
OGC 03-028

Open GIS Consortium, Inc.

Date: 2003-01-17

Reference number of this OpenGIS® project document: OGC 03-028

Supersedes document: 02-054r1

Version: 0.5

Category: OpenGIS® Interoperability Program Report

Editor: Josh Lieberman (Syncline)
Lou Reich (NASA)

Peter Vretanos (CubeWerx)

OWS1.2 UDDI Experiment

Copyright notice
This OGC document is a draft and is copyright-protected by OGC. While the
reproduction of drafts in any form for use by participants in the OGC
Interoperability Program is permitted without prior permission from OGC, neither
this document nor any extract from it may be reproduced, stored or transmitted in
any form for any other purpose without prior written permission from OGC.

Warning
This document is not an OGC Standard or Specification. This document presents a
discussion of technology issues considered in an Interoperability Initiative of the
OGC Interoperability Program. The content of this document is presented to create
discussion in the geospatial information industry on this topic; the content of this
document is not to be considered an adopted specification of any kind. This
document does not represent the official position of the OGC nor of the OGC
Technical Committee. It is subject to change without notice and may not be
referred to as an OGC Standard or Specification. However, the discussions in this
document could very well lead to the definition of an OGC Implementation
Specification.

Recipients of this document are invited to submit, with their comments, notification
of any relevant patent rights of which they are aware and to provide supporting
documentation.

Document type: OpenGIS® Interoperability Program Report
Document stage: Draft
Document language: English

File name: 03-028.doc

OGC 03-028

Contents

i. Preface... iv

ii. Submitting organizations .. iv

iii. Contributors ... iv

iv. Revision history..v

v. Changes to the OpenGIS Abstract Specification..v

Foreword... vi

Introduction... vii

1. Introduction..8

2. Relationship to Other Activities ...8

3. Usage Scenarios..9
3.1 Discover OGC Registries..9
3.2 Discover OGC Services..9
3.3 Discover OGC services with UDDI interface to OGC registry..........................9
3.4 Publish OGC service to UDDI ..9

4. Design Principles..9
4.1 General..9
4.2 Compatible, Consistent and Extensible ...10
4.3 Relationship to other Standards ...10
4.4 Accessible and International...10

5. Terminology..10

6. Detailed Requirements ..11
6.1 General requirements..11
6.2 Proposed UDDI spatial discovery methodologies ...11

7. Experiment Proposals..12
7.1 Cubewerx experiment..12
7.2 NASA experiment ..12
7.3 Syncline experiment...13
7.4 Ionic experiment...13
7.5 Galdos experiment ...13

8. Experiment Observations..14
8.1 Cubewerx/NASA Observations ..15
8.1.1 Web client experience ..15
8.1.2 Quadcode experiment..16
8.2 NASA Observations ...24

ii © OGC 2003 – All rights reserved

OGC 03-028

8.2.1 Installing and Maintaining a Commercial UDDI Registry24
8.2.2 Web Service Inspection Language ...26
8.2.3 UDDI Registry V3 and ebXML Reg/Rep v2.3 Information Model and

Functionality as Basis of a General Purpose Application Registry.................29
UDDI taxonomy for ebXML technologies ...32
8.3 Syncline Observations ...32
8.3.1 SIM - UDDI mappings...32
8.3.2 Use of category and identifier tmodels for SIM ..33
8.3.3 Use of external taxonomy validation..34
8.3.4 Results of testing with Sun UDDI registry...34
8.4 IONIC Observations..34
8.5 Galdos Observations (UDDI to ebRIM mappings)..35
8.5.1 Introduction..35
8.5.2 Entity Mapping ..35
8.5.3 Inquiry Mapping..36
8.5.4 find_relatedBusinesses...37
8.5.5 find_service...38

References...39

Annexes ...39

Annex A: Use Cases ...40

Annex B: UDDI V3/ebXML RegRep V2.3 Analysis ...1

© OGC 2003 – All rights reserved
iii

OGC 03-028

i. Preface

This is an OGC Interoperability Program Report for review by OGC members and other
interested parties. This document was developed by the UDDI-SOAP Working Group as
part of the OGC Interoperability Program OWS 1.2 initiative. The authors of this
document are UDDI-SOAP WG members.

ii. Submitting organizations

The following organizations submitted this Implementation Specification to the Open
GIS Consortium Inc. as an OpenGIS® Interoperability Program Report:

• Syncline

• NASA

• CubeWerx

• Ionic Software

• Galdos Inc.

iii. Contributors

All questions regarding this submission should be directed to the editor or the submitters:

Josh Lieberman, Syncline Inc. (jlieberman@syncline.com)

Peter Vretanos, Cubewerx (pvretanos@cubewerx.com)

Louis Reich, NASA (lreich@csc.com)

Jerome Sonnet, Ionic Software (jerome.sonnet@ionicsoft.com)

Richard Martell, Galdos (rmartell@galdos.com)

Nadine Alameh, GST (alameh@gst.com)

ii © OGC 2003 – All rights reserved

OGC 03-028

iv. Revision history

Date Release Author Paragraph modified Description

v. Changes to the OpenGIS Abstract Specification

The OpenGIS® Abstract Specification does not require changes to accommodate this
OpenGIS® report.

© OGC 2003 – All rights reserved
v

OGC 03-028

Foreword

ii © OGC 2003 – All rights reserved

OGC 03-028

Introduction

This document lists the design principles, requirements, and experimental results for
future versions of a potential OGC – UDDI (Universal Discovery, Description, and
Integration) implementation specification. Specifically, it describes the usage scenarios,
workplan, and experimental results for discovery of OGC services (including registries)
through the UDDI interface using SOAP (Simple Object Access Protocol) messaging
protocols. The baseline for this experiment is the specification for UDDI version 2 and
use of private UDDI implementations. Although the draft UDDI Version 3 specification
was released in the course of this experiment, software did not become available to make
use of it and so it does not receive more than cursory attention in this report. This work
was performed during and for the OGC’s Interoperability Program OWS1.2 testbed
initiative.

The UDDI experiment produced a examples of discovering OGC services through UDDI
interfaces, as well as means of mapping between to the UDDI metadata model from
metadata models used in OGC services. Work on spatial discovery and content discovery
through UDDI showed that these tasks are possible, but that the “fit” with the UDDI
model and interfaces is poor at best. This is especially true when considering the
capabilities of available UDDI clients to make full (or extended) use of the UDDI service
interfaces. The tentative conclusion drawn from this experiment is that UDDI Version 2
is best suited for discovering the existence of services based on very general taxonomic
or classification criteria. It is less well suited for obtaining the information to bind to a
service, and even less well suited to discovering specific contents or capabilities of
individual service instances.

© OGC 2003 – All rights reserved
vii

OGC 03-028

OWS1.2 UDDI Experiment

1. Introduction
This document is a statement of requirements, workplan, and report for an experiment in
the use of UDDI (Universal Discovery, Description, and Integration) registries to
discover geospatial content in general and OGC services in particular. This work was
performed during and for the OGC’s Interoperability Program OWS1.2 testbed initiative.

Catalog interfaces and service information models have been developed within OGC
specifically for geospatial purposes. This effort has been largely self-contained, however,
and not particularly accessible from the Web Services world at large. UDDI, on the other
hand, has made the most progress of any service registry towards universal acceptance
and accessibility, but has not been specifically adapted for geospatial applications.

The premise of the experiment laid out in this document is to determine whether and how
the reach of UDDI might be combined with the geospatial focus of OGC services
development to make geospatial content and services more universally discoverable and
consumable by non-GIS users. The participants in this experiment will take a variety of
approaches to coordinating OGC services and UDDI registries, as expressed in the User
Scenarios below. The approaches all center, however, around developing a crosswalk
between the OGC and UDDI service information models.

The goal of the experiment will be to assess the practicality of both the crosswalk and the
coordination scenarios, as well as to make concrete recommendations for improvements
to either or both information models to further this purpose.

2. Relationship to Other Activities
Implementation of UDDI registry interfaces is a part of the general OGC web initiative
process. Therefore, the service is tightly related to the following OGC activities:

• Registry Service

• Services Architecture

• Service Information / Service Capabilities

This activity has other relationships, of course, to specification and implementation
activities outside of OGC:

ii © OGC 2003 – All rights reserved

OGC 03-028

• UDDI specification process

• SOAP specification process

• JAXR registry API specification process

• WSDL (Web Services Description Language) specification process

3. Usage Scenarios
There are four general usage scenarios which underlie this experiment. Detailed
descriptions of these scenarios are contained in Appendix A of this document.

3.1 Discover OGC Registries
User binds to a general purpose UDDI registry to discover specialized registries (and
clients) for geospatial data and services. User then switches to

3.2 Discover OGC Services
User binds to a general-purpose UDDI registry to discover OGC services which have
been published to it, either manually or automatically.

3.3 Discover OGC services with UDDI interface to OGC registry
User makes use of general purpose UDDI clients against OGC registries with UDDI
interfaces to discover OGC services and build clients to them.

3.4 Publish OGC service to UDDI
User employs a general purpose UDDI publishing client to publish an OGC service
directly to UDDI. The service metadata may or may not then be made available through a
corresponding OGC registry interface or service.

4. Design Principles
The following design principles should be considered.

4.1 General
The OGC Service Information Model / Registry Model should be mapped onto the UDDI
information model with as few changes as possible on either side.

© OGC 2003 – All rights reserved
9

OGC 03-028

The user scenarios for this experiment will emphasize the differing purposes of UDDI
(business and service discovery) and OGC Registry (service and content discovery)

Modifications to either the UDDI or WRS specifications suggested by this experiment
will be developed with aim of submission to the respective revision groups for each
specification.

4.2 Compatible, Consistent and Extensible
The baseline for this experiment is UDDI v.2.0 , but the effect of changes in UDDI v.3.0
will be considered

4.3 Relationship to other Standards
Compatible with and/or leverages W3C standards efforts such as HTTP and XML.

Compatible with and/or leverages other relevant OGC specification and pre-
specifications efforts, including Service Information Model, General Service Model,
Registry Information Model, and Web Catalog/Registry Service.

4.4 Accessible and International
OGC use of UDDI registries should be able to conform to the Web accessibility standards
(such as those of the W3C Web Accessibility Initiative Content Guidelines).

UDDI clients and service implementations should be able to conform to Web
accessibility standards (such as those of the W3C Web Accessibility Initiative Content
Guidelines).

All features in the information model mappings developed for this experiment should be
available to the international community.

5. Terminology
The key words “must”, “should” and “may” are to be interpreted in the detailed
requirements as follows:

Must—The item is an absolute requirement of the specification.

Should— There may exist valid reasons in particular circumstances to ignore the item,
but the full implications must be understood and carefully weighed before choosing a
different source

ii © OGC 2003 – All rights reserved

OGC 03-028

May—The item will be considered, but further examination is needed to determine if the
item should be treated as a requirements.

Note that only the highlighted versions of these terms are to be interpreted as above.
Terms that are not highlighted should be interpreted as usual.

.

6. Detailed Requirements

6.1 General requirements
Development and evaluation of a crosswalk between the OGC service information model
(SIM) and/or registry information model (RIM) and the UDDI registry information
model.

Business information addition to OGC information models

Spatial classification for UDDI RIM

Incorporation of content information into UDDI RIM?

Implementation of OGC service information discovery through a UDDI interface

Implementation of UDDI service information discovery through an OGC interface
(optional)

Implementation of compatible WSDL service descriptions and SOAP bindings to allow
“automated” discovery and consumption of OGC services through Web Services IDE’s
(see SOAP experiment DIPR)

Recommendations to UDDI.ORG for revisions to support geospatial services and content
offers.

6.2 Proposed UDDI spatial discovery methodologies
Use existing UDDI geographic classification

Use custom quadtree classification (see below)

Use an external tModel validation service to provide spatial searching

Extend existing UDDI interface to support a spatial tModel interface which implements
spatial searches.

© OGC 2003 – All rights reserved
11

OGC 03-028

7. Experiment Proposals

7.1 Cubewerx experiment
The CubeWerx UDDI experiment is a lightweight experiment aimed at gaining some
familiarity with using a UDDI registry and thus exploring the capabilities of such
registries. The CubeWerx experiment involves the following actions:

Register CubeWerx, as a company, with one or more UDDI registries. CubeWerx will, at
a minimum, register with the NASA/Systinet UDDI registry located at:

 http://sindbad.gsfc.nasa.gov:8080/uddi/web

and will endeavor to registry with any publicly available, free, UDDI registries such as
the IBM or Microsoft registries.

Register all the online services that CubeWerx offers. These include web map services,
web feature services, web registry services and web coverage services.

Registry a number of data instances that CubeWerx uses for demonstration purposes.

The registered company, services, and data will be classified using the build-in
geographic classification schemes.

One or more new, spatially based, classification schemes (e.g. quadtree LL quadrature)
will be created and used to classify the CubeWerx registry entries.

All the registry entries will be made publicly available so that other UDDI/SOAP
experiment have something to find and bind to.

The results of the experiments will be reported in this document.

At this time, the CubeWerx UDDI experiment does not include any SOAP based
interactions with a UDDI registry.

Note: If time permits, the CubeWerx UDDI experiment may include extending the
CubeWerx registry so that it automatically updates one or more UDDI (and other)
registries whenever a new object is registered or an existing registry object is updated.

7.2 NASA experiment
The NASA experiment is focus on the use of COTS or freeware components within the
OWS 1.2 Service discovery framework. It emphasizes the following:

Stand up private commercial UDDI registry implementation for experimental registration
of OGC registries and/or other services.

ii © OGC 2003 – All rights reserved

OGC 03-028

Investigation of interoperability experiments or studies of ebXML Registry/Repositories
and UDDI in non-geospatial domains

Investigation of other service discovery workflows involving UDDI related technologies

7.3 Syncline experiment
The Syncline experiment is focused on adding a UDDI interface to an existing OGC
registry so that services registered through the OGC interfaces may be discovered by
UDDI clients. An optional additional experiment (6) will be to allow publishing of OGC
services through a UDDI interface, which then triggers a harvest of that service’s
capabilities through the OGC registry interface.

Develop crosswalk / mapping from SIM to UDDI

Stand up Sun UDDI registry implementation – DONE

Implement a UDDI discovery interface on an existing OGC service registry.

Try out various methods for spatial discovery of services through UDDI.

Discover OGC services through a UDDI registry using the Visual Studio . NET client.

Implement a UDDI publish interface on an existing OGC service registry. This optional
step would probably be accomplished by triggering a GetCapabilities harvest once an
OGC service had been published through the UDDI interface.

7.4 Ionic experiment
Use NASA UDDI registry to register their SOAP bindings for WMS and WFS - DONE

Write a client to discover Ionic, Cubewerx, Galdos, etc. services. – August 9

Refine client to publish services to UDDI registry.

User SOAP interface inside Ionic Registry Client to discover services from NASA
registry.

7.5 Galdos experiment
Register their OGC registry with UDDI registry (NASA + ?) - DONE

Others can discover Galdos registry and bind to it (using wsdl-tools, etc) - DONE

© OGC 2003 – All rights reserved
13

OGC 03-028

Map the UDDI v3.0 Inquiry interface to the existing ogcRIM metamodel, thereby turning
the Galdos test registry into a UDDI Node. We will take the JAXR mappings as a starting
point:

UDDI Inquiry operation

find_binding

find_business

find_relatedBusinesses

find_Service

find_tModel

get_bindingDetail

get_businessDetail

get_operationalInfo

get_serviceDetail

get_tModelDetail

This experiment should serve to demonstrate the flexibility of the registry metamodel.

Register the Galdos test registry with a UDDI registry.

8. Experiment Observations
The following sections summarize the current status of the experiments described in the
previous section of this document. Due to the voluntary and often unfunded nature of
these experiments, many of them are incomplete but some valuable insights into the work
performed can nonetheless be gleaned.

ii © OGC 2003 – All rights reserved

OGC 03-028

8.1 Cubewerx/NASA Observations

8.1.1 Web client experience
One of the components of the Systinet WASP 4.0 UDDI Registry SP1 is a web based
client application that implements a GUI front end to the UDDI registry. The client
application allows a user to publish business entities, business services, binding templates
and tModels.

To register a business, a client must enter the name of the business and an optional
description about the business. For each business the client may also enter the services
the business offers, contact information for the business, the client may classify the
business according the any taxonomy stored in the registry, the client may registry one or
more discovery URL’s (location of on-line information about the business) and set
permission defining who can see the registry record.

Associated with each service is a binding template that is a technical description of how
to access the service.

Compatible resources are identified using a tModel – resources with the same tModel are
resources of the same type. For the UDDI experiment, tModels were published for the
WMS, WFS, WOS, WRS, WCS and the schema of the XML document that Systinet uses
to upload taxonomies.

Like the publish case, the web client allows users to query for businesses, services,
binding templates or tModels. In each case, two levels of querying are available. A basic
level that allows name searches using a variety of query criteria such as SOUNDEX or
EXACT MATCH. There is also an advanced query mode that presents a form where all
attributes in a record can be constrained.

Using the Systinet web client, CubeWerx was registered as a business and all the
OWS1.2 services that CubeWerx offered were published. In addition, several OWS12
layers were registered as tModels. All services and data layers where classified using the
built in geographic taxonomies (ISO3166 7& Microsoft Geoweb Taxonomy) as well as
the quadcode taxonomy described in section 8.1.2. Queries of the registry using the web
client and the integrated clients from Ionic and Laserscan successfully found the
registered CubeWerx information.

An attempt was made to register the same information on the IBM and Microsoft public
UDDI registries with partial success due to limitations on the type and number of
information that could be published. The public registries were not used for any other
purpose during the OWS1.2 UDDI experiment.

As reported in section 7.1, CubeWerx did not participate any of the SOAP experiments
directly although at least one of the integrated clients used SOAP to access the NASA
registry and find the CubeWerx information.

© OGC 2003 – All rights reserved
15

OGC 03-028

Time and resource limitations did not permit CubeWerx to implement synchronization
code between the OWS1.2 service and data registries and the NASA UDDI registry.

8.1.2 Quadcode experiment

8.1.2.1 Introduction
UDDI registries do not natively support spatial queries. In other words, one cannot
supply a UDDI registry with a bounding box representing an area of interest and have it
identify resource that lie within that region. The purpose of this experiment was to
attempt to simulate a spatial coordinate query using the out-of-the-box capabilities of a
commercial UDDI registry – specifically the Systinet UDDI registry hosted by NASA.

8.1.2.2 UDDI taxonomies
A standard capability of UDDI registries is the ability to classify entries according to pre-
defined or user-defined taxonomies. Systinet UDDI taxonomy management and inquiry
is provided by the Taxonomy service and is accessible both through SOAP and the Web
client interface. It enables you to browse, create, edit, delete, upload and download
taxonomies. Among the available predefined taxonomies, the Systinet registry includes
the ISO3166 Geographic Taxonomy and the Microsoft GeoWeb Taxonomy. These can
be used to perform spatial queries by place name – “find all records classified as
Ontario”, for example, will return all records in Ontario. Of course such a spatial query
is very limited since you can one locate records attached to a place name and not any
arbitrary region of interest on the Earth. However, a UDDI registry’s taxonomy
management feature can be used to simulate coordinate based spatial queries.

8.1.2.3 Quadcode taxonomy

8.1.2.3.1 Quadcodes
A quadcode is a string that is used to represent a precise region in an object space. For
example, consider figure 1 where the surface of the earth has been subdivided into four
quadrants.

ii © OGC 2003 – All rights reserved

OGC 03-028

Figure 1.

Each quadrant has been labeled with a letter that is the quadcode for that quadrant. Thus
the letter A represents the region from –180° to 0° longitudes and 0° to 90° latitudes. The
letter B, from 0° to 180° and 0° to 90°, the letter C from –180° to 0° and –90° to 0° and
the letter D from 0° to 180° and –90° to 0°.

Quadcodes can be made arbitrarily precise by recursively subdividing the object space
until the desired precision is obtained. Consider figure 2, which shows the Earth with 2
levels of subdivision.

Figure 2.

Each of the original four quadrants in figure 1, have been further subdivided into four
child quadrants. Appending the corresponding letter to the parent quadcode forms the
quadcode for each child quadrant. Thus the child quadrants of quadrant A are AA, AB,
AC and AD. Each child quadrant or cell now represents a correspondingly smaller
region on the surface of the Earth. Were this process of recursive subdivision of each
child quadrant to continue, there would be 22^level child cells at each level. The length of
the quadcode indicates the number of levels of subdivision and thus the precision. In
figure 2, there are two levels of subdivision and so the quadcodes are 2 characters long.

Using quadcodes, a hierarchical set of codes that completely cover the Earth’s surface
can be generated1. Figure 3 illustrates such a hierarchical set of quadcodes as a tree for
parent quadrant A:

1 At each level, the quadcodes represent a non-overlapping tessellation of the Earth’s surface.

© OGC 2003 – All rights reserved
17

OGC 03-028

Figure 3.

Similar trees can represent the other quadrants.

8.1.2.3.2 Taxonomy key values
In a UDDI registry, a hierarchy like that illustrated in figure 3 can be represented as a
user-defined taxonomy and used to classify information in the registry. During the UDDI
experiment, the term quadcode taxonomy was used to refer to a taxonomy composed of
quadcodes. Each quadcode in the hierarchy represent a key value in the quadcode
taxonomy.

Registry entries would be classified using the leaf nodes of the quadcode taxonomy. For
example, figure 4 shows the quadrants around Toronto, Canada to 5 levels of subdivision.

Figure 4.

According to figure 4, a business in Toronto could be classified using the key value
ADAAD to indicate the quadrant in which the business is located. Thus any UDDI
taxonomy query on quadrant A, AD, ADA, ADAA or ADAAD would find Toronto.

ii © OGC 2003 – All rights reserved

OGC 03-028

8.1.2.3.3 Loading a quadcode taxonomy
The Systinet UDDI registry taxonomy management service includes the ability to bulk
load (or upload in Systinet lingo) a taxonomy encoded as an XML document. Systinet
does not provide a schema for the XML document, but does include several examples
that illustrate the structure of the taxonomy encoding document.

For the UDDI quadcode experiment, a program called QuadTaxonomy was written that
generates an XML document containing a quadcode taxonomy to a specified level of
subdivision. The following is the output that QuadTaxonomy generates for 1 level of
subdivision (the line numbers are for reference only and are not actually generated by the
program):

1. <?xml version="1.0"?>

2. <!-- <!DOCTYPE taxonomy SYSTEM "taxonomy.dtd"> -->

3. <taxonomy>

4. <tModelKey>uuid:65bee600-f1c1-11d6-b493-b8a03c50a862</tModelKey>

5. <name>OGC Quads</name>

6. <checked>true</checked>

7. <compatibility>

8. <type>businessEntity</type>

9. <type>businessService</type>

10. </compatibility>

11. <categorization>

12. <type>categorization</type>

13. </categorization>

14. <categories>

15. <category>

16. <keyName>(-85,36.5) to (-76.5,45)</keyName>

17. <keyValue>A</keyValue>

18. </category>

19. <category>

20. <keyName>(-76.5,36.5) to (-68,45)</keyName>

21. <keyValue>B</keyValue>

22. </category>

23. <category>

24. <keyName>(-85,28) to (-76.5,36.5)</keyName>

25. <keyValue>C</keyValue>

26. </category>

27. <category>

28. <keyName>(-76.5,28) to (-68,36.5)</keyName>

29. <keyValue>D</keyValue>

30. </category>

31. </categories>

32. </taxonomy>

The taxonomy.dtd file referenced in line 2 is only a placeholder for an actual schema file.

The tModel key specified in line 4 is a reference to a model that simply points to an
empty taxonomy.dtd file at http://www.pvretano.com/uddi/taxonomy.dtd.

© OGC 2003 – All rights reserved
19

http://www.pvretano.com/uddi/taxonomy.dtd

OGC 03-028

The names generated for each category are encoded using the keyName element and
represent the extent in the object space of each quadcode.

The original UDDI experiment generated a quadcode taxonomy for the entire world to 10
levels of subdivision. This, however, resulted in a 350 megabyte XML file which the
Systinet installation at NASA was unable to upload. In fact, the upload procedure
corrupted the underlying Postgres database system and a recovery procedure was
required to restore the system.

In order to make the XML file smaller, a new taxonomy file was generated that restricted
the extent of the object space from the entire world ([-180,180][-90,90]) to the east coast
of North America ([-86, -68][28, 45]) and only generated 8 levels of subdivision. This
resulted in a 19 megabyte XML file that the NASA registry could easily handle.

8.1.2.4 Administering the Taxonomy
Version 4.0 features limited taxonomy management. It allows only administrator to
upload a taxonomy. We had fairly large taxonomy to upload (20MB); however, it still
took unreasonable amount of time to do that. On average it was taking 24 hours to upload
the taxonomy on the specified above machine. According to Systinet, in version 4.5 of
the registry, the taxonomy upload mechanism was completely rewritten with significant
performance improvements. Even though the web interface allows the administrator to
delete taxonomies, if taxonomy upload partially failed (as happened to us several times),
it is impossible to delete the taxonomy using the interface. The only way to delete the
taxonomy then was to go directly to the database's interface and delete all the pieces of
taxonomy via SQL statements. Once taxonomy is uploaded, it is not automatically visible
to anyone but administrator and only via administration web interface. While the registry
features very extensive documentation, we were not able to find the way how to make the
taxonomy visible to everyone. Instead, we had to turn to customer support and discussion
groups where we found this information.

.

ii © OGC 2003 – All rights reserved

OGC 03-028

8.1.2.5 Spatial Queries
Section 8.1.2.3, describes how quadcodes can be generated and how they can be loaded
into a Systinet UDDI registry as a taxonomy. This section describes how such a
taxonomy can be used to perform spatial queries.

Consider a portion of figure 4, reproduced here as figure 5.

Figure 5.

The red box represents a spatial query window or area of interest. The box overlaps the
quadcodes ADAAA, ADAAB ADAAC and ADAAD. These quadcodes are also key
values in the quad taxonomy. So, if a taxonomy query is performed on a UDDI registry
to find all records classified with the key values ADAAA, ADAAB, ADAAC and
ADAAD then we have in essence performed a spatial query. Of course, this is an
approximate spatial query and represents a first pass filter2. Further processing of the
results at the client would be required to perform an exact spatial query.

8.1.2.6 Tessellation service – converting BBOX to quadcodes
In section 8.1.2.4 it was explained that a spatial query using quadcodes is a simply a
matter of finding which quadcodes the query window overlaps and then using those
quadcodes as key values in a taxonomy query on the UDDI registry.

Since the coordinates of each quadcode are easily calculated based on the extent of the
object space (see section 8.1.2.3.1), it is a simple matter to convert the coordinates of a
bounding box into a list of overlapping quadcodes. The process of performing this
conversion of a bounding box to quadcodes is called tessellation and there are numerous
references describing efficient tessellation algorithms3.

2 The procedure of identifying overlapping quadcodes is known as a spatial join. In essence a join is being performed
between the list of quadcodes that represent the BBOX (ADAAA, ADAAB, ADAAC and ADAAD) and the list of key
values in the quadcode taxonomy to see if there are any common or overlapping cells.
3 Samet, Hanan, The Design and Analysis of Spatial Data Structures, Addison Wesley, 1989

© OGC 2003 – All rights reserved
21

OGC 03-028

For this UDDI experiment a tessellation web service was implemented to convert a
bounding box in a specified spatial reference system into a list of quadcodes (i.e. key
values) that can be used on the NASA Systinet registry to perform a taxonomy query.
The existence of such a web based service means that registry clients do no have to
implement the tessellation algorithm themselves and need only parse the XML output to`
generate an appropriate UDDI taxonomy query.

The following example illustrates how to invoke the tessellation service for the UDDI
experiment:

http://www.pvretano.com/cwquad/cwquad.cgi?BBOX=-78.0,38.7,-77.9,38.9

The output for this request is the following XML document:
<?xml version="1.0" encoding="ISO-8859-1"?>

<categories xmlns="http://www.opengis.net/ows12_uddi"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/ows12_uddi
http://schemas.cubewerx.com/schemas/uddi/OWS12_UDDI_Categories.xsd">

 <category>

 <keyName>(-84.0039,44.0039) to (-83.9375,44.0703)</keyName>

 <keyValue>AAAADDDB</keyValue>

 </category>

 <category>

 <keyName>(-84.0039,44.0703) to (-83.9375,44.1367)</keyName>

 <keyValue>AAAADDBD</keyValue>

 </category>

 <category>

 <keyName>(-83.9375,44.0039) to (-83.8711,44.0703)</keyName>

 <keyValue>AAABCCCA</keyValue>

 </category>

 <category>

 <keyName>(-83.9375,44.0703) to (-83.8711,44.1367)</keyName>

 <keyValue>AAABCCAC</keyValue>

 </category>

</categories>

The parameters of the web tessellation service are specified in the following table.

URL Component O/M DEFAULT Description

BBOX M The coordinates of the BBOX specified
as lower-left point and upper-right point.

SRS O EPSG:4326 The SRS in which the BBOX is
specified.

ii © OGC 2003 – All rights reserved

http://www.pvretano.com/cwquad/cwquad.cgi?BBOX=-78.0,38.7,-77.9,38.9

OGC 03-028

MAXLEVELS O 8 The maximum number of levels to which
to generate the quadcodes (i.e. taxonomy
key values).

Table 1. – Web Tessellation Service Parameters

8.1.2.7 Client API
The goal of the UDDI quadcode experiment is to be able to perform coordinate based
spatial queries on a UDDI registry using only the features supported by the registry –
namely the ability to perform taxonomy queries. Any client application wishing to
perform a spatial query would need to perform the following steps described in sections
8.1.2.3, 8.1.2.4 and 8.1.2.5:

1. Invoke the web based tessellation service to generate a set of quadcodes that
overlap the query window.

2. This set of quadcodes represents key values that can be used to execute a
taxonomy query on a UDDI registry to identify records that lie within the
query window.

In order to make it easier to perform spatial queries on a UDDI registry, a Java class was
written that performs the necessary steps and can be integrated into a client application.
Due to time constaints of the client providers NASA wrote athe JAVA class.This section
describes the experience of writing the client API.

The following third party libraries were used to implement the client API.

• UDDI4J – needed to programmatically interact with UDDI registry

• JDOM – XML DOM Java wrapper library

• Xerces – XML Parser

UDDI4J was chosen over Systinet's UDDI client library in order to test the level of
interoperability that could be achieved between the UDDI registry and a UDDI client
library produced by different vendor.

Internally, the API consists of three logical parts:

1. Code needed to perform call to the CGI-based tessellation service

2. Code needed to performs calls to UDDI registry to perform the taxonomy
query.

© OGC 2003 – All rights reserved
23

OGC 03-028

3. Support code to handle command line arguments and data received from
UDDI registry and CGI-based service.

The implementation of the API was very straightforward. Using existing java.net classes
the code makes a call to the web based tessellation service. Then using JDOM and Xerces
the returned XML document, containing the quadcode taxonomy key values, is parsed
and converted into a UDDI CategoryBag. The CategoryBag is then used to search for
ServiceInfos. The found ServiceInfos are in turn used to search for binding details for the
found services. Finally, each service binding detail is converted into a HashMap where
the key is the service name and the access point is the value.

While implementing the client the following observations where made:

1. FindQualifiers object can be used to control how parameters in a Bag (e.g.
CategoryBag) are passed to the call (logical AND, OR etc.)

2. Initially the tessellation service was returning key values that did not match
any quadcode classifications in the UDDI registry. As a result, the client code
was unable to find any result. Once this problem was rectified, the client code
worked perfectly.

Both Ionic and LaserScan used the client API in their integrated OWS1.2 clients and
were able to successfully perform spatial queries using bounding boxes on the NASA
UDDI registry.

This provided a successful conclusion to the interoperability test between UDDI4J client
library the Systinet UDDI server.

The source code for the java class can be found in Annex C.

8.2 NASA Observations

8.2.1 Installing and Maintaining a Commercial UDDI Registry
This section describes administrative experience of Systinet WASP UDDI registry
version 4.0. It briefly outlines pluses and minuses of various aspects of administration
and running the registry. All the work was performed on Dell PC with Pentium III
667MHz [processor with 512 MB of RAM, running RedHat Linux 7.3.

8.2.1.1 Installation/Upgrade
Systinet WASP UDDI 4.0 for Linux features easy to use command line
installation/upgrade script. It guides the administrator through the process by asking to
input serious of values (with defaults given). In case of upgrade, it asks to enter the

ii © OGC 2003 – All rights reserved

OGC 03-028

location of previous installation so it then copies new binaries in that directory while
keeping all the old settings.

8.2.1.2 Configuration
After installation is complete, the administrator needs to start the registry with the
provided script. Then, the one needs to go to the provided web interface to modify some
key values(e.g.name of the database to use and jdbc driver name, administrative email
contact information). Overall, there are number of configuration parameters that can be
modified to customize the registry operation. They also can be left as is. The registry
configuration interface is easy and intuitive to use.

8.2.1.3 User administration
Administrator doesn't have to do much to administer users. When new users want to use
the registry, they are directed to the appropriate web interface where they register. Once
registered, an email with activation URL is sent to the specified email address.

Administrator can then if needed to add users to ACL groups if needed, or change their
access level as needed..

8.2.1.4 ACL management
The administration interface features extensive ACL management functionality. It allows
administrator to create ACL groups, add users to them. Administrator can change access
level to items in the registry (e.g business, service) either by given certain permissions to
whole group or individual users.

8.2.1.5 Logging
The registry doesn't have dedicated logging mechanism . While it is possible to redirect
stdout and stdrr output to a file, it would be preferable to have logging with time and data
markings.

8.2.1.6 Conclusion
Overall, Systinet WASP UDDI Registry Version 4.0 is easy to use and administer. It features simple but
sophisticated administration interface. Allowing for quick initial setup and ongoing administration.

© OGC 2003 – All rights reserved
25

OGC 03-028

8.2.2 Web Service Inspection Language

Web service information discovery is characterized by one or more WSDL or other
description documents being used to provide "contact" (that is, endpoint) information in
lieu of telephone numbers or physical addresses. The following two sections provide a
brief description of how the UDDI and WS-Inspection mechanisms fit into a taxonomy of
discovery mechanisms in terms of the characteristics which they exhibit. The final
section describes how the two may be applied, depending upon the desired functionality
and operating limitations

8.2.2.1 UDDI characteristics

UDDI implements service discovery using a centralized model of one or more
repositories containing information on multiple business entities and the services they
provide. You could compare UDDI to the Yellow Pages in your phone book, where
multiple businesses are grouped and listed with a description of the goods or services
they offer and how to contact them.

UDDI systems are based upon organized repositories which provide many high-level
functions, including advanced searching capabilities. This makes them very adept in
facilitating focused discovery patterns, including helping requesters quickly locate
potential communication partners. To a lesser extent, UDDI is also able to facilitate some
patterns of unfocused discovery through browsing of the repository. In order to provide
advanced functionality, however, UDDI requires that a certain amount of infrastructure
be deployed and maintained, thus increasing the cost of operation. The specification
provides a high level of functionality through Simple Object Access Protocol (SOAP) by
requiring specifically an infrastructure to be deployed with substantial overhead and costs
associated to its use.

8.2.2.2 WS-Inspection characteristics

The Web Services Inspection Language (WS-Inspection) [3] relies upon a completely
distributed model for providing service-related information; the service description
information can be distributed to any location using a simple extensible XML document
format. Unlike UDDI, it does not concern itself with business entity information, nor
does it specify a particular service description format. WSIL works under the assumption
that you are already familiar with the service provider, and relies on other service
description mechanisms such as the Web Services Description Language (WSDL).

ii © OGC 2003 – All rights reserved

http://www-106.ibm.com/developerworks/webservices/library/

OGC 03-028

WSIL documents are located using a few simple conventions using existing Web
infrastructure. In many ways, WSIL is like a business card -- it represents a specific
entity, its services, and contact info, and is typically delivered directly by whom it
represents. The low functionality and lightweight nature of WSIL leaves the processing
for the developer to implement. WSIL begins to break down and become too unwieldy to
search or manage if a given document grows too large, or a collection of documents
aggregates too deep. Eventually, development effort will diminish as WSIL toolkits are
developed, like the one found in the Apache Software Foundation's Axis project The low
functionality of a simple XML document format also provides the flexibility for novel
and innovative applications of this information to be easily created.

By providing the ability to disseminate service related information through existing
protocols directly from the point at which the service is being offered, the WS-Inspection
mechanism enables focused discovery to be performed on a single target. Due to its
decentralized nature however, the WS-Inspection specification does not provide for a
good mechanism upon which to execute focused discovery if the communication partner
is unknown. Unlike with business cards and pamphlets, the WS-Inspection specification
supports a significant number of unfocused discovery patterns by providing a set of
conventions to make its documents easily locatable and to allow them to be presented in a
proactive fashion by the service provider. As is the case with other simple aggregation
supporting discovery mechanisms, there is a small cost associated with creating and
maintaining the aggregations. The WSIL model is more RESTful then UDDI. In many
ways, WSIL is like RDF Site Summary (RSS) for Web services. RSS is a file format with
pointers to published content that can be syndicated and aggregated. WSIL is a file
format with references to published Web services that can be discovered and bound.

As you can see, while UDDI and WSIL are both mechanisms for Web services discovery,
their models are quite different. Deciding which you should use depends on your
situation. In many cases, it may be advantageous to use both. . Figure 1 provides an
overview of the relationship of UDDI and WSIL

© OGC 2003 – All rights reserved
27

OGC 03-028

As you can see, WSIL can be used to "point" to UDDI repositories and the service
descriptions therein.

8.2.2.3 Locating WSIL Documents
Once an inspection document has been created, a consumer needs to be able to find it.
WSIL's decentralized document-based model would make locating these files difficult if
it were not for a couple of simple conventions defined in the specification.
The first convention employs the use of a fixed filename of inspection.wsil located in
common entry points. Consumers would only need to ping a URL such as
http://example.org/inspection.wsil or http://examples.org/services/inspection.wsil to
discover the file's existence for retrieval

The second convention employs embedded references in other documents, such as HTML or other WSIL
documents. WSIL advocates use of a meta tag in an HTML document that establishes a link to the
inspection documentation location.

ii © OGC 2003 – All rights reserved

OGC 03-028

8.2.3 UDDI Registry V3 and ebXML Reg/Rep v2.3 Information Model and
Functionality as Basis of a General Purpose Application Registry

This section will summarize work done by a team of Boeing Architects and posted to the
OAISIS UDDI and ebXML RegRep mailing lists. The most recent summary of this work
is presented as Annex B of this document. As this section matures this material will be
augmented and refined.

8.2.3.1 Web Service Inspection Language

8.2.3.1.1 Web services discovery

Web service information discovery is characterized by one or more WSDL or other
description documents being used to provide "contact" (that is, endpoint) information in
lieu of telephone numbers or physical addresses. The following two sections provide a
brief description of how the UDDI and WS-Inspection mechanisms fit into the taxonomy
described in the introduction in terms of the characteristics which they exhibit. The final
section describes how the two may be applied, depending upon the desired functionality
and operating limitations.

8.2.3.1.2 UDDI characteristics

The Universal Description Discovery and Integration (UDDI) specification [2] addresses
the problems associated with Web service discovery through the use of a centralized
model; one or more repositories are created to house information about businesses and
the services which they offer. Requests and updates pertaining to the service and business
related information are issued directly against the repositories. In addition, UDDI
prescribes a specific format for a portion of the stored description information and, to
facilitate advanced searching, assumes that other description information will be
stored/registered within the system as well.

In terms of the personal information discovery context which was described above, the
UDDI environment most closely resembles that of a directory assistance provider or
searchable on-line "Yellow Pages" system. Like directory assistance and other third-party
providers, UDDI systems are based upon organized repositories which provide many

© OGC 2003 – All rights reserved
29

http://www-106.ibm.com/developerworks/webservices/library/

OGC 03-028

high-level functions, including advanced searching capabilities. This makes them very
adept in facilitating focused discovery patterns, including helping requesters quickly
locate potential communication partners. To a lesser extent, UDDI is also able to
facilitate some patterns of unfocused discovery through browsing of the repository. In
order to provide advanced functionality, however, UDDI requires that a certain amount of
infrastructure be deployed and maintained, thus increasing the cost of operation. In
addition, unless the service descriptions are stored only within UDDI, there is a cost
associated with keeping the different versions synchronized. Depending upon the
business model adopted by the directory provider, these additional costs may or may not
directly impact the owner of the information. For instance, the model adopted by the
Universal Business Registry shields the information owner from these costs.

8.2.3.1.3 WS-Inspection characteristics

The Web Services Inspection Language (WS-Inspection) [3] relies upon a completely
distributed model for providing service-related information; the service descriptions may
be stored at any location, and requests to retrieve the information are generally made
directly to the entities which are offering the services. The WS-Inspection specification
does not stipulate any particular format for the service information; it relies upon other
standards, including UDDI, to define the description formats. The WS-Inspection
specification also relies upon existing Web technologies and infrastructure to provide
mechanisms for publishing and retrieving its documents.

In terms of the personal information discovery context described in the introduction, the
WS-Inspection mechanism most closely resembles business cards and other simple
information aggregation documents. As is the case with those other mechanisms, WS-
Inspection documents are very light-weight, easy to construct, and easy to maintain. By
providing the ability to disseminate service related information through existing protocols
directly from the point at which the service is being offered, the WS-Inspection
mechanism enables focused discovery to be performed on a single target. Due to its
decentralized nature however, the WS-Inspection specification does not provide for a
good mechanism upon which to execute focused discovery if the communication partner
is unknown. Unlike with business cards and pamphlets, the WS-Inspection specification
supports a significant number of unfocused discovery patterns by providing a set of
conventions to make its documents easily locatable and to allow them to be presented in a
proactive fashion by the service provider. As is the case with other simple aggregation
supporting discovery mechanisms, there is a small cost associated with creating and
maintaining the aggregations.

ii © OGC 2003 – All rights reserved

http://www-106.ibm.com/developerworks/webservices/library/

OGC 03-028

8.2.3.1.4 The complete picture

Before the picture can be completed, a third mechanism which is analogous to verbal
communication from the personal information discovery space must be mentioned. This
mechanism involves the direct retrieval of description documents, WSDL and other
related files, from their source. As is the case with the verbal scenario, this mechanism
does not really have any overhead associated with it, but it does only support portions of
the focused and unfocused discovery patterns.

In summary, the Web service discovery mechanisms that have been described possess the
following characteristics:

Direct description retrieval (voice, FTP, HTTP GET)
• Supports some focused and unfocused discovery patterns.

• Dissemination is direct from the source/originator.

• No overhead.

Simple aggregate publishing (WS-Inspection)
• Supports some focused discovery patterns and a significant number of unfocused ones.

• Dissemination is direct from the source/originator.

• Moderate overhead.

Advanced directory (UDDI)
• Supports a significant number of focused discovery patterns and a some unfocused ones.

• Dissemination is via a third-party.

• Moderate overhead for the information owner; high overhead for the directory provider.

Like the business cards and the directory assistance systems, the UDDI and WS-
Inspection specifications address different sets of issues in the discovery problem space,
and are characterized by different sets of trade-offs. UDDI provides a high degree of
functionality, but it comes at a cost of increased complexity. The WS-Inspection
specification adopts a lower level of functionality in order to maintain a low overhead. In
this light, the two specifications should be viewed as complementary technologies, to be
used either together or separately depending upon the situation. For example, a UDDI
repository could be populated based upon the results found when performing a "Web
crawl" for WS-Inspection documents. Likewise, a UDDI repository may itself be

© OGC 2003 – All rights reserved
31

OGC 03-028

discovered when a requester retrieves a WS-Inspection document which references an
entry in the repository. In environments where the advanced functionality afforded by
UDDI is not required and where constraints do not allow for its deployment, the WS-
Inspection mechanism may provide all of the capabilities which are needed. In situations
where data needs to be centrally managed, a UDDI solution alone may provide the best
fit. The UDDI and WS-Inspection specifications should not be viewed as providing
competing mechanisms, any more than business cards and directory assistance services
are viewed as competing to disseminate personal information.

8.2.4 UDDI taxonomy for ebXML technologies
This facilitates publishing ebXML-based services in the UDDI Business Registry (UBR)
such that they can be explicitly sought or, if found incidentally, formally identified. This
section will be based on a draft technical note in the OASIS UDDI technical committee.

8.3 Syncline Observations

8.3.1 SIM - UDDI mappings
It came as no surprise that some elements of SIM (Service Information Model) and UDDI
v. 2 are quite similar and others are vastly different.

UDDI Entity SIM Entity Notes
businessEntity Iso19119:OrganizationName Not 1st class in SIM

businessService ServiceInstance

bindingTemplate ServiceInstance Overlaps into
ServiceType

tModel ServiceType This is only one use
of tModel in UDDI,
and doesn’t allow
referencing interface
WSDL

keyedReference ContentInstance Specific unvalidated
usage of general
tModel “bag” in
UDDI

keyedReference ContentType “

ii © OGC 2003 – All rights reserved

OGC 03-028

keyedReference PresentationScheme “

The only real coincidence between SIM and UDDI comes in the area of ServiceInstances
and ServiceTypes. A businessService corresponds more-or-less to a ServiceInstance.
There is presently no equivalent object to businessEntity in SIM. Although one use of
tModel is to represent the equivalent of a service type, it doesn’t provide a place to
reference a type definition (e.g. interface WSDL). Instead, a definition reference such as
a WSDL document URL can be made in a tModelInstance, which associates a particular
businessService with a tModel. There is no direct equivalent for the other SIM high-level
information objects.

8.3.2 Use of category and identifier tmodels for SIM

The key (!?) to discovery in UDDI is the object referred to as a tModel. Unfortunately
this structure is used in several widely divergent ways in UDDI, sometimes referring to
types and sometimes to instances, sometimes representing a descriptive or identifying
taxonomy and other times an element itself of a taxonomy. The UDDI interfaces permit
searching for tModels themselves, or for other objects (e.g. businessServices) according
to keyedReferences, which are simply flat name-value pairs associated to a given tModel.

Although the term taxonomy is used for sets of these key-value pairs, it is up to a given
UDDI registry implementation whether a controlled vocabulary of those pairs is
maintained (validation); there is no standard interface for maintaining such vocabularies.
There is also no explicit organization of the pairs. They are searched in textual order, so a
hierarchical search can be made only if the actual contents (value field) are organized
hierarchically. The name parameter is not even considered (in the spec) except if the
tModel is “uddi-org:general_keywords”.

The implication of this arrangement is that the UDDI model could be “abused” to
swallow any desired SIM information by casting it as name-value pairs where the names
represent the xpaths to each SIM element/attribute to be included and the values represent
the contents of that element/attribute (un-validated). One could even register as
descriptors the values of the OGCBasic query parameters, with the understanding that
only entire service instances (with contents as these name-value pairs) or tModels
(without definitions) could be returned by the UDDI registry. One could even represent
the spatial location represented by a service as one hierarchical latitude name-value pair
and one longitude name-value pair (so that the number of digits represented the level of
spatial resolution, e.g. 10 digits), then AND the pairs in a find_service query which used
“like” to find the set of all services within a larger area (e.g. 7 digits). This is obviously
not a query for which any existent UDDI registry is likely to be optimized, however.

© OGC 2003 – All rights reserved
33

OGC 03-028

Another problem with this approach is that, while it could be implemented, it would fail
the goal of allowing standard UDDI clients to access the information. It would be
unlikely that they would be able to present the “large” contents of a service
“categorybag” in any sensible way, or provide a graphical spatial search capability to
make use of the lat-lon location pairs.

8.3.3 Use of external taxonomy validation

The role of an external taxonomy validation service in the UDDI v.2 specification turns
out to be limited to validation of individual name-value pairs within a tModel
“namespace”. There is no interface for either generating or searching among such pairs
externally. This functionality is therefore strictly useful for maintaining a controlled
vocabulary, but not for increasing something such as the searching functionality or
assisting a client to use a controlled vocabulary, particularly a dynamic one such as a
spatial identifier taxonomy.

8.3.4 Results of testing with Sun UDDI registry

An instance of the UDDI registry provided by Sun in their Web Services Developer Pack
was implemented for use in the experiment. This registry is based on a Xindice XML
database, as opposed to the relational database orientation of Syncline’s OGC registry.
We were able to register businesses and services in a nominal fashion to this registry, but
the supplied client was inadequate to make use of any more of the publisher API than
those operations. Lack of resources and prevented us from doing custom development to
pursue either automated synchronization between the UDDI and OGC registries, or the
UDDI registry “abuse” described above, when it became clear that there would be little
benefit to proving whether this was or was not practical to implement.

8.4 IONIC Observations
TBD.

ii © OGC 2003 – All rights reserved

OGC 03-028

8.5 Galdos Observations (UDDI to ebRIM mappings)

8.5.1 Introduction
The registry provides experimental functionality to allow the client to query for content
using UDDI inquiries. A two-stage mapping allows the client to submit a UDDI inquiry
and receive a UDDI response, while not concerning themselves with the details of the
registry implementation. Firstly, UDDI inquiry requests are mapped to WRS Query
requests. The UDDI entities [UDDI-DATA] referenced in the request are mapped to
ebRIM entities [ebRIM], upon which the registry model is based. Secondly, the WRS
response is mapped back to a valid UDDI message, with corresponding entity mappings.

This document exposes some of the details of these mappings. Not all aspects of the
UDDI inquiries are supported due to inherent differences between UDDI and ebRIM.
Enhanced functionality for mappings, including UDDI publisher capability, may be
provided at a later time. For further information on any aspect of the mappings, the reader
should refer to the references in Appendix A.

8.5.2 Entity Mapping
This section provides a simple overview of the mapping that is defined between UDDI
entities and ebRIM entities. Any relevant notes or exceptions are also described. For
more information, the reader should refer to the JAXR 1.0 Specification [JAXR], upon
which the mappings are based.

UDDI Entity ebRIM Entity Notes
address PostalAddress

businessEntity Organization

businessInfo Organization A businessInfo
instance contains only
basic information on
the business

businessService Service

bindingTemplate ServiceBinding

categoryBag Collection of
Classification instances

categoryBag/keyedReference Classification

contact User

© OGC 2003 – All rights reserved
35

OGC 03-028

discoveryURL ExternalLink

identifierBag Collection of
ExternalIdentifier
instances

identifierBag/keyedReference ExternalIdentifier

overviewDoc ExternalLink

serviceInfo Service A serviceInfo instance
contains only basic
information on the
service

tModel ClassificationScheme

tModelBag Collection of
ExtrinsicObject instances

Only applies to
find_binding

tModelBag/tModelKey ExtrinsicObject Only applies to
find_binding

tModelInfo ClassificationScheme A tModelInfo instance
contains only basic
information on the
tModel

tModelInstanceInfo SpecificationLink Part of a
bindingTemplate

8.5.3 Inquiry Mapping
This section provides more information on individual request mappings from a UDDI
inquiry to WRS Query as well as information on the response transformation.
Limitations, exceptions and other relevant pieces of information are discussed. Except
where noted, all the UDDI inquiry functionality is supported by the registry. For detailed
information on UDDI inquiry functions, the user should refer to the UDDI v.2
specification [UDDI-API].

General Notes

• There is currently no support for find_BusinessDetailExt.

ii © OGC 2003 – All rights reserved

OGC 03-028

• There is no support for certain <findQualifier> values: caseSensitiveMatch,
sortByNameAsc, sortByNameDesc, sortByDateAsc, sortByDateDesc,
orLikeKeys, combineCategoryBags and serviceSubset.

• The <findQualifier> values sortByDateAsc and sortByDateDesc could not be
implemented in the stylesheet because it would require obtaining the audit trail for
the relevant object.

• The maxRows attribute in the UDDI inquiry is not mapped to the WRS Query.

• The inquiry functions find_binding and get_bindingDetail return equivalent
information. There is no bindingInfo element in UDDI, so the entire
bindingTemplate is returned in both cases.

• The findQualifier exactNameMatch is mapped to ogc:PropertyIsEqualTo.
Without this qualifier, the element ogc:PropertyIsLike is used with leading and
trailing wildcards.

• The attribute keyName in categoryBag/keyedReference is not significant and is
therefore ignored in requests.

8.5.3.1 Find Operations
find_binding

• There is no support for any <findQualifier> element.

• In the request, tModelBag/@tModelKey is mapped to the specificationObject
attribute of the SpecificationLink.

• In the response, tModelInstanceInfo/@tModelKey points to an ExtrinsicObject
such as a WSDL document that has the technical specifications for accessing the
Service through the ServiceBinding.

• The property accessPoint/@URLType is found from the prefix of the accessURI
in the ServiceBinding instance (e.g. http in http://www.galdosinc.com).

find_business
• There is no support for <tModelBag>.

8.5.4 find_relatedBusinesses
• There is no support for any <findQualifier> element.

© OGC 2003 – All rights reserved
37

OGC 03-028

• There is no support for <keyedReference>.

• Checks Associations for targetObject or sourceObject with id equal to the
provided businessKey and returns the Organization at the other end of the
Association.

• According to the UDDI v.2 spec, the association between the two businessEntity
instances must be affirmed, i.e. confirmed by both the sourceOwner and
targetOwner. Within the context of ebRIM, this requires that the attributes
isConfirmedBySourceOwner and isConfirmedByTargetOwner of the Association
are both set to true.

8.5.5 find_service
• There is no support for <tModelBag>.

find_tModel
• This operation returns only ClassificationScheme instances.

8.5.5.1 Get Operations
get_bindingDetail

• This query is fully supported.

get_businessDetail
• This query is fully supported.

• The property contact/@useType has no match in ebRIM and is therefore left
blank.

• Only the “primaryContact” User is included, the Associations aren’t traversed for
other Users.

• The property discoveryURL@useType is required but may contain an empty
string if the ExternalLink instance has no Name.

get_serviceDetail
• This query is fully supported.

get_tModelDetail
• This operation returns only ClassificationScheme instances.

• According to the UDDI spec, there can be only one overviewDoc, so only the first
ExternalLink is used in the response.

ii © OGC 2003 – All rights reserved

OGC 03-028

The operation get_tModelDetail returns overviewDoc (ExternalLink), identifierBag
(ExternalIdentifier) and categoryBag (Classification) instances, even though it is unclear
whether all these are relevant with respect to a ClassificationScheme in ebRIM.

References
An example list of references. Please update with appropriate and current references.

SA
Topic 12, Service Architecture. OGC Abstract Specification, available online:
http://www.opengis.org/public/abstract/01-112.pdf

WMS
OpenGIS® Web Map Server Interfaces Implementation Specification, available online:
http://www.opengis.org/techno/specs/01-047r2.pdf

GML
OpenGIS® Geography Markup Language (GML) Implementation Specification, available
online: http://www.opengis.net/gml/01-029/GML2.html

SLD
OpenGIS® Styled Layer Descriptor (SLD), Discussion Paper, available online:
http://www.opengis.org/techno/discussions/01-028.pdf

WTS
OpenGIS® Web Terrain Server (WTS), Draft Interoperability Program Report, available
online: http://ip.opengis.org/mpp1/docs/WTS_v0.3.1.zip

XIMA
OpenGIS® XML for Imagery and Map Annotations (XIMA), Discussion Paper, available
online: http://www.opengis.org/techno/discussions/01-019.pdf

Annexes

© OGC 2003 – All rights reserved
39

http://feature.opengis.org/members/archive/arch01/01-022r1.pdf
http://feature.opengis.org/members/archive/arch01/01-022r1.pdf
http://www.opengis.org/techno/specs/01-047r2.pdf
http://www.opengis.net/gml/01-029/GML2.html
http://www.opengis.net/gml/01-029/GML2.html
http://www.opengis.net/gml/01-029/GML2.html
http://www.opengis.net/gml/01-029/GML2.html
http://www.opengis.net/gml/01-029/GML2.html

OGC 03-028

Annex A: Use Cases

Use detail for the user scenarios described in the text

Use Case 1

Use Case Description

Name Discover OGC Registries Through UDDI

Priority High

Description This use case concentrates on discovery of specialized OGC registries
from UDDI registries, rather than direct discovery of OGC services
themselves.

Precondition Assumes that one or more UDDI registries and clients exist, and that one
or more OGC registries and associated businesses have been published to
them.

Flow of Events – Basic Path

1. User searches UDDI for businesses with OGC registry services

2. User searches for OGC catalog/registries associated with businesses
matching search criteria

3. User makes use of WSDL associated to selected catalog/registry service
to select/configure an appropriate OGC registry client.

4. User switches to an OGC registry client to search for OGC services
and/or geospatial content of interest.

5. See Common Architecture / OGC registry use cases for continuations of
this user scenario.

Flow of Events – Alternative Paths

Step 3 User reads selected registry WSDL into a rapid development tool to
create an OGC registry client or client components.

ii © OGC 2003 – All rights reserved

OGC 03-028

Use Case Description

Postcondition OGC registries published to UDDI contain up-to-date information on
OGC services and content of interest to the user.

© OGC 2003 – All rights reserved
41

OGC 03-028

Use Case 2

Use Case Description

Name Discover OGC Services Through UDDI

Priority High

Description This use case concentrates on discovery of OGC services (including
registries) and/or the businesses which provide them, through UDDI
interfaces

Precondition Assumes that one or more UDDI registries and clients exist, and that one
or more OGC services and associated businesses have been published to
them. Further assumes that sufficient service description / classification
information is available within the UDDI registry to usefully narrow the
list of services of interest.

Flow of Events – Basic Path

1. User searches UDDI for OGC service offerings with service types
(tModels) of interest

2. User narrows search using one or more geographic and non-geographic
service and business classifications defined in the UDDI registry.

3. User selects one or more OGC services of interest, obtains WSDL
documents for binding information.

4. User switches to an OGC client in order to discover the capabilities of
services of interest.

5. See Common Architecture / OGC registry use cases for continuations of
this user scenario.

Flow of Events – Alternative Paths

Step 1 User searches first for businesses and/or services using one or more
geographic and non-geographic service and business classifications
defined in the UDDI registry.

ii © OGC 2003 – All rights reserved

OGC 03-028

Use Case Description

Step 2. User reads selected service WSDL into a rapid development tool to
create an OGC service client or client components.

Step 3. Re-join at Step 4

Postcondition Selected services offer content of interest to the user

© OGC 2003 – All rights reserved
43

OGC 03-028

Use Case 3

Use Case Description

Name Discover OGC Services Through UDDI interface on OGC registry

Priority High

Description This use case concentrates on discovery of OGC services (including
registries) and/or the businesses which provide them, through an UDDI
interface on an existing OGC registry

Precondition Assumes that one or more OGC registries expose UDDI interfaces and
that OGC services of interest are published to those registries.

Flow of Events – Basic Path

1. User searches UDDI for OGC service offerings with service types
(tModels) of interest.

2. User narrows search using one or more geographic and non-geographic
service and business classifications defined in the UDDI registry or
externally validated (perhaps from additional OGC registry information).

3. User selects one or more OGC services of interest, obtains WSDL
documents for binding information.

4. User switches to an OGC client in order to discover the
capabilities/content of the selected services of interest.

5. See Common Architecture / OGC registry use cases for continuations of
this user scenario.

Flow of Events – Alternative Paths

Step 3 User searches UDDI registry for “human-facing” services (clients) of
compatible types to services of interest.

Step 4. User binds to the endpoints of services of interest with compatible clients
to obtain service capabilities.

ii © OGC 2003 – All rights reserved

OGC 03-028

Use Case Description

Postcondition Selected services have content of interest which is usable through the
selected clients.

© OGC 2003 – All rights reserved
45

OGC 03-028

Use Case 4

Use Case Description

Name Publish OGC Services To UDDI registry

Priority High

Description This use case concentrates on publishing of OGC services to a UDDI
registry

Precondition Assumes there are one or more UDDI registries and clients capable of
publishing services, as well as OGC services available to be published.

Flow of Events – Basic Path

1. Publisher prepares needed information for registration of service into
UDDI registry

2. Publisher publishes business description to UDDI registry with UDDI
client

3. Publisher publishes service description to UDDI registry with UDDI
client

4. Publisher updates service description in UDDI registry with internally
and externally validated classifications and categories.

Flow of Events – Alternative Paths

Step 1. Publisher publishes OGC service to OGC registry

Step 2. OGC registry publishes service description automatically to UDDI
registry, which may be integrated into the same registry service.

Step 3. Rejoin at Step 4

Step 5. UDDI registry publication triggers a service registration in a
corresponding OGC registry

Postcondition None

ii © OGC 2003 – All rights reserved

OGC 03-028

Use Case 5
This use case(s) will present event flows involving the use of Web Service Inspection
Language in conjunction with UDDI to discover OCG Registries and Web Services

© OGC 2003 – All rights reserved
47

OpenGIS® Interoperability Program Report OGC 03-028

Annex B: UDDI V3/ebXML RegRep V2.3 Analysis

2.3 Registry Functionality Comparison

Legend

Black Text defines in place functionality or specification.

Blue Text defines new functionality requirements

Red Text defines missing functionality or lack of concept of this functionality

Teal Text defines recognition of need but no plans to work.

Purple Text defines work in progress.

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

© OGC 2003 – All rights reserved
1

http://www.oasis-open.org/committees/regrep/
http://www.oasis-open.org/committees/regrep/
http://uddi.org/pubs/uddi-v3.00-published-20020719.pdf
http://uddi.org/pubs/uddi-v3.00-published-20020719.pdf

OGC 03-028

OGC 2003 – All rights reserved

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Search Search Search

Customer Browser Registry
Interface

No direct interface to the registry
defined.

No direct interface to the registry
defined. APIs defined.

Application Interface –Search Defined in ebXML Reg/Rep V2
8.0 Query Management Services
(Query Management Client)

DEFINED in UDDI V3

4.8 Success and Error Reporting

5.1 Inquiry API Set

9 Policy

10 Multi-Version Support

Search information asset Records -
Simple

DEFINED in ebXML Reg/Rep V2

8.1Ad-hoc Query

No concept of Information Asset
in UDDI V3. See Search Web
Service Records

2 ©

OGC 03-028

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Search Information Asset Record –
Advanced

DEFINED in ebXML Reg/Rep V2

8.1 Ad-hoc Query can be restricted
by return type values

No concept of Information Asset
in UDDI V3. See Search Web
Service Records

Search - Domain records ebXML Reg/Rep V2 can find
records of any type via Ad hoc
queries 8.0 Query Management
Services

No concept for Domains as a
partition of ownership of registry
objects in ebXML Reg/Rep V2.
5.3 Registry Users

Service records categorized by
businessEntity which is domain-
like concept.

DEFINED in UDDI V3

5.1 Inquiry API Set

© OGC 2003 – All rights reserved
3

OGC 03-028

OGC 2003 – All rights reserved

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

NF - Search - Namespace records ebXML Reg/Rep V2 can find
records of any type via Ad hoc
queries 8.0 Query Management
Services

No concept/support for Namespace
registration and management

No support for Namespace
registration and management

Uses Namespaces to support API
behavior and as attribute to
categorize UDDI registry entities.

4 ©

OGC 03-028

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

NF - Search - Web Services
records

ebXML Reg/Rep V2 can find
records of any type via Ad hoc
queries 8.0 Query Management
Services

ebXML RIM V2 provides
structure see 6.5 Service, 6.6
Service Binding, & 6.7 Service
Link. Services can be registered as
an object in ebXML Reg/Rep V2
in 7.3 Submit Objects Protocol.

DEFINED in UDDI V3

5.1 Inquiry API Set

© OGC 2003 – All rights reserved
5

OGC 03-028

OGC 2003 – All rights reserved

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

NF - Search – Dependency
Records

ebXML Reg/Rep V2 can find
records of any type via Ad hoc
queries 8.0 Query Management
Services

No concept/support for
Dependency registration and
management

No support for Dependency
registration and management

NF - Search – Event Records ebXML Reg/Rep V2 can find
records of any type via Ad hoc
queries 8.0 Query Management
Services

No concept/support for Event
registration and management

No support for Event registration
and management

Display/Retrieve Display/Retrieve Display/Retrieve

6 ©

OGC 03-028

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Customer Browser Registry
Interface

No direct interface to the registry
defined.

No direct interface to the registry
defined. APIs only.

Browser Interface to
Access/Retrieval 3A Service –
Login

No direct interface to the registry
defined.

No direct interface to the registry
defined. APIs defined.

Application Interface to
Access/Retrieval 3A Service –
Login

DEFINED in ebXML Reg/Rep V2

9.7 Access Control

Defined in UDDI V3

5.3 Security Policy

9 Policy

Application Interface –
Display/Retrieve

DEFINED in ebXML Reg/Rep V2

8.4 Content Retrieval

DEFINED in UDDI V3

Retrieval is metadata record
information and not objects in a
repository

9 Policy

10 Multi-Version Support

© OGC 2003 – All rights reserved
7

OGC 03-028

OGC 2003 – All rights reserved

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Sort Search Display Client side functionality – out of
scope of spec.

Sort provided for UDDI registry
information model items

5.1 Inquiry API Set

Select Record Detail Display Client side functionality – out of
scope of spec.

Retrieval of metadata for
consumption. Actual display is
client side functionality.

5.1 Inquiry API Set

8 ©

OGC 03-028

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Retrieve Object via URL DEFINED in ebXML Reg/Rep V2

8.4 Content Retrieval

The WSDL Technical Note wsdl-
TN-V2.00-Draft-20020926[Error!
Bookmark not defined.] provides
a means to structure the Binding
registry schema to accommodate
URI links to resources and
dccumentation.

Subscribe Subscribe Subscribe

Browser Interface – Subscription
Login

No direct interface to the registry defined. No direct interface to the registry
defined.. All Interfaces to Registry
are via API.

© OGC 2003 – All rights reserved
9

OGC 03-028

OGC 2003 – All rights reserved

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Application Interface –
Subscription Login

IN WORK FOR ebXML Reg/Rep
V3

DEFINED IN UDDI V3

4.8 Success and Error Reporting

 Subscription API Set

9 Policy

10 Multi-Version Support

Subscribe - Information Asset
Record

IN WORK FOR ebXML Reg/Rep
V3

No concept for this in the UDDI
registry.

10 ©

OGC 03-028

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

NF - Subscribe - Namespace
Record

No concept/support for Namespace
registration and management

No Concept for registration of
record (a name) which does not
point to an object in repository. 7.0
Life Cycle Mgmt. Has relationship
to another record in registry.

No support for Namespace
registration and management

NF - Subscribe - Web Service
Record

IN WORK FOR ebXML Reg/Rep
V3

DEFINED IN UDDI V3

5.5 Subscription API Set

© OGC 2003 – All rights reserved
11

OGC 03-028

OGC 2003 – All rights reserved

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

NF - Subscribe – Event Record No support for non-registry
(interfaced) Event registration and
management

No Concept for registration of
record (a event) which does not
point to an object in repository. 7.0
Life Cycle Mgmt. Has relationship
to another record in registry.

ebXML Reg/Rep V3 will allow
subscription to any type of registry
event on any registry object .

No support for Event registration
and management

12 ©

OGC 03-028

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

NF - Subscribe – Dependency

• Events

• Web Services

• Namespaces

• Information Assets

No support for Dependency
registration and management

No Concept for registration of
record (a dependency) which does
not point to an object in repository.
7.0 Life Cycle Mgmt. Has
relationship to another record in
registry.

No support for Dependency
registration and management

Review Subscriptions -Information
Asset Record

IN WORK FOR ebXML Reg/Rep
V3

No concept for this in the UDDI
registry. See Review Subscription
Web Services.

© OGC 2003 – All rights reserved
13

OGC 03-028

OGC 2003 – All rights reserved

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

NF - Review Subscriptions
Namespace Record

No support for Namespace
registration and management

No support for Namespace
registration and management

NF - Review Subscriptions -Web
Service Record

IN WORK FOR ebXML Reg/Rep
V3

DEFINED in UDDI V3

5.5.7 Subscription API functions

NF - Review Subscriptions –
Event Records

No support for Event registration
and management

No support for Event registration
and management

14 ©

OGC 03-028

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

NF - Review Subscriptions –

Dependency Record

• Events

• Web Services

• Namespaces

• Information Assets

No support for Dependency
registration and management

No support for Dependency
registration and management

Un-Subscribe – Information Asset
Record

IN WORK FOR ebXML Reg/Rep
V3

No concept for Information Asset in
UDDI Registry. See Unsubscribe
Web Services.

NF - Un-Subscribe – Namespace
Record

IN WORK FOR ebXML Reg/Rep
V3

No support for Namespace
registration and management

© OGC 2003 – All rights reserved
15

OGC 03-028

OGC 2003 – All rights reserved

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

NF - Un-Subscribe – Web Service
Record

IN WORK FOR ebXML Reg/Rep
V3

DEFINED in UDDI V3

5.5.7 Subscription API functions

NF - Unsubscribe – Event Record No support for Event registration
and management

No support for Event registration
and management

NF - Un-Subscribe – Dependency
Record

• Events

• Web Services

• Namespaces

• Information Assets

No support for Dependency
registration and management

No support for Dependency
registration and management

16 ©

OGC 03-028

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Subscription Notification
Processing

IN WORK FOR ebXML Reg/Rep
V3

DEFINED in UDDI V3

5.5.7 Subscription API functions

Error Handling Error Handling Error Handling

Customer Reports Error in
Registry Content

No concept for customer direct
interface to the registry defined.

No concept for customer direct
interface to the registry defined

© OGC 2003 – All rights reserved
17

OGC 03-028

OGC 2003 – All rights reserved

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Auto Logging of Registry Event
Errors

DEFINED IN ebXML Reg/Rep
V2

7.3.5 Error Handling

7.4.3 Error Handling

7.7.3 Error Handling

7.8.3 Error Handling

7.9.3 Error Handling

DEFINED IN UDDI V3

4.8 Success and Error Reporting

7.6 Error Detection and Processing

12. Error Codes

Record Metrics Record Metrics Record Metrics

Customer Interface - Log Registry
Events

No concept for customer direct
interface to the registry defined

No concept for customer direct
interface to the registry defined

18 ©

OGC 03-028

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Application Interface – Log
Domain Registry Events

IN WORK ebXML Reg/Rep V3

Called Cooperating Registries

DEFINED IN UDDI V3

4.8 Success and Error Reporting

7.2.3 Change Record Journal

7.2.5 Replication Messages

Application Interface - Log
Registry Events

DEFINED IN ebXML Reg/Rep
V2

7.3.3 Audit Trail

7.4.1 Audit Trail

7.7.1 Audit Trail

7.8.1 Audit Trail

DEFINED IN UDDI V3

4.8 Success and Error Reporting

7.2.3 Change Record Journal

7.25 Replication Messages

7.6 Error Detection and Processing

12 Error Codes

© OGC 2003 – All rights reserved
19

OGC 03-028

OGC 2003 – All rights reserved

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Registration Audit Trail DEFINED IN ebXML Reg/Rep
V2

7.3.3 Audit Trail

7.4.1 Audit Trail

7.7.1 Audit Trail

7.8.1 Audit Trail

DEFINED IN UDDI V3

4.8 Success and Error Reporting

7.6 Error Detection and Processing

12 Error Codes

Register Register Register

Customer Browser Registry
Administrative Login Interface

No direct interface to the registry
defined.

No direct interface to the registry
defined.

20 ©

OGC 03-028

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Domain Registry Application
Interface – Administrative Login

IN WORK ebXML Reg/Rep V3

Called Cooperating Registries

DEFINED IN UDDI V3

7.4 Replication API Set

7.7 Validation of Replicated Data

8.0 Publishing Across Multiple
Registries

9.0 Policy

10 Multi-Version Support

© OGC 2003 – All rights reserved
21

OGC 03-028

OGC 2003 – All rights reserved

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Creating new Information Record DEFINED IN ebXML Reg/Rep
V2

7.0 Life Cycle Management
Service

• Submit Objects

• Update Objects

• Add Slots

• Association to Submitting
Organization

• Has no object versioning

No Concept for Information Asset
Record IN UDDI V3. See Create
Web Service Record.

22 ©

OGC 03-028

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Taxonomy Categorization Scheme
for records, objects & elements -
Add Taxonomy Terms

Has a placeholder to add common
categorization scheme metadata to
records & objects. Allows for
multiple categorization schemes to
be used. ebXML RIM V2 6.6
Classification Scheme 10
Classification of Registry Object.
But does not identify the unifying
scheme to use across all ebXML
registries to support federated
searches.

No current scheme in place to
categorize down to the element
level.

Has a placeholder to add common
categorization scheme metadata to
registry entities. Uses tModels to
build associations between entities
in registry. Uses Publisher
Assertion to build associations
between entities.

But does not identify the unifying
scheme to use across all UDDI
registries to support federated
searches.

No current scheme in place to
categorize down to the element
level.

© OGC 2003 – All rights reserved
23

OGC 03-028

OGC 2003 – All rights reserved

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Thesaurus Categorization Scheme
for records, objects & elements -
Add Thesaurus Terms

Has a placeholder to add
thesaurus categorization terms
metadata to records & objects
Allows for multiple categorization
schemes to be used. ebXML RIM
V2 6.6 Classification Scheme 10
Classification of Registry Object.
But does not identify the unifying
scheme to use across all ebXML
registries to support federated
searches.

No current scheme in place to
categorize down to the element
level.

Has a placeholder to add common
categorization scheme metadata to
registry entities. Uses tModels to
build associations between entities
in registry. Uses Publisher
Assertion to build associations
between entities.

But does not identify the unifying
scheme to use across all UDDI
registries to support federated
searches.

No current scheme in place to
categorize down to the element
level.

24 ©

OGC 03-028

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Editing unfinished Records No concept/support for Pending
Record IN ebXML Reg/Rep V2

No Concept for Pending Record
IN UDDI V3

Approve Information Asset Record No concept/support for Pending
Record in ebXML Reg/Rep V2

No Concept for Pending Record in
UDDI V3

NF - Register – Create a new
Namespace Record

No support for Namespace
registration and management

No support for Namespace
registration and management

NF - Register - Create new Web
service Record

Defined in ebXML Reg/Reg V2 DEFINED IN UDDI V3

7.2 Concepts and Definitions

DEFINED IN UDDI V3

7.5 Replication Configuration

NF - Register – Create new Event
Record

No support for interface Event
registration and management

No support for Event registration
and management

© OGC 2003 – All rights reserved
25

OGC 03-028

OGC 2003 – All rights reserved

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

NF - Approve Web Services
Record

No Concept for Pending Record in
ebXML Reg/Rep V2

No Concept for Pending Record.

NF - Approve Namespace Record No Concept for Pending Record in
ebXML Reg/Rep V2

No Concept for Pending Record in
UDDI V3

NF - Approve Event Record No support for Event registration
and management

No support for Event registration
and management

Register Information Asset Record DEFINED IN ebXML Reg/Rep
V2

7.0 Life Cycle Management
Service

Approve Objects

DEFINED IN UDDI V3

7.3 Change Record Structures

NF - Register namespace Record No support for Namespace
registration and management

No support for Namespace
registration and management

26 ©

OGC 03-028

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

NF - Register Web Service Record Defined in ebXML Reg/Rep V2 in
7.3 Submit Objects Protocol.

Defined in ebXML RIM V2

6.15 Service, 6.16 Service
Binding, 6.17 Service Link.

DEFINED IN UDDI V3

6.0 Node Operation

7.2 Concepts and Definitions

NF - Register Event Record Defined in ebXML Reg/Rep V2 No support for Event registration
and management

© OGC 2003 – All rights reserved
27

OGC 03-028

OGC 2003 – All rights reserved

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Register Domain Record DEFINED IN ebXML Reg/Rep
V2

5.3 Registry Users Submitting
Organization establishes contract
with Registration Authority
outside of scope of specification.

No specific concept of partitions
which are named, like domains, to
show ownership of registry objects
in ebXML Reg/Rep V2. 5.3
Registry Users

DEFINED IN UDDI V3

5.4 Custody and Ownership
Transfer API Set

6.0 Node Operation

7.8 Adding a Node to a Registry
Using Replication

28 ©

OGC 03-028

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Taxonomy Categorization Scheme
for partitioning Domains

No current scheme in place to
categorize domains.

Categorization of partitions occurs
outside of scope of the registry.
Processes to preclude overlapping
partitions occurs outside of scope
of registry.

Has placeholder in the ebXML
RIM V2 to hold such information
in Registry User, Registry Client ,
Responsible Organization, &
Submitting Organization

No current scheme in place to
categorize down to the element
level.

Categorization of partitions occurs
outside of scope of the registry.
Processes to preclude overlapping
partitions occurs outside of scope
of registry.

Has placeholder in the UDDI V3
specification RIM to hold such
information in Publisher,
DomainKey

© OGC 2003 – All rights reserved
29

OGC 03-028

OGC 2003 – All rights reserved

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

NF - Register Domain Type
(service, data, stds body)

No concept for typing domains in
ebXML Reg/Rep V2

No concept for typing domains in
UDDI V3. Only has one domain
type of Service but is an assumed
characteristic.

Register Domain Steward –
Becoming a Domain Steward

No concept for Domain Steward in
ebXML Reg/Rep V2.

See Register Content Owner.

DEFINED IN UDDI V3

5.4 Custody and Ownership
Transfer API Set

Register Content Owner –
Becoming a Content Owner

DEFINED IN ebXML Reg/Rep
V2

5.3 Registry Users

Responsible Organization has
permission to create registry
objects for Submitting
Organization

No concept for Content Owner in
UDDI V3.

See Register Domain Steward.

30 ©

OGC 03-028

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Administrative Report Error Administrative Report Error Administrative Report Error

Report Error Client functionality. Outside of
scope for this specification.

DEFINED IN UDDI V3

7.6 Error Detection and Processing

12 Error Codes

Administrative Error Handling Administrative Error Handling Administrative Error Handling

Error Handling Edit/Delete
Domain Record

Registration Authority is client
side functionality outside of the
scope of the specification.

DEFINED IN UDDI V3

4.8 Success and Error Reporting

© OGC 2003 – All rights reserved
31

OGC 03-028

OGC 2003 – All rights reserved

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Error Handling Edit/Delete
Information Asset Record

DEFINED IN ebXML Reg/Rep
V2

7.0 Life Cycle Management
Service

• Deprecate Objects

• Remove Objects

No concept for Information Asset
in UDDI V3

NF - Error Handling Edit/Delete
Web Service Record

Defined in ebXML Reg/Rep V2 DEFINED IN UDDI V3

4.8 Success and Error Reporting

7.6 Error Detection and Processing

12 Error Codes

NF - Error Handling Edit/Delete
Namespace Record

No support for Namespace
registration and management

No support for Namespace
registration and management

32 ©

OGC 03-028

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Error Handling Edit/Delete Event
Record

No support for Event registration
and management

No support for Event registration
and management

Administrative Reporting Administrative Reporting Administrative Reporting

Reporting on Unapproved records
report

No concept for Pending Record in
specification in ebXML V2.

No concept for Pending Record in
specification in UDDI V3

Reporting on Unfinished records No concept for Pending Record in
specification in ebXML V2

No concept for Pending Record in
specification in UDDI V3

Reporting on Unregistered records
report

No concept for Pending Record in
specification in ebXML V2

No concept for Pending Record in
specification in UDDI V3

Administrative Profiles Administrative Profiles Administrative Profiles

© OGC 2003 – All rights reserved
33

OGC 03-028

OGC 2003 – All rights reserved

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Profiles – Access - Managing
Access Profiles (for CENTRAL
roles only)

No direct interface to the registry
defined.

Responsibility of Responsible
Organization. See 5.3 Registry
Users.

ebXML Reg/Rep V2 has
Procedures defining access for
roles defined.

9.7 Access Control

See 2 below

No direct interface to the registry
defined.

DEFINED IN UDDI V3

Policies for overall administration
specified in

5.4 Custody and Ownership
Transfer API Set

6.0 Node Operation

7.8 Adding a Node to a Registry
Using Replication

9.0 Policy

Administrative Search Administrative Search Administrative Search

34 ©

OGC 03-028

Required

System Functionality

to support Data Sharing

(NF - represents new registry
functionality requirements)

EbXML V2 Service and RIM
Specification Functionality

http://www.oasis-
open.org/committees/regrep/

UDDI Specified Functionality

http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

Search System Record - system
log

DEFINED IN ebXML Reg/Rep
V2

8.2.5 Auditable Event Query

DEFINED IN UDDI V3

7.2.2 Change Record
7.2.3 Change Record Journal
7.2.4 High Water Mark Vector
7.3 Change Record Structures

CENTRAL Registry
Policies must be followed to establish a Domain. Domain and Domain Stewards must be registered in CENTRAL. Content Owners, Domain
Stewards, and Registrars perform Life Cycle management on their assets, according to their roles.

Architecture Subcouncil and CENTRAL Change Board, according to their roles, set overall administrative policies for the Registry System (hub &
domain) for handling records and objects. Domain Stewards and Content Owners are authorized to manage records and associated objects.

© OGC 2003 – All rights reserved
35

OGC 03-028

. WSSO handles authentication for CENTRAL. CENTRAL currently handles authorization for asset record creation and editing.

• Customers (Users – people and applications) can look at any record and object which is not shielded by 3A policy established by domain.
Customers need to get registered in 3A service to gain permissions to see shielded records and objects. This is not currently correct. We have
implemented WSSO, which requires authentication before searching and viewing asset records. This is the first step in the functionality of
shielding records.

• Profiles

CENTRAL Org Registrar(s) – Can perform all Life Cycle functions for any domain.

Domain Steward & Content Owner – Can perform role-specific life cycle functions except altering registered records. Must be member of a Domain.

Subscriber – can subscribe to and unsubscribe to asset records

User – has no CENTRAL profile. Read only access to registry records and objects. Note that implementation of WSSO will require all Registry users to
authenticate before accessing registry.

 Oasis ebXML Registry V2 Specification
Registry Clients establishes a contract with the Registry Authority to submit records and objects. Role based permissions.

36 © OGC 2003 – All rights reserved

OGC 03-028

V2 spec set the overall administrative policy for registry system for handling records and objects.

Registry of the Registry User and Registry Guest outside of scope of V2 spec.

• Registry Administrator sets security policy for records and objects in Registry Authority. Submitting Organization empowers Responsible
Organization to do Life Cycle Management on records and objects; must be Registered Users to perform functions. Registry Guest can read
records and may look at some objects. Registry Reader has read

• Profiles

Registry Administrator – access to all methods on all registry (records &) objects.

Content Owner – same as Submitting Organization. Can perform LC Mgmt on records he owns. Must be a Registered User.

• Registry Guest – has no profile. Read only access to registry records and objects.

Categorization
Registry Information Model 6.6 Classification Scheme

ClassificationScheme instances are RegistryEntry instances that describe a structured way to classify or categorize RegistryObject instances. The
structure of the classification scheme may be defined internal or external to the registry, resulting in a distinction between internal and external
classification schemes.

© OGC 2003 – All rights reserved
37

OGC 03-028

UDDI V3 Specification
Though the UDDI Specification makes extensive use of Namespaces to support registry processing and application interface behaviors based on the
Namespace identifier value. It does not register or manage namespaces.

Namespace: A collection of distinct names represented as strings of characters. Usually the names in a namespace are constructed according to a set of
rules given by the definition of the namespace. URIs of various kinds are commonly used to construct the names in namespaces. For example, the
namespace for UDDI keys in the recommended keying scheme consists of the URIs in the “uddi” scheme.

Namespaces are used to provide references to indicate UDDI version and the support or default behavior of the registry and the API sets. Namespace
used as criteria to support search, identification, categorization, versioning, and behaviors. UDDI specifies a naming convention to use in construction
of UDDI Namespace names used in Schema versioning. UDDI specifies the behaviors for default Namespace support.

Schema Versioning

XML prefix conventions – default namespace support

Registry Information Model Comparison

ebXML Registry Information Model (RIM)

38 © OGC 2003 – All rights reserved

OGC 03-028

© OGC 2003 – All rights reserved
39

OGC 03-028

40 © – All rights reserved

OGC 2003

OGC 03-028

© OGC 2003 – All rights reserved
41

OGC 03-028

42 © – All rights reserved

OGC 2003

OGC 03-028

© OGC 2003 – All rights reserved
43

OGC 03-028

44 © – All rights reserved OGC 2003

OGC 03-028

UDDI Information Model

© OGC 2003 – All rights reserved
45

OGC 03-028

46 © – All rights reserved

OGC 2003

OGC 03-028

© OGC 2003 – All rights reserved
47

OGC 03-028

48 © – All rights reserved

OGC 2003

	Introduction
	Relationship to Other Activities
	Usage Scenarios
	Discover OGC Registries
	Discover OGC Services
	Discover OGC services with UDDI interface to OGC registry
	Publish OGC service to UDDI

	Design Principles
	General
	Compatible, Consistent and Extensible
	Relationship to other Standards
	Accessible and International

	Terminology
	Detailed Requirements
	General requirements
	Proposed UDDI spatial discovery methodologies

	Experiment Proposals
	Cubewerx experiment
	NASA experiment
	Syncline experiment
	Ionic experiment
	Galdos experiment

	Experiment Observations
	Cubewerx/NASA Observations
	Web client experience
	Quadcode experiment
	Introduction
	UDDI taxonomies
	Quadcode taxonomy
	Quadcodes
	Taxonomy key values
	Loading a quadcode taxonomy

	Administering the Taxonomy
	Spatial Queries
	Tessellation service – converting BBOX to quadcod
	Client API

	NASA Observations
	Installing and Maintaining a Commercial UDDI Registry
	Installation/Upgrade
	Configuration
	User administration
	ACL management
	Logging
	Conclusion

	Web Service Inspection Language
	UDDI characteristics
	WS-Inspection characteristics
	Locating WSIL Documents

	UDDI Registry V3 and ebXML Reg/Rep v2.3 Information Model and Functionality as Basis of a General Purpose Application Registry
	Web Service Inspection Language
	Web services discovery
	UDDI characteristics
	WS-Inspection characteristics
	The complete picture

	UDDI taxonomy for ebXML technologies

	Syncline Observations
	SIM - UDDI mappings
	Use of category and identifier tmodels for SIM
	Use of external taxonomy validation
	Results of testing with Sun UDDI registry

	IONIC Observations
	Galdos Observations (UDDI to ebRIM mappings)
	Introduction
	Entity Mapping
	Inquiry Mapping
	Find Operations

	find_relatedBusinesses
	find_service
	Get Operations

	References
	Annexes

