
OGC 03-064r1

File name: 03-064r1.doc

Open GIS Consortium Inc.

Date: 2003-06-03

Reference number of this OpenGIS© project document: OGC 03-064r1

Version: 0.2.0

Category: OpenGIS© Implementation

Editor: Phillip C. Dibner, Ecosystem Associates / OGC

GO-1 Application Objects Draft Interoperability Program Report

Copyright notice

This OGC document is a draft and is copyright-protected by OGC. While the
reproduction of drafts in any form for use by participants in the OGC standards
development process is permitted without prior permission from OGC, neither this
document nor any extract from it may be reproduced, stored or transmitted in any
form for any other purpose without prior written permission from OGC.

Warning

This document is not an OGC Standard. It is distributed for review and comment. It
is subject to change without notice and may not be referred to as an OGC Standard.

Recipients of this document are invited to submit, with their comments, notification
of any relevant patent rights of which they are aware and to provide supporting
documentation.

Document type: OpenGIS® Interoperability Program Report
Document stage: Draft
Document language: English

OGC 03-064r1

ii © OGC 2003 – All rights reserved

Contents

i. Preface ... iv

ii. Submitting organizations... iv

iii. Submission contact points ... iv

iv. Revision history ... v

v. Changes to the OpenGIS Abstract Specification ... v

vi. Future Work .. v

Foreword ...viii

Introduction .. ix

1 Scope... 1

2 Conformance.. 1
2.1 Types of Conformance .. 1
2.2 Display Object Conformance ... 2
2.3 Information Object Conformance ... 2
2.4 OGC Service Conformance .. 3

3 Normative references .. 3

4 Terms and definitions ... 3

5 Conventions.. 3
5.1 Symbols (and abbreviated terms) .. 3
5.2 UML Notation.. 4

6 Application Object Definitions... 6
6.1 Display Objects.. 6
6.1.1 Canvas .. 6
6.1.2 Control.. 10
6.2 Graphical Data Objects .. 12
6.2.1 Graphic... 14
6.2.2 GraphicStyle .. 21
6.3 Information Objects.. 23
6.3.1 Geometry.. 24
6.3.2 Feature.. 34
6.3.3 OGC Styled Layer Descriptor.. 36
6.3.4 Coordinate Reference System .. 36
6.4 Service Objects .. 46
6.4.1 Data Service Objects ... 46
6.4.2 Portrayal Service Objects... 46

OGC 03-064r1

© OGC 2003 – All rights reserved
iii

6.4.3 Processing Service Objects ... 47

7 Behaviours.. 47
7.1 Adding information to a display .. 47
7.2 Mouse click selects graphical object. ... 48
7.3 Graphic object is instantiated from a Geometry and an SLD. 50
Annex A (normative) Application Objects Programming Interface for Java 52

Bibliography .. 53

OGC 03-064r1

iv © OGC 2003 – All rights reserved

i. Preface

This document is a draft of the OpenGIS“ Application Objects Implementation
Specification, hereinafter “AOS”. The AOS is one of a family of specifications that
make up the OGC Geographic Objects activity. The Geographic Objects Initiative was
established to develop an open set of common, lightweight, language-independent
abstractions for describing, managing, rendering, and manipulating geometric and
geographic objects within an application programming environment. This document
defines that set of vendor-neutral, Object-Oriented geometric and geographic object
abstractions. It provides both an abstract object specification (in UML) and a JAVA
specific profile to that that specification. The language-specific binding specifications
themselves serve as open Application Programmer Interface (API) specifications for
these Application Objects.

ii. Submitting organizations

The following organisations submitted this Implementation Specification to the Open
GIS Consortium Inc. in response to the OGC Call for Participation (CFP) in the
Geographic Objects Phase One (GO-1) Initiative:

a) Polexis

b) Northrop Grumman Information Technology

c) Pennsylvania State University

iii. Submission contact points

All questions regarding this submission should be directed to the editor or the submitters:

CONTACT COMPANY ADDRESS PHONE/FAX EMAIL

Eric Bertel Polexis eric@polexis.com

John Davidson Image Matters
LLC/OGC

 johnd@imagematte
ll

OGC 03-064r1

© OGC 2003 – All rights reserved
v

CONTACT COMPANY ADDRESS PHONE/FAX EMAIL
LLC/OGC rsllc.com

Phillip C. Dibner Ecosystem
Associates/OG
C

 pcd@ecosystem.co
m

Charles Heazel OGC cheazel@opengis.o
rg

Ava Mann Northrop
Grumman IT

 amann@northropgr
umman.com

James MacGill Penn. State
Univ.

 jmacgill@psu.edu

iv. Revision history

Date Release Author Paragraph modified Description

19 May 03 0.1.9 P. Dibner First public draft

03 June 03 0.2.0 P. Dibner Cleanup for June 2003 TC

v. Changes to the OpenGIS Abstract Specification

The OpenGIS© Abstract Specification does not require changes to accommodate this
OpenGIS© standard.

vi. Future Work

The Application Objects specification currently defines a set of core packages that
support the management of Features, a small set of Geometries, a basic set of renderable
Graphics that correspond to those Geometries, 2D device abstractions (displays, mouse,
keyboard, etc.), and supporting classes. Implementation of these APIs will support the
needs of many users of geospatial and graphic information. These APIs support the
rendering of geospatial datasets, provide fine-grained symbolization of geometries, and
support dynamic, event and user driven animation of geo-registered graphics.

OGC 03-064r1

vi © OGC 2003 – All rights reserved

We anticipate the need for extensions to this specification to support more specialized
applications. It is likely that the core packages will warrant some granular enhancements,
which would constitute revisions to the specification. Some extensions, however, will
constitute major new capability areas. Implementing these extensions as a revision to this
Application Objects specification would not be advisable, especially if the extension
introduces a capability that not all implementers would want to support. These new
capability areas should be defined in separate "extension" specifications that include the
core specification by reference. Implementations would be declared compliant with one
or more of these extensions, and consumers could choose a product that meets their
applications' need.

We recommend that future work on new Application Object-dependent specifications be
considered for the following extensions:

• 3D - to support 3D Geometries and 3D Graphics for objects such as surfaces and
solids, perhaps the integration of standard 3D models such as VRML, and other 3D
concepts.

• Advanced 2D - to support the more advanced 2D Geometries and 2D Graphics
including those defined by ISO 19107.

• Immediate Mode Rendering - to add an optional "call back" method to allow the
application programmer to render Graphics using lightweight, transient calls during
the physical rendering process (which is useful to support the rendering of extensive
amounts of graphical information, but not easily supported by some implementations,
such as distributed or client/server map engines). This allows an application
programmer reuse Geometry and Graphics objects to render many similar items (e.g.,
thousands of LineStrings) and avoid the overhead of modelling them in memory,
prior to render time. In addition to the performance considerations, this also allows
for scale and location-dependent rendering to be done by the application, such as
rendering sparse representations of gridded data, where application logic must be
used to calculate the correct placement of the graphics.

• Additional data sources - GO-1 has been architected to accommodate non-geospatial
data models. The integration of non-GIS information models (engineering, modelling
and simulation, etc.) into the GO-1 framework should be pursued.

We recommend that future work on new Application Object core specification be
considered in the following areas:

• Relative Coordinates - It remains to be explored whether there are CRS, especially
well-known or easily constructed ones, for which the GO-1 approach for relative
coordinates would lead to inconsistencies or other unanticipated consequences.

• A more extensive investigation into the differences in requirements and capabilities
of graphical vs. analytic geometry descriptions.

OGC 03-064r1

© OGC 2003 – All rights reserved
vii

Furthermore, we recommend that the work from GO-1 be considered for inclusion in the
following OGC work areas:

• SLD - The GO-1 GraphicStyle can express certain concepts not found in SLD
(e.g. Viewability, Editability, Highlight, ArrowStyle, FillStyle,
FillPattern). The SLD specification should be expanded to express these
concepts.

OGC 03-064r1

viii © OGC 2003 – All rights reserved

Foreword

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open GIS Consortium Inc. shall not be held responsible
for identifying any or all such patent rights.

This document consists of the following parts, under the main body:

• Clause 1: Scope

• Clause 2: Conformance

• Clause 3: Normative references

• Clause 4: Terms and definitions

• Clause 5: Conventions

• Clause 6: Design and Specification for Application Objects

• Clause 7 Behaviours

• Annex Documents: Detailed Implementation Specifications for Application Objects
in External, Javadoc Documents

• Bibliography

OGC 03-064r1

© OGC 2003 – All rights reserved
ix

Introduction

This document describes architectural and implementation issues concerning the
development of a suite of software objects that facilitate the development of applications
with geospatial content, as elucidated during the Geographic Objects Phase 1 Initiative
(GO-1) conducted under the auspices of the Open GIS Consortium Interoperability
program (OGC IP). The particular implementation focus of this initiative is interface
definition and code organisation in the Java programming language.

DRAFT OpenGIS© Specification OGC 03-064r1

© OGC 2003 – All rights reserved
1

OpenGIS© Interface — Application Objects

1 Scope

This OpenGIS document describes the specification for Application Objects. These are
the Java implementations of objects and interfaces that can be used to implement
geospatial applications.

2 Conformance

Although a discussion of conformance is not a requirement for an OGC IP IPR, DIPR, or
Discussion Paper, we provide one here in the anticipation that this document will be
promoted as a draft specification.

2.1 Types of Conformance

This document recognises two broad categories of conformance. API conformance is the
ability of an application to invoke all of the required operations without any unexpected
returned values or states. API conformance does not require that the component actually
do anything. Functional conformance says not only that the required operations can be
invoked, but that the component performs the operations in a standard and universally
understood manner.

Because the GeoAPI is intended to be used in a wide range of deployment environments,
The primary focus of this document is upon API conformance. API conformance can be
specified and tested in a manner that is implementation-neutral. When an operation is
invoked, it either succeeds, or fails to produce the intended result. There is no ambiguity.

Functional conformance is more difficult and far more implementation-dependent. What
is acceptable in one environment may not be adequate in another. For example, a high-
performance, low-power display might be designed to render lines in only a few colours
and styles. This would be inadequate for a more feature-rich unit used to develop
cartographic imagery. Such differences in functionality should be invisible to a generic
API. A rigid definition of functional conformance would limit component developers'
ability to tailor their products to the requirements of their respective developer
communities.

Even within the domain of API conformance, there is a wide spectrum of developer
objectives and corresponding application types. Not all of these would benefit by
incorporating every interface specified below. In the remainder of this, section we

OGC 03-064r1

2 © OGC 2003 – All rights reserved

describe various categories of conformance, and suggest the kinds of applications that
might benefit most from each one.

Crucial to this notion are the object classes and interfaces that form natural suites of
related functionality, or packages, that define the substance of the various conformance
classes. Certain suites, like the Information Objects, can be implemented as compliant
standalone object libraries. Others are dependent upon one or more other frameworks,
and compliant implementations of these must also comply with the specifications of the
frameworks on which they depend. To them conformance implies conformance to the
object suites upon which they depend as well.

Even within a framework, there is variation among environments as to which operations
and perhaps even which objects may be necessary or useful. Future versions of this
specification may provide additional flexibility to implementers by defining different
conformance profiles. Simpler profiles would offer less functionality, simpler
implementation, and fewer resource requirements than the more extensive profiles.

2.2 Display Object Conformance

The Display Objects described in this document include the Canvas, Graphic, Control,
and GraphicStyle. Controls provide user input to the Canvas. Graphics objects are the
entities that a Canvas manipulates and renders according to the styling attributes of a
GraphicStyle object. Together, they constitute the display subsystem of an application.

Display system conformance will confer a number of benefits upon applications that
implement it. Some of these benefits are:

1. Implementations will have a variety of architectural and design decisions already
made for them. They will implement patterns and benefit from best practices as
identified by participants in the GO-1 initiative.

2. Among the patterns of interest will be a consistent means of ingesting data from a
variety of sources, including OGC Features and related objects.

3. Users of these systems will find familiar user interaction paradigms and control
semantics as they move between applications.

4. Applications loosely coupled to their display subsystems may connect with any of a
number of local or remote displays, and may therefore provide a means to coordinate
control or share information among a variety of distributed sites.

5. Thus display system conformance confers interoperability with respect to the display
and user interface subsystem.

2.3 Information Object Conformance

Geometries, Features and Feature Collections, styling objects like SLDs, and related
entities constitute the information objects defined by GO-1. These build upon the body

OGC 03-064r1

© OGC 2003 – All rights reserved
3

of work that has resulted in the OGC Simple Features specifications, ISO-19107, and
several OGC Discussion and Recommendation Papers.

Direct support of data objects confers interoperability with local conforming data sources
and with remote services, like WFS, that provide an encoded stream of features per the
definitions in these documents.

2.4 OGC Service Conformance

An application may derive its data from one or more OGC data services as defined by
any of the OGC web data service specifications. It may also act as a client to
transformation or other processing services when they become available.

The OGC web services defined to date are effectively standalone. An application may
conform to any one of them independently, without necessarily conforming to others.

3 Normative references

The following normative documents contain provisions which, through reference in this
text, constitute provisions of this part of OGC 03-064. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. However, parties
to agreements based on this part of OGC 03-064 are encouraged to investigate the
possibility of applying the most recent editions of the normative documents indicated
below. For undated references, the latest edition of the normative document referred to
applies.

(Normative references are included in the Bibliography.)

4 Terms and definitions

For the purposes of this document, the terms and definitions given in Section 5.1 below
apply.

5 Conventions

5.1 Symbols (and abbreviated terms)

API Application Program Interface

COM Component Object Model

CORBA Common Object Request Broker Architecture

COTS Commercial Off The Shelf

OGC 03-064r1

4 © OGC 2003 – All rights reserved

CRS Coordinate Reference System

DCE Distributed Computing Environment

DCP Distributed Computing Platform

DCOM Distributed Component Object Model

GO-1 Geographic Objects, Phase 1

IDL Interface Definition Language

ISO International Organisation for Standardisation

OGC Open GIS Consortium

SLD Styled Layer Descriptor

SRS Spatial Reference System

UML Unified Modelling Language

XML eXtended Markup Language

1D One Dimensional

2D Two Dimensional

3D Three Dimensional

5.2 UML Notation

The diagrams that appear in this standard are presented using the Unified Modelling
Language (UML) static structure diagram. The UML notations used in this standard are
described in the diagram below.

OGC 03-064r1

© OGC 2003 – All rights reserved
5

Association between classes

role-1 role-2

Association Name
Class #1 Class #2

Association Cardinality

Class Only one

Class Zero or more

Class Optional (zero or one)

1..* Class One or more

n Class Specific number

Aggregation between classes

Aggregate
Class

Component
Class #1

Component
Class #2

Component
Class #n

……….

0..*

0..1

Class Inheritance (subtyping of classes)
Superclass

Subclass #1

…………..

Subclass #2 Subclass #n

Figure 1 - UML notation

In this standard, the following three stereotypes of UML classes are used:

a) <<Interface>> A definition of a set of operations that is supported by objects having
this interface. An Interface class cannot contain any attributes.

b) <<DataType>> A descriptor of a set of values that lack identity (independent
existence and the possibility of side effects). A DataType is a class with no
operations whose primary purpose is to hold the information.

c) <<CodeList>> is a flexible enumeration that uses string values for expressing a list of
potential values.

In this standard, the following standard data types are used:

a) CharacterString – A sequence of characters

b) Integer – An integer number

c) Double – A double precision floating point number

d) Float – A single precision floating point number

OGC 03-064r1

6 © OGC 2003 – All rights reserved

6 Application Object Definitions

6.1 Display Objects

Display objects mediate the dynamic interactions of geospatial, graphical, or other data
with the application. The particular role of such objects in the context of the present
specification involves interaction with end users: displaying the data on a user-viewable
device, and accepting user or programmatic input to control the application.

6.1.1 Canvas

6.1.1.1 General Description

The Canvas class defines a common abstraction for the display and user manipulation
of geospatial information. It contains and manages a collection of Graphic objects that
may be rendered as a map or represent features on a map, and maintains display context.
Instances of this class are created with a Factory pattern.

Figure 2 - Canvas and related classes

OGC 03-064r1

© OGC 2003 – All rights reserved
7

6.1.1.2 Output Device

A Canvas is associated with an output device such as a window or a portion of a
window on a display screen, or an image buffer. The Canvas is responsible for
intelligent handling of the viewable area of the window, including panning, zooming,
growing, and shrinking, repaints of "dirty" areas in the image due to external window
changes, and visual changes in the Graphics due to editing, animation, or filtering.

6.1.1.3 Input Device

A Canvas may be associated with one or more input devices such as a mouse, keyboard,
eye tracker, or gesture reader. These devices allow the user to manipulate the Graphic
objects held by the Canvas. The Canvas manages the input events from these devices.

6.1.1.4 Coordinate Reference System

The Canvas maintains two coordinate reference systems (CRS). The first Canvas
CRS is associated with the geometry of the display device. Most computer screens are a
rectangular array of pixels, and would use an XY or PixelCoordinate CRS. A
planetarium or IMAX theatre is a spherical display, and might require a spherical CRS.

The second Canvas CRS is associated with the geospatial data rendered by the
Canvas. This is typically the CRS for the rendered map. As Graphics are added to
the Canvas, the Canvas determines the CRS for each Graphic. If that CRS is
different from the Canvas geospatial CRS, then the Canvas uses a Coordinate
Transformation Service (CTS) to align the Graphic geometry properly with the map.
Any such transformations are private to the Canvas; the Graphic object as seen by
external entities does not change. The Canvas may implement such a CTS internally, or
use one or more external, possibly remote, services. This is a matter of implementation
only, and is invisible to clients of the Canvas.

A Canvas may support Relative Coordinates. While not mandatory, this feature can
confer significant advantages by allowing objects to be associated with one another while
only having to maintain and update the absolute position of one of them.

6.1.1.5 Z-Order and Rendering of Graphics

The Canvas controls the visual layering, or z-order, of the Graphic objects it contains.
The z-order allows Graphics to overlap and occlude each other in a controllable way.
The Canvas may optimise its display by not rendering Graphics that are fully
occluded.

Furthermore, when a location on the display is selected by an input device, the z-order
allows the Canvas to designate the topmost Graphic (i.e., the highest z-order value
for all Graphics at that coordinate location) as the object of interest.

OGC 03-064r1

8 © OGC 2003 – All rights reserved

In the general case of a distributed, asynchronous environment, the z-order cannot be
designated deterministically by software external to the Canvas. To maximise the
control of the situation, Graphics have a z-order hint that the application can set, and
the Canvas can read. When a Graphic is added to a Canvas, the Canvas gets the
Graphic's z-order hint and attempts to place the Graphic at that z-order location.
The z-order may assume a very large range of values, perhaps as many as a long integer.

6.1.1.6 Canvas State

Figure 3 - Canvas state and controls

To interact with the Canvas, outside entities must be aware of certain properties that
provide context for graphical operations. Collectively, these properties comprise the
Canvas state, and are contained in instances of CanvasState. This object describes
only the viewing area or volume of the Canvas, not any state or other information about
the data contained within it. When an instance of CanvasState is returned from
Canvas methods, it contains a "snapshot" of the current state of the canvas. Its values
never change, even if the state of the Canvas itself does.

For an XY display CRS, CanvasState consists of the following properties:

 * pixelWidth

 * pixelHeight

 * center

OGC 03-064r1

© OGC 2003 – All rights reserved
9

 * width

 * scale

 * boundingRectangle

Entities that are interested in reading Canvas state must implement the
CanvasListener interface. CanvasListener includes the canvasChanged()
method, which is called by a Canvas when its state has changed. The Canvas passes a
populated CanvasState data object to the canvasChanged() method.

If an entity needs to change the state of a Canvas, it must implement the
CanvasHandler interface. This interface provides a mechanism for multiple entities
to change Canvas properties without contention or deadlock. The Canvas enables
exactly one CanvasHandler at a time. When a CanvasHander is enabled, the
Canvas passes it a CanvasController, through which the entity can modify
Canvas state values. The CanvasController remains active until another
CanvasHandler is enabled.

6.1.1.7 Canvas Capabilities

Like many OGC services, the Canvas supports a getCapabilities operation that allows it
to describe the features it supports. An application attempting to use a given Canvas can
invoke this method to determine whether that Canvas is suitable for rendering its graphic
information, or whether it would have to do extra work in order to use the Canvas.

The getCapabilities method returns an object that implements the Capabilities interface.
This object may then be queried about support for specific features.

Among the kinds of information an application may discover are various types of
graphical rendering that the Canvas is capable of doing, e.g., kinds of stroke and fill
patterns available, support for blinking or backlighting, colour palette, line join styles and
end caps, etc.

It is also possible to ask whether a Canvas can accept Graphics in Coordinate Reference
Systems (CRS) other than its own current geospatial CRS. If so, it returns a reference to
a Coordinate Transformation Service (CTS) object, against which the client software may
invoke a getCapabilities query to learn which CRS the Canvas is able to accommodate.

A Canvas may also be queried to find out if it supports Relative Coordinates. Not all
displays are capable of dealing with them, and the query mechanism provides a way for
applications to become aware of such systems and deal with them gracefully.

Several classes associated with a Canvas are portrayed schematically in Figure 4.

OGC 03-064r1

10 © OGC 2003 – All rights reserved

6.1.2 Control

6.1.2.1 Input

6.1.2.1.1 Model and Rationale

The general paradigm for control by input devices is based on the Java Event Handling
system, and works as follows:

For each control device, there is specialized Event object type. When the device
changes state (e.g., a mouse button is pressed), the system sends an instance of that Event
to objects that have implemented and registered an EventListener interface for that
device.

The event-handling machinery for each device includes a stack of EventHandlers.
When the EventListener receives an Event, it passes it to the first Handler on the
stack. Each Handler implements specialized functionality – the system’s response to the
Event - that it executes when it receives an Event. Then it can either consume the
Event, or pass it on to the next Handler in the stack. Thus the response of the system to
a control input depends directly on the flow of Events through the Handler stack.

Figure 4 - Canvas and Associated Classes

Canvas
+addGraphic()
…

CanvasListener
+canvasChanged()

CanvasHandler
…

CanvasState
…

CanvasController
…

Datum

CoordinateSystem

CoordinateReferenceSystem
CoordinateConvertor

OGC 03-064r1

© OGC 2003 – All rights reserved
11

An EventManager interface allows the application to control which Handlers are on
the stack, and in which order. This flexible arrangement allows the application to
establish different modal responses for different states of the system, such as selection
mode vs. editing mode.

There is also a ManagerSupport object that actually implements several of these
interfaces, and does the real work that allows this input model to function.

This design is explained in greater detail in the following sections.

6.1.2.1.2 GO-1 Event Management

The GO-1 model for responding to user-actuated controls, programmatic state changes,
and other asynchronous events is mediated through a general-purpose framework based
on the Java Event Handling system. In the Java model, a physical or programmatic
change constitutes an event, which is represented by an Event object that contains
information about the event and identifies the source of the event. Objects can
implement an appropriate EventListener interface and register with the event source
(also represented by an object, the EventSource) in order to receive events generated
by that source. Some event sources, such as those that generate mouse or keyboard
events, are present by default in the underlying system. Others may be implemented in
the application or in library packages. Event sources per se are not a part of the response
system documented here, but they motivate one important aspect of its organisation: for
each source in a GO-1 implementation there is an event handling subsystem whose
structure is described by the following paragraphs.

6.1.2.1.3 ManagerSupport Object

There is one instantiable class dedicated to each event management chain: a
ManagerSupport class, typically named after the control that it supports:
MouseManagerSupport, KeyManagerSupport, etc.

Each ManagerSupport object implements an EventListener subinterface
appropriate to its event source, and registers as a listener for that source. Consequently, it
receives Events for that source. However, it does not respond to them directly.
Instead, it manages a stack of EventHandlers (through its EventManager
interface; see below) and passes Events it receives to one or more Handlers on the
stack.

6.1.2.1.4 EventHandler Stack

For each event chain, there is at least one EventHandler object. The Handlers do the
actual work of mediating the system’s response to an event. For example, a
MouseHandler implements a mouseClicked() operation that may cause an object
to be selected or highlighted.

OGC 03-064r1

12 © OGC 2003 – All rights reserved

Like the ManagerSupport object, a GO-1 Handler implements the
EventListener interface appropriate to its source, but it does not register as a
listener. Instead, it implements the interface in order to inherit (and perhaps override) the
relevant event handling methods.

As noted above, each Support object has a stack of Handlers. When it receives an
event, the Support object invokes the appropriate action method against the top
Handler on the stack. The Handler performs whatever specialized function this method
implements, and then either consumes the event or returns it. In the latter case, the
Support object invokes the method against the next handler on the stack, and so on
until the event is consumed. Thus an event may trigger a series of responses that varies
according to the arrangement of EventHandlers on the stack. This mechanism may
be used to implement modal behaviours in response to input events, such as a change
from selection behaviours to editing behaviours in the application’s response to mouse
gestures.

6.1.2.1.5 EventManager

The ManagerSupport object also implements a subclass of the EventManager
interface. EventManagers are concerned primarily with maintaining the stack of
Handlers. They have methods to enable, push, pop, find, remove, and replace Handlers
on the stack. Thus EventManager is the interface through which modal changes in the
response to an event are mediated.

Much of the user input will be processed by the Canvas, which has its own specialized
variation of this structure. The Graphic class, described under Graphical Data Objects
below, also has a structure that differs in some respects from the above. These differences
are described in the following two sections.

6.1.2.2 Canvas Control

Control issues affecting and implemented by the Canvas class are discussed above in
Section 6.1.1.6, Canvas State.

6.1.2.3 Graphics Control

Graphics control does not differ greatly from generic control issues except that several
events can occur essentially in parallel. Graphical events are received by objects that
implement GraphicListener. The default class that does this is
GraphicListenerSupport, which is also able to fire Events that are sent to input
event management objects.

6.2 Graphical Data Objects

A graphical rendering environment differs from a general geospatial processing
environment in several respects. For one thing, due to their inherently limited resolution

OGC 03-064r1

© OGC 2003 – All rights reserved
13

and other physical constraints, raster display devices can only accurately depict a limited
set of geometries. For another, each display device and corresponding software system
may have its own notion of how to style the objects that it renders.

The most significant differences are more general, and incorporate the above particulars.
Displays are often compact, high-performance, and necessarily specialized devices that
raise issues familiar from the earlier days of general-purpose computing. Very robust,
immensely flexible, and therefore large object systems intended to meet every possible
functional requirement are both irrelevant and overly expensive in terms of memory
requirements and processing overhead. Items that constitute the primary focus of
functionality in a general context, such as a map, may be nothing more than a graphical
background in a display system.

The classes described here are therefore lighter weight and less general than the ISO
Geometry classes described in Section 6.3, the OGC Abstract Specification, and ISO
document 19107. Nonetheless, they seek to retain the semantics and many of the
behaviours of objects already defined by published or existing OGC standards. Where
appropriate, they are defined as restrictions of the more general objects, and are typically
instantiated via factory objects that take corresponding general-purpose information
objects as arguments.

OGC 03-064r1

14 © OGC 2003 – All rights reserved

6.2.1 Graphic

Figure 5 - Graphic

6.2.1.1 General Description

Graphic objects contain the information needed by a Canvas to create a visual display.
Similar in some respects to a Java 2 Shape, they contain geometric data, styling
information (See GraphicStyle, Section 6.2.2), and geospatial coordinate location.

There are two broad categories of Graphics: primitives and aggregates. Primitive types
are subclassed directly from Graphic, and include GraphicLineString,
GraphicScaledImage, GraphicIcon, GraphicArc, and GraphicLabel.
Aggregates are collections of primitives.

A Canvas knows how to read the attributes and geometric data from each Graphic type,
and how to apply the styling information in the Graphic to create a visual
representation. Graphics also contain a z-order hint, which the Canvas uses to help
manage visual layering of the Graphics it displays.

OGC 03-064r1

© OGC 2003 – All rights reserved
15

Graphic objects are instantiated with a Factory pattern.

6.2.1.2 Primitives

Figure 6 - Graphic Styles

The palette of primitive shapes available to a Graphic is limited to a set that is sufficient
for manipulation and rendering in graphical environments. Graphic objects themselves
are subclassed according to the kind of geometry that they implement, and include the
following:

GraphicLineString. This class defines common abstractions for implementations
of 1-dimensional lines made of one or more line segments, as well as closed polygons
made of a closed set of three or more line segments. A settable attribute determines
whether the linestring is closed.

OGC 03-064r1

16 © OGC 2003 – All rights reserved

GraphicScaledImage provides an abstraction for implementing projected images
defined by an upper left and a lower right point. This class includes methods for setting
the image transparency and intensity as well as the image data. There are also methods
for setting and getting a string that specifies the Spatial Reference System (SRS) that is to
create the image that this object represents. The format of this string is as specified in the
OGC Web Map Server Interfaces Implementation Specification, Revision 1.1.0, section
6.5.5.

GraphicIcon defines a common abstraction for implementations that render icons on
a drawing surface. The position of the icon is idealised as a single point attribute, and the
location at which it is actually rendered is specified by another attribute as a pixel offset
from the icon’s upper left corner. Other attributes control the icon’s rotation.

Figure 7 - Graphic Arc

GraphicArc provides definitions for closed circles and ellipses, as well as circular or
elliptical arcs. Various settable attributes control its size, width, height, and orientation,
and whether the object can be rotated or resized by the user.

6.2.1.3 Aggregates

This specification describes three kinds of aggregate graphical entities.

OGC 03-064r1

© OGC 2003 – All rights reserved
17

Figure 8 - Aggregate Graphics

AggregateGraphic defines a common abstraction for implementations of aggregated
Graphic objects. This abstraction makes no assumptions about how the Graphics
are stored within the aggregate. For example, the Graphics may be stored in an array
such that the Graphic in the zeroeth element of the array is considered the frontmost
(highest z-order) object and the Graphic in the largest element of the array is
considered the bottommost (lowest z-order) object. Alternatively, the Graphics may be
stored in a more efficient data structure.

This abstraction makes no assumptions about thread safety. Implementations of
Graphic that are to be used in a multi-threaded environment must address thread safety
by using synchronised methods or by invoking all methods from a single thread.

OrderedAggregateGraphic extends the AggregateGraphic interface to add
the ability for the user to specify a stacking order or Z-order. When the objects contained
in this aggregate are drawn, they should be drawn in the order they appear in the list of
children, starting with index 0.

CompositeCurveGraphic extends the Graphic class to accommodate the creation
of open or closed continuous curves of arbitrary type. The aggregate is ordered, and the
end point of each element in the aggregate is the beginning point of the next one. This
interface includes methods to add, insert, remove, and replace component Graphics
within this sequence.

GraphicRing is a graphical representation of a Ring geometry. GraphicRing can
be explicitly composed of other Graphic objects (via the methods inherited from

OGC 03-064r1

18 © OGC 2003 – All rights reserved

CompositeCurve), or can get its geometry information directly from a Ring (via the
setGeometryFrom() method).

GraphicPolygon is a graphical representation of a Polygon geometry.
GraphicPolygon can be explicitly composed from GraphicRing objects, or can
get its geometry information directly from a Polygon geometry. If a
GraphicPolygon is generated by the aggregation of GraphicRings, it is left up to
the implementation to ensure that the equivalent Polygon geometry is topologically
correct (i.e. the constituent Rings do not touch or overlap).

6.2.1.4 Graphic Object Creation

Graphic objects are created by invocation of the relevant creation method against a
GraphicFactory. The Factory pattern, which is used extensively throughout GO-1,
insulates client code from all details of the created class internals. Graphic creation
methods may instantiate Graphic objects based on ISO 19107 geometries presented to
them, but they may also be created using Shapefiles, or other formats for setting the
geometry and geospatial location of a Graphic.

6.2.1.5 Graphic and ISO Geometries

Each primitive Graphic class has a related primitive Geometry class. The virtual
coordinate set of the Graphic class is generated by a direct transformation of the
concrete Coordinate set of the corresponding Geometry class. Hence a GraphicArc
object can be generated from a GeometryArc object, but not from a
GeometryPolyline object.

The relationships between the Graphic objects and ISO Geometry objects are
indicated in Table 1:

Graphic Geometry Equivalent (ISO 19107)

member type -

GraphicIcon Position plus Bearing

position DirectPosition Position

rotation Orientation Bearing

isAllowingRotation boolean n/a

icon java.swing.Icon n/a

offset PixelCoordinate n/a

GraphicLabel Position plus Bearing

position DirectPosition Position

rotation Orientation Bearing

OGC 03-064r1

© OGC 2003 – All rights reserved
19

Graphic Geometry Equivalent (ISO 19107)

member type -

isAllowingRotation boolean n/a

text java.lang.String n/a

x/y anchors enumeration n/a

GraphicLineString LineString

points[] DirectPosition[] DirectPosition[] -> Position[] -> PointArray -> LineString

pathType java.lang.String interpolation

isAllowingNewVerteces boolean n/a

isClosed boolean n/a

GraphicScaledImage Envelope

upperLeft DirectPosition Envelope.Position

lowerRight DirectPosition Envelope.Position

image java.awt.Image n/a

SRS java.lang.String OGC work item - See sections 6.3 and 5.2

transparency int n/a

intensity int n/a

GraphicArc Conic as ellipse (eccen < 1) plus Three Angles

center DirectPosition Position - ((semiLR * eccen)/((1 - eccen^2)^0.5)), shift=false

width double, Units (2 * semiLR)/(1 - eccen^2)

height double, Units (2 * semiLR)/((1 - eccen^2)^0.5)

orientation Orientation Bearing

start Orientation Bearing

end Orientation Bearing

closureType java.lang.String LineString

pathType java.lang.String interpolation

isAllowingExtentsChange boolean n/a

isAllowingRotation boolean n/a

Table 1 - Relationship of Graphics to ISO Geometry

6.2.1.6 Path Type

Path types describe how lines are rendered with respect to the surface of the earth. The
categories of path type are:

• Global

OGC 03-064r1

20 © OGC 2003 – All rights reserved

• Unprojected

• Vector

The Global path type methods calculate a path between two locations, considering the
shape of the earth. The in-between points of the path satisfy two conditions:

1. The in-between points are the same regardless of the way the current path is displayed
(i.e., the path is independent of map projection, Canvas, or other considerations
affecting rendering or portrayal).

2. The in-between points are calculated along a surface that the points are projected
onto, such as the surface of the earth.

The second condition implies that altitude is not taken into account when calculating
Global paths. Hence, paths of this type are well suited for navigation of surface ships or
vehicles.

This specification defines four path types:

• Great Circle Ellipsoidal

• Great Circle Spherical

• Rhumbline Ellipsoidal

• Rhumbline Spherical

Great circle uses the shortest line on the surface of the earth, assuming either a spherical
or an ellipsoidal earth model. Rhumbline uses a line of constant bearing along the
surface of the earth, also using either a spherical or an ellipsoidal model.

The Unprojected path type methods calculate a path between two locations, not
considering the shape of the earth, but considering the surface of the canvas.

The methods are:

• Pixel Straight

• Continuous Spline

Pixel straight connects each sequential point with the shortest line on the Canvas.
Continuous Spline uses an interpolation method to connect more than two points.

The Vector path type considers the surface of the earth, but connects sequential point
locations with the shortest direct line, even if it travels below the surface of the earth.

OGC 03-064r1

© OGC 2003 – All rights reserved
21

6.2.1.7 Relative Coordinates

A "relative coordinate" is an absolute coordinate in a relative Coordinate Reference
System (CRS). A "relative CRS" is a Derived CRS of type Engineering or Image. The
derived CRS does not have a datum, but instead has an a conversion from another CRS.
If this conversion is defined to include a non-null spatial translation and/or rotation, then
the first CRS is relative to the second CRS.

Examples of relative coordinates from a Derived CRS of type Engineering are XY, XYZ,
and RangeBearing. An example of a relative coordinate from a Derived CRS of type
Image is a Pixel coordinate.

6.2.1.8 Relationship to GraphicStyle

Graphics may have a GraphicStyle object that allows them to be visually
decorated. This relationship is discussed more fully under GraphicStyle, in Section
6.2.2.1, “Relationship to Graphic.”

6.2.2 GraphicStyle

6.2.2.1 Relationship to Graphic.

The GraphicStyle class allows a Graphic to be visually decorated.

Each Graphic instance can have zero or one instances of GraphicStyle, but a
GraphicStyle instance may be referenced by at most one Graphic instance.

If a Graphic does not have a reference to a GraphicStyle, then the Graphic
uses the GraphicStyle information of either its parent Graphic (the nearest
containing Graphic instance) or if it is not contained by another Graphic, the default
Canvas GraphicStyle instance.

6.2.2.2 Relationship to OGC SLD

The taxonomy of the GraphicStyle classes has been developed to be as symmetric
as possible with SLD. Ideally, the SLD Symbolizers would correlate to Graphics,
however, since three Graphic classes (GraphicLineSegment, GraphicArc, and
CompositeCurveGraphic) can be either topologically open or closed, there is no
direct mapping. Therefore GraphicStyle extends all components referenced by the
Symbolizer interfaces [ref GraphicStyle class diagram.] The Symbolizer
interfaces are provided for illustration and as a reference point for future development of
the GO-1 specification.

Furthermore GraphicStyle can express certain concepts not found in SLD (e.g.
Viewability, Editability, Highlight, ArrowStyle, FillStyle,
FillPattern). It is recommended that the SLD specification be expanded to express
these concepts.

OGC 03-064r1

22 © OGC 2003 – All rights reserved

6.2.2.3 GraphicStyle superinterfaces

GraphicStyle extends all of the following interfaces: Stroke, Fill, Point,
LabelPlacement, Halo, Font, Viewability, Editability, and
Highlight.

* Stroke is closely related to SLD Stroke in that it decorates lines.

* Fill is closely related to SLD Fill in that it decorates polygonal areas.

* Point is closely related to the SLD Point Symbolizer in that it decorates icons.

* LabelPlacement is closely related to the SLD Text Symbolizer Line
Placement component.

* Halo is closely related to the SLD Text Symbolizer Halo component.

* Font is closely related to the SLD Text Symbolizer Font component.

* Viewability allows a Graphic to be made unconditionally invisible, or
conditionally invisible based on a range specified by maxScale and/or minScale. If
maxScale is set, and the Canvas exceeds that scale, the Graphic is made invisible.
Similarly if minScale is set and the Canvas drops below that scale, the Graphic is
made invisible. This in/visibility does not change the transparency values of
GraphicStyle components, but instead overrides their effect. The z-order hint is used
by the Canvas to place the Graphic in the z-order [see the Canvas section].

* Editability allows the Graphic to be edited.

* Highlight controls whether a Graphic can blink, and if so, at what rate.

6.2.2.4 Graphic-to-GraphicStyle superinterface usage

The following Graphic classes are decorated by the listed superinterfaces of
GraphicStyle:

* Graphic: Viewability, Editability (optional), Highlight (optional).

* GraphicLineString (opened), GraphicArc (opened): Stroke (and Fill, by
reference).

* GraphicLineString (closed), GraphicArc (closed): Stroke, Fill.

* GraphicLabel: LabelPlacement, Halo, Font, Fill.

* GraphicIcon: Point (and both Stroke and Fill, by reference).

OGC 03-064r1

© OGC 2003 – All rights reserved
23

6.2.2.5 GraphicStyle inheritance

When a Graphic object is instantiated by a DisplayFactory, the Graphic
object has a unique GraphicStyle object instantiated and associated with it.

A GraphicStyle object has all possible stylings, because if its associated Graphic
aggregates other Graphic objects, those objects may inherit styling from the
GraphicStyle object. Since the actual geometry of the aggregated Graphics are
not known, GraphicStyle must carry all known types of styling information.

A GraphicStyle object inherits styling by calling
GraphicStyle.setInheritStyle(true). It will inherit styling from its
aggregating object.

A Graphic can force its aggregated Graphic objects to inherit its style by setting
GraphicStyle.setOverrideAggregatedGraphics(true). This will force
the aggregated Graphic objects to be rendered with the GraphicStyle of the
aggregating Graphic, but will not change the GraphicStyle objects corresponding
to each of the aggregated Graphic objects. This case will occur even if an aggregated
Graphic has the setting GraphicStyle.setInheritStyle(false).

6.3 Information Objects

Information objects are those that contain geometric, geolocation, attribute, and general-
purpose styling information. They may appear both in the service space, i.e., on servers,
encoded on the wire, within the data space of running applications, and also within and
under the control of display systems where they may be used to provide geometric or
styling information to Graphic objects.

This specification recognises that these two environments may have substantially
different requirements. In a general geoprocessing environment, there is a need for great
generality and robustness in the face of widely varying uses. Classes that conform to
existing published OGC standards substantially meet these requirements. These are the
topic of the present section.

Object definitions that meet the less extensive, but in some respects more demanding
needs of a graphical display environment are presented in Section 6.2 above, Graphical
Data Objects.

The material described in the present section is the focus of an ongoing, separate work
item of the GO-1 Initiative. Most of the Java packages and interface suites discussed here
were developed directly from formal UML models, using automated tools, as part of an
assessment and demonstration of the Model Driven Architecture (MDA) approach for
specification and interface development. This work will be reported more extensively in
another document. The following sections provide a brief overview of the results of
these efforts.

OGC 03-064r1

24 © OGC 2003 – All rights reserved

6.3.1 Geometry

GO-1 supports a “simple geometry” profile of the robust model for geospatial geometry
developed and published by the International Standards Organisation as ISO document
19107. [6] The ISO model provides an implementable, international standard for
geometry. This model has been implemented, with some minor changes, in the Open GIS
Consortium Geographic Markup Language (GML) specification version 3.0. [11]

ISO 19107 is an all-inclusive model, intended to address the most demanding needs of a
geospatial application. Many applications, in particular graphics subsystems, do not need
the full capabilities of this model. The sections below identify the components of the full
ISO 19107 Geometry model that are the focus of GO-1.

GO-1 has adopted a subset of ISO 19107 Geometry for handling simple 0, 1 and 2
dimensional geometric primitives. The full semantic and detailed structure of these
geometries are documented in the ISO-19107 specification. Context diagrams and brief
descriptions of the geometries most relevant to GO-1 requirements are provided below.

Note: GO-1 Geometry object definitions described here were developed directly from the
ISO 19107 UML models in a GO-1 work item intended to provide a demonstration and
assessment of the Model Driven Architecture (MDA) approach and tools for specification
and interface development. The results of this activity are reported in more detail in a
separate document.

Figure 9 - Top-Level classes of GO-1 Geometry

OGC 03-064r1

© OGC 2003 – All rights reserved
25

Figure 9 depicts the top-level Java interfaces of the GO-1 Geometry model. These Java
interfaces are auto-generated directly from the ISO 19107 Geometry models. The
highlighted interfaces (Point, Curve, Surface and Aggregate) are the top-level interfaces
for the key geometries that are the focus of GO-1: Point, LineString, Polygon and
aggregates of these. These interfaces are briefly described below.

GeometryRoot is the root class of the geometric object taxonomy and supports
interfaces common to all geographically referenced geometric objects. GeometryRoot
instances are sets of direct positions in a particular coordinate reference system. A
GeometryRoot can be regarded as an infinite set of points that satisfies the set
operation interfaces for a set of direct positions, TransfiniteSet<DirectPosition>.

Primitive is the abstract root class of the geometric primitives. Its main purpose is to
define the basic "boundary" operation that ties the primitives in each dimension together.
A geometric primitive (Primitive) is a geometric object that is not decomposed
further into other primitives in the system. This includes curves and surfaces, even
though they are composed of curve segments and surface patches, respectively. This
composition is a strong aggregation: curve segments and surface patches cannot exist
outside the context of a primitive.

Complex is set of disjoint geometric primitives such that the boundary of each primitive
can be represented as the union of other geometric primitives within the complex.

6.3.1.1 Point

Point is the basic data type for a geometric object consisting of one and only one point
(DirectPosition).

OGC 03-064r1

26 © OGC 2003 – All rights reserved

Figure 10 - Point Primitive

DirectPosition object data types hold the coordinates for a position within some
coordinate reference system. The coordinate reference system is described in
org.opengis.crs.crsrefsystem.CRS (from ISO19111::SC_CRS). Since
DirectPositions, as data types, will often be included in larger objects (such as
GeometryRoot) that have references to ISO19111::SC_CRS, the
DirectPosition::cordinateReferenceSystem may be left NULL if this
particular DirectPosition is included in a larger object with such a reference to a
SC_CRS. In this case, the DirectPosition::cordinateReferenceSystem is implicitly
assumed to take on the value of the containing object's SC_CRS.

Bearing is a data type used to represent direction in the coordinate reference system. In
a 2D coordinate reference system, this can be accomplished using a "angle measured
from true north" or a 2D vector point in that direction. In a 3D coordinate reference
system, two angles or any 3D vector is possible. If both a set of angles and a vector are
given, then they shall be consistent with one another.

OGC 03-064r1

© OGC 2003 – All rights reserved
27

6.3.1.2 Curve

As shown in Figure 9, Curve is a descendent subtype of Primitive through
OrientablePrimitive. It is the basis for 1-dimensional geometry. A curve is a
continuous image of an open interval.

Curves are continuous, connected, and have a measurable length in terms of the
coordinate system. The orientation of the curve is determined by this parameterization,
and is consistent with the tangent function, which approximates the derivative function of
the parameterization and shall always point in the "forward" direction.

A Curve is composed of one or more CurveSegments. Each curve segment within a
curve may be defined using a different interpolation method. The curve segments are
connected to one another, with the end point of each segment except the last being the
start point of the next segment in the segment list.

Figure 11 - Curve and CurveSegment

OGC 03-064r1

28 © OGC 2003 – All rights reserved

6.3.1.2.1 LineString

A LineString consists of sequence of line segments, each having a parameterization
like the one for LineSegment. The class essentially combines a
Sequence<LineSegments> into a single object, with the obvious savings of storage
space.

Figure 12 - LineString

OGC 03-064r1

© OGC 2003 – All rights reserved
29

A LineSegment consists of two distinct DirectPositions (the startPoint and
endPoint) joined by a straight line. Thus its interpolation attribute shall be "linear".

Any other point in the controlPoint array must fall on this line. The control points of
a LineSegment shall all lie on the straight line between its start point and end point.
Between these two points, other positions may be interpolated linearly.

6.3.1.3 Polygon

A Polygon is a surface patch that is defined by a set of boundary curves and an
underlying surface to which these curves adhere. The default is that the curves are
coplanar and the polygon uses planar interpolation in its interior.

A SurfacePatch defines a homogeneous portion of a Surface. The multiplicity of
the association "Segmentation" specifies that each SurfacePatch shall be in at most
one Surface.

Surface is a subclass of Primitive and is the basis for 2-dimensional geometry.
Unorientable surfaces such as the Möbius band are not allowed. The orientation of a
surface chooses an "up" direction through the choice of the upward normal, which, if the
surface is not a cycle, is the side of the surface from which the exterior boundary appears
counterclockwise. Reversal of the surface orientation reverses the curve orientation of
each boundary component, and interchanges the conceptual "up" and "down" direction of
the surface. If the surface is the boundary of a solid, the "up" direction is usually outward.
For closed surfaces, which have no boundary, the up direction is that of the surface
patches, which must be consistent with one another. Its included SurfacePatches
describe the interior structure of a Surface.

OGC 03-064r1

30 © OGC 2003 – All rights reserved

Figure 13 - Polygon

SurfaceBoundary represents the boundary of Surfaces (i.e., an exterior and zero
or more interior rings).

6.3.1.4 Ring

A Ring is used to represent a single connected component of a SurfaceBoundary. It
consists of a number of references to OrientableCurves connected in a cycle (an
object whose boundary is empty).

A Ring is structurally similar to a CompositeCurve in that the endPoint of each
OrientedCurve in the sequence is the startPoint of the next OrientableCurve in
the Sequence. Since the sequence is circular, there is no exception to this rule. Each ring,
like all boundaries is a cycle and each ring is simple.

OGC 03-064r1

© OGC 2003 – All rights reserved
31

Figure 14 - Ring.

NOTE: Even though each Ring is simple, the boundary need not be simple. The easiest
case of this is where one of the interior rings of a surface is tangent to its exterior ring.
Implementations may enforce stronger restrictions on the interaction of boundary
elements.

6.3.1.5 Aggregates

Arbitrary aggregations of geometric objects are possible. These are not assumed to have
any additional internal structure and are used to "collect" pieces of geometry of a
specified type. Operations on these aggregations shall be the accumulators that are
derived from the class operations of their elements. Applications may use aggregates for
features that use multiple geometric objects in their representations, such as a collection
of points to represent a tank farm or orchard.

OGC 03-064r1

32 © OGC 2003 – All rights reserved

Figure 15 - Aggregates

The aggregates, Aggregate, gather geometric objects. Since they will often use
orientation modification, the curve reference and surface references do not go directly to
the Curve and Surface, but are directed to OrientableCurve and
OrientableSurface.

Most geometric objects are contained in features, and cannot be held in collections that
are strong aggregations. For this reason, the collections described in this clause are all
weak aggregations, and shall use references to include geometric objects.

6.3.1.6 Envelope

Envelope is often referred to as a minimum bounding box or rectangle. Regardless of
dimension, a Envelope can be represented without ambiguity as two direct positions
(coordinate points). To encode a Envelope, it is sufficient to encode these two points.
This is consistent with all of the data types in this standard, their state is represented by
their publicly accessible attributes.

OGC 03-064r1

© OGC 2003 – All rights reserved
33

Figure 16 - Envelope

6.3.1.7 Geometry Factory

GO-1 defines a GeometryFactory interface that extends the ISO Geometry model.
GeometryFactory defines constructors for the simple geometry types most
commonly required: Point, LineString and Polygon (and their constituents).

In addition, there is a generic constructor for materialising geometry instances from GML
documents.

Figure 17 - GeometryFactory

OGC 03-064r1

34 © OGC 2003 – All rights reserved

6.3.2 Feature

A geographic feature is a meaningful object in the selected domain of discourse such as a
Road, River, Person, Vehicle or Administrative Boundary. This follows the general
definition of a feature given in ISO 19109 and the OGC Abstract Specification Topic 5.
[7]

The Feature and FeatureType interfaces work together to represent a geographic
feature of arbitrary complexity. These interfaces serve two important purposes:

1. They give client applications a unified, consistent framework for accessing and
manipulating feature data.

2. They give implementers a framework for constraining and enforcing constraints
(respectively) on allowed feature types. As such, this interface is as general as
possible in terms of the types of objects to which it provides access. For the vast
majority of feature schemas, this generic feature model will work fine.

The Feature interface combines a “default” GO-1 Geometry object with additional
attributes in the form of potentially nested key-value pairs (FeatureAttributes)
that characterise an instance of a geographic feature. For example, a road class may
consist of a LineString geometry with attributes for name, route number, number of lanes,
and surface type.

FeatureType is a metadata template for a feature of arbitrary complexity. Objects
implementing the FeatureType metaclass interface get instantiated as classes that
represent individual feature types. A certain feature type is the class for all instances of
that feature type. The instances of a class that represents an individual feature type are
feature instances. Feature types are equivalent to classes and feature instances are
equivalent to objects in object oriented modeling.

FeatureAttribute is a characteristic property of a feature and has a name, a data
type, and a value domain associated with it. A feature attribute for a feature instance also
has an attribute value taken from the value domain.

FeatureAttributeType is a metadata template for a single attribute object. Objects
implementing the FeatureAttributeType metaclass interface get instantiated as
classes that represent individual feature attribute types. FeatureAttributeType
objects store metadata about FeatureAttributes such as:

o description – a human-readable description of the attribute

o multiplicity – the number of instances of this attribute per Feature.

o type – the expected class of this attribute.

OGC 03-064r1

© OGC 2003 – All rights reserved
35

Figure 18 - Feature Model.

A FeatureCollection is a collection of feature instances that can behave as a
feature. The FeatureCollection interface is used to aggregate one or more
Feature objects. A town, for example, could be a FeatureCollection containing
road, river, railroad, and building Features.

6.3.2.1 Feature Factory

FeatureFactory provides support for creation of a Feature instance of a given
FeatureType. Feature instances can be constructed from an array of
FeatureAttributes (which may or may not include a Geometry-type attribute), a
GML (XML) document, or with a Geometry object explicitly specified. In all cases, the
type of feature must be specified.

OGC 03-064r1

36 © OGC 2003 – All rights reserved

Figure 19 - FeatureFactory Model

FeatureCollectionFactory provides support for creation of
FeatureCollection instances from an array of Feature instances.

6.3.3 OGC Styled Layer Descriptor

GO-1 supports and incorporates the OGC Styled Layer Descriptor (SLD) as the
conveyance for styling information for Geometry and OGC Feature objects.

In a GO-1 application environment, the SLD may be used as a source for styling data to
be used in the GraphicStyle of a Graphics object for ultimate management or rendering
by a Canvas.

6.3.4 Coordinate Reference System

The GO-1 Coordinate Reference System (CRS) definition is derived from and is
fundamentally consistent with the content of OGC documents 03-009 and 03-010. The
CRS interface, like those for other Information Object interfaces, has been derived from
UML models using automated tools. This process and the resulting interfaces are more
completely described in the document that reports upon that effort.

Also like the other Information Object classes, CRS objects are instantiated by a factory
that hides the details of object creation from client applications or libraries.

Note: except where noted, all descriptive text accompanying the context diagrams below
is taken directly from [26].

6.3.4.1 Reference System

ReferenceSystem provides a description of a spatial and temporal reference system
used by a dataset.

OGC 03-064r1

© OGC 2003 – All rights reserved
37

Figure 20 - Reference System

Identifier provides an identification of a CRS object. The first use of an
Identifier for an object, if any, is normally the primary identification code, and any
others are aliases.

6.3.4.2 Coordinate Reference System

CoordinateReferenceSystem consists of an ordered sequence of coordinate
system axes that are related to the earth through a datum. A coordinate reference system
is defined by one datum and by one coordinate system. Most coordinate reference system
do not move relative to the earth, except for engineering coordinate reference systems
(EngineeringCRS) defined on moving platforms such as cars, ships, aircraft, and
spacecraft. For further information, see section 6.3.4.6.

Coordinate reference systems are commonly divided into sub-types. The common
classification criterion for sub-typing of coordinate reference systems is the way in which
they deal with earth curvature. This has a direct effect on the portion of the earth's surface
that can be covered by that type of CRS with an acceptable degree of error.

OGC 03-064r1

38 © OGC 2003 – All rights reserved

Figure 21 - Coordinate Reference System

For GO-1, the common CoordinateReferenceSystem subtypes of primary
interest are:

• ProjectedCRS — A 2D coordinate reference system used to approximate the
shape of the earth on a planar surface, but in such a way that the distortion that is
inherent to the approximation is carefully controlled and known. Distortion
correction is commonly applied to calculated bearings and distances to produce
values that are a close match to actual field values.

• GeographicCRS — A coordinate reference system based on an ellipsoidal
approximation of the geoid; this provides an accurate representation of the
geometry of geographic features for a large portion of the earth's surface.

• ImageCRS — An engineering coordinate reference system applied to locations
in images. Image coordinate reference systems are treated as a separate sub-type
because a separate user community exists for images with its own terms of
reference.

• EngineeringCRS — A contextually local coordinate reference system; which
can be divided into two broad categories:

OGC 03-064r1

© OGC 2003 – All rights reserved
39

1) earth-fixed systems applied to engineering activities on or near the surface
of the earth;

2) CRSs on moving platforms such as road vehicles, vessels, aircraft, or
spacecraft.

6.3.4.3 Datum

Datum specifies the relationship of a coordinate system to the earth, thus creating a
coordinate reference system. A datum uses a parameter or set of parameters that
determine the location of the origin, the orientation, and the scale of a coordinate
reference system.

Figure 22 - Datum

The anchorPoint property of Datum is a “description, possibly including
coordinates, of the point or points used to anchor the datum to the Earth.” Also known as
the "origin", especially for Engineering and Image Datums.

OGC 03-064r1

40 © OGC 2003 – All rights reserved

Of particular note for GO-1, is the use of anchorPoint as follows:

• For an engineering datum, the anchor point may be a physical point, or it may be
a point with defined coordinates in another CRS.

• For an image datum, the anchor point is usually either the centre of the image or
the corner of the image.

Ellipsoid is a geometric figure that can be used to describe the approximate shape of
the earth. In mathematical terms, it is a surface formed by the rotation of an ellipse about
its minor axis.

EngineeringDatum defines the origin and axes directions of an engineering
coordinate reference system. Normally used in a local context only.

ImageDatum defines the origin of an image coordinate reference system. Used in a
local context only. For an image datum, the anchor point is usually either the centre of the
image or the corner of the image.

PrimeMeridian defines the origin from which longitude values are determined.

6.3.4.4 Coordinate System

A CoordinateSystem is the set of coordinate system axes that spans a given
coordinate space. A CoordinateSystem is derived from a set of (mathematical) rules
for specifying how coordinates in a given space are to be assigned to points. The
coordinate values in a coordinate tuple shall be recorded in the order in which the
coordinate system axes associations are recorded, whenever those coordinates use a
coordinate reference system that uses this coordinate system, and no other specification
of axis order is provided.

OGC 03-064r1

© OGC 2003 – All rights reserved
41

Figure 23 - Coordinate System

CartesianCS defines a 1-, 2-, or 3-dimensional coordinate system. It gives the
position of points relative to orthogonal straight axes in the 2- and 3-dimensional cases.
In the 1-dimensional case, it contains a single straight coordinate axis. In the multi-
dimensional case, all axes shall have the same length unit of measure. A CartesianCS
shall have one, two, or three usesAxis associations.

6.3.4.5 Coordinate Operations

CoordinateOperation represents a mathematical operation on coordinates that
transforms or converts coordinates to another coordinate reference system. Many but not
all coordinate operations (from CRS A to CRS B) also uniquely define the inverse
operation (from CRS B to CRS A). In some cases, the operation method algorithm for the
inverse operation is the same as for the forward algorithm, but the signs of some
operation parameter values must be reversed. In other cases, different algorithms are
required for the forward and inverse operations, but the same operation parameter values
are used. If (some) entirely different parameter values are needed, a different coordinate
operation shall be defined.

Note attached to sourceCRS and targetCRS associations: The "sourceCRS" and "targetCRS"
associations are mandatory for Transformations only. Conversions have a source CRS and a
target CRS that are NOT specified through these associations, but through associations from
GeneralDerivedCRS to CoordinateReferenceSystem.

OGC 03-064r1

42 © OGC 2003 – All rights reserved

Figure 24 - Coordinate Operation

Operation is a parameterised mathematical operation on coordinates that transforms
or converts coordinates to another coordinate reference system. This coordinate operation
thus uses an operation method, usually with associated parameter values.

OGC 03-064r1

© OGC 2003 – All rights reserved
43

Transformation objects define an operation on coordinates that usually includes a
change of Datum. The parameters of a coordinate transformation are empirically derived
from data containing the coordinates of a series of points in both coordinate reference
systems. This computational process is usually "over-determined", allowing derivation of
error (or accuracy) estimates for the transformation. Also, the stochastic nature of the
parameters may result in multiple (different) versions of the same coordinate
transformation.

Conversion objects define an operation on coordinates that does not include any
change of Datum. The best-known example of a coordinate conversion is a map
projection. The parameters describing coordinate conversions are defined rather than
empirically derived. Note that some conversions have no parameters.

Figure 25 - Operation Parameter

OperationParameter is the definition of a parameter used by an operation method.
Most parameter values are numeric, but other types of parameter values are possible.

OperationMethod is the definition of an algorithm used to perform a coordinate
operation. Most operation methods use a number of operation parameters, although some

OGC 03-064r1

44 © OGC 2003 – All rights reserved

coordinate conversions use none. Each coordinate operation using the method assigns
values to these parameters.

6.3.4.6 Support for Relative Coordinates

One capability that has been identified as a requirement for GO-1 Application Objects,
but has not yet been captured in any prior OGC Specifications, is the ability to support
relative coordinates. This need is fulfilled by creating a coordinate system that
effectively has its origin moved to the reference point of interest. The method proposed
to accomplish this is setReferencePosition(), which takes a DirectPosition as its sole
argument and sets the origin of the object against which it is invoked, to the position
specified by the argument in its own CRS.

Given that the OGC definition for a CRS is essentially that of a data structure, there is
nothing in any extant specification that prohibits this operation provided a reasonable
meaning for the origin of a CRS can be found. The most immediately obvious means of
implementing setReferencePosition() would follow the precedent set by the Engineering
CRS, and set the AnchorPoint of the datum of the CRS to an appropriate representation
of the given DirectPosition. Image CRS are also amenable to this type of transformation.
These ideas are expanded below.

6.3.5.6.1 Relative Coordinate Reference Systems

Coordinates in GO-1 implementations are implemented as DirectPositions. Each
DirectPosition has a CoordinateReferenceSystem (CRS). This CRS may
be Derived from another CRS. The exact relationship of this derivation is defined by a
conversion and a type. The conversion determines (a) whether and how the Derived CRS
scales with the referenced CRS and (b) which DirectPosition in the referenced
CRS corresponds to the origin of the Derived CRS. The type is either Engineering or
Image. A DirectPosition within a Derived CRS is a relative coordinate with respect
to a coordinate in the referenced CRS.

A Coordinate Transformation Service that operates on such relative coordinates must
incorporate the conversion information when dealing with a Derived CRS.

6.3.5.6.2 Relative CRS and the Canvas

A Canvas has a spatial (type Geographic) CRS and a display CRS. The display CRS is
categorised as a Derived CRS of type Image and is derived from the spatial CRS. Most
implementations will further define the display CRS as a Pixel CRS, which is a
rasterization of the Derived Image CRS. The Pixel CRS does not scale with the spatial
CRS.

OGC 03-064r1

© OGC 2003 – All rights reserved
45

6.3.5.6.3 Examples

The examples below assume the existence of the following subtypes of the spatial
(Geographic) CRS: LatLonAlt and UTM; the following subtype of the Image CRS: Pixel;
and the following subtypes of the Engineering CRS: RangeBearing and XYZ.

Example 1: Image (Pixel) Relative Coordinate Not Scaling with LatLonAlt CRS. A
dynamically-constructed symbol that does not scale with the Canvas spatial CRS is to be
displayed by the Canvas. The spatial CRS of a Canvas is a LatLonAlt CRS. The symbol
is constructed as a square geometry that is defined by four Pixel relative coordinates
(Pixel DirectPositions). The Pixel DirectPositions are associated with a single Pixel CRS
(not the Canvas display CRS), which is a Derived CRS of type Image, whose origin is
denoted by a LatLonAlt DirectPosition associated with the LatLonAlt CRS (the Canvas
spatial CRS). Since the Pixel CRS references only one DirectPosition on the LatLonAlt
CRS, it does not scale with the LatLonAlt CRS.

For example, the square has pixel coordinates (-4, -4), (4, -4), (4, 4), (-4, 4). This square
is always drawn with the top left corner 4 pixels above and to the right of the reference
coordinate (e.g., a lat/long point) no matter where that point is on the display, and the
square is always 8 pixels wide and 8 pixels high, no matter what the geographic scale
(zoom factor). NOTE: This implies that coordinate transformation of this type must be
done on an as needed basis, and repeated at least when the scale, location, or projection
of the geographic CRS changes in the display. The transformation cannot be done once
to convert the coordinates into their relative locations in lat/long because that
transformation will become invalid at the time the scale or projection changes.

Example 2: Image Relative Coordinate Chained and Scaling with UTM CRS. A
registered image is to be displayed in a fixed range and bearing from a fixed location in a
spatial CRS. The spatial CRS is a UTM CRS. Derived from the UTM CRS is a CRS of
type Engineering (RangeBearing). Derived from the Derived RangeBearing CRS is a
CRS of type Image. The registered image is set with two DirectPositions in the Derived
Image CRS. The Derived Image CRS scales with the Derived RangeBearing CRS. The
Derived RangeBearing CRS scales with the UTM CRS.

Example 3: Engineering (RangeBearing) Relative Coordinate Scaling with UTM CRS.
A sector is to be displayed that does not scale with a spatial CRS. The spatial CRS is a
UTM CRS. A Derived CRS of type Engineering (specifically RangeBearing) is derived
from the spatial UTM CRS. A sector geometry made up of two arcs and two straight lines
are denoted with four RangeBearings. The Derived Engineering CRS does not scale with
the UTM CRS.

Example 4: XYZ Relative Coordinate Scaling with LatLonAlt CRS. A ship is to be
depicted coming into port. The port is described by a set of DirectPostions in a LatLonAlt
CRS. The ship is described by a set of XYZ DirectPositions in a Derived CRS of type
Engineering (measured in meters). The conversion for the Derived CRS includes a direct
scaling with the LatLonAlt CRS, as well as the origin of the Derived CRS (such as at the
center of buoyancy of the ship or at the forward-most point of the bow at main deck

OGC 03-064r1

46 © OGC 2003 – All rights reserved

level) correlating a LatLonAlt DirectPosition that denotes the ship position in the
LatLonAlt CRS.

For example, the graphic depicting the ship includes coordinates for the stern in meters
from the bow, such as (100, 0, 0). Since the X coordinate is 100 meters, changing map
scale will change the scale of the graphic, but changing the LatLonAlt reference for the
ship will move the ship graphic to its new location.

6.4 Service Objects

Service Objects provide processing capabilities that can be accessed from but are not a
part of the application. Service Objects should be available to an application regardless
of the application environment that was used to build the service. For example, a service
built using C on UNIX could expose interfaces to Java, Corba, and DCOM applications.
The actual implementation of the service is opaque to the applications. It is sufficient
that there is an interface available in their environment that is readily accessible.

6.4.1 Data Service Objects

Data services provide access to collections of data in repositories and databases.
Resources accessible by Data Services can generally be referenced by a name (identity,
address, etc). Given a name, Data Services can then find the resource. Data Services
usually maintain indexes to help speed up the process of finding items by name or by
other attributes of the item. The sections below describe the current OGC Reference
Model (ORM) set of Data Services. Examples of ORM data services include:

• Feature Access Services (FAS)

• Coverage Access Services (CAS)

• Sensor Collection Service (SCS)

• Image Archive Services (IAS)

6.4.2 Portrayal Service Objects

Portrayal services provide visualisation of geospatial information. Portrayal Services are
components that, given one or more inputs, produce rendered outputs (e.g.,
cartographically portrayed maps, perspective views of terrain, annotated images, views of
dynamically changing features in space and time, etc.). Portrayal Services can be tightly
or loosely coupled with other services such as Data and Processing Services and
transform, combine, or create portrayed outputs. Portrayal Services may use styling rules
specified during configuration or dynamically at runtime by Application Services.
Portrayal Services can be sequenced into a “value-chain” of services to perform
specialized processing in support of information production workflows and decision
support. Examples of ORM portrayal services include:

OGC 03-064r1

© OGC 2003 – All rights reserved
47

• Map Portrayal Services (MPS)

• Coverage Portrayal Services (CPS)

• Mobile Presentation Services

6.4.3 Processing Service Objects

Processing services operate on geospatial data and provide “value-add” services for
applications. They can transform, combine, or create data. Processing Services can be
tightly or loosely coupled with other services such as Data and Portrayal Services.
Processing Services can be sequenced into a “value-chain” of services to perform
specialized processing in support of information production workflows and decision
support. Examples of processing services include:

− Chaining Services
− Coordinate Transformation Services (CTS)
− Geocoder Services
− Gazetteer Services
− Geoparser Services
− Reverse Geocoder Services
− Route Determination Services

7 Behaviours

Here we illustrate a few signature behaviours of an application that uses a GO-1
implementation. We present these behaviours as use cases, accompanied by sequence or
state diagrams.

7.1 Adding information to a display

Description: A Feature is rendered on a display

Precondition: An application that includes a full implementation of GO-1 Application
Objects. All required Factory objects and a Canvas object have been instantiated. A
Feature is ready to be added to the display.

Flow of events:

1. Application extracts Geometry object from the Feature.

2. Application requests a Graphic object from the DisplayFactory.

3. Application uses the Geometry to set the geometric attributes of the Graphic

4. Application adds the Graphic object to the Canvas object.

OGC 03-064r1

48 © OGC 2003 – All rights reserved

Postcondition: The Feature has been rendered with default styling on the display device.

This sequence of operations is depicted below.

getDefaultGeo metry()

Applica tion Feature DisplayFactoryGraphic Canvas

Message1()

createGraphic()

Message2()

setGeometry()

Message3()

add()

Message3()

7.2 Mouse click selects graphical object.

Description: A user selects a feature for editing in the graphical display.

Preconditions: The user is using an application that includes a full implementation of
GO-1 Application Objects. The Canvas has a MouseManagerSupport object to which it
delegates mouse event operations. A SelectItemsHandler class exists that implements
MouseHandler. The MouseManagerSupport object has been registered as a
MouseListener and a MouseMotionListener, and the SelectItemsHandler has been pushed
onto the MouseManagerSupport’s (empty) MouseHandler stack. (Even though

Figure 26 - Adding Information to a Display

OGC 03-064r1

© OGC 2003 – All rights reserved
49

SelectItemsHandler is a Java Listener, it is not registered with any EventSource. It is
used as an event dispatcher.)

Flow of events:

1. User clicks on an editable object on the display device, causing a MouseEvent
to be fired.

2. The MouseManagerSupport receives the MouseEvent, and passes the
MouseEvent to the first and only item on its MouseHandler stack.

3. The MouseEvent is caught and consumed by SelectItemsHandler

4. SelectItemsHandler acquires the GraphicStyle from the Graphic being edited.

5. SelectItemsHandler changes the GraphicStyle to indicate that the Graphic is
being edited.

6. SelectItemsHandler tells the Graphic to go into editing mode and display its
editing handles.

Postcondition: The user sees the object displayed with styling indicating it has been
selected, and editing handles visible.

OGC 03-064r1

50 © OGC 2003 – All rights reserved

Figure 27 - Selecting a Graphic Object

7.3 Graphic object is instantiated from a Geometry and an SLD.

Preconditions: Running application has instantiated a GeometryLineString and a
compatible StyledLayerDescriptor (SLD) object.

Flow of events:

1. Application creates a new Graphic object with the DisplayFactory. Graphic has
default styling.

2. Application gets the reference to the Graphic’s GraphicStyle.

3. Application gets various styling attributes from the SLD.

4. Application sets the GraphicStyle’s styling attributes with those obtained from the
SLD.

mouseClicked(Event)

System GraphicStyleSelectItemsHandler GraphicMouseManager
Support

Message1()

handleClick(Event)

Message2()

GetGraphicStyle()

Message3()

setSelected()

Message4()

setShowingHandles(

Message5()

OGC 03-064r1

© OGC 2003 – All rights reserved
51

5. Application sets the geometric attributes of the Graphic using the Geometry.

Postcondition: a styled Graphic has been created, and may be added to a Canvas for
display.

Figure 28 - Graphic Object Creation

createGraphic
(GraphicLineString)

Application GraphicStyle StyledLayerDescrip Graphic DisplayFactory

Message1()

getGraphicStyle()

Message2()

getStroke()

Message3()

setStrokeWidth()

Message4()

setGeometry
(LineString)

Message8()

getFill()

Message6()

setFillColor()

Message7()

setStrokeColor()

Message5()

OGC 03-064r1

52 © OGC 2003 – All rights reserved

Annex A
(normative)

Application Objects Programming Interface for Java

A.1 General

The detailed specifications for the GO-1 Application Objects programming interface have
been made available in javadoc format. These materials are available under separate
cover in 03-064_Annex_A.zip.

The Information Object and Service interface specifications are being developed as a part
of the Model Driven Architecture interface and specification development experiments
described at various points throughout the text above.

OGC 03-064r1

© OGC 2003 – All rights reserved
53

Bibliography

 [1] ISO 31 (all parts), Quantities and units.

[2] IEC 60027 (all parts), Letter symbols to be used in electrical technology.

[3] ISO 1000, SI units and recommendations for the use of their multiples and of
certain other units.

[4] Guidelines for Successful OGC Interface Specifications, OGC document 00-014r1

Simple Feature SQL:

[5] OpenGIS ® Simple Feature Specification for SQLVersion, version 1.1, available
at: http://www.opengis.org/techno/implementation.htm

Feature Geometry:

[6] OpenGIS ® Topic 1: Feature Geometry (ISO 19107 Spatial Schema), version 5,
available at: http://www.opengis.org/techno/abstract/01-101.pdf

Feature:

[7] OpenGIS ® Topic 5: The OpenGIS Feature, available at:
http://www.opengis.org/techno/abstract/01-105r2.pdf

Grid Coverages:

[8] OpenGIS ® Grid Coverages Implementation Specification, version 1.0, available
at: http://www.opengis.org/techno/implementation.htm

Catalog Service:

[9] OpenGIS ® Catalog Service Implementation Specification, version 1.1.1,
available at: http://www.opengis.org/techno/implementation.htm

Geography Markup Language (GML):

[10] OpenGIS ® Geography Markup Language (GML) Implementation Specification,
version 2.1.2, available at: http://www.opengis.org/techno/implementation.htm

 [11] OpenGIS ® Geography Markup Language (GML) Implementation Specification
(version 3.0), OGC document 02-023r4.

Web Map Server (WMS):

OGC 03-064r1

54 © OGC 2003 – All rights reserved

[12] OpenGIS ® Web Mapping Server (WMS) Implementation Specification, version
1.1.1, available at: http://www.opengis.org/techno/implementation.htm

Styled Layer Descriptor (SLD):

[13] OpenGIS ® Styled Layer Descriptor (SLD) Implementation Specification, version
1.0, available at: http://www.opengis.org/techno/implementation.htm

Web Feature Server (WFS):

[14] OpenGIS ® Web Feature Server (WFS) Implementation Specification, version
1.0, available at: http://www.opengis.org/techno/implementation.htm

Filter Encoding:

[15] OpenGIS® Filter Encoding Implementation Specification, version 1.0, available at:
http://www.opengis.org/techno/implementation.htm

Coordinate Transformation Service (CTS):

[16] OpenGIS ® Coordinate Transformation Services Implementation Specification,
version 1.0, available at: http://www.opengis.org/techno/implementation.htm

Web Coverage Server (WCS):

[17] OpenGIS ® Web Coverage Server (WCS) Discussion Paper, OGC document 02-
024r1. Available at: http://www.opengis.org/techno/requests.htm

Coverage Portrayal Server (CPS):

[18] Coverage Portrayal Service Specification (CPS), OWS1.1 IPR. OGC document
02-019r1.

Style Management Service:

[19] Style Management Service IPR, Discussion Paper, OGC document 03-031.
(including proposed changes to SLD). Available at:
http://www.opengis.org/info/discussion.htm

Registry Service:

[20] Registry Service, Discussion Paper, OGC document 03-024. Available at:
http://www.opengis.org/info/discussion.htm

Integrated Client:

[21] Integrated Client for OGC Services, Discussion Paper. OGC document 03-021.
Available at: http://www.opengis.org/info/discussion.htm

OGC 03-064r1

© OGC 2003 – All rights reserved
55

Service Information Model:

[22] OWS Service Information Model, Discussion Paper, OGC document 03-026.
Available at: http://www.opengis.org/info/discussion.htm

OWS Architecture:

[23] OpenGIS ® Web Service Architecture, Discussion Paper, OGC document 03-025.
Available at: http://www.opengis.org/info/discussion.htm

OGC Reference Model:

[24] OGC Reference Model (ORM), OGC document 02-077. Available at:
http://www.opengis.org/info/discussion.htm

Spatial Reference System:

[25] OGC Spatial Reference Systems, OGC document 02-102. Available at:
http://www.opengis.org/techno/abstract/02-102.pdf

[26] UML for Spatial Referencing by Coordinates, OGC document 03-009R5.
Available at: http://member.opengis.org/tc/archive/arch03/03-009r5.doc

Open Source Implementation Baselines

Geobject

1. http://geobject.org/umldoc/2.0alpha

2. http://sourceforge.net/projects/geobject

Geotools2

1. http://modules.geotools.org/core

2. http://www.geotools.org

