
Open Geospatial Consortium Inc.

Date: 2005-10-19

Reference number of this OGC® document: OGC 05-078

Version: 1.1.0 (draft)

Category: OpenGIS® Discussion Paper

Editors: Dr. Markus Müller, James MacGill

Styled Layer Descriptor Application Profile of the Web Map Service:
Draft Implementation Specification

Copyright

Copyright © 2006 Open Geospatial Consortium, Inc. All Rights Reserved.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This proposed document is not an OGC Standard. It is distributed for review and
comment. It is subject to change without notice and may not be referred to as an OGC
Standard.

Document type: OpenGIS® Discussion Paper
Document subtype: Application Profile
Document stage: Approved
Document language: English

http://www.opengeospatial.org/legal/

05-078

ii

Contents Page

1 Scope..1

2 Conformance..1

3 Normative references ...1

4 Terms and definitions ..2

5 Conventions ...2
5.1 Abbreviated terms ...2
5.2 UML notation ..3

6 Web-Map-Server integration ...3
6.1 A review of WMS 1.3 ...3
6.2 General HTTP request rules as used by WMS and SLD5
6.3 Styled-Layer Descriptor ..5
6.4 WMS requests using an SLD ..6
6.5 GetMap POST method...8
6.6 Web Map Servers and Web Feature/Coverage Servers9

7 DescribeLayer operation (optional) ...12
7.1 Introduction ...12
7.2 DescribeLayer operation request (TBD) ...13

7.2.1 DescribeLayer request parameters..13
7.2.2 TBD request KVP encoding (optional or required)......................................13

7.3 TBD operation response..14
7.3.1 Normal response parameters...14
7.3.2 Normal response XML encoding..15
7.3.3 TBD exceptions ..17

7.4 Examples ...17

8 GetLegendGraphic operation (optional) ..18
8.1 Introduction ...18
8.2 TBD operation request ..21

8.2.1 TBD request parameters ...21
8.2.2 TBD request KVP encoding (optional or required)......................................22
8.2.3 TBD request XML encoding (required or optional)22

8.3 TBD operation response..27
8.3.1 Normal response parameters...27
8.3.2 Normal response XML encoding..28
8.3.3 TBD exceptions ..29

8.4 Examples ...30

9 SLD encoding ..31
9.1 SLD root element ..31
9.2 Named layers ...32

05-078

 iii

9.3 User-defined layers..35
9.3.1 Feature Constraints ...36
9.3.2 Coverage Constraints ..38

9.4 User-defined styles ..40

05-078

iv

i. Preface

This document explains how the Web Map Server specification can be extended to allow
user-defined symbolization of feature and coverage data. It should be read in conjunction
with the latest version WMS specification. The WMS 1.3 Specification, OGC 06-042, is
the most recent OGC member approved version of that specification.

This document is together with the Symbology Encoding Implementation Specification
the direct follow-up of Styled Layer Descriptor Implementation Specification 1.0.0. The
old specification document was split up into two documents to allow the parts that are not
specific to WMS to be reused by other service specifications.

ii. Document terms and definitions

This document uses the specification terms defined in Subclause 5.3 of [OGC 05-008],
which is based on the ISO/IEC Directives, Part 2. Rules for the structure and drafting of
International Standards. In particular, the word “shall” (not “must”) is the verb form used
to indicate a requirement to be strictly followed to conform to this specification

iii. Submitting organizations

The following organizations submitted this document to the Open Geospatial Consortium
Inc.

CubeWerx Inc.
lat/lon GmbH (Co-Editor)
Pennsylvania State University. (Co-Editor)
Syncline
Ionic Software s.a.

iv. Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Name Organization
Larry Bouzane Compusult Ltd.

05-078

 v

Dr. Craig Bruce CubeWerx Inc.
Ivan Cheung ESRI
Adrian Cuthbert m-spatial
Reinhard Erstling interactive instruments GmbH
Ron Lake Galdos Systems Inc.
Seb Lessware Laser-Scan Ltd.
Marwa Mabrouk ESRI
James Macgill Penn State
Dimitri Monie Ionic Software s.a.
Dr. Markus Müller lat/lon GmbH
Dr. Andreas Poth lat/lon GmbH
Raj Singh Syncline
Dan Specht US Army ERDC
John Vincent Intergraph Corp.
Peter Vretanos CubeWerx Inc.

v. Revision history

Date Release Editor Primary clauses modified Description
2001-02-07 01-028 Adrian

Cuthbert
initial paper for SLD 0.7.0 WMT-2 Project-Discussion Paper

2001-08-31 01-028r2 Craig
Bruce

re-write for SLD 0.7.1 MPP-1 Project-Discussion Paper

2001-11-30 01-028r3 Craig
Bruce

update for SLD 0.7.2 and
DIPR format

MPP-1.1 DIPR preview

2001-11-30 01-028r4 Craig
Bruce

fixed up pre-pages, added
GeoSym content

MPP-1.1 DIPR

2001-12-28 01-028r5 Craig
Bruce

minor fixes, added 2525B
content, example pictures

MPP-1.1 IPR

2002-03-12 02-013 Carl Reed
Craig
Bruce
Bill
Lalonde

Modified for submission
and consideration as RFC
Proposal for SLD
Implementation
Specification

Implementation Specification

2002-04-24 02-013r1 Bill
Lalonde
Greg
Buehler

Minor formatting changes Formating for Public Comment

2002-08-15 02-013r2 Craig
Bruce

Incorporated RFC changes Incorporated RFC comments

2004-02-26 02-070r1 Craig
Bruce

Incorporated SLD-1.0.20/
Style-Management-System
changes

First draft for 1.1.0

2004-04-13 02-070r2 Donéa
Luc

Incorporated 03-004
change proposal for
coverage-data selection and
styling

Second draft for 1.1.0

05-078

vi

2004-05-01 02-070r3 Clemens
Portele,
Reinhard
Erstling

Incorporated change
request 03-095r1, general
review for consistency

Third draft for 1.1.0

2004-12-17 02-070r4 Craig
Bruce

Partial Incorporation of
SLD-RWG & interactive
instruments changes; see
Annex E.

Fourth draft for 1.1.0

2005-4-11 02-070r5 James
Macgill

Completed changes started
in r4

Fith draft for 1.1.0

2005-04-29 02-070r6 Markus
Müller,
Andreas
Poth

Incorporated change
request 05-028

Sixth draft for 1.1.0

2005-08-22 02-070r7 Markus
Müller,
Andreas
Poth

Finished changes regarding
05-028

Seventh draft for 1.1.0

2005-10-19 Markus
Müller All

Split SLD specification in SLD profile
for WMS (this document) and
Symbology Encoding

2006-20-04 C. Reed Various Get ready for posting as a DP

vi. Changes to the OGC Abstract Specification

The OpenGIS® Abstract Specification requires/does not require changes to accommodate
the technical contents of this document.

05-078

 vii

Foreword

This document together with OGC 05-077 (Symbology Encoding Implementation
Specification) replaces OGC 02-070 and consists of the following part: Styled Layer
Descriptor Profile of the Web Map Service Implementation Specification.

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The OGC shall not be held responsible for identifying any or
all such patent rights.

05-078

viii

Introduction

The importance of the visual portrayal of geographic data cannot be overemphasized.
The skill that goes into portraying data (whether it be geographic or tabular) is what
transforms raw information into an explanatory or decision-support tool. From USGS'
topographic map series to NOAA and NGA's nautical charts to AAA's Triptik, fine-
grained control of the graphical representation of data is a fundamental requirement for
any professional mapping community.

The current OGC Web Map Service (WMS) Implementation Specification supports the
ability for an information provider to specify very basic styling options by advertising a
preset collection of visual portrayals for each available data set. However, while a WMS
currently can provide the user with a choice of style options, the WMS can only tell the
user the name of each style. It cannot tell the user what portrayal will look like on the
map. More importantly, the user has no way of defining their own styling rules. The
ability for a human or machine client to define these rules requires a styling language that
the client and server can both understand.

Defining this language, called the Symbology Encoding (SE) is done in a companion
document of this specification. This language can be used to portray the output of Web
Map Servers, Web Feature Servers and Web Coverage Servers. This document defines
how Symbology Encoding can be in conjunction with Web Map Services. In many cases,
however, the client needs some information about the data residing on the remote server
before he, she or it can make a sensible request. This led to the definition of new
operations for the OGC services (see Clauses 7 and 8) in addition to the definition of the
styling language.

There are two basic ways to style a data set. The simplest one is to color all features the
same way. For example, one can imagine a layer advertised by a WMS as
“hydrography” consisting of lines (rivers and streams) and polygons (lakes, ponds,
oceans, etc.). A user might want to tell the server to color the insides of all polygons in a
light blue, and color the boundaries of all polygons and all lines in a darker blue. This
type of styling requires no knowledge of the attributes or “feature types” of the
underlying data, only a language with which to describe these styles. This requirement is
addressed by the FeatureStyle element in the SE document.

A more complicated requirement is to style features of the data differently depending on
some attribute. For example, in a roads data set, style highways with a three-pixel red
line; style four-lane roads in a two-pixel black line; and style two-lane roads in a one-
pixel black line. Accomplishing this requires the user to be able to find out what attribute
of the data set represents the road type. SLD profile of WMS defines the operation that
fulfils this need, called DescribeLayer. This operation returns the feature types of the
layer or layers specified in the request, and the attributes can be discovered with the

05-078

 ix

DescribeFeatureType operation of a WFS interface or the DescribeCoverageType of a
WCS interface.

OpenGIS® Discussion Paper OGC 05-078

 1

Styled Layer Descriptor Profile of the Web Map Service
Implementation Specification

1 Scope

This OpenGIS® Implementation Specification specifies how a Web Map Service can be
extended to allow user-defined styling. Different modes for utilizing Symbology
Encoding for this purpose are discussed.

2 Conformance

Conformance with this specification shall be checked using all the relevant tests specified
in Annex A (normative).

3 Normative references

The following normative documents contain provisions that, through reference in this
text, constitute provisions of this document. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. For undated
references, the latest edition of the normative document referred to applies.

ISO 19105:2000, Geographic information — Conformance and Testing

IETF RFC 2045 (November 1996), Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies, Freed, N. and Borenstein N., eds.,
<http://www.ietf.org/rfc/rfc2045.txt>

IETF RFC 2616 (June 1999), Hypertext Transfer Protocol – HTTP/1.1, Gettys, J.,
Mogul, J., Frystyk, H., Masinter, L., Leach, P., and Berners-Lee, T., eds.,
<http://www.ietf.org/rfc/rfc2616.txt>

IETF RFC 2396 (August 1998), Uniform Resource Identifiers (URI): Generic Syntax,
Berners-Lee, T., Fielding, N., and Masinter, L., eds.,
<http://www.ietf.org/rfc/rfc2396.txt>

OGC AS 12 (January 2002), The OpenGIS Abstract Specification Topic 12: OpenGIS
Service Architecture (Version 4.3), Percivall, G. (ed.),
<http://www.opengis.org/techno/abstract/02-112.pdf>

05-078

2

OGC Adopted Implementation Specification: Web Map Server version 1.3, August 2004,
OGC document OGC 04-024, <http://portal.opengis.org/files/?artifact_id=5316>.

OGC Adopted Implementation Specification: Web Feature Service version 1.1, May
2004, OGC document OGC 04-094,
<https://portal.opengeospatial.org/files/?artifact_id=8339>.

OGC Adopted Implementation Specification: Filter Encoding version 1.1, May 2004,
OGC document OGC 04-095 <https://portal.opengeospatial.org/files/?artifact_id=8340>.

OGC Adopted Implementation Specification: Geography Markup Language version
3.1.1, May 2004, OGC document OGC 04-095 <
https://portal.opengeospatial.org/files/?artifact_id=4700>.

OGC Adopted Implementation Specification: Web Coverage Service version 1.0,
October 2003, OGC document OGC 03-065r6,
<https://portal.opengeospatial.org/files/?artifact_id=3837>.

In addition to this document, this specification includes several normative XML Schema
files. Following approval of this document, these schemas will be posted online at the
URL http://schemas.opengeospatial.net/SLD/1.1.0. These XML Schema files are also
bundled with the present document. In the event of a discrepancy between the bundled
and online versions of the XML Schema files, the online files shall be considered
authoritative.

4 Terms and definitions

For the purposes of this specification, the definitions specified in Clause 4 of the OWS
Common Implementation Specification [OGC 05-008] shall apply. In addition, the
following terms and definitions apply.

4.1
map
Pictorial representation of geographic data

5 Conventions

5.1 Abbreviated terms

Most of the abbreviated terms listed in Subclause 5.1 of the OWS Common
Implementation Specification [OGC 05-008] apply to this document, plus the following
abbreviated terms.

GIF Graphics Interchange Format

JPEG Joint Photographic Experts Group

PNG Portable Network Graphics

05-078

 3

SVG Scalable Vector Graphic

WebCGM Web Computer Graphics Metafile

WCS Web Coverage Service

WFS Web Feature Service

5.2 UML notation

Some diagrams that appear in this specification are presented using the Unified Modeling
Language (UML) static structure diagram, as described in Subclause 5.2 of [OGC 05-
008].

6 Web-Map-Server integration

6.1 A review of WMS 1.3

WMS 1.3 and earlier versions describe the appearance of a map in terms of ‘styled
layers’. A styled layer can be considered as a transparent sheet with features symbolized
upon it. A map is made up of a number of these styled layers put together in a specified
order. The styled layers are said to be Z-ordered. Users can define more complex or
simpler maps by adding or removing styled layers.

A styled layer itself represents a particular combination of ‘layer’ and a ‘style’ in which
that layer can be symbolized. Conceptually, the layer defines a stream of features and the
style defines how those features are symbolized. This concept is underlined by the fact
that there may be multiple styles in which a layer can be symbolized.

In the WMS specification, the request for a map is encoded as an HTTP-GET or POST
request and the appearance for a map portrayal is specified by the LAYERS and
STYLES parameters. Consider the following (incomplete) example map request (which
is split over multiple lines for presentation purposes only):

http://yourfavoritesite.com/WMS?
 REQUEST=GetMap&
 BBOX=0.0,0.0,1.0,1.0&
 LAYERS=Rivers,Roads,Houses&
 STYLES=CenterLine,CenterLine,Outline

Results in the map portrayal shown below:

05-078

4

This is to be interpreted as three ‘styled layers’, namely:

a) Houses:Outline
b) Roads:CenterLine
c) Rivers:CenterLine

The colon notation is introduced only as a convenience to aid discussion. The
Rivers:CenterLine styled layer is ‘below’ the Roads:CenterLine styled layer, as WMS
uses the “painter’s model” and plots each successive layer in the LAYER list over top of
the previously rendered layers. Consequently, the roads appear to ‘cross’ the river. It is
possible for the same layer to appear more than once, although this is rarely done with the
same style.

A common ‘cartographic trick’ to generate what appears to be the boundaries of linear
features is to draw them with a thick colored line and then draw them all again with a
thinner, lighter line. This is done for the roads in the following (incomplete) map request:

http://yourfavoritesite.com/WMS?
 REQUEST=GetMap&
 BBOX=0.0,0.0,1.0,1.0&
 LAYERS=Roads,Roads,Houses&
 STYLES=Casing,CenterLine,Outline

The resulting map portrayal based upon the above rule is:

This is to be interpreted as three styled layers, namely:

05-078

 5

d) Houses:Outline
e) Roads:CenterLine
f) Roads:Casing

It might be noted that the WMS cannot be interrogated for metadata to indicate which
styled layers can be meaningfully combined and how. However, a flexible client would
allow an end-user to explore the various possibilities.

The WMS 1.3 specification deals with styles and layers which are ‘known’ to the WMS
and which are identified by name. For this reason, the rest of this document refers to the
layers and styles that have been described above as “named layers” and “named styles”.
The WMS specification provides only one way to define a styled layer, as a combination
of a named layer and a named style.

6.2 General HTTP request rules as used by WMS and SLD

HTTP supports two request methods: GET and POST. One or both of these methods
may be defined for a particular OGC Web Service type and offered by a service instance,
and the use of the Online Resource URL differs in each case. The basic WMS
specification defines HTTP GET (mandatory) and HTTP POST (optional) for invoking
operations.

6.3 Styled-Layer Descriptor

Subclause 6.1 described how the appearance of a map in the WMS specification can be
defined as a sequence of styled layers. Styling can also be described using a user-defined
XML encoding of a map’s appearance called a Styled-Layer Descriptor (SLD). The SLD
format is discussed in detail in Clauses TBD. Briefly, an SLD includes a
StyledLayerDescriptor XML element that contains a sequence of styled-layer
definitions. These styled-layer definitions may use named or user-defined layers and
named or user-defined styling. Here is an example simple SLD that corresponds to the
first example from the previous section:

<StyledLayerDescriptor version="1.1.0">
 <NamedLayer>
 <Name>Rivers</Name>
 <NamedStyle>
 <Name>CenterLine</Name>
 </NamedStyle>
 </NamedLayer>
 <NamedLayer>
 <Name>Roads</Name>
 <NamedStyle>
 <Name>CenterLine</Name>
 </NamedStyle>
 </NamedLayer>
 <NamedLayer>
 <Name>Houses</Name>
 <NamedStyle>
 <Name>Outline</Name>
 </NamedStyle>
 </NamedLayer>
</StyledLayerDescriptor>

05-078

6

The NamedLayer and NamedStyle elements correspond to the LAYERS and STYLES
of the CGI parameters and the “painter’s model” is also used for Z-ordering. An SLD
XML document can become much more complex with user-defined styling.

6.4 WMS requests using an SLD

Three approaches are defined to allow a client to take advantage of SLD symbology:

a) The client interacts with the WMS using HTTP GET but the request can
reference a remote SLD.

b) The client uses the HTTP GET method but includes the SLD XML document in-
line with the GET request in an SLD_BODY CGI parameter (with appropriate
character encoding).

c) The client interacts with the WMS using HTTP POST with the GetMap request
encoded in XML and including an embedded SLD, as described in section 6.3.4 of
WMS 1.3 specification.

The third method is technically superior but there has been a great lack of vendor support
in the past for an XML-POST GetMap-request method. Use of the second method,
which is a compromise between the first and third methods, can encounter problems
resulting from excessively long URLs.

It is important to note that in all cases the WMS has no prior knowledge of the SLD
contents. There is a wide spectrum of possible clients. Some may allow a user to switch
between a number of predefined maps, each specified by its own pre-defined SLD.
Others may allow a user to interactively define how they wish a map to appear and
construct the necessary SLD ‘on-the-fly’. All of the approaches described above allow a
client application to do this but the first one requires that the client be able to place the
SLD document in a Web location accessible to the WMS.

Consider the example (incomplete) GetMap request from the previous section:

http://yourfavoritesite.com/WMS?
 REQUEST=GetMap&
 BBOX=0.0,0.0,1.0,1.0&
 LAYERS=Rivers,Roads,Houses&
 STYLES=CenterLine,CenterLine,Outline&
 WIDTH=400&
 HEIGHT=400&
 FORMAT=image/png

It has already been described, in Subclause Error! Reference source not found., how
the LAYERS and STYLES parameters could be encoded in an SLD. The request references
the SLD using a SLD parameter, which replaces the LAYERS and STYLES parameters. The
SLD itself must be accessible to the WMS and is identified using a URL. The URL must
be encoded prior to inclusion as a parameter value, just as layer and style names are
already encoded. Assuming the URL for the prepared SLD document is

05-078

 7

http://myclientsite.com/mySLD.xml then the above map request would be converted to
look like:

http://yourfavoritesite.com/WMS?
 REQUEST=GetMap&
 BBOX=0.0,0.0,1.0,1.0&
 SLD=http%3A%2F%2Fmyclientsite.com%2FmySLD.xml&
 WIDTH=400&
 HEIGHT=400&
 FORMAT=PNG

The prepared SLD document for this example would have the content of the
StyledLayerDescriptor example from Subclause TBD, with appropriate standard XML
header tags. The SLD document could also be included in-line with the GET request as
in the following long example (which does not include schema or namespace references):

http://yourfavoritesite.com/WMS?
 REQUEST=GetMap&
 BBOX=0.0,0.0,1.0,1.0&
 SLD_BODY=%3C%3Fxml+version%3D%221.0%22+encoding%3D%22UTF-8%22%3F%3E%3CStyled
LayerDescriptor+version%3D%221.1.0%22%3E%3CNamedLayer%3E%3CName%3ERivers%3C%2FN
ame%3E%3CNamedStyle%3E%3CName%3ECenterLine%3C%2FName%3E%3C%2FNamedStyle%3E%3C%2
FNamedLayer%3E%3CNamedLayer%3E%3CName%3ERoads%3C%2FName%3E%3CNamedStyle%3E%3CNa
me%3ECenterLine%3C%2FName%3E%3C%2FNamedStyle%3E%3C%2FNamedLayer%3E%3CNamedLayer
%3E%3CName%3EHouses%3C%2FName%3E%3CNamedStyle%3E%3CName%3EOutline%3C%2FName%3E%
3C%2FNamedStyle%3E%3C%2FNamedLayer%3E%3C%2FStyledLayerDescriptor%3E
 WIDTH=400&
 HEIGHT=400&
 FORMAT=PNG

There may be other complications in addition to the excessively long URLs with this
approach if UTF-8 characters outside of the 7-bit ASCII range are used, as HTTP is
defined to use the ISO Latin-1 character set. The advantages are that the client does not
need to publish the SLD document on the Web and simple clients that are unable to use
the POST method can use this method.

To make the HTTP-GET methods more practical for use, the SLD can also be used in
one of two different modes depending on whether the LAYERS parameter is present in the
request. If it is not present, then all layers identified in the SLD document are rendered
with all defined styles, which is equivalent to the XML-POST method of usage. If the
LAYERS parameter is present, then only the layers identified by that parameter are rendered
and the SLD is used as a “style library”.

When an SLD is used as a style library, the STYLES CGI parameter is interpreted in the
usual way in the GetMap request, except that the handling of the style names is organized
so that the styles defined in the SLD take precedence over the named styles stored within
the map server. The user-defined SLD styles can be given names and they can be marked
as being the default style for a layer. To be more specific, if a style named “CenterLine”
is referenced for a layer and a style with that name is defined for the corresponding layer
in the SLD, then the SLD style definition is used. Otherwise, the standard named-style
mechanism built into the map server is used. If the use of a default style is specified and a
style is marked as being the default for the corresponding layer in the SLD, then the

05-078

8

default style from the SLD is used; otherwise, the standard default style in the map server
is used.

6.5 GetMap POST method

The alternative approach is to communicate with the WMS using HTTP POST with SLD
as a component of the WMS. Unfortunately, recent WMS specifications have not
included a POST encoding, so it is necessary to define it in this specification.

TBD: The WMS GetMap schema is presented in Annex X.X and the SLD GetMap schema
is presented in Annex Y.Y.

Using the POST GetMap method, the running example translates into the following XML
encoding [TBD: adjust to WMS 1.3 POST Schema - if there is one or eventually create
one]:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE GetMap
 SYSTEM "http://some.site.com/wms/GetMap.xsd">
<ogc:GetMap xmlns:ogc="http://www.opengis.net/ows"
 xmlns:gml="http://www.opengis.net/gml"
 env:encodingStyle=
 "http://www.w3.org/2001/09/soap-encoding"
 version="1.3.0" service="WMS">
 <StyledLayerDescriptor version="1.1.0">
 <NamedLayer>
 <Name>Rivers</Name>
 <NamedStyle>
 <Name>CenterLine</Name>
 </NamedStyle>
 </NamedLayer>
 <NamedLayer>
 <Name>Roads</Name>
 <NamedStyle>
 <Name>CenterLine</Name>
 </NamedStyle>
 </NamedLayer>
 <NamedLayer>
 <Name>Houses</Name>
 <NamedStyle>
 <Name>Outline</Name>
 </NamedStyle>
 </NamedLayer>
 </StyledLayerDescriptor>
 <BoundingBox
 srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
 <gml:coord>
 <gml:X>-180.0</gml:X>
 <gml:Y>-90.0</gml:Y>
 </gml:coord>
 <gml:coord>
 <gml:X>180.0</gml:X>
 <gml:Y>90.0</gml:Y>
 </gml:coord>
 </BoundingBox>
 <Output>
 <Format>image/jpeg</Format>
 <Transparent>false</Transparent>
 <Size>

05-078

 9

 <Width>1024</Width>
 <Height>512</Height>
 </Size>
 </Output>
 <Exceptions>application/vnd.ogc.se+xml</Exceptions>
</ogc:GetMap>

Although this example describes how a WMS specification request can be converted to
use an SLD, the mechanism can be used with any valid SLD. Specifically it can be used
with an SLD that includes user-defined symbolization.

6.6 Web Map Servers and Web Feature/Coverage Servers

If a WMS is to symbolize features using a user-defined symbolization, it is necessary to
identify the source of the feature data. This specification is designed to permit a wide
variety of implementations of WMS that support user-defined symbolization. For
example a WMS might symbolize feature or coverage data stored in a remote Web
Feature Server (WFS) or Web Coverage Server (WCS), or it might only be able to
symbolize data from a specific default feature/coverage store.

In support of this, optional parameters called REMOTE_OWS_TYPE and
REMOTE_OWS_URL are introduced for HTTP-GET GetMap requests that can be
used to direct the WMS to a remote WFS, WCS, or other OWS service as the ‘default’
source for feature/coverage data. The presently allowed values for the
REMOTE_OWS_TYPE parameter are “WFS” and “WCS”, though more may be
allowed in the future. The REMOTE_OWS_URL parameter gives the base URL of the
service to use. (Previously, this mechanism was provided with a single WFS parameter,
but that was too restrictive.) For example, if the URL for a WFS is
http://anothersite.com/WFS? then the map request from the previous subclause would
be converted to look like:

http://yourfavoritesite.com/WMS?
 VERSION=1.3.0&
 REQUEST=GetMap&
 SRS=EPSG%3A4326&
 BBOX=0.0,0.0,1.0,1.0&
 SLD=http%3A%2F%2Fmyclientsite.com%2FmySLD.xml&
 WIDTH=400&
 HEIGHT=400&
 FORMAT=image/png&
 REMOTE_OWS_TYPE=WFS&
 REMOTE_OWS_URL=http%3A%2F%2Fanothersite.com%2FWFS%3F

This represents the simplest relationship between a WMS and a WFS/WCS. However
there is a wide range of possible relationships. To clarify the discussion, this document
introduces the concept of ‘component’ and ‘integrated’ servers:

• Component servers: these are servers designed to be loosely coupled and work in
any combination. For example, a component WMS can symbolize
feature/coverage data from any WFS/WCS to which it is directed and GML data
that is provided inline.

05-078

10

• Integrated servers: these are servers that are closely coupled and can only work in
particular configurations. For example, an integrated WMS might only be able to
symbolize feature/coverage data from the WFS/WCS with which it is integrated.

Whether a particular server is a ‘component’ or ‘integrated’ server says something about
how it is implemented. For example a WMS is a ‘valid’ OGC WMS provided it correctly
supports the WMS interface. This makes no assumptions about how the WMS is
implemented. However, a ‘component’ WMS that can symbolize feature/coverage data
only interacts with the data through the WFS/WCS interface, this does say something
about the implementation. Of course, it is not important what type of WFS/WCS
(component or integrated) that a component WMS is directed to. It is also worth noting
that there will continue to be WMSes that can produce maps from sources other than
feature data.

There will be a spectrum of WMS with the ability to support user-defined symbolization.
This is best illustrated by describing in more detail what might be considered the ‘two
ends’ of the spectrum, represented by a ‘component’ WMS at one end and ‘integrated’
WMS at the other.

• Component WMS

Essentially a portrayal engine that can symbolize feature data obtained from one
or more remote WFS/WCSes. Typically it has these characteristics:

o A component WMS probably has no pre-defined ‘named’ layers or styles.

o A component WMS only supports the WMS interface.

o A component WMS can symbolize feature data from any compliant
WFS/WCS or GML data provided inline.

o A component WMS supports both user-defined styles and user-defined
layers.

It would be expected that WMS based upon XSLT technology would fit into this
category.

• Integrated WMS

This is a server representing a closely coupled feature store and a portrayal
engine. Typically it has these characteristics:

o An integrated WMS probably has pre-defined ‘named’ layers and
styles.

o An integrated WMS supports the WMS interface and the
DescribeFeatureType request of the WFS interface or the GetCapabilities
and DescribeCoverage requests of the WCS interface.

05-078

 11

o An integrated WMS can only symbolize feature data from its own
internal the feature store.

o An integrated WMS might only support user-defined styles being
applied to pre-defined ‘named’ layers.

Whether one is using a component or integrated WMS, it must be possible to interrogate
(albeit at a relatively superficial level) the underlying feature store. This is because user-
defined symbolization makes use of concepts not previously required by WMS. For
example, the WMS 1.3 specification makes it possible to interact with a WMS using
concepts such as [Named]Layer and [Named]Style but without the need to use concepts
such as feature type. By contrast user-defined symbolization needs to be able to define
new layers and styles using feature types and feature-type properties. For example, a new
layer might be defined as all the features of a particular feature type. This specification
seeks to ensure that the bar to creating WMSes that support user-defined symbolization is
as low as possible.

The underlying feature/coverage store is interrogated using the WFS/WCS interface. For
a component WMS this is not a problem, since the feature/coverage store is indeed a
remote WFS/WCS. For an integrated WMS, the server must support both the WMS
interface and a minimal set of WFS/WCS operations. It must support the
DescribeFeatureType request of a WFS or the GetCapabilities and DescribeCoverage of
a WCS. This describes the properties of a feature/coverage type specified by name in the
request. And, if the WMS supports user-defined layers, then it must support the WFS
GetCapabilities request. For a WFS this returns, among other things, the names of all
the feature types supported by the WFS. Together the two WFS requests allow clients to
retrieve all the information they require to construct user-defined symbolizations. The
WCS GetCapabilities and Describe Coverage requests allow clients to retrieve all the
information they require to construct user-defined symbolizations.

It is also necessary to indicate where a WMS should find the feature data that is to be
symbolized. This is done using the following rules:

1. if the SLD specifies a WFS or WCS in the RemoteOWS or an InlineFeature
element of the UserLayer element, then it should be used (see Clause TBD);
otherwise

2. if the GetMap request included CGI REMOTE_OWS_TYPEand
REMOTE_OWS_URL parameters then that remote service should be used;
otherwise

3. the WMS should use a default WFS or WCS.

This approach does not permit features/coverages from different WFS/WCSes to be
included in the same styled layer; however, it does allow different styled layers to be
based on feature data from different WFS/WCSes. The first two options should only be
used for a WMS that can be ‘directed’ to a remote WFS/WCS. The WMS will advertise
this ability in response to a GetCapabilities request. For an integrated WMS, the default

05-078

12

WFS/WCS is just the one with which it is integrated. However, there is no reason why a
component WMS should not have a default WFS/WCS defined.

7 DescribeLayer operation (optional)

7.1 Introduction

Defining a user-defined style requires information about the features being symbolized,
or at least their feature type. Since user-defined styles can be applied to a named layer,
there needs to be a mechanism by which a client can obtain feature/coverage-type
information for a named layer. This is another example of bridging the gap between the
WMS concepts of layers and styles and WFS/WCS concepts such as feature-type and
coverage layer. To allow this, a WMS may optionally support the DescribeLayer
request. This can be applied to multiple layers as shown in the example below:

http://yourfavoritesite.com/WMS?
 VERSION=1.3.0&
 REQUEST=DescribeLayer&
 LAYERS=Rivers,Roads,Houses

where DescribeLayer is a new option for the REQUEST parameter and LAYERS is the
parameter that allows a number of named layers to be specified by name. This is thought
to be a better approach than overloading the WMS Capabilities document even more.

The response should be an XML document describing the specified named layers. If any
of the named layers are not present, the response is an XML document reporting an
exception.

For each named layer, the description should indicate if it is indeed based on feature data
and if so it should indicate the WFS/WCS (by a URL prefix) and the feature types. Note
that it is perfectly valid for a named layer not to be describable in this way. It has been
suggested that we reuse the WFS mechanism for indicating how one identifies feature
types in a WFS, namely by using the Query element. Annex B gives the TBD XML
Schema for the response.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE WMS_DescribeLayerResponse
 SYSTEM "http://some.site.com/sld/DSR.dtd" >
<WMS_DescribeLayerResponse version="1.3.0" >
 <!-- 'Layer_A' comes from the wfs specified by
 the prefix "http://www.mywfs.com/WFS?" and has features
 of types 'Road_FT' and 'Route_FT' -->
 <LayerDescription name="Layer_A"
 wfs="http://www.mywfs.com/WFS?">
 <Query typeName="Road_FT" />
 <Query typeName="Route_FT" />
 </LayerDescription>
 <!-- 'Layer_B' cannot be described in terms of
 a WFS and so has no wfs attribute and no contents -->
 <LayerDescription name="Layer_B">
 </LayerDescription>
</WMS_DescribeLayerResponse>

05-078

 13

Note that even an integrated WMS should provide a WFS/WCS prefix, since this allows
DescribeFeatureType requests to be made.

A WMS need not support the DescribeLayer request. However, it should be noted that it
may be common for a WMS not to support UserLayers but to allow UserStyles to be
applied to named layers. In such circumstances, supporting the DescribeLayer request is
the only interoperable way in which a client can specify user-defined symbolization.

7.2 DescribeLayer operation request (TBD)

7.2.1 DescribeLayer request parameters

A request to perform the DescribeLayer operation shall include the parameters listed and
defined in Table 7. This table also specifies the UML model data type, source of values,
and multiplicity of each listed parameter, plus the meaning to servers when each optional
parameter is not included in the operation request. Although some values listed in the
“Name” column appear to contain spaces, they shall not contain spaces.

NOTE 1 To reduce the need for readers to refer to other documents, the first three parameters listed
below are largely copied from Table 21 in Subclause 9.2.1 of [OGC 05-008]. The next DescribeLayer
parameters listed below are copied from Table 1 in Subclause 7.2 of this document.

Table 7 — Parameters in DescribeLayer operation request

Name
a Definition Data type and value Multiplicity and use

service Service type identifier Character String type, not empty
Value is OWS type abbreviation
(“WMS”)

One (mandatory)

request Operation name Character String type, not empty
(“DescribeLayer”)

One (mandatory)

version Specification version for
operation

Character String type, not empty
Value is specified by each
Implementation Specification and
Schemas version

One (mandatory)

layers names of layers
description requestesd of

Character String type, not empty.
Multiple layer names separated by
‘,’

Multiple (one is
mandatory)

a The name capitalization rules being used here are specified in Subclause 11.6.2 of [OGC 05-008].

NOTE 2 The data type of many parameters is specified as “Character String type, not empty”. In the
XML Schemas specified herein, these parameters are encoded with the xsd:string type, which does NOT
require that these strings not be empty.

7.2.2 TBD request KVP encoding (optional or required)

All SLD-WMS Servers supporting DescribeLayer shall implement HTTP GET transfer
of the DescribeLayer operation request, using KVP encoding. The KVP encoding of the
DescribeLayer operation request shall use the parameters specified in Table 8. The
parameters listed in Table 8 shall be as specified in Table 7 above.

05-078

14

Table 8 — DescribeLayer operation request URL parameters

Name and example a Optionality and use Definition and format
service=WMS Mandatory Service type identifier
request= DescribeLayer Mandatory Operation name
version=1.3.0 Mandatory Specification and schema version

for this operation
layers=layer_list Mandatory names of layers that description is

requested for
a All parameter names are here listed using mostly lower case letters. However, any parameter name capitalization shall be
allowed in KVP encoding, see Subclause 11.5.2 of [OGC 05-008].

7.3 TBD operation response

7.3.1 Normal response parameters

The response should be an XML document describing the specified named layers. If any
of the named layers are not present, the response is an XML document reporting an
exception.

For each named layer, the description should indicate if it is indeed based on feature data
and if so it should indicate the WFS/WCS (by a URL prefix) and the feature types. Note
that it is perfectly valid for a named layer not to be describable in this way. It has been
suggested that we reuse the WFS mechanism for indicating how one identifies feature
types in a WFS, namely by using the Query element. Annex B gives the DTD for the
response.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE WMS_DescribeLayerResponse
 SYSTEM "http://some.site.com/sld/DSR.dtd" >
<WMS_DescribeLayerResponse version="1.1.0" >
 <!-- 'Layer_A' comes from the wfs specified by
 the prefix "http://www.mywfs.com/WFS?" and has features
 of types 'Road_FT' and 'Route_FT' -->
 <LayerDescription name="Layer_A"
 wfs="http://www.mywfs.com/WFS?">
 <Query typeName="Road_FT" />
 <Query typeName="Route_FT" />
 </LayerDescription>
 <!-- 'Layer_B' cannot be described in terms of
 a WFS and so has no wfs attribute and no contents -->
 <LayerDescription name="Layer_B">
 </LayerDescription>
</WMS_DescribeLayerResponse>

Note that even an integrated WMS should provide a WFS/WCS prefix, since this allows
DescribeFeatureType requests to be made.

A WMS need not support the DescribeLayer request. However, it should be noted that it
may be common for a WMS not to support UserLayers but to allow UserStyles to be
applied to named layers. In such circumstances, supporting the DescribeLayer request is
the only interoperable way in which a client can specify user-defined symbolization.

05-078

 15

The normal response to a valid TBD operation request shall be TBD. More precisely, a
response from the TBD operation shall include the parts listed in Table 9. This table also
specifies the UML model data type plus the multiplicity and use of each listed part.

Table 9 — Parts of TBD operation response

Name Definition Data type and use Multiplicity and use

a

NOTE The UML class diagram contained in Subclause C.TBD provides a graphical view of the
contents of the TBD operation response listed in Tables 9- TBD.

7.3.2 Normal response XML encoding

The following schema fragment specifies the contents and structure of a TBD operation
response, always encoded in XML:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns:wcts="http://www.opengeospatial.net/wcts"
xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.opengeospatial.net/wcts"
elementFormDefault="qualified" xml:lang="en">
 <annotation>
 <appinfo>isTransformableResponse.xsd 2004/10/27</appinfo>
 <documentation>This XML Schema encodes the WCTS IsTransformable
operation message. </documentation>
 </annotation>
 <!-- ==
 elements and types
 == -->
 <element name="IsTransformableResponse">
 <annotation>
 <documentation>Response to a valid IsTransformable operation
request sent to a WCTS. </documentation>
 </annotation>
 <complexType>
 <sequence/>
 <attribute name="transformable" type="boolean"
use="required">
 <annotation>
 <documentation>Indicates whether this WCTS server can
perform a transformation from the sourceCRS to the targetCRS identified
in the operation request. The value shall be "true" or "false".
</documentation>
 </annotation>

05-078

16

 </attribute>
 <attribute name="problem" type="wcts:ProblemType"
use="optional">
 <annotation>
 <documentation>Type of transformation problem detected
by WCTS server. This attribute shall be included whenever the
"transformable" attribute is false. </documentation>
 </annotation>
 </attribute>
 </complexType>
 </element>
 <!-- === -->
 <simpleType name="ProblemType">
 <annotation>
 <documentation>Type of transformation problem by WCTS server.
</documentation>
 </annotation>
 <restriction base="string">
 <enumeration value="source CRS">
 <annotation>
 <documentation>WCTS server cannot transform from
identified source CRS. </documentation>
 </annotation>
 </enumeration>
 <enumeration value="target CRS">
 <annotation>
 <documentation>WCTS server cannot transform to
identified target CRS from identified source CRS. </documentation>
 </annotation>
 </enumeration>
 <enumeration value="geometry type">
 <annotation>
 <documentation>WCTS server cannot transform one or more
identified geometry types. </documentation>
 </annotation>
 </enumeration>
 <enumeration value="coverage type">
 <annotation>
 <documentation>WCTS server cannot transform one or more
identified coverage types. </documentation>
 </annotation>
 </enumeration>
 <enumeration value="interpolation method">
 <annotation>
 <documentation>WCTS server cannot perform one or more
identified interpolation methods. </documentation>
 </annotation>
 </enumeration>
 <enumeration value="other">
 <annotation>
 <documentation>WCTS server cannot perform identified
transformation due to some other problem, including incompatibility
between identified parameters. </documentation>
 </annotation>
 </enumeration>
 </restriction>
 </simpleType>
</schema>

05-078

 17

7.3.3 TBD exceptions

When a TBD server encounters an error while performing a TBD operation, it shall
return an exception report message as specified in Subclause 7.4 of [OGC 05-008]. The
allowed standard exception codes shall include those listed in Table 10. For each listed
exceptionCode, the contents of the “locator” parameter value shall be as specified in the
right column of Table 10.

NOTE To reduce the need for readers to refer to other documents, the first four values listed below are
copied from Table 20 in Subclause 8.3 of [OGC 05-008].

Table 10 — Exception codes for TBD operation

exceptionCode value Meaning of code “locator” value
OperationNotSupported Request is for an operation that is not supported by

this server
Name of operation
not supported

MissingParameterValue Operation request does not include a parameter
value, and this server did not declare a default
value for that parameter

Name of missing
parameter

InvalidParameterValue Operation request contains an invalid parameter
value

Name of parameter
with invalid value

NoApplicableCode No other exceptionCode specified by this service
and server applies to this exception

None, omit “locator”
parameter

TBD TBD TBD

7.4 Examples

A TBD operation request for TBD can look like this encoded in XML:

<?xml version="1.0" encoding="UTF-8"?>
<IsTransformable xmlns="http://www.opengeospatial.net/wcts"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengeospatial.net/wcts
isTransformable.xsd" service="WCTS" version="0.0.0">
 <!-- Primary editor: Arliss Whiteside. Last updated 2003/12/02. -->
 <!-- This template can be used for all CRSs defined by the EPSG. -->
 <sourceCRS xlink:href="urn:ogc:srs:EPSG::4326"/>
 <targetCRS xlink:href="urn:ogc:srs:EPSG::23032"/>
 <geometryType>LineStringType</geometryType>
</IsTransformable>

An example response to a TBD operation request is:

<?xml version="1.0" encoding="UTF-8"?>
<IsTransformableResponse xmlns="http://www.opengeospatial.net/wcts"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengeospatial.net/wcts
isTransformableResponse.xsd" transformable="true"/>
<!-- Primary editor: Arliss Whiteside. Last updated 2003/12/02. -->

05-078

18

8 GetLegendGraphic operation (optional)

8.1 Introduction

Legends are normally included with maps to indicate to the user how various features are
represented in the map. It is therefore important to be able to produce a legend on a map-
display client for styles that are represented in SLD format.

The structuring of SLD UserStyles into SE FeatureStyles and Rules provides
convenient packaging for this purpose, since rules identify each different kind of graphic
symbolization that may be present in a map. Given the information in an SLD
UserStyle, a map-viewer client could generate a legend entry for a layer in the following
format:

Roads Layer

 Highways

 Collector Roads

 Minor Roads

The icon symbols are graphics (images) showing how the rule is rendered. Abstracts or
conditions could be displayed by clicking on the titles, etc. The exact presentation of this
information is at the discretion of the viewer client.

Generating this kind of display may involve a significant amount of processing on the
client. The client will need to examine the selected SLD style and determine which rules
apply at the currently used map scale. Then, it will generate something analogous to the
above ‘form’ with the Layer and Rule titles in HTML or Java Swing or whatever the
environment, using references for the images. Alternatively, the job of producing a
meaningful legend entry for a style could be passed on to the server side in a similar way
to how it is done now with WMS LegendURLs.

The image references make use of the GetLegendGraphic operation of the SLD-WMS
interface, with a separate reference for each image. The parameterization of the
operation needs to be “overloaded” in the same way that parameters for the GetMap with
an SLD are overloaded in order to handle the different kinds of clients. I.e., there is an
XML-based HTTP-POST method for executing GetMap (which is the way that SLD is
really intended to be used but nobody implements it), and there are HTTP-GET methods
using SLD= and SLD_BODY= parameters to reference/transport the SLD for use in either
“literal” or “library” mode (depending on whether the LAYERS= parameter is present).

The GET parameters of the GetLegendGraphic operation are defined as follows:

Parameter Required Description

VERSION Required Version as required by OGC interfaces.

05-078

 19

Parameter Required Description

REQUEST Required Value must be “GetLegendGraphic”.

LAYER Required Layer for which to produce legend graphic.

STYLE Optional Style of layer for which to produce legend graphic. If
not present, the default style is selected. The style may
be any valid style available for a layer, including non-
SLD internally-defined styles.

FEATURETYPE Optional Feature type for which to produce the legend graphic.
This is not needed if the layer has only a single feature
type.

RULE Optional Rule of style to produce legend graphic for, if applicable.
In the case that a style has multiple rules but no specific
rule is selected, then the map server is obligated to
produce a graphic that is representative of all of the rules
of the style.

SCALE Optional In the case that a RULE is not specified for a style, this
parameter may assist the server in selecting a more
appropriate representative graphic by eliminating internal
rules that are out-of-scope. This value is a standardized
scale denominator, defined in Subclause Error!
Reference source not found.

SLD Optional This parameter specifies a reference to an external SLD
document. It works in the same way as the SLD=
parameter of the WMS GetMap operation.

SLD_BODY Optional This parameter allows an SLD document to be included
directly in an HTTP-GET request. It works in the same
way as the SLD_BODY= parameter of the WMS GetMap
operation.

FORMAT Required This gives the MIME type of the file format in which to
return the legend graphic. Allowed values are the same
as for the FORMAT= parameter of the WMS GetMap request.

WIDTH Optional This gives a hint for the width of the returned graphic in
pixels. Vector-graphics can use this value as a hint for
the level of detail to include.

HEIGHT Optional This gives a hint for the height of the returned graphic in
pixels.

05-078

20

Parameter Required Description

EXCEPTIONS Optional This gives the MIME type of the format in which to
return exceptions. Allowed values are the same as for the
EXCEPTIONS= parameter of the WMS GetMap request.

The GetLegendGraphic operation itself is optional for an SLD-enabled WMS. It provides
a general mechanism for acquiring legend symbols, beyond the LegendURL reference of
WMS Capabilities. Servers supporting the GetLegendGraphic call might code LegendURL
references as GetLegendGraphic for interface consistency. Vendor-specific parameters
may be added to GetLegendGraphic requests and all of the usual OGC-interface options
and rules apply. No XML-POST method for GetLegendGraphic is presently defined.

Here is an example invocation:

http://www.vendor.com/wms.cgi?
 VERSION=1.1.0&
 REQUEST=GetLegendGraphic&
 LAYER=ROADL_1M%3Alocal_data&
 STYLE=my_style&
 RULE=highways
 SLD=http%3A%2F%2Fwww.sld.com%2Fstyles%2Fkpp01.xml
 WIDTH=16&
 HEIGHT=16&
 FORMAT=image%2Fgif&

which would produce a 16x16 icon for the Rule named “highways” defined within layer
“ROADL_1M:local_data” in the SLD. The list of available formats for legend graphics
and exceptions can be assumed to be the same as are available for a map in the WMS
GetMap request.

An alternative approach to using a GetLegendGraphic operation would be for the viewer
client to render a style sample directly itself using the style description. This would save
some interactions between the client and server and would allow the viewer client to
present consistent sample shapes (across remote map servers from different vendors),
although the legend graphics might look different from the graphics actually rendered in
the map since the viewer and server may have different rendering engines and different
graphical capabilities.

The LegendGraphic element of an SLD Rule (defined in Subclause Error! Reference
source not found.) actually only has a limited role in building legends. For vector types,
a map server would normally render a standard vector geometry (such as a box) with the
given symbolization for a rule. But for some layers, such as for Digital Elevation Model
(DEM) data, there is not really a “standard” geometry that can rendered in order to get a
good representative image. So, this is what the LegendGraphic SLD element is intended
for, to provide a substitute representative image for a Rule. For example, it might
reference a remote URL for a DEM layer called “GTOPO30”:

http://www.vendor.com/sld/icons/COLORMAP_GTOPO30.png

http://www.vendor.com/sld/icons/COLORMAP_GTOPO30.png

05-078

 21

8.2 TBD operation request

8.2.1 TBD request parameters

A request to perform the TBD operation shall include the parameters listed and defined in
Table 7. This table also specifies the UML model data type, source of values, and
multiplicity of each listed parameter, plus the meaning to servers when each optional
parameter is not included in the operation request. Although some values listed in the
“Name” column appear to contain spaces, they shall not contain spaces.

NOTE 1 To reduce the need for readers to refer to other documents, the first three parameters listed
below are largely copied from Table 21 in Subclause 9.2.1 of [OGC 05-008]. The next TBD parameters
listed below are copied from Table 1 in Subclause 7.2 of this document.

In all tables such as the following, all cells should use the style “Body Text indent”. In
the top row only, the cell contents shall be bold and centered. In the remaining rows, cell
contents shall not be bold and shall be left justified. I recommend not including periods in
any column.

The left column should list the parameter name using the XML encoding capitalization
specified in Subclause 11.6.2 of [OGC 05-008]. To break long names at appropriate
places, insert at such places a special character using Insert/Symbol/Special
Characters/No-Width Optional Break.

The second column should list the definition of this parameter, omitting un-necessary
words such as “a”, “the”, and “is”. If the parameter value is the identifier of something,
not a description or definitions, say that this parameter is “Identifier of TBD”.

In the third column, the first item should state the data type used for this parameter, using
data types appropriate in a UML model, in which this parameter is a named attribute of a
UML class. If this parameter is not simple, but is a data structure, name that data
structure and refer to a separate table that shall be used to specify the contents of that data
structure. The second item in the third column should indicate the source of values for
this parameter, the alternative values, or other value information, unless the values are
quite clear from other listed information.

In the right (fourth) column, the first item should be the multiplicity and optionality of
this parameter in this data structure, either “One (mandatory)”, “One or more
(mandatory)”, “Zero or one (optional)”, or “Zero or more (optional)”. (Yes, these are
redundant, but I think ISO wants this information.) The second item in the right column
should specify how any multiplicity other than “One (mandatory)” shall be used. If that
parameter is optional, under what condition(s) shall that parameter be included or not
included? If that parameter can be repeated, for what is that parameter repeated? (These
conditions may seem obvious to you, but they are rarely obvious to most readers.)

Table 7 — Parameters in TBD operation request

Name
a Definition Data type and value Multiplicity and use

service Service type identifier Character String type, not empty One (mandatory)

05-078

22

Value is OWS type abbreviation
(e.g., “WMS”, “WFS”)

request Operation name Character String type, not empty
Value is operation name (e.g.,
“GetCapabilities”)

One (mandatory)

version Specification version for
operation

Character String type, not empty
Value is specified by each
Implementation Specification and
Schemas version

One (mandatory)

TBD TBD TBD TBD

a The name capitalization rules being used here are specified in Subclause 11.6.2 of [OGC 05-008].

NOTE 2 The data type of many parameters is specified as “Character String type, not empty”. In the
XML Schemas specified herein, these parameters are encoded with the xsd:string type, which does NOT
require that these strings not be empty.

NOTE 3 The UML class diagram contained in Subclause TBD provides a useful graphical view of the
contents of the TBD operation request listed in Tables TBD - TBD.

8.2.2 TBD request KVP encoding (optional or required)

Servers can implement HTTP GET transfer of the TBD operation request, using KVP
encoding. The KVP encoding of the TBD operation request shall use the parameters
specified in Table 8. The parameters listed in Table 8 shall be as specified in Table 7
above.

Table 8 — TBD operation request URL parameters

Name and example a Optionality and use Definition and format
service=WCTS Mandatory Service type identifier
request= IsTransformable Mandatory Operation name
version=TBD Mandatory Specification and schema version

for this operation
TBD=TBD TBD TBD

a All parameter names are here listed using mostly lower case letters. However, any parameter name capitalization shall be
allowed in KVP encoding, see Subclause 11.5.2 of [OGC 05-008].

8.2.3 TBD request XML encoding (required or optional)

All TBD servers shall implement HTTP POST transfer of the TBD operation request,
using XML encoding only. The following schema fragment specifies the contents and
structure of a TBD operation request encoded in XML:

<?xml version="1.0" encoding="UTF-8"?>

05-078

 23

<schema xmlns:wcts="http://www.opengeospatial.net/wcts"
xmlns:ows="http://www.opengeospatial.net/ows"
xmlns:gml="http://www.opengis.net/gml"
xmlns:xlink="http://opengeospatial.net/xlink"
xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.opengeospatial.net/wcts"
elementFormDefault="qualified" xml:lang="en">
 <annotation>
 <appinfo>fragmentIsTransformableRequest.xsd 2004/12/20</appinfo>
 <documentation>This XML Schema encodes the WCTS IsTransformable
operation request message. </documentation>
 </annotation>
 <!-- ==
 includes and imports
 == -->
 <import namespace="http://www.opengeospatial.net/ows"
schemaLocation="owsAdditions.xsd"/>
 <import namespace="http://www.opengis.net/gml"
schemaLocation="../gml/3.1.1/base/coordinateReferenceSystems.xsd"/>
 <!-- ==
 elements and types
 == -->
 <element name="IsTransformable">
 <annotation>
 <documentation>Request to a WCTS to perform the
IsTransformable operation. This operation allows clients to check if
transformation of a specific set of geometry and/or coverage types is
possible between two coordinate reference systems. Either the desired
source and target CRSs can be directly identified, or a specific
coordinate transformation between two CRSs can be identified. This
operation will check if the identified geometries are supported and if
there is a valid way (sequence of transformation steps) to transform
the coordinates from the source CRS to the target CRS. (This operation
will not check if this transformation makes any sense.) In this XML
encoding, no "request" parameter is included, since the element name
specifies the specific operation. </documentation>
 </annotation>
 <complexType>
 <sequence>
 <choice>
 <sequence>
 <group ref="wcts:SourceAndTargetCRSs">
 <annotation>
 <documentation>Desired well-known SourceCRS
and TargetCRS, included when client is not specifying a specific
coordinate operation. </documentation>
 </annotation>
 </group>
 </sequence>
 <element name="Transformation" type="anyURI">
 <annotation>
 <documentation>Desired well-known coordinate
operation, included when client is specifying a specific coordinate
operation. </documentation>
 </annotation>
 </element>
 <element name="Method" type="anyURI">
 <annotation>

05-078

24

 <documentation>Desired well-known operation
method that can be used in a user-defined coordinate operation,
included when client is considering specifying a specific user-defined
coordinate operation. </documentation>
 </annotation>
 </element>
 </choice>
 <choice>
 <element name="GeometryType"
type="ows:GeometryTypeType" maxOccurs="unbounded">
 <annotation>
 <documentation>Unordered list of one or more GML
3 geometric primitive types that a client can request be transformed by
a WCTS server. It is assumed that a WCTS server can also transform the
corresponding geometric complexes and aggregates. </documentation>
 </annotation>
 </element>
 <sequence>
 <element name="CoverageType"
type="ows:CoverageTypeType" maxOccurs="unbounded">
 <annotation>
 <documentation>Unordered list of one or more
GML 3 coverage types that a client can request be transformed by a WCTS
server. </documentation>
 </annotation>
 </element>
 <element name="InterpolationMethod"
type="ows:InterpolationMethodType" minOccurs="0" maxOccurs="unbounded">
 <annotation>
 <documentation>Unordered list of zero or more
interpolation methods that a client can request be performed on a
coverage by a WCTS server. An interpolation is used after coverage
points have been transformed. </documentation>
 </annotation>
 </element>
 <element name="GeometryType"
type="ows:GeometryTypeType" minOccurs="0" maxOccurs="unbounded">
 <annotation>
 <documentation>Unordered list of zero or more
GML 3 geometric primitive types that a client can request be
transformed by a WCTS server. It is assumed that a WCTS server can also
transform the corresponding geometric complexes and aggregates.
</documentation>
 </annotation>
 </element>
 </sequence>
 </choice>
 </sequence>
 <attribute name="service" type="wcts:ServiceType"
use="required" fixed="WCTS"/>
 <attribute name="version" type="wcts:VersionType"
use="required"/>
 </complexType>
 </element>
 <!-- === -->
 <group name="SourceAndTargetCRSs">
 <annotation>

05-078

 25

 <documentation>Group combining SourceCRS and TargetCRS
elements, used by some WCTS operation requests. </documentation>
 </annotation>
 <sequence>
 <element name="SourceCRS" type="anyURI">
 <annotation>
 <documentation>The coordinate reference system (CRS)
used by coordinates input to a Transform operation. This element shall
uniquely identify the desired CRS, but the definition of that CRS need
not be known to the WCTS server. This element is normally a reference
to that CRS, but can contain the definition of that CRS.
</documentation>
 </annotation>
 </element>
 <element name="TargetCRS" type="anyURI">
 <annotation>
 <documentation>The coordinate reference system (CRS)
used by coordinates output from a Transform operation. This element
shall uniquely identify the desired CRS, but the definition of that CRS
need not be known to the WCTS server. This element is normally a
reference to that CRS, but can contain the definition of that CRS.
</documentation>
 </annotation>
 </element>
 </sequence>
 </group>
 <!-- === -->
 <element name="Transformation"
type="gml:CoordinateOperationRefType">
 <annotation>
 <documentation>A coordinate operation that can transform
coordinates from the sourceCRS to the targetCRS identified in an
operation request. This element is often a reference to a well-known
coordinate operation, but can contain the definition of a coordinate
operation that references a well-known operation method. Alternately,
this element can contain the definition of a ConcatenatedOperation that
combines two or more well-known coordinate operations or coordinate
operations that reference a well-known operation method. The well-known
coordinate operation or operation method can be defined in the CRS
application profile referenced by the WCTS Implementation
Specification. Alternately or in addition, the well-known coordinate
operation or operation method can be defined in the Capabilities XML
document available from this WCTS server. (TBR) </documentation>
 </annotation>
 </element>
 <!-- === -->
 <simpleType name="ServiceType">
 <annotation>
 <documentation>Service type identifier, where the string
value is the OGC Web Service type abbreviation. </documentation>
 </annotation>
 <restriction base="string"/>
 </simpleType>
 <!-- === -->
 <simpleType name="VersionType">
 <annotation>

05-078

26

 <documentation>The version of the Implementation
Specification (document) to which the requested operation conforms. The
value shall be N.N.N, where each N is a non-negative integer
up to 99. </documentation>
 </annotation>
 <restriction base="string"/>
 </simpleType>
 <!-- === -->
 <simpleType name="GeometryTypeType">
 <annotation>
 <documentation>Type of GML 3 geometric primitive possibly
handled by a WCTS server. The possible values are all names of GML 3
complexTypes (TBR). </documentation>
 </annotation>
 <restriction base="string">
 <enumeration value="Envelope"/>
 <enumeration value="Point"/>
 <enumeration value="LineString"/>
 <enumeration value="Polygon"/>
 <enumeration value="LinearRing"/>
 <enumeration value="Curve"/>
 <enumeration value="LineStringSegment"/>
 <enumeration value="ArcString"/>
 <enumeration value="Arc"/>
 <enumeration value="Circle"/>
 <enumeration value="ArcStringByBulge"/>
 <enumeration value="ArcByBulge"/>
 <enumeration value="ArcByCenterPoint"/>
 <enumeration value="CircleByCenterPoint"/>
 <enumeration value="CubicSpline"/>
 <enumeration value="BSpline"/>
 <enumeration value="Bezier"/>
 <enumeration value="OrientableCurve"/>
 <enumeration value="Surface"/>
 <enumeration value="PolygonPatch"/>
 <enumeration value="Triangle"/>
 <enumeration value="Rectangle"/>
 <enumeration value="Ring"/>
 <enumeration value="OrientableSurface"/>
 <enumeration value="Solid"/>
 <enumeration value="CompositeCurve"/>
 <enumeration value="CompositeSurface"/>
 <enumeration value="CompositeSolid"/>
 </restriction>
 </simpleType>
 <!-- === -->
 <simpleType name="CoverageTypeType">
 <annotation>
 <documentation>Type of GML 3 coverage possibly handled by a
WCTS server. For coverages which use specific geometric primitives, a
client should also check if the corresponding geometric primitive types
are supported. </documentation>
 </annotation>
 <restriction base="string">
 <enumeration value="MulitPoint">
 <annotation>
 <documentation>TBD. </documentation>
 </annotation>

05-078

 27

 </enumeration>
 <enumeration value="MultiSurface">
 <annotation>
 <documentation>TBD. </documentation>
 </annotation>
 </enumeration>
 <enumeration value="RectifiedGrid">
 <annotation>
 <documentation>TBD. </documentation>
 </annotation>
 </enumeration>
 </restriction>
 </simpleType>
 <!-- === -->
 <simpleType name="InterpolationMethodType">
 <annotation>
 <documentation>Codes that identify interpolation methods. The
meanings of these codes are defined in Annex B of ISO 19123: Geographic
information â€” Schema for coverage geometry and functions.
</documentation>
 </annotation>
 <restriction base="string">
 <enumeration value="nearest neighbor"/>
 <enumeration value="bilinear"/>
 <enumeration value="bicubic"/>
 <enumeration value="lost area"/>
 <enumeration value="barycentric"/>
 <enumeration value="none">
 <annotation>
 <documentation>No interpolation. </documentation>
 </annotation>
 </enumeration>
 </restriction>
 </simpleType>
</schema>

8.3 TBD operation response

8.3.1 Normal response parameters

The normal response to a valid TBD operation request shall be TBD. More precisely, a
response from the TBD operation shall include the parts listed in Table 9. This table also
specifies the UML model data type plus the multiplicity and use of each listed part.

05-078

28

Table 9 — Parts of TBD operation response

Name Definition Data type and use Multiplicity and use

a

NOTE The UML class diagram contained in Subclause C.TBD provides a graphical view of the
contents of the TBD operation response listed in Tables 9- TBD.

8.3.2 Normal response XML encoding

The following schema fragment specifies the contents and structure of a TBD operation
response, always encoded in XML:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns:wcts="http://www.opengeospatial.net/wcts"
xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.opengeospatial.net/wcts"
elementFormDefault="qualified" xml:lang="en">
 <annotation>
 <appinfo>isTransformableResponse.xsd 2004/10/27</appinfo>
 <documentation>This XML Schema encodes the WCTS IsTransformable
operation message. </documentation>
 </annotation>
 <!-- ==
 elements and types
 == -->
 <element name="IsTransformableResponse">
 <annotation>
 <documentation>Response to a valid IsTransformable operation
request sent to a WCTS. </documentation>
 </annotation>
 <complexType>
 <sequence/>
 <attribute name="transformable" type="boolean"
use="required">
 <annotation>
 <documentation>Indicates whether this WCTS server can
perform a transformation from the sourceCRS to the targetCRS identified
in the operation request. The value shall be "true" or "false".
</documentation>
 </annotation>
 </attribute>
 <attribute name="problem" type="wcts:ProblemType"
use="optional">
 <annotation>
 <documentation>Type of transformation problem detected
by WCTS server. This attribute shall be included whenever the
"transformable" attribute is false. </documentation>

05-078

 29

 </annotation>
 </attribute>
 </complexType>
 </element>
 <!-- === -->
 <simpleType name="ProblemType">
 <annotation>
 <documentation>Type of transformation problem by WCTS server.
</documentation>
 </annotation>
 <restriction base="string">
 <enumeration value="source CRS">
 <annotation>
 <documentation>WCTS server cannot transform from
identified source CRS. </documentation>
 </annotation>
 </enumeration>
 <enumeration value="target CRS">
 <annotation>
 <documentation>WCTS server cannot transform to
identified target CRS from identified source CRS. </documentation>
 </annotation>
 </enumeration>
 <enumeration value="geometry type">
 <annotation>
 <documentation>WCTS server cannot transform one or more
identified geometry types. </documentation>
 </annotation>
 </enumeration>
 <enumeration value="coverage type">
 <annotation>
 <documentation>WCTS server cannot transform one or more
identified coverage types. </documentation>
 </annotation>
 </enumeration>
 <enumeration value="interpolation method">
 <annotation>
 <documentation>WCTS server cannot perform one or more
identified interpolation methods. </documentation>
 </annotation>
 </enumeration>
 <enumeration value="other">
 <annotation>
 <documentation>WCTS server cannot perform identified
transformation due to some other problem, including incompatibility
between identified parameters. </documentation>
 </annotation>
 </enumeration>
 </restriction>
 </simpleType>
</schema>

8.3.3 TBD exceptions

When a TBD server encounters an error while performing a TBD operation, it shall
return an exception report message as specified in Subclause 7.4 of [OGC 05-008]. The
allowed standard exception codes shall include those listed in Table 10. For each listed

05-078

30

exceptionCode, the contents of the “locator” parameter value shall be as specified in the
right column of Table 10.

NOTE To reduce the need for readers to refer to other documents, the first four values listed below are
copied from Table 20 in Subclause 8.3 of [OGC 05-008].

Table 10 — Exception codes for TBD operation

exceptionCode value Meaning of code “locator” value
OperationNotSupported Request is for an operation that is not supported by

this server
Name of operation
not supported

MissingParameterValue Operation request does not include a parameter
value, and this server did not declare a default
value for that parameter

Name of missing
parameter

InvalidParameterValue Operation request contains an invalid parameter
value

Name of parameter
with invalid value

NoApplicableCode No other exceptionCode specified by this service
and server applies to this exception

None, omit “locator”
parameter

TBD TBD TBD

8.4 Examples

A TBD operation request for TBD can look like this encoded in XML:

<?xml version="1.0" encoding="UTF-8"?>
<IsTransformable xmlns="http://www.opengeospatial.net/wcts"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengeospatial.net/wcts
isTransformable.xsd" service="WCTS" version="0.0.0">
 <!-- Primary editor: Arliss Whiteside. Last updated 2003/12/02. -->
 <!-- This template can be used for all CRSs defined by the EPSG. -->
 <sourceCRS xlink:href="urn:ogc:srs:EPSG::4326"/>
 <targetCRS xlink:href="urn:ogc:srs:EPSG::23032"/>
 <geometryType>LineStringType</geometryType>
</IsTransformable>

An example response to a TBD operation request is:

<?xml version="1.0" encoding="UTF-8"?>
<IsTransformableResponse xmlns="http://www.opengeospatial.net/wcts"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengeospatial.net/wcts
isTransformableResponse.xsd" transformable="true"/>
<!-- Primary editor: Arliss Whiteside. Last updated 2003/12/02. -->

05-078

 31

9 SLD encoding

The WMS-layers level of SLD is defined in the “StyledLayerDescriptor.xsd” XML-
Schema file and provides the “glue” between feature styling as defined by Symbology
Encoding and WMS layers. This level of definitions has been decoupled from the
feature-style and symbol definitions to make it convenient to perform feature styling in
environments other than inside of a WMS.

9.1 SLD root element

An SLD document is defined as a sequence of styled layers. The root
StyledLayerDescriptor is defined by the following XML-Schema fragments:

 <xsd:element name="StyledLayerDescriptor">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="se:Name" minOccurs="0"/>
 <xsd:element ref="se:Description" minOccurs="0"/>
 <xsd:element ref="sld:UseSLDLibrary" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="sld:NamedLayer"/>
 <xsd:element ref="sld:UserLayer"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="version" type="se:VersionType" use="required"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="EnvironmentVariable">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="UseSLDLibrary">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="se:OnlineResource"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

The elements OnlineResource and VersionType are part of Symbology Encoding and
described there. The version attribute gives the SLD version of an SLD document, to
facilitate backward compatibility with static documents stored in various different
versions of the SLD specification. The string has the format “x.y.z”, the same as in other
OGC Implementation specifications. For example, an SLD document stored according to
this specification would have the version string “1.1.0”. The attribute is required.

05-078

32

Note that version numbers are used differently with SLD from how they are with OGC
Web services like WMS. Version negotiation cannot be performed in the same way, since
SLD is not a service. Instead, the SLD versions supported must either be implied by the
web service they are associated with, or the web service must give an explicit list of
supported SLD versions in its capabilities. This issue is unresolved.

The Name element allows a symbolic name to be associated with a given SLD document.
This element is used with most “objects” defined by SE and SLD to allow them to be
referenced. Names must be unique in the context in which they are defined.

The Description element is also reused throughout SE and SLD and gives an informative
description of the “object” being defined. This information can be extracted and used for
such purposes as creating informal searchable metadata in catalogue systems. More
metadata fields may be added to this element in the future. The Name is not considered
to be part of a description since a name has a functional use that is more than just
descriptive.

The UseSLDLibrary element makes it so that external SLD documents can be used in
library-mode even when using XML-encoded POST requests with a WMS. (The library
mode can be accessed with the HTTP-GET method by supplying an SLD CGI parameter
in addition to LAYERS and STYLES CGI parameters.) This addition merely exercises
pre-existing functionality in WMS, but it does add the wrinkle of making SLD-library
references iterative and (syntactically) recursive. Successive definitions are applied “on
top of” previous ones to determine the scoping of overlapping style definitions. The
OnlineResource must refer to an SLD document.

The styled layers can correspond to either named layers (NamedLayer) or user-defined
layers (UserLayer), which are described in subsequent subclauses. There may be any
number of either type of styled layer, including zero, mixed in any order. The order that
the layer references appear in the SLD document will be the order that the styled layers
are rendered, with successive styled layers rendered over top of previous styled layers.

9.2 Named layers

A “layer” is defined as a collection of features that can be potentially of various mixed
feature types. A named layer is a layer that can be accessed from an OGC Web Server
using a well-known name. For example, the WMS interface uses the LAYER CGI
parameter to reference named layers as in the example parameter from Clause 6 of:

LAYERS=Rivers,Roads,Houses

The equivalent named-layer specification mechanism in SLD is defined by the following
XML-Schema fragment:

 <xsd:element name="NamedLayer">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="se:Name"/>
 <xsd:element ref="se:Description" minOccurs="0"/>
 <xsd:element ref="sld:LayerFeatureConstraints" minOccurs="0"/>

05-078

 33

 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="sld:NamedStyle"/>
 <xsd:element ref="sld:UserStyle"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

The Name and Description elements are common to most SLD “objects”. The Name
identifies the well-known name of the layer being referenced, and is required. All
possible well-known names are usually identified in the capabilities document for a
server. The Description is informative.

The LayerFeatureConstraints element is optional in a NamedLayer and allows the
user to specify constraints on what features of what feature types are to be selected by the
named-layer reference. It is essentially a filter that allows the selection of fewer features
than are present in the named layer. This element is discussed in Subclause 9.3 where it is
more apropos.

A named styled layer can include any number of named styles and user-defined styles,
including zero, mixed in any order. If zero styles are specified, then the default styling
for the specified named layer is to be used.

A named style, similar to a named layer, is referenced by a well-known name. A
particular named style only has meaning when used in conjunction with a particular
named layer. All available styles for each available layer are normally named in a
capabilities document.

The WMS interface uses the STYLES CGI parameter to reference named styles relative to
named LAYERS, as in the following example parameters:

LAYERS=Rivers,Roads,Houses&
STYLES=CenterLine,CenterLine,Outline

Parallel lists of corresponding layer names and style names are used in the CGI interface
because the CGI interface is not powerful enough to properly nest the named-style
references within the named-layer references. However, the SLD mechanism is. The
equivalent named-style selection mechanism in SLD is defined by the following DTD
fragment:

<xsd:element name="NamedStyle">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="se:Name"/>
 <xsd:element ref="se:Description" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

The Name element simply identifies the well-known style name. The Description is
informative.

05-078

34

The SLD example corresponding to the example WMS parameters above is:

<StyledLayerDescriptor version="1.1.0">
 <NamedLayer>
 <Name>Rivers</Name>
 <NamedStyle>
 <Name>CenterLine</Name>
 </NamedStyle>
 </NamedLayer>
 <NamedLayer>
 <Name>Roads</Name>
 <NamedStyle>
 <Name>CenterLine</Name>
 </NamedStyle>
 </NamedLayer>
 <NamedLayer>
 <Name>Houses</Name>
 <NamedStyle>
 <Name>Outline</Name>
 </NamedStyle>
 </NamedLayer>
</StyledLayerDescriptor>

Similarly a ‘cased’ roads example of:

LAYERS=Roads,Roads,Houses&
STYLES=Casing,CenterLine,Outline

becomes:

<StyledLayerDescriptor version="1.1.0">
 <NamedLayer>
 <Name>Roads</Name>
 <NamedStyle>
 <Name>Casing</Name>
 </NamedStyle>
 </NamedLayer>
 <NamedLayer>
 <Name>Roads</Name>
 <NamedStyle>
 <Name>CenterLine</Name>
 </NamedStyle>
 </NamedLayer>
 <NamedLayer>
 <Name>Houses</Name>
 <NamedStyle>
 <Name>Outline</Name>
 </NamedStyle>
 </NamedLayer>
</StyledLayerDescriptor>

However, this can be encoded in an alternative manner which does not require the
repeated definition of the NamedLayer with name “Roads”, since each NamedLayer
may include any number of style references:

<StyledLayerDescriptor version="1.1.0">
 <NamedLayer>
 <Name>Roads</Name>
 <NamedStyle>

05-078

 35

 <Name>Casing</Name>
 </NamedStyle>
 <NamedStyle>
 <Name>CenterLine</Name>
 </NamedStyle>
 </NamedLayer>
 <NamedLayer>
 <Name>Houses</Name>
 <NamedStyle>
 <Name>Outline</Name>
 </NamedStyle>
 </NamedLayer>
</StyledLayerDescriptor>

Note that the above SLD defines three styled layers, even though there are only two
NamedLayer elements.

User-defined styles (UserStyle in the Schema) are discussed in Clause TBD.

9.3 User-defined layers

In addition to using named layers, it is also useful to be able to define custom user-
defined layers for rendering. The Schema fragment for user-defined layers is as follows:

 <xsd:element name="UserLayer">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="se:Name" minOccurs="0"/>
 <xsd:element ref="se:Description" minOccurs="0"/>
 <xsd:choice minOccurs="0">
 <xsd:element ref="sld:RemoteOWS"/>
 <xsd:element ref="sld:InlineFeature"/>
 </xsd:choice>
 <xsd:choice minOccurs="0">
 <xsd:element ref="sld:LayerFeatureConstraints"/>
 <xsd:element ref="sld:LayerCoverageConstraints"/>
 </xsd:choice>
 <xsd:element ref="sld:UserStyle" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

Since a layer is defined as a collection of potentially mixed-type features, the UserLayer
element must provide the means to identify the features to be used. All features to be
rendered are assumed to be fetched from a Web Feature Server (WFS) or a Web
Coverage Service (WCS, in which case the term “features” is used loosely). Alternatively
they can be supplied in-line in the SLD document. This alternative is only recommended
for small numbers of features of transient nature.

The remote server to be used is identified by RemoteOWS (OGC Web Service) element
which is defined as follows:

 <xsd:element name="RemoteOWS">
 <xsd:complexType>
 <xsd:sequence>

05-078

36

 <xsd:element ref="sld:Service"/>
 <xsd:element ref="se:OnlineResource"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="Service">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="WFS"/>
 <xsd:enumeration value="WCS"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>

It is hoped that this definition can be cleaned up to refer to schemas outside of the SLD
definition. As indicated in Subclause 6.6, there are three ways to specify the WFS to be
used: it may be identified by a WFS CGI parameter in a GetMap request; it may be
given explicitly with the optional RemoteOWS element of the UserLayer element; or it
may be the ‘default’ WFS for a WMS, which may be an implicit WFS built into the
WMS.

The InlineFeature element is defined as follows:

 <xsd:element name="InlineFeature">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="gml:_Feature" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

The UserLayer also has a Name element which can be used to give a name to a user-
defined layer so that it could potentially be stored into a capable WMS, which is
discussed in Clause TBD. A WCS is used similarly to a WFS in SLD, although WCS
usage is considered “experimental”. The WFS and WCS mechanisms in SLD may
change as service chaining in OGC Web Services becomes more formalized.

The DescribeFeatureType and WFS GetCapabilities mechanisms may be used to
interrogate the WMS or WFS for what feature types are available to be referenced, also
as discussed in Subclause 6.6.

9.3.1 Feature Constraints

The LayerFeatureConstraints element is used to specify what features of what feature
types are to be included in a layer. It is defined as:

 <xsd:element name="LayerFeatureConstraints">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:FeatureTypeConstraint" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

05-078

 37

 </xsd:element>

 <xsd:element name="FeatureTypeConstraint">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="se:FeatureTypeName" minOccurs="0"/>
 <xsd:element ref="ogc:Filter" minOccurs="0"/>
 <xsd:element ref="sld:Extent" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 </xsd:element>

When used in a UserLayer, the Extent reference defines what features are to be included
in the layer and when used in a NamedLayer, it filters the features that are part of the
named layer.

A FeatureTypeConstraint element is used to identify a feature type by a well-known
name, using the FeatureTypeName element. Any positive number of
FeatureTypeConstraints may be used to define the features of a layer, though all
FeatureTypeConstraints in a UserLayer must come from the same WFS source.

Named styles cannot be used with user-defined layers, since there is no general way to
know if a named style is suitable for use with an arbitrary user-defined layer. Only user-
defined styles may be used with user-defined layers, and any positive number of them
may be used. Using zero styles is not allowed since there will be no pre-defined default
style for an arbitrarily constructed layer.

Here is a simple example of an SLD that uses a user-defined layer (XML-namespace
definitions are omitted for brevity):

<StyledLayerDescriptor version="1.1.0">
 <UserLayer>
 <Name>MyLayer</Name>
 <RemoteOWS>
 <Service>WFS</Service>
 <OnlineResource xlink:type="simple" xlink:href="http://some.site.com/WFS?"/>
 </RemoteOWS>
 <LayerFeatureConstraints>
 <FeatureTypeConstraint>
 <FeatureTypeName>RoadFeatures</FeatureTypeName>
 </FeatureTypeConstraint>
 </LayerFeatureConstraints>
 <UserStyle>
 [...]
 </UserStyle>
 </UserLayer>
</StyledLayerDescriptor>

The WFS is named explicitly in the UserLayer, only a single feature type is included in
the layer, and the UserStyle element is incomplete.

05-078

38

9.3.2 Coverage Constraints

The WCS DescribeCoverage and GetCapabilities mechanisms may be used to
interrogate the WMS or WCS for what coverage data is available to be referenced, also as
discussed in Section TBD.

The LayerCoverageConstraints element is used to specify what subsets of what
coverage offering are to be included in a layer. It is defined as:

 <xsd:element name="LayerCoverageConstraints">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:CoverageConstraint" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="CoverageConstraint">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="se:CoverageName"/>
 <xsd:element ref="sld:CoverageExtent" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="CoverageExtent">
 <xsd:annotation>
 <xsd:documentation>
 The CoverageExtent describes the time or range selections.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:choice>
 <xsd:element ref="sld:RangeAxis" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="sld:TimePeriod" minOccurs="0"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="RangeAxis">
 <xsd:annotation>
 <xsd:documentation>
 A RangeAxis describes the range selection for a coverage.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="se:Name"/>
 <xsd:element ref="sld:Value"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="Value" type="xsd:string"/>
 <xsd:element name="TimePeriod" type="xsd:string"/>

05-078

 39

When used in a UserLayer, the CoverageExtent reference defines what coverage data is
to be included in the layer and when used in a NamedLayer, it selects the data that are
part of the named layer.

A CoverageConstraint element is used to identify a coverage offering by a well-known
name, using the CoverageName element. Any positive number of
CoverageConstraints may be used to define the coverage data of a layer, though all
CoverageConstraints in a UserLayer must come from the same WCS source.

TimePeriod describes a subset corresponding to the specified time instants or intervals,
expressed in an extended ISO 8601 syntax.

RangeAxis describes a range subset defined by a constraining parameter. The name of
that parameter matches the name of an AxisDescription element in the range set
description of the selected coverage offering. The value is one of the acceptable values
defined in the corresponding AxisDescription element.

Complex TimePeriod and RangeAxis values can be comma-separated list of intervals
(2003-07-08T16:45:00Z/2003-07-08T20:30:00Z,2003-07-09T16:45:00Z or
band1,band2,band3).

Named styles cannot be used with user-defined layers, since there is no general way to
know if a named style is suitable for use with an arbitrary user-defined layer. Only user-
defined styles may be used with user-defined layers, and any positive number of them
may be used. Using zero styles is not allowed since there will be no pre-defined default
style for an arbitrarily constructed layer.

Here is a simple example of an SLD that uses a user-defined layer (XML-namespace
definitions are omitted for brevity):

<StyledLayerDescriptor version="1.1.0">
 <UserLayer>
 <se:Name>MyLayer</se:Name>
 <RemoteOWS>
 <Service>WCS</Service>
 <se:OnlineResource xlink:type="simple" xlink:href="http://some.site.com/WCS?"/>
 </RemoteOWS>
 <LayerCoverageConstraints>
 <CoverageConstraint>
 <se:CoverageName>MOD_Grid_L2g_2d</se:CoverageName>
 <CoverageExtent>
 <RangeAxis>
 <se:Name>Band</se:Name>
 <Value>band1</Value>
 </RangeAxis>
 </CoverageExtent>
 </CoverageConstraint>
 </LayerCoverageConstraints>
 <UserStyle>
 [...]
 </UserStyle>
 </UserLayer>

05-078

40

</StyledLayerDescriptor>

This example shows the selection of a coverage data subset on a WCS serving
‘MOD09GHK’ data. The ‘MOD_Grid_L2g_2d’ coverage offering has been selected.

This coverage has a range axis named ‘Band’ that has 3 discrete values which are the 3
channels of the coverage. This sample selects the first channel named ‘band1’.

It is the intersection of these criteria (name, range axis) that will determine the data that
will be selected on the source coverage.

The WCS is named explicitly in the UserLayer, only a single coverage offering is
included in the layer, and the UserStyle element is incomplete.

9.4 User-defined styles

A user-defined style allows map styling to be defined externally from a system and to be
passed around in an interoperable format. The XML-Schema fragment for the UserStyle
SLD element is as follows:

 <xsd:element name="UserStyle">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="se:Name" minOccurs="0"/>
 <xsd:element ref="se:Description" minOccurs="0"/>
 <xsd:element ref="sld:IsDefault" minOccurs="0"/>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element ref="se:FeatureStyle"/>
 <xsd:element ref="se:CoverageStyle"/>
 <xsd:element ref="se:OnlineResource"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="IsDefault" type="xsd:boolean"/>

A UserStyle is at the same semantic level as a NamedStyle used in the context of a
WMS. In a sense, a named style can be thought of as a reference to a hidden UserStyle
that is stored inside of a map server.

The Name and Description elements allow a user-defined style to be identified and are
optional. The given Name is equivalent to the name of a WMS named style and is used to
reference the style externally when an SLD is used in ‘library mode’ (Subclause 6.4). The
Title of the Description is a human-readable short description for the style that might be
displayed in a GUI pick list, and the Abstract of the Description is a more exact
description that may be a few paragraphs long.

The IsDefault element identifies whether a style is the default style of a layer, for use in
SLD ‘library mode’ when rendering or for storing inside of a map server. IsDefault uses
“1” or “true” for true and “0” or “false” for false. The default value is “0”.

05-078

 41

A UserStyle can contain one or more FeatureStyles or CoverageStyles which allow the
rendering of features of specific types. These are described in Symbology Encoding.
These styles can either be provided inline or they can be referenced using an
OnlineResource containing an SE document with a FeatureStyle or CoverageStyle root
element. This organization allows the more convenient use of feature-style libraries.

Note that there is no restriction against a single UserStyle from including multiple
FeatureStyles that reference the same FeatureTypeName. This case does not create an
exception in the rendering semantics, however, since a map styler is expected to process
all FeatureStyles in the order that they appear, regardless, plotting one instance over top
of another.

The following is an (incomplete) example of a UserStyle used with a NamedLayer:

<StyledLayerDescriptor version="1.1.0">
 <NamedLayer>
 <se:Name>Transportation</se:Name>
 <UserStyle>
 <se:Description>
 <se:Name>GS1</se:Name>
 <se:Title>GeoSym</se:Title>
 </se:Description>
 <se:Abstract>GeoSym style for transportation</se:Abstract>
 <se:FeatureStyle>
 [...]
 </se:FeatureStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

05-078

42

Annex A
(normative)

Abstract test suite

A.1 General

A paragraph.

In each Implementation Specification document, Annex A shall specify the Abstract Test
Suite, as specified in Clause 9 and Annex A of ISO 19105. That Clause and Annex
specify the ISO/TC 211 requirements for Abstract Test Suites. Examples of Abstract Test
Suites are available in an annex of most ISO 191XX documents, one of the more useful is
in ISO 191TBD. Note that this guidance may be more abstract than needed in an OGC
Implementation Specification.

05-078

 43

Annex B
(normative)

XML schemas

In addition to this document, this specification includes several normative XML Schema
files. These are posted online at the URL http://schemas.opengeospatial.net/(TBD) where
a lower level directory is used for this Version 1.1.1. These XML Schema files are also
bundled in a zip file with the present document. In the event of a discrepancy between the
bundled and online versions of the XML Schema files, the online files shall be
considered authoritative.

The abilities now specified in this document use specified XML Schemas included in the
zip file with this document. These XML Schemas combine the XML Schema fragments
listed in various subclauses of this document, eliminating duplications. These XML
Schema files are named:

StyledLayerDescriptor.xsd

All these XML Schemas contain documentation of the meaning of each element and
attribute, and this documentation shall be considered normative as specified in Subclause
11.6.3 of [OGC 05-008].

05-078

44

Annex C
(informative)

Example XML documents

This annex can be included if useful to provide more XML document examples.

D.1 Introduction

This annex provides more example XML documents than given in the body of this
document. TBD

D.2 TBD

	1 Scope
	2 Conformance
	3 Normative references
	4 Terms and definitions
	5 Conventions
	5.1 Abbreviated terms
	5.2 UML notation

	6 Web-Map-Server integration
	6.1 A review of WMS 1.3
	6.2 General HTTP request rules as used by WMS and SLD
	6.3 Styled-Layer Descriptor
	6.4 WMS requests using an SLD
	6.5 GetMap POST method
	6.6 Web Map Servers and Web Feature/Coverage Servers

	7 DescribeLayer operation (optional)
	7.1 Introduction
	7.2 DescribeLayer operation request (TBD)
	7.2.1 DescribeLayer request parameters
	7.2.2 TBD request KVP encoding (optional or required)

	7.3 TBD operation response
	7.3.1 Normal response parameters
	7.3.2 Normal response XML encoding
	 TBD exceptions

	7.4 Examples

	8 GetLegendGraphic operation (optional)
	8.1 Introduction
	8.2 TBD operation request
	8.2.1 TBD request parameters
	8.2.2 TBD request KVP encoding (optional or required)
	8.2.3 TBD request XML encoding (required or optional)

	 TBD operation response
	8.3.1 Normal response parameters
	8.3.2 Normal response XML encoding
	 TBD exceptions

	8.4 Examples

	9 SLD encoding
	9.1 SLD root element
	9.2 Named layers
	9.3 User-defined layers
	9.3.1 Feature Constraints
	9.3.2 Coverage Constraints

	9.4 User-defined styles

