
OGC 02-070

Open GIS Consortium Inc.

Date: 2002-09-19

Reference number of this OpenGIS® Project Document: OGC 02-070

Version: 1.0.0

Category: Proposed OpenGIS® OGC Implementation Specification

Editor: William Lalonde

Styled Layer Descriptor Implementation Specification

Document type: OpenGIS® Implementation Specification
Document stage: Adopted Specification
Document language: English

OGC 02-070

ii © OGC 2002 – All rights reserved

Copyright 2000, 2001, 2002 Compusult Limited
Copyright 2000, 2001, 2002 CubeWerx Inc.
Copyright 2000, 2001, 2002 Environmental Systems Research Institute, Inc. (ESRI)
Copyright 2000, 2001, 2002 Intergraph Corporation
Copyright 2000, 2001, 2002 IONIC Software s.a.
Copyright 2000, 2001, 2002 Laser-Scan Limited
Copyright 2000, 2001, 2002 Syncline Inc.

The companies listed above have granted the Open GIS Consortium, Inc. (OGC) a nonexclusive, royalty-free, paid up, worldwide
license to copy and distribute this document and to modify this document and distribute copies of the modified version.

This document does not represent a commitment to implement any portion of this specification in any company’s products.

OGC’s Legal, IPR and Copyright Statements are found at http://www.opengis.org/legal/ipr.htm

NOTICE

Permission to use, copy, and distribute this document in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the above list of copyright holders and the entire text of this NOTICE.

We request that authorship attribution be provided in any software, documents, or other items or products that you create pursuant to
the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of OGC documents is granted pursuant to this license. However, if additional
requirements (as documented in the Copyright FAQ at http://www.opengis.org/legal/ipr_faq.htm) are satisfied, the right to create
modifications or derivatives is sometimes granted by the OGC to individuals complying with those requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE
DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL
NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE
CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to this document or its contents
without specific, written prior permission. Title to copyright in this document will at all times remain with copyright holders.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in subdivision
(c)(1)(ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013

OpenGIS® is a trademark or registered trademark of Open GIS Consortium, Inc. in the United States and in other countries.

OGC 02-070

© OGC 2002 – All rights reserved iii

Contents

i. Preface ... vi

ii. Submitting organizations... vi

iii. Document Contributor Contact Points .. vi

iv. Revision history ...vii

v. Changes to the OpenGIS Abstract Specification ...vii

Foreword...viii

Introduction .. ix

1 Scope... 1

2 Conformance.. 1

3 Normative references .. 1

4 Terms and definitions ... 2

5 Conventions.. 3
5.1. Normative Verbs ... 3
5.2. Symbols (and abbreviated terms) .. 3

6 Web-Map-Server Integration... 4
6.1. A Review of WMS 1.1.1 .. 4
6.2. General HTTP Request Rules as used by WMS and SLD................................ 6
6.3. Styled-Layer Descriptor ... 7
6.4. WMS Requests using an SLD .. 7
6.5. Web Map Servers and Web Feature/Coverage Servers 11
6.6. DescribeLayer Request ... 14
6.7. Enhancements to WMS GetCapabilities... 15

7 Layers ... 16
7.1. SLD Root Element... 16
7.2. Named Layers.. 17
7.3. User-Defined Layers ... 20

8 User-Defined Styles ... 23

9 FeatureTypeStyles... 24

10 Rules ... 25
10.1. Identification & Legends .. 26
10.2. Scale Selection.. 26
10.3. Feature Filtering.. 29

OGC 02-070

iv © OGC 2002 – All rights reserved

11 Symbolizers .. 33
11.1. Line Symbolizer... 33
11.1.1 Format .. 33
11.1.2 Geometry.. 34
11.1.3 Stroke 34
11.1.4 Examples .. 37
11.2. Polygon Symbolizer... 38
11.2.1 Format .. 38
11.2.2 Fill 39
11.2.3 Example.. 39
11.3. Point Symbolizer ... 40
11.3.1 Format .. 40
11.3.2 Graphic... 41
11.3.3 Examples .. 43
11.4. Text Symbolizer... 45
11.4.1 Format .. 45
11.4.2 Label 45
11.4.3 Font 46
11.4.4 Label Placement .. 46
11.4.5 Halo 48
11.4.6 Example.. 49
11.5. Raster Symbolizer ... 49
11.5.1 Format .. 49
11.5.2 Parameters ... 50
11.5.3 Examples .. 53
11.6. Systems With Limited Capabilities ... 55
11.7. Integrated SLD Examples .. 55

12 Map Legends.. 60

13 Symbology Management... 64
13.1. GetStyles... 64
13.2. PutStyles... 64

14 Styling Standards .. 66
14.1. GeoSym .. 66
14.2. MIL2525B .. 70

Annex A: Styled-Layer-Descriptor Schema ... 74

Annex B: WMS_DescribeLayerResponse DTD ... 89

Annex C: Conformance Tests .. 90

Annex D: Future Work... 91

Annex E: RFC Changes.. 93
E.1. Comments from commenter #1.. 93
E.1.1. Comment #1 .. 93
E.1.2. Comment #2 .. 93

OGC 02-070

© OGC 2002 – All rights reserved v

E.1.3. Comment #3 .. 94
E.1.4. Comment #4 .. 95
E.1.5. Comment #5 .. 95
E.1.6. Comment #6 .. 96
E.1.7. Comment #7 .. 97
E.1.8. Comment #8 .. 97
E.1.9. Comment #9 .. 98
E.1.10. Comment #10 .. 98
E.1.11. Comment #11 .. 99
E.2. Comments from commenter #2.. 99
E.2.1. Comment #1 .. 99
E.2.2. Comment #2 .. 100
E.2.3. Comment #3 .. 100
E.2.4. Comment #4 .. 101
E.2.5. Comment #5 .. 101
E.2.6. Comment #6 .. 101
E.2.7. Comment #7 .. 102
E.2.8. Comment #8 .. 102
E.2.9. Comment #9 .. 102
E.2.10. Comment #10 .. 102
E.2.11. Comment #11 .. 102
E.2.12. Comment #12 .. 103
E.2.13. Comment #13 .. 103
E.2.14. Comment #14 .. 103

Annex F: OGC SLD and ISO 19117.. 104

Bibliography .. 107

OGC 02-070

vi © OGC 2002 – All rights reserved

i. Preface

This document explains how the Web Map Server (WMS 1.0 [1] & 1.1 [2]) specification
can be extended to allow user-defined symbolization of feature data. It should be read in
conjunction with the latest version WMS specification. At the time of writing the latest
version WMS specification was defined by the WMS 1.1.1 Specification.

ii. Submitting organizations

This Implementation Specification is being submitted to the OGC by the following
organizations:

CubeWerx Inc (Editor).
Syncline
Ionic Software s.a.

iii. Document Contributor Contact Points

All questions regarding this submission should be directed to the editor or the submitters
listed in Section ii above. Following is a list of all contributors to the Implementation
Specification.

COMPANY CONTACT ADDRESS PHONE/FAX EMAIL

Compusult Ltd. Larry Bouzane larry@compusult.nf.ca

CubeWerx Inc. Peter Vretanos 200 rue Montcalm

Suite R-13

Hull, Quebec

Canada

J8Y 3B5

Phone:

416-701-1985

Fax:

819-771-8388

pvretano@cubewerx.com

CubeWerx Inc. Craig Bruce 200 rue Montcalm

Suite R-13

Hull, Quebec

Phone:

819-771-8303

Ext 205

csbruce@cubewerx.com

OGC 02-070

© OGC 2002 – All rights reserved vii

Canada

J8Y 3B5

Fax:

819-771-8388

ESRI Marwa Mabrouk mmabrouk@esri.com

ESRI Ivan Cheung icheung@esri.com

Galdos Systems Inc. Ron Lake rlake@galdosinc.com

Intergraph Corp. John Vincent jtvincen@intergraph.com

Ionic Software s.a. Dimitri Monie dimitri.monie@ionicsoft.com

Laser-Scan Ltd. Seb Lessware sebl@lsl.co.uk

m-spatial Adrian Cuthbert adrian.cuthbert@m-spatial.com

Syncline Raj Singh rs@syncline.com

US Army ERDC Dan Specht specht@tec.army.mil

iv. Revision history

Date Release Author Paragraph modified Description

2001-02-07 01-028 Adrian

Cuthbert

initial paper for SLD 0.7.0 WMT-2 Project-Discussion Paper

2001-08-31 01-028r2 Craig Bruce re-write for SLD 0.7.1 MPP-1 Project-Discussion Paper

2001-11-30 01-028r3 Craig Bruce update for SLD 0.7.2 and

DIPR format

MPP-1.1 DIPR preview

2001-11-30 01-028r4 Craig Bruce fixed up pre-pages, added

GeoSym content

MPP-1.1 DIPR

2001-12-28 01-028r5 Craig Bruce minor fixes, added 2525B

content, example pictures

MPP-1.1 IPR

2002-03-12 02-013 Carl Reed

Craig Bruce

Bill Lalonde

Modifed for submission and
considerationas RFC Proposal f
Implementation Specification

Implementation Specification

2002-04-24 02-013r1 Bill Lalonde
Greg Buehler

Minor formatting changes Formating for Public Comment

2002-08-15 02-013r2 Craig Bruce RFC changes; see Annex E Incorporated RFC comments

v. Changes to the OpenGIS Abstract Specification

The OpenGIS® Abstract Specification does not require changes to accommodate the
technical contents of this document.

OGC 02-070

viii © OGC 2002 – All rights reserved

Foreword

Attention is drawn to the possibility that some of the elements of this part of OGC 02-013
may be the subject of patent rights. The Open GIS Consortium Inc. shall not be held
responsible for identifying any or all such patent rights.

OGC 02-013r2 replaces OGC 01-028r5 and consists of the following part: Styled Layer
Descriptor Implementation Specification

OGC 02-070

© OGC 2002 – All rights reserved ix

Introduction

The importance of the visual portrayal of geographic data cannot be overemphasized.
The skill that goes into portraying data (whether it be geographic or tabular) is what
transforms raw information into an explanatory or decision-support tool. From USGS'
topographic map series to NOAA and NIMA's nautical charts to AAA's Triptik, fine-
grained control of the graphical representation of data is a fundamental requirement for
any professional mapping community.

This document addresses the need for geospatial consumers (either humans or machines)
to control the visual portrayal of the data with which they work. The current OpenGIS
Web Map Service (WMS) specification supports the ability for an information provider
to specify very basic styling options by advertising a preset collection of visual portrayals
for each available data set. However, while a WMS currently can provide the user with a
choice of style options, the WMS can only tell the user the name of each style. It cannot
tell the user what portrayal will look like on the map. More importantly, the user has no
way of defining their own styling rules. The ability for a human or machine client to
define these rules requires a styling language that the client and server can both
understand. Defining this language, called the StyledLayerDescriptor (SLD), is the main
focus of this paper, and it can be used to portray the output of Web Map Servers, Web
Feature Servers and Web Coverage Servers. In many cases, however, the client needs
some information about the data residing on the remote server before he, she or it can
make a sensible request. This led to the definition of new operations for the OGC
services [see Section 6.6] in addition to the definition of the styling language.

There are two basic ways to style a data set. The simplest one is to color all features the
same way. For example, one can imagine a layer advertised by a WMS as
“hydrography” consisting of lines (rivers and streams) and polygons (lakes, ponds,
oceans, etc.). A user might want to tell the server to color the insides of all polygons in a
light blue, and color the boundaries of all polygons and all lines in a darker blue. This
type of styling requires no knowledge of the attributes or “feature types” of the
underlying data, only a language with which to describe these styles. This requirement is
addressed by the FeatureTypeStyle element in the SLD document.

A more complicated requirement is to style features of the data differently depending on
some attribute. For example, in a roads data set, style highways with a three-pixel red
line; style four-lane roads in a two-pixel black line; and style two-lane roads in a one-
pixel black line. Accomplishing this requires the user to be able to find out what attribute
of the data set represents the road type. WMS already has an optional operation that
fulfils this need, called DescribeLayer. This operation returns the feature types of the
layer or layers specified in the request, and the attributes can be discovered with the
DescribeFeatureType operation of a WFS interface.

OpenGIS© Implementation Specification OGC 02-070

© OGC 2002 – All rights reserved 1

Styled Layer Descriptor Implementation Specification

1 Scope

This OpenGIS ® Interoperability-Program Report specifies the format of a map-styling
language for producing georeferenced maps with user-defined styling. Different modes
for utilizing this styling specification are discussed.

2 Conformance

Conformance and Interoperability Testing for this OGC Interoperability Program Report
may be checked using all the relevant tests specified in Annex C (normative).

3 Normative references

The following normative documents contain provisions that, through reference in this
text, constitute provisions of this specification. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. However, parties
to agreements based on this specification are encouraged to investigate the possibility of
applying the most recent editions of the normative documents indicated below. For
undated references, the latest edition of the normative document referred to applies.

CGI, The Common Gateway Interface, National Center for Supercomputing Applications,
<http://hoohoo.ncsa.uiuc.edu/cgi/>

IETF RFC 2045 (November 1996), Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies, Freed, N. and Borenstein N., eds.,
<http://www.ietf.org/rfc/rfc2045.txt>

IETF RFC 2616 (June 1999), Hypertext Transfer Protocol – HTTP/1.1, Gettys, J.,
Mogul, J., Frystyk, H., Masinter, L., Leach, P., and Berners-Lee, T., eds.,
<http://www.ietf.org/rfc/rfc2616.txt>

IETF RFC 2396 (August 1998), Uniform Resource Identifiers (URI): Generic Syntax,
Berners-Lee, T., Fielding, N., and Masinter, L., eds.,
<http://www.ietf.org/rfc/rfc2396.txt>

OGC 02-070

2 © OGC 2002 – All rights reserved

OGC AS 12 (January 2002), The OpenGIS Abstract Specification Topic 12: OpenGIS
Service Architecture (Version 4.3), Percivall, G. (ed.),
http://www.opengis.org/techno/abstract/02-112.pdf

OGC Adopted Implementation Specification: Web Map Server version 1.1.1, February
2002, OGC document OGC 01-068r2.

OGC Adopted Implementation Specification: Web Map Server version 1.1.0, December
2001, OGC document OGC 01-047r2.

OGC Discussion Paper: Web Coverage Service version 0.7, April 2002, OGC document
OGC 02-024.

XML 1.0 (October 2000), Extensible Markup Language (XML) 1.0 (2nd edition), World
Wide Web Consortium Recommendation, Bray, T., Paoli, J., Sperberg-McQueen, C.M.,
and Maler, E., eds., <http://www.w3.org/TR/2000/REC-xml>

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.1
operation
Specification of a transformation or query that an object may be called to execute [OGC
AS 12]

4.2
interface
Named set of operations that characterize the behavior of an entity [OGC AS 12]

4.3
service
Distinct part of the functionality that is provided by an entity through interfaces [OGC
AS 12]

4.4
service instance
server
Actual implementation of a service

4.5
client
Software component that can invoke an operation from a server

OGC 02-070

© OGC 2002 – All rights reserved 3

4.6
request
Invocation of an operation by a client

4.7
response
Result of an operation returned from a server to a client

4.8
map
Pictorial representation of geographic data

4.9
capabilities XML
Service-level metadata describing the operations and content available for a given
service instance.

5 Conventions

5.1. Normative Verbs

In the sections labeled as normative, the key words "required", "shall", "shall not",
"should", "should not", "recommended", "may", and "optional" in this document are to
be interpreted as described in Internet RFC 2119 [15].

The verb "deprecate" provides notice that the referenced portion of the specification is
being retained for backwards compatibility with earlier versions but may be removed
from a future version of the specification without further notice.

5.2. Symbols (and abbreviated terms)

The following symbols and abbreviated terms are used in this document.

CGI Common Gateway Interface
DCP Distributed Computing Platform
DTD Document Type Definition
EPSG European Petroleum Survey Group
GIF Graphics Interchange Format
GIS Geographic Information System
GML Geography Markup Language
HTTP Hypertext Transfer Protocol
IETF Internet Engineering Task Force
JPEG Joint Photographic Experts Group
MIME Multipurpose Internet Mail Extensions
OGC Open GIS Consortium
OWS OGC Web Service

OGC 02-070

4 © OGC 2002 – All rights reserved

PNG Portable Network Graphics
RFC Request for Comments
SLD Styled Layer Descriptor
SVG Scalable Vector Graphics
URL Uniform Resource Locator
WebCGM Web Computer Graphics Metafile
WCS Web Coverage Service
WFS Web Feature Service
WMS Web Map Service
XML Extensible Markup Language

6 Web-Map-Server Integration

6.1. A Review of WMS 1.1.1

WMS 1.1.1 describes the appearance of a map in terms of ‘styled layers’. A styled layer
can be considered as a transparent sheet with features symbolized upon it. A map is
made up of a number of these styled layers put together in a specified order. The styled
layers are said to be Z-ordered. Users can define more complex or simpler maps by
adding or removing styled layers.

A styled layer itself represents a particular combination of ‘layer’ and a ‘style’ in which
that layer can be symbolized. Conceptually, the layer defines a stream of features and the
style defines how those features are symbolized. This concept is underlined by the fact
that there may be multiple styles in which a layer can be symbolized.

In the WMS specification, the request for a map is encoded as an HTTP-GET request and
the appearance for a map portrayal is specified by the LAYERS and STYLES parameters.
Consider the following (incomplete) example map request (which is split over multiple
lines for presentation purposes only):

http://yourfavoritesite.com/WMS?
 VERSION=1.1.0&
 REQUEST=GetMap&
 BBOX=0.0,0.0,1.0,1.0&
 LAYERS=Rivers,Roads,Houses&
 STYLES=CenterLine,CenterLine,Outline

Results in the map portrayal shown below:

OGC 02-070

© OGC 2002 – All rights reserved 5

This is to be interpreted as three ‘styled layers’, namely:

• Houses:Outline

• Roads:CenterLine

• Rivers:CenterLine

The colon notation is introduced only as a convenience to aid discussion. The
Rivers:CenterLine styled layer is ‘below’ the Roads:CenterLine styled layer, as
WMS uses the “painter’s model” and plots each successive layer in the LAYER list over
top of the previously rendered layers. Consequently, the roads appear to ‘cross’ the river.
It is possible for the same layer to appear more than once, although rarely with the same
style.

A common ‘cartographic trick’ to generate what appears to be the boundaries of linear
features is to draw them with a thick colored line and then draw them all again with a
thinner, lighter line. This is done for the roads in the following (incomplete) map
request:

http://yourfavoritesite.com/WMS?
 VERSION=1.1.0&
 REQUEST=GetMap&
 BBOX=0.0,0.0,1.0,1.0&
 LAYERS=Roads,Roads,Houses&
 STYLES=Casing,CenterLine,Outline

The resulting map portrayal based upon the above rule is:

OGC 02-070

6 © OGC 2002 – All rights reserved

This is to be interpreted as three styled layers, namely:

• Houses:Outline

• Roads:CenterLine

• Roads:Casing

It might be noted that the WMS cannot be interrogated for metadata to indicate which
styled layers can be meaningfully combined and how. However, a flexible client would
allow an end-user to explore the various possibilities.

The WMS 1.1.1 specification deals with styles and layers which are ‘known’ to the WMS
and which are identified by name. For this reason, the rest of this document refers to the
layers and styles that have been described above as “named layers” and “named styles”.
The WMS specification provides only one way to define a styled layer, as a combination
of a named layer and a named style.

6.2. General HTTP Request Rules as used by WMS and SLD

At present, the only distributed computing platform (DCP) explicitly supported by OGC
Web Services is the World Wide Web itself, or more specifically Internet hosts
implementing the Hypertext Transfer Protocol (HTTP) [IETF RFC 2616]. Thus the
Online Resource of each operation supported by a service instance is an HTTP Uniform
Resource Locator (URL). The URL may be different for each operation, or the same, at
the discretion of the service provider. Each URL shall conform to the description in
[IETF RFC 2616] (Section 3.2.2 "HTTP URL") but is otherwise implementation-
dependent; only the parameters comprising the service request itself are mandated by the
OGC Web Services specifications.

HTTP supports two request methods: GET and POST. One or both of these methods
may be defined for a particular OGC Web Service type and offered by a service instance,
and the use of the Online Resource URL differs in each case. The basic WMS

OGC 02-070

© OGC 2002 – All rights reserved 7

specification only defines HTTP GET for invoking operations. (A Styled Layer
Descriptor WMS[10] defines HTTP POST for some operations.)

6.3. Styled-Layer Descriptor

Section 6.1 described how the appearance of a map in the WMS specification can be
defined as a sequence of styled layers. Styling can also be described using a user-defined
XML encoding of a map’s appearance called a Styled-Layer Descriptor (SLD). The SLD
format is discussed in detail in Sections 7 to 11. Briefly, an SLD includes a
StyledLayerDescriptor XML element that contains a sequence of styled-layer
definitions. These styled-layer definitions may use named or user-defined layers and
named or user-defined styling. Here is an example simple SLD that corresponds to the
first example from the previous section:

<StyledLayerDescriptor version="1.0.0">
 <NamedLayer>
 <Name>Rivers</Name>
 <NamedStyle>
 <Name>CenterLine</Name>
 </NamedStyle>
 </NamedLayer>
 <NamedLayer>
 <Name>Roads</Name>
 <NamedStyle>
 <Name>CenterLine</Name>
 </NamedStyle>
 </NamedLayer>
 <NamedLayer>
 <Name>Houses</Name>
 <NamedStyle>
 <Name>Outline</Name>
 </NamedStyle>
 </NamedLayer>
</StyledLayerDescriptor>

The NamedLayer and NamedStyle elements correspond to the LAYERS and STYLES of
the CGI parameters and the “painter’s model” is also used for Z-ordering. An SLD XML
document can become much more complex with user-defined styling. The WMS-1.2
styled-layer mechanism is compatible with the SLD-1.0.0 format.

6.4. WMS Requests using an SLD

Three approaches are defined to allow a client to take advantage of SLD symbology:

• The client interacts with the WMS using HTTP GET but the request can reference
a remote SLD.

• The client uses the HTTP GET method but includes the SLD XML document in-
line with the GET request in an SLD_BODY CGI parameter (with appropriate
character encoding).

OGC 02-070

8 © OGC 2002 – All rights reserved

• The client interacts with the WMS using HTTP POST with the GetMap request
encoded in XML and including an embedded SLD.

The third method is technically superior but there has been a great lack of vendor support
for the XML-POST GetMap-request method. Use of the second method, which is a
compromise between the first and third methods, can encounter problems due to
excessively long URLs.

It is important to note that in all cases the WMS has no prior knowledge of the SLD
contents. There is a wide spectrum of possible clients. Some may allow a user to switch
between a number of pre-defined maps, each specified by its own pre-defined SLD.
Others may allow a user to interactively define how they wish a map to appear and
construct the necessary SLD ‘on-the-fly’. All of the approaches described above allow a
client application to do this but the first one requires that the client be able to place the
SLD document in a Web location accessible to the WMS.

Consider the incomplete example GetMap request from the previous section:

http://yourfavoritesite.com/WMS?
 VERSION=1.1.0&
 REQUEST=GetMap&
 BBOX=0.0,0.0,1.0,1.0&
 LAYERS=Rivers,Roads,Houses&
 STYLES=CenterLine,CenterLine,Outline&
 WIDTH=400&
 HEIGHT=400&
 FORMAT=PNG

It has already been described, in Section 6.2, how the LAYERS and STYLES parameters
could be encoded in an SLD. The request references the SLD using a SLD parameter,
which replaces the LAYERS and STYLES parameters. The SLD itself must be accessible
to the WMS and is identified using a URL. The URL must be encoded prior to inclusion
as a parameter value, just as layer and style names are already encoded. Assuming the
URL for the prepared SLD document is http://myclientsite.com/mySLD.xml
then the above map request would be converted to look like:

http://yourfavoritesite.com/WMS?
 VERSION=1.0.5&
 REQUEST=GetMap&
 SRS=EPSG%3A4326&
 BBOX=0.0,0.0,1.0,1.0&
 SLD=http%3A%2F%2Fmyclientsite.com%2FmySLD.xml&
 WIDTH=400&
 HEIGHT=400&
 FORMAT=PNG

The prepared SLD document for this example would have the content of the
StyledLayerDescriptor example from Section 6.2, with appropriate standard XML

OGC 02-070

© OGC 2002 – All rights reserved 9

header tags. The SLD document could also be included in-line with the GET request as
in the following (long) example:

http://yourfavoritesite.com/WMS?
 VERSION=1.0.5&
 REQUEST=GetMap&
 SRS=EPSG%3A4326&
 BBOX=0.0,0.0,1.0,1.0&
 SLD_BODY=%3C%3Fxml+version%3D%221.0%22+encoding%3D%22UTF-8%22%
3F%3E%3C!DOCTYPE+StyledLayerDescriptor+SYSTEM+%22http%3A%2F%2Fsom
.site.com%2Fsld%2Fsld_072.xsd%22%3E%3CStyledLayerDescriptor+versi
on%3D%221.0.0%22%3E%3CNamedLayer%3E%3CName%3ERivers%3C%2FName%3E%
3CNamedStyle%3E%3CName%3ECenterLine%3C%2FName%3E%3C%2FNamedStyle%
3E%3C%2FNamedLayer%3E%3CNamedLayer%3E%3CName%3ERoads%3C%2FName%3E
%3CNamedStyle%3E%3CName%3ECenterLine%3C%2FName%3E%3C%2FNamedStyle
%3E%3C%2FNamedLayer%3E%3CNamedLayer%3E%3CName%3EHouses%3C%2FName%
3E%3CNamedStyle%3E%3CName%3EOutline%3C%2FName%3E%3C%2FNamedStyle%
3E%3C%2FNamedLayer%3E%3C%2FStyledLayerDescriptor%3E
 WIDTH=400&
 HEIGHT=400&
 FORMAT=PNG

There may be other complications in addition to the excessively long URLs with this
approach if UTF-8 characters outside of the 7-bit ASCII range are used, as HTTP is
defined to use the ISO Latin-1 character set. The advantages are that the client does not
need to publish the SLD document on the Web and simple clients that are unable to use
the POST method can use this method.

The alternative approach is to communicate with the WMS using HTTP POST with SLD
as a component of WMS 1.2+. Using this method, the above example translates into the
following XML encoding for POSTing:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE GetMap
 SYSTEM "http://some.site.com/wms/GetMap.xsd">
<ogc:GetMap xmlns:ogc="http://www.opengis.net/ows"
 xmlns:gml="http://www.opengis.net/gml"
 env:encodingStyle="http://www.w3.org/2001/09/soap-
encoding"
 version="1.2.0" service="WMS">
 <StyledLayerDescriptor version="1.0.0">
 <NamedLayer>
 <Name>Rivers</Name>
 <NamedStyle>
 <Name>CenterLine</Name>
 </NamedStyle>
 </NamedLayer>
 <NamedLayer>
 <Name>Roads</Name>
 <NamedStyle>
 <Name>CenterLine</Name>
 </NamedStyle>
 </NamedLayer>

OGC 02-070

10 © OGC 2002 – All rights reserved

 <NamedLayer>
 <Name>Houses</Name>
 <NamedStyle>
 <Name>Outline</Name>
 </NamedStyle>
 </NamedLayer>
 </StyledLayerDescriptor>
 <BoundingBox
srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
 <gml:coord>
 <gml:X>-180.0</gml:X>
 <gml:Y>-90.0</gml:Y>
 </gml:coord>
 <gml:coord>
 <gml:X>180.0</gml:X>
 <gml:Y>90.0</gml:Y>
 </gml:coord>
 </BoundingBox>
 <Output>
 <Format>image/jpeg</Format>
 <Transparent>false</Transparent>
 <Size>
 <Width>1024</Width>
 <Height>512</Height>
 </Size>
 </Output>
 <Exceptions>application/vnd.ogc.se+xml</Exceptions>
</ogc:GetMap>

Although this example describes how a WMS specification request can be converted to
use an SLD, the mechanism can be used with any valid SLD. Specifically it can be used
with an SLD that includes user-defined symbolization.

To make the HTTP-GET methods more practical for use, the SLD can also be used in
one of two different modes depending on whether the LAYERS parameter is present in the
request. If it is not present, then all layers identified in the SLD document are rendered
with all defined styles, which is equivalent to the XML-POST method of usage. If the
LAYERS parameter is present, then only the layers identified by that parameter are
rendered and the SLD is used as a “style library”.

When an SLD is used as a style library, the STYLES CGI parameter is interpreted in the
usual way in the GetMap request, except that the handling of the style names is organized
so that the styles defined in the SLD take precedence over the named styles stored within
the map server. The user-defined SLD styles can be given names and they can be marked
as being the default style for a layer. To be more specific, if a style named
“CenterLine” is referenced for a layer and a style with that name is defined for the
corresponding layer in the SLD, then the SLD style definition is used. Otherwise, the
standard named-style mechanism built into the map server is used. If the use of a default
style is specified and a style is marked as being the default for the corresponding layer in
the SLD, then the default style from the SLD is used; otherwise, the standard default style
in the map server is used.

OGC 02-070

© OGC 2002 – All rights reserved 11

6.5. Web Map Servers and Web Feature/Coverage Servers

If a WMS is to symbolize features using a user-defined symbolization, it is necessary to
identify the source of the feature data. This specification is designed to permit a wide
variety of implementations of WMS that support user-defined symbolization. For
example a WMS might symbolize feature or coverage data stored in a remote Web
Feature Server (WFS) or Web Coverage Server (WCS), or it might only be able to
symbolize data from a specific default feature/coverage store.

In support of this, optional parameters called REMOTE_OWS_TYPE and
REMOTE_OWS_URL are introduced for HTTP-GET GetMap requests that can be used to
direct the WMS to a remote WFS, WCS, or other OWS service as the ‘default’ source for
feature/coverage data. The presently allowed values for the REMOTE_OWS_TYPE
parameter are “WFS” and “WCS”, though more may be allowed in the future. The
REMOTE_OWS_URL parameter gives the base URL of the service to use. (Previously, this
mechanism was provided with a single WFS parameter, but that was too restrictive.) For
example, if the URL for a WFS is http://anothersite.com/WFS? then the map
request from the previous sub-section would be converted to look like:

http://yourfavoritesite.com/WMS?
 VERSION=1.0.5&
 REQUEST=GetMap&
 SRS=EPSG%3A4326&
 BBOX=0.0,0.0,1.0,1.0&
 SLD=http%3A%2F%2Fmyclientsite.com%2FmySLD.xml&
 WIDTH=400&
 HEIGHT=400&
 FORMAT=PNG&
 REMOTE_OWS_TYPE=WFS&
 REMOTE_OWS_URL=http%3A%2F%2Fanothersite.com%2FWFS%3F

This represents the simplest relationship between a WMS and a WFS/WCS. However
there is a wide range of possible relationships. To clarify the discussion, this document
introduces the concept of ‘component’ and ‘integrated’ servers:

• Component servers: these are servers designed to be loosely coupled and work in
any combination. For example, a component WMS can symbolize
feature/coverage data from any WFS/WCS to which it is directed.

• Integrated servers: these are servers that are closely coupled and can only work in
particular configurations. For example, an integrated WMS might only be able to
symbolize feature/coverage data from the WFS/WCS with which it is integrated.

Whether a particular server is a ‘component’ or ‘integrated’ server says something about
how it is implemented. For example a WMS is a ‘valid’ OGC WMS provided it correctly
supports the WMS interface. This makes no assumptions about how the WMS is
implemented. However, a ‘component’ WMS that can symbolize feature/coverage data
only interacts with the data through the WFS/WCS interface, this does say something

OGC 02-070

12 © OGC 2002 – All rights reserved

about the implementation. Of course, it is not important what type of WFS/WCS
(component or integrated) that a component WMS is directed to. It is also worth noting
that there will continue to be WMSes that can produce maps from sources other than
feature data.

There will be a spectrum of WMS with the ability to support user-defined symbolization.
This is best illustrated by describing in more detail what might be considered the ‘two
ends’ of the spectrum, represented by a ‘component’ WMS at one end and ‘integrated’
WMS at the other.

• Component WMS

Essentially a portrayal engine that can symbolize feature data obtained from one
or more remote WFS/WCSes. Typically it has these characteristics:

o A component WMS probably has no pre-defined ‘named’ layers or styles.

o A component WMS only supports the WMS interface.

o A component WMS can symbolize feature data from any compliant
WFS/WCS.

o A component WMS supports both user-defined styles and user-defined
layers.

It would be expected that WMS based upon XSLT technology would fit into this
category.

• Integrated WMS

This is a server representing a closely coupled feature store and a portrayal
engine. Typically it has these characteristics:

o An integrated WMS probably has pre-defined ‘named’ layers and styles.

o An integrated WMS supports the WMS interface and the
DescribeFeatureType request of the WFS interface or the
GetCapabilities or optional DescribeCoverageLayer requests of
the WCS interface.

o An integrated WMS can only symbolize feature data from its own internal
the feature store.

o An integrated WMS might only support user-defined styles being applied
to pre-defined ‘named’ layers.

OGC 02-070

© OGC 2002 – All rights reserved 13

Whether one is using a component or integrated WMS, it must be possible to interrogate
(albeit at a relatively superficial level) the underlying feature store. This is because user-
defined symbolization makes use of concepts not previously required by WMS. For
example, the WMS 1.1 specification makes it possible to interact with a WMS using
concepts such as [Named]Layer and [Named]Style but without the need to use concepts
such as feature type. By contrast user-defined symbolization needs to be able to define
new layers and styles using feature types and feature-type properties. For example, a new
layer might be defined as all the features of a particular feature type. This specification
seeks to ensure that the bar to creating WMSes that support user-defined symbolization is
as low as possible.

The underlying feature/coverage store is interrogated using the WFS/WCS interface. For
a component WMS this is not a problem, since the feature/coverage store is indeed a
remote WFS/WCS. For an integrated WMS, the server must support both the WMS
interface and a minimal set of WFS/WCS operations. It must support the
DescribeFeatureType request of a WFS or the GetCapabilities or optional
DescribeCoverageLayer of a WCS. This describes the properties of a
feature/coverage type specified by name in the request. And, if the WMS supports user-
defined layers, then it must support the WFS GetCapabilities request. For a WFS
this returns, among other things, the names of all the feature types supported by the WFS.
Together the two WFS requests allow clients to retrieve all the information they require
to construct user-defined symbolizations. The WCS GetCapabilities request alone is
assumed to be sufficient for a WCS.

It is also necessary to indicate where a WMS should find the feature data that is to be
symbolized. This is done using the following rules:

1. if the SLD specifies a WFS or WCS in the RemoteOWS element of the
UserLayer element, then it should be used (see Section 7); otherwise

2. if the GetMap request included CGI REMOTE_OWS_TYPEand REMOTE_OWS_URL
parameters then that remote service should be used; otherwise

3. the WMS should use a default WFS or WCS.

This approach does not permit features/coverages from different WFS/WCSes to be
included in the same styled layer; however, it does allow different styled layers to be
based on feature data from different WFS/WCSes. The first two options should only be
used for a WMS that can be ‘directed’ to a remote WFS/WCS. The WMS will advertise
this ability in response to a GetCapabilities request (see Section 6.7). For an
integrated WMS, the default WFS/WCS is just the one with which it is integrated.
However, there is no reason why a component WMS should not have a default
WFS/WCS defined.

OGC 02-070

14 © OGC 2002 – All rights reserved

6.6. DescribeLayer Request

Defining a user-defined style requires information about the features being symbolized,
or at least their feature type. Since user-defined styles can be applied to a named layer,
there needs to be a mechanism by which a client can obtain feature/coverage-type
information for a named layer. This is another example of bridging the gap between the
WMS concepts of layers and styles and WFS/WCS concepts such as feature-type and
coverage layer. To allow this, a WMS may optionally support the DescribeLayer
request. This can be applied to multiple layers as shown in the example below:

http://yourfavoritesite.com/WMS?
 VERSION=1.1.0&
 REQUEST=DescribeLayer&
 LAYERS=Rivers,Roads,Houses

where DescribeLayer is a new option for the REQUEST parameter and LAYERS is the
parameter that allows a number of named layers to be specified by name. This is thought
to be a better approach than overloading the WMS Capabilities document even more.

The response should be an XML document describing the specified named layers. If any
of the named layers are not present, the response is an XML document reporting an
exception.

For each named layer, the description should indicate if it is indeed based on feature data
and if so it should indicate the WFS/WCS (by a URL prefix) and the feature types. Note
that it is perfectly valid for a named layer not to be describable in this way. It has been
suggested that we reuse the WFS mechanism for indicating how one identifies feature
types in a WFS, namely by using the Query element. Annex B gives the DTD for the
response.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE WMS_DescribeLayerResponse
 SYSTEM "http://some.site.com/sld/DSR.dtd" >
<WMS_DescribeLayerResponse version="1.1.0" >
 <!-- 'Layer_A' comes from the wfs specified by
 the prefix "http://www.mywfs.com/WFS?" and has features
 of types 'Road_FT' and 'Route_FT' -->
 <LayerDescription name="Layer_A"
 wfs="http://www.mywfs.com/WFS?">
 <Query typeName="Road_FT" />
 <Query typeName="Route_FT" />
 </LayerDescription>
 <!-- 'Layer_B' cannot be described in terms of
 a WFS and so has no wfs attribute and no contents -->
 <LayerDescription name="Layer_B">
 </LayerDescription>
</WMS_DescribeLayerResponse>

Note that even an integrated WMS should provide a WFS/WCS prefix, since this allows
DescribeFeatureType requests to be made.

OGC 02-070

© OGC 2002 – All rights reserved 15

A WMS need not support the DescribeLayer request. However, it should be noted
that it may be common for a WMS not to support UserLayers but to allow
UserStyles to be applied to named layers. In such circumstances, supporting the
DescribeLayer request is the only interoperable way in which a client can specify
user-defined symbolization.

6.7. Enhancements to WMS GetCapabilities

The GetCapabilities request supported by a WMS must return enough information
for a client to construct further, valid requests. For example, the capabilities of a WMS
includes what named layers are known to a WMS. A GetMap request is not valid if it
references a named layer not known to the WMS. To ensure valid interaction with a
range of WMSes, including the integrated and component WMS described above, the
capabilities response has been enhanced. Specifically it can describe the following
information:

1. Does the WMS provide SLD support?

2. Can a client use HTTP POST (with an embedded SLD) and/or HTTP GET (with
an SLD or SLD_BODY parameter) to issue a request?

3. Does the WMS support user-defined layers?

4. Does the WMS support user-defined styles?

5. Can the WMS be ‘directed’ to remote OWS services (i.e., does the WMS support
the REMOTE_OWS_SERVICE and REMOTE_OWS_URL parameters in HTTP-GET
requests and the RemoteOWS attribute within an SLD)?

6. Does the WMS support the DescribeLayer request?

The fact that a WMS may not support named layers and named styles is indicated by not
returning any Layer elements when describing its capabilities. This approach makes it
possible to support user-defined styles without supporting user-defined layers. This
situation is likely to be most prevalent with component WMSes that are used solely to
render remote features. However, it should be noted that this description of the
capabilities of a WMS makes no explicit mention of ‘integrated’ and ‘component’ types.

The first four items all represent various aspects of the ability to handle user-defined
symbolization. The 1.1.0 WMS-Capabilities DTD introduces a
UserDefinedSymbolization element contained by the Capability element. This
new element contains information about the ability of the WMS to support user-defined
symbolization:

<!-- Elements indicating the level of support the WMS provides
for user-defined symbolization. By default there is no support.
-->

OGC 02-070

16 © OGC 2002 – All rights reserved

<!ELEMENT UserDefinedSymbolization (SupportedSLDVersion*)>
<!ATTLIST UserDefinedSymbolization

<!-- If the WMS supports a StyledLayerDescriptor (SLD) then the
SLD parameter can be used in place of LAYERS and STYLES
parameters in a GetMap request. -->
 SupportSLD (0 | 1) "0"

<!-- If the WMS supports UserLayers then users can define their
own layers in the SLD in addition to NamedLayers already known to
the WMS. -->
 UserLayer (0 | 1) "0"

<!-- If the WMS supports UserStyles then users can define their
own styles in the SLD to be applied to previously specified
layers. -->
 UserStyle (0 | 1) "0"

<!-- If the WMS supports remote WFS or WCS then a remote service
can be specified as the source of features to be symbolized. -->
 RemoteWFS (0 | 1) "0"

 RemoteWCS (0 | 1) "0">

<!-- Indication of what SLD version(s) are supported by a WMS -->
<!ELEMENT SupportedSLDVersion (#PCDATA)>

The last two items that need to be describable using capabilities are handled using the
Request element of WMS capabilities, with the addition of a new request type
represented by the DescribeLayer element. The Request element can be used to
describe whether a request can be handled by HTTP (as a particular instance of a
distributed computing platform) and, if so, whether the request can use HTTP GET
and/or POST.

<!-- DescribeLayer interface: Presence of theDescribeLayer
element means this server can return a description of a specified
layer -->
<!ELEMENT DescribeLayer (Format+, DCPType+)>

Currently the only format supported by the DescribeLayer request is the XML
encoding described in Annex B. For WMS 1.0.0 to 1.0.7, this format is called
“WMS_XML”. For WMS 1.0.8 and on, this is the MIME format
“application/vnd.ogc.wms_xml”.

7 Layers

7.1. SLD Root Element

An SLD document is defined as a sequence of styled layers. The root
StyledLayerDescriptor is defined by the following XML-Schema fragment:

OGC 02-070

© OGC 2002 – All rights reserved 17

<xs:element name="StyledLayerDescriptor">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="sld:NamedLayer"/>
 <xs:element ref="sld:UserLayer"/>
 </xs:choice>
 <xs:attribute name="version" type="xs:string"
 use="required"/>
 </xs:complexType>
</xs:element>

The version attribute gives the SLD version of an SLD document, to facilitate backward
compatibility with static documents stored in various different versions of the SLD spec.
The string has the format “x.y.z”, the same as in other OpenGIS Web Server specs. For
example, an SLD document stored according to this spec would have the version string
“1.0.0”. The attribute is now required.

Note that version numbers are used differently with SLD from how they are with OGC
Web services like WMS, for example. Version negotiation cannot be performed in the
same way, since SLD is not a service. Instead, the SLD versions supported must either
be implied by the web service they are associated with, or the web service must give an
explicit list of supported SLD versions in its capabilities. This issue is unresolved.

The styled layers can correspond to either named layers (NamedLayer) or user-defined
layers (UserLayer), which are described in subsequent sections. There may be any
number of either type of styled layer, including zero, mixed in any order. The order that
the layer references appear in the SLD document will be the order that the styled layers
are rendered, with successive styled layers rendered over top of previous styled layers.

7.2. Named Layers

A “layer” is defined as a collection of features that can be potentially of various mixed
feature types. A named layer is a layer that can be accessed from an OpenGIS Web
Server using a well-known name. For example, the WMS interface uses the LAYER CGI
parameter to reference named layers as in the example parameter from Section 6 of:

LAYERS=Rivers,Roads,Houses

The equivalent named-layer specification mechanism in SLD is defined by the following
XML-Schema fragment:

<xs:element name="NamedLayer">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:Name"/>
 <xs:element ref="sld:LayerFeatureConstraints"
 minOccurs="0"/>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="sld:NamedStyle"/>
 <xs:element ref="sld:UserStyle"/>

OGC 02-070

18 © OGC 2002 – All rights reserved

 </xs:choice>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="Name" type="xs:string"/>

The Name element identifies the well-known name of the layer being referenced, and is
required. All possible well-known names are usually identified in the capabilities
document for a server.

The LayerFeatureConstraints element is optional in a NamedLayer and allows the
user to specify constraints on what features of what feature types are to be selected by the
named-layer reference. It is essentially a filter that allows the selection of fewer features
than are present in the named layer. This element is discussed in Section 7.3 where it is
more apropos.

A named styled layer can include any number of named styles and user-defined styles,
including zero, mixed in any order. If zero styles are specified, then the default styling
for the specified named layer is to be used.

A named style, similar to a named layer, is referenced by a well-known name. A
particular named style only has meaning when used in conjunction with a particular
named layer. All available styles for each available layer are normally named in a
capabilities document.

The WMS interface uses the STYLES CGI parameter to reference named styles relative to
named LAYERS, as in the following example parameters:

LAYERS=Rivers,Roads,Houses&
STYLES=CenterLine,CenterLine,Outline

Parallel lists of corresponding layer names and style names are used in the CGI interface
because the CGI interface is not powerful enough to properly nest the named-style
references within the named-layer references. However, the SLD mechanism is. The
equivalent named-style selection mechanism in SLD is defined by the following DTD
fragment:

<xs:element name="NamedStyle">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:Name"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

The Name element simply identifies the well-known style name.

The SLD example corresponding to the example WMS parameters above is:

OGC 02-070

© OGC 2002 – All rights reserved 19

<StyledLayerDescriptor version="1.0.0">
 <NamedLayer>
 <Name>Rivers</Name>
 <NamedStyle>
 <Name>CenterLine</Name>
 </NamedStyle>
 </NamedLayer>
 <NamedLayer>
 <Name>Roads</Name>
 <NamedStyle>
 <Name>CenterLine</Name>
 </NamedStyle>
 </NamedLayer>
 <NamedLayer>
 <Name>Houses</Name>
 <NamedStyle>
 <Name>Outline</Name>
 </NamedStyle>
 </NamedLayer>
</StyledLayerDescriptor>

Similarly a ‘cased’ roads example of:

LAYERS=Roads,Roads,Houses&
STYLES=Casing,CenterLine,Outline

becomes:

<StyledLayerDescriptor version="1.0.0">
 <NamedLayer>
 <Name>Roads</Name>
 <NamedStyle>
 <Name>Casing</Name>
 </NamedStyle>
 </NamedLayer>
 <NamedLayer>
 <Name>Roads</Name>
 <NamedStyle>
 <Name>CenterLine</Name>
 </NamedStyle>
 </NamedLayer>
 <NamedLayer>
 <Name>Houses</Name>
 <NamedStyle>
 <Name>Outline</Name>
 </NamedStyle>
 </NamedLayer>
</StyledLayerDescriptor>

However, this can be encoded in an alternative manner which does not require the
repeated definition of the NamedLayer with name “Roads”, since each NamedLayer
may include any number of style references:

OGC 02-070

20 © OGC 2002 – All rights reserved

<StyledLayerDescriptor version="1.0.0">
 <NamedLayer>
 <Name>Roads</Name>
 <NamedStyle>
 <Name>Casing</Name>
 </NamedStyle>
 <NamedStyle>
 <Name>CenterLine</Name>
 </NamedStyle>
 </NamedLayer>
 <NamedLayer>
 <Name>Houses</Name>
 <NamedStyle>
 <Name>Outline</Name>
 </NamedStyle>
 </NamedLayer>
</StyledLayerDescriptor>

Note that the above SLD defines three styled layers, even though there are only two
NamedLayer elements.

User-defined styles (UserStyle in the Schema) are discussed in Section 8.

7.3. User-Defined Layers

In addition to using named layers, it is also useful to be able to define custom user-
defined layers for rendering. The Schema fragment for user-defined layers is as follows:

<xs:element name="UserLayer">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:Name" minOccurs="0"/>
 <xs:element ref="sld:RemoteOWS" minOccurs="0"/>
 <xs:element ref="sld:LayerFeatureConstraints"/>
 <xs:element ref="sld:UserStyle" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Since a layer is defined as a collection of potentially mixed-type features, the
UserLayer element must provide the means to identify the features to be used. All
features to be rendered are assumed to be fetched from a Web Feature Server (WFS) or a
Web Coverage Service (WCS, in which case the term “features” is used loosely).

The remote server to be used is identified by RemoteOWS (OGC Web Service) element
which is defined as follows:

<xs:element name="RemoteOWS">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:Service"/>
 <xs:element ref="sld:OnlineResource"/>

OGC 02-070

© OGC 2002 – All rights reserved 21

 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="Service">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="WFS"/>
 <xs:enumeration value="WCS"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

<xs:element name="OnlineResource">
 <xs:complexType>
 <xs:attributeGroup ref="xlink:simpleLink"/>
 </xs:complexType>
</xs:element>

It is hoped that this definition can be cleaned up to refer to schemas outside of the SLD
definition. As indicated in Section 6.5, there are three ways to specify the WFS to be
used: it may be identified by a WFS CGI parameter in a GetMap request; it may be given
explicitly with the optional RemoteOWS element of the UserLayer element; or it may be
the ‘default’ WFS for a WMS, which may be an implicit WFS built into the WMS. The
UserLayer also has a Name element which can be used to give a name to a user-defined
layer so that it could potentially be stored into a capable WMS, which is discussed in
Section 13. A WCS is used similarly to a WFS in SLD, although WCS usage is
considered “experimental”. The WFS and WCS mechanisms in SLD may change as
service chaining in OGC Web Services becomes more formalized.

The DescribeFeatureType and WFS GetCapabilities mechanisms may be used
to interrogate the WMS or WFS for what feature types are available to be referenced, also
as discussed in Section 6.5.

The LayerFeatureConstraints element is used to specify what features of what
feature types are to be included in a layer. It is defined as:

<xs:element name="LayerFeatureConstraints">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:FeatureTypeConstraint"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="FeatureTypeConstraint">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:FeatureTypeName" minOccurs="0"/>
 <xs:element ref="ogc:Filter" minOccurs="0"/>
 <xs:element ref="sld:Extent" minOccurs="0"

OGC 02-070

22 © OGC 2002 – All rights reserved

 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:element name="FeatureTypeName" type="xs:string"/>

<xs:element name="Extent">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:Name"/>
 <xs:element ref="sld:Value"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:element name="Value" type="xs:string"/>

The Extent reference should be refactored to refer to an externally defined WCS
element. When used in a UserLayer, it defines what features are to be included in the
layer and when used in a NamedLayer, it filters the features that are part of the named
layer. The feature-filtering mechanism works analogously when applied to raster
coverages, except that Extent constrains will normally be given instead of Filter
constraints.

A FeatureTypeConstraint element is used to identify a feature type by a well-known
name, using the FeatureTypeName element. Any positive number of
FeatureTypeConstraints may be used to define the features of a layer, though all
FeatureTypeConstraints in a UserLayer must come from the same WFS source.

Named styles cannot be used with user-defined layers, since there is no general way to
know if a named style is suitable for use with an arbitrary user-defined layer. Only user-
defined styles may be used with user-defined layers, and any positive number of them
may be used. Using zero styles is not allowed since there will be no pre-defined default
style for an arbitrarily constructed layer.

Here is a simple example of an SLD that uses a user-defined layer:

<StyledLayerDescriptor version="1.0.0">
 <UserLayer>
 <Name>MyLayer</Name>
 <RemoteOWS>
 <Service>WFS</Service>
 <OnlineResource
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xlink:type="simple"
 xlink:href="http://some.site.com/WFS?"/>
 </RemoteOWS>
 <LayerFeatureConstraints>
 <FeatureTypeConstraint>
 <FeatureTypeName>RoadFeatures</FeatureTypeName>
 </FeatureTypeConstraint>
 </LayerFeatureConstraints>

OGC 02-070

© OGC 2002 – All rights reserved 23

 <UserStyle>
 [...]
 </UserStyle>
 </UserLayer>
</StyledLayerDescriptor>

The WFS is named explicitly in the UserLayer, only a single feature type is included in
the layer, and the UserStyle element is incomplete.

8 User-Defined Styles

A user-defined style allows map styling to be defined externally from a system and to be
passed around in an interoperable format. The XML-Schema fragment for the
UserStyle SLD element is as follows:

<xs:element name="UserStyle">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:Name" minOccurs="0"/>
 <xs:element ref="sld:Title" minOccurs="0"/>
 <xs:element ref="sld:Abstract" minOccurs="0"/>
 <xs:element ref="sld:IsDefault" minOccurs="0"/>
 <xs:element ref="sld:FeatureTypeStyle"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="Title" type="xs:string"/>
<xs:element name="Abstract" type="xs:string"/>
<xs:element name="IsDefault" type="xs:string"/>

A UserStyle is at the same semantic level as a NamedStyle used in the context of a
WMS. In a sense, a named style can be thought of as a reference to a hidden UserStyle
that is stored inside of a map server.

The Name, Title and Abstract elements allow a user-defined style to be identified and
are optional. The given Name is equivalent to the name of a WMS named style and is
used to reference the style externally when an SLD is used in ‘library mode’ (Section 6.4)
and identifies the named style to redefine when an SLD is inserted into a WMS
(Section 13). The Title is a human-readable short description for the style that might
be displayed in a GUI pick list, and the Abstract is a more exact description that may
be a few paragraphs long.

The IsDefault element identifies whether a style is the default style of a layer, for use
in SLD ‘library mode’ when rendering or for storing inside of a map server. IsDefault
uses “1” for true and “0” for false. The default value is “0”.

OGC 02-070

24 © OGC 2002 – All rights reserved

A UserStyle can contain one or more FeatureTypeStyles which allow the
rendering of features of specific types. Feature-type styles are described in Section 9.

The following is an (incomplete) example of a UserStyle used with a NamedLayer:

<StyledLayerDescriptor version="1.0.0">
 <NamedLayer>
 <Name>Transportation</Name>
 <UserStyle>
 <Name>GS1</Name>
 <Title>GeoSym</Title>
 <Abstract>GeoSym style for transportation</Abstract>
 <FeatureTypeStyle>
 [...]
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

9 FeatureTypeStyles

The FeatureTypeStyle defines the styling that is to be applied to a single feature type
of a layer. This element may also be externally re-used outside of the scope of WMSes
and layers. It is defined as follows:

<xs:element name="FeatureTypeStyle">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:Name" minOccurs="0"/>
 <xs:element ref="sld:Title" minOccurs="0"/>
 <xs:element ref="sld:Abstract" minOccurs="0"/>
 <xs:element ref="sld:FeatureTypeName" minOccurs="0"/>
 <xs:element ref="sld:SemanticTypeIdentifier" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element ref="sld:Rule" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="SemanticTypeIdentifier" type="xs:string"/>

The FeatureTypeStyle element identifies that explicit separation in SLD between the
handling of ‘layers’ and the handling of features of specific feature types. The ‘layer’
concept is unique to WMS and SLD, but features are used more generally, such as in
WFS and GML, so this explicit separation is important.

Like a UserStyle, a FeatureTypeStyle can have a Name, Title, and Abstract.
The Name element does not have an explicit use at present, though it conceivably might
be used to reference a feature style in some feature-style library. The Title and
Abstract are for human-readable information.

OGC 02-070

© OGC 2002 – All rights reserved 25

The FeatureTypeName identifies the specific feature type that the feature-type style is
for. It is allowed to be optional, but only if one feature type is in-context (in-layer) and
that feature type must match the syntax and semantics of all feature-property references
inside of the FeatureTypeStyle. Note that there is no restriction against a single
UserStyle from including multiple FeatureTypeStyles that reference the same
FeatureTypeName. This case does not create an exception in the rendering semantics,
however, since a map styler is expected to process all FeatureTypeStyles in the order
that they appear, regardless, plotting one instance over top of another.

The SemanticTypeIdentifier is experimental and is intended to be used to identify
what the feature style is suitable to be used for using community-controlled name(s). For
example, a single style may be suitable to use with many different feature types. The
syntax of the SemanticTypeIdentifier string is undefined, but the strings
“generic:line”, “generic:polygon”, “generic:point”, “generic:text”,
“generic:raster”, and “generic:any” are reserved to indicate that a
FeatureTypeStyle may be used with any feature type with the corresponding default
geometry type (i.e., no feature properties are referenced in the feature-type style).

The FeatureTypeStyle contains one or more Rule elements that allow conditional
rendering. Rules are discussed in Section 10.

10 Rules

Rules are used to group rendering instructions by feature-property conditions and map
scales. Rule definitions are placed immediately inside of feature-style definitions and an
example of the format of a Rule is shown in the following XML-Schema fragment:

<xs:element name="Rule">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:Name" minOccurs="0"/>
 <xs:element ref="sld:Title" minOccurs="0"/>
 <xs:element ref="sld:Abstract" minOccurs="0"/>
 <xs:element ref="sld:LegendGraphic" minOccurs="0"/>
 <xs:choice minOccurs="0">
 <xs:element ref="ogc:Filter"/>
 <xs:element ref="sld:ElseFilter"/>
 </xs:choice>
 <xs:element ref="sld:MinScaleDenominator" minOccurs="0"/>
 <xs:element ref="sld:MaxScaleDenominator" minOccurs="0"/>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="sld:LineSymbolizer"/>
 <xs:element ref="sld:PolygonSymbolizer"/>
 <xs:element ref="sld:PointSymbolizer"/>
 <xs:element ref="sld:TextSymbolizer"/>
 <xs:element ref="sld:RasterSymbolizer"/>
 </xs:choice>
 </xs:sequence>

OGC 02-070

26 © OGC 2002 – All rights reserved

 </xs:complexType>
</xs:element>

Only a single feature type can be in-context inside of a Rule, since the
FeatureTypeStyle element allows only a single feature type “through.” The elements
of a Rule are described in the following sections, except for the Symbolizer elements,
which are described in Section 11.

The ordering to use for the Rules inside of a FeatureTypeStyle is a bit of a tricky
issue. On the one hand, the rules should most naturally be in the order of priority, with
the most “important” rules coming first (e.g., with Highways coming before Minor
Roads). On the other hand, the “painters model” is generally used for ordering in SLD
with the first item in a list being the first item plotted and hence being on the “bottom,”
which is counter-intuitive for rule priorities, since Highways should generally be plotted
over top of Minor Roads, for example. (It would also be awkward, though not invalid,
for “ElseFilter” Rules to come before regular-condition Rules). Therefore, Rules
should be placed in the order of “priority” in a UserStyle, and that stylers should
attempt to render the higher-priority rules over top of the lower-priority rules (exactly
what this means is implementation-specific).

10.1. Identification & Legends

The Title and Abstract elements give the familiar short title for display lists and
longer description for the rule. Rules will typically be equated with different symbol
appearances in a map legend, so it is useful to have at least the Title so it can be
displayed in a legend. The Name element allows the rule to be referenced externally,
which is needed in some methods of SLD usage.

The LegendGraphic element gives an optional explicit Graphic symbol (described in
Section 11.3) to be displayed in a legend for this rule. The use of this element and
legends in general are discussed in Section 12. Its schema is:

<xs:element name="LegendGraphic">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:Graphic"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

10.2. Scale Selection

The MinScaleDenominator and MaxScaleDenominator elements of a Rule define
the range of map-rendering scales for which the rule should be applied. The schema is:

<xs:element name="MinScaleDenominator" type="xs:double"/>
<xs:element name="MaxScaleDenominator" type="xs:double"/>

OGC 02-070

© OGC 2002 – All rights reserved 27

The values used are actually the scale denominators relative to a “standardized rendering
pixel size” (below). For example, an element-content value of “10000000” means a
scale of 1:10-million. Scientific notation is also allowed here (and for all non-integer
numbers in SLD), so a more convenient value of “10e6” could also be used for the
element content for this example.

The MinScaleDenominator and MaxScaleDenominator elements, as their names
suggest, are simply the minimum and maximum ranges of scale (denominators) of maps
for which a rule should apply. The minimum scale is inclusive and the maximum scale is
exclusive. So, for example, the following scale range:

<MinScaleDenominator>100e3</MinScaleDenominator>
<MaxScaleDenominator>1e6</MaxScaleDenominator>

corresponds to the logical condition (in C-like-language syntax):

scale_denom >= 100e3 && scale_denom < 1e6

Both of the elements are optional. The absence of a MinScaleDenominator element
means there is no minimum-scale term to the condition or logically that the default value
is 0. The absence of a MaxScaleDenominator element means that there is no
maximum-scale term to the condition of logically that the default value is infinity. So,
the following scale constraint:

<MinScaleDenominator>100e3</MinScaleDenominator>

corresponds to the logical condition:

scale_denom >= 100e3

There is a similar correspondence for a lone MaxScaleDenominator element. The
absence of both scale elements in a Rule mean that there is no scale constraint and that
the rule is applicable to maps of all scales.

The “standardized rendering pixel size” is defined to be 0.28mm × 0.28mm (millimeters).
Frequently, the true pixel size of the final rendering device is unknown in the web
environment, and 0.28mm is a common actual size for contemporary video displays. If
the map-rendering software has information available about the actual pixel size of the
final display device, then an extra processing step will be needed (if the actual pixel size
is different from the standard pixel size) to adjust the actual rendering scale to calculate
the standard rendering scale, which will then be used to compare to the scale range of an
SLD rule. If the actual display device has non-square pixels, then a method of “linear
equivalence” to square pixels should be used to calculate the standard rendering scale.
For example:

actual_linear = sqrt(actual_x_size * actual_y_size)

OGC 02-070

28 © OGC 2002 – All rights reserved

As an example, suppose that a map is to be rendered on to a display with a known actual
resolution of 100 dots per inch (square) and the linear distance of the coordinate system
of the map is 200 meters per pixel. The actual scale (denominator) of the map to be
rendered is computed as:

100dpi = 1/100 inches (actual pixel size in inches)
1/100 inches × 25.4mm/inch = 0.254mm (actual pixel size)
0.254mm × 1000mm/m = 0.000254m (actual pixel size in meters)
200m ÷ 0.000254m = 787401.5748 (actual scale denominator)

The actual scale denominator is translated into the “standard” scale denominator as:

0.28mm ÷ 0.254mm = 1.102362205 (multiplier for scale conversion)
787401.5748 × 1.102362205 = 868001.736 (standard scale denominator)

The standard scale denominator is approximately 868K. The “type” of the last
calculation is correct since the types of its components have the form:

actual × standard/actual = standard

If the actual pixel size was instead 3cm × 2cm (e.g., from being projected onto a large
screen) and the actual scale denominator was pre-computed to be 1M, the standard scale
would be computed as:

0.28mm ÷ sqrt(30mm × 20mm) = 0.01143095213 (multiplier)
1000000 × 0.01143095213 = 11430.95213 (standard scale denominator)

The standard scale denominator is approximately 11.4K. This result makes sense
because the standard pixels are much finer than the actual pixels, so they will have a
“finer” scale.

Since it is common to integrate the output of multiple servers into a single displayed
result in the web-mapping environment, it is important that different map servers have
consistent behaviour with respect to processing scales, so that all of the independent
servers will select or deselect rules at the same scales.

To insure consistent behaviour, scales relative to coordinate spaces must be handled
consistently between map servers. For geographic coordinate systems, which use angular
units, the angular coverage of a map should be converted to linear units for computation
of scale by using the circumference of the Earth at the equator and by assuming perfectly
square linear units. For linear coordinate systems, the size of the coordinate space should
be used directly without compensating for distortions in it with respect to the shape of the
real Earth. For example, if a map to be displayed covers a 2-degree by 1-degree area in
the WGS-1984 geographic coordinate space, the linear size of this area for conversion to
scales would be considered to be:

OGC 02-070

© OGC 2002 – All rights reserved 29

2º × (6378137m × 2 × π) ÷ 360º = 222638.9816m
1º × (6378137m × 2 × π) ÷ 360º = 111319.4908m

So, the map extent would be approximately 222639m × 111319m linear distance for the
purpose of calculating the scale. If the image size for the map is 600×300 pixels, then the
standard scale denominator for the map would be:

222638.9816m ÷ 600 pixels ÷ 0.00028m/pixel = 1325226.19

or approximately 1.33M. (Only one dimension needs to be calculated since the
coordinate-system space covered by each pixel is square.)

Floating-point roundoff-error control should also be applied to these calculations, to
ensure consistency between systems. Since the scale denominators used in rules will
often be “round” figures, such as 250000, if a calculation of the current scale results in a
value of 249999.99999999, it should be considered to match 250000. A reasonable test
for range matching of scale denominators would be defined as follows:

scale >= min_scale – epsilon && scale < max_scale + epsilon

where epsilon defined as 1e-6.

An important issue relating to the use of standard scales is the question of what is truly
intended by the use of a scale in the context of web mapping. Is the real intention that
the translation between “actual” and “standard” scales always be completely accurate, or
is the true intention about reducing the amount of “clutter” in the pixels of the image that
is being rendered? The second case may be more important to some people. For
example, projecting a cluttered image onto a wall will not make it any less cluttered,
although it will change the “actual” scale of the map. This issue boils down to the idea
that some may want to use the concept of a “standard” scale to control the amount of
“clutter” in an image without ever connecting it to or calculating an “actual” scale for a
map.

10.3. Feature Filtering

The Filter and ElseFilter elements of a Rule allow the selection of features in
rules to be controlled by attribute conditions. As discussed in the previous section, rule
activation may also be controlled by the MinScaleDenominator and the
MaxScaleDenominator elements as well as the map-rendering scale.

The Filter element has a relatively straightforward meaning. The syntax of the
Filter element is defined in the WFS specification and allows both attribute (property)
and spatial filtering. As a simple example, a feature type of “Roads_FT” might have a
numerical attribute named “num_lanes”. The following would be a valid Filter
condition:

OGC 02-070

30 © OGC 2002 – All rights reserved

<ogc:Filter>
 <ogc:PropertyIsGreaterThanOrEqualTo>
 <ogc:PropertyName>num_lanes<ogc:PropertyName>
 <ogc:Literal>4</ogc:Literal>
 </ogc:PropertyIsGreaterThanOrEqualTo>
</ogc:Filter>

This would select only road features that have four or more lanes. For convenience, an
SQL-like notation will be used for illustrative expressions in this section.

Filters used in different Rules applicable to the same FeatureTypeStyle are
allowed to overlap in terms of the features selected by each rule. The map styler must
execute all rules that are applicable to a feature in the order that the rules appear. For
example, if one rule for a user style has the (SQL) condition “num_lanes >= 6” and a
subsequent rule has the condition “num_lanes >= 4”, then all roads with four or more
lanes would cause both rules to “fire”. If the style of the first rule is to draw thick blue
lines and the second it to draw thin black lines, then roads with six or more lanes would
be drawn with thin black lines over top of thick blue ones. Whether all features are
applied to each rule in sequence or whether all suitable rules are applied to each feature in
sequence is implementation-specific, although there may be subtle differences in the
appearance of maps resulting from each of the approaches.

If a rule has no Filter element, the interpretation is that the rule condition is always
true, i.e., all features are accepted and styled by the rule.

The ElseFilter allows rules to be specified that are activated for features that are not
selected by any other rule in a feature-type style. The syntax is:

<xs:element name="ElseFilter">
 <xs:complexType/>
</xs:element>

The ElseFilter element has a more complicated interpretation than the Filter
element, and is interpreted as follows. The nominal scale of the map to be portrayed is
computed (as described in the previous section) and all rules for scale ranges that do not
include the computed nominal scale are discarded from further processing. Then, the
specific condition for the ElseFilter is computed by “or-ing” together all of the other
filter conditions and take the global “not” of that condition. For example, if there are
two rules in a style that have the (SQL) conditions “a = 6” and “b > 20”, then the
condition for the ElseFilter would be:

not((a = 6) or (b > 20))

This approach has a straightforward interpretation of building up the combination of the
other rule conditions (or) and negating the meaning (not). However, it would also be
logically equivalent, by De Morgan’s Law of boolean algebra, to “and” together the
negatives of the conditions of all other rules in the user style, as in:

OGC 02-070

© OGC 2002 – All rights reserved 31

not(a = 6) and not(b > 20)

This approach also has a straightforward interpretation of “features not matching any of
the other rules”. Note that both approaches handle overlapping Filter conditions, and
that many execution systems, such as RDBMS query engines, will suitably optimize any
awkwardly long conditions with overlapping propositions that might result.

A simple optimization for the above procedure is that if any rules of a user style have no
Filter condition (i.e., are always “true”), then any ElseFilter rules can simply be
discarded, since their selection condition will always be false. It is declared that there
shall be no more than one active rule with an ElseFilter in any user style for any map
scale.

If a user style contains no active ElseFilter and there are features (of a layer) that do
not match the condition of any active style, then those features are simply not styled (i.e.,
are discarded). The order of rules with Filters and ElseFilters in a user style is
unimportant for the determination of the ElseFilter condition.

Note that the above is a description of the semantics of the ElseFilter and not a
requirement that systems implement exactly the procedural method described; any
semantically equivalent method will suffice. The semantics described above allow for
scale-dependent and scale-independent (global) “else” conditions for user styles. Some
(incomplete) examples follow.

<FeatureTypeStyle>
 <Rule>
 <Filter>...[A = 1]...</Filter>
 <PolygonSymbol> ...[red]... </PolygonSymbol>
 </Rule>
 <Rule>
 <ElseFilter/>
 <PolygonSymbol> ...[gray]... </PolygonSymbol>
 </Rule>
</FeatureTypeStyle>

Above, all features in the layer will be rendered. Features with attribute 'A' equal to 1
will be rendered in red and all other features will be rendered in gray.

<FeatureTypeStyle>
 <Rule>
 <Filter>...[A = 1]...</Filter>
 <PolygonSymbol> ...[red]... </PolygonSymbol>
 </Rule>
</FeatureTypeStyle>

Above, only features with A=1 will be rendered. All other features will not be rendered.

<FeatureTypeStyle>
 <Rule>
 <Filter>...[A = 1]...</Filter>

OGC 02-070

32 © OGC 2002 – All rights reserved

 <MaxScale>250e3</MaxScale>
 <PolygonSymbol> ...[red]... </PolygonSymbol>
 </Rule>
 <Rule>
 <Filter>...[A = 1]...</Filter>
 <MinScale>250e3</MinScale>
 <MaxScale>5e6</MaxScale>
 <PolygonSymbol> ...[yellow]... </PolygonSymbol>
 </Rule>
 <Rule>
 <ElseFilter/>
 <PolygonSymbol> ...[gray]... </PolygonSymbol>
 </Rule>
</FeatureTypeStyle>

Above, all features in the layer will be rendered. For map-scale denominators up to
250K, all features with A=1 will be rendered in red. For map scale denominators
between 250K and 5M, all features with A=1 will be rendered in yellow. All features
with A != 1 at all scales and all features with A=1 at scale denominators above or equal
to 5M will be rendered in gray.

<FeatureTypeStyle>
 <Rule>
 <Filter>...[A = 1]...</Filter>
 <MaxScale>1e6</MaxScale>
 <PolygonSymbol> ...[red]... </PolygonSymbol>
 </Rule>
 <Rule>
 <Filter>...[A = 2]...</Filter>
 <MaxScale>1e6</MaxScale>
 <PolygonSymbol> ...[yellow]... </PolygonSymbol>
 </Rule>
 <Rule>
 <ElseFilter/>
 <MaxScale>1e6</MaxScale>
 <PolygonSymbol> ...[blue]... </PolygonSymbol>
 </Rule>
 <Rule>
 <Filter>...[A = 1]...</Filter>
 <MinScale>1e6</MinScale>
 <MaxScale>10e6</MinScale>
 <PolygonSymbol> ...[purple]... </PolygonSymbol>
 </Rule>
 <Rule>
 <ElseFilter/>
 <MinScale>1e6</MinScale>
 <MaxScale>10e6</MinScale>
 <PolygonSymbol> ...[gray]... </PolygonSymbol>
 </Rule>
 <Rule>
 <Filter>...[A = 1]...</Filter>
 <MinScale>10e6</MinScale>
 <PolygonSymbol> ...[gray]... </PolygonSymbol>

OGC 02-070

© OGC 2002 – All rights reserved 33

 </Rule>
</FeatureTypeStyle>

Above, for a scale denominators less than 1M, all features with A=1 will be rendered as
red; all features with A=2 will be rendered as yellow, and all other features will be
rendered as blue. For scale denominators between 1M and 10M, all features with A=1
will be rendered as purple and all other features will be rendered as gray. For scale
denominators at or above 10M, features with A=1 will be rendered as gray and all other
features will not be rendered.

11 Symbolizers

Embedded inside of Rules, which group conditions for styling features, are
Symbolizers. A symbolizer describes how a feature is to appear on a map. The
symbolizer describes not just the shape that should appear but also such graphical
properties as color and opacity. A symbol is obtained by specifying one of a small
number of different types of symbolizer and then supplying parameters to override its
default behaviour. Currently, five types of symbolizers are defined:

• Line

• Polygon

• Point

• Text

• Raster
These symbolizer types are described in turn below. SVG/CSS2 terminology and syntax
are used as appropriate.

11.1. Line Symbolizer

11.1.1 Format

A LineSymbolizer is used to style a “stroke” along a linear geometry type, such as a
string of line segments. It has the following simple definition:

<xs:element name="LineSymbolizer">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:Geometry" minOccurs="0"/>
 <xs:element ref="sld:Stroke" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

The sub-elements are defined below.

OGC 02-070

34 © OGC 2002 – All rights reserved

11.1.2 Geometry

The Geometry element of a LineSymbolizer defines the linear geometry to be used
for styling. The Geometry element is optional and if it is absent then the “default”
geometry property of the feature type that is used in the containing FeatureStyleType
is used. The precise meaning of “default” geometry property is system-dependent. Most
frequently, feature types will have only a single geometry property. The format of the
Geometry element is as follows:

<xs:element name="Geometry">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ogc:PropertyName"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

The only method available for defining a geometry is to reference a geometry property
using the ogc:PropertyName element (defined in the WFS Specification). The content
of the element gives the property name in XPath syntax. In principle, a fixed geometry
could be defined using GML or operators could be defined for computing the geometry
from references or literals. However, using a feature property directly is by far the most
commonly useful method.

Geometry types other than inherently linear types can also be used. If a point geometry is
used, it should be interpreted as a line of “epsilon” (arbitrarily small) length with a
horizontal orientation centered on the point, and should be rendered with two end caps.
If a polygon is used (or other “area” type), then its closed outline is used as the line string
(with no end caps). If a raster geometry is used, its coverage-area outline is used for the
line, rendered with no end caps.

Here is an example usage of this element, referencing a property of a feature called
“centerline”:

<Geometry>
 <ogc:PropertyName>centerline</ogc:PropertyName>
</Geometry>

The properties that are present in a geometry can be interrogated using the
DescribeFeatureType call of the WFS interface (Section 6.5). All symbolizer types
can include a Geometry element also.

11.1.3 Stroke

The Stroke element of the LineSymbolizer encapsulates the graphical-symbolization
parameters for linear geometries. The definition of the Stroke element is:

<xs:element name="Stroke">
 <xs:complexType>

OGC 02-070

© OGC 2002 – All rights reserved 35

 <xs:sequence>
 <xs:choice minOccurs="0">
 <xs:element ref="sld:GraphicFill"/>
 <xs:element ref="sld:GraphicStroke"/>
 </xs:choice>
 <xs:element ref="sld:CssParameter" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

The graphical parameters and their values are derived from SVG/CSS2 standards with
identical names and semantics. The values for the parameters are given as the contents of
the elements. The Stroke element is optional inside of LineSymbolizer and other
symbolizers), and its absence means that no stroke is to be rendered.

There are three basic types of strokes: solid-color, GraphicFill (stipple), and repeated
linear GraphicStroke. A repeated linear graphic is plotted linearly and has its graphic
symbol bent around the curves of the line string, and a graphic fill has the pixels of the
line rendered with a repeating area-fill pattern. If neither a GraphicFill nor
GraphicStroke element is given, then the line symbolizer will render a solid color.

The simple SVG/CSS2 styling parameters are given with the CssParameter element,
which is defined as follows:

<xs:element name="CssParameter" type="sld:ParameterValueType"/>

<xs:complexType name="ParameterValueType" mixed="true">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="ogc:expression"/>
 </xs:choice>
</xs:complexType>

The parameter values are allowed to be complex expressions for maximum flexibility.
The ‘mixed="true"’ definition means that regular text may be mixed in with various
sub-expressions, implying a text-substitution model for parameter values. Numeric and
character-string data types are not distinguished, which may cause some complications.
Here are some usage examples:

<CssParameter name="stroke-width">3</CssParameter>

<CssParameter name="stroke-width">
 <ogc:Literal>3</ogc:Literal>
</CssParameter>

<CssParameter name="stroke-width">
 <ogc:Add>
 <ogc:PropertyName>A</ogc:PropertyName>
 <ogc:Literal>2</ogc:Literal>
 </ogc:Add>
</CssParameter>

OGC 02-070

36 © OGC 2002 – All rights reserved

<Label>This is city "<ogc:PropertyName>NAME</ogc:PropertyName>"
of state <ogc:PropertyName>STATE</ogc:PropertyName></Label>

The allowed SVG/CSS styling parameters for a stroke are: “stroke” (color), “stroke-
opacity”, “stroke-width”, “stroke-linejoin”, “stroke-linecap”, “stroke-
dasharray”, and “stroke-dashoffset”. The chosen parameter is given by the name
attribute of the CssParameter element.

The “stroke” CssParameter element gives the solid color that will be used for a
stroke. The color value is RGB-encoded using two hexadecimal digits per primary-color
component, in the order Red, Green, Blue, prefixed with a hash (#) sign. The
hexadecimal digits between A and F may be in either uppercase or lowercase. For
example, full red is encoded as “#ff0000” (with no quotation marks). If the “stroke”
CssParameter element is absent, the default color is defined to be black (“#000000”)
in the context of the LineSymbolizer.

The “stroke-opacity” CssParameter element specifies the level of translucency to
use when rendering the stroke. The value is encoded as a floating-point value (“float”)
between 0.0 and 1.0 with 0.0 representing completely transparent and 1.0 representing
completely opaque, with a linear scale of translucency for intermediate values. For
example, “0.65” would represent 65% opacity. The default value is 1.0 (opaque).

The “stroke-width” CssParameter element gives the absolute width (thickness) of a
stroke in pixels encoded as a float. (Arguably, more units could be provided for encoding
sizes, such as millimeters or typesetter's points.) The default is 1.0. Fractional numbers
are allowed (with a system-dependent interpretation) but negative numbers are not.

The “stroke-linejoin” and “stroke-linecap” CssParameter elements encode
enumerated values telling how line strings should be joined (between line segments) and
capped (at the two ends of the line string). The values are represented as content strings.
The allowed values for line join are “mitre”, “round”, and “bevel”, and the allowed
values for line cap are “butt”, “round”, and “square”. The default values are system-
dependent.

The “stroke-dasharray” CssParameter element encodes a dash pattern as a series
of space separated floats. The first number gives the length in pixels of dash to draw, the
second gives the amount of space to leave, and this pattern repeats. If an odd number of
values is given, then the pattern is expanded by repeating it twice to give an even number
of values. Decimal values have a system-dependent interpretation (usually depending on
whether antialiasing is being used). The default is to draw an unbroken line.

The “stroke-dashoffset” CssParameter element specifies the distance as a float
into the “stroke-dasharray” pattern at which to start drawing.

The GraphicFill element both indicates that a stipple-fill repeated graphic will be used
and specifies the fill graphic. Its syntax is:

OGC 02-070

© OGC 2002 – All rights reserved 37

<xs:element name="GraphicFill">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:Graphic"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

A “graphic” can be defined very informally as “a little picture”. The appearance of the
graphic is defined with the embedded Graphic element, which is discussed in
Section 11.3.2. Additional parameters for the GraphicFill may be provided in the
future to provide more control the exact style of filling.

The GraphicStroke element both indicates that a repeated-linear-graphic stroke type
will be used. Its syntax is:

<xs:element name="GraphicStroke">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:Graphic"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

The Graphic sub-element specifies the linear graphic. Proper stroking with a linear
graphic requires two “hot-spot” points within the space of the graphic to indicate where
the rendering line starts and stops. In the case of raster images with no special mark-up,
this line will be assumed to be middle pixel row of the image, starting from the first pixel
column and ending at the last pixel column.

11.1.4 Examples

Consider that there is a layer defined with all the features of the type ‘River’ that is to be
displayed as a blue line two pixels wide. Here is the example symbol:

<LineSymbolizer>
 <Geometry>
 <ogc:PropertyName>centerline</ogc:PropertyName>
 </Geometry>
 <Stroke>
 <CssParameter name="stroke">#0000ff</CssParameter>
 <CssParameter name="stroke-width">2</CssParameter>
 </Stroke>
</LineSymbolizer>

The resulting map portrayal based upon the above rule is:

OGC 02-070

38 © OGC 2002 – All rights reserved

Here is a simple example using default stroking of the default geometry property:

<LineSymbolizer>
 <Stroke/>
</LineSymbolizer>

Some delinquent XML parses may require “<Stroke></Stroke>” instead of
“<Stroke/>”.

11.2. Polygon Symbolizer

11.2.1 Format

A PolygonSymbolizer is used draw a polygon (or other area-type geometries),
including filling its interior and stroking its border (outline). It has the following simple
definition:

<xs:element name="PolygonSymbolizer">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:Geometry" minOccurs="0"/>
 <xs:element ref="sld:Fill" minOccurs="0"/>
 <xs:element ref="sld:Stroke" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

The Geometry element is primarily discussed in Section 11.1.2. If a polygon has
“holes,” then they are not filled, but the borders around the holes are stroked in the usual
way. “Islands” within holes are filled and stroked, and so on. If a point geometry is
referenced instead of a polygon, then a small, square, ortho-normal polygon should be
constructed for rendering. If a line is referenced, then the line (string) is closed for filling
(only) by connecting its end point to its start point, any line crossings are corrected in
some way, and only the original line is stroked. If a raster geometry is used, then the

OGC 02-070

© OGC 2002 – All rights reserved 39

raster-coverage area is used as the polygon. A missing Geometry element selects the
“default” geometry for a feature type.

The Fill and Stroke elements are contained in the PolygonSymbol in the conceptual
order that they are used and plotted using the “painters model”, where the Fill will be
rendered first, and then the Stroke will be rendered on top of the fill.

The Stroke element is discussed in Section 11.1.3, and a missing Stroke element
means that the geometry will not be stroked. The Fill element is discussed below.

11.2.2 Fill

The Fill element specifies how the area of the geometry will be filled. Here is the
XML-Schema definition:

<xs:element name="Fill">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:GraphicFill" minOccurs="0"/>
 <xs:element ref="sld:CssParameter" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

There are two types of fills, solid-color and repeated GraphicFill. The repeated-
graphic fill is selected only if the GraphicFill element is present. If the Fill element
is omitted from its parent element, then no fill will be rendered. The GraphicFill and
CssParameter elements are discussed in conjunction with the Stroke element in
Section 11.1.3. Here, the CssParameter names are “fill” instead of “stroke” and
“fill-opacity” instead of “stroke-opacity”. None of the other CssParameters
in Stroke are available for filling and the default value for the fill color in this context is
50% gray (value “#808080”).

11.2.3 Example

Consider the example of a ‘Lake’ feature type with a Polygon property called
‘geometry’ that we wish to symbolize as a ‘light-blue’ filled polygon with its boundary
drawn as a ‘dark blue’ line. The lake can be both filled and its boundary drawn using the
PolygonSymbol as follows:

<PolygonSymbolizer>
 <Geometry>
 <ogc:PropertyName>the_area</ogc:PropertyName>
 </Geometry>
 <Fill>
 <CssParameter name="fill">#aaaaff</CssParameter>
 </Fill>
 <Stroke>

OGC 02-070

40 © OGC 2002 – All rights reserved

 <CssParameter name="stroke">#0000aa</CssParameter>
 </Stroke>
</PolygonSymbolizer>

The resulting map portrayal based upon the above rule is:

A very simple styling with default parameters would be:

<PolygonSymbolizer>
 <Fill/>
 <Stroke/>
</PolygonSymbolizer>

11.3. Point Symbolizer

11.3.1 Format

A PointSymbolizer is used to draw “graphic” at a point. It has the following simple
definition:

<xs:element name="PointSymbolizer">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:Geometry" minOccurs="0"/>
 <xs:element ref="sld:Graphic" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

The Geometry element is discussed in Section 11.1.2. In this case, if a line, polygon, or
raster geometry is used with this symbolizer, then the semantic is to use the centroid of
the geometry, or any similar representative point. The Graphic element is described
below.

OGC 02-070

© OGC 2002 – All rights reserved 41

11.3.2 Graphic

A Graphic is a “graphic symbol” with an inherent shape, color(s), and possibly size. A
“graphic” can be very informally defined as “a little picture” and can be of either a raster
or vector-graphic source type. The term “graphic” is used since the term “symbol” is
similar to “symbolizer” which is used in a different context in SLD. The high-level
definition of a Graphic element is:

<xs:element name="Graphic">
 <xs:complexType>
 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="sld:ExternalGraphic"/>
 <xs:element ref="sld:Mark"/>
 </xs:choice>
 <xs:sequence>
 <xs:element ref="sld:Opacity" minOccurs="0"/>
 <xs:element ref="sld:Size" minOccurs="0"/>
 <xs:element ref="sld:Rotation" minOccurs="0"/>
 </xs:sequence>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="ExternalGraphic">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:OnlineResource"/>
 <xs:element ref="sld:Format"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:element name="Format" type="xs:string"/>

<xs:element name="Opacity" type="sld:ParameterValueType"/>
<xs:element name="Size" type="sld:ParameterValueType"/>
<xs:element name="Rotation" type="sld:ParameterValueType"/>

If the Graphic element is omitted from the parent element, then nothing will be plotted.
The Mark element is defined and discussed below.

Graphics can either be referenced from an external URL in a common format (such as
GIF or SVG) or may be derived from a Mark. Multiple external URLs and marks may be
referenced with the semantic that they all provide the equivalent graphic in different
formats. The “hot spot” to use for positioning the rendering at a point must either be
inherent in the external format or is defined to be the “central point” of the graphic,
where the exact definition “central point” is system-dependent.

The default if neither an ExternalGraphic nor a Mark is specified is to use the default
mark of a “square” with a 50%-gray fill and a black outline, with a size of 6 pixels,

OGC 02-070

42 © OGC 2002 – All rights reserved

unless an explicit Size is specified. This definition allows a reasonable display to be
selected very simply.

The ExternalGraphic element allows a reference to be made to an external graphic
file with a Web URL. The OnlineResource sub-element (discussed in Section 7.3)
gives the URL and the Format sub-element identifies the expected document MIME
type of a successful fetch. Knowing the MIME type in advance allows the styler to select
the best-supported format from the list of URLs with equivalent content. Users should
avoid referencing external graphics that may change at arbitrary times, since many
systems may cache or permanently store graphic content for improved efficiency and
reliability. Graphic content should be static when at all possible.

The Opacity element gives the opacity of to use for rending the graphic. It has the same
semantics as the “stroke-opacity” and “fill-opacity” CssParameter elements.
The default value is “1.0”

The Size element gives the absolute size of the graphic in pixels encoded as a floating-
point number. This element is also used in other contexts than graphic size and pixel
units are still used even for font size. The default size for an object is context-dependent.
Negative values are not allowed.

The default size of an image format (such as GIF) is the inherent size of the image. The
default size of a format without an inherent size (such as SVG) is defined to be 16 pixels
in height and the corresponding aspect in width. If a size is specified, the height of the
graphic will be scaled to that size and the corresponding aspect will be used for the width.
An expected common use case will be for image graphics to be on the order of 200 pixels
in linear size and to be scaled to lower sizes. On systems that can resample these graphic
images “smoothly,” the results will be visually pleasing.

The Rotation element gives the rotation of a graphic in the clockwise direction about
its center point in decimal degrees, encoded as a floating-point number. Negative values
mean counter-clockwise rotation. The default value is 0.0 (no rotation). Note that there
is no connection between source geometry types and rotations; the point used for plotting
has no inherent direction. Also, the point within the graphic about which it is rotated is
format dependent. If a format does not include an inherent rotation point, then the point
of rotation should be the centroid.

The Mark element of a Graphic defines a “shape” which has coloring applied to it. The
element is defined as follows:

<xs:element name="Mark">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:WellKnownName" minOccurs="0"/>
 <xs:element ref="sld:Fill" minOccurs="0"/>
 <xs:element ref="sld:Stroke" minOccurs="0"/>

OGC 02-070

© OGC 2002 – All rights reserved 43

 </xs:sequence>
 </xs:complexType>

<xs:element name="WellKnownName" type="xs:string"/>

The WellKnownName element gives the well-known name of the shape of the mark.
Allowed values include at least “square”, “circle”, “triangle”, “star”, “cross”,
and “x”, though map servers may draw a different symbol instead if they don't have a
shape for all of these. The default WellKnownName is “square”. Renderings of these
marks may be made solid or hollow depending on Fill and Stroke elements. These
elements are discussed in Sections 11.2.2 and 11.1.3, respectively.

The Mark element serves two purposes. It allows the selection of simple shapes, and, in
combination with the capability to select and mix multiple external-URL graphics and
marks, it allows a style to be specified that can produce a useable result in a best-effort
rendering environment, provided that a simple Mark is included at the bottom of the list
of sources for every Graphic.

11.3.3 Examples

Consider the example of symbolizing ‘Hospital’ features that have a point geometry
property called “locatedAt” as solid red stars centered on the hospital locations. The
PointSymbolizer can be represented using a mark as follows:

<PointSymbolizer>
 <Geometry>
 <ogc:PropertyName>locatedAt</ogc:PropertyName>
 </Geometry>
 <Graphic>
 <Mark>
 <WellKnownName>star</WellKnownName>
 <Fill>
 <CssParameter name="fill">#ff0000</CssParameter>
 </Fill>
 </Mark>
 <Size>8.0</Size>
 </Graphic>
</PointSymbolizer>

The resulting map portrayal based upon the preceding rule is:

OGC 02-070

44 © OGC 2002 – All rights reserved

Airports could be symbolized by using the following external-URL example:

<PointSymbolizer>
 <Graphic>
 <ExternalGraphic>
 <OnlineResource
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xlink:type="simple"
 xlink:href="http://www.vendor.com/geosym/2267.svg"/>
 <Format>image/svg+xml</Format>
 </ExternalGraphic>
 <ExternalGraphic>
 <OnlineResource
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xlink:type="simple"
 xlink:href="http://www.vendor.com/geosym/2267.png"/>
 <Format>image/png</Format>
 </ExternalGraphic>
 <Mark/>
 <Size>15.0</Size>
 </Graphic>
</PointSymbolizer>

The resulting map portrayal based upon the preceding rule is:

OGC 02-070

© OGC 2002 – All rights reserved 45

11.4. Text Symbolizer

11.4.1 Format

The TextSymbolizer is used for styling text labels and its format is defined as follows:

<xs:element name="TextSymbolizer">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:Geometry" minOccurs="0"/>
 <xs:element ref="sld:Label" minOccurs="0"/>
 <xs:element ref="sld:Font" minOccurs="0"/>
 <xs:element ref="sld:LabelPlacement" minOccurs="0"/>
 <xs:element ref="sld:Halo" minOccurs="0"/>
 <xs:element ref="sld:Fill" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

These elements are discussed below, except for the Geometry and Fill elements, which
were discussed in Sections 11.1.2 and 11.2.2, respectively. The geometry type is
interpreted as being either a point or a line as needed by the LabelPlacement discussed
in Section 11.4.4. If the given geometry is not of point or line type as appropriate, it shall
be transformed into the appropriate type as discussed in Section 11.3.1 for point or
Section 11.1.2 for line.

11.4.2 Label

The Label element is used to provide text-label content. It is defined as follows:

<xs:element name="Label" type="sld:ParameterValueType"/

The ParameterValueType may refer to a complex value and the type of the
property/expression is unimportant as the system is expected to provide a text-string
version of the property/expression for rendering whatever its type. If a Label element is
not provided in a TextSymbol, then no text will be rendered.

OGC 02-070

46 © OGC 2002 – All rights reserved

11.4.3 Font

The Font element identifies a font of a certain family, style, and size. Its format is
defined as:

 <xs:element name="Font">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:CssParameter" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Four types of CssParameter are allowed, “font-family”, “font-style”, “font-
weight”, and “font-size”.

The “font-family” CssParameter element gives the family name of a font to use.
Allowed values are system-dependent. Any number of font-family CssParameter
elements may be given and they are assumed to be in preferred order.

The “font-style” CssParameter element gives the style to use for a font. The
allowed values are “normal”, “italic”, and “oblique”.

The “font-weight” CssParameter element gives the amount of weight or boldness
to use for a font. Allowed values are “normal” and “bold”.

The “font-size” CssParameter element gives the size to use for the font in pixels.
The default is defined to be 10 pixels, though various systems may have restrictions on
what sizes are available.

When handling vendor-specific fonts, some reasonable interpretation of the CSS font
parameters should be used. For example, with a vendor-specific vector-based font, the
font family could be interpreted as the basename of the filename including the font; the
font style of “italic” could be interpreted as an oblique slant; and the weight of
“bold” could be interpreted as using thicker lines (such as two or three pixels thick).

11.4.4 Label Placement

The LabelPlacement element is used to position a label relative to a point or a line
string and is defined as follows:

<xs:element name="LabelPlacement">
 <xs:complexType>
 <xs:choice>
 <xs:element ref="sld:PointPlacement"/>
 <xs:element ref="sld:LinePlacement"/>
 </xs:choice>

OGC 02-070

© OGC 2002 – All rights reserved 47

 </xs:complexType>
</xs:element>

<xs:element name="PointPlacement">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:AnchorPoint" minOccurs="0"/>
 <xs:element ref="sld:Displacement" minOccurs="0"/>
 <xs:element ref="sld:Rotation" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="LinePlacement">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:PerpendicularOffset" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

This represents only a first attempt at addressing the problem in SLD and may be
inadequate.

For a PointPlacement, the anchor point of the label and a linear displacement from the
point can be specified, to allow a graphic symbol to be plotted directly at the point. This
might be useful to label a city, for example. For a LinePlacement, a perpendicular
offset can be specified, to allow the line itself to be plotted also. This might be useful for
labelling a road or a river, for example.

The AnchorPoint element of a PointPlacement gives the location inside of a label to
use for anchoring the label to the main-geometry point. It is defined as:

<xs:element name="AnchorPoint">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:AnchorPointX"/>
 <xs:element ref="sld:AnchorPointY"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="AnchorPointX" type="sld:ParameterValueType"/>
<xs:element name="AnchorPointY" type="sld:ParameterValueType"/>

The coordinates are given as two floating-point numbers in the AnchorPointX and
AnchorPointY elements each with values between 0.0 and 1.0 inclusive. The bounding
box of the label to be rendered is considered to be in a coorindate space from 0.0 (lower-
left corner) to 1.0 (upper-right corner), and the anchor position is specified as a point in
this space. The default point is X=0, Y=0.5, which is at the middle height of the left-
hand side of the label. A system may choose different anchor points to de-conflict labels.

OGC 02-070

48 © OGC 2002 – All rights reserved

The Displacement element of a PointPlacement gives the X and Y displacements
from the main-geometry point to render a text label and is defined as:

<xs:element name="Displacement">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:DisplacementX"/>
 <xs:element ref="sld:DisplacementY"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="DisplacementX" type="sld:ParameterValueType"/>
<xs:element name="DisplacementY" type="sld:ParameterValueType"/>

This will often be used to avoid over-plotting a graphic symbol marking a city or some
such feature. The displacements are in units of pixels above and to the right of the point.
A system may reflect this displacement about the X and/or Y axes to de-conflict labels.
The default displacement is X=0, Y=0.

The Rotation of a PointPlacement gives the clockwise rotation of the label in
degrees from the normal direction for a font (left-to-right for Latin-derived human
languages at least). Rotation is formally defined in Section 11.3.2.

The PerpendicularOffset element of a LinePlacement gives the perpendicular
distance away from a line to draw a label. It is defined simply as:

<xs:element name="PerpendicularOffset"
 type="sld:ParameterValueType"/>

The distance is in pixels and is positive to the left-hand side of the line string. Negative
numbers mean right. The default offset is 0.

11.4.5 Halo

A Halo is a type of Fill that is applied to the backgrounds of font glyphs. The use of
halos greatly improves the readability of text labels. Halo is defined as:

<xs:element name="Halo">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:Radius" minOccurs="0"/>
 <xs:element ref="sld:Fill" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="Radius" type="sld:ParameterValueType"/>

OGC 02-070

© OGC 2002 – All rights reserved 49

The Radius element gives the absolute size of a halo radius in pixels encoded as a
floating-point number. The radius is taken from the outside edge of a font glyph to
extend the area of coverage of the glyph (and the inside edge of “holes” in the glyphs).
The halo of a text label is considered to be a single shape. The default radius is one pixel.
Negative values are not allowed. The default halo fill is solid white (Color
“#FFFFFF”). The glyph’s fill is plotted on top of the halo. The default font fill is solid
black (Color “#000000”). If no Halo is selected in the containing TextSymbolizer,
then no halo will be rendered.

11.4.6 Example

Consider displaying the value of a “hospitalName” property of hospital features as a
label. Here is an example TextSymbolizer:

<TextSymbolizer>
 <Geometry>
 <ogc:PropertyName>locatedAt</ogc:PropertyName>
 </Geometry>
 <Label>
 <ogc:PropertyName>hospitalName</ogc:PropertyName>
 </Label>

 <CssParameter name="font-family">Arial</CssParameter>
 <CssParameter name="font-family">Sans-Serif</CssParameter>
 <CssParameter name="font-style">italic</CssParameter>
 <CssParameter name="font-size">10</CssParameter>

 <Fill>
 <CssParameter name="fill">#000000</CssParameter>
 </Fill>
 <Halo/>
</TextSymbolizer>

11.5. Raster Symbolizer

11.5.1 Format

The RasterSymbolizer describes how to render raster/matrix-coverage data (e.g.,
satellite photos, DEMs). It is defined as follows:

<xs:element name="RasterSymbolizer">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:Geometry" minOccurs="0"/>
 <xs:element ref="sld:Opacity" minOccurs="0"/>
 <xs:element ref="sld:ChannelSelection" minOccurs="0"/>
 <xs:element ref="sld:OverlapBehavior" minOccurs="0"/>
 <xs:element ref="sld:ColorMap" minOccurs="0"/>
 <xs:element ref="sld:ContrastEnhancement" minOccurs="0"/>
 <xs:element ref="sld:ShadedRelief" minOccurs="0"/>
 <xs:element ref="sld:ImageOutline" minOccurs="0"/>

OGC 02-070

50 © OGC 2002 – All rights reserved

 </xs:sequence>
 </xs:complexType>
</xs:element>

The interpretation of Geometry is system-dependent, as raster data may be organized
differently from feature data, though omitting this element selects the default raster-data
source. Geometry-type transformations are also system-dependent and it is assumed that
this capability will be little used. Opacity has the usual meaning. The meanings of the
other parameters are described with their element definitions. Default values are system
or data dependent.

11.5.2 Parameters

The ChannelSelection element specifies the false-color channel selection for a multi-
spectral raster source (such as a multi-band satellite-imagery source). It is defined as:

<xs:element name="ChannelSelection">
 <xs:complexType>
 <xs:choice>
 <xs:sequence>
 <xs:element ref="sld:RedChannel"/>
 <xs:element ref="sld:GreenChannel"/>
 <xs:element ref="sld:BlueChannel"/>
 </xs:sequence>
 <xs:element ref="sld:GrayChannel"/>
 </xs:choice>
 </xs:complexType>
</xs:element>

<xs:element name="RedChannel" type="sld:SelectedChannelType"/>
<xs:element name="GreenChannel" type="sld:SelectedChannelType"/>
<xs:element name="BlueChannel" type="sld:SelectedChannelType"/>
<xs:element name="GrayChannel" type="sld:SelectedChannelType"/>

<xs:complexType name="SelectedChannelType">
 <xs:sequence>
 <xs:element ref="sld:SourceChannelName"/>
 <xs:element ref="sld:ContrastEnhancement" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

<xs:element name="SourceChannelName" type="xs:string"/>

Either a channel may be selected to display in each of red, green, and blue, or a single
channel may be selected to display in grayscale. (The spelling “gray” is used since it
seems to be more common on the Web than “grey” by a ratio of about 3:1.) Contrast
enhancement may be applied to each channel in isolation. Channels are identified by a
system and data-dependent character identifier. Commonly, channels will be labelled as
“1”, “2”, etc.

OGC 02-070

© OGC 2002 – All rights reserved 51

The OverlapBehavior element tells a system how to behave when multiple raster
images in a layer overlap each other, for example with satellite-image scenes.

<xs:element name="OverlapBehavior">
 <xs:complexType>
 <xs:choice>
 <xs:element ref="sld:LATEST_ON_TOP"/>
 <xs:element ref="sld:EARLIEST_ON_TOP"/>
 <xs:element ref="sld:AVERAGE"/>
 <xs:element ref="sld:RANDOM"/>
 </xs:choice>
 </xs:complexType>
</xs:element>

<xs:element name="LATEST_ON_TOP">
 <xs:complexType/>
</xs:element>

<xs:element name="EARLIEST_ON_TOP">
 <xs:complexType/>
</xs:element>

<xs:element name="AVERAGE">
 <xs:complexType/>
</xs:element>

<xs:element name="RANDOM">
 <xs:complexType/>
</xs:element>

LATEST_ON_TOP and EARLIEST_ON_TOP refer to the time the scene was captured.
AVERAGE means to average multiple scenes together. This can produce blurry results if
the source images are not perfectly aligned in their geo-referencing. RANDOM means to
select an image (or piece thereof) randomly and place it on top. This can produce crisper
results than AVERAGE potentially more efficiently than LATEST_ON_TOP or
EARLIEST_ON_TOP. The default behaviour is system-dependent.

The ColorMap element defines either the colors of a palette-type raster source or the
mapping of fixed-numeric pixel values to colors.

<xs:element name="ColorMap">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="sld:ColorMapEntry"/>
 </xs:choice>
 </xs:complexType>
</xs:element>

<xs:element name="ColorMapEntry">
 <xs:complexType>
 <xs:attribute name="color" type="xs:string" use="required"/>
 <xs:attribute name="opacity" type="xs:double"/>

OGC 02-070

52 © OGC 2002 – All rights reserved

 <xs:attribute name="quantity" type="xs:double"/>
 <xs:attribute name="label" type="xs:string"/>
 </xs:complexType>
</xs:element>

For example, a DEM raster giving elevations in meters above sea level can be translated
to a colored image with a ColorMap. The quantity attributes of a color-map are used
for translating between numeric matrixes and color rasters and the ColorMap entries
should be in order of increasing numeric quantity so that intermediate numeric values
can be matched to a color (or be interpolated between two colors). Labels may be used
for legends or may be used in the future to match character values. Not all systems can
support opacity in colormaps. The default opacity is 1.0 (fully opaque). Defaults for
quantity and label are system-dependent.

The ContrastEnhancement element defines contrast enhancement for a channel of a
false-color image or for a color image. Its format is:

<xs:element name="ContrastEnhancement">
 <xs:complexType>
 <xs:sequence>
 <xs:choice minOccurs="0">
 <xs:element ref="sld:Normalize"/>
 <xs:element ref="sld:Histogram"/>
 </xs:choice>
 <xs:element ref="sld:GammaValue" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="Normalize">
 <xs:complexType/>
</xs:element>

<xs:element name="Histogram">
 <xs:complexType/>
</xs:element>

<xs:element name="GammaValue" type="xs:double"/>

In the case of a color image, the relative grayscale brightness of a pixel color is used.
“Normalize” means to stretch the contrast so that the dimmest color is stretched to
black and the brightest color is stretched to white, with all colors in between stretched out
linearly. “Histogram” means to stretch the contrast based on a histogram of how many
colors are at each brightness level on input, with the goal of producing equal number of
pixels in the image at each brightness level on output. This has the effect of revealing
many subtle ground features. A “GammaValue” tells how much to brighten (value
greater than 1.0) or dim (value less than 1.0) an image. The default GammaValue is
1.0 (no change). If none of Normalize, Histogram, or GammaValue are selected in a
ContrastEnhancement, then no enhancement is performed.

OGC 02-070

© OGC 2002 – All rights reserved 53

The ShadedRelief element selects the application of relief shading (or “hill shading”)
to an image for a three-dimensional visual effect. It is defined as:

<xs:element name="ShadedRelief">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sld:BrightnessOnly" minOccurs="0"/>
 <xs:element ref="sld:ReliefFactor" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="BrightnessOnly" type="xs:boolean"/>

<xs:element name="ReliefFactor" type="xs:double"/>

Exact parameters of the shading are system-dependent (for now). If the
BrightnessOnly flag is “0” (false, default), the shading is applied to the layer being
rendered as the current RasterSymbol. If BrightnessOnly is “1” (true), the shading
is applied to the brightness of the colors in the rendering canvas generated so far by other
layers, with the effect of relief-shading these other layers. The default for
BrightnessOnly is “0” (false). The ReliefFactor gives the amount of exaggeration
to use for the height of the “hills.” A value of around 55 (times) gives reasonable results
for Earth-based DEMs. The default value is system-dependent.

The ImageOutline element specifies that individual source rasters in a multi-raster set
(such as a set of satellite-image scenes) should be outlined with either a
LineStringSymbol or PolygonSymbol. It is defined as:

<xs:element name="ImageOutline">
 <xs:complexType>
 <xs:choice>
 <xs:element ref="sld:LineSymbolizer"/>
 <xs:element ref="sld:PolygonSymbolizer"/>
 </xs:choice>
 </xs:complexType>
</xs:element>

An Opacity of 0.0 can be selected for the main raster to avoid rendering the main-
raster pixels, or an opacity can be used for a PolygonSymbolizer Fill to allow the
main-raster data be visible through the fill.

11.5.3 Examples

The following example applies a coloring to elevation (DEM) data (quantities are in
meters):

<RasterSymbolizer>
 <Opacity>1.0</Opacity>
 <ColorMap>

OGC 02-070

54 © OGC 2002 – All rights reserved

 <ColorMapEntry color="#00ff00" quantity="-500"/>
 <ColorMapEntry color="#00fa00" quantity="-417"/>
 <ColorMapEntry color="#14f500" quantity="-333"/>
 <ColorMapEntry color="#28f502" quantity="-250"/>
 <ColorMapEntry color="#3cf505" quantity="-167"/>
 <ColorMapEntry color="#50f50a" quantity="-83"/>
 <ColorMapEntry color="#64f014" quantity="-1"/>
 <ColorMapEntry color="#7deb32" quantity="0"/>
 <ColorMapEntry color="#78c818" quantity="30"/>
 <ColorMapEntry color="#38840c" quantity="105"/>
 <ColorMapEntry color="#2c4b04" quantity="300"/>
 <ColorMapEntry color="#ffff00" quantity="400"/>
 <ColorMapEntry color="#dcdc00" quantity="700"/>
 <ColorMapEntry color="#b47800" quantity="1200"/>
 <ColorMapEntry color="#c85000" quantity="1400"/>
 <ColorMapEntry color="#be4100" quantity="1600"/>
 <ColorMapEntry color="#963000" quantity="2000"/>
 <ColorMapEntry color="#3c0200" quantity="3000"/>
 <ColorMapEntry color="#ffffff" quantity="5000"/>
 <ColorMapEntry color="#ffffff" quantity="13000"/>
 </ColorMap>
 <OverlapBehavior>
 <AVERAGE/>
 </OverlapBehavior>
 <ShadedRelief/>
</RasterSymbolizer>

Here is a rather artificial mutli-band raster symbol:

<RasterSymbolizer>
 <Opacity>1.0</Opacity>
 <ColorMap>
 <ColorMapEntry color="#000000" quantity="0"/>
 <ColorMapEntry color="#ffffff" quantity="255"/>
 </ColorMap>
 <ChannelSelection>
 <RedChannel>
 <SourceChannelName>1</SourceChannelName>
 <ContrastEnhancement>
 <Histogram/>
 </ContrastEnhancement>
 </RedChannel>
 <GreenChannel>
 <SourceChannelName>2</SourceChannelName>
 <ContrastEnhancement>
 <GammaValue>2.5</GammaValue>
 </ContrastEnhancement>
 </GreenChannel>
 <BlueChannel>
 <SourceChannelName>3</SourceChannelName>
 <ContrastEnhancement>
 <Normalize/>
 </ContrastEnhancement>
 </BlueChannel>
 </ChannelSelection>

OGC 02-070

© OGC 2002 – All rights reserved 55

 <OverlapBehavior>
 <LATEST_ON_TOP/>
 </OverlapBehavior>
 <ContrastEnhancement>
 <GammaValue>1.0</GammaValue>
 </ContrastEnhancement>
</RasterSymbolizer>

11.6. Systems With Limited Capabilities

Systems with limited capabilities can use a “best-effort” approach to styling and
rendering maps according to an SLD. For graphical capabilities, all systems are assumed
to be able to render solid-color lines, solid-color fills, and simple internally-defined
colored “marks”.

The best-effort approach is not well defined for activities such as processing Filters. If
a system cannot process a Filter and an SLD includes one, then the wrong results will
be obtained.

11.7. Integrated SLD Examples

Consider the simple case of supplying a user-defined symbolization to features of a single
feature-type. Furthermore, let us assume that a NamedLayer already exists that
represents those features. The features could be displayed using a NamedStyle by
encoding a styled layer in the following manner:

<StyledLayerDescriptor version="1.0.0">
 <NamedLayer>
 <Name>Rivers</Name>
 <NamedStyle>
 <Name>CenterLine</Name>
 </NamedStyle>
 </NamedLayer>
</StyledLayerDescriptor>

The above SLD describes the styled layer Rivers:CenterLine. A client may wish to
have the features in the “Rivers” named layer appear as a light-blue line, five pixels
wide. Assuming that the features have a geometric property called “center-line” with
line strings for values, then this can be done using a user-defined style, encoded as a
UserStyle element.

<StyledLayerDescriptor version="1.0.0">
 <NamedLayer>
 <Name>Rivers</Name>
 <UserStyle>
 <Title>Blue River</Title>
 <FeatureTypeStyle>
 <Rule>
 <LineSymbolizer>
 <Geometry>
 <ogc:PropertyName>center-line</ogc:PropertyName>

OGC 02-070

56 © OGC 2002 – All rights reserved

 </Geometry>
 <Stroke>
 <CssParameter name="stroke">#aaaaff</CssParameter>
 <CssParameter
 name="stroke-width">5.0</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

The resulting map portrayal based upon the preceding rule is:

Note that the UserStyle element replaces the NamedStyle element, but that the overall
layer/style structure remains. A symbol specifies how a feature is symbolized, a style
determines which features are passed to which symbols. The UserStyle is a degenerate
style that just passes features onto the contained symbols. When placing a UserStyle
inside a NamedLayer there is no explicit mention of the types of feature being
symbolized. Of course, the types are known to the WMS because a NamedLayer hides
an internal definition.

The Title element in the UserStyle element means that it is possible to associate a
user-defined title with any styled layer that is, even if only in part, user-defined. Since a
WMS already has access to a title for named styles, this ensures that all styled layers can
have a title associated with them. This can be used to help support legend functionality.

If we make the further assumption that the “Rivers” named layer just contains features
of the feature-type “main-river”, then we can rewrite the above using a UserLayer
element:

<StyledLayerDescriptor version="1.0.0">
 <UserLayer>
 <RemoteOWS>
 <Service>WFS</Service>
 <OnlineResource

OGC 02-070

© OGC 2002 – All rights reserved 57

 xmlns:xlink="http://www.w3.org/1999/xlink"
 xlink:type="simple"
 xlink:href="http://some.site.com/WFS?"/>
 </RemoteOWS>
 <LayerFeatureConstraints>
 <FeatureTypeConstraint>
 <FeatureTypeName>main-river</FeatureTypeName>
 </FeatureTypeConstraint>
 </LayerFeatureConstraints>
 <UserStyle>
 <Title>Blue river</Title>
 <FeatureTypeStyle>
 <Rule>
 <LineSymbolizer>
 <Geometry>
 <ogc:PropertyName>center-line</ogc:PropertyName>
 </Geometry>
 <Stroke>
 <CssParameter name="stroke">#aaaaff</CssParameter>
 <CssParameter
 name="stroke-width">5.0</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </UserLayer>
</StyledLayerDescriptor>

The resulting map portrayal based upon the preceding rule is:

The FeatureTypeConstraint element is used to define the contents of the
UserLayer in terms of a single feature-type. This somewhat restrictive definition of a
UserLayer will be lifted in later versions of the specification. One might wish to define
a UserLayer that only contains a subset of “Road” features, for example all those with a
classification of “Interstate”. Alternatively one might wish to define a UserLayer
containing features of various feature-types with a common thematic element, for
example “Rivers” and “Streams” and “Lakes” pulled together into a
“Hydrography” UserLayer.

OGC 02-070

58 © OGC 2002 – All rights reserved

Note that there is no need to name the UserLayers and UserStyles because the WMS
retains no knowledge of them after the request. Currently there is no interoperable
mechanism to define new named layers and named styles known to the WMS. The
ability to do so would provide a interoperable mechanism for part of the initial
configuration of a WMS, but it also introduces complex issues related to security.

Finally, let us go back to the ‘cased’ roads example. This could be encoded using
NamedLayers and NamedStyles in an SLD as follows:

<StyledLayerDescriptor version="1.0.0">
 <NamedLayer>
 <Name>Roads</Name>
 <NamedStyle>
 <Name>Casing</Name>
 </NamedStyle>
 <NamedStyle>
 <Name>CenterLine</Name>
 </NamedStyle>
 </NamedLayer>
</StyledLayerDescriptor>

If the client wished to alter the color of the thick ‘casing’ then a UserStyle could be
used to substitute for the “Casing” NamedStyle:

<StyledLayerDescriptor version="1.0.0">
 <NamedLayer>
 <Name>Roads</Name>
 <UserStyle>
 <FeatureStyleType>
 <Rule>
 <LineSymbolizer>
 <Geometry>
 <ogc:PropertyName>center-line</ogc:PropertyName>
 </Geometry>
 <Stroke>
 <CssParameter name="stroke">#aaaaff</CssParameter>
 <CssParameter
 name="stroke-width">5.0</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 <NamedStyle>
 <Name>CenterLine</Name>
 </NamedStyle>
 </NamedLayer>
</StyledLayerDescriptor>

The specification does not allow an existing named style to be ‘tweaked’ by just
overriding individual parameters. Thus, the new ‘user-defined’ casing must supply all
parameters that vary from their default value. So even if all we wished to do was alter

OGC 02-070

© OGC 2002 – All rights reserved 59

the color of the casing, we must now specify a stroke-width as well. In addition we must
know something about the “Road” feature-type, specifically that it has a geometric
property called “center-line” with a line string for a value. We can provide a
UserStyle in place of the “CenterLine” NamedStyle:

<StyledLayerDescriptor version="1.0.0">
 <NamedLayer>
 <Name>Roads</Name>
 <UserStyle>
 <FeatureTypeStyle>
 <Rule>
 <LineSymbolizer>
 <Geometry>
 <ogc:PropertyName>center-line</ogc:PropertyName>
 </Geometry>
 <Stroke>
 <CssParameter name="stroke">#ff0000</CssParameter>
 <CssParameter
 name="stroke-width">5.0</CssParameter>
 </Stroke>
 </LineSymbolizer>
 <Rule>
 </FeatureTypeStyle>
 </UserStyle>
 <UserStyle>
 <FeatureTypeStyle>
 <Rule>
 <LineSymbolizer>
 <Geometry>
 <ogc:PropertyName>center-line</ogc:PropertyName>
 </Geometry>
 <Stroke>
 <CssParameter name="stroke">#ffffff</CssParameter>
 <CssParameter
 name="stroke-width">3.0</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

This SLD defines two styled layers, which are drawn in Z-order. This ensures that the
roads appear properly cased. However, the UserStyle element itself can contain
multiple symbols. The interpretation is that the symbols are drawn in order for each
feature in the layer. The following encoding defines a single styled layer in which each
feature is displayed with two symbols:

<StyledLayerDescriptor version="1.0.0">
 <NamedLayer>
 <Name>Roads</Name>
 <UserStyle>

OGC 02-070

60 © OGC 2002 – All rights reserved

 <FeatureTypeStyle>
 <Rule>
 <LineSymbolizer>
 <Geometry>
 <ogc:PropertyName>center-line</ogc:PropertyName>
 </Geometry>
 <Stroke>
 <CssParameter name="stroke">#ff0000</CssParameter>
 <CssParameter
 name="stroke-width">5.0</CssParameter>
 </Stroke>
 </LineSymbolizer>
 <LineSymbolizer>
 <Geometry>
 <ogc:PropertyName>center-line</ogc:PropertyName>
 </Geometry>
 <Stroke>
 <CssParameter name="stroke">#ffffff</CssParameter>
 <CssParameter
 name="stroke-width">3.0</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

This would process each road feature one at a time, with the road drawn first with a thick
red line and then a thin white line. This would give rise to one of the following,
depending on which order the features are processed in a layer:

12 Map Legends

Legends are normally included with maps to indicate to the user how various features are
represented in the map. It is therefore important to be able to produce a legend on a map-
display client for styles that are represented in SLD format.

OGC 02-070

© OGC 2002 – All rights reserved 61

The structuring of SLD UserStyles into FeatureTypeStyles and Rules provides
convenient packaging for this purpose, since rules identify each different kind of graphic
symbolization that may be present in a map. Given the information in an SLD
UserStyle, a map-viewer client could generate a legend entry for a layer in the
following format:

Roads Layer

 Highways

 Collector Roads

 Minor Roads

The icon symbols are graphics (images) showing how the rule is rendered. Abstracts or
conditions could be displayed by clicking on the titles, etc. The exact presentation of this
information is at the discretion of the viewer client.

Generating this kind of display may involve a significant amount of processing on the
client. The client will need to examine the selected SLD style and determine which rules
apply at the currently used map scale. Then, it will generate something analogous to the
above ‘form’ with the Layer and Rule titles in HTML or Java Swing or whatever the
environment, using references for the images. Alternatively, the job of producing a
meaningful legend entry for a style could be passed on to the server side in a similar way
to how it is done now with WMS LegendURLs.

The image references make use of the GetLegendGraphic operation of the SLD-WMS
interface, with a separate reference for each image. The parameterization of the
operation needs to be “overloaded” in the same way that parameters for the GetMap with
an SLD are overloaded in order to handle the different kinds of clients. I.e., there is an
XML-based HTTP-POST method for executing GetMap (which is the way that SLD is
really intended to be used but nobody implements it), and there are HTTP-GET methods
using SLD= and SLD_BODY= parameters to reference/transport the SLD for use in either
“literal” or “library” mode (depending on whether the LAYERS= parameter is present).

The GET parameters of the GetLegendGraphic operation are defined as follows:

Parameter Required Description

VERSION Required Version as required by OGC interfaces.

OGC 02-070

62 © OGC 2002 – All rights reserved

REQUEST Required Value must be “GetLegendRequest”.

LAYER Required Layer for which to produce legend graphic.

STYLE Optional Style of layer for which to produce legend graphic. If not
present, the default style is selected. The style may be any valid
style available for a layer, including non-SLD internally-defined
styles.

FEATURETYPE Optional Feature type for which to produce the legend graphic. This is not
needed if the layer has only a single feature type.

RULE Optional Rule of style to produce legend graphic for, if applicable. In the
case that a style has multiple rules but no specific rule is selected,
then the map server is obligated to produce a graphic that is
representative of all of the rules of the style.

SCALE Optional In the case that a RULE is not specified for a style, this parameter
may assist the server in selecting a more appropriate
representative graphic by eliminating internal rules that are out-
of-scope. This value is a standardized scale denominator, defined
in Section 10.2

SLD Optional This parameter specifies a reference to an external SLD
document. It works in the same way as the SLD= parameter of the
WMS GetMap operation.

SLD_BODY Optional This parameter allows an SLD document to be included directly
in an HTTP-GET request. It works in the same way as the
SLD_BODY= parameter of the WMS GetMap operation.

FORMAT Required This gives the MIME type of the file format in which to return the
legend graphic. Allowed values are the same as for the FORMAT=
parameter of the WMS GetMap request.

WIDTH Optional This gives a hint for the width of the returned graphic in pixels.
Vector-graphics can use this value as a hint for the level of detail
to include.

HEIGHT Optional This gives a hint for the height of the returned graphic in pixels.

EXCEPTIONS Optional This gives the MIME type of the format in which to return
exceptions. Allowed values are the same as for the
EXCEPTIONS= parameter of the WMS GetMap request.

OGC 02-070

© OGC 2002 – All rights reserved 63

The GetLegendGraphic operation itself is optional for an SLD-enabled WMS. It
provides a general mechanism for acquiring legend symbols, beyond the LegendURL
reference of WMS Capabilities. Servers supporting the GetLegendGraphic call might
code LegendURL references as GetLegendGraphic for interface consistency. Vendor-
specific parameters may be added to GetLegendGraphic requests and all of the usual
OGC-interface options and rules apply. No XML-POST method for
GetLegendGraphic is presently defined.

Here is an example invocation:

http://www.vendor.com/wms.cgi?
 VERSION=1.1.0&
 REQUEST=GetLegendGraphic&
 LAYER=ROADL_1M%3Alocal_data&
 STYLE=my_style&
 RULE=highways
 SLD=http%3A%2F%2Fwww.sld.com%2Fstyles%2Fkpp01.xml
 WIDTH=16&
 HEIGHT=16&
 FORMAT=image%2Fgif&

which would produce a 16x16 icon for the Rule named “highways” defined within
layer “ROADL_1M:local_data” in the SLD. The list of available formats for legend
graphics and exceptions can be assumed to be the same as are available for a map in the
WMS GetMap request.

An alternative approach to using a GetLegendGraphic operation would be for the
viewer client to render a style sample directly itself using the style description. This
would save some interactions between the client and server and would allow the viewer
client to present consistent sample shapes (across remote map servers from different
vendors), although the legend graphics might look different from the graphics actually
rendered in the map since the viewer and server may have different rendering engines and
different graphical capabilities.

The LegendGraphic element of an SLD Rule (defined in Section 10.1) actually only
has a limited role in building legends. For vector types, a map server would normally
render a standard vector geometry (such as a box) with the given symbolization for a rule.
But for some layers, such as for Digital Elevation Model (DEM) data, there is not really a
“standard” geometry that can rendered in order to get a good representative image. So,
this is what the LegendGraphic SLD element is intended for, to provide a substitute
representative image for a Rule. For example, it might reference a remote URL for a
DEM layer called “GTOPO30”:

http://www.vendor.com/sld/icons/COLORMAP_GTOPO30.png

OGC 02-070

64 © OGC 2002 – All rights reserved

13 Symbology Management

This section describes methods to store and retrieve user-defined styles to and from a
map server using SLD format.

13.1. GetStyles

The GetStyles operation is used to retrieve user-defined styles from a WMS. The
parameters of the HTTP-GET method are defined as follows:

Parameter Required Description

VERSION Required Version as required by OGC interfaces.

REQUEST Required Value must be “GetStyles”.

LAYERS Required Comma-separated list of named layers for which to retrieve style
descriptions.

SLDVER Optional The SLD version requested for the SLD document. The default is
to return the highest version supported by the server. If a version
is requested that the server does not support, then the next lower
supported version is supported by the server is returned, or the
server’s lowest supported version. This is similar to WMS version
negotiation.

All of the styles of multiple layers may be retrieved at a time for efficiency. On
successful extraction, an SLD document is returned of MIME type
“application/vnd.ogc.sld+xml”. All requested styles that can in fact be described
by SLD will be returned as UserStyle elements, and styles that cannot be will returned
as NamedStyle elements. (It is understood that map servers may have internally-
encoded styling that cannot be properly described by SLD.) The map server should
normally return the layer information as NamedLayers for better integration with the
PutStyles operation. A UserLayer will provide more information about the internal
organization of a layer for greater WFS/WCS integration.

On error, a standard “application/vnd.ogc.se_xml” service-exception document
will be returned.

13.2. PutStyles

The PutStyles operation is used to store user-defined styles and user-defined layers
into a WMS. Many styles for many different layers may be stored. On successful
insertion, these styles will subsequently be available from the WMS for use as named
styles. The parameters of the HTTP-GET method are defined as follows:

OGC 02-070

© OGC 2002 – All rights reserved 65

Parameter Required Description

VERSION Required Version as required by OGC interfaces.

REQUEST Required Value must be “PutStyles”.

MODE Required This gives the mode of the ‘put’: either “InsertAndReplace” or
“ReplaceAll”. In InsertAndReplace mode, all new styles for
a layer are inserted and all existing styles which are defined in the
SLD are replaced. In ReplaceAll mode, all existing styles for a
layer are logically deleted, and then the SLD-defined styles are
inserted. This is similar to InsertAndReplace mode, except
that all styles not in the SLD are deleted.

SLD Optional This parameter specifies a reference to an external SLD document.
It works in the same way as the SLD= parameter of the WMS
GetMap operation.

SLD_BODY Optional This parameter allows an SLD document to be included directly in
an HTTP-GET request. It works in the same way as the
SLD_BODY= parameter of the WMS GetMap operation.

The format is implied to be SLD. Both the SLD= and SLD_BODY= parameters are
individually marked as “Optional”, but one of them must be used to pass the SLD. This
operation could also hypothetically be used to define new user-defined layers, but that is
not the immediate intention in this version of the SLD Specification. No HTTP-POST
method for the PutStyles operation is defined at this time.

The InsertAndReplace and ReplaceAll modes are provided to handle the common
usage cases of either tweaking an individual style or of performing a bulk update of all
styles for a layer or layers. A “lost-update” problem may be encountered when
performing a bulk update on styles that were retrieved with a previous GetStyles
operation. Any updates to the styles that were made by some other user in the meantime
may be lost. Lost updates are a general problem in distributed systems and the general
solution is to use some kind of locking mechanism, but no solution is provided here.

All SLD NamedStyles that are present in the SLD in a PutStyles operation in
InsertAndReplace mode are ignored. (These may be present as a result of a previous
GetStyles query for which there was no suitable SLD description of some styles.) In
the ReplaceAll mode of PutStyles, the current definition of every NamedStyle is
retained. (If no reference at all is provided, then styles are deleted in this mode.)

The semantics for updating the default style are as follows. If a style for a layer is
marked as being default in the SLD, then that style will become the new default,
superseding the existing default style in the map server. If ReplaceAll mode is used
and the existing default style for a layer is implicitly deleted but no new style is inserted

OGC 02-070

66 © OGC 2002 – All rights reserved

from the SLD that is marked as being the new default, then the action to be taken is
system-specific. A WMS must always have a default style for every layer.

Any user-defined layers that are present in the given SLD will cause a layer to be created
inside of the map server of the given name and definition. If the layer already exists, it
will be replaced with the new definition. A map server shall be assumed to support user-
defined layer updates if and only if it indicates that it supports the PutStyles operation
and user-defined layers in its capabilities document.

On successful insertion, a simple return of MIME type
“application/vnd.ogc.success+xml” will be returned. It is defined according to
the following DTD:

<!ELEMENT OGC_OWS_Success EMPTY >

On error, a standard “application/vnd.ogc.se_xml” service-exception document
will be returned. This document is described in the WMS 1.1.0 Specification. The
insertion of new styles is formally defined to be “atomic”, meaning that either all style
updates to all layers are made or none are. In practice, however, some systems may not
live up to this formal definition.

14 Styling Standards

14.1. GeoSym

The functionality of SLD is sufficient to render GeoSym styles. GeoSym makes use of
solid, dash-patterned, and repeated-linear graphic strokes; solid and repeated-graphic
fills; the rendering of graphic symbols at a point; and the rendering of text.

Some examples follow of GeoSym-compatible stlyes for VMAP0 feature types. Here is
the style for a simple polygon-fill type for Built-Up Areas. The areas are filled with a
yellow color.

<UserStyle>
 <Name>GEOSYM</Name>
 <FeatureTypeStyle>
 <Rule>
 <PolygonSymbolizer>
 <Fill>
 <CssParameter name="fill">#FFF053</CssParameter>
 </Fill>
 </PolygonSymbolizer>
 </Rule>
 </FeatureTypeStyle>
</UserStyle>

Here is a more complex example for Roads. There are four different rules for portraying
different kinds of roads. The WFS-Filter conditions are somewhat verbose.

OGC 02-070

© OGC 2002 – All rights reserved 67

<UserStyle>
 <Name>GEOSYM</Name>
 <FeatureTypeStyle>
 <Rule>
 <Name>Operational-Median</Name>
 <Title>Operational, Median</Title>
 <ogc:Filter> <!-- EXS = 28 AND MED = 1 -->
 <ogc:And>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>EXS</ogc:PropertyName>
 <ogc:Literal>28</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>MED</ogc:PropertyName>
 <ogc:Literal>1</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 <ogc:/And>
 </ogc:Filter>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#940100</CssParameter>
 <CssParameter name="stroke-width">2.0</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>

 <Rule>
 <Name>NonOperational-Median</Name>
 <Title>Non-Operational, Median</Title>
 <ogc:Filter> <!-- EXS != 28 AND MED = 1 -->
 <ogc:And>
 <ogc:Not>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>EXS</ogc:PropertyName>
 <ogc:Literal>28</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Not>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>MED</ogc:PropertyName>
 <ogc:Literal>1</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 <ogc:/And>
 </ogc:Filter>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#940100</CssParameter>
 <CssParameter name="stroke-width">2.0</CssParameter>
 <CssParameter
 name="stroke-dasharray">5 3</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>

 <Rule>
 <Name>Operational-NoMedian</Name>
 <Title>Operational, No Median</Title>

OGC 02-070

68 © OGC 2002 – All rights reserved

 <ogc:Filter> <!-- EXS = 28 AND MED != 1 -->
 <ogc:And>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>EXS</ogc:PropertyName>
 <ogc:Literal>28</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 <ogc:Not>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>MED</ogc:PropertyName>
 <ogc:Literal>1</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Not>
 <ogc:/And>
 </ogc:Filter>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#940100</CssParameter>
 <CssParameter name="stroke-width">1.0</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>

 <Rule>
 <Name>NonOperational-NoMedian</Name>
 <Title>Non-Operational, No Median</Title>
 <ogc:Filter> <!-- EXS != 28 AND MED != 1 -->
 <ogc:And>
 <ogc:Not>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>EXS</ogc:PropertyName>
 <ogc:Literal>28</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Not>
 <ogc:Not>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>MED</ogc:PropertyName>
 <ogc:Literal>1</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Not>
 <ogc:/And>
 </ogc:Filter>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#940100</CssParameter>
 <CssParameter name="stroke-width">1.0</CssParameter>
 <CssParameter
 name="stroke-dasharray">6 2</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>
 </FeatureTypeStyle>
</UserStyle>

Finally, here is the style for Airport points. Two types of airports are symbolized by
different external graphical images in PNG format.

OGC 02-070

© OGC 2002 – All rights reserved 69

<UserStyle>
 <Name>GEOSYM</Name>
 <FeatureTypeStyle>
 <Rule>
 <Name>NonMilitary</Name>
 <Title>Non Military</Title>
 <ogc:Filter> <!-- USE != 8 AND USE != 22 -->
 <ogc:And>
 <ogc:Not>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>USE</ogc:PropertyName>
 <ogc:Literal>8</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Not>
 <ogc:Not>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>USE</ogc:PropertyName>
 <ogc:Literal>22</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Not>
 <ogc:/Or>
 </ogc:Filter>
 <PointSymbolizer>
 <Graphic>
 <ExternalGraphic>
 <OnlineResource xlink:type="simple"
 xlink:href="http://www.vendor.com/geosym/2267.png"/>
 <Format>image/png</Format>
 </ExternalGraphic>
 <Size>16.0</Size>
 </Graphic>
 </PointSymbolizer>
 </Rule>

 <Rule>
 <Name>Military</Name>
 <Title>Military</Title>
 <ogc:Filter> <!-- USE = 8 OR USE = 22 -->
 <ogc:Or>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>USE</ogc:PropertyName>
 <ogc:Literal>8</ogc:Literal>
| </ogc:PropertyIsEqualTo>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>USE</ogc:PropertyName>
 <ogc:Literal>22</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 <ogc:/And>
 </ogc:Filter>
 <PointSymbolizer>
 <Graphic>
 <ExternalGraphic>
 <OnlineResource xlink:type="simple"
 xlink:href="http://www.vendor.com/geosym/2269.png"/>
 <Format>image/png</Format>
 </ExternalGraphic>

OGC 02-070

70 © OGC 2002 – All rights reserved

 <Size>16.0</Size>
 </Graphic>
 </PointSymbolizer>
 </Rule>
 </FeatureTypeStyle>
</UserStyle>

14.2. MIL2525B

MIL-STD-2525B is a Department of Defense Interface Standard that defines Common
Warfighting Symbology. SLD contains many of the constructs needed to support MIL-
STD-2525B; however, due to the scope and complexity of MIL-STD-2525B, it is likely
that additional work will need to be done to provide a fully compliant SLD solution.
MIL-STD-2525B symbology is divided into the two broad categories: Tactical Symbols
and Tactical Graphics. Tactical Symbols are used to describe point locations while
Tactical Graphics may extend to a line or area.

Tactical Symbols are composed of frame and fill (which under certain conditions are
omitted), an icon and zero or more Graphics and Text Modifiers. These components
provide information about the symbol’s affiliation, battle dimension, status, and mission.
Tactical Symbol size may be adjusted by the user, but should be independent of the scale
of the map display. An example of the Tactical Symbols with labels showing the names
of the components is shown below.

The fill color, frame shape and, in some cases, text modifiers depict the affiliation
(Friend, Neutral, Hostile, etc.) and the battle dimension (Land, Air, Sea, etc.) of the
symbol. There are nine possible values for affiliation and nine for battle dimension
(although some combinations are not used). Some affiliation indicators use a Text
Modifier to reflect a pending or presumed value. The frame outline may also be drawn
with a dotted line to indicate a planned or anticipated future status. While not trivial,
these frame shapes, line styles, and fill colors could be selected based on a rule set
codified using SLD.

Icons represent a much larger set of possibilities with many lending themselves to being
broken down into more primitive components for potential processing by a ruleset.
Although the icon illustrated above is a simple text character, many of the icons have

F

FRAME
COLOR FILL

ICON

DIRECTION INDICATOR
(GRAPHIC MODIFIER)

MIG-29

AJ2455

TEXT FIELDS
(TEXT MODIFIER)

OGC 02-070

© OGC 2002 – All rights reserved 71

much more intricate graphical contents. There are also graphical indicators for mobility,
auxiliary equipment, headquarters staff, and other attributes. Some of these are
independent of the frame shape and are likely to be drawn using “one-size-fits-all”
primitives. Others, such as a diagonal line across the icon, are dependent on the frame
shape and a developer may choose to incorporate them into the set of frame primitives or
to have different primitives for each of the frame shapes.

Text Fields are mapped to Text Modifier locations with some locations used for multiple
purposes. For the most part, Text Modifiers are used indepently from the other symbol
attributes. The SLD Label Placement elements (see Section 11.4.4) should adequately
support MIL-STD-2525B Text Modifiers.

The frame, fill and icon are communicated using a 15-character code. The symbol shown
above has the code “SHAPMFF---*****”, two text modifiers, and one graphics modifier.
Disecting this code character by character gives us “S” for the code scheme, “H” for
Affiliation - Hostile, “A” for Battle Dimension - Air, “P” for Status - Present, “MFF---”
for Function Id - Military, Fixed Wing, Fighter, and “**” for size/mobility, “**” for
Country Code, and “*” for the Order of Battle. The dashes indicate unused positions and
asterisks indicate user-defined positions based on specific symbol circumstances. The
Type Text Modifier is “MIG-29” and the Unique Designation Text Modifier is
“AJ2455”. The Direction of Movement Graphic Modifier indicates an ESE direction of
travel.

Tactical Graphics may include icon-based symbols but cannot be represented as Tactical
Symbols alone. Therefore, in addition to the SLD constructs necessary for Tactical
Symbols, Tactical Graphics will use additional constructs to support line and area styling.
The Tactical Graphics symbolization may be an extension of existing SLD Line Styling
to include support for line and area styles such as tick marks, jagged lines, and rounded
corners, some of which may not be able to be represented using the current stroke and fill
SLD Style elements.

Two conceivable approaches for support of the basic MIL-STD-2525B symbol set would
be to map each anticipated 15-character code to a complete, pre-defined symbol, or by
building up MIL-STD-2525B styles using more primitive graphic elements. The first
approach would require a pre-defined symbol set with hundreds or perhaps thousands of
symbol files. The second approach would be more desirable, if possible, since it is more
general and can be applied to other external styling standards. Below is an example of an
SLD ruleset to display a symbol built up from primitives to form the Tactical Symbol
shown above. Note that the functionality to support the Direction Indicator Graphic
Modifier is not presently available.

<StyledLayerDescriptor version="1.0.0">
 <NamedLayer>
 <Name>MIL2525B-Data</Name>
 <UserStyle>
 <Name>MIL2525B</Name>
 <FeatureTypeStyle>

OGC 02-070

72 © OGC 2002 – All rights reserved

 <Rule>
 <Name>HostileAircraft</Name>
 <Title>Hostile Aircraft</Title>
 <ogc:Filter> <!— Affiliation = Hostile -->
 <ogc:And>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>Affiliation</ogc:PropertyName>
 <ogc:Literal>H</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>Dimension</ogc:PropertyName>
 <ogc:Literal>A</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:And>
 </ogc:Filter>
 <PointSymbolizer>
 <Graphic>
 <ExternalGraphic>
 <OnlineResource xlink:type="simple"

xlink:href="http://www.vendor.com/m2525b/AirHostile.png"/>
 <Format>image/png</Format>
 </ExternalGraphic>
 <Size>16.0</Size>
 </Graphic>
 </PointSymbolizer>
 </Rule>

 <Rule>
 <Name>MilitaryFixedWingFighter</Name>
 <Title>Military Fixed-Wing Fighter</Title>
 <ogc:Filter> <!— Function ID = Mil. Fixed Wing Fighter
-->
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>FUNCTIONID</ogc:PropertyName>
 <ogc:Literal>MFF</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <PointSymbolizer>
 <Graphic>
 <ExternalGraphic>
 <OnlineResource xlink:type="simple"

xlink:href="http://www.vendor.com/m2525b/MilFixedFighter.png"/>
 <Format>image/png</Format>
 </ExternalGraphic>
 <Size>16.0</Size>
 </Graphic>
 </PointSymbolizer>
 <TextSymbolizer>
 <Label>

<ogc:PropertyName>TypeTextModifier</ogc:PropertyName>
 </Label>

 <CssParameter name="font-

OGC 02-070

© OGC 2002 – All rights reserved 73

family">Arial</CssParameter>
 <CssParameter name="font-family">Sans-
Serif</CssParameter>
 <CssParameter name="font-
style">italic</CssParameter>
 <CssParameter name="font-size">10</CssParameter>

 <Fill>
 <CssParameter name="fill">#000000</CssParameter>
 </Fill>
 <Displacement>
 <DisplacementX>-50</DisplacementX>
 <DisplacementY>0</DisplacementY>
 </Displacement>
 </TextSymbolizer>
 <TextSymbolizer>
 <Label>

<ogc:PropertyName>UniqueIDTextModifier</ogc:PropertyName>
 </Label>

 <CssParameter name="font-
family">Arial</CssParameter>
 <CssParameter name="font-family">Sans-
Serif</CssParameter>
 <CssParameter name="font-
style">italic</CssParameter>
 <CssParameter name="font-size">10</CssParameter>

 <Fill>
 <CssParameter name="fill">#000000</CssParameter>
 </Fill>
 <Displacement>
 <DisplacementX>-50</DisplacementX>
 <DisplacementY>20</DisplacementY>
 </Displacement>
 </TextSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

OGC 02-070

74 © OGC 2002 – All rights reserved

Annex A: Styled-Layer-Descriptor Schema

(Normative)

This annex contains the Styled-Layer-Descriptor XML Schema corresponding to this
version of the specification. Comments in the schema are informative; in case of conflict
with the main body of this specification, the main body takes precedence. The schema
definition here (without comments) is normative; in case of conflict with schema
definitions in the main body of this specification, this schema takes precedence.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="http://www.opengis.net/sld"
 xmlns:sld="http://www.opengis.net/sld"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">
 <xsd:import namespace="http://www.w3.org/1999/xlink"
 schemaLocation="../../gml/2.1/xlinks.xsd"/>
 <xsd:import namespace="http://www.opengis.net/ogc"
 schemaLocation="../../filter/1.0.0/Filter.xsd"/>

<!-- *** -->
 <xsd:annotation>
 <xsd:documentation>
 STYLED LAYER DESCRIPTOR version 1.0.0 (2002-08-16)
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="StyledLayerDescriptor">
 <xsd:annotation>
 <xsd:documentation>
 A StyledLayerDescriptor is a sequence of styled layers, represented
 at the first level by NamedLayer and UserLayer elements.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:Name" minOccurs="0"/>
 <xsd:element ref="sld:Title" minOccurs="0"/>
 <xsd:element ref="sld:Abstract" minOccurs="0"/>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="sld:NamedLayer"/>
 <xsd:element ref="sld:UserLayer"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="version" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="Title" type="xsd:string"/>
 <xsd:element name="Abstract" type="xsd:string"/>

OGC 02-070

© OGC 2002 – All rights reserved 75

<!-- *** -->
 <xsd:annotation>
 <xsd:documentation>
 LAYERS AND STYLES
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="NamedLayer">
 <xsd:annotation>
 <xsd:documentation>
 A NamedLayer is a layer of data that has a name advertised by a WMS.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:Name"/>
 <xsd:element ref="sld:LayerFeatureConstraints" minOccurs="0"/>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="sld:NamedStyle"/>
 <xsd:element ref="sld:UserStyle"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="NamedStyle">
 <xsd:annotation>
 <xsd:documentation>
 A NamedStyle is used to refer to a style that has a name in a WMS.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:Name"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="UserLayer">
 <xsd:annotation>
 <xsd:documentation>
 A UserLayer allows a user-defined layer to be built from WFS and
 WCS data.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:Name" minOccurs="0"/>
 <xsd:element ref="sld:RemoteOWS" minOccurs="0"/>
 <xsd:element ref="sld:LayerFeatureConstraints"/>
 <xsd:element ref="sld:UserStyle" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="RemoteOWS">
 <xsd:annotation>
 <xsd:documentation>
 A RemoteOWS gives a reference to a remote WFS/WCS/other-OWS server.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>

OGC 02-070

76 © OGC 2002 – All rights reserved

 <xsd:sequence>
 <xsd:element ref="sld:Service"/>
 <xsd:element ref="sld:OnlineResource"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="Service">
 <xsd:annotation>
 <xsd:documentation>
 A Service refers to the type of a remote OWS server.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="WFS"/>
 <xsd:enumeration value="WCS"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>

 <xsd:element name="OnlineResource">
 <xsd:annotation>
 <xsd:documentation>
 An OnlineResource is typically used to refer to an HTTP URL.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attributeGroup ref="xlink:simpleLink"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="LayerFeatureConstraints">
 <xsd:annotation>
 <xsd:documentation>
 LayerFeatureConstraints define what features & feature types are
 referenced in a layer.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:FeatureTypeConstraint" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="FeatureTypeConstraint">
 <xsd:annotation>
 <xsd:documentation>
 A FeatureTypeConstraint identifies a specific feature type and
 supplies fitlering.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:FeatureTypeName" minOccurs="0"/>
 <xsd:element ref="ogc:Filter" minOccurs="0"/>
 <xsd:element ref="sld:Extent" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="FeatureTypeName" type="xsd:string"/>

OGC 02-070

© OGC 2002 – All rights reserved 77

 <xsd:element name="Extent">
 <xsd:annotation>
 <xsd:documentation>
 An Extent gives feature/coverage/raster/matrix dimension extent.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:Name"/>
 <xsd:element ref="sld:Value"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Value" type="xsd:string"/>

 <xsd:element name="UserStyle">
 <xsd:annotation>
 <xsd:documentation>
 A UserStyle allows user-defined styling and is semantically
 equivalent to a WMS named style.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:Name" minOccurs="0"/>
 <xsd:element ref="sld:Title" minOccurs="0"/>
 <xsd:element ref="sld:Abstract" minOccurs="0"/>
 <xsd:element ref="sld:IsDefault" minOccurs="0"/>
 <xsd:element ref="sld:FeatureTypeStyle" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="IsDefault" type="xsd:string"/>

<!-- *** -->
 <xsd:annotation>
 <xsd:documentation>
 FEATURE-TYPE STYLING
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="FeatureTypeStyle">
 <xsd:annotation>
 <xsd:documentation>
 A FeatureTypeStyle contains styling information specific to one
 feature type. This is the SLD level that separates the 'layer'
 handling from the 'feature' handling.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:Name" minOccurs="0"/>
 <xsd:element ref="sld:Title" minOccurs="0"/>
 <xsd:element ref="sld:Abstract" minOccurs="0"/>
 <xsd:element ref="sld:FeatureTypeName" minOccurs="0"/>
 <xsd:element ref="sld:SemanticTypeIdentifier" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element ref="sld:Rule" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

OGC 02-070

78 © OGC 2002 – All rights reserved

 <xsd:element name="SemanticTypeIdentifier" type="xsd:string"/>

 <xsd:element name="Rule">
 <xsd:annotation>
 <xsd:documentation>
 A Rule is used to attach property/scale conditions to and group
 the individual symbolizers used for rendering.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:Name" minOccurs="0"/>
 <xsd:element ref="sld:Title" minOccurs="0"/>
 <xsd:element ref="sld:Abstract" minOccurs="0"/>
 <xsd:element ref="sld:LegendGraphic" minOccurs="0"/>
 <xsd:choice minOccurs="0">
 <xsd:element ref="ogc:Filter"/>
 <xsd:element ref="sld:ElseFilter"/>
 </xsd:choice>
 <xsd:element ref="sld:MinScaleDenominator" minOccurs="0"/>
 <xsd:element ref="sld:MaxScaleDenominator" minOccurs="0"/>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="sld:LineSymbolizer"/>
 <xsd:element ref="sld:PolygonSymbolizer"/>
 <xsd:element ref="sld:PointSymbolizer"/>
 <xsd:element ref="sld:TextSymbolizer"/>
 <xsd:element ref="sld:RasterSymbolizer"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="LegendGraphic">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:Graphic"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="ElseFilter">
 <xsd:complexType/>
 </xsd:element>
 <xsd:element name="MinScaleDenominator" type="xsd:double"/>
 <xsd:element name="MaxScaleDenominator" type="xsd:double"/>

<!-- *** -->
 <xsd:annotation>
 <xsd:documentation>
 SYMBOLIZERS
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="Symbolizer" type="sld:SymbolizerType" abstract="true"/>

 <xsd:complexType name="SymbolizerType" abstract="true">
 <xsd:annotation>
 <xsd:documentation>
 A "SymbolizerType" is an abstract type for encoding the graphical
 properties used to portray geographic information. Concrete symbol
 types are derived from this base type.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:complexType>

OGC 02-070

© OGC 2002 – All rights reserved 79

<!-- *** -->
 <xsd:annotation>
 <xsd:documentation>
 LINE SYMBOLIZER
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="LineSymbolizer" substitutionGroup="sld:Symbolizer">
 <xsd:annotation>
 <xsd:documentation>
 A LineSymbolizer is used to render a "stroke" along a linear geometry.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="sld:SymbolizerType">
 <xsd:sequence>
 <xsd:element ref="sld:Geometry" minOccurs="0"/>
 <xsd:element ref="sld:Stroke" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="Geometry">
 <xsd:annotation>
 <xsd:documentation>
 A Geometry gives reference to a (the) geometry property of a
 feature to be used for rendering.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="ogc:PropertyName"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="Stroke">
 <xsd:annotation>
 <xsd:documentation>
 A "Stroke" specifies the appearance of a linear geometry. It is
 defined in parallel with SVG strokes. The following CssParameters
 may be used: "stroke" (color), "stroke-opacity", "stroke-width",
 "stroke-linejoin", "stroke-linecap", "stroke-dasharray", and
 "stroke-dashoffset".
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:choice minOccurs="0">
 <xsd:element ref="sld:GraphicFill"/>
 <xsd:element ref="sld:GraphicStroke"/>
 </xsd:choice>
 <xsd:element ref="sld:CssParameter" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

OGC 02-070

80 © OGC 2002 – All rights reserved

 <xsd:element name="CssParameter">
 <xsd:annotation>
 <xsd:documentation>
 A "CssParameter" refers to an SVG/CSS graphical-formatting
 parameter. The parameter is identified using the "name" attribute
 and the content of the element gives the SVG/CSS-coded value.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType mixed="true">
 <xsd:complexContent>
 <xsd:extension base="sld:ParameterValueType">
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="ParameterValueType" mixed="true">
 <xsd:annotation>
 <xsd:documentation>
 The "ParameterValueType" uses WFS-Filter expressions to give
 values for SLD graphic parameters. A "mixed" element-content
 model is used with textual substitution for values.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="ogc:expression"/>
 </xsd:choice>
 </xsd:complexType>

 <xsd:element name="GraphicFill">
 <xsd:annotation>
 <xsd:documentation>
 A "GraphicFill" defines repeated-graphic filling (stippling)
 pattern for an area geometry.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:Graphic"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="GraphicStroke">
 <xsd:annotation>
 <xsd:documentation>
 A "GraphicStroke" defines a repated-linear graphic pattern to be used
 for stroking a line.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:Graphic"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

<!-- *** -->
 <xsd:annotation>
 <xsd:documentation>
 POLYGON SYMBOLIZER

OGC 02-070

© OGC 2002 – All rights reserved 81

 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="PolygonSymbolizer" substitutionGroup="sld:Symbolizer">
 <xsd:annotation>
 <xsd:documentation>
 A "PolygonSymbolizer" specifies the rendering of a polygon or
 area geometry, including its interior fill and border stroke.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="sld:SymbolizerType">
 <xsd:sequence>
 <xsd:element ref="sld:Geometry" minOccurs="0"/>
 <xsd:element ref="sld:Fill" minOccurs="0"/>
 <xsd:element ref="sld:Stroke" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="Fill">
 <xsd:annotation>
 <xsd:documentation>
 A "Fill" specifies the pattern for filling an area geometry.
 The allowed CssParameters are: "fill" (color) and "fill-opacity".
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:GraphicFill" minOccurs="0"/>
 <xsd:element ref="sld:CssParameter" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

<!-- *** -->
 <xsd:annotation>
 <xsd:documentation>
 POINT SYMBOLIZER
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="PointSymbolizer">
 <xsd:annotation>
 <xsd:documentation>
 A "PointSymbolizer" specifies the rendering of a "graphic symbol"
 at a point.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="sld:SymbolizerType">
 <xsd:sequence>
 <xsd:element ref="sld:Geometry" minOccurs="0"/>
 <xsd:element ref="sld:Graphic" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

OGC 02-070

82 © OGC 2002 – All rights reserved

 </xsd:element>

 <xsd:element name="Graphic">
 <xsd:annotation>
 <xsd:documentation>
 A "Graphic" specifies or refers to a "graphic symbol" with inherent
 shape, size, and coloring.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="sld:ExternalGraphic"/>
 <xsd:element ref="sld:Mark"/>
 </xsd:choice>
 <xsd:sequence>
 <xsd:element ref="sld:Opacity" minOccurs="0"/>
 <xsd:element ref="sld:Size" minOccurs="0"/>
 <xsd:element ref="sld:Rotation" minOccurs="0"/>
 </xsd:sequence>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Opacity" type="sld:ParameterValueType"/>
 <xsd:element name="Size" type="sld:ParameterValueType"/>
 <xsd:element name="Rotation" type="sld:ParameterValueType"/>

 <xsd:element name="ExternalGraphic">
 <xsd:annotation>
 <xsd:documentation>
 An "ExternalGraphic" gives a reference to an external raster or
 vector graphical object.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:OnlineResource"/>
 <xsd:element ref="sld:Format"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Format" type="xsd:string"/>

 <xsd:element name="Mark">
 <xsd:annotation>
 <xsd:documentation>
 A "Mark" specifies a geometric shape and applies coloring to it.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:WellKnownName" minOccurs="0"/>
 <xsd:element ref="sld:Fill" minOccurs="0"/>
 <xsd:element ref="sld:Stroke" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="WellKnownName" type="xsd:string"/>

<!-- *** -->
 <xsd:annotation>
 <xsd:documentation>

OGC 02-070

© OGC 2002 – All rights reserved 83

 TEXT SYMBOLIZER
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="TextSymbolizer" substitutionGroup="sld:Symbolizer">
 <xsd:annotation>
 <xsd:documentation>
 A "TextSymbolizer" is used to render text labels according to
 various graphical parameters.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="sld:SymbolizerType">
 <xsd:sequence>
 <xsd:element ref="sld:Geometry" minOccurs="0"/>
 <xsd:element ref="sld:Label" minOccurs="0"/>
 <xsd:element ref="sld:Font" minOccurs="0"/>
 <xsd:element ref="sld:LabelPlacement" minOccurs="0"/>
 <xsd:element ref="sld:Halo" minOccurs="0"/>
 <xsd:element ref="sld:Fill" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="Label" type="sld:ParameterValueType">
 <xsd:annotation>
 <xsd:documentation>
 A "Label" specifies the textual content to be rendered.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:element name="Font">
 <xsd:annotation>
 <xsd:documentation>
 A "Font" element specifies the text font to use. The allowed
 CssParameters are: "font-family", "font-style", "font-weight",
 and "font-size".
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:CssParameter" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="LabelPlacement">
 <xsd:annotation>
 <xsd:documentation>
 The "LabelPlacement" specifies where and how a text label should
 be rendered relative to a geometry. The present mechanism is
 poorly aligned with CSS/SVG.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:choice>
 <xsd:element ref="sld:PointPlacement"/>
 <xsd:element ref="sld:LinePlacement"/>

OGC 02-070

84 © OGC 2002 – All rights reserved

 </xsd:choice>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="PointPlacement">
 <xsd:annotation>
 <xsd:documentation>
 A "PointPlacement" specifies how a text label should be rendered
 relative to a geometric point.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:AnchorPoint" minOccurs="0"/>
 <xsd:element ref="sld:Displacement" minOccurs="0"/>
 <xsd:element ref="sld:Rotation" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="AnchorPoint">
 <xsd:annotation>
 <xsd:documentation>
 An "AnchorPoint" identifies the location inside of a text label to
 use an an 'anchor' for positioning it relative to a point geometry.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:AnchorPointX"/>
 <xsd:element ref="sld:AnchorPointY"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="AnchorPointX" type="sld:ParameterValueType"/>
 <xsd:element name="AnchorPointY" type="sld:ParameterValueType"/>

 <xsd:element name="Displacement">
 <xsd:annotation>
 <xsd:documentation>
 A "Displacement" gives X and Y offset displacements to use for
 rendering a text label near a point.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:DisplacementX"/>
 <xsd:element ref="sld:DisplacementY"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="DisplacementX" type="sld:ParameterValueType"/>
 <xsd:element name="DisplacementY" type="sld:ParameterValueType"/>

 <xsd:element name="LinePlacement">
 <xsd:annotation>
 <xsd:documentation>
 A "LinePlacement" specifies how a text label should be rendered
 relative to a linear geometry.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>

OGC 02-070

© OGC 2002 – All rights reserved 85

 <xsd:sequence>
 <xsd:element ref="sld:PerpendicularOffset" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="PerpendicularOffset" type="sld:ParameterValueType">
 <xsd:annotation>
 <xsd:documentation>
 A "PerpendicularOffset" gives the perpendicular distance away
 from a line to draw a label.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:element name="Halo">
 <xsd:annotation>
 <xsd:documentation>
 A "Halo" fills an extended area outside the glyphs of a rendered
 text label to make the label easier to read over a background.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:Radius" minOccurs="0"/>
 <xsd:element ref="sld:Fill" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Radius" type="sld:ParameterValueType"/>

<!-- *** -->
 <xsd:annotation>
 <xsd:documentation>
 RASTER SYMBOLIZER
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="RasterSymbolizer" substitutionGroup="sld:Symbolizer">
 <xsd:annotation>
 <xsd:documentation>
 A "RasterSymbolizer" is used to specify the rendering of raster/
 matrix-coverage data (e.g., satellite images, DEMs).
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="sld:SymbolizerType">
 <xsd:sequence>
 <xsd:element ref="sld:Geometry" minOccurs="0"/>
 <xsd:element ref="sld:Opacity" minOccurs="0"/>
 <xsd:element ref="sld:ChannelSelection" minOccurs="0"/>
 <xsd:element ref="sld:OverlapBehavior" minOccurs="0"/>
 <xsd:element ref="sld:ColorMap" minOccurs="0"/>
 <xsd:element ref="sld:ContrastEnhancement" minOccurs="0"/>
 <xsd:element ref="sld:ShadedRelief" minOccurs="0"/>
 <xsd:element ref="sld:ImageOutline" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>

OGC 02-070

86 © OGC 2002 – All rights reserved

 <xsd:element name="ChannelSelection">
 <xsd:annotation>
 <xsd:documentation>
 "ChannelSelection" specifies the false-color channel selection
 for a multi-spectral raster source.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:choice>
 <xsd:sequence>
 <xsd:element ref="sld:RedChannel"/>
 <xsd:element ref="sld:GreenChannel"/>
 <xsd:element ref="sld:BlueChannel"/>
 </xsd:sequence>
 <xsd:element ref="sld:GrayChannel"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="RedChannel" type="sld:SelectedChannelType"/>
 <xsd:element name="GreenChannel" type="sld:SelectedChannelType"/>
 <xsd:element name="BlueChannel" type="sld:SelectedChannelType"/>
 <xsd:element name="GrayChannel" type="sld:SelectedChannelType"/>
 <xsd:complexType name="SelectedChannelType">
 <xsd:sequence>
 <xsd:element ref="sld:SourceChannelName"/>
 <xsd:element ref="sld:ContrastEnhancement" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="SourceChannelName" type="xsd:string"/>

 <xsd:element name="OverlapBehavior">
 <xsd:annotation>
 <xsd:documentation>
 "OverlapBehavior" tells a system how to behave when multiple
 raster images in a layer overlap each other, for example with
 satellite-image scenes.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:choice>
 <xsd:element ref="sld:LATEST_ON_TOP"/>
 <xsd:element ref="sld:EARLIEST_ON_TOP"/>
 <xsd:element ref="sld:AVERAGE"/>
 <xsd:element ref="sld:RANDOM"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="LATEST_ON_TOP">
 <xsd:complexType/>
 </xsd:element>
 <xsd:element name="EARLIEST_ON_TOP">
 <xsd:complexType/>
 </xsd:element>
 <xsd:element name="AVERAGE">
 <xsd:complexType/>
 </xsd:element>
 <xsd:element name="RANDOM">
 <xsd:complexType/>
 </xsd:element>

 <xsd:element name="ColorMap">

OGC 02-070

© OGC 2002 – All rights reserved 87

 <xsd:annotation>
 <xsd:documentation>
 A "ColorMap" defines either the colors of a pallet-type raster
 source or the mapping of numeric pixel values to colors.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="sld:ColorMapEntry"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="ColorMapEntry">
 <xsd:complexType>
 <xsd:attribute name="color" type="xsd:string" use="required"/>
 <xsd:attribute name="opacity" type="xsd:double"/>
 <xsd:attribute name="quantity" type="xsd:double"/>
 <xsd:attribute name="label" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="ContrastEnhancement">
 <xsd:annotation>
 <xsd:documentation>
 "ContrastEnhancement" defines the 'stretching' of contrast for a
 channel of a false-color image or for a whole grey/color image.
 Contrast enhancement is used to make ground features in images
 more visible.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:choice minOccurs="0">
 <xsd:element ref="sld:Normalize"/>
 <xsd:element ref="sld:Histogram"/>
 </xsd:choice>
 <xsd:element ref="sld:GammaValue" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Normalize">
 <xsd:complexType/>
 </xsd:element>
 <xsd:element name="Histogram">
 <xsd:complexType/>
 </xsd:element>
 <xsd:element name="GammaValue" type="xsd:double"/>

 <xsd:element name="ShadedRelief">
 <xsd:annotation>
 <xsd:documentation>
 "ShadedRelief" specifies the application of relief shading
 (or "hill shading") to a DEM raster to give it somewhat of a
 three-dimensional effect and to make elevation changes more
 visible.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="sld:BrightnessOnly" minOccurs="0"/>
 <xsd:element ref="sld:ReliefFactor" minOccurs="0"/>
 </xsd:sequence>

OGC 02-070

88 © OGC 2002 – All rights reserved

 </xsd:complexType>
 </xsd:element>
 <xsd:element name="BrightnessOnly" type="xsd:boolean"/>
 <xsd:element name="ReliefFactor" type="xsd:double"/>

 <xsd:element name="ImageOutline">
 <xsd:annotation>
 <xsd:documentation>
 "ImageOutline" specifies how individual source rasters in
 a multi-raster set (such as a set of satellite-image scenes)
 should be outlined to make the individual-image locations visible.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:choice>
 <xsd:element ref="sld:LineSymbolizer"/>
 <xsd:element ref="sld:PolygonSymbolizer"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

OGC 02-070

© OGC 2002 – All rights reserved 89

Annex B: WMS_DescribeLayerResponse DTD

(Normative)

This annex contains the Describe-Layer-Response Document-Type Definition
corresponding to this version of the specification. Comments in the DTD are
informative; in case of conflict with the main body of this specification, the main body
takes precedence. The DTD definition here (without comments) is normative; in case of
conflict with DTD definitions in the main body of this specification, this DTD takes
precedence.

<!-- WMS_DescribeLayerResponse: the document is returned in response to a
DescribeLayer request made on a WMS. -->

<!ELEMENT WMS_DescribeLayerResponse (LayerDescription*) >
<!ATTLIST WMS_DescribeLayerResponse
 version CDATA #REQUIRED >

<!-- LayerDescription: describes the contents of a NamedLayer, the name of which
is specified in the ‘name’ attribute. If the NamedLayer is not feature based,
then the LayerDescription has no further contents. If the NamedLayer is feature
based then the ‘wfs’ attribute gives the URL prefix for the WFS containing the
feature data. Equivalently, the ‘owsType’ and ‘owsURL’ attributes can be used to
indicate the OWS type & base URL of a service. The ‘wfs’ attribute is retained
for greater compatibility with the WFS specification. The presently recognized
valid values for ‘owsType’ are “WFS” and “WCS”, though more may be allowed in the
future.

The LayerDescription contains one or more Query elements that specify the
feature-types present in the NamedLayer. -->

<!ELEMENT LayerDescription (Query*) >
<!ATTLIST LayerDescription
 name CDATA #REQUIRED
 wfs CDATA #IMPLIED
 owsType CDATA #IMPLIED
 owsURL CDATA #IMPLIED >

<!-- Query: a Query uses the ‘typeName’ attribute to identify a feature/coverage-
type. This is a stripped down version of the Query element used in the WFS. -->

<!ELEMENT Query EMPTY >
<!ATTLIST Query
 typeName CDATA #REQUIRED >

OGC 02-070

90 © OGC 2002 – All rights reserved

Annex C: Conformance Tests

(Normative)

NOTE: A complete Conformance Testing Guideline document for WMS is presently under development as part
of the OGC Conformance Testing Program. When complete, the Guideline will include a description and scope of
each test suite, test data used in the tests, and documentation of the conformance items that consitute requirements for
conformance.

Minimal conformance with this specification requires the following:

1. The Extensible Markup Language (XML) document used encode a
StyledLayerDescriptor shall be valid against the XML Schema in Annex A.
Such validation may be performed using commonly available XML validating tools.

OGC 02-070

© OGC 2002 – All rights reserved 91

Annex D: Future Work

(Informative)

Better methods for style-library utilization should be explored.

The capabilities statement for SLD included in the UserDefinedSymbolization
structure needs to be expanded to include a complete set of all capabilities that may be
relevant for a client application to know about a styling service.

Label plotting needs to be overhauled to be more compatible with SVG/CSS and to
provide greater capabilities to place labels.

A simplified mechanism should be included for efficiently encoding thematic styling
using solid colors since the user might like to make a thematic or chloropleth map. Some
common examples are population density maps or temperature maps. These maps
typically take a large set of observations on one attribute, break them into ranges, and
assign different colors to those ranges. This allows a viewer to quickly see patterns in the
data that would otherwise be hidden in the sheer volume of data. This problem can be
addressed in a number of ways. The simplest is to return all the observations to the client
and let the human or machine define the ranges. The styling document can then simply
say, for example, assign all values from 0 to 3 a light red, all values from 4 to 7 a medium
red, and all values greater than 7 a dark red.

The problem with this strategy is that there may be millions of observations in the data
set. In an Internet environment it would be very cumbersome to transfer all this data to
the client just for the purpose of creating color ranges. It is more likely that a client
might simply want to specify that the data set should be divided into three ranges with the
lower values being a light red, the middle being a medium red, and the highest being dark
red. This need is not addressed in this document, but should be a priority of future work.

Once a user goes to all the trouble of creating a style or set of styles, they will probably
want to save it for later use, and maybe even tell others about its existence. This paper
begins to work these issues by defining how a service can advertise its styles, either
wholesale or on a per-layer basis. There is also a preliminary discussion on how clients
might store their custom styles on a server for later use. This all hints at the need for an
OGC style service, where SLDs can be read, written, updated, permissioned, etc., but a
full-fledged SLD Service definition is not defined here.

OGC is closely following the work on ISO 19117 (Portrayal). Concepts being tested in
current (OWS-1.2) and upcoming testbeds will attempt to address alignment between
OGC SLD and the ISO 19117 standard.

OGC 02-070

92 © OGC 2002 – All rights reserved

OGC 02-070

© OGC 2002 – All rights reserved 93

Annex E: RFC Changes

(Informative)

This annex shows the RFC comments that were received for this document and the
responses of the Revision Working Group (RWG). The RWG had the following official
members: William Lalonde (CubeWerx) Chair, Jeff Lansing (Polexis), Joshua Lieberman
(Syncline), Jerome Sonnet (Ionic Software), and John Vincent (Intergraph).

Two sets of comments were received. Both comments that were accepted and rejected
are discussed below, including reasons for rejections. The commenters are presented as
being anonymous. The section and page numbers are relative to the version of this
document that was used for the RFC procedure, document OGC 01-013r1. It is presently
available from: “http://www.opengis.org/techno/RFC14.pdf”. The commenters’ comments
are shown in italic text and the RWG response is in normal font.

E.1. Comments from commenter #1

E.1.1. Comment #1

Specification Section number: [Section 6.2 General HTTP request]
Criticality: [EDITORIAL]

There is a reference to OGC web services. It also appears in a couple of other places
(page 20,21). This terminology is already used for SOAP based web services and may be
misleading in the context of this RFC. The OGC Web Services, or OWS, is the point of
the whole exercise; I think the names (and the generic placeholder acronym W*S for the
many kinds of web services) will likely stay, as it is well understood within the
consortium.

RWG decision: REJECT

The phrase “OGC Web Services (OWS)” is a commonly used phrase within OGC and
has specific and distinct meanings from generic web services. Provided that the “OGC”
prefix is always present in the phrase, there should be no unnecessary confusion about its
meaning.

E.1.2. Comment #2

Specification Section number: [Section Section 7.2 Named Layers]
Criticality: [MAJOR]

In the HTTP GET request that follows:

OGC 02-070

94 © OGC 2002 – All rights reserved

http://yourfavoritesite.com/WMS?
 VERSION=1.1.0&
 REQUEST=GetMap&
 BBOX=0.0,0.0,1.0,1.0&
 LAYERS=Rivers,Roads,Houses&
 STYLES=CenterLine,CenterLine,Outline&
 WIDTH=400&
 HEIGHT=400&
 FORMAT=PNG

The LAYERS and STYLES attributes are meant to say "Rivers should be stylized as
centerline, Roads as centerline, and houses as outline." Having these be uncoupled like
this means that if, for whatever reason, one or the other changes order, the rendering will
be impacted in unexpected ways. The order of LAYERS imparts a Z-order, but changing
that Z-order also requires changing the STYLES argument. It would be better if STYLES
were self-describing and truly independent, such as

 STYLES=Rivers:CenterLine,Roads:CenterLine,Houses:Outline&

Failing to do so will be the source of numerous headaches down the road. Note that the
POST or SLD/XML approach does not suffer from the same weakness.

RWG decision: REJECT

This is not a comment that should be considered for SLD. It is the WMS specification
defines the syntax of the HTTP-GET parameters for the WMS GetMap request, not SLD.
However, the RWG does not think that this suggestion provides any improvement, since
GET requests are normally generated automatically and since the suggested scheme adds
special control characters to the layer-name syntax. CubeWerx Inc., for example, already
makes use of the colon character within layer names for a vendor-specific purpose. OGC
has benefited from keeping these names as free of arbitrary syntax rules as possible.

E.1.3. Comment #3

Specification Section number: [Section 9 FeatureTypeStyles]
Criticality: [MAJOR]

There is a one to many relationship between FeatureTypeStyle and FeatureType. What
should be the behavior if a user style contains more that one FeatureTypeStyle for the
same FeatureType.

RWG decision: ACCEPT (clarify spec)

It is not a "one-to-many" relationship since the specification explicitly states that a
FeatureTypeStyle can use only one feature type, whether identified implicitly or
explicitly. Assuming that the commenter means "many-to-one", this does not pose a
problem.

OGC 02-070

© OGC 2002 – All rights reserved 95

The common semantic for a GetMap request is to render all of the styling elements in the
order that they are given, and the same applies to FeatureTypeStyle elements even if
multiple ones of them refer to the same feature type. Perhaps this needs to be stated more
carefully. In contexts other than a GetMap request, the semantics are still clear since the
multiple FeatureTypeStyle elements are contained within a UserStyle are merely
passed around as an opaque package until they are ultimately used with a GetMap
request.

A potential advantage of allowing multiple FeatureTypeStyle elements to refer to the
same feature type is to allow multiple independent Rule sets with independent
ElseFilter conditions, although this may not be used much in practice. SLD is
organized to allow multiple FeatureTypeStyle elements to refer to the same feature
type as part of providing a clean separation between the definition of what features and
feature types are included within a LAYER and what feature types are handled by a
STYLE. A clean separation between layers and styles is an important thing to have now
and in the future.

E.1.4. Comment #4

Specification Section number: [Section 10.2: Scale Selection]
Criticality: [MAJOR]

Scale directly impact the size of the returned data and the processing and bandwidth
required to generate and deliver that data. There should be a provision for the server to
decline a request if it determine the result will be too large.

RWG decision: REJECT

The server is free to simply return an error. However, for rendered images anyway, the
size of the returned data (number of pixels) will always be fixed by the WIDTH and
HEIGHT of the image given in the GetMap request. More zoomed-out scales may
require more internal processing inside of a rendering server, but it is unclear whether or
how this should be exposed to the outside world.

E.1.5. Comment #5

Specification Section number: [Section 10.3 Feature Filtering]
Criticality: [MINOR]

Using Feature Filters to exclude features has certain negative performance implications,
since features that get filtered out during stylization still must be retrieved by the WFS
and passed to the WMS or intermediate stylization service. Would it not be more
appropriate to filter features using WFS capabilities and hence never retrieve features
that will not be stylized?

RWG decision: REJECT

OGC 02-070

96 © OGC 2002 – All rights reserved

The SLD design does not impose any performance limitations on fetching features from
WFSes. First, filtering may be applied in two places: in the definition of a layer and
within style rules. Allowing filtering to be specified in the "layer" definition addresses
the above comment directly.

Second, the WMS (or other styling client) is free to analyze requests and to fetch only the
features that are necessary for a query, by combining Layer and Rule conditions in the
WFS request. The styling client is not artificially limited in how it may construct WFS
requests. For example, if a style included only two rules for a Roads feature type with
condition "numLanes >= 4" for the first rule and "numLanes >= 6" for the second, the
styling client could easily formulate a WFS request that has the condition "numLanes >=
4 OR numLanes >= 6" (using the appropriate condition-representation syntax). In the
future, when style and layer definitions are decoupled, this kind of analysis may be
necessary anyway.

Third, and more abstractly, the RWG does not believe that styling from a remote WFS
using a WMS as an intermediate service will be very common in production
environments anyway. It is simply too wasteful and slow. Ultimately, either thick clients
(e.g., a desktop GIS) or "thick servers" (e.g., a WMS connected directly to the underlying
data storage system) will be used instead of transferring gigabytes of data over the
internet between various services so that each may incur a large
parsing/generating/storage cost in order to apply some small tweak to the data stream.
The RWG believes that this sort of thing will only happen in low-volume demonstrations.
The one-client/one-server paradigm optimizes the network-transfer and parse/generate
penalties.

E.1.6. Comment #6

Specification Section number: [Section 11.2 Geometry]
Criticality: [MAJOR]

Polygons with islands are not covered. What are the rendering rules?

RWG decision: ACCEPT

Holes are external to the polygon, so they are not filled, and islands are internal, so they
are filled. The borders around both holes and islands are plotted with the specified
polygon stroke. The RWG is assuming that the commenter is saying that this should be
stated explicitly, though we also assume that the behaviour described here is the norm for
rendering polygons/holes/islands.

As a minor point, technically speaking, the RWG does not believe that OGC/Simple-
Feature "polygons" are allowed to have islands (only holes), though "multipolygons" are
allowed to have islands.

OGC 02-070

© OGC 2002 – All rights reserved 97

Why line should be rendered as polygon by joining the end points? The symbolizer should
not change the geometry type. May be it should render the line as a line by applying the
stroke element and ignore the fill element.

RWG decision: REJECT

If the user wanted that, he could simply use a Line symbolizer. By using a Polygon
symbolizer, the user is saying he wants to see all of the selected geometries rendered as
polygons. If this is not what the user wants, which likely will only ever happen in the
somewhat unusual case of rendering a feature type that has heterogeneous geometry
types, filtering can be applied to restrict the features selected to be only of appropriate
geometry types. Appropriate Filter functions to identify whether a feature-geometry-
property value has a specific geometry type may or may not be commonly available in
various systems, but this is an issue for implementing and defining such functions in the
OGC Filter specification.

It is generally useful to alter geometry types in some cases for styling purposes, for
example, to change a built-up area polygon to a point at certain scales or for labelling.

E.1.7. Comment #7

Specification Section number: [Section 11.3.1 Format]
Criticality: [MINOR]

The behavior for other type of geometry should be more explicit.

(see next comment)

E.1.8. Comment #8

Specification Section number: [Section 11.3.2 Graphic]
Criticality: [MAJOR]

It's not clear how the Rotation applies when the geometry is a line. Should the angle be
absolute or relative to the direction of the line. Rotation: We seem to recall the
normative definition of rotation is degrees from normal position, or 0 degrees is defined
to be the vector parallel to the +X vector. (It might have to be restated explicitly here for
clarity, though.)

RWG decision: ACCEPT

The RWG is interpreting this comment to refer to the case of plotting a point graphic
relative to a line geometry. It is unclear how often this case will happen in practice, but
for the sake of consistency, the translation of the line geometry into a representative point
should be considered to be independent of the plotting of the graphic at the point. The
rotation to use for the graphic will be the inherent orientation of the source graphic.
When a graphic is rotated, it is rotated about its 'inherent' rotation point, which we can

OGC 02-070

98 © OGC 2002 – All rights reserved

define to be its center point in the absense of any graphic-format-specific information.
There is no notion and no need for zero degrees to be defined to be relative to the +X
vector, for a Graphic.

The specification has been updated to state more explicitly how all of the geometry-type
transformations should be applied, where they are defined

Some of the transformation cases are rather ugly to deal with, but we should define all
translations to be valid just for consistency. It is expected that the most common
transformations will be the ones that make the most sense.

E.1.9. Comment #9

Specification Section number: [Section 11.4.3: Font]
Criticality: [MAJOR]

Vendor specific fonts are not discussed. For example how to use vector based fonts? We
think the various vendors would be better served bringing their technology closer in line
with world-wide typography standards than to have this proposal introduce parochial
complexities.

AutoCAD's SHX fonts, for example, should behave in a "reasonable" fashion, say with

font-family="txt" font-style="italic" font-weight="bold" font-
size="10"

the font engine would use txt.shx, interpret italic as oblique, use a heavier (say 2- or 3-
pixel) line to depict bold; with the size being based on typographical standard should be
adapted to SHX metrics using the inverse of the rule of thirds (character height = 3/4 of
the 10 pixel size or 8 pixels after rounding.) The engine would also need to deal
gracefully with halos, another stylization that the specification calls for. As such, We
don't see how the proposal is deficient in this respect.

RWG decision: ACCEPT

The RWG suggests that mapping vendor-specific fonts to the SVG/CSS definitions of
family, style, weight, and size, is a vendor-specific issue. However, to help to avoid
different vendors from going off and doing crazy things, the above example could be
included in the SLD spec as general guidance.

E.1.10. Comment #10

Specification Section number: [Section 11.4.4: - Label Placement]
Criticality: [MAJOR]

OGC 02-070

© OGC 2002 – All rights reserved 99

Label placement for polygons not discussed. May be at the centroid? No option to place
a label along a line. May be the line placement should include more options such as:
StartPoint, EndPoint, MidlePoint and may be at a percent distance along the line.

RWG decision: DEFER (until after 1.0.0; a real can of worms)

Label placement is a complex issue that is admittedly poorly addressed in this version of
SLD. In general, visually pleasing label placement and de-confliction is a very complex
(Artificial-Intelligence) subject and many of the details remain implementation-specific
in this document.

The RWG is not sure of the degree to which explicit line-placement parameters help,
since precise placement options are best suited to definite, fixed geometries that are
known in advance, whereas in this environment, it is not known ahead of time which
geometries will be processed, how they will intersect, or even at what scale they will be
rendered. So, specifying that the label should be drawn at 30% of the distance in to the
line has significantly less utility than if a graphic artist was drawing a specific, fixed
image.

The RWG recommends that fine-tuning the label placement capabilities should be a
"future work" item. The encoding of label-placement parameters should also be made to
be more CSS-like in the future.

E.1.11. Comment #11

Specification Section number: [Section 11.6: Systems with limited Capabilities]
Criticality: [MINOR]

Can the system be interrogated about its capabilities?

RWG decision: MINOR REVISIONS

There is only the <UserDefinedSymbolization> element for WMS capabilities that
defines what styling capabilities are available, and it only indicates the barest minimum,
and does not describe any graphical or expression-handling constraints. We should add a
list of supported SLD versions to the <UserDefinedSymbolization> tag so that SLD
versions can be managed. However, describing the graphical capabilities is a can of
worms, and can be handled for now on a "best-effort" basis.

E.2. Comments from commenter #2

E.2.1. Comment #1

Section 6.5 Web Map Servers and Web Feature Servers

OGC 02-070

100 © OGC 2002 – All rights reserved

According to the current WFC specification, only OGC simple features and attributes are
managed by a WFC. Why WCSs are not mentioned as the source of raster data in this
section, while the XML schema for a raster symbolizer is defined in Section 11?

RWG recommendation: ACCEPT

Assuming that "WFC" here means "WFS", this was an oversight. At the time that section
was originaly written, WCSes didn't exist.

E.2.2. Comment #2

Section 6.6 DescribeLayer Request

In this specification, no mechanism is included to manage user-defined layers in a WMS.
Since GetStyles and PutStyles are defined for symbology management, should PutLayers
opeartion be supported? (Please read question 5 as well.)

RWG recommendation: ACCEPT (make more explicit)

With the way that SLDs and user-defined layers are handled, a PutStyles operation is
implicitly also a put-user-defined-layers operation, since the semantics of PutStyles is to
accept the entire SLD that is given and store the contents in some representation inside of
the WMS. So, if a WMS indicates that it is capable of handling user-defined layers and
that it supports the PutStyles operation, then it logically should also support the
declaration and storage of user-defined layers as named layers.

E.2.3. Comment #3

Section 11.3.2 Graphic

If an external graphic is used to define a point symbolizer in a user-defined style and the
user-defined style is changed to become a named style, should there be a mechanism to
copy the external graphic into a WMS to ensure that there will be no broken links in the
future?

RWG recommendation: REJECT

How to handle external graphics (reference/cache/store) and how to represent styles
inside of a WMS is entirely implementation-dependent. Though, if a WMS stores an
external graphic internally, then there could be problems if the external graphic were to
change. OTOH, this is a semantic issue which is not addressed: does an external graphic
reference refer to the graphic content at the time it is used or only to the external object
for all time? It is expected that few external graphics will actually have their content
changed as part of its, so the RWG recommends that the specification say that any
approach to handling the graphic content is okay.

OGC 02-070

© OGC 2002 – All rights reserved 101

E.2.4. Comment #4

Section 11.3 Point Symbolizer

The GetStyles operation could provide information about named styles in named layers.
Is there a way to find all the well-known names of marks in a WMS?

RWG recommendation: DEFER (until after 1.0.0)

Presently, no. The RWG views Marks as a fallback mechanism in case external graphics
are unavailable or unsupported, so it has lower importance than perhaps some other
content. Though, as noted elsewhere, SLD could use greater capability-reporting
capabilities in the future. Reporting which well-known marks are available for use seems
like more of a 'capabilities' issue than a 'get-data' issue.

E.2.5. Comment #5

Section 13.2 PutStyles

It is not clear to me if the PutSytles operation allows a user to create a named style from
a user-defined layer and a user-defined style specified in an SLD. As I understand a user-
defined style is associated with a layer. Does the PutStyles operation also make a user-
defined layer become a named layer?

RWG recommendation: ACCEPT

(addressed above in comment #2 of this set)

E.2.6. Comment #6

Security, Sharing and Access Control

I am assuming that all named styles and all named layers are accessible to all WMS
clients.

Should the PutStyles operation be reserved to privileged user only? Should the
replacement and deletion of a user created named style be prohibited? If not, a client
application needs to verify the availability and/or the definition of each named style
before using it.

RWG recommendation: REJECT

Access controls aren't considered in this specification. It seems like a much more general
problem for OGC services, and so should be addressed there first. WFS, for example,
allows the manipulation of features inside of a feature server, which is analogous to
manipulating styles inside of a WMS in terms of access control.

OGC 02-070

102 © OGC 2002 – All rights reserved

The availability of named styles can be verified in the WMS capabilities document.
Handling the case that an object (such as a style) disappears from or changes inside of a
WMS after the capabilities document has been fetched is addressed by the
'updateSequence' mechanism that is available in the WMS capabilities and request
interface. For this reason, a WMS should update its updateSequence value appropriately
if any internal styles or layer definitions are changed.

E.2.7. Comment #7

Introduction Page ix, 3rd paragraph

There are three basic ways to style a data set. I can find two but not three ways.

RWG recommendation: ACCEPT

This should be changed to "two basic ways". There used to be a paragraph that described
a "choropleth" method, but then complained that it's not implemented. (Though it could
be simulated with rules.)

E.2.8. Comment #8

Section 7.2 Named Layers, Page 17, next to the last paragraph

A named styled layer can include a any = > include any

RWG recommendation: ACCEPT

E.2.9. Comment #9

Section 8 User-Defined Styles, Page 22, first paragraph

A user-defined allows => A user-defined style allows

RWG recommendation: ACCEPT

E.2.10. Comment #10

Section 9 FeatureTypeStyle, Page 24, first paragraph

of a layer) => of a layer.

RWG recommendation: ACCEPT

E.2.11. Comment #11

Section 10 Rules, page 25, third paragraph

a FeatureTypeStyleStyle => a FeatureTypeStyle

OGC 02-070

© OGC 2002 – All rights reserved 103

RWG recommendation: ACCEPT

E.2.12. Comment #12

Section 11.3.2 Graphic, page 42, last paragraph

and marks it allows a style => and marks. It allows a style

RWG recommendation: ACCEPT (restate sentence)

The sentence may be awkward as-is, but the RWG does not think that it is incorrect.
Putting a period where indicated makes the second clause of the sentence that the period
ends incomplete.

E.2.13. Comment #13

Section 11.5.2 Parameters, page 50

a pallet-type =>? a pallete-type

RWG recommendation: ACCEPT (use consistent spelling)

There appear to be multiple spellings for the word, but "palette" appears to be the 'most'
correct one, so this spelling should be used throughout the document. Additionally, an
informal Google.com search shows that this is the most common spelling on the Web.

E.2.14. Comment #14

Section 13.1 GetStyles, page 63

application/vnd.ogc.sld+xml =>? application/vnd.ogc.sld_xml

Section 13.2 PutStyles, page 64

application/vnd.ogc.success+xml =>? application/vnd.ogc.sld_xml

RWG recommendation: REJECT

This needs to be synchronized with the WMS spec. At one point it was decided that the
WMS spec should use the "+" notation since this is the norm for XML documents. The
change has been slowly being adopted by various OWS specifications, including the
latest versions of WMS, though apparently not WMS 1.1.1. (An underscore was
previously used instead of the plus sign in older WMS specs.)

Also, since the "application/vnd.ogc.sld+xml" and "application/vnd.ogc.success+xml" are
defined here and in no other document, it isn't strictly an error to define them in the
standard 'XML' way.

OGC 02-070

104 © OGC 2002 – All rights reserved

Annex F: OGC SLD and ISO 19117

Introduction

It is the intent to make SLD as compliant as feasible with ISO 19117 Geographic
information — Portrayal, clauses A.1 Portrayal schema, A.3 Priority attribute, A.5
External function.

Developments needed to achieve this goal are listed in the remainder of this annex. This
annex also describes issues related to ISO 19117.

ISO 19117 Clause A.1 Portrayal schema

a) Test purpose: To verify conformance to the portrayal schema.

b) Test method: verify that the portrayal specifications and portrayal rules are not part of
the dataset, and that the portrayal specifications are stored separately and referenced from
the portrayal rules. The portrayal specifications may be stored externally and referenced
using a universal reference standard like URL. Verify that the portrayal rules are stored in
a portrayal catalogue, and that the portrayal rules are specified for the feature classes they
will be applied on. Verify that the portrayal rules are expressed using the OCL query
language.

c) Reference: ISO 19117, 8.

d) Test type: basic test.

Discussion of Clause A.1 relative to SLD

Allowing the pieces to be separable is a desirable quality and is provided by the SLD
extensions being developed for the Style Management System of the OWS-1.2 project,
hereafter referred to as "SLD 0.7.3". REQUIRING them to be separated imposes practical
problems and disallows the direct usage of simple styling without the installation and
population of styling catalogs. The analogous components to portrayal rules and portrayal
specifications in SLD 0.7.3 are <FeatureStyle> and <Symbol> elements, respectively.
(<Symbol> is an abstract element that has many derived sub classes that provide different
types of symbols). SLD 0.7.3 allows separate repositories of <FeatureStyle> and
<Symbol> fragments with cross-referencing using URLs.

Clause A.1 states “The portrayal specifications may be stored externally and referenced
using a universal reference standard like URL.” SLD 0.7.3 provides this.

Clause A.1 states: “Verify that portrayal rules are stored in a portrayal catalogue, and
|that portrayal rules are specified for the feature classes that they will be applied to.” SLD
0.7.3 provides this but also allows <FeatureStyles> to be provided in-line with a

OGC 02-070

© OGC 2002 – All rights reserved 105

rendering request. The <StyledLayerDescriptor> element is used to encode rendering
requests.

Clause A.1 states “Verify that the portrayal rules are expressed using the OCL query
langauge.” Using any different query language poses numerous practical problems, but
this issue in isolation is not relevant to the SLD specification itself. SLD re-uses the OGC
Filter specification, which was created in parallel with the OGC WFS specification, so
the issue of query languages must be resolved there.

ISO 19117 A.3 Priority attribute

a) Test purpose: To verify correct use of priority attributes.

b) Test method: Verify that all the portrayal rules have a priority attribute if priority
attributes are used. Verify that If two portrayal rules returning TRUE have the
same priority value, then the application shall decide which one takes
precedence. Verify that all the portrayal rules have a priority attribute if priority
attributes are used.

c) Reference: ISO 19117, 7.2.

d) Test type: basic test.

Discussion of Clause A.3 relative to SLD

[sic—the last sentence in b) appears to be repeated twice].

SLD uses a different model for evaluating portrayal rules in that it allows the selection of
multiple overlapping rules for a single feature. It is unclear whether this is more or less
desirable in practice than the 19117 approach.

ISO 19117 A.5 External function

a) Test purpose: To verify correct use of external functions.

b) Test method: Verify that the portrayal catalogue lists the external functions used,
including the parameters and returned values.

c) Reference: ISO 19117, 8.3.5.

d) Test type: basic test.

Discussion of Clause A.5 relative to SLD

SLD 0.7.3 includes an analogous concept by allowing a block of
<EnvironmentVariables> definitions within the rendering request. Rules and graphical-
styling parameters are permitted to reference these runtime-supplied values in the same
way as feature attributes. This fulfills the same purpose as 19117 external functions for

OGC 02-070

106 © OGC 2002 – All rights reserved

static values, and the OGC-Filter specification also provides a capability for a portrayal
service to declare custom functions for use in expressions. However, there are practical
problems with the 19117 approach and with OGC-Filter custom functions when they are
used in globally-accessible expression environment. ISO 19117 does not appear to
address the issue of actually calling an external function, and OGC-Filter custom
functions are specific to individual server instances. Also, if ISO 19117 functions are
meant to be used as remote procedure calls, they would require a separate remote
procedure call to some external server for EVERY feature portrayed (since function side
effects are not disallowed for calls with the same parameter values). This would be
ENORMOUSLY wasteful, especially by comparison if the external function returns a
static value. If the external functions are assumed to be well-known and implemented by
every portrayal service, the selection of these functions is severly limited and the specific
list of required functions is not addressed by the 19117 specification. If the 19117
functions are server-instance-specific, then they are unusable in an interoperable
environment. Using a variable-value block in SLD seems to be a very practical approach
by comparison. Rendering scales are treated specially in SLD in that scale selection is
incorporated directly into the syntax of the <Rule> element. It is unclear whether this is
more or less desirable in practice than the 19117 approach of using the same mechanism
as for user-supplied runtime parameters.

Additional Comments

The "Abstract test suite" annex doesn't seem to address the encoding of the portrayal
specifications. Portrayal representation and encoding is the greatest weakness of the
19117 specification, because the approach used is not feasible for interoperability and the
choice of UML as the encoding language is particularly strange. In essence, 19117 does
not actually attempt to address the issue of interoperable graphical styling. The purpose
of the 19117 portrayal specification appears to be only to let the styling designer declare
whatever styling operations he wishes to have exist and then supply the instances of
styling-parameter values in terms of these declarations. However, the declaring of the
interfaces of these styling operations does not magically make them pop into existence,
though the ISO-19117 specification stops at this point. For automatic processing, this is
analogous to using WSDL and assuming that computers will automatically understand
interface semantics, which is provably impossible. ISO 19117 also does not cleanly
separate multiple instances of declared parameter values for multiple invocations of a
styling operation. An example of this problem is present in the "ps21" ParameterSet
definition in clause B.4.2. For interoperable styling, there needs to be a set of well-known
styling parameters available that the portrayal service can understand and map to its own
internal styling language. SLD declares a subset of well-known SVG styling parameters
and extras, which is sufficient, but 19117 does nothing. ISO 19117 is not a workable self-
complete design for interoperable portrayal. SLD is. Immediate implementations of
interoperable portrayal are required for OGC projects.

OpenGIS© Implementation Specification OGC 02-070

© OGC 2002 – All rights reserved 107

Bibliography

1. Web Map Server Interface Implementation Specification, Version 1.0.0, OpenGIS
Project Document 00-028, Alan Doyle (International Interfaces, Inc.) Editor, April
2000, http://www.opengis.org/techno/specs/00-028.pdf.

2. Web Map Service Implementation Specification, Version 1.1.0, OpenGIS Project
Document 01-047r2, Jeff de La Beaujardière (NASA) Editor, June 2001,
http://www.opengis.org/techno/specs/01-047r2.pdf.

3. Cox, S., Cuthbert, A., Lake, R., and Martell, R. (eds.), "OpenGIS Recommendation -
Geography Markup Language 2.0," February 2000,
<http://www.opengis.org/techno/specs/>.

4. Vretanos, P. (ed.), "OpenGIS Discussion Paper #01-023: Web Feature Service Draft
Candidate Implementation Specification 0.0.12," January 2001,
<http://www.opengis.org/techno/discussions.htm>

