geometry primitives—Point, Curve, Surface, and Solid—can be encoded as geometric
realizations of—Node, Edge, Face, and TopoSolid, respectively. These geometric realizations
are expressed using the following properties: pointProperty, curveProperty, surfaceProperty and
solidProperty.

For example, suppose coordinates are assigned to the following simple topology network
in Figure 6-4 as shown.

OGC 05-102r1

10 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

e3 e2

N2 (-2,0) (2,0)

Figure 6-4: Geometric Realization of Topology

The simple topology network can be encoded with a geometric realization as follows:

 <gml:Node gml:id="N2">
 <gml:pointProperty>
 <gml:Point>
 <gml:pos>0 0</gml:pos>
 </gml:Point>
 </gml:pointProperty>
 </gml:Node>

 <gml:Edge gml:id="e2">
 <gml:directedNode orientation="-" xlink:href="#N2"/>
 <gml:directedNode orientation="+" xlink:href="#N2"/>
 <gml:curveProperty>
 <gml:Curve>
 <gml:segments>
 <gml:Circle>
 <gml:coordinates>0,0 –2,0 -1,1</gml:coordinates>
 </gml:Circle>
 </gml:segments>
 </gml:Curve>
 </gml:curveProperty>
 </gml:Edge>

 <gml:Edge gml:id="e3">
 <gml:directedNode orientation="-" xlink:href="#N2"/>
 <gml:directedNode orientation="+" xlink:href="#N2"/>
 <gml:curveProperty>
 <gml:Curve>
 <gml:segments>
 <gml:Circle>
 <gml:coordinates>0,0 2,0 1,1</gml:coordinates>
 </gml:Circle>
 </gml:segments>
 </gml:Curve>
 </gml:curveProperty>
 </gml:Edge>

6.1.4 Spatial Representations of a GML Feature

Suppose that the traffic model of a city is stored in a geographic information database and
that you have access to this database via a Routing Service. You can send the following

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 11

question in the form of a query to the Routing Service: "Which route from point A to
point B has the fewest intersections along the way?" The answer is naturally found by
looking at the topology model of the road network rather than the geometry model. The
topology model of the road network encodes intersections as nodes, road segments as
edges and the connective relationships between the edges and nodes. One way to answer
the query about the optimal route from point A to B is to analyse all the possible paths
from A to B along edges in the topology model and count the number of nodes traversed
along each path in order to find the optimal route. Of course other more sophisticated
algorithms exist such as variants of Dijkstra’s optimal routing algorithms.

A feature with spatial extent, such as the traffic model, usually has geometry-valued
properties, topology valued properties, or both. Topology valued properties of a feature
are often accompanied by geometry valued properties as shown in Figure 6-5, but this is
not a requirement.

Sub
Type

Sub
Type

geometry property

GeometryTopology

Point

Curve

Surface

Node

Edge

Face

Feature

topology property

Figure 6-5: A Feature with Separate Geometry and Topology.

As GML Topology is separate from GML Geometry, features can have a stand-alone
topology model without any geometric realizations. It is also possible for a feature to
have a geometry model that is embedded in its topology model as shown in Figure 6-6.

Sub
Type

point
property

Topology

Node

Edge

Face

Feature

topology
property

Point

Curve

Surface

curve
property

surface
property

Figure 6-6: A Feature with Merged Geometry and Topology.

OGC 05-102r1

12 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Sub
Type

Sub
Type

geometry property

Geometry Topology

Point

Curve

Surface

Node

Edge

Face

Feature
topology property

realization
reference

realization
reference

realization
reference

Figure 6-7: A Feature with Separate but linked Geometry and Topology

A feature with two-dimensional spatial extent that has both a topology and geometry
model can be organized as shown in Figure 6-5, Figure 6-6, or Figure 6-7. The best
organizational strategy depends on the use cases. For example, most, if not all, OGC Web
Map Servers will be able to render a map from the geometric data using the organization
of Figure 6-5 or Figure 6-7, however fewer will handle the organization of Figure 6-6
because the geometry is more deeply nested in the topology model. An optimal route
query as stated in the introduction of this section will likely be easier using the
organization of Figure 6-6 or Figure 6-7, since these models enable an application to
relate the topological data to the geometric data. Note that the organization of Figure 6-7
assumes an application has support for xlink:href resolution.

If several members of a feature collection have spatial extent, it may be advantageous to
collect the topology primitives together with their geometry realizations in a TopoComplex
and encode it as a property of the feature collection. The individual topology and
geometry property values of the feature members can then reference the corresponding
topology and geometry primitives in the TopoComplex. Subclause 6.2.1 provides examples
of this.

6.1.4.1 Topology Modelling of a Feature Collection

Suppose a city is modelled as a feature collection and includes the street segments and
intersections as shown in Figure 6-8.

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 13

A(0,1) n1(1,1) n2(2,1)

n3(0,0) n4(1,0) B(2,0)

e5 e6

e1 e2

e3 e4

e7f2f1

Figure 6-8: Sample Feature Collection.

The topology primitives can be collected together with their corresponding embedded
geometry realizations and encoded as a TopoComplex as follows:

<gml:TopoComplex gml:id=”TC1”>
 <gml:maximalComplex xlink:href=”#TC1”/>
 <gml:topoPrimitiveMembers>
 <gml:Node gml:id="A">
 <gml:pointProperty>
 <gml:Point gml:id="p0" srsName=“urn:epsg:v6.1:coordinateReferenceSystem:4267”>
 <gml:coordinates>0,1</gml:coordinates>
 </gml:Point>
 </gml:pointProperty>
 </gml:Node>
 ...
 <!-- additional Nodes -->
 ...
 <gml:Edge gml:id="e1">
 <gml:directedNode orientation=”-” xlink:href=”#A”/>
 <gml:directedNode orientation=”+” xlink:href=”#n1”/>
 <gml:curveProperty>
 <gml:LineString gml:id="c1"
srsName=“urn:epsg:v6.1:coordinateReferenceSystem:4267”>
 <gml:coordinates>0,1 1,1</gml:coordinates>
 </gml:LineString>
 </gml:curveProperty>
 </gml:Edge>
 ...
 <!-- additional Edges -->
 ...
 <gml:Face gml:id="f1">
 <gml:directedEdge orientation=”-” xlink:href=”#e1”/>
 <gml:directedEdge orientation=”+” xlink:href=”#e5”/>
 <gml:directedEdge orientation=”+” xlink:href=”#e3”/>
 <gml:directedEdge orientation=”-” xlink:href=”#e6”/>
 <gml:surfaceProperty>
 <gml:Polygon gml:id="P1" srsName=“urn:epsg:v6.1:coordinateReferenceSystem:4267”>
 <gml:exterior>
 <gml:LinearRing>
 <gml:coordinates>
 0,0 1,0 1,1 0,1 0,0
 </gml:coordinates>
 </gml:LinearRing>

OGC 05-102r1

14 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

 </gml:exterior>
 </gml:Polygon>
 </gml:surfaceProperty>
 </gml:Face>
 </gml:topoPrimitiveMembers>
</gml:TopoComplex>

The City feature collection can now be encoded as follows:

<City gml:id=”C1”>
 <gml:boundedBy>
 <gml:Envelope srsName=“urn:epsg:v6.1:coordinateReferenceSystem:4267”>
 <gml:pos>0 0</gml:pos>
 <gml:pos>100 100</gml:pos>
 </gml:Envelope>
 </gml:boundedBy>
 <gml:featureMember>
 <Intersection gml:id=”I11”>
 <description>Howe St 100 block</gml:description>
 <position xlink:href=”#A”/>
 <Intersection>
 </gml:featureMember>
 ...
 <gml:featureMember>
 <StreetSegment gml:id=”Hwe100”>
 <name>Howe St 100 block</gml:name>
 <spatialExtent xlink:href=”#e1”/>
 <StreetSegment>
 </gml:featureMember>
 ...
 <gml:featureMember>
 <CityBlock gml:id=”B11”>
 <spatialExtent xlink:href=”#f1”/>
 <CityBlock>
 </gml:featureMember>
 ...
</City>

In GML, the following built-in properties can be used to describe topology aggregates
and composites in the topology model:

• topoPointProperty
• topoCurveProperty
• topoSurfaceProperty
• topoVolumeProperty

The values of these properties are, respectively:

• TopoPoint
• TopoCurve
• TopoSurface
• TopoVolume

These GML topology types contain lists of directed topology primitives, such as directed
nodes, directed edges, directed faces, and directed TopoSolids, respectively.

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 15

For example, the bus route feature starting at node A and ending at node B shown in
Figure 6-9 can be modelled by the following TopoCurve:

 <BusRoute gml:id="BRt66">
 <gml:topoCurveProperty>
 <TopoCurve>
 <gml:directedEdge orientation="+" xlink:href="#e5"/>
 <gml:directedEdge orientation="+" xlink:href="#e3"/>
 <gml:directedEdge orientation="-" xlink:href="#e6"/>
 <gml:directedEdge orientation="+" xlink:href="#e2"/>
 <gml:directedEdge orientation="+" xlink:href="#e7"/>
 </TopoCurve>
 </gml:topoCurveProperty>
 </BusRoute>

Bus Route

Bus Stop A

Bus Stop B

Figure 6-9: Bus Route Member of the City Feature Collection

6.1.5 Lossless Topology Representations in GML

Oracle Spatial 10g supports the topological constructs required to provide a lossless
topology representation in the plane as defined by ([3], Kuijpers). To motivate the
discussion of lossless topology representations, first consider the two different road
networks in Figure 6-10.

Road Network 1 Road Network 2

overpass

E2 N1
N1 E1

E1 E2

OGC 05-102r1

16 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Figure 6-10: A planar and non-planar road network with identical edges and nodes

The topology model of Road Network 1 can be encoded as the following minimal
TopoComplex instance:

<gml:TopoComplex gml:id=”TC2”>
 <gml:maximalComplex xlink:href=”#TC2”/>
 <gml:topoPrimitiveMembers>
 <gml:Node gml:id="N1"/>
 <gml:Edge gml:id="E1">
 <gml:directedNode orientation=”-” xlink:href=”#N1”/>
 <gml:directedNode orientation=”+” xlink:href=”#N1”/>
 </gml:Edge>
 <gml:Edge gml:id="E2">
 <gml:directedNode orientation=”-” xlink:href=”#N1”/>
 <gml:directedNode orientation=”+” xlink:href=”#N1”/>
 </gml:Edge>
 </gml:topoPrimitiveMembers>
</gml:TopoComplex>

Notice that this encoding applies equally well to Road Network 2 and thus fails to
distinguish between the two road networks. An immediately recognizable difference
between the two road networks that can be seen in Figure 6-10 is the cyclic order of the
incident edges around the central node N1. This difference is exposed by the differing
cyclic orders of the directed edges (colour-coded below) in the following co-boundary
encoding of N1 for each road network:

Road Network 1:

 <Node gml:id=“N1”>
 <directedEdge orientation=“+” xlink:href=“#E1”/>
 <directedEdge orientation=“-” xlink:href=“#E1”/>
 <directedEdge orientation=“-” xlink:href=“#E2”/>
 <directedEdge orientation=“+” xlink:href=“#E2”/>
</Node>

Road Network 2:

 <Node gml:id=“N1”>
 <directedEdge orientation=“+” xlink:href=“#E1”/>
 <directedEdge orientation=“+” xlink:href=“#E2”/>
 <directedEdge orientation=“-” xlink:href=“#E1”/>
 <directedEdge orientation=“-” xlink:href=“#E2”/>
</Node>

Note: a cyclic order (e.g. counter-clockwise) of directed edges on the node is not
currently required in GML 3.2.0 (or previous versions). A minor change to the
documentation in GML that states the requirement of a counter-clockwise cyclic
order of directedEdges on the node would enable a formal mapping to the lossless
topology representation in Oracle.

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 17

Although the co-boundary information of N1 is sufficient to distinguish between the two
different topology networks in Figure 6-10, this is not the case for Topology Networks 1
and 2 in Figure 6-11 and Figure 6-12, respectively. Each of the planar topology networks
shown in Figure 6-11 and Figure 6-12 have the same node, edge and face descriptions but
are not equivalent. The nodes are labelled N1, N2, the edges are labelled E1, E2, E3, and the
faces are labelled F1, F2, F3 in each topology network.

E2 E1

N2

E3
F3 F1

F2

N1

Figure 6-11: Topology Network 1

E2

E1

N2

E3
F3

F1 F2

N1

Figure 6-12: Topology Network 2

The GML 3.0 TopoComplex encoding of the topology models in Figure 6-11 and Figure
6-12 are indistinguishable even if the co-boundary information of the two nodes are
included. One way to discriminate between them is to use the lossless representation of
planar topological data introduced in the paper ([3], Kuijpers). If two non-equivalent
planar embeddings of topology networks are represented the same way, then some
information is lost in the planar topology representation. The representation introduced
([3], Kuijpers) can distinguish between any two non-equivalent planar topology
networks; hence the representation is referred to as lossless on planar topological data (on
the other hand it is not lossless on topological data embedded in more general surfaces as
shown in Figure 6-13). The topological representation introduced in ([3], Kuijpers) is
called a PLA Structure and generalizes the common Point-Line-Area (PLA)
representation by encoding the universal face (the unique face with infinite area in the
planar topology network, for example F2 and F1 are the universal faces in Topology
Networks 1 and 2, respectively) in addition to the list of node observations. A node
observation ([3], Kuijpers) at a node n0 is a sequence of incident edges and adjacent faces
arranged in counter-clockwise cyclic order around n0 (following a common convention
used for co-boundary edges, which agrees with ISO 19107 and GML). For example, the

OGC 05-102r1

18 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

node observation at the node N1 in topology network in both Figure 6-11 or Figure 6-12
consists of the cyclic list [E1, F1, E1, F2, E3, F2]. Suppose that the Topology Networks 1 and
2 are the topology models of Network1 and Network2 feature collections, respectively. The
PLA Structure of the topology model of each feature collection can be encoded in GML
by adding two properties universalFace and nodeObservations to the feature collection as shown
in the following instance:

<Network1 gml:id=”N1”>
 ...
 <universalFace xlink:href="#F2"/>
 <nodeObservations>
 <NodeObservation>
 <node xlink:href="#N1"/>
 <edge xlink:href="#E1"/>
 <face xlink:href="#F1"/>
 <edge xlink:href="#E1"/>
 <face xlink:href="#F2"/>
 <edge xlink:href="#E3"/>
 <face xlink:href="#F2"/>
 </NodeObservation>
 <NodeObservation>
 <node xlink:href="#N2"/>
 <edge xlink:href="#E2"/>
 <face xlink:href="#F3"/>
 <edge xlink:href="#E2"/>
 <face xlink:href="#F2"/>
 <edge xlink:href="#E3"/>
 <face xlink:href="#F2"/>
 </NodeObservation>
 </nodeObservations>
 ...
</Network1>

The value of universalFace is the universal face F2 and the value of nodeObservations is an array
of NodeObservations. The value of each property of NodeObservation is a topology primitive,
where the first topology primitive is the Node at which the observation is made. The
remaining values are the incident Edges and adjacent Faces listed in counter-clockwise
order surrounding the Node. The PLA Structure of the topology model of Network2 differs
only in the value of universalFace as the following instance shows:

<Network2 gml:id=”N2”>
 ...
 <universalFace xlink:href="#F1"/>
 <nodeObservations>
 <NodeObservation>
 <node xlink:href="#N1"/>
 <edge xlink:href="#E1"/>
 <face xlink:href="#F1"/>
 <edge xlink:href="#E1"/>
 <face xlink:href="#F2"/>
 <edge xlink:href="#E3"/>
 <face xlink:href="#F2"/>

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 19

 </NodeObservation>
 <NodeObservation>
 <node xlink:href="#N2"/>
 <edge xlink:href="#E2"/>
 <face xlink:href="#F3"/>
 <edge xlink:href="#E2"/>
 <face xlink:href="#F2"/>
 <edge xlink:href="#E3"/>
 <face xlink:href="#F2"/>
 </NodeObservation>
 </nodeObservations>
 ...
</Network2>

The schema fragments corresponding to these instances of the PLA Structure can be
modelled as follows:

 <element name="Network1" type="app:NetworkType" substitutionGroup="gml:_FeatureCollection"/>
 <element name="Network2" type="app:NetworkType" substitutionGroup="gml:_FeatureCollection"/>
 <!-- === -->
 <complexType name="NetworkType">
 <complexContent>
 <extension base="gml:AbstractFeatureCollectionType">
 <sequence>
 <element name="networkTopology" type="gml:TopoComplexMemberType"/>
 <element name="universalFace" type="app:FacePropertyType"/>
 <element name="nodeObservations" type="app:NodeObservationArrayPropertyType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <!-- === -->
 <complexType name="NodeObservationArrayPropertyType">
 <sequence>
 <element name="NodeObservation" type="app:NodeObservationType"
maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 <!-- === -->
 <complexType name="NodeObservationType">
 <sequence>
 <element name="node" type="app:NodePropertyType"/>
 <sequence maxOccurs="unbounded">
 <element name="edge" type="app:EdgePropertyType" minOccurs="0"/>
 <element name="face" type="app:FacePropertyType" minOccurs="0"/>
 </sequence>
 </sequence>
 </complexType>
 <!-- === -->
 <complexType name="NodePropertyType">
 <sequence>
 <element ref="gml:Node" minOccurs="0"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
 <!-- === -->
 <complexType name="EdgePropertyType">

OGC 05-102r1

20 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

 <sequence>
 <element ref="gml:Edge" minOccurs="0"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>
 <!-- === -->
 <complexType name="FacePropertyType">
 <sequence>
 <element ref="gml:Face" minOccurs="0"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>

The PLA Structures do not generalize to a lossless representation on more general
surfaces such as the torus (sphere with one handle shown below). The two topology
networks embedded as shown in Figure 6-13 are not equivalent since the first cannot be
continuously deformed into the second (the edge E2 in the first topology model would
have to “break through the handle”). There is no universal face, just a single bounded
face F0 and only one node observation in each topology model. Furthermore, the node
observation at the single node N0 is identical for each topology model.

Topology Model 1 Topology Model 2

N0
F0

E2 E1 E2 E1 N0
F0

Figure 6-13: PLA Structures are not Lossless on General Surfaces.

One method that can be used to distinguish between the topology models in Figure 6-13
is to encode them as 3-dimensional TopoComplexes. For example, in the case of Topology
Model 1, the 3-dimensional picture is as shown in Figure 6-14.

E2 E1 N0
F0

F1

TopoSolid S0
inside torus

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 21

Figure 6-14: A Lossless Representation of Topology Network 1

The encoding of the TopoComplex TM1 corresponding to Topology Model 1 is as follows:

<gml:TopoComplex gml:id=”TM1”>
 <gml:maximalComplex xlink:href=”#TM1”/>
 <gml:topoPrimitiveMembers>
 <gml:Node gml:id="N0"/>
 <gml:Edge gml:id="E1">
 <gml:directedNode orientation=”-” xlink:href=”#N0”/>
 <gml:directedNode orientation=”+” xlink:href=”#N0”/>
 </gml:Edge>
 <gml:Edge gml:id="E2">
 <gml:directedNode orientation=”-” xlink:href=”#N0”/>
 <gml:directedNode orientation=”+” xlink:href=”#N0”/>
 </gml:Edge>
 <gml:Face gml:id="F0">
 <gml:directedEdge orientation=”+” xlink:href=”#E2”/>
 <gml:directedEdge orientation=”+” xlink:href=”#E1”/>
 <gml:directedEdge orientation=”-” xlink:href=”#E2”/>
 <gml:directedEdge orientation=”-” xlink:href=”#E1”/>
 </gml:Face>
 <gml:Face gml:id="F1">
 <gml:directedEdge orientation=”-” xlink:href=”#E1”/>
 <gml:directedTopoSolid orientation=”-” xlink:href=”#S0”/>
 <gml:directedTopoSolid orientation=”+” xlink:href=”#S0”/>
 </gml:Face>
 <gml:TopoSolid gml:id="S0">
 <gml:directedFace orientation=”+” xlink:href=”#F0”/>
 <gml:directedFace orientation=”-” xlink:href=”#F1”/>
 <gml:directedFace orientation=”+” xlink:href=”#F1”/>
 </gml:TopoSolid>
 </gml:topoPrimitiveMembers>
</gml:TopoComplex>

Note that the Face F1 is bounded by the directedEdge E1 and is cobounded by the TopoSolid S0.
The TopoSolid S0 is on either side of the Face F1 and thus occurs twice (with opposite
orientations) in the co-boundary of F1. Even more can be gleaned from this encoding. The
double occurrence of TopoSolid S0 in the co-boundary of F1 indicates that F1 and its
boundary Edge E1 are both contractible to a point in the 3-dimensional topology. This
means that the Edge E1 in Topology Model 1 corresponds to the edge that “goes through
the tunnel”, rather than “forming the bridge” (the Edge E2 that forms the bridge in
Topology Model 1 is NOT contractible to a point in the 3-dimensional topology model).

N0
F0

E2 E1

F1

TopoSolid S0
inside the torus

OGC 05-102r1

22 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Figure 6-15: A Lossless Representation of Topology Network 2

The following instance of TopoComplex TM2 corresponding to the 3-dimensional Topology
Model 2 is noticeably different to that of TM1 in the encoding of the Face F1:

<gml:TopoComplex gml:id=”TM2”>
 <gml:maximalComplex xlink:href=”#TM2”/>
 <gml:topoPrimitiveMembers>
 <gml:Node gml:id="N0"/>
 <gml:Edge gml:id="E1">
 <gml:directedNode orientation=”-” xlink:href=”#N0”/>
 <gml:directedNode orientation=”+” xlink:href=”#N0”/>
 </gml:Edge>
 <gml:Edge gml:id="E2">
 <gml:directedNode orientation=”-” xlink:href=”#N0”/>
 <gml:directedNode orientation=”+” xlink:href=”#N0”/>
 </gml:Edge>
 <gml:Face gml:id="F0">
 <gml:directedEdge orientation=”+” xlink:href=”#E2”/>
 <gml:directedEdge orientation=”+” xlink:href=”#E1”/>
 <gml:directedEdge orientation=”-” xlink:href=”#E2”/>
 <gml:directedEdge orientation=”-” xlink:href=”#E1”/>
 </gml:Face>
 <gml:Face gml:id="F1">
 <gml:directedEdge orientation=”+” xlink:href=”#E2”/>
 <gml:directedTopoSolid orientation=”-” xlink:href=”#S0”/>
 <gml:directedTopoSolid orientation=”+” xlink:href=”#S0”/>
 </gml:Face>
 <gml:TopoSolid gml:id="S0">
 <gml:directedFace orientation=”+” xlink:href=”#F0”/>
 <gml:directedFace orientation=”-” xlink:href=”#F1”/>
 <gml:directedFace orientation=”+” xlink:href=”#F1”/>
 </gml:TopoSolid>
 </gml:topoPrimitiveMembers>
</gml:TopoComplex>

Note that the directedEdge E2 bounds the Face F1 in this case and the double occurrence of the
TopoSolid S0 in the co-boundary of F1 indicates that E1 is contractible to a point in the 3-
dimensional topology and hence is the “tunnelling” edge in this case.

6.2 Introduction to Oracle Spatial 10g Topology

This clause describes the main elements of the Oracle topology model, its mapping to the
GML topology model and a discussion of Oracle topology support within the Cartalinea
web feature server. The Oracle topology model is similar to the GML topology model in
some ways and different in others. A brief comparison between the Oracle and GML
topology models is presented and the challenges in bridging the differences using the
Galdos Cartalinea WFS are discussed.

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 23

6.2.1 Oracle topology model

The Oracle topology model contains the topological primitives: nodes, edges and faces.
In Oracle terminology, a topology geometry is a spatial representation of a feature or real
world object and is stored as a set of topological primitives. Each topology geometry has
a unique ID (assigned by Oracle when records are imported or loaded). A topology
geometry layer consists of topology geometries, usually of a specific topology geometry
type, although it can be a collection of multiple types. A feature table contains data for
each topology geometry layer.

Each topology geometry is defined as an object of type SDO_TOPO_GEOMETRY which
identifies the topology geometry type, topology geometry ID, topology geometry layer ID,
and topology ID for the topology. Topology metadata is automatically maintained by
Oracle in the USER_SDO_TOPO_METADATA and ALL_SDO_TOPO_METADATA views. The
USER_SDO_TOPO_INFO and ALL_SDO_TOPO_INFO views contain a subset of this topology
metadata.

6.2.2 Building the topology

Currently there are two approaches to creating Oracle topology:

• Create topology by explicitly describing the nodes, edges and faces.
• Create topology implicitly, by generating it from existing spatial geometries.

Both approaches apply to the initial topology creation, but for any subsequent
modifications, use of PL/SQL or the Java API is strongly recommended by Oracle to
ensure spatial integrity, since direct modifications of Oracle topology tables (node, edge,
face) will not be synchronized with the rest of the topology model by Oracle.

6.2.2.1 Procedure for creating topology that includes geometry

The procedure for creating Oracle topology using nodes, edges and faces that include
geometry are itemized in the following steps. Note that all examples in this clause are
informative and only used to illustrate syntax, they are not meant to produce valid
topologies.

1. Create the topology, using the SDO_TOPO.CREATE_TOPOLOGY procedure. This causes

the <topology-name>_EDGE$, <topology-name>_NODE$, <topology-name>_FACE$, and <topology-
name>_HISTORY$ tables to be created.

Example that creates the topology named 'OWS3_DATA' with Null SRID:

EXECUTE SDO_TOPO.CREATE_TOPOLOGY('OWS3_DATA', 0.00005);

2. Load topology data into the node, edge, and face tables created in Step 1. This is
typically done using a bulk-load utility, but it can be done using SQL INSERT
statements. Note: The face table needs to have a universal face (faco0 in the
example below).

OGC 05-102r1

24 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Examples:

-- edge

INSERT INTO OWS3_DATA_edge$ VALUES(1, 1, 1, 1, 1, -1, -1, 1, -1,
 SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),

 SDO_ORDINATE_ARRAY(8,30, 16,30, 16,38, 3,38, 3,30, 8,30)));

-- node
INSERT INTO OWS3_DATA_node$ VALUES(1, 1, NULL,
 SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(8,30,NULL), NULL, NULL));

 -- universe face (id = -1, not 0) This face with id=-1 is always required

INSERT INTO OWS3_DATA_face$ VALUES(-1, NULL, SDO_LIST_TYPE(-1, -2, 4, 6),
SDO_LIST_TYPE(), NULL);

 -- face
INSERT INTO OWS3_DATA _face$ VALUES(1, 1, SDO_LIST_TYPE(25, -26), SDO_LIST_TYPE(),
 SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(3,30, 15,38)));

3. Use the SDO_TOPO_GEOMETRY type to represent the topology geometry in feature

table.

CREATE TABLE road (
feature_name VARCHAR2(30) PRIMARY KEY,
topology SDO_TOPO_GEOMETRY);

4. Associate the feature tables with the topology, using the

SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER procedure for each feature table. This causes
the <topology-name>_RELATION$ table to be created

EXECUTE SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER('OWS3_DATA', 'road','topology', 'LINE');

As a result, Spatial generates a unique TG_LAYER_ID for each layer in
the topology metadata (USER/ALL_SDO_TOPO_METADATA).

5. Initialize topology metadata, using the SDO_TOPO.INITIALIZE_METADATA procedure.

(This procedure also creates spatial indexes on the OWS3_DATA_EDGE$,
OWS3_DATA_NODE$, and OWS3_DATA_FACE$ tables, and additional B-tree indexes on
the OWS3_DATA_EDGE$ and OWS3_DATA_NODE$ tables.

EXECUTE SDO_TOPO.INITIALIZE_METADATA('OWS3_DATA');

6. Load the feature tables using the SDO_TOPO_GEOMETRY constructor.

INSERT INTO road VALUES ('R1', -- Feature name
 SDO_TOPO_GEOMETRY(
 'OWS3_DATA', -- Topology name
 2, -- Topology geometry type (line string)
 3, -- TG_LAYER_ID for this topology (from ALL_SDO_TOPO_METADATA)
 SDO_TOPO_OBJECT_ARRAY (
 SDO_TOPO_OBJECT (9, 2),
 SDO_TOPO_OBJECT (-10, 2),

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 25

 SDO_TOPO_OBJECT (11, 2))) -- edge_ids = 9, -10, 11
);

In order to execute this statement the user should know the TG_LAYER_ID generated in the
step 4 and all topology elements IDs that belong to this layer.

6.2.2.2 Creating the topology using only spatial geometries (Oracle 10.2 version only)

It is assumed here that the spatial tables already exist.

1. The same as item 1 of 6.2.2.1.

2. Create the universe face

-- universe face (id = -1, not 0) This face with id=-1 is always required
INSERT INTO OWS3_DATA_face$ VALUES(-1, NULL, SDO_LIST_TYPE(-1, -2, 4, 6),
SDO_LIST_TYPE(), NULL);

3. The same as in item 3 of 6.2.2.1

4. The same as in item 4 of 6.2.2.1

5. Create a TopoMap object and load the whole topology into cache.

EXECUTE SDO_TOPO_MAP.CREATE_TOPO_MAP('OWS3_DATA', 'OWS3_DATA_TOPOMAP');
EXECUTE SDO_TOPO_MAP.LOAD_TOPO_MAP('OWS3_DATA_TOPOMAP', 'true');

6. Load the feature tables, inserting data from the spatial tables and using the
SDO_TOPO_MAP.CREATE_FEATURE function.

BEGIN
 FOR street_rec IN (SELECT name, geometry FROM existing_spatal_table) LOOP
 INSERT INTO city_streets VALUES(street_rec.name,
 SDO_TOPO_MAP.CREATE_FEATURE('OWS3_DATA', 'road', 'topology',
 street_rec.geometry));
 END LOOP;
END;
/

CALL SDO_TOPO_MAP.COMMIT_TOPO_MAP();
CALL SDO_TOPO_MAP.DROP_TOPO_MAP('OWS3_DATA_TOPOMAP');

7. Initialize topology metadata, using the SDO_TOPO.INITIALIZE_METADATA procedure.

OGC 05-102r1

26 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

6.2.3 Querying the topology

With the topology data model PL/SQL API, you can use the Oracle Spatial operators,
except for the following:

• SDO_RELATE (but you can use the SDO_RELATE convenience operators that do not
use the mask parameter)

• SDO_NN

• SDO_NN_DISTANCE

• SDO_WITHIN_DISTANCE

Example:

SELECT c.feature_name FROM city_streets c, land_parcels l
 WHERE l.feature_name = 'P3' AND
 SDO_ANYINTERACT (c.feature, l.feature) = 'TRUE';

6.2.4 Oracle Feature and Topology Tables

The relationship between feature tables and topology tables in Oracle is illustrated in
Figure 6-16.

Figure 6-16: Mapping Feature Tables to Topology Tables.

Tables 6-1 to 6-3 describe the Oracle column headings for each topology primitive.

Table 6-1 Column Headings in the <topology-name>_NODE$ Table

Column Name Data Type Description

NODE_ID NUMBER Unique ID number for this node

EDGE_ID NUMBER ID number (signed) of the edge (if any) associated with this
node

FACE_ID NUMBER ID number of the face (if any) associated with this node

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 27

Column Name Data Type Description

GEOMETRY SDO_GEOMETRY Geometry object (point) representing this node

Table 6-2 Column Headings in the <topology-name>_EDGE$ Table

Column Name Data Type Description

EDGE_ID NUMBER Unique ID number for this edge

START_NODE_ID NUMBER ID number of the start node for this edge

END_NODE_ID NUMBER ID number of the end node for this edge

NEXT_LEFT_EDGE_ID NUMBER ID number (signed) of the next left edge for this edge

PREV_LEFT_EDGE_ID NUMBER ID number (signed) of the previous left edge for this
edge

NEXT_RIGHT_EDGE_ID NUMBER ID number (signed) of the next right edge for this
edge

PREV_RIGHT_EDGE_ID NUMBER ID number (signed) of the previous right edge for
this edge

LEFT_FACE_ID NUMBER ID number of the left face for this edge

RIGHT_FACE_ID NUMBER ID number of the right face for this edge

GEOMETRY SDO_GEOMETRY Geometry object (line string) representing this edge,
listing the coordinates in the natural order for the
positive directed edge

Table 6-3 Column Headings in the <topology-name>_FACE$ Table

Column Name Data Type Description

FACE_ID NUMBER Unique ID number for this face

BOUNDARY_EDGE_ID NUMBER ID number of the boundary edge for this face. The
sign of this number (which is ignored for use as a

OGC 05-102r1

28 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Column Name Data Type Description

key) indicates which orientation is being used for this
boundary component (positive numbers indicate the
left of the edge, and negative numbers indicate the
right of the edge).

ISLAND_EDGE_ID_LIST SDO_LIST_TYPE Island edges (if any) in this face. (The
SDO_LIST_TYPE type is described in Section
1.6.6.)

ISLAND_NODE_ID_LIST SDO_LIST_TYPE Island nodes (if any) in this face. (The
SDO_LIST_TYPE type is described in Section
1.6.6.)

MBR_GEOMETRY SDO_GEOMETRY Minimum bounding rectangle (MBR) that encloses
this face. (This is required, except for the universe
face.) The MBR must be stored as an optimized
rectangle (a rectangle in which only the lower-left
and the upper-right corners are specified). The
SDO_TOPO.INITIALIZE_METADATA procedure
creates a spatial index on this column.

The object type SDO_TOPO_GEOMETRY is defined as:

CREATE TYPE sdo_topo_geometry AS OBJECT
 (tg_type NUMBER,
 tg_id NUMBER,
 tg_layer_id NUMBER,
 topology_id NUMBER);

The Oracle column headings for SDO_TOPO_GEOMETRY are described in Table 6-4.

Table 6-4 SDO_TOPO_GEOMETRY Type Attributes

Attribute Explanation

TG_TYPE Type of topology geometry: 1 = point or multipoint, 2 = line string or
multiline string, 3 = polygon or multipolygon, 4 = heterogeneous collection

TG_ID Unique ID number (generated by Spatial) for the topology geometry

TG_LAYER_ID ID number for the topology geometry layer to which the topology geometry

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 29

Attribute Explanation

belongs. (This number is generated by Spatial, and it is unique within the
topology geometry layer.)

TOPOLOGY_ID Unique ID number (generated by Spatial) for the topology

6.2.5 Editing the topology

The user should always use PL/SQL or Java API to edit topologies. Oracle strongly
recommends this to ensure spatial integrity, since direct modifications of Oracle topology
tables (node, edge, face) will not be synchronized with the rest of the topology model by
Oracle. The editing operations require the oracle topology in-memory cache to be
constructed. The “TopoMap” object represents the object that contains the Oracle cache
and the “TopoMap” API provides topology-editing operations. The following subset of
operations can be executed:

• Adding a Node

• Moving a Node

• Removing a Node

• Removing Obsolete Nodes

• Adding an Edge

• Moving an Edge

• Removing an Edge

• Updating an Edge

Oracle 10.2 also adds additional operations to manipulate topology using geometries:

• ADD_LINEAR_GEOMETRY

• ADD_POINT_GEOMETRY

• ADD_POLYGON_GEOMETRY

6.3 GML to Oracle Topology Development Approaches

There are two possible approaches to support the Oracle topology model in the Cartalinea
WFS. These two approaches are detailed in sub-clauses 6.3.1 and Error! Reference
source not found..

OGC 05-102r1

30 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

6.3.1 Build Spatial Topology Tables from Geometry (Oracle 10.2 only)

The first approach is only possible in Oracle 10.2 or higher and entails mapping GML
topology elements to Oracle non-topological tables and using the corresponding
geometries to build the Oracle topology model.

The feature table would contain a topology reference and will have a column with the
object type SDO_TOPO_GEOMETRY.

Example:

TOPOSURFACE {
TOPOSURFACE_PROPERTY VARCHAR(255),
TOPOSURFACE_TOPOLOGY SDO_TOPO_GEOMETRY
}

The feature class that contains the topological property would get a new property that will
be mapped to the TOPOSURFACE_TOPOLOGY column using a custom user type.

6.3.1.1 Initializing topology

The procedure for initializing the topology is itemized as follows:

1. The topology should be created by calling the
SDO_TOPO.CREATE_TOPOLOGY(topology_name, tolerance, srid…) procedure. This will create
the topology_name.EDGE$, topology_name.NODE$ and topology_name.FACE$ tables. Note that
the “topology_name” parameter specifies the name of the topology.

Example: SDO_TOPO.CREATE_TOPOLOGY('topology_name', 0.00005);

2. The face table must have a universal face:
INSERT INTO topology_name _face$
VALUES (-1, NULL, SDO_LIST_TYPE(), SDO_LIST_TYPE(), NULL);

3. Every feature table that can contain a topological element would have a column of
type SDO_TOPO_GEOMETRY. The feature table must be associated with the topology
by calling

SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER('topology_name', 'feature_table_name',
'column_name', 'type_of_geometry');

Note that the the “type_of_geometry” would be POINT, LINE, CURVE, POLYGON, or
COLLECTION.

Example:

SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER('topology_name', 'TOPOSURFACE ', '
TOPOSURFACE _TOPOLOGY', 'POLYGON');

4. Initialize the topology metadata:

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 31

SDO_TOPO.INITIALIZE_METADATA('topology_name');

The topology initialization can be specified using the DDL scripts and be executed as a
precondition for topology support.

6.3.1.2 Inserting topology elements

The procedure for initializing the topology is itemized in the following list. There is no
way to insert topology elements after the topology is initialized, so the insert operation
here is treated as a special case of the edit operation.

1. Creating and loading “TOPOMAP”

The “TOPOMAP” object has to be created with the topology loaded into it before
any editing operation happens.

• If you use the PL/SQL API, you can either explicitly create and use the
cache or allow Oracle to create and use the cache automatically.

• If you use the Java API, you must explicitly create and use the cache.

The “TOPOMAP” object is created by calling
SDO_TOPO_MAP.CREATE_TOPO_MAP('topology_name', 'topo_map_name');

The topology is loaded by calling SDO_TOPO_MAP.LOAD_TOPO_MAP(‘topo_map_name',
'true');

Periodically, one can call SDO_TOPO_MAP.UPDATE_TOPO_MAP to validate data and
update tables (without a commit). One should collect all geometries that belong to
particular topological properties of the feature. For example: a face may have a
polygon, an edge may have a line string and a node may have a point.

2. Inserting geometries

The appropriate SDO_TOPO_GEOMETRY constructor needs to be invoked. The
corresponding INSERT SQL statement would be as follows:

INSERT INTO TOPOSURFACE VALUES(‘Vancouver roads’,
SDO_TOPO_MAP.CREATE_FEATURE('topology_name', 'TOPOSURFACE',
'TOPOSURFACE_TOPOLOGY', geometry_collection));

• Note that the geometry_collection parameter is a constructor for the
SDO_GEOMETRY object.

• This CREATE_FEATURE procedure would in turn create all Oracle
topological elements but the user has to specify all geometries
as part of the SDO_GEOMETRY, which can be a convenience.

OGC 05-102r1

32 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Alternatively, one can insert geometries using the following methods:

SDO_TOPO_MAP.ADD_LINEAR_GEOMETRY (curve or line string)

SDO_TOPO_MAP.ADD_POINT_GEOMETRY (point)

SDO_TOPO_MAP.ADD_POLYGON_GEOMETRY (polygon or multipolygon geometry)
Each of these methods returns the id of newly inserted elements. After this, the
feature table should be updated using the syntax:

INSERT INTO TOPOSURFACE VALUES ('Vancouver roads', -- Feature name
SDO_TOPO_GEOMETRY('topology_name', -- Topology name

' TOPOSURFACE ', -- Table name
‘TOPOSURFACE_TOPOLOGY', -- Column name
4, -- Topology geometry type (collection)
SDO_TOPO_OBJECT_ARRAY (
SDO_TOPO_OBJECT (3, 3), -- face_id = 3
SDO_TOPO_OBJECT (6, 3))) -- face_id = 6
);

This method allows simpler geometry manipulation but on the other hand
introduces object IDs into the game.

3. Committing and releasing “topomap”

Finally, the user should commit the topomap:

SDO_TOPO_MAP.COMMIT_TOPO_MAP and drop the topomap
SDO_TOPO_MAP.DROP_TOPO_MAP(‘topo_map_name').

6.3.1.3 Retrieving and querying topology elements

Retrieval of the topology elements would not be changed in Cartalinea since the
original GML data storage model is preserved.

Example:
SELECT * FROM road a
 WHERE SDO_ANYINTERACT (a.road_topology, SDO_GEOMETRY(…) = 'TRUE');

6.3.1.4 Editing topology elements

Same procedure as described in 6.2.5.

6.3.1.5 General observations of this method

The pros and cons of the method presented in 6.3.1 are itemized in the lists below.

Pros:

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 33

• Preserves the GML model—preserves the standard GML properties like
metadata, name, and description.

• Preserves current Oracle implementations—this method would preserve many
currently implemented mappings.

• The Oracle topology model is transparent—since this method uses only
geometries to construct topologies one does not have to deal with the
complexity mappings from GML to Oracle topological tables.

Cons:

• Updating geometries—currently, there are no methods to update geometries.

• Duplicated data—there will be some duplicated data as a consequence of this
method.

• Creating topology without geometries is not possible—this method does not
work in the case where a topology is created without geometries.

• Only supported by the Oracle 10.2+ version

• This is not the full round trip—the oracle topology is used only for queries but
retrieval is based on the current implementation. This means that users with
already defined topologies in their Oracle data model will not be able to
use this approach.

6.3.2 Direct Representation of GML in Oracle Topology

This approach will require a direct manipulation of the tables in the case of faces, since
there is currently no stored procedure or function in Oracle Spatial 10.2g to add a face.
However, for any subsequent editing, the stored procedures are used.

6.3.2.1 Mapping GML elements to Oracle Topology

In this mapping the standard GML properties and attributes are ignored, since Oracle
topology does support these properties.

6.3.2.1.1 Node type

The GML NodeType is defined in XML Schema as follows:

 <complexType name="NodeType">
 <annotation>
 <documentation> Its optional co-boundary is a set of connected directedEdges. The orientation of one
of these dirEdges is "+" if the Node is the "to" node of the Edge, and "-" if it is the "from" node.
</documentation>
 </annotation>
 <complexContent>
 <extension base="gml:AbstractTopoPrimitiveType">
 <sequence>
 <element ref="gml:directedEdge" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:pointProperty" minOccurs="0"/>
 <!-- <element name="geometry" type="gml:PointPropertyType" minOccurs="0"/> -->

OGC 05-102r1

34 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

 </sequence>
 </extension>
 </complexContent>
 </complexType>

Table 6-5 GML/Oracle Node Comparison
GML NODE ORACLE

pointProperty/Point GEOMETRY

directedEdge/@orientation The orientation attribute of type gml:SignType on the
directedEdge element expresses the sense in which
the referenced edge is used: outward (“-“) or inward
(“+”) from the node.

directedEdge[@orientation=’+’]/Edge

The orientation attribute of type gml:SignType on
the directedEdge element expresses the sense in
which the referenced Edge is used. In this case:
outward (“-“) or inward (“+”) from the node.

EDGE$. START_NODE_ID

directedEdge[@orientation=’-’]/Edge EDGE$.END_NODE_ID

directedEdge/Edge/@gml:id EDGE_ID

If EDGE_ID=null (The node is an isolated node)

container/Face/@gml:id FACE_ID

If FACE_ID=null (The node is not an isolated node)

The cyclic order (e.g. counter-clockwise) of
cobounding edges on the node is not currently
required in GML 3.2.0 (or previous versions). A
minor change to the documentation in GML that
makes this order mandatory on the node would
enable a formal mapping (although indirect) to
NEXT_LEFT_EDGE, PREV_LEFT_EDGE, etc. in
Oracle.

EDGE$. NEXT_LEFT_EDGE_ID,
EDGE$. PREV_LEFT_EDGE_ID,
EDGE$.NEXT_RIGHT_EDGE_ID,
EDGE$. PREV_RIGHT_EDGE_ID

6.3.2.1.2 Edge type

The GML EdgeType is defined in XML Schema as follows:

 <complexType name="EdgeType">
 <annotation>
 <documentation>There is precisely one positively directed and one negatively directed node in the
boundary of every edge. The negatively and positively directed nodes correspond to the start and end
nodes respectively. The optional coboundary of an edge is a circular sequence of directed faces which are
incident on this edge in document order. Faces which use a particular boundary edge in its positive
orientation appear with positive orientation on the coboundary of the same edge. In the 2D case, the
orientation of the face on the left of the edge is "+"; the orientation of the face on the right on its right is "-".
An edge may optionally be realised by a 1-dimensional (curve) geometric primitive.</documentation>
 </annotation>
 <complexContent>
 <extension base="gml:AbstractTopoPrimitiveType">

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 35

 <sequence>
 <element ref="gml:directedNode" minOccurs="2" maxOccurs="2"/>
 <element ref="gml:directedFace" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="gml:curveProperty" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

Table 6-6 GML/Oracle Edge Comparison
GML EDGE ORACLE

directedNode[@orientation=’+’]/Node/gml:id

The orientation attribute of type gml:SignType on
the directedNode element expresses the sense in
which the referenced Node is used. In this case:
end (“-“) or start (“+”) of the edge.

START_NODE_ID

directedNode[@orientation=’-’]/Node/gml:id END_NODE_ID

directedNode[@orientation=’+’]/Face/gml:id

The orientation attribute of type gml:SignType on
the directedFace element expresses the sense in
which the referenced Face is used. In the planar
case: disagrees (“-“) or agrees (“+”) with Face
orientation.

LEFT_FACE_ID

directedNode[@orientation=’-’]/Face/gml:id RIGHT_FACE_ID

curveProperty/Polygon GEOMETRY

directedFace[n], n>2 Not supported in Oracle 10.2 (planar topology
only)

6.3.2.1.3 Face type

The GML FaceType is defined in XML Schema as follows:

<complexType name="FaceType">
 <annotation>
 <documentation>. The topological boundary of a face consists of a set of directed edges. Note that all
edges associated with a Face, including dangling and interior edges, appear in the boundary. Dangling
and interior edges are each referenced by pairs of directedEdges with opposing orientations. The optional
coboundary of a face is a pair of directed solids which are bounded by this face. If present, there is
precisely one positively directed and one negatively directed solid in the coboundary of every face. The
positively directed solid corresponds to the solid which lies in the direction of the positively directed normal
to the face in any geometric realisation. A face may optionally be realised by a 2-dimensional (surface)
geometric primitive.</documentation>
 </annotation>
 <complexContent>
 <extension base="gml:AbstractTopoPrimitiveType">
 <sequence>
 <element ref="gml:directedEdge" maxOccurs="unbounded"/>

OGC 05-102r1

36 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

 <element ref="gml:directedTopoSolid" minOccurs="0" maxOccurs="2"/>
 <element ref="gml:surfaceProperty" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

Table 6-7 GML/Oracle Face Comparison
GML FACE ORACLE

directedEdge[@orientation=’+’]/Edge/@gml:id

The orientation attribute of type gml:SignType on the
directedEdge element expresses the sense in which
the referenced Edge is used. In this case: disagrees
(“-“) or agrees (“+”) with Face orientation.

EDGE$.LEFT_FACE_ID

directedEdge[@orientation=’-’]/Edge/@gml:id EDGE$.RIGHT_FACE_ID

surfaceProperty/Polygon GEOMETRY

directedTopoSolid Note supported in Oracle 10.2 (planar topology
only)

Not Supported in GML although ISO 19107, term
4.84 states that it may be convenient to support
in applications.

FACE_ID=-1

The universe face (id = -1) is required by Oracle

6.3.2.1.4 Supporting GML Features, Topology Expressions and TopoSolid

A feature table would contain the SDO_TOPO_GEOMETRY data type (assuming it is a spatial
feature), which is the object type that establishes a relationship between a feature and one
or more topological elements. This type may contain a collection of heterogeneous
topological elements defined using the constructor and the SDO_TOPO_OBJECT_ARRAY object
as a parameter. The SDO_TOPO_OBJECT_ARRAY type is defined as a VARRAY of
SDO_TOPO_OBJECT objects. The SDO_TOPO_OBJECT type has the following two attributes:
topo_id NUMBER, topo_type NUMBER. The topo_id represents the ID of the element and topo_type
represents its type (i.e. 1=node, 2=edge, 3=face). This implies that the user should know
the IDs of the topological elements before inserting the SDO_TOPO_GEOMETRY, which can
be obtained from a metadata table.

There are no Oracle Topologies that correspond to gml:TopoSolid and the topological
“expressions” gml:TopoPoint, gml:TopoCurve, gml:TopoSurface, and gml:TopoVolume. However a
feature table and SDO_TOPO_GEOMETRY object type can be used to represent these.

Table 6-8 Oracle Support for Features, Topology Expressions and TopoSolid
GML Element Oracle Feature Table

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 37

TopoCurve INSERT INTO feature_table VALUES ('route 22', --
Feature name
 SDO_TOPO_GEOMETRY(
 'BUS_ROUTE', -- Topology name
 2, -- Topology geometry type (line string)
 3, -- TG_LAYER_ID for this topology (from
ALL_SDO_TOPO_METADATA)
 SDO_TOPO_OBJECT_ARRAY (
 SDO_TOPO_OBJECT (9, 2),
 SDO_TOPO_OBJECT (-10, 2),
 SDO_TOPO_OBJECT (11, 2))) -- edge_ids = 9, -
10, 11
);

TopoPoint Similar to Oracle Feature Table for TopoCurve above

TopoSurface Similar to Oracle Feature Table for TopoCurve above

TopoVolume Similar to Oracle Feature Table for TopoCurve above

TopoSolid Similar to Oracle Feature Table for TopoCurve above

6.3.2.1.5 Hierarchical topologies

Hierarchical topologies in Oracle can be used to represent GML TopoComplexes, but
these are not used in the MSD3 data model and are considered out of scope in this report.

6.3.2.2 General observations of this method

The pros and cons for the method presented in 6.3.2 are itemized in the lists below.

Pros:

• Directly uses the underlying oracle topology elements for both querying and
retrieval for each of the primitives: node, edge, face, so there is no duplicated
data. This represents the full round-trip. This means that users with already
defined topologies in their Oracle data model can use this approach.

Cons:

• Slightly more calculation overhead is required because of the differences
between GML and Oracle topology models.

• Any query that contains a predicate based on the node, edge or face will have
to be rewritten to use raw SQL.

6.4 Lossless Topology Representations in Oracle Spatial 10.2g

The explicit encoding of a universal faces together with the winged edge encoding (an
edge plus next left, next right, previous left, and previous right edges) yields a lossless

OGC 05-102r1

38 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

planar topology representation in Oracle Spatial 10g. Lossless topology representations in
GML topology requires at a minimum, the specification of a consistent cyclic ordering
(e.g. counter-clockwise) of directed edges around a node, and a way to encode a universal
face. Note that the consistent cyclic ordering of directed edges around each node can be
maintained for a GML dataset in an application domain, although it is not required in
GML. Also, a universal face can be determined implicitly if all non-universal faces are
encoded in the dataset (again not required in GML)—in this case the boundary of the
universal face U consists of the oppositely oriented external boundary edges of the
complement, .U If these two conditions are maintained, a lossless planar topology
representation of GML is achievable and this can be mapped to a lossless planar topology
representation in Oracle. However this would require some computational overhead in
order to determine the Oracle winged edge encoding from the cyclic ordering of GML
directed edges incident at each node, and the Oracle universe face encoding from the
complement U derived from the GML encoding of all faces.

6.5 Summary and Conclusions

Information losses are to be expected in the direct mapping of GML topology to Oracle
Spatial 10g topology due to a limitation in Oracle 10.2g (and previous versions) that no
more than planar topology is supported. Consequently, gml:TopoSolid cannot be mapped to
Oracle topology, rather it must be mapped to a user-defined table as described in
6.3.2.1.4 Supporting GML Features, Topology Expressions and TopoSolid. Similarly,
Oracle does not support any of the GML topological “expressions”: TopoPoint, TopoCurve,
TopoSurface, and TopoVolume, nor does it support more than two faces adjacent to an edge,
only two adjacent faces can be supported—the left and the right face. The standard GML
properties that are inherited on all GML topology primitives, such as metadata, name, and
description also cannot be represented by the Oracle topology model—again user-defined
tables must be used as described in 6.3.2.1.4. However, the alternative approach
described in 6.3.2.1.4 has the drawback of precluding these topologies from being used
by topological operations that act on native Oracle topology.

The lack of support in GML topology for universal faces and for cyclic orderings of
directed edges around nodes can lead to planar topology representations that are not
lossless, even though Oracle is capable of capturing enough information to support
lossless topology representations in the plane. The silver lining is that GML geometry
captures the information required for a lossless planar topology representation, which can
be recovered from geometry in Oracle Spatial 10.2g. Note also that minor enhancements
to GML topology can enable the encoding of lossless planar topology representations
without reference to GML geometries.

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 39

7 Part 2: Integraph Topology Study

As part of this study, Intergraph will respond to the paper titled “Impacts of Topology on
WFS transactions: Observations from OWS2 Information Interoperability Thread”. It is
Intergraph’s intent to investigate the problems and benefits of including topology within a
GML document both persistently and on-the-fly. Following a thorough look at GML
topology and how it interacts with other elements of the OGC web services, Intergraph
and Galdos will put forth possible solutions.

7.1 Overview

The basis for this study is in response to the paper written by John Vincent and David
Danko titled, “Impacts of Topology on WFS Transactions: Observations from OWS2
Information Interoperability Thread” (OGC 04-101). In this paper, questions were raised
as to the effectiveness of embedding topology within a GML formatted document. The
observations noted were as follows:

1. Most clients ignore topology – preferring to rebuild it, if necessary, when needed.
This point stressed the situation in which the “WFS services generate topology
information on the fly from feature geometry properties, and encode this topology
in GML and build the required links into the feature geometry properties, only to
have the clients follow the links to the topology and extract only the geometry
definitions, ignoring the topological relationships”. The paper also stressed the
fact that this was not representative of all ingesting applications.

2. In a feature based transaction service, modifying a single feature geometry that is
part of a topological relationship can cause conceptual and design difficulties.
What appears as a simple geometric change can potentially ripple through the
geometry definitions of many other feature instances. The question was then
raised as to whether the service or client was responsible for maintaining the
topological relationships.

3. Additional concerns were raised as to the original design objectives for a WFS.
This objective was “to expose a feature model against which transactions could be
performed on individual feature instances or, in some cases, groups of feature
instances while hiding the details of the underlying implementation from the
user”. However, this again causes problems in a transaction-based service
because it would require that the client have a more intimate knowledge about the
underlying data. For example, did the client request enough of the data to
adequately re-build the topology; or was the data retrieved from a persistent
topology data store or built on-the-fly topology and how should the edited
features be returned?

7.2 Overview of topology

Topology can be defined as the mathematical study of spatial relationships. Its purpose is
to capture and retain information concerning a geographic element’s spatial and thematic

OGC 05-102r1

40 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

relationships with its neighbouring elements. The topology model of a dataset must
remain invariant under continuous deformations of the dataset. This means that if the
geometry of the data set is changed in size or is otherwise “stretched without being torn”,
the topology model must remain the same.

One point of clarification that needs to be addressed before beginning is whether the
topology being referenced is primitive-based or feature-based. GML, through its
inheritance from ISO19107, should be dealing with primitive-based topology. But, as
some vendors have a very feature-centric design, the concept of “feature topology”
creeps into the encoding of topology within their GML. For the sake of this study,
discussions will reflect primitive-based topology as it relates the data content (e.g. if
roads and rivers are requested together, then the topology will be constructed for both).

There are two methodologies used in creating topology for a given dataset. The first is
known as persistent topology. Persistent topology is created and maintained as part of
the dataset. If an element is modified, the underlying topology is automatically modified
as well. The second methodology is called “on-the-fly”. This method can best be
described as one in which the topology is created on an as-needed basis. If an application
needs topology, it is the responsibility of that application to create it. Along with other
topology topics, this paper will examine whether the topology should be persisted
(Persistent) in the GML data or created only when needed (On-the fly).

Persistent topology has a number of benefits that make it an attractive inclusion in one’s
data model. Some of those benefits include, but may not be limited to:

¾ Faster data retrieval

¾ More consistent data

¾ Built-in Quality Control (QC) providing data integrity

¾ Easier spatial analysis of the data.

However, persistent topology can also provide some disadvantages, including:

¾ Lack of consistency between GML vendors causes various “flavors” of GML
topology.

¾ Complexity of building topology often requires splitting the primitives that make
up a given feature (e.g. where they intersect with other primitives).

¾ Size of GML data file can become large and bulky to pass over networks.

These issues, and possibly others, are why so many GML implementations (both ingest
and creation) choose to avoid or ignore topological elements defined within the GML
specification.

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 41

7.3 Response to the Paper

The first summary point the paper pointed out was the fact that most WFS clients ignore
topology. This seems to be due to a couple of reasons. One is obvious – a given client
might not have any need for topology in the application use of the data. Such clients are
only interested in the features and not how they are spatially related. The second reason
is that certain clients, especially GIS applications, might have the ability to generate
topology on their own. However, the majority of the capabilities provided by the GIS
applications do not need the topology – only certain functionality. Therefore, it is more
efficient for these clients to build the topology only when a function requiring topology is
invoked.

With all of this said, it should be noted that encoding topology within the GML data
typically will not impact any of the clients mentioned above. They are simply designed
to recognize specific elements and ignore the topological ones.

The paper also addressed issues with encoding topology in a WFS-T service. Since
topology defines the spatial relationship between feature instances, modifying a single
geometry can actually affect a number of other geometric instances. For example, the
client requests a road network in the left of Figure 7.2-1.

 Before Edits After Edits

Figure 7.2-1 Data Edits and Impacts on Topology.

In the example of Figure 7.2-1, a simple movement of the endpoint for one blue edge will
result at a minimum of breaking the intersecting red edge into two segments. Since
topology represents the relationship between neighbouring geometries, decisions will
need to be made as to whether the entire intersection should be moved, which affects all
four edges and the node, or just the addition of a new intersection node. Who is
responsible for knowing this information – the client or the WFS-T server? The problem
here is the fact that the application maintaining the underlying data is completely separate
from the application making the edits.

This question leads into the final summary point made in the paper. It pointed out that
the original design objectives of a WFS was “to expose a feature model against which
transactions could be performed on individual feature instances or, in some cases, groups
of feature instances while hiding the details of the underlying implementation from the
user”. Topology is constructed based on a set of geometric instances. This can be based
on a given feature type such as roads, it can be based on a grouping of feature types such

OGC 05-102r1

42 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

as a transportation theme, or it can be based on a subset of these groupings such as the
interstates only. Based on the geometries, the topology can range from very simple to
very complex. Therefore, if a user is hidden from “the details of the underlying
implementation”, then how does the user maintain the topology without knowing the
basis on which it was built?

Some GML creation tools currently have the capability to build topology inline with the
request. This means that if the user requests the transportation theme, then topology is
built on all the feature instances with the transportation theme – if the user request only
roads, then topology is built on all road features. This solves the issue of allowing the
user to know the basis on which the topology is built. However, it still does not solve the
problems encountered within a WFS-T.

In summary, transaction based WFS services are not well suited for encoding topology
within the GML it creates. It is virtually impossible for the client to handle the overhead
of maintaining the topology and then submit it back to the WFS-T for storage in a way
that the work of the WFS-T is simply to store the returned information. The burden must
fall on the WFS-T to receive the returned features and interpret how to properly store
them in the underlying database. The underlying storage may or may not include
topology in its data model. If not, the WFS-T also has the added complexity of building
topology when data is requested and then resolving the returned features such that the
appropriate updates can be made without topology. The following section addresses the
difference between storing GML with encoded topology verses simply encoding it in the
GML being transferred.

7.4 GML: Transfer Format vs. Storage Format

During this investigation, a number of opinions about the need for topology were
reviewed. Many users of data (both GML formatted data and non-GML formatted data)
indicated the importance of topology and the necessity of its availability. However,
many of the application developers seemed to have a different opinion indicating that
topology should be left to the individual application – if topology is needed, then it can
be built for that application. In reviewing cases for this study, it was noticed that one of
the reasons for the difference in opinions dealt with how the data was being used. It was
apparent that when data reached an “endpoint”, the need for topology became more
evident. The following serve as examples of what is meant by an endpoint:

¾ If the data was being pulled from a data store such as a database, then topology
was important to ensure data integrity and provide faster queries.

¾ If the data was being stored in a database, then topology provided some form of
quality assurance.

¾ If the data had been sent to an end user, then topology provided more data
consistency and allowed for enhanced spatial analysis capabilities.

The option for including topology is obviously favorable in the environments involving
endpoints because there is only one point of interface. This means that data is being

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 43

pulled from or pushed to a database through an interface defined by the database itself. If
the data is sent to an end user, the end user requires the topology and accepts the
overhead as necessary. In addition, the end user is the final point of transfer.

On the other hand, if the data format is being used as a transfer mechanism, all
indications are that small and fast are the requirements - small because it makes for a
faster transfer.

This is an important distinction to make when discussing the use of topology encoded
within a GML document. For the most part, GML is used as a transfer format. When
users indicate that topology is highly desired in a given environment, the context of the
data usage must be defined first. There are exceptions were data is being stored in GML
simply because it can be more openly retrieved by many participants. However, as we in
the OGC know, GML is the foundation for transferring feature data over the web.

7.5 Complexity and Duplication Added by Topology

As was mentioned in the previous section, the verbosity of GML is a very important
factor, especially when being used as a transfer format. However, the encoding of
topology within the GML will definitely add to its size as well as its complexity. For
example, if we apply the geometries used earlier, we see that the original data could be
simplified to two simple linear geometries. However, by applying topology and breaking
the edges at the intersecting points, we double the number of edges by creating two red
and two blue line features. In addition, it also adds a new geometric node element to the
intersect location.

 Without Topology With Topology

 Figure 7.4-1 Introduction of Nodes at Intersections.

Topology encoding adds a number of complexities when building the geometries that are
topologically correct. For example, the following represents a single feature from the
LFC165 “Route (Maritime)” feature type with no topology.

<?xml version="1.0" encoding="UTF-8"?>

OGC 05-102r1

44 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

<gml:FeatureCollection xmlns="http://www.opengis.net/ows-3/nga/MSD3"
xmlns:gml="http://www.opengis.net/gml" xmlns:MSD3="http://www.opengis.net/ows-
3/nga/MSD3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/ows-3/nga/MSD3 ./MSD3.xsd">
 <gml:boundedBy>
 <gml:Envelope srsName="urn:ogc:def:crs:EPSG:6.6:4326">
 <gml:lowerCorner>37.4883472 126.5849368 0</gml:lowerCorner>
 <gml:upperCorner>37.4932724 126.587602 0</gml:upperCorner>
 </gml:Envelope>
 </gml:boundedBy>
 <gml:featureMember>
 <MSD3:LFC165 gml:id="LFC165.1">
 <MSD3:position>
 <gml:LineString srsName="urn:ogc:def:crs:EPSG:6.6:4326">

<gml:posList srsDimension="3">37.493268 126.5849368 0
37.4932688 126.5853864 0 37.4932724 126.587602 0 37.4883472
126.58585 0 </gml:posList>

 </gml:LineString>
 </MSD3:position>
 <MSD3:atn>2</MSD3:atn>
 <MSD3:bds>0</MSD3:bds>
 <MSD3:brr>UNK</MSD3:brr>
 <MSD3:brs

uom="http://zx10.ingr.com/msd3/schema/dictionaries/UnitDictionary.x
ml#deg">0</MSD3:brs>

 <MSD3:dan>N/A</MSD3:dan>
 <MSD3:dof

uom="http://zx10.ingr.com/msd3/schema/dictionaries/UnitDictionary.x
ml#deg">>0</MSD3:dof>

 <MSD3:drp>UNK</MSD3:drp>
 <MSD3:hdi>12</MSD3:hdi>
 <MSD3:hdp

uom="http://zx10.ingr.com/msd3/schema/dictionaries/UnitDictionary.x
ml#m">0</MSD3:hdp>

 <MSD3:nam>Unknown</MSD3:nam>
 <MSD3:rtt>0</MSD3:rtt>
 <MSD3:txt>N_P</MSD3:txt>
 <MSD3:vdc>0</MSD3:vdc>
 <MSD3:vdr>N_P</MSD3:vdr>
 <MSD3:orig_source_info>N_P</MSD3:orig_source_info>
 <MSD3:originating_source>N_P</MSD3:originating_source>
 <MSD3:originator>N_P</MSD3:originator>
 <MSD3:scale>-32766</MSD3:scale>
 </MSD3:LFC165>
 </gml:featureMember>
</gml:FeatureCollection>

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 45

The above example is simple in that one can quickly identify the geometries and
properties belonging to the given feature. Once we encode the topology for that single
feature, the GML becomes as follows:

<?xml version="1.0" encoding="UTF-8"?>
<gml:FeatureCollection xmlns="http://www.opengis.net/ows-3/nga/MSD3"
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:gml="http://www.opengis.net/gml"
xmlns:MSD3="http://www.opengis.net/ows-3/nga/MSD3"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/ows-3/nga/MSD3 ./MSD3.xsd">
 <gml:boundedBy>
 <gml:Envelope srsName="urn:ogc:def:crs:EPSG:6.6:4326">
 <gml:lowerCorner>37.4883472 126.5849368 0</gml:lowerCorner>
 <gml:upperCorner>37.4932724 126.587602 0</gml:upperCorner>
 </gml:Envelope>
 </gml:boundedBy>
 <gml:featureMember>
 <MSD3:LFC165 gml:id="LFC165.1">
 <MSD3:position>
 <gml:LineString srsName="urn:ogc:def:crs:EPSG:6.6:4326">

<gml:posList srsDimension="3">37.493268 126.5849368 0
37.4932688 126.5853864 0 37.4932724 126.587602 0 37.4883472
126.58585 0 </gml:posList>

 </gml:LineString>
 </MSD3:position>
 <MSD3:topology>
 <gml:TopoCurve>
 <gml:directedEdge orientation="+">
 <gml:Edge gml:id="E1">
 <gml:directedNode orientation="-">
 <gml:Node gml:id="N1">

<gml:directedEdge orientation="-"
xlink:href="#E1"/>

 <gml:pointProperty>
<gml:Point
srsName="urn:ogc:def:crs:EPSG:6.6:4326">

<gml:pos srsDimension="3">37.493268
126.5849368 0</gml:pos>

 </gml:Point>
 </gml:pointProperty>
 </gml:Node>
 </gml:directedNode>
 <gml:directedNode orientation="+">
 <gml:Node gml:id="N2">

<gml:directedEdge orientation="+"
xlink:href="#E1"/>

 <gml:pointProperty>

OGC 05-102r1

46 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

<gml:Point
srsName="urn:ogc:def:crs:EPSG:6.6:4326">

<gml:pos srsDimension="3">37.4883472
126.58585 0</gml:pos>

 </gml:Point>
 </gml:pointProperty>
 </gml:Node>
 </gml:directedNode>
 <gml:curveProperty>

<gml:LineString
srsName="urn:ogc:def:crs:EPSG:6.6:4326">

<gml:posList srsDimension="3">37.493268
126.5849368 0 37.4932688 126.5853864 0
37.4932724 126.587602 0 37.4883472 126.58585 0
</gml:posList>

 </gml:LineString>
 </gml:curveProperty>
 </gml:Edge>
 </gml:directedEdge>
 </gml:TopoCurve>
 </MSD3:topology>
 <MSD3:atn>2</MSD3:atn>
 <MSD3:bds>0</MSD3:bds>
 <MSD3:brr>UNK</MSD3:brr>
 <MSD3:brs

uom="http://zx10.ingr.com/msd3/schema/dictionaries/UnitDictionary.x
ml#deg">0</MSD3:brs>

 <MSD3:dan>N/A</MSD3:dan>
 <MSD3:dof

uom="http://zx10.ingr.com/msd3/schema/dictionaries/UnitDictionary.x
ml#deg">0</MSD3:dof>

 <MSD3:drp>UNK</MSD3:drp>
 <MSD3:hdi>12</MSD3:hdi>
 <MSD3:hdp

uom="http://zx10.ingr.com/msd3/schema/dictionaries/UnitDictionary.x
ml#m">0</MSD3:hdp>

 <MSD3:nam>Unknown</MSD3:nam>
 <MSD3:rtt>0</MSD3:rtt>
 <MSD3:txt>N_P</MSD3:txt>
 <MSD3:vdc>0</MSD3:vdc>
 <MSD3:vdr>N_P</MSD3:vdr>
 <MSD3:orig_source_info>N_P</MSD3:orig_source_info>
 <MSD3:originating_source>N_P</MSD3:originating_source>
 <MSD3:originator>N_P</MSD3:originator>
 <MSD3:scale>-32766</MSD3:scale>
 </MSD3:LFC165>
 </gml:featureMember>

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 47

</gml:FeatureCollection>

We see the additions highlighted showing duplicated information as well as the addition
of the start and end node points. Remember, this is a single feature instance. Now
picture a dataset with a thousand roads. Every time one road intersects another, they
must both be split into separate instances. Since an attempt is made to detail such items
as the connecting nodes only once, it means that many of the instances must cross-
reference the connected node geometry.

However, not only does topology make the GML more complex, but it also makes it
substantially larger in size. For example, consider Table 7.4-1, which shows the size
differences between various datasets that have been generated both with and without
encoding topology. The data used in the table is the MSD3 data supplied by the sponsor.

Table 7.4-1 — Size Comparison of Small MSD3 Data Set with Topology.

Feature Name/Type

Number of Features

GML Size
without topology

GML Size
with topology

LFC165 / Line 1 1.6 KB 2.9 KB
AAA010 / Area 1 1.9 KB 4.0 KB
PGB063 / Point 1 1.1 KB 1.4 KB

Table 7.4-1 shows that, on average, the size of line features increased at a ratio of about
2:3 and area features increased at a ratio of about 1:2. The point features do not show a
big increase but points have little impact on topology. Note that these numbers involve
only a single instance of each feature type. As the number of features is increased, the
more information that has to be stored - the ratio may stay the same, but the amount of
additional information gets larger based on the increase in features. The Table 7.4-2
shows feature types with a larger number of features.

Table 7.4-2 — Size Comparison of Larger MSD3 Data Set with Topology.

Feature Name/Type

Number of Features

GML Size
without topology

GML Size
with topology

LAP030 / Line 1444 1.7 MB 2.9 MB
AAL015 / Area 857 1.5 MB 2.8 MB
PAL015 / Point 2888 4.0 MB 4.9 MB

It should be noted that in addition to this study, a parallel study is taking place that looks
into performance of transferring the often bulky GML of large datasets across a network.
Based on some of the items listed in this study, more effective ways of handling the issue
of size may be identified and thus erase bulkiness as an area of concern. In a separate
study of the performance of GML, Galdos and CubeWerx are looking into how GML can
be transferred over networks and the internet in a more efficient manner.

OGC 05-102r1

48 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

It should also be noted that this study did not take into account the use of xlinks. The use
of xlinks would make a large impact on the topology encoding size that is documented in
that duplicate geometries would not be represented.

7.6 Summary

The summary of what we have seen is that the encoding of topology certainly adds both
bulk and complexity to the base GML datasets. This is the question that must be
answered: “Can the benefits of persisted topology justify the overhead of carrying it
through the transfers over various networks?” Based on the answer to this question, one
can determine the need for persisted topology. It is suspected that the answer to this
question will likely vary based on the perspective of each individual’s needs. Therefore,
because there are varying perspectives, it is impossible for this paper to answer this
question definitively for everyone. Several possible solutions are presented in the
following section, but this is certainly not meant to be an exhaustive list.

7.7 Possible Solutions

Before discussing the possible solutions, it should first be noted that efforts have already
taken place to define schemas that make topology elements optional. This optional tag
will help the user to quickly identify the existence or absence of topology.

After researching the topic of topology as it relates to persistent and on-the-fly generation
within the GML format, several conclusions were reached. Due to the varied uses for
GML as well as user preferences, this list is by no means definitive.

1. The first option is to remove all topology references from GML. Because of the
benefits that topology can provide, this is not recommended. However, this
option would remove all restrictions that topology brings to GML.

2. Another option, based on the need for consistency, is to mandate that all GML
generation tools be required to produce topology. The writer of this document
recognizes this option is not practical for a number of reasons. The cost of
including topology could become large and cumbersome for both exporters and
importers since the cost of building and parsing GML can potentially include
financial cost as well as performance cost. Although not a very practical
approach, it will provide topology for those expecting topological relationships,
while allowing clients to ignore the topology if it is not needed.

3. One practical solution is to continue to provide GML generators the ability to
generate the GML containing topology only on user request. This can be
accomplished through Boolean toggles set on a user interface, through API
properties, or through an extended parameter on the WFS GetFeature request.
The GML data would then include the topology and optional tags discussed at the
beginning of this section based on the user preference. Although this solution
does not address the issues with transaction based services, it does give those
producing GML for clients expecting topological relationships a method to supply

OGC 05-102r1

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 49

the topology.

4. The final option presented here is to create topology via a Topology Building
Service. Such a service would take a WFS URL as input, build the topology, and
publish a new WFS URL serving the GML containing topology (see figure 7.6-1
below). The GML data received from the original endpoint would not include the
optional tags whereas the GML data received through the service would. This
option has several advantages. First, it would remove the burden of producing
topology on each WFS. Furthermore, topology consistency would be achieved
because all output would be re-directed through a standardized topology building
service. In addition, it would give the clients that desire topology a method of
building topology on WFS sites that do not offer topology while also allowing
clients that do not want topology to connect directly to the original WFS. Also it
would help to standardize the “flavors” of topology generated because the service
itself would be standardized.

GML GML Topology

Service
Original

WFS
WFS w/

Topology

Figure 7.6-1 Topology Service

Another perceived benefit involves the use of transaction-based WFS services. A
client could request data through a “non-topology” WFS and perform
transactional edits on the data without topology being involved in any of the
workflow. However, if the client wished to receive the dataset with topology
enabled, the original dataset could be redirected through a topology service before
being ingested (see figure 7.6-2 below). Even so, there would still be some
complications if edits were made because the original WFS would be expected to
know how to interpret the changed dataset that now contains encoded topology.
So, even though it doesn’t solve the entire problem, a Topology Building Service
would allow a WFS-T to provide topology through an independent service.

If client does not
want topology

If client does want
topology

GML GML Topology
Service

Original
WFS

WFS w/
Topology

WFS
Client

OGC 05-102r1

50 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

 Figure 7.6-2 Optional Topology for any WFS

Note: An additional alternative to a Topology Service is extending the existing
WFS specification. For example, one topic that is under investigation within WFS
RWG is relaxing the constraint of WFS operations to include any GML object,
thus allowing topology objects to be retrieved and manipulated. Such an
improvement could end up in another conformance class for WFS.

Bibliography

[1] OGC 03-105r1, OpenGIS® Geography Markup Language (GML) Implementation
Specification, Version 3.1.1, April 2004.

[2] Galdi, David, Spatial Data Storage and Topology in the Redesigned MAF/TIGER
System, U.S. Census Bureau.

[3] Kuijpers, B., et al. A Lossless Representation of Topological Spatial Data,
Advances in Spatial Data SSD 95, LNCS 951, p.1-13, 1995.

[4] Oracle® Spatial Topology and Network Data Models
http://download-east.oracle.com/docs/cd/B19306_01/appdev.102/b14256/toc.htm

[5] Interface Standard for Vector Product Format, MIL-STD-2407, 28 June 1996.

http://download-east.oracle.com/docs/cd/B19306_01/appdev.102/b14256/toc.htm

	1 Scope
	2 Conformance
	3 Normative references
	4 Terms and definitions
	5 Conventions
	5.1 Symbols (and abbreviated terms)
	5.2 UML notation
	5.3 Document terms and definitions

	6 Part 1: Galdos Topology Investigation
	6.1 Introduction to GML Topology
	6.1.1 GML Nodes, Edges and Faces
	6.1.2 More Complex Topology Primitives
	6.1.3 Geometric Realizations
	6.1.4 Spatial Representations of a GML Feature
	6.1.4.1 Topology Modelling of a Feature Collection

	6.1.5 Lossless Topology Representations in GML

	6.2 Introduction to Oracle Spatial 10g Topology
	6.2.1 Oracle topology model
	6.2.2 Building the topology
	6.2.2.1 Procedure for creating topology that includes geometry
	6.2.2.2 Creating the topology using only spatial geometries (Oracle 10.2 version only)

	6.2.3 Querying the topology
	6.2.4 Oracle Feature and Topology Tables
	6.2.5 Editing the topology

	6.3 GML to Oracle Topology Development Approaches
	6.3.1 Build Spatial Topology Tables from Geometry (Oracle 10.2 only)
	6.3.1.1 Initializing topology
	6.3.1.2 Inserting topology elements
	6.3.1.3 Retrieving and querying topology elements
	6.3.1.4 Editing topology elements
	6.3.1.5 General observations of this method

	6.3.2 Direct Representation of GML in Oracle Topology
	6.3.2.1 Mapping GML elements to Oracle Topology
	6.3.2.1.1 Node type
	6.3.2.1.2 Edge type
	6.3.2.1.3 Face type
	6.3.2.1.4 Supporting GML Features, Topology Expressions and TopoSolid
	6.3.2.1.5 Hierarchical topologies

	6.3.2.2 General observations of this method

	6.4 Lossless Topology Representations in Oracle Spatial 10.2g
	6.5 Summary and Conclusions

	7 Part 2: Integraph Topology Study
	7.1 Overview
	7.2 Overview of topology
	7.3 Response to the Paper
	7.4 GML: Transfer Format vs. Storage Format
	7.5 Complexity and Duplication Added by Topology
	7.6 Summary
	7.7 Possible Solutions

	Bibliography

