
Open Geospatial Consortium Inc.

Date: 2006-02-23

Reference number of this OGC® Project Document: OGC 06-035r1

Version: 0.0.3

Category: OpenGIS® Discussion Paper

Editor: Peter Baumann

Web Coverage Processing Service (WCPS): Draft Implementation
Specification

Copyright

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC standard. It is distributed for review and comment. It
is subject to change without notice and may not be referred to as an OGC Standard.

Recipients of this document are invited to submit, with their comments, notification
of any relevant patent rights of which they are aware and to provide supporting
documentation.

Document type: Draft Implementation Specification
Document subtype: Discussion Paper
Document stage: Approved
Document language: English

 i

http://www.opengeospatial.org/legal/

OGC 06-035r1

Contents

1 Scope..1
2 Conformance ..2
3 Normative references...2
4 Terms and definitions ..3
5 Conventions ..3
5.1 Symbols (and abbreviated terms)...4
5.2 UML notation ...4
5.3 XML schema notation ...6
6 Basic service elements..7
6.1 Introduction..7
6.2 Version numbering and negotiation...7
6.2.1 Version number form..7
6.2.2 Version changes ...7
6.2.3 Appearance in requests and in service metadata ...7
6.2.4 Version number negotiation...7
6.3 General HTTP request rules...8
6.3.1 Overview...8
6.3.2 Key-value pair encoding (GET or POST)...9
6.3.3 XML encoding ...10
6.4 General HTTP response rules ..10
6.5 Service exceptions ..11
7 The coverage model ...12
7.1 Informal coverage definition...12
7.2 Formal coverage definition ...14
7.3 Coverage constituents..15
7.4 Accessor functions..19
7.5 UML model...19
8 GetCapabilities operation ...20
9 ProcessCoverage operation...21
9.1 Introduction..21
9.1.1 WCPS expression language specification..21
9.2 ProcessCoverage request...22
9.2.1 Request/response overview...22
9.2.2 WCPS expressions...22
9.2.3 Expression evaluation ...47
9.2.4 Response overview...50
9.2.5 Key-value pair encoding ...51
9.2.6 XML encoding ...52

ii

OGC 06-035r1

i. Preface

The OGC Web Coverage Processing Service (WCPS) results from both theoretical con-
siderations and performing a reference implementation. Nevertheless, there is still con-
siderable room for improvement. Hints and comments are therefore most welcome by the
document editor.

WCPS is based on the conceptual model of WCS. As the revision of WCS proceeds,
WCPS will have to be adapted to maintain coherence.

ii. Submitting organizations

The following organizations have submitted this Implementation Specification to the
Open GIS Consortium, Inc.

� International University Bremen

� rasdaman GmbH

iii. Document Contributors

iv. Revision history

Date Release Author

Name Organization
Baumann, Peter International University Bremen, rasdaman GmbH

Paragraph
modified

Description

2005-06-06 0.0.1 Peter Baumann,
Trimita Chakma

 Initial draft

2005-12-15 0.0.2 Peter Baumann,
Georgi Chulkov

 Reworked based on WCS progress

2005-04-20 0.0.3 Sean Forde Minor editorial changes for publication as
a discussion paper

v. Changes to the OpenGIS® Abstract Specification

The OpenGIS® Abstract Specification does not require changes to accommodate the
technical contents of this document.

 iii

OGC 06-035r1

vi. Future Work

There are plans to extend and enhance this framework with the following features:

1) Streamlining with WPS (presumably WCPS will be described as an application
profile of WPS).

2) WCPS is based on the conceptual model of WCS. As the revision of WCS pro-
ceeds, WCPS will have to be adapted to maintain coherence.

3) Geo coordinate handling currently is not streamlined with GML, ISO 19123,
WCS, and relevant OGC standards (this in particular relates to the relevant XML
Schema definitions). As soon as WCS 1.1 is stable and officially issued, WCPS
definition must be adapted accordingly.

4) Once the schema is fixed, corresponding UML diagrams have to be added.

5) The Conformance Section has to be provided.

iv

OGC 06-035r1

Foreword

Some of the elements of this document OGC 06-035r1 may be the subject of patent
rights. Open GeoSpatial Consortium Inc. shall not be held responsible for identifying any
such patent rights.

 v

OGC 06-035r1

Introduction

The Web Coverage Processing Service (WCPS) supports retrieval and processing of geo-
spatial coverage data. WCPS grounds on the coverage model of the OGC Web Coverage
Service (WCS) Implementation Specification [4] where coverages are defined as “digital
geospatial information representing space-varying phenomena”, currently constrained to
equally spaced grids.

WCPS provides access to original or derived sets of geospatial coverage information, in
forms that are useful for client-side rendering, input into scientific models, and other cli-
ent applications. As such, WCPS includes WCS functionality and extends it with an ex-
pression language to form requests of arbitrary complexity allowing, e.g., multi-valued
coverage results.

It is recommended to read this document in conjunction with the WCS Implementation
Specification document [4].

vi

OpenGIS® Discussion Paper OGC 06-035r1

 1

OpenGIS Interface:
Web Coverage Processing Service (WCPS)

1 Scope

This document specifies how a Web Coverage Processing Service (WCPS) can describe,
request, and delivers multi-dimensional grid coverage data over the World Wide Web.

Grid coverages have a domain comprised of regularly spaced locations along an arbitrary
number of axes. Specific semantics are associated with spatio-temporal axes; A coverage
can optionally have an x axis, a y axis (which, if both present, shall bear a common coor-
dinate reference system), a time axis, and an elevation axis. A coverage’s grid point (i.e.,
cell) data types define, at each location in the domain, either a single (scalar) value (such
as elevation), or an ordered series of values (such as brightness values in different parts
of the electromagnetic spectrum).

Result coverages can be transmitted directly or made available for download by URLs
communicated to the client.

The Web Coverage Processing Service provides two operations: GetCapabilities and
ProcessCoverage. The GetCapabilities operation, like in WCS, returns an XML docu-
ment describing the service and brief descriptions of the data collections from which cli-
ents may request coverages; additionally WCPS specific processing service capabilities
are delivered. Clients would generally run the GetCapabilities operation when opening a
session with some particular server and cache its result for use throughout the session.

The ProcessCoverage operation allows to process and analyse coverages and coverage
sets stored on the server as well as to extract information – both grid data and metadata –
from coverages. To this end, requests are phrased in a formally defined processing lan-
guage that supports coverage expressions of unlimited complexity. Result coverages can
be transmitted directly back to the client or made available for download by URLs com-
municated to the client.

Coverages advertised by a service can be stored on the corresponding server, but the ser-
vice may well itself rely on external data sources to substantiate the portfolio. In any
case, the appearance towards the service clients always is one homogeneously accessible
coverage offering.

For future versions it is intended, to extend WCPS to incorporate further coverage types
defined in the OpenGIS Abstract Specification (Topic 6, "The Coverage Type", OGC
document 00-106), in synchronization with WCS.

OGC 03-065r1

2 Conformance

Conformance with this OGC Implementation Specification may be checked using all the
relevant tests specified in Annex D (normative).

3 Normative references

The following normative documents contain provisions that, through reference in this
text, constitute provisions of this specification. For dated references, subsequent amend-
ments to, or revisions of, any of these publications do not apply. For undated references,
the latest edition of the normative document referred to applies.

IETF RFC 2045 (November 1996), Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies, Freed, N. and Borenstein N., eds.,
<http://www.ietf.org/rfc/rfc2045.txt>

IETF RFC 2616 (June 1999), Hypertext Transfer Protocol – HTTP/1.1, Gettys, J., Mogul,
J., Frystyk, H., Masinter, L., Leach, P., and Berners-Lee, T., eds.,
<http://www.ietf.org/rfc/rfc2616.txt>

IETF RFC 2396 (August 1998), Uniform Resource Identifiers (URI): Generic Syntax,
Berners-Lee, T., Fielding, N., and Masinter, L., eds.,
<http://www.ietf.org/rfc/rfc2396.txt>

ISO 19105: Geographic information — Conformance and Testing

ISO 19123, Geographic Information — Coverage Geometry and Functions

OGC 02-023r4, OpenGIS Geography Markup Language (GML) Implementation Specifi-
cation, v3.00 <http://www.opengis.org/techno/documents/02-023r4.pdf>

OGC 03-065r6, OpenGIS Web Coverage Service Implementqation Specification (WCS)
Implementation Specification, v1.0.0 <http://www.opengis.org/techno/documents/03-
065r6.pdf>

OGC AS 0, The OpenGIS Abstract Specification Topic 0: Overview, OGC document 99-
100r1 <http://www.opengis.org/techno/abstract/99-100r1.pdf>

OGC AS 12, The OpenGIS Abstract Specification Topic 12: OpenGIS Service Architec-
ture (Version 4.2), Kottman, C. (ed.), <http://www.opengis.org/techno/specs.htm>

XML 1.0, W3C Recommendation 6 October 2000, Extensible Markup Language (XML)
1.0 (2nd edition), World Wide Web Consortium Recommendation, Bray, T., Paoli, J.,
Sperberg-McQueen, C.M., and Maler, E., eds., <http://www.w3.org/TR/2000/REC-xml>

W3C Recommendation 2 May 2001: XML Schema Part 0: Primer,
<http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/>

2

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.opengis.org/techno/documents/02-023r4.pdf
http://www.opengis.org/techno/documents/03-065r6.pdf
http://www.opengis.org/techno/documents/03-065r6.pdf
http://www.opengis.org/techno/abstract/99-100r1.pdf
http://www.opengis.org/techno/specs.htm
http://www.w3.org/TR/2000/REC-xml
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

OGC 06-035r1

W3C Recommendation 2 May 2001: XML Schema Part 1: Structures,
<http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/>

W3C Recommendation 2 May 2001: XML Schema Part 2: Datatypes,
<http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/>

4 Terms and definitions

For the purposes of this document, the terms and definitions given in the above refer-
ences (in particular: WCS) apply, as do the following terms.

4.1
dimension
an independent axis of the coverage, usually representing a spatial or the temporal di-
mension.

4.2
cell
an element of a coverage which is uniquely identified by its spatio-temporal position; a
cell contains a value of the type specified in the coverage definition.

4.3
cell type
the data type of a cell; it can be an atomic type (such as char for 8-bit greyscale images)
or a composite “struct” type (such as struct { char red, green, blue;} for RGB
images, using Java syntax); this relates to the terms “range” and “range type” in WCS.

4.4
cell domain
the extent of a coverage, whereby, along each axis, cells are numbered consecutively in
ascending order using (not necessarily nonnegative) integers. A cell domain can be char-
acterized completely by its lower and upper corner point coordinates.

4.5
domain
the extent of a coverage, whereby axes with a geo semantics have geographic coordi-
nates, a time axis has time coordinates. Geo and time axes are optional.

4.6
range list
the component(s) of a cell type. This relates to the WCS term “range set”, but emphasises
that the types are sorted, allowing to address them not only by name, but also by position.
Sort order is defined by the sequence indicated in a GetCapabilities response.

 3

http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

OGC 03-065r1

5 Conventions

5.1 Symbols (and abbreviated terms)

The following symbols and abbreviated terms are used in this document.

API Application Program Interface
CRS Coordinate Reference System
DCP Distributed Computing Platform
GML OGC Geography Markup Language, v3.00 (OGC 03-023r4)
ISO International Organization for Standardization
OGC Open GeoSpatial Consortium
OWS OGC Web Service
UML Unified Modeling Language
XML Extensible Markup Language
1D One Dimensional
2D Two Dimensional
3D Three Dimensional
4D Four Dimensional

5.2 UML notation

Certain diagrams that appear in this document are presented using static structure dia-
grams in the Unified Modeling Language (UML) [OMG]. The UML notations used in
this document are described in the diagram below.

4

OGC 06-035r1

Figure 1 - UML Notation

In these UML class diagrams, the class boxes with three compartments and a light back-
ground are the primary classes being shown in this diagram, usually the classes from one
UML package. The class boxes with a grey background are other classes used by these
primary classes, usually classes from other packages. The class boxes without compart-
ments do not show the class attributes, which are usually shown on another class dia-
gram.

In these class diagrams, the following five stereotypes of UML classes are used:

a) <<Interface>> A definition of a set of operations that is supported by objects having
this interface. An Interface class cannot contain any attributes.

b) <<DataType>> A descriptor of a set of values that lack identity (independent exis-
tence and the possibility of side effects). A DataType is a class with no operations
whose primary purpose is to hold the information.

c) <<Enumeration>> A data type whose instances form a list of alternative literal val-
ues. Enumeration means a short list of well-understood potential values within a
class.

d) <<CodeList>> is a flexible enumeration that uses string values for expressing a long
list of potential alternative values. If the list alternatives are completely known, an
enumeration shall be used; if the only likely alternatives are known, a code list shall
be used. Code lists are more likely to have their values exposed to the user.

 5

OGC 03-065r1

e) <<Type>> A stereotyped class used for specification of a domain of instances (ob-
jects), together with the operations applicable to the objects. A Type class may have
attributes and associations.

NOTE All the stereotypes listed above are adapted from Subclause 6.8 of ISO 19103.

In this document, the following standard data types are used:

a) string – A sequence of characters
b) Boolean – A value specifying TRUE or FALSE
c) URI – An identifier of a resource that provides more information about data
d) URL – An identifier of an on-line resource that can be electronically accessed

5.3 XML schema notation

Several diagrams in this document represent XML Schema constructs using the graphical
symbols provided by the XML Spy software suite (Altova, Inc. / www.xmlspy.com).
These are depicted in Figure 2 below.

Figure 2. XML Schema graphic symbols

6

OGC 06-035r1

6 Basic service elements

6.1 Introduction

This clause describes aspects of Web Coverage Processing Server behavior (more gener-
ally, of OGC Web Service behavior) that are independent of particular operations, or that
are common to several operations or interfaces.

6.2 Version numbering and negotiation

6.2.1 Version number form

The published specification version number contains three positive integers, separated by
decimal points, in the form "x.y.z". The numbers "y" and "z" will never exceed 99. Each
OWS specification is numbered independently.

6.2.2 Version changes

A particular specification's version number shall be changed with each revision. The
number shall increase monotonically and shall comprise no more than three integers
separated by decimal points, with the first integer being the most significant. There may
be gaps in the numerical sequence. Some numbers may denote experimental or interim
versions. Service instances and their clients need not support all defined versions, but
shall obey the negotiation rules below.

6.2.3 Appearance in requests and in service metadata

The version number appears in at least two places: in the Capabilities XML describing a
service, and in the parameter list of client requests to that service. The version number
used in a client's request of a particular service instance shall be equal to a version num-
ber which that instance has declared it supports (except during negotiation as described
below). A service instance may support several versions, whose values clients may dis-
cover according to the negotiation rules.

6.2.4 Version number negotiation

A Client may negotiate with a Service Instance to determine a mutually agreeable speci-
fication version. Negotiation is performed using the GetCapabilities operation [see
Clause 8] according to the following rules.

All Capabilities XML shall include a protocol version number. In response to a GetCap-
abilities request containing a version number, an OGC Web Service shall either respond
with output that conforms to that version of the specification, or negotiate a mutually
agreeable version if the requested version is not implemented on the server. If no version
number is specified in the request, the server shall respond with the highest version it un-
derstands and label the response accordingly.

 7

OGC 03-065r1

Version number negotiation occurs as follows:

a) If the server implements the requested version number, the server shall send that ver-
sion.

b) If a version unknown to the server is requested, the server shall send the highest ver-
sion it knows that is less than the requested version.

c) If the client request is for a version lower than any of those known to the server, then
the server shall send the lowest version it knows.

d) If the client does not understand the new version number sent by the server, it may
either cease communicating with the server or send a new request with a new version
number that the client does understand but which is less than that sent by the server
(if the server had responded with a lower version).

e) If the server had responded with a higher version (because the request was for a ver-
sion lower than any known to the server), and the client does not understand the pro-
posed higher version, then the client may send a new request with a version number
higher than that sent by the server.

The process is repeated until a mutually understood version is reached, or until the client
determines that it will not or cannot communicate with that particular server.

Example 1 - Server understands versions 1, 2, 4, 5 and 8. Client understands versions 1, 3, 4, 6, and 7.
Client requests version 7. Server responds with version 5. Client requests version 4. Server responds with
version 4, which the client understands, and the negotiation ends successfully.

Example 2 - Server understands versions 4, 5 and 8. Client understands version 3. Client requests ver-
sion 3. Server responds with version 4. Client does not understand that version or any higher version, so
negotiation fails and client ceases communication with that server.

The negotiated version parameter shall be supplied with ProcessCoverage requests.

6.3 General HTTP request rules

6.3.1 Overview

At present, the only distributed computing platform (DCP) explicitly supported by OGC
Web Services is the World Wide Web itself, or more specifically Internet hosts implem-
enting the Hypertext Transfer Protocol (HTTP). Thus the Online Resource of each opera-
tion supported by a service instance is an HTTP Uniform Resource Locator (URL). The
URL may be different for each operation, or the same, at the discretion of the service p
vider. Each URL shall conform to the description in [HTTP] but is otherwise imple-
mentation-dependent; only the parameters comprising the service request itself are man-
dated by the OGC Web Services specifications.

ro-

HTTP supports two request methods: GET and POST. One or both of these methods may
be defined for a particular OGC Web Service type and offered by a service instance, and
the use of the Online Resource URL differs in each case.

8

OGC 06-035r1

An Online Resource URL intended for HTTP GET requests is in fact only a URL prefix
to which additional parameters must be appended in order to construct a valid Operation
request. A URL prefix is defined as an opaque string including the protocol, hostname,
optional port number, path, a question mark '?', and, optionally, one or more server-
specific parameters ending in an ampersand '&'. The prefix uniquely identifies the par-
ticular service instance. For HTTP GET, the URL prefix shall end in either a '?' (in the
absence of additional server-specific parameters) or a '&'. In practice, however, Clients
should be prepared to add a necessary trailing '?' or '&' before appending the Operation
parameters defined in this specification in order to construct a valid request URL.

An Online Resource URL intended for HTTP POST requests is a complete and valid
URL to which Clients transmit encoded requests in the body of the POST document. A
WCPS server shall not require additional parameters to be appended to the URL in order
to construct a valid target for the Operation request.

6.3.2 Key-value pair encoding (GET or POST)

6.3.2.1 Overview

Using Key-Value Pair encoding, a client composes the necessary request parameters as
keyword/value pairs in the form "keyword=value", separated by ampersands (‘&’), with
appropriate encoding [IETF RFC 2396] to protect special characters. The resulting query
string may be transmitted to the server via HTTP GET or HTTP POST, as prescribed in
the HTTP Common Gateway Interface (CGI) standard [IETF RFC 2616].

Table 1 summarizes the request parameters for HTTP GET and POST.

Table 1 – Parts of a Key-Value Pair OGC Web Service Request

URL Component Description
http://host[:port]/path URL of service operation. The URL is entirely at the discretion of the

service provider.
{name[=value]&} The query string, consisting of one or more standard request parameter

name/value pairs defined by an OGC Web Service. The actual list of
required and optional parameters is mandated for each operation by the
appropriate OWS specification.

Notes: [] denotes 0 or 1 occurrence of an optional part; {} denotes 0 or more occurrences.

A request encoded using the HTTP GET method interposes a '?' character between the
service operation URL and the query string, to form a valid URI which may be saved as a
bookmark, embedded as a hyperlink, or referenced via Xlink in an XML document.

6.3.2.2 Parameter ordering and case

Parameter names shall not be case sensitive, but parameter values shall be case sensitive.

NOTE In this document, parameter names are typically shown in uppercase for typographical clarity,
not as a requirement.

Parameters in a request may be specified in any order.

 9

http://host%5B:port%5D/path

OGC 03-065r1

An OGC Web Service shall be prepared to encounter parameters that are not part of this
specification. In terms of producing results per this specification, an OGC Web Service
shall ignore such parameters.

6.3.2.3 Parameter lists

Parameters consisting of lists shall use the comma (",") as the delimiter between items in
the list.

Example parameter=item1,item2,item3

Multiple lists can be specified as the value of a parameter by enclosing each list in paren-
theses ("(", ")")

Example parameter=(item1a,item1b,item1c),(item2a,item2b)

If a parameter name or value includes a space or comma, it shall be escaped using the
URL encoding rules [6].

6.3.3 XML encoding

Clients may also encode requests in XML for transmission to the server using HTTP
GET or HTTP POST. The XML request shall conform to the schema corresponding to
the chosen operation, and the client shall send it to the URL listed for that operation in
the server’s Getabilities response, in accordance with HTTP POST [7]).

NOTE To support SOAP messaging, clients need only enclose the XML document ogcdoc in a
SOAP envelope as follows:

<env:Envelope xmlns:env="http://www.w3.org/2001/09/soap-envelope">
 <env:Body>
 ogcdoc
 </env:Body>
</env:Envelope>

6.4 General HTTP response rules

Upon receiving a valid request, the service shall send a response corresponding exactly
to the request as detailed in the appropriate specification. Only in the case of Version N
gotiation (described above) may the server offer a differing result.

e-

Upon receiving an invalid request, the service shall issue a Service Exception as de-
scribed in Subclause 6.5 below.

NOTE As a practical matter, in the WWW environment a client should be prepared to receive either a
valid result, or nothing, or any other result. This is because the client may itself have formed a non-
conforming request that inadvertently triggered a reply by something other than an OGC Web Service,
because the service itself may be non-conforming, etc.

10

OGC 06-035r1

6.5 Service exceptions

Upon receiving an invalid request, the service shall issue a Service Exception XML mes-
sage to describe to the client application or its human user the reason(s) that the request is
invalid.

Service Exception XML shall be valid according to the Service Exception XML Schema
in Subclause A.7. In an HTTP environment, the MIME type of the returned XML shall
be "application/vnd.ogc.se_xml". Specific error messages can be included either as
chunks of plain text or as XML-like text containing angle brackets ("<" and ">") if in-
cluded in a character data (CDATA) section as shown in the example of Service Excep-
tion XML in Subclause A.7.

Service Exceptions may include exception codes as indicated in Subclause A.7. Servers
shall not use these codes for meanings other than those specified. Clients may use these
codes to automate responses to Service Exceptions.

 11

OGC 03-065r1

7 The coverage model

The coverage model of WCPS relies on the coverage model of WCS [4]. In the current
version the WCPS coverage model is constrained to equally spaced grids, meaning that
the distance between any two adjacent grid points in a coverage is constant.

NOTE This restriction is intended to be relaxed in future WCPS versions.

In Section 7.1 the coverage model used is introduced informally, followed by a formal
definition in Section -. Section 7.3 describes, based on this model, the constituents a
WCPS coverage has. Subsequently (Section 9.2.2) this forms the basis for the WCPS se-
mantics by describing the effect of a WCPS coverage processing request on the result
coverage constituents.

7.1 Informal coverage definition

NOTE This section is non-normative; the normative coverage specification is given in Section 7.2.

Coverage data form n-dimensional cubes, where n>0 is an integer and values are assoc-
iated with each coordinate point (“cell”) inside the cube, each dimension having a named
axis. All values are of the same underylying data type. A set of metadata is associated
with the coverage’s cell value set, thus allowing to perform opeations like extraction,
analysis, and manipulation of coverages or their components.

A coverage is viewed, for the purpose of this standard, as being subdivided into four lay-
ers (see Figure 3):

- Level 0: grid data – „The grid data themselves“.

These data can only be understood (e.g., to extract single cell values) in conjunc-
tion with their next-level metadata.

- Level 1: technical meta data – Number of axes, extent per axis, cell type, null
value, interpolation methods.

These data describe the coverage sufficiently to access the Level 0 cell values.
There is no further semantics (such as space / time) known on this level; axes are
numbered (not named), and cells are addressed using integer coordinates in all
axes. The list of interpolation methods indicates which methods are available on
the given coverage, in case interpolation has to be applied (such as scaling and
coordinate system transformation).

- Level 2: spatio-temporal meta data – Coordinate reference system, geo / time
reference, axis semantics

Level 2 metadata allow to optionally associate the semantics of space and time
with an axis. If an axis represents horizontal space coordinates, then a pertaining

12

OGC 06-035r1

coordinate reference system (which is the same for both x and y axis) describes
the axis. A time axis always has the usual time semantics associated.

If Level 2 metadata are associated with a coverage, then it is possible to address
coverage cells using spatio-teompral coordinates; to this end, conversion func-
tions from spatio-temporal (Level 2) to integer (Level 1) coordinates are pro-
vided.

Additionally, for the purpose of this standard, Level 2 metadata encompass a
unique name to allow for referencing a stored coverage.

- Level 3: general meta data – „Everything else“

A coverage usually has additional descriptive data associated which embed it into
the overall application model. For example, further description of the meaning of
the coverage data, or the time the coverage has been acquired can be associated.
These data can be arbitrary, but will always reference the coverage.

This standard considers only Level 0, 1, and 2. No assumptions whatsoever are made
about Level 3 in this standard.

Levels do not encapsulate (in the sense of hiding) other layers; applications are free to
address coverages on any level, for example on Level 2 using geo coordinates or on
Level 1 using cell cordinates.

Level 0: grid data

Level 1: technical meta data

Level 2: spatio-temporal metdata

Level 3: general metadata

Figure 3. Coverage level stack

 13

OGC 03-065r1

24

21

23

22

42

7 85 64

2
3

longitude axis
(+crs)

latitude
axis

(+crs)

temporal
axis

Level 1

Level 2

Level 0

Figure 4. Coverage conceptual model and terminology

7.2 Formal coverage definition

Let d be a non-negative integer, and let loi, hii ∈ Z with 0≤i<d and loi≤hii be integer
numbers. The set D defined as

D = { c0 | lo0 ≤ c0 ≤ hi0 } × … × { cd-1 | lod-1 ≤ c d-1 ≤ hid-1 }

is called a cell domain of dimension d with axis numbers 0 to d-1; loi and hii are called
the lower and upper bound, resp. of D in axis i.

The accessor functions lo and hi extract the lower and upper bound, resp., from a cell
domain D (Figure 5). In particular, if D is given as above, then

lo(D) = (lo0,…,lod-1)

hi(D) = (hi0,…,hid-1)

and

loi(D) = loi

hii(D) = hii

14

OGC 06-035r1

Let further some non-empty value set T, called a cell type, be given. A coverage C, then,
is a mapping from D to T:

C: D → T

Example A coverage which maps CellDomain {0..1023}×{0..767} to cell type {0..255} can represent a
greyscale VGA image.

lo0

hi0

hi1

lo1

Figure 5. Cell domain with boundary points

NOTE A coverage obviously consists of a multi-dimensional array of cells sharing the same cell type.
Coverage cell coordinates together form a simply connected (i.e., without cavities), finite, axis-parallel
hypercube in n-dimensional Euclidean space. This geometric shape is also known as parallel epiped.

7.3 Coverage constituents

A WCPS coverage consists of the following constituents:

- Coverage values:
The Level 0 coverage cell values (“grid data”).

- Cell domain:
the coverage’s cell domain (coordinate extent), represented by the lower and up-
per bound coordinate per axis; the data type is an ordered list of (lo,hi) pairs of in-
teger values with lo≤hi where lo denotes the lower bound and hi denotes the up-
per bound of the coverage in the resp. axis. The list elements, representing the
axes, shall be numbered started from 0.

Each cell domain shall contain at least one element. The number of components
in the cell domain is called the coverage’s dimension.

- Range list:
The cell type of this coverage; the data type is an ordered list of (Component-
Name,TypeName) pairs where ComponentName identifies the component and

 15

OGC 03-065r1

TypeName indicates the data type. Each range list shall contain at least one ele-
ment.

ComponentNames shall be of non-zero length and unique within a given range
list. Both ComponentNames and TypeNames shall be case sensitive, and they
should contain only printable ASCII characters.

TypeName shall be one of the data types listed in Table 2.

Table 2 – Coverage cell data types.
Cell data type name meaning
char 8-bit signed integer
unsigned char 8-bit unsigned integer
short 16-bit signed integer
unsigned short 16-bit unsigned integer
int 32-bit signed integer
unsigned int 32-bit unsigned integer
long 64-bit signed integer
unsigned long 64-bit unsigned integer
float Single precision floating point number
double Double precision floating point number

NOTE Components of a range list are also known as “bands”.

NOTE It is not required that all components within a coverage are of the same type.

NOTE A future version of this standard will additionally support nested components (nested
“structs” in programming languages) and named types (such as “RGBPixel”).

Example The range list
 (red,”unsigned char”), (green,”unsigned char”), (blue,”unsigned char”)
describes RGB values.

- Null value:
The value which is to be interpreted as null value for this coverage; the data type
is the coverage’s cell type.

WCPS operations shall set the null value to 0 for each cell type component of a
overage whenever there is no explicit specification and the null value cannot be
deduced.

Example It is impossible to deduce a null value when an operation combines two coverages each
having a different null value. In this case, the null value of the resulting coverage will be 0 for
each cell type component. This can be changed with a subsequent null value redefinition (see Sec-
tion 9.2.2.10).

- Interpolation methods:
the interpolation methods available on this coverage; the data type is a list of
string values taken from Table 3.

16

OGC 06-035r1

NOTE While duplicate values in the list are not forbidden they don’t make sense.

Table 3 — Interpolation methods

Interpolation method Description

nearest neighbor (default)

bilinear

bicubic

lost area

These are defined in ISO 19123 (Schema for Coverage Geometry and
Functions), Annex B.

barycentric

NOTE Table 3 is copied from [4], dropping the none element which disallows any inter-
polation. The effect of the WCS none element in WCPS is achieved by an empty interpolation list.

Example The following is a valid list of interpolation methods:
 nearest neighbor,bilinear,bicubic

If an interpolation methods list is empty, then this shall mean that no interpolation
is available; in this situation, requests containing scale (Section 9.2.2.24) and co-
ordinate transformation operations (Section 9.2.2.24) shall result in error re-
sponses.

Further, a service shall respond with an exception if an operation requires i
polation and the interpolation method specified is not contained in the interp
tion methods list of the coverage under consideration.

nter-
ola-

- Name:
an identifier for the coverage on hand, or for a set of coverages; the data type is
character string.

Names of stored coverages / coverage sets shall be of non-zero length and unique
across all coverages / coverage sets offered by a particular WCPS; coverages re-
sulting from a ProcessCoverage request shall have an empty name (“”) associ-
ated. Names shall contain only printable ASCII characters.

- Domain:
the available coverage locations in space and/or time available in this coverage,
expressed in geographic, elevation, or time coordinates, resp.; the data type is a
list of (AxisName,DomainExtent,AxisType) triples where

• AxisName identifies the axis. AxisNames within a domain shall be unique
and of non-zero length; they shall contain only printable ASCII characters.

• DomainExtent indicates the coverage’s extent in the resp. axis. A Domain-
Extent is specified by a pair of values (lo,hi) denoting its lower and upper
bound. The data type of lower and upper bound can be numeric or string, but
shall be the same for both values.
NOTE For axes with a spatial semantic associated the values will usually be numeric, for
a temporal axis a string notation for points in time is common.

 17

OGC 03-065r1

• AxisType denotes the type of an axis, which shall be one of the values listed
in Table 4.
NOTE This value determines whether a space or time coordinate transformation (see
Section 9.2.2.29) can be applied to the axis on hand.

NOTE Axis type elevation is reserved for future semantic functionality; currently axis
type elevation is interpreted like other.

Each domain shall have at most one axis of type temporal.

Each domain shall have at most one axis of type x, and at most one axis of type y.

Each domain shall have at most one axis of type elevation.

The domain is optional for a coverage; if the domain is present, its length shall be
equal to the length of the coverage’s cell domain list, i.e., its dimension.

Table 4 – Coverage axis types.
Axis type Meaning
x East-West extent, expressed in the coverage’s CRS
y North-South extent, expressed in the coverage’s CRS
temporal Time; coordinates are expressed as time strings according to [9]
elevation Geographical elevation, i.e., height
other None of the above; no spatio-temporal semantics is associated with such an

axis

Example Let x0,x1,y0,y1 ∈ R be numbers with x0≤x1 and y0≤y1. Then, the domain list
 (longitude, (x0,x1), y), (latitude, (y0,y1), x)
describes a conventional map of spatial extent between (x0, y0) and (y0,y1) with axis names longi-
tude and latitude, resp.

The service does not need to publish the mapping between cell and spatio-
temporal coordinates.

Let (a,(lo,hi),t) be an axis named a of some coverage C occurring at position p in
C’s domain. Then, the resolution of C in axis named a is given by

 hi – lo
res(C,a) = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 hip(cdom(C)) – lop(cdom(C)) + 1

- CRS:
Identifier of the coverage’s CRS (“coordinate reference system”), which shall be
an empty string (“”) for non-georeferenced data; the data type of CRS is an ASCII
string of the format

urn:ogc:def:crs:EPSG::XXXXX

where XXXX is one of the CRS codes defined by EPSG [5].

18

OGC 06-035r1

Example The following is a valid SupportedCRS value:

urn:ogc:def:crs:EPSG::4314

The DomainSet is optional for a coverage; if the DomainSet is present, its length
shall be equal to the length of the coverage’s CellDomainSet list, i.e., its dimen-
sion.

7.4 Accessor functions

A set of so-called accessor functions allows to extract the constituents listed above from
a given coverage. Table 5 summarises the accessor functions available, plus some con-
venience functions whose semantics can be based on the core functions.

NOTE These functions serve to define the semantics of ProcessCoverage requests in Clause 9.

Table 5 – Coverage constituent accessor functions.
Coverage
characteristic

Accessor function
for some coverage C

Comment

Cell values value(C,p) for all p∈ cdom(C)
Cell domain cdom(C)
Range list celltype(C)
Null value null(C)
Interpolation
method list

im(C)

Level 0 and Level 1 func-
tions for defining multi-
dimensional data cubes

Name name(C) Stored coverages only
Domain dom(C)

dom(C,a) for all a,e,t with (a,e,t)∈Domain(C)
CRS crs(C)

Level 2 functions for spa-
tio-temporal semantics

Dimension dim(C)
Axis resolution res(C,a) for all a,e,t with (a,e,t)∈Domain(C)

Level 2 convenience func-
tions (redundant)

7.5 UML model

Tbd once stabilized WCS 1.1 available

 19

OGC 03-065r1

8 GetCapabilities operation

The GetCapabilities operation is identical to the WCS GetCapabilities operation [4], ex-
cept that it extends the notion of coverage names to names of coverages and coverage
sets, of axis types, and with supported format being a server property, not an individual
coverage property.

8.1 GetCapabilities operation request

The GetCapabilities operation request shall be as specified in Subclauses 7.2.2 through
7.2.4 of [OGC 05-008]. The “service”, “request”, and “AcceptVersions” parameters shall
be implemented by all WCPS servers. The “sections” and “UpdateSequence” parameters
are optional implementation by WCPS servers. All WCPS servers shall implement HTTP
GET transfer of the GetCapabilities operation request, using KVP encoding. Servers can
also implement HTTP POST transfer of the GetCapabilities operation request, using
XML and/or KVP encoding.

The value of the “service” parameter shall be “WCS”. The allowed set of service meta-
data (or Capabilities) XML document section names and meanings shall be as specified
in Tables 3 and 7 in Subclauses 7.3.3 and 7.4.2 of [OGC 05-008].

The KVP encoding of a WCS GetCapabilities operation request shall be as specified in
Table 2 in Subclause 7.2.2 of [OGC 05-008].

The XML Schema fragment for encoding a WCPS GetCapabilities operation request
extends ows:GetCapabilitiesType in owsGetCapabilities.xsd from [OGC 05-008], and is
specified in wcpsGetCapabilities.xsd as laid out in Annex B.

20

OGC 06-035r1

9 ProcessCoverage operation

9.1 Introduction

A Web Coverage Processing Server evaluates a ProcessCoverage request and returns an
appropriate response to the client.

While the WCS GetCoverage operation allows retrieval of a coverage from a coverage
offering, possibly modified through operations like spatial, temporal, and band subsetting
and coordinate transformation, the WCPS ProcessCoverage extends this functionality
through more powerful processing capabilities. This includes, on the one hand, further
coverage processing primitives and, on the other hand, nesting of function application,
thereby allowing for arbitrarily complex requests.

NOTE WCPS has been designed so as to be “safe in evaluation” – i.e., any valid WCPS request can be
evaluated in a finite number of steps based on the primitives. Hence, WCPS implementations can be
constructed in a way that no single request can render the service permanently unavailable.

Clients can choose whether to phrase ProcessCoverage requests based on a coverage’s
cell coordinates or through spatio-temporal coordinates.

A WCPS response is an ordered sequence of data items. A data item can be a coverage or
the result of any other processing expression. The ProcessCoverage operation returns a
coverage as stored on the server, or a constituent thereof, or a derived coverage, or a con-
stituent thereof (see Section 7.3 for the constituents of a coverage).

NOTE Data items within a WCPS response list can be heterogeneous in size and structure. In particu-
lar, the coverages within a response list can have different dimensions, extents, cell types, etc.

9.1.1 WCPS expression language specification

The WCPS primitives plus the nesting capabilities form an expression language; this ab-
stract language collectively is referred to as WCPS language. In the following subsec-
tions the language elements are detailed. The complete syntax is listed in Appendix A.

A WCPS expression is called admissible if and only if it adheres to the WCPS language
syntax. WCPS servers shall return an exception in response to a WCPS request that is not
admissible.

Example The expression

C * 2

is admissible as it adheres to WCPS syntax whereas the expression

C C

violates WCPS syntax and, hence, is not admissible.

 21

OGC 03-065r1

The semantics of a WCPS expression is defined by indicating, for all admissible expres-
sions, the value of each coverage constituent as laid down in Section 7.4.

An expression is valid if and only if it is admissible and it complies with the conditions
imposed by the WCPS language semantics.

Example The expression following is valid if and only if the WCPS offers a coverage of name C that has
a component named red.

C.red * 2.5

9.2 ProcessCoverage request

9.2.1 Request/response overview

A ProcessCoverage request follows the conceptual model as described in Subclause 7
and is encoded in one of the structures as described in Subclauses 9.2.2.29 and 9.2.6,
resp. In this Subclause, the syntax and semantics of ProcessCoverage requests is de-
scribed in an abstract, encoding-independent manner. For the reader’s convenience, for
each constituent of a coverage-valued expression it is indicated whether the operation
considered changes this constituent value.

A ProcessCoverage request shall contain exactly one valid WCPS expression.

The server shall answer with a response as described in the subsequent Subclauses.

9.2.2 WCPS expressions

9.2.2.1 Overview

A WCPS expression is a coverageListExpr (which evaluates to a list of encoded cover-
ages; see Section 9.2.2.2). Each WCPS request shall contain exactly one coverageList-
Expr.

9.2.2.2 coverageListExpr

The coverageListExpr element processes a list of coverages in turn. Each coverage is
optionally checked first for fulfilling some predicate, and gets selected – i.e., becomes
part of the result list – only if the predicate evaluates to true. Each coverage selected then
will be processed, and the result will be appended to the result list. This result list, fi-
nally, is returned as the ProcessCoverage response unless no exception was generated.

The elements in the coverageList clause can be names of single coverages or names of
coverage sets. The coverageList elements shall be inspected sequentially in the order
given; for a coverage set element, each element shall be inspected exactly once without
any particular sequence specified by this standard.

22

OGC 06-035r1

Coverage or coverage set names may occur more than once in a coverageList. In this
case the coverage shall be inspected each time it is listed, respecting the overall inspec-
tion sequence.

Coverage sets may be empty.

NOTE Implementers may define their individual iteration sequence on sets.

Let

v be an iteratorVar,
L be a coverageList,
b be a booleanScalarExpr possibly containing occurrences of v,
P be a processingExpr possibly containing occurrences of v.

Then,

for any responseList R,
coverageList L’,
where
 R = for v in (L’)
 where b
 return P
and
 L’ is that coverageList derived from L by substituting each occurrence of
a coverage set name N in L by a list of all coverage names contained in the cover-
age set named N, in some arbitrary (not necessary repeatable) sequence.

R is constructed as follows:

� Let R be the empty sequence.

� while L’ is not empty:

� assign the first element in L’ to v

� evaluate P, substituting any occurrence of coverage name v by
the coverage this name refers to

� append the result to R

� remove the first element from L’

Example Assume a WCPS server offers coverages A and C and coverage set B containing coverages X,
Y, Z. Then, the server may execute the following WCPS request:

for c in (A, B, C)
return tiff(c)

in a sequence equivalent to this one:

 23

OGC 03-065r1

for c in (A, X, Y, Z, C)
return tiff(c)

The result list, in this case, will consist of the sequence

(tiff(A), tiff(X), tiff(Y), tiff(Z), tiff(C))

…but the server may also choose the evaluation sequence below (with the obvious change to the result
list):

for c in (A, Z, Y, X, C)
return tiff(c)

…however not in this sequence:

for c in (X, Y, Z, A, C)
return tiff(c)

NOTE Future versions of this standard may consider nested coverageListExprs.

9.2.2.3 processingExpr

The processingExpr element is either a encodedCoverageExpr (which evaluates to an
encoded coverage; see Section 9.2.2.4), or a scalarExpr (which evaluates to coverage
description data or coverage summary data; see Section 9.2.2.6).

9.2.2.4 encodedCoverageExpr

The encodedCoverageExpr element specifies a coverage result as described by its C1
sub element, and a data format encoding specified by the format name, formatName, and
possible extra encoding parameters specified in extraParams.

Data format encodings should, to the largest extent possible, materialise the coverage’s
(Level 1 and Level 2) metadata. A service may store further information as part of the
encoding.

Example A GeoTIFF result file should contain the geo referencing information manifest in the cover-
age’s latitude/longitude axes, if present.

Let

C be a coverageExpr,
f be a string,
where
 f is the name of a data format listed under supportedFormats in the
GetCapabilities response,
 the data format specified by f supports encoding of a coverage of C’s do-
main and range.

Then,

24

OGC 06-035r1

for any byteString S
where
 S = encode (C , f)
or S = encode (C , f, extraParams)
with extraParams being a string enclosed in double quotes (‘”’)

S is defined as that byte string which encodes C into the data format specified by
formatName and the optional extraParams. Syntax and semantics of the
extraParams are not specified further in this standard.

Example The following expression specifies retrieval of coverage C encoded in HDF-EOS:

encode(C, “hdf-eos”)

NOTE The extraParams are data format and implementation dependent.

Example A possible JPEG quality factor of 50% may be encoded as the string “50.”.

NOTE some format encodings may lead to a loss of information.

9.2.2.5 booleanExpr

The booleanExpr element is a scalarExpr (see Section 9.2.2.6) whose result type is
Boolean.

NOTE WCPS implementors may extend this to allow, e.g., the usual boolean, arithmetic, and further
scalar functions.

9.2.2.6 scalarExpr

The scalarExpr element is either a getMetaDataExpr (see Section 9.2.2.7) or a conden-
seExpr (see Section 9.2.2.25). It returns a non-coverage result.

9.2.2.7 getMetaDataExpr

The getMetaDataExpr element extracts a coverage description element from a coverage.

NOTE The cell value sets can be extracted from a coverage using subsetting operations (see Section
9.2.2.20).

Let

C be a coverageExpr.

Then,

The following metadata extraction functions are defined:

 Metadata fct. Result Description Result type

 25

OGC 03-065r1

cdom(C) cdom(C) cell domain of C Cell domain struc-
ture as defined in
Section 7.3

celltype(C) celltype(C) cell type of C Range list structure
as defined in Sec-
tion 7.3

null(C) null(C) null value of C celltype(C)

crs(C) crs(C) CRS of C String

xDomain(C) dom(C,a) East-West extent of C, if C
has an axis a of type x

Pair of double
numbers

yDomain(C) dom(C,a) North-South extent of C,
if C has an axis a of type y

Pair of double
numbers

tDomain(C) dom(C,a) temporal coordinate ex-
tent of C, if C has an axis
a of type temporal

pair of ows:time

dim(C) dim(C) dimension of C unsigned integer

res(C , a) res(C ,a) resolution of C in axis a double precision
floating point num-
ber

Whenever one of the conditions mentioned above are not fulfilled the server shall
respond with an exception.

NOTE Not all information about a coverage can be retrieved this way. Adding the information con-
tained in a GetCapabilities response provides complete information about a coverage.

Example For a 3-D coverage C, the following expression evaluates to 3:

dim(C)

Example For an RGB coverage C containing color images, the result of the expression celltype(C)
is the following RangeList (modulo white space):

(“red”, “unsigned char”),
(“green”, “unsigned char”),
(“blue”, ”unsigned char”)

9.2.2.8 coverageExpr

The coverageExpr element is either a coverageName (see Section 9.2.2.9), or setMeta-
DataExpr (see Section 9.2.2.9), or an inducedExpr (see Section 9.2.2.11), or a sub-
setExpr (see Section 9.2.2.20), or a scaleExpr (see Section 9.2.2.24), or a crsTransfor-
mExpr (see Section 9.2.2.29), , or a coverageConstructorExpr (see Section 9.2.2.25),
or a condenseExpr (see Section 9.2.2.26).

A coverageExpr always evaluates to a single coverage.

26

OGC 06-035r1

9.2.2.9 coverageName

The coverageName element represents the name of a single coverage offered by the
server addressed.

Let

n be a name
where there exists a coverage C with name n offered by the server addressed.

Then,

for any coverageExpr C’,
where
 C’ = n

C’ is defined as follows:

 Coverage constituent Changed?

 for all p ∈ cdom(C’):
 value(C’,p) = value(C ,p)

 cdom(C’) = cdom(C)

 celltype(C’) = celltype(C)

 null(C’) = null(C)

 im(C’) = im(C)

X name(C’) = “” (empty string)

 dom(C’) = dom(C)

 crs(C’) = crs(C)

Example The following coverage expression evaluates to the complete, unchanged coverage C, if that is
offered by the server:

C

9.2.2.10 setMetaDataExpr

The setMetaDataExpr element specifies a change in a coverage’s metadata, leaving un-
touched the coverage cell values.

Let

 27

OGC 03-065r1

C1 be a coverageExpr,
n be a nullValue of type celltype(C1),
m be an interpolationMethodList,
a be an axisName,
lo, hi be either both floatNumbers or both strings with lo≤hi
c be a crsName.

Then,

for any coverageExpr C2
where C2 is one of
 Cnull = setNull(C1 , n)
 Cim = setInterpolation(C1 , m)
 Ccrs = setCrs(C1 , c)
 Caxis = setAxis(C1 , a, lo, hi)

C2 is defined as follows:

 Coverage constituent Changed?

 for all p ∈ cdom(C2):
 value(C2, p) = value(C1, p)

 cdom(C2) = cdom(C1)

 celltype(C2) = celltype(C1)

X null(Cnull) = n
 null(C2) = null(C1) for all C2 except Cnull

X im(Cim) = m
 im(C2) = im(C1) for all C2 except Cim

X name(Ci) = “” for all C2

X loa(dom(Caxis,a,lo,hi)) = lo for axis with name a and index i,
 hia(dom(Caxis,a,lo,hi)) = hi for axis with name a and index i,
 loa(dom(Caxis,a,lo,hi)) = lo for axis name not equal to a,
 hia(dom(Caxis,a,lo,hi)) = hi for axis name not equal to a,
 dom(C2) = dom(C1) for all C2 except Caxis

X crs(Ccrs) = c
 crs(C2) = crs(C1) for all C2 except Ccrs

Example The following coverage expression evaluates to coverage that has -100 as its null value:

setNull(C, -100)

28

OGC 06-035r1

NOTE Those metadata which affect the coverage values themselves (one might call them “technical
metadata”) cannot be changed; to accomplish that the operations under coverageExpr are available in-
stead. In particular,

� the setNull() operation will not change any preexisting value in the coverage in an attempt to
adapt old null values to the new null value;

� the setCrs() operation will not adapt any spatial coordinates in the coverage, i.e., it does not per-
form any coordinate system transformation.

NOTE Functions setFomain() and setSdomain() allow to set coverage axis extents of type float and
string, resp. Among others, this can be used to redefine a coverage’s spatial and temporal coordinates.

NOTE As WCPS focuses on the processing of the coverage values, advanced capabilities for manipu-
lating a coverage’s metadata are currently not foreseen.

9.2.2.11 inducedExpr

The inducedExpr element is either a unaryInducedExpr (see Section 9.2.2.12) or a bi-
naryInducedExpr (see Section 9.2.2.19).

Induced operations allow to simultaneously apply a function originally working on a sin-
gle cell value to all cells of a coverage. In case the cell type contains more than one com-
ponent, the function is applied to each cell component simultaneously.

The result coverage has the same domain, but may change its base type.

NOTE The idea is that for each operation available on the cell type, a corresponding coverage opera-
tion is provided (“induced from the cell type operation”), a concept first introduced by Ritter et al.

Example Adding two RGB images will apply the “+” operation to each cell, and within a cell to each
band in turn.

9.2.2.12 unaryInducedExpr

The unaryInducedExpr element specifies a unary induced operation, i.e., an operation
where only one coverage argument occurs.

NOTE The term “unary” refers only to coverage arguments; it is well possible that further non-
coverage parameters occur, such as an integer number indicating the shift distance in a bit() operation.

A unaryInducedExprp is either an arithmeticExpr or exponentialExpr or trigono-
metricExpr (in which case it evaluates to a coverage with a numeric cell type; see Sec-
tions 9.2.2.13, 9.2.2.14, 9.2.2.15), a boolExpr (in which case it evaluates to a Boolean
expression; see Section 9.2.2.16), a castExpr (in which case it evaluates to a coverage
with unchanged values, but another cell type; see Section 9.2.2.16), or a selectExpr (in
which case a component selection is performed; see Section 9.2.2.18).

9.2.2.13 arithmeticExpr

The arithmeticExpr element specifies a unary induced arithmetic operation.

Let

 29

OGC 03-065r1

C1 be a coverageExpr
where
 for all components c in celltype(C1): c is numeric.

Then,

for any coverageExpr C2
where C2 is one of
 Cplus = + C1
or Cminus = - C1
or Csqrt = sqrt(C1)
or Cabs = abs(C1)

C2 is defined as follows:

 Coverage constituent Changed?

X for all p ∈ cdom(C1):
 value(Cplus, p) = value(C1, p)
 value(Cminus, p) = - value(C1, p)
 value(Csqrt, p) = sqrt(value(C1, p))
 value(Cabs, p) = abs(value(C1, p))

 cdom(C2) = cdom(C1)

X celltype(C2) = celltype(C1) for all C2 except Csqrt
for all components c of celltype(Csqrt):
 c = double

 null(C2) = null(C1)

 im(C2) = im(C1)

X name(C2) = “”

 dom(C2) = dom(C1)

 crs(C2) = crs(C1)

Example The following coverage expression evaluates to a float-type coverage where each cell value
contains the square root of the corresponding source coverage’s value.

sqrt(C + D)

9.2.2.14 trigonometricExpr

The trigonometricExpr element specifies a unary induced trigonometric operation.

30

OGC 06-035r1

Let

C1 be a coverageExpr
where
 for all components c in celltype(C1): c is numeric.

Then,

for any coverageExpr C2
where C2 is one of
 Csin = sin(C1)
or Ccos = cos(C1)
or Ctan = tan(C1)
or Csinh = sinh(C1)
or Ccosh = cosh(C1)
or Carcsin = arcsin(C1)
or Carccos = arccos(C1)
or Carctan = arctan(C1)

C2 is defined as follows:

 Coverage constituent Changed?

X for all p ∈ cdom(C1):
 value(Csin,p) = sin(value(C1,p))
 value(Ccos,p) = cos(value(C1,p))
 value(Ctan,p) = tan(value(C1,p))
 value(Csinh,p) = sinh(value(C1,p))
 value(Ccosh,p) = cosh(value(C1,p))
 value(Carcsin,p) = arcsin(value(C1,p))
 value(Carccos,p) = arccos(value(C1,p))
 value(Carctan,p) = arctan(value(C1,p))

 cdom(C2) = cdom(C1)

X for all components c of celltype(C2) :
 c = double

 null(C2) = null(C1)

 im(C2) = im(C1)

X name(Ci) = “” for all C2

 dom(C2) = dom(C1)

 crs(C2) = crs(C1)

 31

OGC 03-065r1

Example The following expression replaces all (numeric) values of coverage C with their sine:

sin(C)

9.2.2.15 exponentialExpr

The exponentialExpr element specifies a unary induced exponential operation.

Let

C1 be a coverageExpr
where
 for all components c in celltype(C1): c is numeric.

Then,

for any coverageExpr C2
where C2 is one of
 Cexp = exp(C1)
or Clog = log(C1)
or Cln = ln(C1)

C2 is defined as follows:

 Coverage constituent Changed?

X for all p ∈ cdom(C2):
 value(Cexp,p) = exp(value(C1,p))
 value(Clog ,p) = log(value(C1,p))
 value(Cln ,p) = ln(value(C1,p))

 cdom(C2) = cdom(C1)

X for all components c of celltype(C2) :
 c = double

 null(C2) = null(C1)

 im(C2) = im(C1)

X name(C2) = “” for all C2

 dom(C2) = dom(C1)

 crs(C2) = crs(C1)

32

OGC 06-035r1

Example The following expression replaces all (nonnegative numeric) values of coverage C with their
natural logarithm:

ln(C)

9.2.2.16 boolExpr

The boolExpr element specifies a unary induced Boolean operation. The only operation
available is logical negation (logical “not”).

Let

C1 be a coverageExpr
where
 for all components c in celltype(C1): c = Boolean.

Then,

for any coverageExpr C2
where C2 is one of
 Cnot = not C1
or Cbit = bit(C1 , n)
where n is an expression evaluating to a nonnegative integer value

C2 is defined as follows:

 Coverage constituent Changed?

X for all p ∈ cdom(C2):
 value(Cnot , p) = not(value(C1,p))
 value(Cbit, p) = (value(C1,p) >> value(n)) mod 2

 cdom(C2) = cdom(C1)

 for all components c of celltype(C2):
 c = Boolean

 null(C2) = null(C1)

 im(C2) = im(C1)

X name(C2) = “”

 dom(C2) = dom(C1)

 crs(C2) = crs(C1)

 33

OGC 03-065r1

Example The following expression inverts all (Boolean) values of coverage C:

not C

NOTE The operation bit(a,b) extracts bit position b (assuming a binary representation) from int-
eger number a and shifts the resulting bit value to bit position 0. Hence, the resulting value is either 0 or 1.

9.2.2.17 castExpr

The castExpr element specifies a unary induced cast operation, that is: to change the cell
type of the coverage while leaving all other constituents unchanged, however possibly
suffering from a loss of accuracy through data type conversion.

Let

C1 be a coverageExpr,
t be a cell type name.

Then,

for any coverageExpr C2
where
 C2 = (t) C1

C2 is defined as follows:

 Coverage constituent Changed?

X for all p ∈ cdom(C2):
 value(C2 , p) = (t) value(C1,p)

 cdom(C2) = cdom(C1)

X for all components c of celltype(C2):
 c = t

 null(C2) = null(C1)

 im(C2) = im(C1)

X name(C2) = “”

 dom(C2) = dom(C1)

 crs(C2) = crs(C1)

Example the result cell type of the following expression will be char, i.e., 8 bit:

34

OGC 06-035r1

(char) (C / 2)

9.2.2.18 selectExpr

The selectExpr element specifies a unary induced record (“struct”) selection operation.
Selection can be done either using the component’s name or its position, starting with
position number 0.

Let

C1 be a coverageExpr,
comp be a component (“band”) of type t within celltype(C1), either identified by
band name or by its position number, starting from 0.

Then,

for any coverageExpr C2
where
 C2 = C1.comp

C2 is defined as follows:

 Coverage constituent Changed?

X for all p ∈ cdom(C2):
 value(C2, p) = value(C1,p).comp

 cdom(C2) = cdom(C1)

X celltype(C2) = t

 null(C2) = null(C1)

 im(C2) = im(C1)

X name(C2) = “”

 dom(C2) = dom(C1)

 crs(C2) = crs(C1)

Example Let C be a coverage with cell type char. Then the following request snippet describes a char-
type coverage where each cell value contains the nonnegative difference between red and green band:

C.red - C.green

 35

OGC 03-065r1

9.2.2.19 binaryInducedExpr

The binaryInducedExpr element specifies a binary induced operation, i.e., an operation
involving two coverage-valued arguments.

The coverage cell types shall be atomic and numeric.

Let

C1, C2 be coverageExprs
where
 dim(C1) = dim(C2),
 sdom(C1) = sdom(C2),
 crs(C1) = crs(C2),
 tdom(C1) = tdom(C2),
 res(C1) = res(C2),
 celltype(C1) = celltype(C2),
 null(C1) = null(C2).

Then,

for any coverageExpr C3
where
 Cplus = C1 + C2 and celltype(C1), celltype(C2) numeric
or Cmin = C1 - C2 and celltype(C1), celltype(C2) numeric
or Cmult = C1 * C2 and celltype(C1), celltype(C2) numeric
or Cdiv = C1 / C2 and celltype(C1), celltype(C2) numeric
or Cand = C1 and C2 and celltype(C1)=celltype(C2)=Boolean
or Cor = C1 or C2 and celltype(C1)=celltype(C2)=Boolean
or Cxor = C1 xor C2 and celltype(C1)=celltype(C2)=Boolean
or Ceq = C1 = = C2 and celltype(C1), celltype(C2) numeric or Boolean
or Clt = C1 < C2 and celltype(C1), celltype(C2) numeric or Boolean
or Cgt = C1 > C2 and celltype(C1), celltype(C2) numeric or Boolean
or Cle = C1 <= C2 and celltype(C1), celltype(C2) numeric or Boolean
or Cge = C1 >= C2 and celltype(C1), celltype(C2) numeric or Boolean
or Cne = C1 != C2 and celltype(C1), celltype(C2) numeric or Boolean
or Covl = C1 overlay C2 and celltype(C1), celltype(C2) numeric or Boolean

C2 is defined as follows:

 Coverage constituent Changed?

 for all p ∈ cdom(C3):
 value(Cplus, p) = value(C1) + value(C2)
 value(Cmin, p) = value(C1) - value(C2)
 value(Cmult, p) = value(C1) * value(C2)
 value(Cdiv, p) = value(C1) / value(C2)

X

36

OGC 06-035r1

 value(Cand, p) = value(C1) and value(C2)
 value(Cor, p) = value(C1) or value(C2)
 value(Cxor, p) = value(C1) xor value(C2)
 value(Ceq, p) = value(C1) = = value(C2)
 value(Clt, p) = value(C1) < value(C2)
 value(Cgt, p) = value(C1) > value(C2)
 value(Cle, p) = value(C1) <= value(C2)
 value(Cge, p) = value(C1) >= value(C2)
 value(Cne, p) = value(C1) != value(C2)
 value(Covl, p) = value(C2) if value(C1)=0
 value(C1) otherwise

 cdom(C3) = cdom(C1)

X for all components c of celltype(C3):
 value(Cplus, p) = value(C1) + value(C2)
 value(Cmin, p) = value(C1) - value(C2)
 value(Cmult, p) = value(C1) * value(C2)
 value(Cdiv, p) = value(C1) / value(C2)
 value(Cand, p) = value(C1) and value(C2)
 value(Cor, p) = value(C1) or value(C2)
 value(Cxor, p) = value(C1) xor value(C2)
 value(Ceq, p) = value(C1) = = value(C2)
 value(Clt, p) = value(C1) < value(C2)
 value(Cgt, p) = value(C1) > value(C2)
 value(Cle, p) = value(C1) <= value(C2)
 value(Cge, p) = value(C1) >= value(C2)
 value(Cne, p) = value(C1) != value(C2)
 value(Covl, p) = celltype(C2) = t
 where c is numeric for +, -, *, /, overlay
 c is Boolean for ==, <, >, <=, >=, !=

 null(C3) = null(C1)

 im(C3) = im(C1)

X name(C3) = “”

 dom(C3) = dom(C1)

 crs(C3) = crs(C1)

Example The following expression describes a coverage composed of the sum of the red, green, and blue
components of coverage C:

C.red + C.green + C.blue

 37

OGC 03-065r1

9.2.2.20 subsetExpr

The subsetExpr element specifies spatial and temporal domain subsetting. It encom-
passes spatial and temporal trimming (i.e., constraining the result coverage domain to a
subinterval) and sectioning (i.e., cutting out a hyperplane from a coverage).

NOTE The special case that subsetting leads to a single cell remaining still resembles a coverage by
definition; this coverage is viewed as being of dimension 0, with a spatial and temporal domain defined by
the spatial and temporal resolution.

NOTE Range subsetting is accomplished via the unary induced operation structSelection (cf.
Subclause 0).

9.2.2.21 trimExpr

The trimExpr element extracts a subset from a given coverage expression along the axis
indicated, specified by a lower and upper bound.

Lower as well as upper limits can lie outside the coverage’s domain, in which case the
resulting coverage shall be completed with the coverage’s null values.

Let

C1 be a coverageExpr,
n be an integer with 0≤n<dim(C),
lo, hi be integers with lo ≤ hi.

Then,

for any coverageExpr C2
where
 C2 = trim(C1, axis, lo, hi)

C2 is defined as follows:

Coverage constituent Changed?

X for all p ∈ cdom(C2):
 value(C2, p) = value(C1,p) for p ∈ sdom(C1),
 value(C2, p) = null(C1) otherwise.

X for all i with 0≤i<dim(C2):
 cdom(C2, i) = cdom(C1,i) for i≠n
 cdom(C2, i) = lo:hi for i=n

 celltype(C2) = celltype(C1)

 null(C2) = null(C1)

38

OGC 06-035r1

 im(C2) = im(C1)

X name(C2) = “”

X for all (a,e,t) ∈ dom(C2):
 dom(C2, a) = Lo:Hi if (a,e,t) has position n
 in dom(C2),
 dom(C2, a) = dom(C1, a) otherwise
 where
 lo = stransform(C2 ,Lo),
 hi = stransform(C2 ,Hi) for t=latitude
 or t=longitude,
 lo = ttransform(C2 ,Lo),
 hi = ttransform(C2 ,Hi) for t=temporal,
 lo, hi undefined otherwise.

 crs(C2) = crs(C1)

9.2.2.22 sectionExpr

The sectionExpr element extracts a spatial slice (hyperplane) from a given coverage ex-
pression along one of its axes, specified by section axis and section position. The result-
ing coverage has a dimension reduced by 1; its axes are the axes of the original coverage,
in the same sequence, with the section axis being removed from the list.

The section point can lie outside the coverage’s domain, in which case the resulting cov-
erage shall be completed with the coverage’s null values.

Let

C1 be a coverageExpr,
n be an integer with 0≤n<dim(C),
s be an integer.

Then,

for any coverageExpr C2
where
 C2 = sect(C1, axis, s)

C2 is defined as follows:

Coverage constituent Changed?

 for all p ∈ cdom(C2):
 value(C2, p) = value(C1,p’) for p ∈ sdom(C1) and p’ is
 componentwise identical to p

X

 39

OGC 03-065r1

 except that p’ does not
 contain a component for axis
 axis and p has value s at the
 position of axis axis
 value(C2, p) = null(C1) otherwise

X let cdom(C1) be given as (lo0,hi0),…,(lod-1,hid-1)
 where d=dim(C1). Then,
 cdom(C2) = (lo0,hi0),…, (lon-1,hin-1),
 (lon+1,hin+1) ,…,(lod-1,hid-1)

 celltype(C2) = celltype(C1)

 null(C2) = null(C1)

 im(C2) = im(C1)

X name(C2) = “”

X Let (a,e,t) ∈ dom(C2, a) at position n. Then,
 dom(C2) = dom(C1) \ (a,e,t)

 crs(C2) = crs(C1)

9.2.2.23 crsTransformExpr

The crsTransformExpr element transforms a coverage into the specified co-oordinate
reference system (CRS). The resulting coverage has its spatial domain transformed to the
new CRS; further, the coverage values are resampled/interpolated so as to make them a
well-formed grid in the new CRS.

The specified CRS shall be a string containing one of the CRSs listed in GetCapabilities
supportedCRS.

Let

C be a coverageExpr,
crs be a crsName,
m be an interpMethod.

Then,

For any coverageExpr C2,
where
 C2 = ctransform(C, crs, m)

C2 is defined as follows:

40

OGC 06-035r1

Coverage constituent Changed?

X for all p ∈ cdom(C2):
 value(C2, p) is defined by the resampling of the coverage
from crs(C1) into crs while using interpolation method m.

 cdom(C2) = cdom(C1)

 celltype(C2) = celltype(C1)

 null(C2) = null(C1)

 im(C2) = im(C1)

X name(C2) = “”

 dom(C2) = dom(C1) where all axes with axis type latitude and lon-
gitude have been transformed from crs(C1) into crs

X

X crs(C2) = crs

Example the following expression will evaluate to a coverage that resembles C, however spatial i
mation expressed in the coordinate reference system known by the name “

nfor-
olation EPSG:12345“; interp

nearest-neighbor will be used for the interpolation occurring during request evaluation:

ctransform(C, “EPSG:12345“, “nearest-neighbor”)

NOTE the transformation regularly involves cell interpolation, hence potential numerical effects have to be
taken into account.

9.2.2.24 scaleExpr

The scaleExpr element performs scaling in one axis of the source coverage using the in-
terpolation method indicated.

Let

C1 be a coverageExpr,
n be an integer with 0≤n<dim(C1),
lo and hi be integers with lo≤hi,
m be an interpMethod.

Then,

For any coverageExpr C2,
where
 C2 = scale (C1, n, lo, hi, m)

 41

OGC 03-065r1

C2 is defined as follows:

Coverage constituent Changed?

X for all p ∈ cdom(C2):
 value(C2, p) is defined by the rescaling the coverage along
axis n, using interpolation method m, such that, while the geo-
graphic extent remains unchanged, the coverage’s extent along axis
n now is (lo,hi).

 let cdom(C1) be given as (lo0,hi0),…,(lod-1,hid-1)
 where d=dim(C1). Then,
 cdom(C2) =
 (lo0,hi0),…, (lon-1,hin-1), (lo,hi),
 (lon+1,hin+1) ,…,(lod-1,hid-1)

 celltype(C2) = celltype(C1)

 null(C2) = null(C1)

 im(C2) = im(C1)

X name(C2) = “”

X Let (a,e,t) ∈ dom(C2, a) at position n. Let further e’ be the re-
scaled extent of C2 in axis n. Then,
 dom(C2) = dom(C1) \ (a,e,t) ∪ (a,e’,t)

 crs(C2) = crs(C1)

NOTE The transformation regularly involves cell interpolation, hence potential numerical instabilities
have to be taken into account.

Example The following expression performs a scaling of coverage C by factor s in x and y: using in-
terpolation method bicubic:

scale(scale(C, x, s, bicubic), y, s, bicubic)

9.2.2.25 coverageConstructorExpr

The coverageConstructorExpr element allows to create an n-dimensional coverage with
its content defined by a general expression. Only Level 0 and Level 1 data are set, all
Level 2 data are left empty or undefined, resp.

NOTE This constructor is useful

� whenever the coverage is too large to be described as a constant or

42

OGC 06-035r1

� when the coverage's cell values are derived from some other source (such as a histogram computa-
tion, see example below).

Let

x be a name,
D be a cell domain,
V be a scalarExpr possibly containing occurrences of x.

Then,

For any coverageExpr C
where
 C = coverage x in D values V

C is defined as follows:

Coverage constituent Changed?

X for all p ∈ cdom(C):
 value(C, p) = V|x→p
i.e., the cell value at position p is obtained by evaluating expression
V after substituting all occurrences of x by p

X cdom(C) = D

X celltype(C) = type(V)

X null(C) is false for boolean, 0 for numeric types

 im(C2) = none X

X name(C2) = “”

X dom(C2) is empty

X crs(C2) = undefined

Example The expression below computes a 256-bucket histogram over some n-dimensional coverage C.

coverage n in [0:255]
values count(C = n)

 43

OGC 03-065r1

9.2.2.26 condenseExpr

A condenseExpr is either a reduceExpr (see Section 9.2.2.27) or a generalCondense-
Expr (see Section 9.2.2.27). It takes a coverage and summarizes its values using some
summarization function. The value returned is scalar.

9.2.2.27 generalCondenseExpr

The general generalCondenseExpr consolidates cell values of a coverage to a scalar
value based on the condensing operation indicated. It iterates over a given domain while
combining the result values of the scalarExprs through the condenseOpType indicated.

Any summarisation function s() is admissible for a generalCondenseExpr over some
coverage if it has the following properties:

� s() is a binary function between values of the coverage cell type;

� s() is commutative and associative.

Let

op be a condenseOpType,
x be a name,
D be a cell domain,
P be a booleanExpr possibly containing occurrences of x,
V be a scalarExpr possibly containing occurrences of x.

Then,

For any scalarExpr S
where
 S = condense op over x in D [where P] using V

S is constructed as follows:

� Let S = neutral element of type(V)

� for all x ∈ value(D) where (P|x→p):

� S = S value(op) value(V|x→p)
(i.e., the cell value at position p is obtained by evaluating ex-
pression V after substituting all occurrences of x by p, provided
predicate P is fulfilled for this position)

Null values encountered shall be treated as follows:

- if at least one non-null value is encountered in the repeated evaluation of V, then
all null values shall be ignored;

44

OGC 06-035r1

- if V is not evaluated at least once, or if there are only null-valued results, then the
overall result shall be null.

Example Binary “+” on floating point numbers is admissible for a condenser on a float coverage, while
binary “-“ is not.

Example For a filter kernel, the condenser must summarise not only over the cell under inspection, but
also some neighbourhood. The following applies a filter kernel to some coverage C:

coverage x in cdom(C)
 values condense +
 over y in cdom(kernel)
 using C[x+y] * kernel[y]

where kernel is a 3x3 matrix like

1 3 1
0 0 0
-1 -3 -1

NOTE Condensers are heavily used in two situations:

� To collapse Boolean-valued coverage expressions into scalar Boolean values so that they can be
used in predicates.

� In conjunction with the coverageConstructorExpr (see Section 9.2.2.25) to phrase high-level
imaging, signal processing and statistical operations.

NOTE The additional expressive power of condenseExpr over reduceExpr is twofold:

� A WCPS implementation may offer further summarisation functions.

� The condenseExpr gives explicit access to the coordinate values; this makes summarisation con-
siderably more powerful (see example below).

9.2.2.28 reduceExpr

A reduceExpr element derives a summary value from the coverage passed; in this sense
it “reduces” a coverage to a scalar value. A reduceExpr is either an add, avg, min, max,
count, some, or all operation.

Table 6 – reduceExpr definition via generalCondenseExpr
(a is a numeric, b a Boolean coverageExpr)

reduceExpr definition Meaning

add(a) =
 condense +
 over x in sdom(a)
 using a[x]

sum over all cells in a

 45

OGC 03-065r1

avg(a) =
 add(a) / | cdom(a) |

Average of all cells in a

min(a) =
 condense min
 over x in sdom(a)
 using a[x]

Minimum of all cells in a

max(a) =
 condense max
 over x in sdom(a)
 using a[x]

Maximum of all cells in a

count(b) =
 condense +
 over x in sdom(b)
 where b[x]
 using 1

Number of cells in b

some(b) =
 condense or
 over x in sdom(b)
 using b[x]

is there any cell in b with value true?

all(b) =
 condense and
 over x in sdom(b)
 using b[x]

do all cells of b have value true?

9.2.2.29 coordinateTransformExpr

The coordinateTransformExpr element specifies translation from a spatial (spatial-
TransformExpr) or temporal (temporalTransformExpr) reference system into cell
(grid) coordinates.

9.2.2.30 spatialTransformExpr

The spatialTransformExpr element specifies the transformation of a geographic point
coordinate given in some reference system into a coverage’s cell (grid) coordinates.

Let

C be a coverageExpr whose Domain has axes of axis type latitude and longitude,
g be a spatialPointCoordinate,
c be a crsName.

Then,

46

OGC 06-035r1

For any gridPointCoordinate p
where
 p = stransform(C, g, c)

p is defined as that integer point coordinate which, given the coordinate mapping
of coverage C, is equivalent to the location expressed by geo coordinate g relative
to coordinate reference system c, rounded to the spatially closest cell coordinate.

NOTE A coverage’s individual mapping from geo to cell coordinates does not need to be disclosed by
the server, hence this transformation should be considered a “black box” by the client.

Example the following expression yields a 2-D integer coordinate:

stransform(C, [15.001, 19.999], “EPSG:0815“)

9.2.2.31 temporalTransformExpr

The temporalTransformExpr element specifies the transformation of a time point coor-
dinate into a coverage’s cell (grid) coordinates.

Let

C be a coverageExpr whose Domain has an axis of type temporal,
t be a temporalPointCoordinate.

Then,

For any coverageExpr C2
integer value p,
where
 p = ttransform(C , t)

p is defined as the integer value which, given the coordinate mapping of coverage
C, is equivalent to the point in time expressed by t, rounded to the temporally
closest cell coordinate.

Example Given a coverage C with a time axis, the following expression will evaluate to an integer num-
ber representing the coordinate corresponding to the indicated point in time in the coverage:

ttransform(C, “Thu Nov 24 01:33:27 CET 2005“)

9.2.3 Expression evaluation

9.2.3.1 Evaluation sequence

A Web Coverage Processing Server shall evaluate coverage expressions from left to
right.

 47

OGC 03-065r1

9.2.3.2 Nesting

A Web Coverage Processing Server shall allow to nest all operators, constructors, and
functions arbitrarily, provided that each sub-expression's result type matches the required
type at the position where the sub-expression occurs. This holds without limitation for all
arithmetic, Boolean, String, and coverage-valued expressions.

9.2.3.3 Parentheses

A Web Coverage Processing Server shall allow use of parentheses to enforce a particular
evaluation sequence.

Let

C1 and C2 be coverageExprs

Then,

For any coverageExpr C2
where
 C2 = (C1)

C2 is defined as being equivalent to C1.

Example C * (C > 0)

9.2.3.4 Operator precedence rules

In case of ambiguities in the syntactical analysis of a request, operators shall have the
following precedence (listed in descending strength of binding):

� dot ".", trimming, section

� unary –

� unary arithmetic, trigonometric, and exponential functions

� *, /

� +, -

� <, <=, >, >=, !=, =

� and

� or, xor

� ":" (interval constructor), condense, marray

� overlay

48

OGC 06-035r1

In all remaining cases evaluation is done left to right.

9.2.3.5 Type extension

Whenever coverages of different cell type are combined in one operation then the cell
types of both coverage operands shall be repeatedly extended until both types match. Ex-
tending a type is defined as replacing a type which appears on the left-hand side in Table
7 by the type to its right.

Table 7 – Type extension sequence

Type extension rules

Boolean > short

Boolean > unsigned short

short > int

short > unsigned int

unsigned short > int

unsigned short > unsigned int

int > long

int > unsigned long

unsigned int > long

unsigned int > unsigned long

long > float

float > double

Extending Boolean to (unsigned) short shall map false to 0 and true to 1.

In case of a matching an implicit cast shall be performed to change one or both coverages
to the extended cell type.

If such a matching is not possible an exception shall be reported.

Example For coverages F, I, and B of cell type float, integer, and Boolean, resp., the result
type of the following expression is float:

F + I + B

 49

OGC 03-065r1

NOTE This behavior is similar to programming languages and database query languages.

9.2.4 Response overview

The response to a valid ProcessCoverage request shall consist of one of the following
alternatives:

� A coverage, encoded in a particular data format, or a sequence of encoded cover-
ages

� A component of a coverage, or a sequence of coverage components

� A scalar numeric value, or a sequence of such values

Responses shall be formed as laid out in Subclause 9.2.6.1.

In an HTTP environment, the returned value shall have a Content-type entity header that
matches the format of the return value.

9.2.4.1 Response structure

A ProcessCoverage response consists of an XML structure plus, if URL forwarding has
been specified for the result provision, of one or more data files accessible through the
URLs communicated by the server. The XML response type is ProcessCoverage-
ResponseType (see Annex B).

Depending on the response type, the response to a WCPS request shall be one of the fol-
lowing:

� An encoded coverage or a sequence of encoded coverages where the response
forwarding requested was direct transmission shall be transmitted to the client in
multi-part MIME encoding, without any additional XML response.

� An encoded coverage or a sequence of encoded coverages where the response
forwarding requested was URL forwarding shall be transmitted to the client in an
XML response of type ProcessCoverageResponseUrlType containing a se-
quence of URLs where each URL refers to one response list element, in proper
sequence. The server shall provide each encoded coverage result at the resp. URL
at least until the specified expiration period.

� A component of a coverage or a sequence of coverage components shall be
transmitted to the client in an XML structure of type ProcessCoverage-
ResponseComponentType.

� A scalar numeric value, or a sequence of such values shall be transmitted to the
client in an XML structure of type ProcessCoverageResponseScalarType.

50

OGC 06-035r1

9.2.4.2 Exceptions

An invalid ProcessCoverage request shall yield an error output, either as a WCPS ex-
ception reported in the requested Exceptions format, or as a network protocol error re-
sponse.

A Web Coverage Processing server throwing an exception shall adhere to the value of
the Exceptions parameter. Nonetheless, a Web Coverage Processing server may, due to
circumstances beyond its control, return nothing (this might result from the HTTP
server’s behavior caused by a malformed request, by an invalid HTTP request, by access
violations, or any of several other conditions). Web Coverage Processing clients should
be prepared for this eventuality.

9.2.5 Key-value pair encoding

The key-value pair encoding allows clients to use the HTTP GET method for transmitting
ProcessCoverage requests.

9.2.5.1 Overview

Table 8 specifies the complete ProcessCoverage Request.

Table 8 – The ProcessCoverage Request expressed as Key-Value Pairs
URL Component Description Multiplicity

http://server_address/path/script? URL of WCS server. Required
SERVICE=WCPS Service name: Must be “WCPS”. Required
VERSION=m.n.p Request protocol version, m, n, p being non-

negative integer numbers.
Required

REQUEST=ProcessCoverage Name of the request. Must be “ProcessCover-
age”.

Required

RESULT=expr The expression describing the result cover-
age(s) derived from the coverage offering.
Must be conformant to Section 0 below.

Required

STORE=f Determines whether response is sent back
immediately (f=false) or stored on the server
(f=true).
 Default: false

Optional

KEEPTIME=k Time until response may become unavailable
at the server, if STORE=true; for STORE=
false, a KEEPTIME parameter is not allowed.
k is a valid time specification
Default: respone becomes unavailable at the
server’s discretion

Optional

EXCEPTIONS=
application/vnd.ogc.se_xml

The format in which exceptions are to be re-
ported by the server. The currently only al-
lowed format is XML.
Default: application/vnd.ogc.se_xml

Optional

(Vendor-specific parameters) Optional Default: none

 51

OGC 03-065r1

9.2.5.2 SERVICE=WCPS / VERSION=version

These parameters are defined as for GetCapabilities in Subclause 8.

9.2.5.3 REQUEST=ProcessCoverage

The Basic Service Elements clause defines this parameter. For ProcessCoverage, the
value "ProcessCoverage" shall be used.

9.2.5.4 RESULT=expr

The RESULT argument is a valid WCPS expression, in the abstract syntax as specified in
Section 9.2.2.

For the URL encoding the pertaining IETF rules [6] shall be used.

9.2.5.5 EXCEPTIONS

A Web Coverage Processing Service shall offer the exception reporting format applica-
tion/vnd.ogc.se_xml by listing it in its GetCapabilities XML response. The entire MIME
type string in Capability / Exceptions / Format is used as the value of the EXCEP-
TIONS parameter.

Errors are reported using Service Exception XML, as specified in Subclause B.3. This is
the default exception format if none is specified in the request.

9.2.6 XML encoding

9.2.6.1 Overview

The XML encoding is an alternative to the KVP encoding (Subclause 9.2.2.29), with the
same semantics and expressive power. See Annex B for the XML definitions.

52

OGC 06-035r1

Annex A
(normative)

WCPS Language Syntax

A.1 Overview

The WCPS expression syntax is described below in BNF grammar syntax.

Boldface tokens represent literals which appear as is in a valid WCPS expression (“ter-
minal symbols”, tokens in italics represent sub-expressions to be substituted according to
the grammar production rules (“non-terminals”).

Meta symbols used are as follows:

- brackets (“[…]”) denote optional elements which may occur or not;

- an asterisk (“*”) denotes that an arbitrary number of repetitions of the preceding
element can be chosen, including none at all;

- a vertical bar (“|”) denotes alternatives from which exactly one must be chosen;

- Double slashes (“//”) begin comments which continue until the end of the line.

A.2 WCPS syntax

coverageListExpr:
 for iteratorVar in (coverageList)
 [where booleanScalarExpr]
 return processingExpr

iteratorVar: name

coverageList:
 coverageOrSetName [, coverageOrSetName]*

coverageOrSetName:
 name

booleanScalarExpr:
 scalarExpr // …whose result type is Boolean

processingExpr:
 encodedCoverageExpr
 | scalarExpr

encodedCoverageExpr:
 encode (coverageExpr, formatName)
 | encode (coverageExpr, formatName, extraParams)

 53

OGC 03-065r1

formatName:
 name

extraParams:
 string

scalarExpr:
 getMetaDataExpr
 | generalCondenseExpr
 | (scalarExpr)

getMetaDataExpr:
 sDomain(coverageExpr)
 | crs(coverageExpr)
 | xDomain(coverageExpr)
 | yDomain(coverageExpr)
 | tDomain(coverageExpr)
 | res(coverageExpr)
 | dim(coverageExpr)
 | null(coverageExpr)
 | cellType(coverageExpr)

coverageExpr:
 coverageName
 | setMetaDataExpr
 | inducedExpr
 | subsetExpr
 | crsTransformExpr
 | scaleExpr
 | coverageConstExpr
 | coverageConstructorExpr
 | (processingExpr)

setMetaDataExpr:
 | setNull (coverageExpr , scalarLit)
 | setInterpolation (coverageExpr , interpMethod)
 | setCrs (coverageExpr , crsName)
 | setAxis (coverageExpr , axisName ,
 floatExpr , floatExpr)

inducedExpr:
 | unaryInducedExpr
 | binaryInducedExpr

unaryInductionExpr:
 arithmeticExpr
 | exponentialExpr
 | trigonometricExpr
 | booleanExpr
 | castExpr
 | selectExpr

54

OGC 06-035r1

arithmeticExpr:
 + coverageExpr
 | - coverageExpr
 | sqrt (coverageExpr)
 | abs (coverageExpr)

exponentialExpr:
 exp (coverageExpr)
 | log (coverageExpr)
 | ln (coverageExpr)

trigonometricExpr:
 sin (coverageExpr)
 | cos (coverageExpr)
 | tan (coverageExpr)
 | sinh (coverageExpr)
 | cosh (coverageExpr)
 | tanh (coverageExpr)
 | arcsin (coverageExpr)
 | arccos (coverageExpr)
 | arctan (coverageExpr)

booleanExpr:
 not coverageExpr
 | bit (coverageExpr , integerExpr)

castExpr:
 (cellType) coverageExpr

cellType:
 bool
 | char
 | unsigned char
 | short
 | unsigned short
 | long
 | unsigned long
 | float
 | double

selectExpr:
 coverageExpr structSelection

structSelection:
 . selector
 | . integerExpr

binaryInducedExpr:
 | coverageExpr plus coverageExpr
 | coverageExpr minus coverageExpr
 | coverageExpr mult coverageExpr
 | coverageExpr div coverageExpr

 55

OGC 03-065r1

 | coverageExpr and coverageExpr
 | coverageExpr or coverageExpr
 | coverageExpr xor coverageExpr
 | coverageExpr = = coverageExpr
 | coverageExpr < coverageExpr
 | coverageExpr > coverageExpr
 | coverageExpr <= coverageExpr
 | coverageExpr >= coverageExpr
 | coverageExpr != coverageExpr
 | coverageExpr overlay coverageExpr

subsetExpr:
 | trimExpr
 | sectExpr

trimExpr:
 trim (coverageExpr , axisName ,
 integer , integer)

sectExpr:
 sect (coverageExpr , axisName ,
 integer)

crsTransformExpr:
 ctransform(coverageExpr , crsName , interpMethod)

scaleExpr:
 scale (coverageExpr , axisName ,
 integer , integer , interpMethod)

coverageConstructorExpr:
 coverage variable in cellDomainExpr
 values scalarExpr

condenseExpr:
 reduceExpr
 | generalCondenseExpr

reduceExpr:
 all (coverageExpr)
 | some (coverageExpr)
 | count (coverageExpr)
 | add (coverageExpr)
 | avg (coverageExpr)
 | min (coverageExpr)
 | max (coverageExpr)

generalCondenseExpr:
 condense condenseOpType
 over variable in cellDomainExpr
 [where booleanScalarExpr]
 using scalarExpr

56

OGC 06-035r1

condenseOpType:
 +
 | *
 | max
 | min
 | and
 | or

coordinateTransformExpr:
 | spatialTransformExpr
 | temporalTransformExpr

spatialTransformExpr:
 stransform (coverageExpr , gridPointCoordinate ,
 crsName)

temporalTransformExpr:
 ttransform (coverageExpr ,
 temporalPointCoordinate)

interpMethod:
 nearest-neighbor
 | bilinear
 | bicubic
 | lost-area
 | barycentric

spatialPointCoordinate:
 [floatExpr [, floatExpr]*]

temporalPointCoordinate:
 “ string “ // ows:Time

cellDomainExpr:

gridPointCoordinate:
 [integerExpr [, integerExpr]*]

crsName:
 string // containing a valid EPSG CRS name of format “EPSG:nnnn”
 // where n is a decimal digit

coverageName:
 name

axisName:
 name

variable:
 name

name: // nonempty sequence of printable ASCII characters, not starting with digits

 57

OGC 03-065r1

scalarLit:
 complexLit
 | atomicLit

complexLit:
 { scalarLitList }
 | struct { scalarLitList }

atomicLit:
 booleanExpr
 | integerExpr
 | floatExpr

booleanExpr:
 // an expression resulting in a Boolean value

integerExpr:
 // an expression resulting in an integer value

floatExpr:
 an expression resulting in a floating point value

A name shall be a consecutive sequence consisting of decimal digits, upper case alpha-
betical characters, lower case alphabetical charaters, underscore (“_”), and nothing else.
The length of a name shall be at least 1, and the first character shall not be a decimal
digit.

An integer number shall be expressed in either decimal, octal (with a “0” prefix), or
hexadecimal notation (with a “0x” or “0X” prefix).

A floating point number shall be expressed as in a Java programming language source
code.

58

OGC 06-035r1

Annex B
(normative)

WCPS XML Schemas

B.1 GetCapabilities request Schema

See file wcpsCapabilities.xsd

B.2 GetCapabilities response schema

See file wcpsCapabilities.xsd

B.3 DescribeCoverage request schema

See file wcpsDescribeCoverage.xsd

B.4 DescribeCoverage response schema

See file wcpsDescribeCoverage.xsd

B.5 GetCoverage request schema

See file wcpsGetCoverage.xsd

B.6 Service exception schema

See file wcpsException.xsd.

 59

OGC 03-065r1

Annex D
(normative)

Conformance

D.1 Introduction

TBD.

60

OGC 06-035r1

Bibliography

[1] OGC 00-014r1, Guidelines for Successful OGC Interface Specifications

[2] ISO 19103, Geographic Information – Conceptual schema language

[3] OMG Unified Modeling Language Specification (UML), Version 1.5, March 2003,
http://www.omg.org/docs/formal/03-03-01.pdf

[4] OGC 03-065r6, Web Coverage Service (WCS), Version 1.0.0

[5] European Petroleum Survey Group, EPSG Geodetic Parameter Set, Version 6.8

[6] IETF RFC 2396

[7] IETF RFC 2616

 61

	1 Scope
	2 Conformance
	3 Normative references
	4 Terms and definitions
	5 Conventions
	5.1 Symbols (and abbreviated terms)
	5.2 UML notation
	5.3 XML schema notation

	6 Basic service elements
	6.1 Introduction
	6.2 Version numbering and negotiation
	6.2.1 Version number form
	6.2.2 Version changes
	6.2.3 Appearance in requests and in service metadata
	6.2.4 Version number negotiation

	6.3 General HTTP request rules
	6.3.1 Overview
	6.3.2 Key-value pair encoding (GET or POST)
	6.3.2.1 Overview
	6.3.2.2 Parameter ordering and case
	6.3.2.3 Parameter lists

	6.3.3 XML encoding

	6.4 General HTTP response rules
	6.5 Service exceptions

	7 The coverage model
	7.1 Informal coverage definition
	Formal coverage definition
	7.3 Coverage constituents
	7.4 Accessor functions
	7.5 UML model

	8 GetCapabilities operation
	8.1 GetCapabilities operation request

	9 ProcessCoverage operation
	9.1 Introduction
	9.1.1 WCPS expression language specification

	9.2 ProcessCoverage request
	9.2.1 Request/response overview
	9.2.2 WCPS expressions
	9.2.2.1 Overview
	9.2.2.2 coverageListExpr
	9.2.2.3 processingExpr
	9.2.2.4 encodedCoverageExpr
	9.2.2.5 booleanExpr
	9.2.2.6 scalarExpr
	9.2.2.7 getMetaDataExpr
	9.2.2.8 coverageExpr
	9.2.2.9 coverageName
	9.2.2.10 setMetaDataExpr
	9.2.2.11 inducedExpr
	9.2.2.12 unaryInducedExpr
	9.2.2.13 arithmeticExpr
	9.2.2.14 trigonometricExpr
	9.2.2.15 exponentialExpr
	9.2.2.16 boolExpr
	9.2.2.17 castExpr
	9.2.2.18 selectExpr
	9.2.2.19 binaryInducedExpr
	9.2.2.20 subsetExpr
	9.2.2.21 trimExpr
	9.2.2.22 sectionExpr
	9.2.2.23 crsTransformExpr
	9.2.2.24 scaleExpr
	9.2.2.25 coverageConstructorExpr
	9.2.2.26 condenseExpr
	9.2.2.27 generalCondenseExpr
	9.2.2.28 reduceExpr
	9.2.2.29 coordinateTransformExpr
	9.2.2.30 spatialTransformExpr
	9.2.2.31 temporalTransformExpr

	9.2.3 Expression evaluation
	9.2.3.1 Evaluation sequence
	9.2.3.2 Nesting
	9.2.3.3 Parentheses
	9.2.3.4 Operator precedence rules
	9.2.3.5 Type extension

	9.2.4 Response overview
	9.2.4.1 Response structure
	9.2.4.2 Exceptions

	9.2.5 Key-value pair encoding
	9.2.5.1 Overview
	9.2.5.2 SERVICE=WCPS / VERSION=version
	9.2.5.3 REQUEST=ProcessCoverage
	9.2.5.4 RESULT=expr
	9.2.5.5 EXCEPTIONS

	9.2.6 XML encoding
	9.2.6.1 Overview

