
OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Open Geospatial Consortium Inc.
Date: 2005-10-31

Reference number of this OGC® Project Document: OGC 05-050

Version: 1.0.0

Category: OpenGIS® Discussion Paper

Editor: Craig Bruce (CubeWerx Inc.)

GML Performance Investigation by CubeWerx

Copyright notice

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. It is distributed for review and comment. It
is subject to change without notice and may not be referred to as an OGC Standard.

Recipients of this document are invited to submit, with their comments, notification
of any relevant patent rights of which they are aware and to provide supporting
documentation.

Document type: OpenGIS® Discussion Paper
Document subtype: if applicable
Document stage: Approved
Document language: English

http://www.opengeospatial.org/legal/

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

This page left intentionally blank.

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

TABLE OF CONTENTS

1 Scope..1

2 Conformance ..1

3 Normative references...1

4 Terms and definitions ..1

5 Conventions ..2
5.1 Requirement levels...2
5.2 Symbols (and abbreviated terms)...2

6 Encoding formats ...2
6.1 Binary-encoding formats...3
6.2 Data-compression formats ..3
6.3 Complete format list ..4

7 Coordinate-value precision ...5

8 Network environments ..6
8.1 Local filesystem ..6
8.2 LAN and Internet environments with WFS ..6
8.3 WFS integration...6
8.4 External codec ..7
8.5 Limited-bandwidth network...7

9 Scalability..8

10 Testing approach and environment ...8
10.1 Sample application...8
10.2 Test data..9
10.3 Testing methodology..9
10.4 Testing environment ..9
10.5 Testing tools..10
10.6 Local-file-system testing ..11
10.7 Network simulation..11
10.8 WFS simulation..12

11 VMAP0-data testing ..13
11.1 Local file-system testing ..13
11.1.1 Built-up areas ...13
11.1.2 Inland water bodies..17
11.1.3 Elevation points, single precision..18
11.1.4 Elevation points, double precision..20
11.1.5 Water courses, single precision...21
11.1.6 Water courses, double precision...23
11.1.7 Contour lines ..24
11.1.8 Conclusions...25
11.2 LAN testing with high-performance simulated WFS.......................................26

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

11.2.1 Built-up areas ...26
11.2.2 Inland water bodies..26
11.2.3 Elevation points, single precision..26
11.2.4 Elevation points, double precision..27
11.2.5 Water courses, single precision...27
11.2.6 Water courses, double precision...28
11.2.7 Contour lines ..28
11.2.8 Conclusions...28
11.3 LAN testing with relational-database WFS...28
11.3.1 Built-up areas ...28
11.3.2 Inland water bodies..29
11.3.3 Elevation points, single precision..29
11.3.4 Elevation points, double precision..30
11.3.5 Water courses, single precision...30
11.3.6 Water courses, double precision...30
11.3.7 Contour lines ..30
11.3.8 Conclusions...31
11.4 Internet testing with simulated high-performance WFS31
11.4.1 Built-up areas ...31
11.4.2 Inland water bodies..31
11.4.3 Elevation points, single precision..32
11.4.4 Elevation points, double precision..32
11.4.5 Water courses, single precision...32
11.4.6 Water courses, double precision...33
11.4.7 Contour lines ..33
11.4.8 Conclusions...33
11.5 Internet testing with relational-database WFS ...34
11.5.1 Built-up areas ...34
11.5.2 Inland water bodies..34
11.5.3 Elevation points, single precision..34
11.5.4 Elevation points, double precision..35
11.5.5 Water courses, single precision...35
11.5.6 Water courses, double precision...35
11.5.7 Contour lines ..36
11.5.8 Conclusions...36
11.6 Dial-up testing ..36
11.6.1 Measured results ..36
11.6.2 Extrapolated results...37
11.6.3 Conclusions...37

12 MSD3-data testing ...37
12.1 Local file-system testing ..38
12.1.1 MSD3 aggregation, 3D...38
12.1.2 MSD3 aggregation, 2D...40
12.1.3 AAL015 ...40
12.1.4 LAP030..41

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

12.1.5 PAL015..42
12.1.6 Conclusions...43
12.2 LAN testing...44
12.2.1 MSD3 aggregation, 3D...44
12.2.2 MSD3 aggregation, 2D...45
12.2.3 AAL015 ...45
12.2.4 LAP030..46
12.2.5 PAL015..46
12.2.6 External codec ..46
12.2.7 Conclusions...47
12.3 Internet testing ...48
12.3.1 MSD3 aggregation, 3D...48
12.3.2 MSD3 aggregation, 2D...48
12.3.3 AAL015 ...49
12.3.4 LAP030..49
12.3.5 PAL015..49
12.3.6 External codec ..50
12.3.7 Conclusions...50
12.4 Dial-up testing ..51
12.4.1 MSD3 aggretation, 3D ...51
12.4.2 MSD3 aggregation, 2D...51
12.4.3 AAL015 ...52
12.4.4 LAP030..52
12.4.5 PAL015..52
12.4.6 Conclusions...53

13 GML issues ...53
13.1 The trouble with application schemas ...53
13.2 GML MeasureType ...54
13.3 GML streamability ..55
13.3.1 Mid-stream errors..55
13.3.2 Bounding envelope...55
13.3.3 Feature interleaving...55

14 Conclusions...56
14.1 Local file-system testing ..56
14.2 LAN testing...57
14.3 Internet testing ...57
14.4 Dial-up testing ..58

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Preface

The Open Geospatial Consortium (OGC) is an international industry consortium of more
than 300+ companies, government agencies, and universities participating in a consensus
process to develop publicly available geo-processing specifications. This Interoperability
Program Report (IPR) is a product of the OGC Web Services Initiative, the objective of
which is to provide a vendor-neutral interoperable framework for the web-based
discovery and exploitation of geo-processing functions.

The OGC Web Services Initiative is part of the OGC’s Interoperability Program: a
global, collaborative, hands-on engineering and testing program designed to deliver
prototype technologies and proven candidate specifications into the OGC’s Specification
Development Program. In OGC Interoperability Initiatives, international teams of
technology providers work together to solve specific geo-processing interoperability
problems posed by Initiative sponsors.

Submitting organizations

This Interoperability Program Report—Performance Investigation is being submitted to
the OGC Interoperability Program by the following organization:

CubeWerx Inc.
15 rue Gamelin, Suite 506
Gatineau, QC J8Y 6N5
Canada

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Document Contributor Contact Points

All questions regarding this submission should be directed to the editor or the submitters:

Dr. Craig S. Bruce
CubeWerx Inc.

Panagiotis (Peter) A. Vretanos
CubeWerx Inc.

Revision history

Date Release Description

2005-05-19 05-050/0.0.1 Initial plan version

2005-05-24 05-050/0.0.2 Revised plan version

2005-07-28 05-050/0.0.n Initial results reports, additional updates (n=3–9)

2005-10-31 05-050 Final IPR for OWS-3 project

2006-04-24 050 C Reed. Fix copyright, use of OGC, OpenGIS etc. Other editorial
changes

Changes to the OpenGIS® Abstract Specification

No revisions to the OpenGIS Abstract Specification are required.

Changes to OpenGIS® Implementation Specifications

No revisions to any OpenGIS Implementation Specifications are required. However,
some problems with GML are discussed in clause 13.

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Foreword

Attention is drawn to the possibility that some of the elements of OGC 05-050 may be the
subject of patent rights. Open Geospatial Consortium Inc. shall not be held responsible
for identifying and or all such patent rights.

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Introduction

This OpenGIS® Interoperability-Program report proposes and executes methods to
evaluate the performance of the use of the Geography Markup Language (GML) as
encoded in various ways.

The Geography Markup Language [GML] is an increasingly important feature-encoding
format for use in interoperable GIS systems. Unfortunately, the innate text encoding that
it uses is both bulky and slow to process. To help GML realize its potential, its encoding
efficiency should be made to be comparable with other commonly used feature-encoding
formats, such as ESRI® Shapefile [SHAPE] format. To this end, OGC has undertaken to
test the compactness and system-throughput capacity of GML as encoded in numerous
different ways, including binary encoding in BXML [BXML] and BinXML™
[BINXML] and general compression formats such as GZIP [GZIP] and BZIP2 [BZIP2].
The decision of potential GML adopters becomes much easier when they can have both
interoperability and efficiency.

OpenGIS® Discussion Paper OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 1

GML Performance Investigation by CubeWerx

1 Scope

This OpenGIS® Interoperability-Program report proposes and executes methods to
evaluate the performance of GML as encoded in various different ways.

2 Conformance

Not required in an IP DIPR, IPR or Discussion Paper.

3 Normative references

The following normative documents contain provisions which, through reference in this
text, constitute provisions of this Interoperability Program Report. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply.
However, parties to agreements based on this document (OGC 05-050) are encouraged to
investigate the possibility of applying the most recent editions of the normative
documents indicated below. For undated references, the latest edition of the normative
document referred to applies.

[GML] OGC 03-105r1 (February 2004), OpenGIS® Geography Markup Language
(GML) Implementation Specification, version 3.1.0,
<http://portal.opengeospatial.org/files/?artifact_id=4700>.

[GML-SF] OGC 05-033r9 (July 2005), GML Simple Features Profile, version 0.0.19,
Peter Vretanos (ed.).

[XML] W3C (October 2000), Extensible Markup Language (XML) 1.0 (Second Edition),
<http://www.w3.org/TR/REC-xml>.

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

1.
BinXML™
Binary encoding format/system for XML data.

OGC 05-050

2 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

2.
BXML
Shorthand for “Binary eXtensible Markup Language”. The format is a markup-for-
markup-compatible binary encoding of XML data.

3.
Codec
Encoder-decoder pair.

5 Conventions

5.1 Requirement levels

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in
this document are to be interpreted as described in RFC 2119 [KEYWORDS].

5.2 Symbols (and abbreviated terms)

The following symbols and abbreviations are used in this document:

API Application-Program Interface
BinXML™ Binary-XML encoding system
BXML Binary eXtensible Markup Language
BZIP2 general compression format
C/C++ C and/or C++ programming languages
DOM Document Object Model
GML Geography Markup Language
GZIP GNU Zip compression format
HTTP Hypertext Transfer Protocol
IETF Internet Engineering Task Force
MIME Multipurpose Internet Mail Extensions
RFC Request For Comments
SAX Simple API for XML
URL Uniform Resource Locator
WFS Web Feature Service
XML Extensible Markup Language

6 Encoding formats

It would informative to test the throughput and compactness of a number of feature-
encoding formats, including GML-XML, GML-BXML, ESRI® Shapefile, and
MapInfo® MIF, both with and without GZIP and BZIP2 compression. The GML version
will be 3.1.1 with the Simple Features [GML-SF] profile. With binary encoding, we

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 3

believe that the GML format can be much more competitive with binary formats such as
Shapefile in terms of compactness and processing throughput. MIF is an all-text format,
which would be interesting to compare to GML-XML format.

6.1 Binary-encoding formats

BXML [BXML] is a straightforward patent-unencumbered binary-encoding format for
XML data which is designed to be easy to implement and for which an open-source C-
language reference implementation is freely available [CWXML]. It is also an OGC
Discussion Paper. One of its most important features for our immediate purposes is that
it allows lists of floating-point coordinate values to be directly represented as raw-binary
arrays. This provides both compactness and system throughput since converting
coordinate values to and from a text representation is surprisingly time-consuming.

BinXML™ is a commercial software product for which Galdos Systems is a reseller.
Galdos can better explain the strengths of BinXML™.

While a direct comparison of BXML and BinXML™ implemented in the same runtime
environment would be desirable, CubeWerx does not have the resources or expertise to
implement testing for BinXML™ in the scope of the OWS-3 project even if software
licenses were provided. However, an independent BinXML™ implementation in a
different software architecture, such as a scripting-language/XML-tool environment
relative to CubeWerx's RDBMS/C-language environment would still allow the direct
comparison of encoding compactness and would provide an interesting performance
characterization of the effectiveness of different encoding methods in the different GML-
processing environments as well as a concrete comparison of the architectural approaches
overall.

6.2 Data-compression formats

GZIP [GZIP] and BZIP2 [BZIP2] formats do an excellent job of compressing XML data.
In one rough example that was tested, GZIP achieved around an 80% compression rate
(one-fifth the original size) and BZIP2 achieved around an 85% rate (one-sixth the
original size) with GML data that had no unnecessary whitespace. Specialized XML
compression methods probably cannot out-compress GZIP and BZIP2 significantly in the
general case.

However, the encoding and decoding of GZIP and BZIP2 formats are very CPU-
intensive, so the “compaction” of the raw information before the “compression” step can
have an large impact on overall system performance. This trade-off is investigated.
Binary encodings of XML are considerably more compact than XML itself.

ZIP [ZIP] and compress [COMPRESS] compression formats are also in general use.
ZIP format does not need to be considered in this investigation because it generally uses
exactly the same compression method that GZIP does, called “Deflate”. It is also not a
streamable format which imposes complications in a streaming client/server environment.
The compress method does not achieve as high a compression rate as GZIP (74%

OGC 05-050

4 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

compression for the example) and, as it turns out, does not execute as quickly as GZIP, so
it does not need to be considered in this study. Historically, compress executed more
efficiently than GZIP, however, use and refinement of the method stagnated for many
years because of patent issues.

6.3 Complete format list

The complete list of GML-encoding combinations that should be tested for both
compactness and throughput is as follows:

Base Format Encoding Compression
GML XML none
GML XML GZIP
GML XML BZIP2
GML BXML none
GML BXML GZIP
GML BXML BZIP2
The GML encodings should be compared to other common feature-encoding formats,
plus an extremely efficient one:

Base Format Encoding Compression
ESRI® Shapefile Binary + Text none
ESRI® Shapefile Binary + Text GZIP
ESRI® Shapefile Binary + Text BZIP2
MapInfo® MIF Text none
MapInfo® MIF Text GZIP
MapInfo® MIF Text BZIP2
CubeWerx® MDF Binary none
CubeWerx® MDF Binary GZIP
CubeWerx® MDF Binary BZIP2
MDF is an high-performance format used by CubeWerx to load feature data into the
Oracle database system. It is a simple all-binary format in which geometries are stored in
OGC Well-Known-Binary [WKB] format and the other properties are stored in fixed-
sized fields.

One complication with the Shapefile, MIF, and MDF formats is that they are realized as a
collection of multiple files instead of just one file. The represented size will be the sum
of the sizes of the constituent files that contain the equivalent information to GML
format. In a client/server environment, these files would need to be packaged together in
an archive format such as ZIP or TAR [TAR], and the packaging requirement limits the

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 5

potential streamability of the formats since the complete first file in the package must be
available before the first record of the subsequent file is streamed out from a server.

For our testing purposes, it is sufficient to test the Shapefile and MIF formats only on a
single machine to compare them with GML results on a single machine. It would be a
burden to incorporate these formats into the WFS interface, though it is technically
feasible (when combined with a packaging format as mentioned above).

One capability lacking from GML that Shapefile has is that of random access. BXML
and presumably BinXML™ incorporate mechanisms for random access to elements
based on identifier attributes, but this is not a spatial index. A spatial index would be
needed to access features spatially as Shapefile and MDF allow, but none is provided by
the GML format.

7 Coordinate-value precision

An easy way to achieve data compaction in both the XML and BXML representations of
GML data is to reduce the precision of the coordinate values in the features. Coordinate
values are normally represented as double-precision floating-point values in GIS systems
and this is equivalent to about 16 significant decimal digits. However, no real-world data
is this accurate and some applications do not even need the full precision of the real data.
Sixteen decimal digits is equivalent to 4.4 nanometers (billionths of a meter) of resolution
along the equator of the Earth.

The GML encoding should be tested with both double-precision coordinate values as well
as single-precision in order to quantify the increased compactness. Single precision is
equivalent to about seven significant decimal digits or 2.4 meters of resolution along the
equator. BXML encoding has the capability to dynamically select different encodings for
XML-Schema [XML-SCHEMA] content identified as “list of double,” such as GML
coordinates values.

Intermediate precisions could also be tested. This is easy to do with XML-encoded GML
by selecting any integral number of significant decimal digits, though it is slightly more
difficult to achieve with a binary encoding. Floating-point doubles would best be used
for this encoding with the least-significant bits of the mantissas zeroed out. This data will
have the same uncompressed size as with the full double precision, but it will compress
better. CubeWerx does not consider it to be worthwhile to investigate intermediate
precisions at this time, though in the future, if systems have metadata about the absolute
accuracy of the coorindate values in a feature collection, it could automatically select
intermediate precisions individually for each feature type.

There is an indirect benefit to always using full double precision values in all calculations
in a distributed system in that most computers implement IEEE 754-1995 [FLOATS]
floating-point format in hardware so that most systems will compute similar or identical
results and will behave more deterministically when making threshold decisions (e.g.,

OGC 05-050

6 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

“value >= 1e6”). However, the increased compactness of using lesser precision in
GML data may be a more important benefit.

8 Network environments

Testing should be conducted in the following environments: local file system (single
machine), LAN (Local Area Network), Internet, and limited bandwidth (dial-up).

8.1 Local filesystem

It is very important to test GML-encoding performance on a single machine to determine
directly and accurately the performance of the different GML encodings in isolation from
confounding factors like network delays. The most scientifically accurate methods
should be applied in this experiment and measuring only in a distributed environment
would be like measuring the dimensions of a book with a ruler that is marked only in
integral feet. Also, the encoding compactness will be the same as in local case as in the
distributed case but will be easier to measure in the local case. Testing on a local
machine will also be necessary to compare against formats like Shapefile on their “home
turf”.

8.2 LAN and Internet environments with WFS

GML is normally used to exchange geographic data in the LAN (Local-Area Network)
within a single organization and over the Internet between organizations. The purpose of
testing in these network environments, considering that raw performance can be
measured in a local-machine environment, is to demonstrate interoperability and to assess
whether the raw performance differences are actually significant when combined with the
network-transfer and WFS-processing costs of the normal GML usage environment.

The LAN and Internet environments have different performance characteristics and
represent the common cases for distributed GML-processing systems. Compression
almost always makes sense in an Internet environment since modern computers can apply
GZIP compression to at least 70 Mbits/sec of text GML data, thereby saturating even
high-speed Internet links. However, modern LANs operate at at least 100 Mbits/sec,
which imposes a different cost structure on encodings.

8.3 WFS integration

Two methods are available to integrate alternate GML encodings into the WFS interface:
the WFS output-format mechanism and the HTTP transfer-encoding mechanism.

The WFS interface provides a mechanism for selecting among different encodings for the
feature data that it delivers. The WFS 1.0.0 specification describes an optional attribute
called “outputFormat” on the GetFeature request for which the default value is
“GML2” in Section 9.2 on page 25. The description on the same page also says:

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 7

The outputFormat attribute defines the format to use to generate the result
set. The default value is GML2 indicating that GML [2] shall be used.
Vendor specific formats (including non-XML and binary formats),
declared in the capabilities document are also possible. The available
types are identified using <ResultFormat> tag of the Capabilities
document.

In WFS version 1.1.0, the format identifiers are a little different. The example in Section
9.2 shows the string as “text/xml; subtype=3.1.1”. To request BXML, the equivalent
would be “application/x-bxml; subtype=3.1.1”. The Capabilities schema is a little
hard to follow, but it looks like the Capabilities tag is <OutputFormatList>.

HTTP [HTTP], which the WFS interface is build on top of, also provides a built-in
mechanism for requesting GZIP or compress encoding of the transferred content. The
client can include an “Accept-Encoding” MIME-header tag in the request message
and the server has the option of responding with a “Content-Encoding” MIME-
header tag in the reply message that indicates that the body is compressed. The HTTP
RFC does not explicitly spell out support for BZIP2 encoding, but it can logically be
included by using either “x-bzip2” or even “bzip2” as the encoding-tag value. The
nature of the mechanism makes the use of ad-hoc symbols non-intrusive. BXML
encoding could even be requested in this way.

Since this content-encoding mechanism is built-in and optional, any WFS or WFS client
has the option to support it and the data transfer will be optimized wherever possible. All
WFS clients and servers should support at least this mechanism. Really, CubeWerx finds
it rather mind-boggling that any production work would be attempted with GML in the
Internet environment without at least using the HTTP mechanism for GZIP compression
of the data stream.

8.4 External codec

An external codec is a piece of software that would be placed between a WFS client and
server which would accept an XML-encoded GML stream from the WFS server, encode
it into an alternate format, transport it to the client site, decode it back into XML-encoded
GML and then pass it to the client application.

A general external codec has at least two major problems: it is complicated to implement
since it essentially would be a distributed, cascading WFS; it is inefficient since it
requires the parsing and generation of the GML data not once but three times, including
two times as XML-encoded GML, which would most likely render it less efficient than
directly GZIP-compressing a plain XML-encoded GML stream using the HTTP
mechanism.

8.5 Limited-bandwidth network

A limited bandwidth environment can serve as a guide for wireless and dial-up cases
where limited facilities are available. A suitable speed it 56 kbps. The general

OGC 05-050

8 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

compression methods are expected to have the most significant impact in this
environment, since the crucial performance factor will be minimizing the bandwidth
usage.

9 Scalability

The scalability of GML data and processing systems should also be investigated. This
can be done easily using small, medium, and large data sets of the representative
geometry types: points, lines, and polygons. The testing definition of a ‘large’ data set is
one with approximately 1-million features.

A GML-processing system based on utilizing a DOM (Document Object Model)
approach to XML processing will have its scalability inherently limited to the number of
features that can be stored in machine memory at one time, so GML-processing systems
should not be based strictly on the DOM methodology. Systems based on XSLT [XSLT]
tools will have the same scalability problems for the same reason.

CubeWerx anticipates no inherent scalability problems with either the representation of
or processing of a large number of GML features in its GML-processing systems. The
CWXML [CWXML] open-source library utilized by CubeWerx provides a node/subtree
mechanism that supplies the convenience of a DOM mechanism with the scalability of
the streamable SAX mechanism.

Since the sponsor-supplied MSD3 data totals only in the thousands of features, VMAP0
data is used to conduct scalability testing.

10 Testing approach and environment

10.1 Sample application

The two kinds of “performance” to be measured in the GML Performance Investigations
are system throughput (speed) and information-encoding compactness. To test
throughput, the various software levels of a representative GML-processing application
are measured in a number of usage environments. The compactness can be determined
by measuring the size of the same GML feature data as encoded and compressed by the
various different means.

A representative GML-processing application is the fetching and rendering of a stream of
GML data into a displayable image. The application has the following software levels
which can be characterized independently and in combination:

● fetch features from underlying system

● generate features in GML

● transport features

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 9

● parse features into internal programming-language structures

● render features into raster

Feature rendering is not strictly necessary for measuring GML performance, but it
provides concrete visible proof that all of the features of a data set were actually
processed and it supplies an interesting comparison of the performance of two different
architectures for SLD [SLD] styling that have been pursued by OGC participants: native
implementation vs. XML tools. Most GIS-product vendors including CubeWerx use the
native-implementation approach. Galdos uses an XML-tools approach. Proponents have
long advocated the benefits of each approach. Also, the software to render features is
already available in the testing environments anyway, and the timing of the rendering
component can easily be computed and factored out of the GML-transfer components.

10.2 Test data

An MSD3 data set was supplied by the project sponsors which is defined relative to a
large central XML Schema and some VMAP0 data was selected by the participants since
it has more bulk for reliable testing and it has small schemas. The VMAP0 data selected
is described in clause 11 and the MSD3 data is described in clause 12.

10.3 Testing methodology

The general measuring methodology employed is to run each test case four times and
discard the first run and average the subsequent three. The first run may involve variable
system-caching overheads that would be difficult to measure reliably. In some cases, it is
not feasible to perform four runs of every combination because it would take too long.

All time measurements are for real elapsed “wall-clock” time. This is the time of
principal concern to most users. (Other conceivable timing measurements include CPU-
processing time.)

All figures for file sizes, transfer speeds, use SI unit-multiplier prefixes, which are
normally base-10 [SI] but include a special notation for base-2 [SI-BIN]. For example,
1 KB means exactly 1,000 bytes and 1 KiB means exactly 1,024 bytes.

10.4 Testing environment

The computer selected to be the server for the network test cases and the host for the
local-file-system test case has the following specifications:

● Processor: AMD® Athlon-64 3200+ (64-bit), 2.01 GHz, 512 KiB cache

● Main memory: 1 GiB dual-channel DDR-400 MHz (PC-3200)

● Hard drive: single 200-GB SATA 3-GB/s channel

● HD sustained read speed: 63.73 MB/sec

OGC 05-050

10 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

● OS: Fedora Core 4 Linux for x86-64 (2.6.12 kernel)

● Compiler: GCC 4.0.1 with -O3 optimization

● File system: Linux ext3 journaling type

Its name is “a64.cubewerx.com”.

The computer selected to be the client for network testing is a laptop model with the
following specifications:

● Processor: Intel® Pentium-4 Mobile (32-bit), 2.00 GHz, 512 KiB cache

● Main memory: 512 KiB

● Hard drive: single 40-GB ATA U100

● HD sustained read speed: 30.08 MB/sec

● OS: Fedora Core 4 Linux for i686 (2.6.12 kernel)

● Compiler: GCC 4.0.1 with -O3 optimization

● File system: Linux ext3 journaling type

10.5 Testing tools

The following tools are be used in the testing:

● cwcat – simple command-line file copier

● cwdump – simple command-line feature-file displayer/copier

● cwplot – simple command-line feature-file plotter with SLD support

● xmlscan – simple command-line XML file copier/converter

● CWXML – XML/BXML parser/generator library

● CubeSERV® WFS – Oracle®-based Web Feature Service

● gzip – open-source compression library

● bzip2 – open-source compression library

The cwcat program is modeled after the Unix® cat program but has special features
including the capability to read from remote URLs (as do all of the “cw” programs) and
to limit the throughput of the data it copies. This latter feature is used to simulate Internet
and dial-up networks as described in clause 10.7.

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 11

The cwdump program includes the capability to generate GML data in a CGI
environment and this capability is used to implement the simulated high-performance
WFS that is used for some test cases. The implementation is described in clause 10.8.

The xmlscan program is included with the open-source CWXML library and is handy
for reformatting and ‘pretty printing’ XML/BXML data.

Version 1.2.3 of the gzip compression library is used. The maximum compression level
of ‘9’ is used since the library can produce data at this compression level much faster
than the LAN can absorb it, so it is better to maximize the amount of compression.
Recent versions of this library include significant performance improvements over older
versions. The library-default compression level is ‘6’.

Version 1.0.3 of the bzip2 compression library is used. The bzip2 compression level of
‘9’ is used, which is the maximum and the library default.

10.6 Local-file-system testing

Reading-speed testing was performed by using a script that translates the source data
from the GML-XML distribution format into the format to be tested and then reads the
data four times in a loop. After the first read, the file content will be cached in memory,
assuming that it fits, and subsequent reads show be as efficient as the format allows.

Writing-speed testing was performed using the same approach as the reading testing,
except that the time taken to read from the source-data format (uncompressed GML
encoded in XML) is subtracted from the total read+write time, giving only the writing
time.

10.7 Network simulation

Early Internet testing was attempted using the real Internet, but the results were far too
variable minute-by-minute and day-by-day to produce results that were actually
comparable to each other. Instead, this testing is carried out using the CubeWerx internal
100-Mbps LAN with the server CGI shell-script program augmented to pass the outgoing
data through cwcat used as a precise flow-controlling filter. This filter is so light-
weight that it does not influence the results and its operation closely simulates what
happens with normal Internet transfers: the outgoing data from the generator program
gets queued up in the outgoing socket buffers until the generator process is suspended
while the data is slowly emptied onto the outgoing network connection.

The data rate selected for Internet testing is 150 Kbytes/sec, which represents a decent
Internet connection between any two points in North America or perhaps the world.
Because of the structure of the interaction as a small request with a single large reply, it is
not necessary to simulate packet latency (ping times) since TCP/IP is a sliding-window
protocol that quite effectively hides packet latency for large transfers, but a 60-
millisecond latency is added on the server side anyway.

OGC 05-050

12 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

The data rate selected for Dial-up testing is 5.6 Kbytes/sec, which corresponds to 56
Kbits/sec uncompressed. A response latency of 200 milliseconds is inserted on the server
side.

The LAN used is a lightly loaded 100-Mbps Ethernet system with the server and laptop
client directly connected to the network. Pinging the server from the client takes an
average of 0.141 milliseconds and the sustained HTTP data-transfer rate is
11.70 MB/second.

10.8 WFS simulation

CubeWerx had insufficient time to fully integrate the needs of the MSD3 data into the
CubeSERV transactional WFS, so a light-weight simulated WFS was implemented with
this capability by building on the cwdump feature-displaying utility. This utility is so
efficient that it serves a second important purpose which is to determine what transfer
costs are caused by the network as opposed to the relational-database system used by the
full-feature WFS. As it turns out, the RDBMS is quite costly.

The simulated WFS has a simple CGI interface and it reads features from BXML-
encoded GML files stored on the server and it recodes them on the fly according to the
received request into XML or BXML encoding with GZIP, BZIP2, or no compression.
In the case that uncompressed BXML is requested, the full re-coding process is still
carried out for timing consistency. The returned GML data references a schema which is
also generated by the web application on request to be encoded in the same way as the
GML data for the VMAP0 test data and which is copied directly from a pre-encoded
schema file on the server for MSD3 data. These methods correspond to the way these
data sets would normally be used, since the MSD3 data is defined relative to a fixed
central schema.

For example, the following request for XML+GZIP:

http://a64.cubewerx.com/ows3/simfs/simfs.cgi?REQUEST=GetFeature&TYPENAME=bu
iltupa&OUTPUTFORMAT=text/xml%3Bencoding%3Dgzip

will reference its schema as:

http://a64.cubewerx.com/ows3/simfs/simfs.cgi?REQUEST=DescribeFeatureType&TYPE
NAME=builtupa&OUTPUTFORMAT=text/xml%3Bencoding%3Dgzip

The testing carried out is only to fetch and internally plot the requested data using the
cwplot application, excluding the time taken to write out the resulting PNG image from
the internal raster representation. The features received at the client are not stored; each
is discarded immediately after plotting.

Thus, the execution time will include reading and re-coding the source data on the server,
transferring it over the network, parsing the data into internal C-language feature
representations, and plotting it into a C-language raster representation. The translation
from GML to internal the C-language structures provides a means of validating the data

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 13

in terms of properties and data types, though this is a different from from XML-Schema-
based validation.

The plotting speed turns out to be so fast that plotting adds virtually no overhead to the
process, so it is safe to include here. Also, the data is fully streamed, so if the client can
process the data more quickly than the network can deliver it, the client operations will
effectively have no cost. The same is true of the server if it can supply the data faster
than the network can absorb it.

11 VMAP0-data testing

The following feature collections from the VMAP0 data are used for testing, in order of
the number of features per collection:

Collection Description Geom Type Properties Features Vertices
builtupa Built-up Areas Polygon 6 8,346 17.3
inwatera Inland Water Bodies Polygon 6 153,358 19.2
elevp Elevation Points Point 8 175,880 1.0
watrcrsl Water Courses LineString 6 290,528 8.9
coutourl Contour Lines LineString 7 1,099,837 30.7
The terms “feature type” and “feature collection” can be used interchangeably here, since
each feature collection includes features of exactly one type. The “Properties” column
gives the number of properties in the features; the “Features” column gives the number of
features in each feature collection; and the “Vertices” column gives the average number
of vertices in the geometry of each feature, which indicates how complex the geometries
are. (The start/end point of a polygon ring is counted as two vertices.) This data set
includes feature-collection sizes of medium volume to large volume. The contourl
feature collection is suitable for demonstrating the scalability of the processing
applications.

The source VMAP0 geometries have single-precision coordinate values, so versions of
the elevp and watrcrsl feature collections were created that have double-precision
coordinate values for comparison purposes. Use of the double-precision versions is
specifically noted.

11.1 Local file-system testing

11.1.1 Built-up areas

11.1.1.1 Reading

The reading results for the builtupa feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)

OGC 05-050

14 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 6.17 0.533 15,659
GML XML indented 7.41 0.547 15,258
GML BXML none 2.44 0.151 55,272
GML XML gzip 1.15 0.592 14,098
GML XML indented + gzip 1.16 0.609 13,704
GML BXML gzip 1.07 0.183 45,607
GML XML bzip2 1.016 0.882 9,463
GML BXML bzip2 1.053 0.404 20,658
The compression type indicated as “indented” is not compression at all but means that the
text file was “pretty printed” with an indentation of two spaces for each XML-tag level.
As expected, it makes the uncompressed version of the file significantly large; however,
it does not add significantly to the gzip-compressed size or time. This extra whitespace
compresses very well.

In general, the GZIP compression/decompression method operates faster than expected.
It will likely be made faster still in the future when certain hashing-table patents expire.

We fixed a performance bug in the BXML parser during the course of this testing that
caused it to unnecessarily convert numeric property values to text before re-converting
them back to numbers for the reading application. This resulted in a 40% performance
increase.

The GML reader is not that heavily optimized. It uses the node/subtree interface of the
CWXML library, which reads in DOM-like subtrees for each feature but only holds one
feature in memory at a time. In contrast, the GML writer uses a node-by-node approach
and its performance of 117,549 given below shows how much faster that approach can
be. The node-subtree approach is easier to program for reading, however, and some
modest optimization attempts showed that reading features is harder to optimize than
writing them.

11.1.1.2 Reading alternate formats

The reading results for the builtupa feature collection represented in alternative
formats to GML are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
Shapefile (binary+text) none 3.70 0.047 178,143
MIF (text) none 3.25 0.249 33,558
MDF (binary) none 3.62 0.031 267,819
The relevant comparison here is to GML encoded in BXML at 55.3 kF/s and XML at
15.7 kF/s. The MIF text format can be processed twice as fast as XML-encoded GML

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 15

and Shapefile can be processed 3.2 times as fast as BXML-encoded GML. This is a little
surprising and disappointing, given that Shapefile numeric properties are actually stored
in a text representation. CubeWerx MDF format performs 4.9 times as fast as BXML-
encoded GML. It should also be noted that both Shapefile and MDF formats always
store coordinate values as double-precision floats, but they still out-perform BXML-
encoded GML.

The processing performance of these alternate formats when compressed was not tested,
but the compressed sizes were measured as follows:

Format Encoding Compression Size (MB)
Shapefile (binary+text) gzip 1.45
Shapefile (binary+text) bzip2 1.25
MIF (text) gzip 1.02
MIF (text) bzip2 0.94
MDF (binary) gzip 1.49
MDF (binary) bzip2 1.17
The compressed sizes are comparable to but not quite as good as the GML compressed
sizes, except for MIF format, which is more compact in all cases.

11.1.1.3 Writing

The writing results for the builtupa feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 6.17 0.693 12,043
GML XML indented 7.41 0.723 11,544
GML BXML none 2.44 0.071 117,549
GML XML gzip 1.15 1.698 4,915
GML XML indented + gzip 1.16 1.685 4,953
GML BXML gzip 1.07 0.436 19,142
GML XML bzip2 1.016 3.000 2,782
GML BXML bzip2 1.053 0.791 10,551
The reported timings for the writing speed are reduced by the 0.533 seconds taken to read
the source builtupa data. There is quite a spike in the performance of the
uncompressed BXML case, since this format is very efficient to write.

11.1.1.4 Plotting

The plotting results for the builtupa feature collection are as follows:

OGC 05-050

16 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 6.17 0.582 14,340
GML BXML none 2.44 0.231 36,130
GML XML gzip 1.15 0.641 13,020
GML BXML gzip 1.07 0.262 31,855
The plotting window is between longitudes -180 and 0 and latitudes -40 to 90 and is size
3600 pixels horizontal by 2600 vertical and the output image type is PNG. The writing
time of the PNG file is excluded from the time. The SLD styling symbol uses a light-
pink fill (#EEA9B8) with a dark-pink outline (#FFC0CB). A scaled down version (to
reduce document size) of the resulting image is included here:

The data is rather sparse, but this test demonstrates that the full North American coverage
has been processed in our testing.

If we eliminate the GML-data-reading time, the internal plotting time is only around
0.080 seconds for a speed of around 104,000 features per second. While this
performance is not strictly what is to be measured in this experiment, it would be very
interesting to see how well a GML-XSLT-SVG plotting system performs. We suspect
not as well. A system needs to be fast at plotting features in order to offer an effective
WMS interface.

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 17

11.1.2 Inland water bodies

11.1.2.1 Reading

The reading results for the inwatera feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 120.41 10.494 14,614
GML BXML none 47.44 2.802 54,732
GML XML gzip 20.81 11.582 13,241
GML BXML gzip 19.67 3.433 44,672
GML XML bzip2 18.61 17.535 8,746
GML BXML bzip2 18.30 7.686 19,953

11.1.2.2 Writing

The writing results for the inwatera feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 120.41 15.961 9,608
GML BXML none 47.44 1.386 110,648
GML XML gzip 20.81 38.103 4,025
GML BXML gzip 19.67 8.881 17,268
GML XML bzip2 18.61 60.603 2,531
GML BXML bzip2 18.30 17.276 8,877
The reported timings for the writing speed are reduced by the 10.494 seconds taken to
read the source inwatera data.

11.1.2.3 Plotting

The plotting results for the inwatera feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 120.41 10.656 13,027
GML BXML none 47.44 3.560 32,917
The plotting window and image size are the same as for the builtupa feature
collection, except that the SLD plotting style has a dark-blue stroke (#0000FF) over a
light-blue fill (#ADD8E6):

OGC 05-050

18 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

The raw internal plotting speed is around 202,000 features per second.

11.1.3 Elevation points, single precision

11.1.3.1 Reading

The reading results for the elevp feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 62.63 7.193 24,452
GML BXML none 25.94 2.133 82,457
GML XML gzip 3.60 7.521 23,358
GML BXML gzip 3.23 2.321 75,778
GML XML bzip2 2.57 8.973 19,601
GML BXML bzip2 2.42 3.822 46.018

11.1.3.2 Reading alternate formats

The reading results for the elevp feature collection represented in alternative formats to
GML are as follows:

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 19

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
Shapefile (binary+text) none 13.02 0.746 235,724
Shapefile (binary+text) gzip 3.34
Shapefile (binary+text) bzip2 3.01
MIF (text) none 13.60 1.493 117,815
MIF (text) gzip 3.65
MIF (text) bzip2 3.15
MDF (binary) none 14.07 0.248 618,290
MDF (binary) gzip 3.06
MDF (binary) bzip2 2.63
The time performance of the compressed formats was not tested. The native feature
formats are still greatly faster than GML.

11.1.3.3 Writing

The writing results for the elevp feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 62.63 4.913 35,799
GML BXML none 25.94 1.128 155,922
GML XML gzip 3.60 10.644 16,524
GML BXML gzip 3.23 6.098 28,842
GML XML bzip2 2.57 45.469 3,868
GML BXML bzip2 2.42 13.754 12,788
The reported timings for the writing speed are reduced by the 7.193 seconds taken to read
the source elevp data.

11.1.3.4 Plotting

The plotting results for the elevp feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 62.63 7.034 25,004
GML BXML none 25.94 2.394 73,467
The plotting window and image size are the same as for the builtupa feature
collection, except that the SLD plotting style uses little squares with dark-green stroke
over a light-green fill:

OGC 05-050

20 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

The raw internal plotting speed is around 674,000 features per second.

11.1.4 Elevation points, double precision

11.1.4.1 Reading

The reading results for the elevp_dbl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 67.89 7.067 24,888
GML BXML none 28.05 2.197 80,055
GML XML gzip 5.59 7.476 23,526
GML BXML gzip 4.64 2.420 72,678
GML XML bzip2 4.20 9.579 18,361
GML BXML bzip2 3.91 4.098 42,918
The performance is pretty close to the single-precision test case, though the file sizes here
are significantly larger.

11.1.4.2 Writing

The writing results for the elevp_dbl feature collection are as follows:

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 21

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 67.89 6.006 29,284
GML BXML none 28.05 1.894 92,861
GML XML gzip 5.59 12.215 14,399
GML BXML gzip 4.64 6.741 26,091
GML XML bzip2 4.20 43.871 4,009
GML BXML bzip2 3.91 10.262 17,139
The reported timings for the writing speed are reduced by the 7.067 seconds taken to read
the source elevp_dbl data. The double-precision files are significantly larger than the
single-precision ones and the processing time is significantly greater.

11.1.5 Water courses, single precision

11.1.5.1 Reading

The reading results for the watrcrsl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 146.82 13.053 22,258
GML BXML none 58.91 3.329 87,272
GML XML gzip 20.59 14.141 20,545
GML BXML gzip 19.64 4.049 71,753
GML XML bzip2 17.58 19.953 14,561
GML BXML bzip2 17.29 8.616 33,720

11.1.5.2 Reading alternate formats

The reading results for the watrcrsl feature collection represented in alternative
formats to GML are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
Shapefile (binary+text) none 68.01 1.183 245,632
Shapefile (binary+text) gzip 28.18
Shapefile (binary+text) bzip2 22.74
MIF (text) none 61.68 5.658 51,347
MIF (text) gzip 18.38
MIF (text) bzip2 16.31
MDF (binary) none 63.07 0.586 495,425
MDF (binary) gzip 26.65

OGC 05-050

22 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
MDF (binary) bzip2 20.09
The speed of the compressed representations was not tested. The native feature formats
are still greatly faster than the comparable GML encodings.

11.1.5.3 Writing

The writing results for the watrcrsl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 146.82 15.483 18,764
GML BXML none 58.91 1.901 152,829
GML XML gzip 20.59 35.216 8,250
GML BXML gzip 19.64 10.813 26,868
GML XML bzip2 17.58 87.510 3,320
GML BXML bzip2 17.29 24.540 11,839
The reported timings for the writing speed are reduced by the 13.053 seconds taken to
read the source watrcrsl data.

11.1.5.4 Plotting

The plotting results for watrcrsl feature collection are as follows:

Format Encoding Compression Read+Plot Tot. Time (s) Speed (F/s)
GML XML none 12.897 14.136 20,552
GML BXML none 3.960 5.200 55,871
The plotting window and image size are the same as for the builtupa feature
collection, except that the SLD plotting style uses dark-blue strokes (#000080):

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 23

The raw internal plotting speed is around 460,000 features per second.

11.1.6 Water courses, double precision

11.1.6.1 Reading

The reading results for watrcrsl_dbl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 196.62 13.660 21,269
GML BXML none 80.71 3.433 84,382
GML XML gzip 44.43 15.493 18,752
GML BXML gzip 37.18 4.438 65,464
GML XML bzip2 38.83 27.288 10,647
GML BXML bzip2 38.11 12.748 22,790

11.1.6.2 Writing

The writing results for the watrcrsl_dbl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 196.62 23.217 12,514
GML BXML none 80.71 3.174 91,534
GML XML gzip 44.43 50.845 5,714
GML BXML gzip 37.18 13.291 21,859

OGC 05-050

24 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML bzip2 38.83 95.444 3,044
GML BXML bzip2 38.11 26.140 11,114
The reported timings for the writing speed are reduced by the 13.660 seconds taken to
read the source watrcrsl_dbl data.

11.1.7 Contour lines

11.1.7.1 Reading

The reading results for the contourl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 1,005.92 77.809 14,135
GML BXML none 423.08 14.047 78,297
GML XML gzip 222.05 85.793 12,820
GML BXML gzip 218.26 20.072 54,795
GML XML bzip2 193.90 143.972 7,639
GML BXML bzip2 189.91 58.142 18,916
The GML-XML-uncompressed case likely includes file-cache-miss effects, since the file
size is just short of the amount of physical memory on the machine, but the effect is most
likely not significant, since the performance is consistent with the GML-XML-gzip case.

11.1.7.2 Writing

The writing results for the contourl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 1,005.92 150.485 7,309
GML BXML none 423.08 21.212 51,850
GML XML gzip 222.05 461.263 2,384
GML BXML gzip 218.26 72.882 15,091
GML XML bzip2 193.90 494.094 2,226
GML BXML bzip2 189.91 160.737 6,842
The reported timings for the writing speeds are reduced by the 77.809 seconds taken to
read the source contourl data.

These results most likely include file-cache-miss effects. However, this effect appears to
be limited, since if the testing tool is limited to processing only the first 200,000 features

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 25

(which will fit into the file-cache memory), the feature throughput is only about 4.5%
faster.

11.1.7.3 Plotting

The plotting results for the contourl feature collection are as follows:

Format Encoding Compression Read+Plot Tot. Time (s) Speed (F/s)
GML XML none 79.182 80.279 13,700
GML BXML none 18.374 19.255 57,120
The plotting window covers the whole world and the image is 3600 pixels across by 1800
(with a scaled-down version included here). The SLD plotting style uses brown strokes
(#808000):

The raw internal plotting speed is around 254,000 features per second.

11.1.8 Conclusions

Uncompressed BXML provided the fastest reading, writing, and plotting performances
for local file-system testing. This is the expected result. Averaging the single-precision
test cases, BXML format files were only 40% as large as the uncompressed-XML files;
they were read 4.0 times as fast for an average of 71,606 features/second; and they were
written 8.2 times as fast for an average of 117,760 features/second.

Using compression in the local file system just slows down the performance. This would
only be recommended to conserve space. The compressed file sizes between BXML and
XML are quite similar, but the compressed BXML files could be read and written much
faster than the compressed XML files.

Using double precision coordinate values produces files that are significantly larger and
take significantly more time to process. This is as expected.

The BXML encoding of GML falls far short of the reading performance of Shapefile and
CubeWerx MDF formats. Shapefile, the golden standard, can be read an average of 3.0

OGC 05-050

26 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

times as fast as the BXML-encoded GML format.

The plotting performance of the CubeWerx SLD renderer is astonishingly high.

11.2 LAN testing with high-performance simulated WFS

11.2.1 Built-up areas

The plotting results for the builtupa feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 6.17 1.590 5,249
GML BXML none 2.44 0.693 12,043
GML XML gzip 1.15 1.972 4,232
GML BXML gzip 1.07 0.768 10,867
GML XML bzip2 1.016 3.763 2,218
GML BXML bzip2 1.090 2.127 3,924
There are competing factors in the determination of the performance in this environment:
the encoding, the compressing and decompressing, and the network bandwidth. The
network in this case is fairly high in bandwidth and compression is fairly expensive. The
client-side CPU utilization showed up as being between 8% and 43%, with the former for
uncompressed data and the latter for bzip2-compressed data.

11.2.2 Inland water bodies

The plotting results for the inwatera feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 120.41 29.130 5,265
GML BXML none 47.44 11.157 13,745
GML XML gzip 20.81 39.650 3,868
GML BXML gzip 19.67 12.472 12,296
GML XML bzip2 18.61 64.052 2,394
GML BXML bzip2 19.17 25.739 5,958

11.2.3 Elevation points, single precision

The plotting results for the elevp feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 62.63 19.174 9,173

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 27

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML BXML none 25.94 7.017 25,065
GML XML gzip 3.60 17.369 10,126
GML BXML gzip 3.23 8.617 20,411
GML XML bzip2 2.57 48.273 3,643
GML BXML bzip2 2.44 16.966 10,367
It is interesting that the XML+gzip case is faster than the XML-uncompressed case, as
opposed to most other feature types where the uncompressed data is faster. In this case,
the GML file contains a much greater amount of redundancy than the other feature types
since the quasi-random coordinate data occupies a much smaller portion of the file and
the XML tags a much greater portion. The file ends up being compressed to such a
degree that the faster transfer speed improves the overall performance. Or, it could be
that the GZIP compressor is disproportionately slow at compressing quasi-random
numbers.

11.2.4 Elevation points, double precision

The plotting results for the elevp_dbl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 67.89 19.574 8,985
GML BXML none 28.05 7.074 24,863
GML XML gzip 5.59 17.881 9,836
GML BXML gzip 4.64 9.542 18,432
GML XML bzip2 4.20 51.201 3,435
GML BXML bzip2 3.91 18.038 9,751

11.2.5 Water courses, single precision

The plotting results for the watrcrsl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 146.82 35.075 8,283
GML BXML none 58.91 12.089 24,032
GML XML gzip 20.59 39.050 7,440
GML BXML gzip 19.66 14.892 19,509
GML XML bzip2 17.58 92.006 3,158
GML BXML bzip2 18.08 33.215 8,747

OGC 05-050

28 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

11.2.6 Water courses, double precision

The plotting results of the watrcrsl_dbl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 196.62 39.754 7,308
GML BXML none 80.71 13.361 21,744
GML XML gzip 44.43 53.609 5,419
GML BXML gzip 37.18 16.282 17,843
GML XML bzip2 38.83 114.080 2,547
GML BXML bzip2 38.11 48.259 6,020

11.2.7 Contour lines

The plotting results for the contourl feature collection is as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 1,005.92 206.250 5,333
GML BXML none 423.08 62.596 17,570
GML XML gzip 222.05 401.249 2,741
GML BXML gzip 218.80 85.491 12,865
GML XML bzip2 193.89 541.616 2,030
GML BXML bzip2 198.18 220.583 4,986

11.2.8 Conclusions

Uncompressed BXML still gives the best performance in the LAN environment with the
simulated WFS, performing an average of 2.8 times as fast as XML encoding over the
seven test cases.

Gzip compression is much more competitive in this environment and was actually faster
than uncompressed data in a couple of instances. Bzip2 compression is still too CPU-
bound to be competitive in this environment.

11.3 LAN testing with relational-database WFS

LAN testing with a relational-database WFS is carried out using the CubeSERV WFS
accessing feature from Oracle relational tables.

11.3.1 Built-up areas

The plotting results for the builtupa feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 29

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 6.17 27.114 308
GML BXML none 2.31 25.436 328
GML XML gzip 1.16 26.814 311
GML BXML gzip 1.14 25.725 324
GML XML bzip2 1.03 27.675 302
GML BXML bzip2 1.13 25.974 321
These results are somewhat disappointing and show that accessing a relational database
incurs a substantial time overhead. The close similarity of all the timings regardless of
encoding format show that accessing this data from the database has a fixed cost of
around 25 seconds relative to a few seconds of difference for processing the different
encodings, rendering the encoding unimportant in this environment.

11.3.2 Inland water bodies

The plotting results for the inwatera feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 120.41 463.5 331
GML BXML none 46.03 469.0 327
GML XML gzip 21.30 490.5 313
GML BXML gzip 20.72 469.4 327
GML XML bzip2 19.05 504.1 304
GML BXML bzip2 19.64 471.9 325

11.3.3 Elevation points, single precision

The plotting results for the elevp feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 67.38 164.6 1,068
GML BXML none 28.10 163.9 1,073
GML XML gzip 5.53 182.3 965
GML BXML gzip 6.27 187.7 937
GML XML bzip2 4.50 204.4 861
GML BXML bzip2 4.78 181.5 969
The performance here is better than for other geometry types because points are simpler
geometry types and they are stored in a simpler way in the database accessed by the
WFS.

OGC 05-050

30 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

11.3.4 Elevation points, double precision

The plotting results for the elevp_dbl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 72.64 164.9 1,067
GML BXML none 30.21 166.9 1,053
GML XML gzip 7.54 182.7 963
GML BXML gzip 7.03 186.6 943
GML XML bzip2 6.15 204.5 860
GML BXML bzip2 5.61 173.3 1,015

11.3.5 Water courses, single precision

The plotting results for the watrcrsl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 146.82 849.1 342
GML BXML none 54.71 839.1 346
GML XML gzip 21.22 894.7 325
GML BXML gzip 21.08 878.4 331
GML XML bzip2 18.04 910.1 319
GML BXML bzip2 18.86 875.4 332

11.3.6 Water courses, double precision

The plotting results for the watrcrsl_dbl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 196.61 889.6 327
GML BXML none 76.51 848.4 342
GML XML gzip 44.83 910.9 319
GML BXML gzip 38.57 880.2 330
GML XML bzip2 39.30 941.5 309
GML BXML bzip2 39.95 894.0 325

11.3.7 Contour lines

The plotting results for the contourl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 31

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 1,005.92 3,384 325
GML BXML none 407.54 3,244 339
GML XML gzip 226.34 3,676 299
GML BXML gzip 223.72 3,365 327
GML XML bzip2 199.03 3,677 299
GML BXML bzip2 199.68 3,423 321

11.3.8 Conclusions

The GML encoding did not have a great effect in this testing. Retrieving the feature data
from Oracle was the major bottleneck in this environment.

11.4 Internet testing with simulated high-performance WFS

11.4.1 Built-up areas

The plotting results for the builtupa feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 6.173 41.256 202
GML BXML none 2.435 16.338 510
GML XML gzip 1.151 7.857 1,062
GML BXML gzip 1.069 7.274 1,147
GML XML bzip2 1.015 7.589 1,099
GML BXML bzip2 1.090 7.828 1,066
There are competing factors in the determination of the performance in this environment:
the encoding, the compressing and decompressing, and the network bandwidth. The
network in this case is fairly low in bandwidth and compression is relatively inexpensive,
so file size is the major determinate of performance.

One would need to be crazy not to compress GML data being sent over the Internet.

11.4.2 Inland water bodies

The plotting results for the inwatera feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 120.41 802.728 191
GML BXML none 47.44 316.314 485
GML XML gzip 20.81 138.957 1,104

OGC 05-050

32 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML BXML gzip 19.67 131.248 1,168
GML XML bzip2 18.61 124.725 1,230
GML BXML bzip2 19.17 128.348 1,195

11.4.3 Elevation points, single precision

The plotting results for the elevp feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 62.63 417.583 421
GML BXML none 25.94 173.034 1,016
GML XML gzip 3.60 24.329 7,229
GML BXML gzip 3.23 21.810 8,064
GML XML bzip2 2.57 48.571 3,621
GML BXML bzip2 2.44 17.220 10,213
The XML+bzip2 case may seem anomalously slow, but this is what was reliably
measured. The major factor would be the bulkiness of the data input to the expensive
bzip2-compression algorithm.

11.4.4 Elevation points, double precision

The plotting results for the elevp_dbl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 67.89 452.651 389
GML BXML none 28.05 187.104 940
GML XML gzip 5.59 37.557 4,683
GML BXML gzip 4.64 31.181 5,641
GML XML bzip2 4.20 51.197 3,435
GML BXML bzip2 3.91 26.564 6,621

11.4.5 Water courses, single precision

The plotting results for the watrcrsl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 146.82 978.816 297
GML BXML none 58.91 392.769 740
GML XML gzip 20.59 137.466 2,113

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 33

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML BXML gzip 19.66 131.205 2,214
GML XML bzip2 17.58 117.729 2,468
GML BXML bzip2 18.08 121.026 2,401

11.4.6 Water courses, double precision

The plotting results for the watrcrsl_dbl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 196.62 1,310.726 222
GML BXML none 80.71 538.089 540
GML XML gzip 44.43 296.354 980
GML BXML gzip 37.18 247.932 1,172
GML XML bzip2 38.83 259.576 1,119
GML BXML bzip2 38.11 254.603 1,141

11.4.7 Contour lines

The plotting results for the contourl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 1,005.92 6,705.465 164
GML BXML none 423.08 2,820.376 390
GML XML gzip 222.05 1,480.280 743
GML BXML gzip 218.80 1,458.621 754
GML XML bzip2 193.89 1,292.842 851
GML BXML bzip2 198.18 1,321.149 832
The simulated high-performance network is efficient enough to saturate the network in all
cases except for using bzip2 compression, but it comes close even then.

11.4.8 Conclusions

Compression is the most important factor in this test environment. Since the compressed
sizes of BXML and XML are quite similar, the performance was also quite similar.
Using bzip2 compression frequently gave the best performance, though bzip2 applied to
XML was substantially slower than the other encodings since BXML is slow to execute
and XML gives the compression method a bulky input stream.

OGC 05-050

34 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

11.5 Internet testing with relational-database WFS

11.5.1 Built-up areas

The plotting results for the builtupa feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 6.17 42.523 196
GML BXML none 2.31 24.880 335
GML XML gzip 1.16 26.855 311
GML BXML gzip 1.14 25.659 325
GML XML bzip2 1.03 31.207 267
GML BXML bzip2 1.13 31.749 263
The network was the bottleneck in the uncompressed-XML test case but retrieving the
features from the database was the bottleneck in the rest of the cases. The throughput
was about 145 kbytes/sec in the uncompressed-XML case but only 93 kbytes/sec in the
uncompressed-BXML test case (significantly less than the network bandwidth).
Applying compression increases the elapsed time since retrieving features from the
database is already a CPU-intensive activity, and compression adds to the CPU-power
bottleneck. The XML+bzip2 test case achieves a network utilization of only 33
kbytes/sec. The other feature types below follow a similar pattern.

11.5.2 Inland water bodies

The plotting results for the inwatera feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 120.41 804.4 191
GML BXML none 46.03 448.8 342
GML XML gzip 21.30 489.6 313
GML BXML gzip 20.72 467.8 328
GML XML bzip2 19.05 566.5 271
GML BXML bzip2 19.64 567.1 270

11.5.3 Elevation points, single precision

The plotting results for the elevp feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 67.38 449.9 391
GML BXML none 28.10 188.5 933

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 35

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML gzip 5.53 181.8 968
GML BXML gzip 6.27 186.6 943
GML XML bzip2 4.50 203.1 866
GML BXML bzip2 4.78 188.3 934

11.5.4 Elevation points, double precision

The plotting results for the elevp_dbl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 72.64 484.9 363
GML BXML none 30.21 202.1 870
GML XML gzip 7.54 184.3 954
GML BXML gzip 7.03 187.4 938
GML XML bzip2 6.15 208.4 844
GML BXML bzip2 5.61 194.1 906

11.5.5 Water courses, single precision

The plotting results for the watrcrsl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 146.82 983.2 295
GML BXML none 54.71 834.1 348
GML XML gzip 21.22 887.1 328
GML BXML gzip 21.08 870.2 334
GML XML bzip2 18.04 953.5 305
GML BXML bzip2 18.86 954.0 305

11.5.6 Water courses, double precision

The plotting results for the watrcrsl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 196.61 1,313.0 221
GML BXML none 76.51 846.1 343
GML XML gzip 44.83 912.4 318
GML BXML gzip 38.57 879.3 330
GML XML bzip2 39.30 1,094.2 266

OGC 05-050

36 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML BXML bzip2 39.95 1,094.2 266

11.5.7 Contour lines

The plotting results for the contourl feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 1,005.91 6,714 164
GML BXML none 407.54 3,299 333
GML XML gzip 226.34 3,669 300
GML BXML gzip 223.72 3,376 326
GML XML bzip2 199.01 4,477 246
GML BXML bzip2 199.68 4,489 245

11.5.8 Conclusions

Using a relational database shows less overhead in the Internet environment, though full
network utilization is not achieved for the non-uncompressed-XML test cases. The other
encodings are compact enough that the CPU and database access on the server is the
bottleneck.

11.6 Dial-up testing

This testing was carried out using the same simulated method as with the Internet testing.
In this case, the link speed was set to 5,600 bytes/second to correspond to a 56-
kbit/second low-speed link. No built-in compression was simulated over the link.

11.6.1 Measured results

The plotting results for the builtupa feature collection are as follows:

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 6.172 1,102.382 7.57
GML BXML none 2.435 435.063 19.18
GML XML gzip 1.151 205.945 40.53
GML BXML gzip 1.069 191.193 43.65
GML XML bzip2 1.015 182.290 45.78
GML BXML bzip2 1.089 195.392 42.71
Transferring any volume of data over the link is obviously very slow and is completely
dominated by the link speed. The CPU utilization on the client was shown as 0% to 2%.

Very limited plotting performance was measured for the inwatera feature collection:

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 37

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 120.41 21,499 7.13
This test case ran for approximately six hours.

11.6.2 Extrapolated results

The testing for the dial-up case is extremely time-consuming and the results have been
demonstrated to be determined by the link speed, so presented here is an extrapolation of
the testing of all seven feature collections being concatenated together (2,194,357
features):

Format Encoding Compression Size (MB) Time (s) Speed (F/s)
GML XML none 1,606.46 286,868 7.65
GML BXML none 666.56 119,029 18.44
GML XML gzip 318.22 56,825 38.62
GML BXML gzip 304.22 54,325 40.39
GML XML bzip2 276.71 49,413 44.41
GML BXML bzip2 280.92 50,164 43.74
If all these test cases were executed once in practice, it would take over seven days.

11.6.3 Conclusions

Dial-up links are very slow, so the GML encoding with the greatest compression will
have the highest throughput. In this case, bzip2 gives the best compression and therefore,
the best throughput. The bzip2 file sizes are slightly smaller for XML than BXML, so
XML+bzip2 gives the best throughput.

12 MSD3-data testing

It would not be feasible or greatly useful to perform manual testing on all of the
individual feature types, so four instances were chosen for manual testing to represent the
MSD3 data set: three feature collections of varying geometry type plus an aggregation of
all the feature types. The aggregation was obtained simply by concatenating together all
of the <gml:featureMember> elements of the supplied GML feature collections.
The schema references were also changed to be locally available and offered up with the
different encodings of the test instances (e.g., XML, BXML, compressed). The source
data is all three-dimensional, but two-dimensional versions are also tested.

The following feature collections from the MSD3 data are used for testing:

Collection Description Geom Type Properties Features Vertices
MSD3 MSD3 Aggregate various 33.0 7,448 8.5

OGC 05-050

38 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Collection Description Geom Type Properties Features Vertices
AAL015 Building Areas MultiSurface 45 857 7.2
LAP030 Roads MultiCurve 20 1,444 5.5
PAL015 Building Points MultiPoint 45 2,888 1.0
The “Properties” column gives the average number of properties per feature present in
the MSD3 collection, excluding the topology property (since it is not processed). The
“Vertices” column is the average number of vertices per geometry for all feature
collections.

Two versions of the MSD3 schema were available for testing: the full version and a
version with all of the <appinfo> metadata trimmed out of it. The major reporting of
results is for the trimmed version of the schema with additional comments about the
performance with the full schema.

The testing of 3D coordinate values versus 2D coordinate values is reported only for the
MSD3-aggregation feature collection. The performance difference between 2D and 3D is
not that large and the aggregation case shows the difference sufficiently.

12.1 Local file-system testing

The GML and schema files were tested using local files.

12.1.1 MSD3 aggregation, 3D

The MSD3 aggregate feature collection has the following appearance when plotted with

translucent fills and no feature-type-specific styling:

The reading results for the MSD3 feature collection using the trimmed MSD3 schema are
as follows:

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 39

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 13,511 1.621 4,594
GML BXML none 7,172 0.876 8,466
GML XML gzip 626 1.715 4,342
GML BXML gzip 929 0.926 8,046
GML XML bzip2 499 2.485 2,997
GML BXML bzip2 819 1.416 5,261
Parsing the schema takes a significant amount of the elapsed time. The schema is
supplied with in the same encoding and compression format as the GML data. The
parsing time for the trimmed and full MSD3 schemas are as follows, with schema sizes in
KB and parsing times in seconds:

Format Encoding Compress Trim Size Trim Time Full Size Full Time
Schema XML none 1,337 0.318 8,056 0.815
Schema BXML none 581 0.238 3,696 0.433
Schema XML gzip 28 0.329 446 0.873
Schema BXML gzip 21 0.241 307 0.460
Schema XML bzip2 14 0.411 204 1.442
Schema BXML bzip2 12 0.273 190 0.715
The writing results for the MSD3 feature collection are as follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 13,511 1.030 7,231
GML BXML none 7,172 0.335 22,226
GML XML gzip 626 1.943 3,833
GML BXML gzip 929 1.030 7,234
GML XML bzip2 499 11.656 639
GML BXML bzip2 819 6.458 1,153
The source-data reading time of 1.621 seconds is subtracted from the write timings
above. Note that no new schema file is written out here since the generated GML data
refers to a preexisting schema file.

The XML encodings of the compressed data are significantly smaller than the BXML
versions. This is likely because BXML format compacts the data with the primary goal
being for speed of processing whereas GZIP and BZIP2 formats compact data with the
primary goal being minimization of size.

OGC 05-050

40 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

12.1.2 MSD3 aggregation, 2D

The reading results for the MSD3_2D feature collection are as follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 13,241 1.577 4,735
GML BXML none 6,645 0.845 8,815
GML XML gzip 562 1.664 4,477
GML BXML gzip 831 0.906 8,224
GML XML bzip2 447 2.413 3,087
GML BXML bzip2 725 1.356 5,494
There does not appear to be a great performance advantage in using 2D coordinates over
3D ones. This is presumably because the extra coordinate dimension takes a relatively
small amount of space compared to all of the attributes. The difference would be larger if
the geometries in the MSD3 data included significantly more vertices.

The writing results for the MSD3_2D feature collection are as follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 13,241 0.921 8,084
GML BXML none 6,645 0.325 22,925
GML XML gzip 562 1.808 4,119
GML BXML gzip 831 0.812 9,171
GML XML bzip2 447 11.631 640
GML BXML bzip2 725 6.386 1,166
The writing time excludes the 1.577 seconds required to read the source data to be
written.

12.1.3 AAL015

The AAL015 feature collection (Building Areas) has the following appearance:

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 41

The reading results for the AAL015 feature collection are as follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 1,984.1 0.570 1,504
GML BXML none 999.5 0.383 2,237
GML XML gzip 63.9 0.589 1,454
GML BXML gzip 86.3 0.397 2,158
GML XML bzip2 48.1 0.781 1,097
GML BXML bzip2 82.1 0.502 1,707
As discussed with the MSD3-aggregate case, parsing the schema takes a substantial
amount of the elapsed time. However, since this feature collection is much smaller and
the schema-parsing time is fixed for each different encoding, schema parsing now takes
the majority of the elapsed time.

The writing results for the AAL015 feature collection are as follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 1,984.1 0.130 6,613
GML BXML none 999.5 0.054 15,730
GML XML gzip 63.9 0.234 3,655
GML BXML gzip 86.3 0.118 7,269
GML XML bzip2 48.1 1.770 484
GML BXML bzip2 82.1 0.950 902
The 0.570 seconds taken to read the source data is removed from the writing times.

12.1.4 LAP030

The LAP030 feature collection has the following appearance:

OGC 05-050

42 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

The reading results for the LAP030 feature collection are as follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 1,629 0.527 2,742
GML BXML none 754 0.383 3,770
GML XML gzip 102 0.589 2,451
GML BXML gzip 140 0.397 3,637
GML XML bzip2 74 0.781 1,849
GML BXML bzip2 117 0.502 2,877
The writing results for the LAP030 feature collection are as follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 1,629 0.173 8,367
GML BXML none 754 0.098 14,742
GML XML gzip 102 0.277 5,205
GML BXML gzip 140 0.161 8,974
GML XML bzip2 74 1.813 796
GML BXML bzip2 117 0.993 1,454
The writing times exclude the 0.527 seconds taken to read the source data.

12.1.5 PAL015

The PAL015 feature collection has the following appearance (with the points rendered as
small squares):

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 43

The reading results for the PAL015 feature collection are as follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 5,580.4 0.931 3,102
GML BXML none 2,710.9 0.566 5,103
GML XML gzip 70.7 0.976 2,959
GML BXML gzip 71.9 0.588 4,911
GML XML bzip2 41.9 1.309 2,207
GML BXML bzip2 54.0 0.733 3,735
The writing results for the PAL015 feature collection are as follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 5,580.4 0.292 9,896
GML BXML none 2,710.9 0.173 16,737
GML XML gzip 70.7 0.537 5,375
GML BXML gzip 71.9 0.285 10,136
GML XML bzip2 41.9 5.367 538
GML BXML bzip2 54.0 3.184 907
The writing times exclude the 0.931 seconds used to read the source data.

12.1.6 Conclusions

Uncompressed BXML encoding gives the best performance in the local-file-system test
case. Since the MSD3 3D case actually includes the data for the other test cases, it is the
most representative one. The BXML format was 1.85 times as fast as XML and was only
53% as large for using the trimmed schema.

OGC 05-050

44 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

A large performance factor with this data is the schema, since it is so large relative to the
data. Two versions were tested, a trimmed version and the full version which includes a
great deal of metadata. Both versions include definitions for hundreds of feature types
that are not present in the test data set.

The BXML version of the trimmed schema is 43% as large as the XML version and can
be processed 1.34 times as fast. The BXML version of the full schema is 46% as large as
the XML version and can be processed 1.88 times as fast. Parsing the trimmed schema
takes 27% of the BXML execution time.

Compression gives poor performance in this environment because the compression
algorithms are slow to execute. However, if storage size is the crucial restriction, then
XML+bzip2 gives the best compression, though it is much slower to execute than gzip
compression.

The BXML compressed files are substantially larger than the XML compressed file. The
reason for this is not known.

Processing 2D data versus 3D data did not make a substantial difference in either the
processing time or the file size. This is likely because the features have relatively few
vertices per geometry and have a large number of properties, so the extra coordinate in
the 3D data does not take a substantial amount of extra space.

12.2 LAN testing

The BXML format includes a central symbol table and a mechanism to make any text
content reference a string in this table. The advantage is that a literal string value need
appear in the BXML file only once and it can be referenced by a compact index value
thereafter. The option is enabled in the BXML generator for the MSD3 network cases to
make all generated content strings use this central symbol table for greater compactness.

The reason this option was not enabled in the file-system testing is that there appears to
be a performance bug in the CWXML library that makes processing referenced strings a
little slower than literal strings. However, in the network environment, the increased
compactness of the volume of data sent over the network provides better performance
than using the literal strings.

12.2.1 MSD3 aggregation, 3D

The plotting results for the MSD3 feature collection with the trimmed schema are as
follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 13,512 4.855 1,534
GML BXML none 3,753 2.201 3,385
GML XML gzip 627 4.098 1,817

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 45

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML BXML gzip 910 2.263 3,291
GML XML bzip2 499 13.055 571
GML BXML bzip2 776 4.391 1,696
Schema parsing takes a significant amount of the processing time (sizes in KB, times in
seconds):

Format Encoding Compress Trim Size Trim Time Full Size Full Time
Schema XML none 1,336.7 0.706 8,056 2.003
Schema BXML none 350.2 0.445 2,263 0.796
Schema XML gzip 27.7 0.615 446 1.654
Schema BXML gzip 26.0 0.425 235 0.700
Schema XML bzip2 14.1 0.831 204 2.984
Schema BXML bzip2 16.9 0.463 160 1.037

12.2.2 MSD3 aggregation, 2D

The plotting results for the MSD3_2D feature collection with the trimmed schema are as
follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 13,241 4.653 1,601
GML BXML none 3,225 2.148 3,467
GML XML gzip 563 3.974 1,874
GML BXML gzip 819 2.063 3,611
GML XML bzip2 447 12.977 574
GML BXML bzip2 729 4.262 1,748
Again, the 2D case is not greatly more efficient than the 3D case. The third-dimension
coordinate values occupy a relatively small portion of the overall file sizes.

12.2.3 AAL015

The plotting results for the AAL015 feature collection are as follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 1,984.2 1.640 4,542
GML BXML none 437.6 1.029 7,239
GML XML gzip 64.1 1.571 4,740
GML BXML gzip 84.5 1.032 7,218

OGC 05-050

46 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML bzip2 48.1 3.775 1,973
GML BXML bzip2 82.0 1.429 5,212

12.2.4 LAP030

The plotting results for the LAP030 feature collection are as follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 1,692.2 1.532 4,861
GML BXML none 424.6 1.010 7,374
GML XML gzip 101.7 1.453 5,126
GML BXML gzip 136.5 1.004 7,415
GML XML bzip2 74.2 3.254 2,289
GML BXML bzip2 120.2 1.375 5,416

12.2.5 PAL015

The plotting results for the PAL015 feature collection are as follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 5,580.6 2.672 2,787
GML BXML none 973.9 1.326 5,618
GML XML gzip 70.8 2.634 2,827
GML BXML gzip 67.9 1.418 5,251
GML XML bzip2 42.0 6.508 1,144
GML BXML bzip2 55.8 2.556 2,914

12.2.6 External codec

An external codec (encoder-decoder, external to the main GML-consuming program) was
added to the LAN testing script by adding a Unix shell statement of the form:

 xmlscan -url data_url -pack | cwplot -f - parameters

This executes the xmlscan program which reads the GML data from the server as a
separate process from the cwplot program which plots the data. The xmlscan
program reads the data in whatever format is requested from the server but always
delivers it to the cwplot program as uncompressed XML, so this arrangement operates
as an “external codec” for delivering GML data to a client application that does not
understand BXML or the compression formats. A caveat is that it would be very
awkward to intercept the retrieval of the schemas, so only the GML data is subjected to
the external codec, not the schema access. Also, this external codec is implemented only

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 47

on the client side; the external codec could be extended onto the server side as discussed
in clause 8.4 which would impose greater costs and complications for recognizing and
translating coordinate values and other numbers.

This arrangement is functionality equivalent to the direct MSD3 test, except the external
codec will create more execution overhead on the client from managing multiple
processes and in interprocess pipe and from executing an extra decoding and encoding
step. Additionally, the extra encoding step will be for regular XML and the decoding
step inside of the cwplot program will always be for regular XML-encoded GML.

The plotting results for the MSD3 3D feature collection using the external codec are as
follows (sizes in KB, times in seconds, speeds in features/second):

Format Encoding Compress Size Time Speed Lost Time Lost Speed
GML XML none 13,512 6.777 1,099 1.922 435
GML BXML none 3,753 5.928 1,257 3.727 2,128
GML XML gzip 627 6.091 1,223 1.999 594
GML BXML gzip 910 5.708 1,305 3.445 1,986
GML XML bzip2 499 13.316 559 0.261 12
GML BXML bzip2 776 8.071 923 3.680 773
The results show that the use of an external codec imposes significant throughput costs in
the Internet environment and the benefits of using BXML in this environment are largely
nullified. The lost performance would be significantly larger if the schema fetching was
also run through an external codec.

Note that the XML-none figure does not really belong here since the main application in
this arrangement can consume regular XML directly, so an external codec is not really
needed in this case.

12.2.7 Conclusions

The uncompressed BXML encoding gives the best performance in the LAN test case,
same as with the VMAP0 data. The BXML format was 2.2 times as fast as XML and
was only 28% as large for using the trimmed schema. Using the symbol-table BXML
mechanism makes the BXML files substantially smaller here than in the file-system
testing where it was turned off.

Schema processing is a large factor with the MSD3 data. The BXML verison of the
trimmed schema is 26% as large as the XML version and can be processed 1.59 times as
fast. The BXML version of the full schema is 28% as large as the XML version and can
be processed 2.5 times as fast. Parsing the trimmed schema takes 20% of the BXML
execution time. The schemas compress extremely well.

OGC 05-050

48 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Compression performs better in this environment than in the file-system environment
because there is a trade-off between processing time taken to compress the data and the
effectively increased network throughput of the compressed data. However, the LAN is
fast enough that the processing time is more costly. The BXML compressed data files
are substantially larger than the XML compressed file. The reason for this is not known.

Using an external codec adds a substantial overhead in this environment and tends to
even out the timings because of the large fixed overhead of the fixed XML-GML
generate/parse steps.

12.3 Internet testing

12.3.1 MSD3 aggregation, 3D

The plotting results for the MSD3 feature collection with the trimmed schema are as
follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 13,512 99.002 75
GML BXML none 3,753 27.400 272
GML XML gzip 627 6.042 1,233
GML BXML gzip 910 6.910 1,078
GML XML bzip2 499 14.001 532
GML BXML bzip2 776 7.448 1,000
Schema parsing takes a significant amount of the processing time (sizes in KB, times in
seconds):

Format Encoding Compress Trim Size Trim Time Full Size Full Time
Schema XML none 1,336.7 9.335 8,056 54.222
Schema BXML none 350.2 2.762 2,263 15.573
Schema XML gzip 27.7 0.732 446 3.618
Schema BXML gzip 26.0 0.621 235 2.084
Schema XML bzip2 14.1 1.013 204 3.318
Schema BXML bzip2 16.9 0.649 160 1.663

12.3.2 MSD3 aggregation, 2D

The plotting results for the MSD3_2D feature collection with the trimmed schema are as
follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 13,241 97.146 77

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 49

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML BXML none 3,225 23.781 313
GML XML gzip 563 5.282 1,410
GML BXML gzip 819 6.320 1,179
GML XML bzip2 447 13.897 536
GML BXML bzip2 729 6.889 1,081

12.3.3 AAL015

The plotting results for the AAL015 feature collection are as follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 1,984 22.119 39
GML BXML none 438 5.216 164
GML XML gzip 64 1.982 432
GML BXML gzip 85 1.458 588
GML XML bzip2 48 4.017 213
GML BXML bzip2 82 2.194 391

12.3.4 LAP030

The plotting results for the LAP030 feature collection are as follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 1,692 20.161 72
GML BXML none 425 5.133 281
GML XML gzip 102 1.840 785
GML BXML gzip 136 1.376 1,056
GML XML bzip2 74 3.476 415
GML BXML bzip2 120 2.357 613

12.3.5 PAL015

The plotting results for the PAL015 feature collection are as follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 5,581 46.100 63
GML BXML none 974 8.802 328
GML XML gzip 71 3.065 942
GML BXML gzip 68 2.088 1,383

OGC 05-050

50 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML bzip2 42 6.770 427
GML BXML bzip2 56 3.095 933

12.3.6 External codec

An external codec was added to the Internet testing script using the method described in
clause 12.2.6 for the GML data but not the schema. The plotting results for the MSD3 3D
data with the external data codec are as follows (sizes in KB, times in seconds, speeds in
features/second):

Format Encoding Compress Size Time Speed Lost Time Lost Speed
GML XML none 13,512 98.554 76 -0.448 -1
GML BXML none 3,753 27.216 274 -0.184 -2
GML XML gzip 627 7.245 1,028 1.203 205
GML BXML gzip 910 8.250 903 1.340 175
GML XML bzip2 499 14.027 531 0.026 1
GML BXML bzip2 776 9.814 759 2.366 241
The results here are quite different from the LAN test case. The primary difference is
that in this case, the client CPU is largely idle in the direct-connection case, so the
resources are readily available to execute the external codec and while keeping up with
the server. There is no obvious explanation for why the uncompressed cases actually
experience performance improvements, though there may be some subtle effects in the
network-simulation implementation.

The cases where the performance is significantly worse is probably related to the fixed
overhead of executing the decode-generate-decode steps on the client. The break-even
point seems to be around the 14-second period of the XML-bzip2 case, though in this
case, the server would be very busy executing the expensive bzip2-compression
algorithm. Indeed, in this case, the server can only generate 37 kbytes/sec over the
simulated 150-kbyte/sec link. The server is nearly able to saturate the link in the gzip test
cases, and so would deliver the maximum concentration of features per second. In the
uncompressed cases, the network is the bottleneck, so the number of features per second
that the client needs to process is restricted.

12.3.7 Conclusions

Compression is crucial to performance in the Internet environment because of the limited
network bandwidth. However, while bzip2 compression gives the greatest compactness,
gzip gives the better throughput.

The XML+gzip case gives the best throughput in this environment. The portion time
taken parsing the schema is substantially lower in this environment than in the LAN
environment because the schemas compress incredibly well.

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 51

Using an external codec adds greatly less overhead than in the LAN environment because
the client machine has much more idle time while waiting for data to come from the
network that it can spend on the fixed cost of the fixed XML-GML generate/parse steps.

12.4 Dial-up testing

Dial-up testing is carried out using a simulated 5.6-kbyte/sec uncompressed link.

12.4.1 MSD3 aggretation, 3D

The plotting results for the MSD3 feature collection with the trimmed schema are as
follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 13,512 2,627.3 2.8
GML BXML none 3,753 707.7 10.5
GML XML gzip 627 112.5 66.2
GML BXML gzip 910 163.7 45.5
GML XML bzip2 499 90.6 82.2
GML BXML bzip2 776 140.1 53.2
Schema parsing takes a significant amount of the processing time (sizes in KB, times in
seconds):

Format Encoding Compress Trim Size Trim Time Full Size Full Time
Schema XML none 1,336.7 239.27 8,056 1,440.63
Schema BXML none 350.2 63.11 2,263 405.30
Schema XML gzip 27.7 5.56 446 80.74
Schema BXML gzip 26.0 5.23 235 42.72
Schema XML bzip2 14.1 3.24 204 37.71
Schema BXML bzip2 16.9 3.70 160 29.34

12.4.2 MSD3 aggregation, 2D

The plotting results for the MSD3_2D feature collection with the trimmed schema are as
follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 13,241 2,578.9 2.9
GML BXML none 3,225 614.1 12.1
GML XML gzip 563 102.2 72.9
GML BXML gzip 819 147.8 50.4

OGC 05-050

52 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML bzip2 447 94.9 78.5
GML BXML bzip2 729 134.9 55.2

12.4.3 AAL015

The plotting results for the AAL015 feature collection are as follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 1,984 577.3 1.5
GML BXML none 438 116.0 7.4
GML XML gzip 64 12.7 67.3
GML BXML gzip 85 15.7 54.7
GML XML bzip2 48 11.7 73.4
GML BXML bzip2 82 20.0 42.8

12.4.4 LAP030

The plotting results for the LAP030 feature collection are as follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 1,692 517.3 2.8
GML BXML none 425 113.7 12.7
GML XML gzip 102 19.3 74.8
GML BXML gzip 136 25.0 57.8
GML XML bzip2 74 15.3 94.5
GML BXML bzip2 120 26.9 53.7

12.4.5 PAL015

The plotting results for the PAL015 feature collection are as follows:

Format Encoding Compression Size (KB) Time (s) Speed (F/s)
GML XML none 5,581 1,212.0 2.4
GML BXML none 974 211.6 13.6
GML XML gzip 71 13.8 209.3
GML BXML gzip 68 13.0 222.2
GML XML bzip2 42 19.1 151.2
GML BXML bzip2 56 17.3 167.3

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 53

12.4.6 Conclusions

With a dial-up link, compression is crucial to performance. Whatever encoding method
produces the fewest bytes to represent a feature collection will be the fastest, pretty much
regardless of how much processing the encoding method takes. In the case of the MSD3
data, the best encoding method for dial-up links is XML+bzip2.

13 GML issues

In the course of carrying out this performance study, some problem areas with using
GML were identified.

13.1 The trouble with application schemas

There are two general approaches to handling the schemas associated with GML data.
One way is to auto-generate a custom-tailored schema for each GML file that is
generated from the information available from the source feature format, as was done for
the VMAP0 test data set, and the other way is to use an external, centralized schema, as
was done for the MSD3 test data set.

Using a custom-tailored schema is the approach taken with most other feature formats,
with the schema information normally embedded within the data file(s). A vulnerability
with this approach is the fidelity with which the schema information is carried from one
representation to another. Sometimes, the sizes of properties or letter case of names are
changed, and most feature formats have tricky idiosyncrasies. For example, in Shapefile
format, numeric types are actually stored as strings, and a numeric type with width=9 and
scale=3 can actually store any number that can be represented in nine characters. Some
tools even write numbers in scientific notation.

Using the centralized-schema approach has problems also. One major problem is that the
centralized schema may include a great number of feature-type definitions and a great
deal of metadata that is not relevant to the purpose at hand. For example, the MSD3
central schema includes definitions for 443 different feature types even though the
sponsor-supplied data includes only 93 feature types and 83% of the bulk of the full
schema contains metadata which is not relevant to the performance-testing activities of
the OWS-3 project. The schema is so large that parsing it takes a significant portion of
the time to read the MSD3 data and it even takes the majority of the time for smaller
feature collections.

The other major problem with centralized application schemas is that it is easy to include
arbitrary formatting declarations that general-purpose GML client and server applications
cannot understand or follow. This problem is present with custom-generated schemas
also, though the arbitrariness is limited in practice to the types of declarations that are
portable between common representation formats. For instance, if the data is held in a
relational-database format using simple types (plus a geometry), then the generated
schema will reflect this simplicity.

OGC 05-050

54 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Handling arbitrary schema declarations may be an unsolvable computing problem in the
general case and is at least a complex artificial-intelligence problem since in order for a
computer to transform data from one representation into an arbitrary new one, it needs to
“understand” the semantics of the information, and arbitrary semantics probably are not
representable in a declarative way.

Schema-processing in the centralized-schema approach is particularly onerous because
the schema theoretically needs to be parsed and understood in order to even write the
GML data correctly, whereas with the custom-generated schema approach the GML
writer is easily and statically preprogrammed to generate its output GML in accordance
with the schema that it generates. In practice, however, vendors will not implement a
capability to “understand” the schema of the GML data they are writing; they will instead
simply implement application-specific hacks into their GML generators to handle any
arbitrariness in the application schemas.

It is also possible to implement any arbitrary transformations needed for generated data
using a hand-made application-specific transformation script as a post-processing step
and to do the reverse in the same way on the client side. However, beyond the manual
effort involved in creating and managing the transformation programs to service all of the
different feature types in a data set, portable transformation programs are generally
written in XSLT, which, given the way that XSLT operates, is likely to be inefficient and
may not work at all for large feature sets like the Contour Lines of the VMAP0 test data
since XSTL implementations tend to store the entire XML stream in memory, which also
imposes streamability limitations. It is theoretically possible to optimize XSLT to behave
in a streamable fashion where the transformation to be carried out permits, but this
optimization is not yet available in real-world XSLT implementations, but even if it is
available, the XML stream still needs to be parsed and generated an additional time.

However, there is a fairly easy way around the problems of dealing with arbitrary XML
schemas, which is to use simplified canonical profiles of GML and XML-Schema, such
as the GML Simple-Features Profile [GML-SF]. If both the application schema and the
GML generator conform to the profile (or specific compliance level of future versions of
the profile), and if the source format for the generator retains the typing information of
the schema with the full fidelity of the schema profile, then the generated GML will
always conform to the central application schema.

13.2 GML MeasureType

A practical problem with gml:MeasureType is that the attributes take a fairly large
amount of space in the GML data files, whereas the measurement unit for individual
properties all appear to be constant in the MSD3 data. It would be much more space-
efficient if the if the fixed unit associated with each measurement property in the MSD3
data could be specified once in the schema definition or metadata rather than being
repeated in-line with every property instance.

The presence of the attribute on every property instance also imposes the need on
consumers to re-map and retain this information for every measurement property instance

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 55

when the data is transformed into another feature format in order to maintain the fidelity
of the data, since the consumer will not know in advance (or really, ever) that the unit is
actually fixed. This information may be awkward to re-map and will be time- and space-
consuming in other feature representations. This author is not aware of any other format
that includes a variable-unit mechanism.

13.3 GML streamability

A format is “streamable” if it can be generated, transfered, and consumed without any
undue storage between the end points. Streamability is desirable because it minimizes
processing delays and storage costs throughout the system. However, there are a few
features of GML that interfere with its streamability.

13.3.1 Mid-stream errors

A GML feature collection can include features from numerous different feature types and
the WFS interface allows requests to be made for multiple feature types and this can
cause streamability issues on the server side since many systems implement the storage
of features of different types using a separate internal feature collection for each different
type. Also, all OWS requests require the response to be either a valid document of the
requested format or to be a specially coded exception report.

The way that a query that includes multiple feature types is normally implemented is to
process the feature-type queries in order and generate the GML output. But this poses a
big problem if any errors are encountered in the intermediate steps, since if any errors are
encountered at any point during the GML-generation process, an exception report must
be generated instead of a GML document. GML includes no mechanism for reporting an
error after the generation of the stream has begun.

In order for a generating application to be (mostly) safe is to generate all of the output
data to a temporary file and then copy this file to the network, but then the generation
time is wasted. This problem is compounded in the Internet environment because the
network is usually the bottleneck and it will be idle while the temporary file is generated.

Really, the only sane approach for WFS implementers is to cheat in some way.

13.3.2 Bounding envelope

The requirement that the bounding envelope be stated at the beginning of a feature stream
is desirable for clients, but it imposes restrictions on streamability for servers. The only
way to be sure that the tightest envelope is stated in the general case is to pre-scan all of
the features according to all of the query constraints.

13.3.3 Feature interleaving

Another streamability issue is that features in a GML feature collection may appear in
any order and be mixed together. This poses no problems for GML generators since they
can choose any order which is convenience, but it does pose problems for GML

OGC 05-050

56 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

consumers since many client applications cannot process a sequence of more than one
feature type at a time. If only one feature type is in a stream, a clever client with the one-
feature-type-at-a-time constraint can process it in one pass, but this is not possible if more
than one feature type is present in the stream. The client would need to either store or re-
retrieve the stream when it is ready to process the next feature type.

GML should include some mechanism to indicate whether or not the features of a type
are contiguous and/or appear in the order of the feature types in the schema. This would
allow simple applications to process a GML stream one feature-type at a time in one pass.

14 Conclusions

14.1 Local file-system testing

Testing in the local file system showed that binary encoding using BXML was around
four times as fast for reading and eight times as fast for writing GML data compared to
XML for the VMAP0 test data. The performance figures for the MSD3 data showed a
lower overall improvement because the parsing of the bulky application schema is
conflated with the data encode/decode speeds. When factored out, the BXML reading is
about twice as fast and the writing is about three times as fast. The MSD3 data has many
more properties than the VMAP0 data.

We also need to be cognizant in general that the CWXML parser is extremely well
optimized for scanning XML and BXML realized in other environments may be even
more efficient than comparable XML parsers since the BXML format is quite easy to
process efficiently.

The BXML files are around 40% the size of the XML files and can be smaller still if
space-saving options are enabled, and there are design tweaks that can be applied to
future versions of BXML to increase compactness. When compression is applied, the
BXML files are frequently around the same size as the XML files, though sometimes the
BXML files can be significantly larger, as with the MSD3 data files. The XML encoding
of MSD3 has the advantage that the source data is rounded to ten significant decimal
digits, but these are not round values when represented in binary, which reduces the
compressibility of the BXML representation. The compressed BXML files are still
substantially faster to process than the compressed XML files, especially with the
relatively efficient GZIP method.

Using double-precision coordinate values with the VMAP0 data produced files that were
significantly larger and slower to process than using single-precision coordinates.
However, using 2D coordinate values instead of 3D coordinate values with the MSD3
data did not make a significant difference in size or processing speed, likely because the
coordinate values occupy a relatively small portion of the overall MSD3-data size.

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 57

The BXML encoding of GML falls far short of the performance available with other
feature-file formats. Shapefile can be read about three times faster than BXML-encoded
GML.

14.2 LAN testing

The speed and size savings of BXML translate well to the LAN environment. The
uncompressed BXML encoding is still the most efficient, performing 2.8 times as fast
with transfers of the VMAP0 data and 2.2 times as fast with the MSD3 data.

Utilizing an relational database system as the feature storage system imposes an
unexpected high burden and is the major bottleneck in the LAN environment. The
overhead is so high that the effects of the different encodings tend to be largely muted,
though BXML still technically performs the best. CubeWerx will be investigating
optimizations. The use of a dual-processor server would like improve throughput
significantly, since the Oracle activity during feature retrieval seems to be split between
two processes which compete for CPU time. (The server in the test environment has only
one processor.)

Using an external codec with an efficient GML generator imposes substantial costs in this
environment because of the fixed cost of the additional XML-GML parse/generate
step(s).

14.3 Internet testing

In the Internet environment, compression is very important because of the limited
bandwidth, 150 Kbytes/sec in the test case. Since the compressed sizes of BXML and
XML data are quite similar, their performance was also quote similar. While BZIP2 gave
the greatest amount of compression, GZIP provides the greatest throughput and GZIP is a
ubiquitous format.

The sponsors of this project, including NGA, should insist that all of their software
suppliers equip their GML-processing clients and servers with HTTP-based GZIP-
compression support. Using the HTTP mechanism allows support to be optional for both
client and server while providing compression when both client and server support it.
GZIP is suitable for compressing streamed data on-the-fly.

Using an relational database system to server the features slowed down the transfer
significantly, though not to the degree experienced in the LAN environment. Using
either BXML encoding or compression gives similar throughput since the server in this
case cannot saturate the network link except in the XML case, where the network
becomes the bottleneck instead of the database system.

Using an external codec with an efficient GML generator degrades performance, though
not to the same degree as in the LAN case since the network is now the bottleneck and
the client has more otherwise-idle CPU time with which to execute the external codec
process.

OGC 05-050

58 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

14.4 Dial-up testing

In the dial-up network case, compression is crucial. BZIP2-compressed XML generally
gives the best performance in this environment since it generally gives the best
compression.

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 59

Summary of key GML-testing variables

(Informative)

Encoding: XML, BXML, [BinXML™ tested by Galdos].

Compression: none, GZIP, BZIP2.

Precision: 16 digits or 7 digits.

Network: none (local filesystem), LAN, Internet, dial-up.

Scalability: hundreds, tens-of-thousands, or 1-million features.

OGC 05-050

60 Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.

Bibliography

[BASE64] IETF RFC 1521 (September 1993), MIME (Multipurpose Internet Mail
Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet
Message Bodies, N. Borenstein, et al., <http://www.ietf.org/rfc/rfc1952.txt>.

[BINXML] Expway, BinXML™ binary-XML encoding system.

[BXML] OGC 03-002r8 (May 2003), Binary-XML Encoding Specification version 0.0.8,
Craig Bruce, <http://www.opengeospatial.org/docs/03-002r8.pdf>.

[BZIP2] (June 2000), The bzip2 and libbzip2 official home page, Julian Seward,
<http://www.digistar.com/bzip2/>.

[COMPRESS] Unix compress file format, Unix manual.

[CWXML] CubeWerx (May 2005), CWXML Library, Craig Bruce (ed.),
<http://www.cubewerx.com/main/cwxml/>.

[FLOATS] IEEE 754-1985 (1985), Standard for Binary Floating-Point Arithmetic,
<http://grouper.ieee.org/groups/754/>.

[GZIP] IETF RFC 1952 (May 1996), GZIP File Format Specification Version 4.3, L.
Peter Deutsch, <http://www.ietf.org/rfc/rfc1952.txt>.

[HTTP] IETF RFC 2616 (1999), Hypertext Transfer Protocol—HTTP/1.1, R. Fielding, et
al., <http://www.ietf.org/rfc/rfc2616.txt >.

[KEYWORDS] IETF RFC 2119 (March 1997), Key words for use in RFCs to Indicate
Requirement Levels, Scott Bradner, <http://www.ietf.org/rfc/rfc2119.txt>.

[PNG] PNG (2003), PNG: Portable Network Graphics: A Turbo-Studly Image Format
with Lossless Compression, Greg Roelofs, et al, <http://www.libpng.org/pub/png/>.

[SHAPE] ESRI® (July 1988), ESRI® Shapefile Technical Description,
<http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf>.

[SI] System International base-10 prefixes, <http://www.bipm.fr/en/si/prefixes.html>.

[SI-BIN] System International base-2 prefixes,
<http://physics.nist.gov/cuu/Units/binary.html>.

[SLD] OGC 02-070 (August 2002), Styled Layer Descriptor, Bill Lalonde (ed.),
<https://portal.opengeospatial.org/files/?artifact_id=1188>.

[TAR] Unix Tape Archive utility, tar, Unix manual.

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

OGC 05-050

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved. 61

[WFS] OGC (2004) 04-094, Web Feature Service (WFS) Implementation Specification,
Peter Vretanos (ed.), <https://portal.opengeospatial.org/files/?artifact_id=8339>.

[WKB] OGC (May 1999) 99-049, Simple Features Implementation Specification For
SQL, clause 3.3, Keith Ryden (ed.),
<http://portal.opengeospatial.org/files/?artifact_id=829>.

[XML-SCHEMA] W3C (May 2001), XML Schema Part 0: Primer, David C. Fallside
(ed.), <http://www.w3.org/TR/xmlschema-0/>.

[ZIP] PKWARE (April 2005), ZIP File Format Specification,
<http://www.pkware.com/business_and_developers/developer/popups/appnote.txt>.

	1 Scope
	2 Conformance
	3 Normative references
	4 Terms and definitions
	5 Conventions
	5.1 Requirement levels
	5.2 Symbols (and abbreviated terms)

	6 Encoding formats
	6.1 Binary-encoding formats
	6.2 Data-compression formats
	6.3 Complete format list

	7 Coordinate-value precision
	8 Network environments
	8.1 Local filesystem
	8.2 LAN and Internet environments with WFS
	8.3 WFS integration
	8.4 External codec
	8.5 Limited-bandwidth network

	9 Scalability
	10 Testing approach and environment
	10.1 Sample application
	10.2 Test data
	10.3 Testing methodology
	10.4 Testing environment
	10.5 Testing tools
	10.6 Local-file-system testing
	10.7 Network simulation
	10.8 WFS simulation

	11 VMAP0-data testing
	11.1 Local file-system testing
	11.1.1 Built-up areas
	11.1.1.1 Reading
	11.1.1.2 Reading alternate formats
	11.1.1.3 Writing
	11.1.1.4 Plotting

	11.1.2 Inland water bodies
	11.1.2.1 Reading
	11.1.2.2 Writing
	11.1.2.3 Plotting

	11.1.3 Elevation points, single precision
	11.1.3.1 Reading
	11.1.3.2 Reading alternate formats
	11.1.3.3 Writing
	11.1.3.4 Plotting

	11.1.4 Elevation points, double precision
	11.1.4.1 Reading
	11.1.4.2 Writing

	11.1.5 Water courses, single precision
	11.1.5.1 Reading
	11.1.5.2 Reading alternate formats
	11.1.5.3 Writing
	11.1.5.4 Plotting

	11.1.6 Water courses, double precision
	11.1.6.1 Reading
	11.1.6.2 Writing

	11.1.7 Contour lines
	11.1.7.1 Reading
	11.1.7.2 Writing
	11.1.7.3 Plotting

	11.1.8 Conclusions

	11.2 LAN testing with high-performance simulated WFS
	11.2.1 Built-up areas
	11.2.2 Inland water bodies
	11.2.3 Elevation points, single precision
	11.2.4 Elevation points, double precision
	11.2.5 Water courses, single precision
	11.2.6 Water courses, double precision
	11.2.7 Contour lines
	11.2.8 Conclusions

	11.3 LAN testing with relational-database WFS
	11.3.1 Built-up areas
	11.3.2 Inland water bodies
	11.3.3 Elevation points, single precision
	11.3.4 Elevation points, double precision
	11.3.5 Water courses, single precision
	11.3.6 Water courses, double precision
	11.3.7 Contour lines
	11.3.8 Conclusions

	11.4 Internet testing with simulated high-performance WFS
	11.4.1 Built-up areas
	11.4.2 Inland water bodies
	11.4.3 Elevation points, single precision
	11.4.4 Elevation points, double precision
	11.4.5 Water courses, single precision
	11.4.6 Water courses, double precision
	11.4.7 Contour lines
	11.4.8 Conclusions

	11.5 Internet testing with relational-database WFS
	11.5.1 Built-up areas
	11.5.2 Inland water bodies
	11.5.3 Elevation points, single precision
	11.5.4 Elevation points, double precision
	11.5.5 Water courses, single precision
	11.5.6 Water courses, double precision
	11.5.7 Contour lines
	11.5.8 Conclusions

	11.6 Dial-up testing
	11.6.1 Measured results
	11.6.2 Extrapolated results
	11.6.3 Conclusions

	12 MSD3-data testing
	12.1 Local file-system testing
	12.1.1 MSD3 aggregation, 3D
	12.1.2 MSD3 aggregation, 2D
	12.1.3 AAL015
	12.1.4 LAP030
	12.1.5 PAL015
	12.1.6 Conclusions

	12.2 LAN testing
	12.2.1 MSD3 aggregation, 3D
	12.2.2 MSD3 aggregation, 2D
	12.2.3 AAL015
	12.2.4 LAP030
	12.2.5 PAL015
	12.2.6 External codec
	12.2.7 Conclusions

	12.3 Internet testing
	12.3.1 MSD3 aggregation, 3D
	12.3.2 MSD3 aggregation, 2D
	12.3.3 AAL015
	12.3.4 LAP030
	12.3.5 PAL015
	12.3.6 External codec
	12.3.7 Conclusions

	12.4 Dial-up testing
	12.4.1 MSD3 aggretation, 3D
	12.4.2 MSD3 aggregation, 2D
	12.4.3 AAL015
	12.4.4 LAP030
	12.4.5 PAL015
	12.4.6 Conclusions

	13 GML issues
	13.1 The trouble with application schemas
	13.2 GML MeasureType
	13.3 GML streamability
	13.3.1 Mid-stream errors
	13.3.2 Bounding envelope
	13.3.3 Feature interleaving

	14 Conclusions
	14.1 Local file-system testing
	14.2 LAN testing
	14.3 Internet testing
	14.4 Dial-up testing

