
Open Geospatial Consortium
Submission Date: 2024-09-10

Approval Date: 2024-09-10
Publication Date: 2024-09-10

External identifier of this OGC® document:
http://www.opengis.net/doc/UG/ConnectedSystems-reviewers

Internal reference number of this OGC® document: 23-053r1
Category: OGC® User Guide

Editors: C. Tucker, A. Robin, M. Botts, etc.

OGC API - Connected Systems Standard v1.0 Reviewers Guide

Copyright notice

Copyright © 2023 Open Geospatial Consortium (OGC)
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/

Warning

This document provides guidance for reviewers of the OGC API - Connected Systems Standard
v1.0 Candidate. Throughout this document anywhere that there is a reference to the OGC API -
Connected Systems Standard v1.0, the reader should understand that until the OGC
membership votes to approve the final standard, the OGC API - Connected Systems Standard
v1.0 described herein is a Candidate Standard.

This document is a non-normative resource and not an official position of the OGC membership.
It is subject to change without notice and may not be referred to as an OGC Standard. In
addition to this guide, developers, implementers and reviewers may wish to study the OGC API
- Connected Systems Standard v1.0 Reviewers Guide. The guidance provided in this document
is not to be referenced as required or mandatory technology in procurements.

Document type: OGC® User Guide

Document subtype:

Document stage: Approved for public release

Document language: English

1

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and any
associated documentation, to deal in the Intellectual Property without restriction (except as set forth
below), including without limitation the rights to implement, use, copy, modify, merge, publish, distribute,
and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual
Property is furnished to do so, provided that all copyright notices on the intellectual property are retained
intact and that each person to whom the Intellectual Property is furnished agrees to the terms of this
Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in
addition to the above copyright notice, a notice that the Intellectual Property includes modifications that
have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER
ANY PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD
PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET
YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE
MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY
BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT
OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION
WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual
Property together with all copies in any form. The license will also terminate if you fail to comply with any
term or condition of this Agreement. Except as provided in the following sentence, no such termination of
this license shall require the termination of any third party end-user sublicense to the Intellectual Property
which is in force as of the date of notice of such termination. In addition, should the Intellectual Property,
or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe,
any patent, copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole
discretion, may terminate this license without any compensation or liability to you, your licensees or any
other party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or
part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Intellectual Property without prior written authorization of LICENSOR or such

2

copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize you or any third
party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications. This Agreement is governed by the laws of the Commonwealth of
Massachusetts. The application to this Agreement of the United Nations Convention on Contracts for the
International Sale of Goods is hereby expressly excluded. In the event any provision of this Agreement
shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid
and enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies
available to it.

3

Table of Contents

1. Introduction 10
1.1. How To Use This Resource 10
1.2. What is OGC API - Connected Systems Standard v1.0? 10
1.3. Why Is Another Standard Needed? 11
1.4. How Does OGC API - Connected Systems Standard v1.0 Address Diverse
Requirements? 11
1.5. How Was the OGC API - Connected Systems Standard v1.0 Scope Defined? 11
1.6. Who Will Use the OGC Reviewers Guide? 12

2. Scope 12
3. Terms and Definitions 13
4. Conceptual Overview 18

4.1 Information Model 18
4.1.1 Conceptual Model 19

4.1.1.1 SOSA/SSN/OMS 19
4.1.1.2 GeoPose 19

4.1.2 Implementation Model 20
4.1.2.1 SensorML 20
4.1.2.3 SWE Common 20
4.1.2.4 Observation JSON/Binary Encodings 21
4.1.2.5. Features and Geometries JSON (JSON-FG)/Binary Encodings 21

4.2 API Design 21
4.2.1 OGC API Strategic Guidance 21
4.2.2 OGC API - Features 22
4.2.3 OGC API - Pub/Sub 22
4.2.4 OGC API - Connected Systems Standard v1.0 22

4.2.4.1 System (and Subsystem) 22
4.2.4.1.1 System Subtype 23

4.2.4.1.1.1 Sensor 24
4.2.4.1.1.2 Actuator 24
4.2.4.1.1.3 Platform 25
4.2.4.1.1.4 Sampler 25
4.2.4.1.1.5 Process 26

4.2.4.2 Procedure 26
4.2.4.3 Deployment 27
4.2.4.4 Sampling Feature 27
4.2.4.5 DataStream 27
4.2.4.6 Observation 28
4.2.4.7 ControlStream 28
4.2.4.8 Command 28

4

4.2.5. OGC Building Blocks 29
5. The OGC API - Connected Systems Standard v1.0 Encodings 29

5.1. Ideas Driving Encoding Strategy 29
5.2. Different Kinds of Encodings 29

5.2.1 Static Feature Encodings 29
5.2.1.1 SensorML 30
5.2.1.2 GeoJSON/JSON FG 30
5.2.1.3 Protobuf, FlatGeobuf 30

5.2.2. Dynamic Data Stream Protocols and Encodings 30
5.2.2.1 Dynamic Data Stream Protocols 30

5.2.2.1.1. WebSockets 30
5.2.2.1.2. Pub/Sub protocols 31

5.2.2.2 Dynamic Data Stream Encodings 31
5.2.2.2.1. JSON 31
5.2.2.2.2. Binary Encodings (Protobuf, Flatbuf, Apache Avro™ etc.) 31

5.2.3. Dynamic Control Stream Protocols and Encodings 32
5.2.3.1 Dynamic Control Stream Protocols 32

5.2.3.1.1. WebSockets 32
5.2.3.1.2. Pub/Sub protocols 33

5.2.3.2. Dynamic Control Stream Encodings 33
5.2.3.2.1 JSON (GeoJSON/JSON FG) 33
5.2.3.2.2 Binary Encodings (Protobuf, Flatbuf, Apache Avro™ etc.) 33

6. OGC API - Connected Systems Standard v1.0 in the Landscape of Standards 34
6.1. OGC Universe of Standards 34

6.1.1 Normatively Referenced OGC Standards 34
6.1.1.1 OGC API - Features (Part 1, Part 3, Part 4) 34
6.1.1.2 OGC API - Pub/Sub 35
6.1.1.3. SOSA/SSN/OMS 35
6.1.1.4. SensorML 35
6.1.1.5. SWE Common Data Model Encoding Standard 35
6.1.1.6. GeoPose 35

6.1.2 Linking to external Observation result 35
6.1.2.1. Link to OGC API - Maps 36
6.1.2.2. Link to OGC API - Coverages 36
6.1.2.3. Link to OGC API - EDR 36
6.1.2.4. Link to OGC SensorThingsAPI 36
6.1.2.5. Link to OGC API - 3D Volumes/3D Tiles 36
6.1.2.6. Link to API OGC - Records 36
6.1.2.7. Link to OGC API - Moving Features 36
6.1.2.8. Link to OGC WAMI Best Practice 36

6.2. Other Web Standards 37

5

6.2.1. OpenAPI 37
6.2.2. AsyncAPI 37
6.2.3. JSON 37
6.2.4. XML 37
6.2.5. Protobuf 38
6.2.6. Flatbuf / FlatGeoBuf 38
6.2.7. Apache Avro™ 38
6.2.7. MQTT 38
6.2.8. Advanced Message Queuing Protocol (AMQP) 39
6.2.9. Data Distribution System (DDS) 39
6.2.10. Kafka 39
6.2.11. Web of Things (WoT) 40

6.3. Related Standards 40
6.3.1 Related Geospatial Format Standards 40

6.3.1.1 H. 264/MISB/STANAG 4609 40
6.3.1.2 STAC Item 40
6.3.1.3 COG 40
6.3.1.4 LAS
6.3.1.5 Gridded Coverage/Imagery Formats 41

6.3.2. Related Libraries and Interface Standards 41
6.3.2.1 ArduPilot 41
6.3.2.2 Distributed Common Ground System (DCGS) 41
6.3.2.3 Defense Intelligence Information Enterprise (DI2E) 42
6.3.2.4 DJI SDK 42
6.3.2.5 SAPIENT
6.3.2.6 Integrated Sensor Architecture 43
6.3.2.7 Joint Interface Control Document (JICD) 4.2.1 43
6.3.2.8 Micro Air Vehicle Link 43
6.3.2.9 Robot Operating System 44
6.3.2.10 Sensor Open Systems Architecture (SOSA - 44
6.3.2.11 SISO High Level Architecture (HLA) and Distributed Interactive Simulation
(DIS) 45
6.3.2.12 Spatio-Temporal Asset Catalog (STAC - https://stacspec.org) 46
6.3.2.13 Universal C2 Language (UC20) 46
6.3.2.14 Universal Command and Control Interface (UCI) 46
6.3.2.15 Web Graphics Library (WebGL) 47
6.3.2.16 Universal Scene Description (USD) 47
6.3.2.17 WebGPU 47

7. Use Cases 47
7.1. Technical use cases 47

7.1.1. Thing/IoT (Motion Detector) 49

6

7.1.2. Weather Station 50
7.1.3. Pan Tilt Zoom (PTZ) Camera 53
7.1.4. Aircraft Telemetry / ADS-B 55
7.1.5. Ground Vehicle Telemetry / AVL 58
7.1.6. Surface Vessel / AIS 60
7.1.7. Unmanned Aerial System (UAS - aka Aerial UxS) 62
7.1.8. Unmanned Ground Vehicle (UGV - aka Ground UxS) 65
7.1.9. Unmanned Surface Vehicles (USV - aka Marine UxS) 69
7.1.10. Unmanned Underwater Vehicle (UUV - aka Marine UxS) 72
7.1.11. Spaceborne Systems 75
7.1.12. Cell Tower 77
7.1.13 GMTI SAR 80
7.1.14 Air Traffic Radar 83
7.1.15 Weather Radar 85
7.1.16. Counter UAS System (C-UAS) 87
7.1.17. Weather Forecast Model 90
7.1.18. Flight Optimization Algorithm 93
7.1.19. Tipping and Cueing (Laser Range Finder to PTZ) 94
7.1.20. Alerts/Notification (Temperature Threshold) 97
7.1.21. Cyber Sensor 99
7.1.22. Human as Sensor 101
7.1.23. Human as Platform 103
7.1.24. Human Receiving Command 105
7.1.25. Dynamic Data Feed 108

7.2. Domain use cases 109
7.2.1. Environmental Monitoring 110
7.2.2. Logistics 111
7.2.3 Energy & Utilities 112
7.2.4. Facility/Installation/Campus Security 113
7.2.5 Smart Cities 114
7.2.6. Industrial Monitoring and Control (IoT/SCADA) 115
7.2.7. Maritime Domain Awareness 116
7.2.8. Joint All Domain Command and Control 117

8. Other SDOs 119
9. Conclusion 121

7

i. Abstract
The OGC API - Connected Systems Reviewers Guide is a public resource structured to provide
quick answers to questions which a reviewer may have about the OGC OGC API - Connected
Systems Standard v1.0. This OGC document is provided to support professionals who need to
understand and/or are reviewing the OGC API - Connected Systems Standard v1.0 but do not
wish to implement it.

OGC API - Connected Systems v1.0 is an OGC Implementation Standard for static data
(geographic and other domain features) and for dynamic data (e.g., Data Streams:
Observations of these Feature Properties, and Control Streams: Commands/actuations that
change these Feature Properties) for all manner of Systems (e.g., sensors, things, robots,
drones, satellites, control systems, devices, and all manner of Platforms across space, air, land,
sea, cyber, and electro-magnetic spectrum).

ii. Keywords
The following are keywords to be used by search engines and document catalogues.

Open Geospatial Consortium, OGC API - Connected Systems, ogcdoc, OGC document, OGC
Implementation Standard, static data, dynamic data, Data Streams, Control Streams,
commands/actuations, sensors, things, robots, drones, satellites, control systems, devices,
Platforms, space, air, land, sea, cyber, electro-magnetic spectrum

iii. Preface
This version of the OGC API - Connected Systems Reviewers Guide is limited in scope to the
OGC API - Connected Systems v1.0 Standard. Content of this document will be updated when
relevant information and feedback to the OGC API - Connected Systems v1.0 Standard is
provided and the standard updated. The Open Geospatial Consortium shall not be held
responsible for the accuracy or completeness of this reviewers guide.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

iv. Submitting organizations
The OGC API - Connected Systems Standards Working Group (SWG) submitted this document
for publication by the Open Geospatial Consortium (OGC).

v. Submitters
The OGC API - Connected Systems SWG submitted this document for publication by the OGC.

8

This page is intentionally left blank.

9

1. Introduction

1.1. How To Use This Resource
The OGC API - Connected Systems Reviewers Guide is not intended to be read from start to
finish. Rather, the document is a resource structured to provide quick answers to questions
which a reviewer may have about the OGC API - Connected Systems Standard v1.0. This guide
is provided to support professionals who need to understand and/or are reviewing the OGC API
- Connected Systems Standard v1.0 but do not wish or have need to implement the Standard.

In addition, this guide can provide insights to professionals considering adopting the OGC API -
Connected Systems Standard v1.0 for their projects and products.

The OGC API - Connected Systems Reviewers Guide contains hyperlinks which can be used to
navigate directly to relevant sections of the guide as well as to sections of the OGC API -
Connected Systems Standard v1.0.

1.2. What is OGC API - Connected Systems Standard v1.0?
The OGC API - Connected Systems Standard v1.0 connects all Systems on or around the Earth
into a common 4D framework for the purposes of discovery, access, processing, reasoning,
visualization, tasking, and action for all manner of systems (e.g., sensors, things, robots,
drones, satellites, control systems, devices, and all manner of Platforms across space, air, land,
sea, cyber, and electro-magnetic spectrum), providing a bridge between their dynamic data
(e.g., Observations of these Feature Properties, and Commands that change these Feature
Properties) and more static representations of them as Features within traditional
geographic/geospatial applications.

OGC API - Connected Systems is an OpenAPI/RESTful interface (following the OGC API
strategic guidance) that is built upon accepted web formats such as GeoJSON as well as
existing OGC information models, including SensorML, Observations and Measurements (O&M)
(now called Observations, Measurements and Samples - OMS), SWE Common Data Model,
and the Semantic Sensor Network Ontology (SOSA/SSN).

The OGC API - Connected Systems Standard v1.0 is an extension of the OGC API - Features
and, in addition to providing its own mechanism for retrieving static and dynamic data from
these systems, the API will allow linking to other OGC API Standards, such as OGC API - Maps,
OGC API - Coverages, OGC API - Environmental Data Retrieval (EDR), OGC API - 3D
GeoVolumes/3D Tiles, SensorThings API (STA), OGC API - Moving Features, OGC API-
Processes, and others. (https://ogcapi.ogc.org/connectedsystems/overview.html)

More about the OGC API - Connected Systems Standard v1.0 is available here:

10

https://ogcapi.ogc.org/connectedsystems/
https://ogcapi.ogc.org/connectedsystems/overview.html
https://github.com/opengeospatial/ogcapi-connected-systems

1.3. Why Is Another Standard Needed?
The development of the OGC API - Connected Systems Standard v1.0 was a response to the
OGC’s strategic guidance to all Standards Working Groups (SWG) to migrate their
legacy/heritage specification baseline to OpenAPI/RESTful patterns. Specifically, the OGC
Sensor Web Enablement (SWE) architecture, which has been in global use since 2007, needed
to be updated according to this architectural guidance. Also, the evolution of the OGC API-
Features, as part of this architectural renaissance, came to offer new opportunities for
architectural synergy between the historically divided OGC “web mapping” standards and its
“SensorWeb” standards. As mentioned above, the OGC API - Connected Systems Standard
v1.0 is an extension of the OGC API - Features, and takes advantage of the modern consensus
around other OGC standards such as GeoPose, OMS, Pub/Sub, and more. In the end, this
new OGC API - Connected Systems Standard v1.0 represents a modernization and realignment
of the OGC’s powerful SensorWeb heritage within its new OGC Building Blocks framework.

1.4. How Does OGC API - Connected Systems Standard v1.0
Address Diverse Requirements?
The OGC API - Connected Systems Standard v1.0 addresses a diverse set of requirements
from across all domains (e.g., space, air, land, sea, cyber, electro-magnetic spectrum) in a way
that bridges these inherently dynamic Systems (whether sensors, things, robots, drones,
satellites, control systems, devices, or Platforms) with the more static world of geospatial
mapping. The OGC API - Connected System Standard v1.0 supports the discovery, access,
processing, reasoning, visualization, tasking, and action for these various dynamic, connected
Systems. And, it offers an elegant bridge to other OGC APIs, as outlined above.

1.5. How Was the OGC API - Connected Systems Standard v1.0
Scope Defined?
The scope for the OGC API - Connected Systems Standard v1.0 was very much defined by the
OGC’s strategic guidance to migrate all legacy/heritage specifications to OpenAPI/RESTful
patterns. Once this update was underway, it became apparent that the OGC API - Features
refactoring, under this same strategic guidance, offered a unique opportunity for realignment
within the larger OGC architecture. The timing of this effort also allowed it to take advantage of
recent progress made on other specifications, including those by the GeoPose, OMS, and
Pub/Sub SWGs. By aligning all of these different evolutions, the OGC API - Connected
Systems Standard v1.0 scope ended up being quite tidily defined.

11

https://ogcapi.ogc.org/connectedsystems/
https://ogcapi.ogc.org/connectedsystems/overview.html
https://github.com/opengeospatial/ogcapi-connected-systems

1.6. Who Will Use the OGC Reviewers Guide?
The OGC API - Connected Systems Reviewers Guide is a resource for those who seek to
understand key concepts used in the OGC API - Connected Systems Standard v1.0, the
requirements that the standard meets and the data structures the standard specifies.

The OGC intends this guide to be useful for reviewers of the standard as well as decision
makers seeking to understand the relevance of this standard in their use cases, and even
developers seeking more context.

2. Scope
The OGC API - Connected Systems Reviewers Guide introduces the key concepts used in the
OGC API - Connected Systems Standard v1.0 to its target audiences.

To identify broadly applicable requirements for OGC API - Connected Systems Standard v1.0,
the SWG solicited use cases and chose to highlight more than a dozen technical use cases and
more than half a dozen domain use cases that were agreed to be representative. (See ‘Section
7.0 Use Cases’, below, for more detail). To understand the ways in which the OGC API -
Connected Systems Standard v1.0 can be used and how it meets requirements identified, this
guide can be used in conjunction with the OGC API - Connected Systems Standard v1.0 use
cases section of the standard.

The choices of standardization targets made in the OGC Connected Systems SWG during
development of the standard are explained in this section of the present guide.

Finally, this guide explains how the OGC API - Connected Systems Standard v1.0 fits in the
landscape of sensors, things (IoT), robotics, drones (e.g., UxS), satellites, control systems,
devices, Platforms (of all kinds, across space, air, land, sea, cyber, electromagnetic) and more
traditional geospatial computing. The guide explores complementarities between OGC API -
Connected Systems Standard v1.0 and approaches that have been taken in other standards for
encoding static and dynamic data streams, as well as dynamic control streams, for sensors,
things, robots, drones, satellites, control systems, devices, and Platforms of all kinds, across all
domains.

The scope of the OGC API - Connected Systems Reviewers Guide can also be defined in terms
of what is out of scope. Specifically, the specification definition itself is not within the Reviewer’s
Guide. Rather, that info and issues related to its definition are located in OGC GitHub
repositories: https://github.com/opengeospatial/ogcapi-connected-systems.

12

3. Terms and Definitions
The following list is organized alphabetically. The hyperlinks reference many definitions from
the OGC/W3C Spatial Data on the Web Working Group’s SOSA/SSN Ontology, the OGC’s
specification definitions, and other such web resources.

Actuator: A device that is used by, or implements, an (Actuation) Procedure that changes the
state of the world. (https://www.w3.org/TR/vocab-ssn/#SOSAActuator)

Application Programming Interface (API): a set of functions and procedures allowing the
creation of applications that access the features or data of an operating system, application, or
other service.

Collection: A geospatial resource that may be available as one or more sub-resource
distributions that conform to one or more OGC API standards. (https://portal.ogc.org/files/99149)

Command: Command carries the information required by a System to change the state of a
Feature of Interest, which may be a System itself, a Subsystem of various Subtypes (e.g,
Sensor, Process, Actuator, Platform, Sampler, etc.), or any other Feature. See section 4.2.4.8
Command below for further definition of this term.

Control Stream: Control Stream defines the channels available for sending Commands to a
given System. Among other things, Control Streams provides schemas for the parameters for
Commands within the Control Stream. See section 4.2.4.7 Control Stream below for further
definition of this term.

Data Stream: Data Stream is a particular type of (SOSA) ObservationCollection, with the
restriction that all Observations are coming from a single System. That is why a DataStream is
attached to a System, as a sub resource. See section 4.2.4.5 Data Stream below for further
definition of this term.

Deployment: Describes the Deployment of one or more Systems for a particular purpose.
Deployment may be done on a Platform. (https://www.w3.org/TR/vocab-ssn/#SSNDeployment)

Feature: Abstraction of real world phenomena. A digital representation of a real world
entity or an abstraction of the real world. Examples of features include almost anything
that can be placed in time and space, including desks, buildings, cities, trees, forest
stands, ecosystems, delivery vehicles, snow removal routes, oil wells, oil pipelines, oil
spill, and so on. The terms feature and object are often used synonymously [ISO-19101].
(https://www.w3.org/TR/sdw-bfp/#dfn-feature, which in turn is referenced by
https://docs.ogc.org/is/17-069r4/17-069r4.html#_feature)

13

https://www.w3.org/TR/vocab-ssn/#SOSAActuator
https://www.w3.org/TR/vocab-ssn/#SOSAProcedure
https://www.w3.org/TR/vocab-ssn/#SOSAActuator
https://en.m.wikipedia.org/wiki/API
https://portal.ogc.org/files/99149#resource-definition
https://portal.ogc.org/files/99149#distribution-definition
https://www.w3.org/TR/vocab-ssn/#SSNDeployment
https://www.w3.org/TR/vocab-ssn/#SSNDeployment
https://www.w3.org/TR/vocab-ssn/#SSNSystem
https://www.w3.org/TR/vocab-ssn/#SSNDeployment
https://www.w3.org/TR/vocab-ssn/#SOSAPlatform
https://www.w3.org/TR/vocab-ssn/#SSNDeployment
https://www.w3.org/TR/sdw-bp/#dfn-feature
https://www.w3.org/TR/sdw-bp/#bib-ISO-19101
https://www.w3.org/TR/sdw-bp/#dfn-feature
https://docs.ogc.org/is/17-069r4/17-069r4.html#_feature

Feature Collection: A set of features from a dataset.
(https://docs.ogc.org/is/17-069r4/17-069r4.html)

Feature of Interest: The thing whose property is being estimated or calculated in the course of
an Observation to arrive at a Result, or whose property is being manipulated by an Actuator, or
which is being sampled or transformed in an act of Sampling.
(https://www.w3.org/TR/vocab-ssn/#SOSAFeatureOfInterest)

GeoPose: GeoPose 1.0 is an OGC Implementation Standard for exchanging the location and
orientation of real or virtual geometric objects (“Poses”) within reference frames anchored to the
earth’s surface (“Geo”) or within other astronomical coordinate systems. The standard specifies
two Basic forms with no configuration options for common use cases, an Advanced form with
more flexibility for more complex applications, and five composite GeoPose structures that
support time series plus chain and graph structures. (https://www.ogc.org/standard/geopose/)

Implementation Model: For the purposes of the OGC API - Connected Systems standard, we
define ‘Implementation Model’ as the collection of Implementation Standards used to implement
the abstract models from the SOSA/SSN Ontology underpinning the design of the OGC API -
Connected Systems standard.

Implementation Standards: As the OGC API - Connected Systems standard is an OGC
standard, it is considered an Implementation Standard, based on the OGC definition. Within the
OGC: “Implementation Standards are different from the Abstract Specification. They are written
for a more technical audience and detail the interface structure between software components.
An interface specification is considered to be at the implementation level of detail if, when
implemented by two different software engineers in ignorance of each other, the resulting
components plug and play with each other at that interface.”

Observation: Act of carrying out an (Observation) Procedure to estimate or calculate a value of
a property of a FeatureOfInterest. Links to a Sensor to describe what made the Observation and
how; links to an ObservableProperty to describe what the result is an estimate of, and to a
FeatureOfInterest to detail what that property was associated with.
(https://www.w3.org/TR/vocab-ssn/#SOSAObservation)

ObservationCollection: A set of Observations that share at least one common attribute
(https://www.w3.org/TR/vocab-ssn-ext/#sosa:ObservationCollection)

Observations and Measurements: This OGC standard specifies an XML implementation for
the OGC and ISO Observations and Measurements (O&M) conceptual model (OGC
Observations and Measurements v2.0 also published as ISO/DIS 19156), including a schema
for Sampling Features. This encoding is an essential dependency for the OGC Sensor
Observation Service (SOS) Interface Standard. More specifically, this standard defines XML
schemas for observations, and for features involved in sampling when making observations.

14

https://docs.ogc.org/is/17-069r4/17-069r4.html
https://www.w3.org/TR/vocab-ssn/#SOSAFeatureOfInterest
https://www.w3.org/TR/vocab-ssn/#SOSAObservation
https://www.w3.org/TR/vocab-ssn/#SOSAResult
https://www.w3.org/TR/vocab-ssn/#SOSAActuator
https://www.w3.org/TR/vocab-ssn/#SOSASampling
https://www.w3.org/TR/vocab-ssn/#SOSAFeatureOfInterest
https://www.ogc.org/standard/geopose/
https://www.ogc.org/standard/geopose/
https://www.ogc.org/standards/
https://www.w3.org/TR/vocab-ssn/#SOSAObservation
https://www.w3.org/TR/vocab-ssn/#SOSAProcedure
https://www.w3.org/TR/vocab-ssn/#SOSAFeatureOfInterest
https://www.w3.org/TR/vocab-ssn/#SOSASensor
https://www.w3.org/TR/vocab-ssn/#SOSAObservation
https://www.w3.org/TR/vocab-ssn/#SOSAObservableProperty
https://www.w3.org/TR/vocab-ssn/#SOSAFeatureOfInterest
https://www.w3.org/TR/vocab-ssn/#SOSAObservation
https://www.w3.org/TR/vocab-ssn/#SOSAObservation
https://www.w3.org/TR/vocab-ssn-ext/#sosa:ObservationCollection
https://www.ogc.org/standard/om/

These provide document models for the exchange of information describing observation acts
and their results, both within and between different scientific and technical communities.
(https://www.ogc.org/standard/om/)

Observations, Measurements and Samples (OMS): This OGC standard builds upon the
previous Observations and Measurements standard, and its sister specification in ISO is Topic
20. (https://www.iso.org/standard/82463.html)

Open Geospatial Consortium (OGC): For more than 28 years, Open Geospatial Consortium
(OGC) has operated as a neutral forum where government, industry, nonprofits, and academia
come together to engage in collective problem-solving around the critical issues of the day. As
the global leader in location solutions and related data, OGC is the largest formal community of
geospatial experts with a mission to make location information FAIR – Findable, Accessible,
Interoperable, and Reusable – for an inclusive and sustainable future. (https://www.ogc.org/)

OGC API: OGC API - Common is a multi-part standard that documents the set of common
practices and shared requirements that have emerged from the development of Resource
Oriented Architectures and Web APIs within the OGC. Standards developers will use these
building-blocks in the construction of other OGC Standards that relate to Web APIs. The result
is a modular suite of coherent API standards which can be adapted by a system designer for the
unique requirements of their system. As such, this OGC API Standard serves as the "OWS
Common" standard for resource-oriented OGC APIs. Consistent with the architecture of the
Web, this specification uses a resource architecture that conforms to principles of
Representational State Transfer (REST). This OGC API Standard establishes a common
pattern that is based on OpenAPI. (https://ogcapi.ogc.org/)

OGC API - Connected Systems: OGC API - Connected Systems v1.0 is an OGC
Implementation Standard for connecting all Systems on or around a celestial body such as
Earth into a common 4D space for the purposes of discovery, access, processing, reasoning,
visualization and tasking. OGC API - Connected Systems v1.0 is built in alignment with OGC
API (see above) strategic guidance, as well as well accepted web formats such as GeoJSON as
well as existing OGC information models, including SensorML, Observations and
Measurements (O&M) (now called Observations, Measurements and Samples - OMS), SWE
Common Data Model, and the Semantic Sensor Network Ontology (SOSA/SSN). The OGC API
Connected Systems standard is intended to act as a bridge between static data (geographic
and other domain Features) and dynamic data (Observations of these Feature Properties, and
Commands that change these Feature Properties). (https://ogcapi.ogc.org/connectedsystems/)

OGC API - Features: OGC API - Features is a multi-part standard that offers the capability to
create, modify, and query spatial data on the Web and specifies requirements and
recommendations for APIs that want to follow a standard way of sharing feature data. The
specification is a multi-part document. The Core part of the specification describes the
mandatory capabilities that every implementing service has to support and is restricted to
read-access to spatial data. Additional capabilities that address specific needs will be specified

15

https://www.ogc.org/standard/om/
https://docs.ogc.org/as/20-082r4/20-082r4.html
https://www.iso.org/standard/82463.html
http://www.ogc.org
https://www.ogc.org/
https://ogcapi.ogc.org/common/
https://ogcapi.ogc.org/
https://ogcapi.ogc.org/connectedsystems/
https://ogcapi.ogc.org/connectedsystems/
https://ogcapi.ogc.org/features/

in additional parts. Envisaged future capabilities include, for example, support for creating and
modifying data, more complex data models, richer queries, and additional coordinate reference
systems. (https://ogcapi.ogc.org/features/)

OGC API - Pub/Sub: The OGC API - Connected Systems specification implements the
Pub/Sub mechanism in OGC API - Environmental Data Retrieval - Part 2: Publish-Subscribe
Workflow, which has been referred to the newly rechartered OGC Pub/Sub SWG for formal
consideration and passage (https://github.com/opengeospatial/pubsub).

OpenAPI: The OpenAPI Specification is a specification language for HTTP APIs that provides
a standardized means to define your API to others. You can quickly discover how an API works,
configure infrastructure, generate client code, and create test cases for your APIs. Read more
about how you can get control of your APIs now, understand the full API lifecycle and
communicate with developer communities inside and outside your organization.
(https://www.openapis.org/)

Platform: A Platform is an entity that hosts other entities, particularly Sensors, Actuators,
Samplers, and other Platforms. (NOTE: Within SOSA/SSN, a Platform is not a System, but
within the OGC API - Connected System specification, a System Resource can implement both
SSN System and SOSA Platform classes.). (https://www.w3.org/TR/vocab-ssn/#SOSAPlatform)

Procedure: A workflow, protocol, plan, algorithm, or computational method specifying how to
make an Observation, create a Sample, or make a change to the state of the world (via an
Actuator). A Procedure is re-usable, and might be involved in many Observations, Samplings, or
Actuations. It explains the steps to be carried out to arrive at reproducible Results. (NOTE: A
Procedure can describe a particular “make and model” of a System (as in a ‘Data Sheet’), or a
list of steps a human does.) (https://www.w3.org/TR/vocab-ssn/#SOSAProcedure)

Process: The Process concept is not explicitly defined in SOSA/SSN. Rather, depending on
the type of processing algorithm, a Process is just a regular System tagged using one of the sub
types defined previously. See section 4.2.4.1.1.5 Process below for further definition of this
term.

REST: Representational state transfer (REST) is a software architectural style that was created
to guide the design and development of the architecture for the World Wide Web. REST defines
a set of constraints for how the architecture of an Internet-scale distributed hypermedia system,
such as the Web, should behave. The REST architectural style emphasizes the scalability of
interactions between components, uniform interfaces, independent deployment of components,
and the creation of a layered architecture to facilitate caching of components to reduce
user-perceived latency, enforce security, and encapsulate legacy systems. The term REST was
first coined by Roy Thomas Fielding in 2000. (Fielding, Roy Thomas (2000). "Chapter 5:
Representational State Transfer (REST)". Architectural Styles and the Design of Network-based
Software Architectures (Ph.D.). University of California, Irvine.)

16

https://ogcapi.ogc.org/features/
https://github.com/opengeospatial/pubsub
https://www.openapis.org/
https://www.openapis.org/
https://www.w3.org/TR/vocab-ssn/#SOSAPlatform
https://www.w3.org/TR/vocab-ssn/#SOSAPlatform
https://www.w3.org/TR/vocab-ssn/#SOSASensor
https://www.w3.org/TR/vocab-ssn/#SOSAActuator
https://www.w3.org/TR/vocab-ssn/#SOSASampler
https://www.w3.org/TR/vocab-ssn/#SOSAPlatform
https://www.w3.org/TR/vocab-ssn/#SOSAPlatform
https://www.w3.org/TR/vocab-ssn/#SOSAProcedure
https://www.w3.org/TR/vocab-ssn/#SOSAObservation
https://www.w3.org/TR/vocab-ssn/#SOSASample
https://www.w3.org/TR/vocab-ssn/#SOSAActuator
https://www.w3.org/TR/vocab-ssn/#SOSAProcedure
https://www.w3.org/TR/vocab-ssn/#SOSAObservation
https://www.w3.org/TR/vocab-ssn/#SOSASampling
https://www.w3.org/TR/vocab-ssn/#SOSAActuation
https://www.w3.org/TR/vocab-ssn/#SOSAResult
https://www.w3.org/TR/vocab-ssn/#SOSAProcedure
https://en.m.wikipedia.org/wiki/Representational_state_transfer

REST has been employed throughout the software industry and is a widely accepted set of
guidelines for creating stateless, reliable web APIs. A web API that obeys the REST constraints
is informally described as RESTful. RESTful web APIs are typically loosely based on HTTP
methods to access resources via URL-encoded parameters and the use of JSON or XML to
transmit data.

The REST architecture makes use of four commonly used HTTP methods. These are:

Method Description

GET This method helps in offering read-only access for the resources.

POST This method is implemented for creating a new resource.

DELETE This method is implemented for removing a resource.

PUT This method is implemented for updating an existing resource or creating a fresh
one.

Sampler: A device that is used by, or implements, a (Sampling) Procedure to create or
transform one or more samples. (https://www.w3.org/TR/vocab-ssn/#SOSASampler)

Sampling Feature: A Feature, such as a station, transect, section or specimen, which is
involved in making observations concerning a domain feature. Sampling Features are artifacts
of an observational strategy, and have no significant function outside of their role in the
observation process. (OGC and ISO 19156:2011(E)) (https://www.ogc.org/standard/om/)

For the purposes of the OGC API - Connected Systems Standard, additional clarification is
useful.

Sampling Features describe exactly what part of a real-world feature (e.g. domain feature) is
observed or controlled. Sampling features can be physical (e.g. Specimen, MaterialSample), or
more abstract; for example statistical (e.g. StatisticalSample), or simply a geometric shape (e.g.
SamplingPoint, SamplingCurve for lines and profiles, or volumes like SamplingSphere and
SamplingFrustum).

Sensor: Device, agent (including humans), or software (simulation) involved in, or
implementing, a Procedure. Sensors respond to a Stimulus, e.g., a change in the environment,
or Input data composed from the Results of prior Observations, and generate a Result. Sensors
can be hosted by Platforms. (https://www.w3.org/TR/vocab-ssn/#SOSASensor)

Sensor Model Language (SensorML): SensorML is an OGC standard that provides a robust
and semantically-tied means of defining processes and processing components associated with
the measurement and post-measurement transformation of observations. This includes sensors
and actuators as well as computational processes applied pre- and post-measurement. The

17

https://www.w3.org/TR/vocab-ssn/#SOSASampler
https://www.w3.org/TR/vocab-ssn/#SOSAProcedure
https://www.w3.org/TR/vocab-ssn/#SOSASampler
http://www.opengis.net/doc/as/om/2.0
https://www.ogc.org/standard/om/
https://www.w3.org/TR/vocab-ssn/#SOSASensor
https://www.w3.org/TR/vocab-ssn/#SOSAProcedure
https://www.w3.org/TR/vocab-ssn/#SOSASensor
https://www.w3.org/TR/vocab-ssn/#SSNStimulus
https://www.w3.org/TR/vocab-ssn/#SSNInput
https://www.w3.org/TR/vocab-ssn/#SOSAResult
https://www.w3.org/TR/vocab-ssn/#SOSAObservation
https://www.w3.org/TR/vocab-ssn/#SOSAResult
https://www.w3.org/TR/vocab-ssn/#SOSASensor
https://www.w3.org/TR/vocab-ssn/#SOSAPlatform
https://www.w3.org/TR/vocab-ssn/#SOSASensor
https://defs.opengis.net/vocprez/object?uri=http%3A//www.opengis.net/def/glossary/term/SensorModelLanguage

main objective is to enable interoperability, first at the syntactic level and later at the semantic
level (by using ontologies and semantic mediation), so that sensors and processes can be
better understood by machines, utilized automatically in complex workflows, and easily shared
between intelligent sensor web nodes. This standard is one of several implementation
standards produced under OGC’s Sensor Web Enablement (SWE) activity. SensorML 3.0 is a
standalone part of the OGC API - Connected Systems suite of specifications.
(https://www.ogc.org/standard/sensorml/)

SOSA/SSN: The W3C Semantic Sensor Network Incubator Group ontology (SSN), later
revised by the OGC/W3C Spatial Data on the Web Working Group (SDWWG), and expanded
based on the Sensor, Observation, Sample, and Actuator (SOSA) ontology. Similar to the
original SSO, SOSA acts as a central building block for the SSN but puts more emphasis on
light-weight use and the ability to be used standalone. (https://www.w3.org/TR/vocab-ssn/).
Note: A RDFS/OWL implementation of SOSA/SSN exists, but is not used in this specification
since the specification team decided to favor Feature encodings like GeoJSON, JSON-FG, etc.

SWE Common Data Model Encoding Standard: The Sensor Web Enablement (SWE)
Common Data Model Encoding Standard (heretofore “OGC SWE Common”) defines low level
data models for exchanging sensor related data between nodes of the OGC® Sensor Web
Enablement (SWE) framework. These models allow applications and/or servers to structure,
encode and transmit sensor datasets in a self describing and semantically enabled way. SWE
Common 3.0 is a standalone part of the OGC API - Connected Systems Standard suite of
specifications. https://www.ogc.org/standard/swecommon/

Subsystem: A component of a parent System (subsystem is just a property of the SSN model,
because a Subsystem is just a System within a System.
(https://www.w3.org/TR/vocab-ssn/#SSNhasSubsystem)

System: System is a unit of abstraction for pieces of infrastructure that implement Procedures.
A System may have components, its Subsystems, which are other Systems.
(https://www.w3.org/TR/vocab-ssn/#SSNSystem)

4. Conceptual Overview
In this conceptual overview, we address the information model at the core of the OGC API -
Connected System Standard v1.0, as well as the API design.

4.1 Information Model
The OGC API - Connected Systems Standard v1.0 is built upon an information model with two
parts - the conceptual models and implementation models. The latter are based on the former.
All have a deep history within the Open Geospatial Consortium and World Wide Web
Consortium processes.

18

https://www.ogc.org/standard/sensorml/
https://www.w3.org/TR/vocab-ssn/#Developments
https://www.w3.org/TR/vocab-ssn/
https://www.ogc.org/standard/swecommon/
https://www.ogc.org/standard/swecommon/
https://www.w3.org/TR/vocab-ssn/#SSNhasSubSystem
https://www.w3.org/TR/vocab-ssn/#SSNhasSubSystem
https://www.w3.org/TR/vocab-ssn/#SSNSystem
https://www.w3.org/TR/vocab-ssn/#SOSAProcedure
https://www.w3.org/TR/vocab-ssn/#SSNSystem

4.1.1 Conceptual Model
The conceptual model underpinning the OGC API - Connected Systems Standard v1.0 has two
major components. First is the joint OGC/W3C Spatial Data on the Web Working Group’s
(SDWWG) SOSA/SSN model, and the SOSA/SSN revisions underway based on the inclusion of
Observation, Measurement and Sampling (OMS) updates to the OGC Observations and
Measurement (O&M) model. Together, these provide a conceptual model for describing every
possible System, their sensing, processing, and actuating Subsystems, and the Data Streams
and Control Streams at their core. Second is the GeoPose standard from the OGC which
provides a conceptual model for describing a digital object’s pose defined relative to a
geographical frame of reference. This allows for the description of the information required to
anchor a particular System, and its various Subsystems, in space and time with the kinds of
rigorous positional (e.g., spatio-temporal and orientation) information required to sense and act
with geographic precision and accuracy.

4.1.1.1 SOSA/SSN/OMS
SOSA/SSN has a long history. The OGC/W3C SDWWG did outstanding work bringing together
a diverse community of thought leaders and practitioners from academia, industry and
government to assemble a standard ontology for sensor semantics. The latest updates have
their history in SOSA/SSN concepts (particularly Observer and Deployment classes) that were
not originally included in the Observations and Measurements (O&M) standard. The OGC O&M
community saw their value, and this inspired the evolution toward the Observations,
Measurements and Samples (OMS) standard. In turn, the SOSA/SSN community saw value in
updating SOSA/SSN to reflect the OGC OMS efforts. As a result, these SOSA/SSN revisions
represent core learning within the SOSA/SSN community that advances the SOSA/SSN without
breaking backward compatibility. The OGC API - Connected System Standard v1.0 is
deliberately built on this OMS update of SOSA/SSN, using SensorML as its Implementation
Model.

4.1.1.2 GeoPose
The OGC GeoPose standard builds on decades of experience defining the position of objects in
geographic space and time. Conceptually, when a real or digital object’s pose is defined relative
to a geographical frame of reference it will be called a "geographically-anchored pose." All
physical world objects inherently have a
geographically-anchored pose. Digital objects
may be associated with a
geographically-anchored pose (for example, in a
real-world overlay or on a stage). Specifically, the
OGC GeoPose standard defines the rules for the
interoperable interchange of
geographically-anchored poses. As such, the
OGC GeoPose standard defines a conceptual
model, a logical model, and encodings for the
position and orientation of a real or a digital object

19

https://www.w3.org/2021/sdw/#:~:text=The%20mission%20of%20the%20Spatial,Open%20Geospatial%20Consortium%20(OGC).
https://www.w3.org/2021/sdw/#:~:text=The%20mission%20of%20the%20Spatial,Open%20Geospatial%20Consortium%20(OGC).
https://www.w3.org/TR/vocab-ssn/#Developments
https://www.w3.org/2021/sdw/#:~:text=The%20mission%20of%20the%20Spatial,Open%20Geospatial%20Consortium%20(OGC).
https://www.ogc.org/standard/geopose/

in machine-readable forms using real world coordinates. (For more on GeoPose, read the OGC
GeoPose Reviewers Guide, https://docs.ogc.org/guides/22-000.html)

4.1.2 Implementation Model
The Implementation Model underpinning the OGC API - Connected Systems Standard v1.0 has
three major components. First is Sensor Model Language (SensorML), which is the OGC
standard for encoding descriptions of sensing Systems and their Observations, as well as
Processes, Procedures and Deployments. Second is the OGC SWE Common Data Encoding
Standard which allows for the detailed common/standard way of describing the schemas of any
Data Stream, regardless of its format, including binary formats. Third is JSON and binary
methods for encoding Observations, beyond the traditional XML encodings. The first two of
these Implementation Models have been at the core of the OGC SWE legacy architecture, and
they continue as core concepts within the OGC API - Connected Systems standard. The third is
based on OGC Best practices for JSON encodings of SensorML and OGC SWE Common that
have been developed over time (https://docs.ogc.org/bp/17-011r2/17-011r2.html). Work has
also been done on binary encodings such as Protobuf and FlatGeobuf. Together, these
Implementation Models serve as the core of the new OGC API - Connected Systems Standard
v1.0.

4.1.2.1 SensorML
The primary focus of the Sensor Model Language (SensorML) is to provide a robust and
semantically-tied means of defining Processes and processing components associated with the
measurement and post-measurement transformation of Observations. This includes Sensors
and Actuators as well as computational Processes applied pre- and post-measurement. The
main objective is to enable interoperability, first at the syntactic level and later at the semantic
level (by using ontologies and semantic mediation), so that Sensors and Processes can be
better understood by machines, utilized automatically in complex workflows, and easily shared
between intelligent SensorWeb nodes. This standard is one of several implementation
standards produced under OGC’s Sensor Web Enablement (SWE) activity. There has long been
an OGC Best Practice for a SensorML JSON encoding
(https://docs.ogc.org/bp/17-011r2/17-011r2.html) that is being formalized as SensorML 3.0
(https://docs.ogc.org/DRAFTS/23-000.html), a standalone part of the OGC API - Connected
Systems Standard v1.0 suite of specifications.

4.1.2.3 SWE Common
The Sensor Web Enablement (SWE) Common Data Model Encoding Standard defines low level
data models for exchanging sensor related data between nodes of the OGC® Sensor Web
Enablement (SWE) framework. These models allow applications and/or servers to structure,
encode and transmit sensor datasets in a self describing and semantically enabled way.

There has long been an OGC Best Practice for SWE Common Data Model JSON encoding
(https://docs.ogc.org/bp/17-011r2/17-011r2.html) that is being formalized as SWE Common Data

20

https://www.ogc.org/standard/sensorml/
https://www.ogc.org/standard/swecommon/
https://www.ogc.org/standard/swecommon/
https://docs.ogc.org/bp/17-011r2/17-011r2.html
https://docs.ogc.org/DRAFTS/23-000.html
https://docs.ogc.org/bp/17-011r2/17-011r2.html

Model 3.0 (https://docs.ogc.org/DRAFTS/24-014.html), a standalone part of the OGC API -
Connected Systems Standard v1.0 release.

There is complementary work being done within the OGC API - Features SWG that could
provide a parallel implementation that performs the same functions as SWE Common. A
complete alignment with the OGC API - Features future feature schema handling would be done
in future versions of OGC API - Connected Systems Standard v1.0 suite of specifications.

4.1.2.4 Observation JSON/Binary Encodings
The OGC API - Connected Systems Standard v1.0 suite of specifications includes JSON
encodings for Observations. A future Part 5 extension of OGC API - Connected Systems
Standard v1.0 will provide implementation details on how to use these binary formats (e.g.
Protobuf, Flatbuf, Apache Avro™, etc.).

Note: FlatGeoBuf does have limitations as to its applicability to Observations (see 4.1.2.4
above), particularly with regard to video and other high bandwidth data types. This is why
Flatbuf is referenced here rather than FlatGeoBuf, which is used to encode Features and
Geometries (see below).

4.1.2.5. Features and Geometries JSON (JSON-FG)/Binary Encodings
JSON-FG is used as one possible encoding for Feature Resources (e.g., System, Procedure,
etc.). There is ongoing work within the OGC API - Feature SWG to define Protobuf and
FlatGeobuf encodings of Features and Geometries.

4.2 API Design
The design of the OGC API - Connected Systems Standard v1.0 can best be understood in
terms of the overarching strategic guidance that inspired it, the complementary OGC API
standards that it is extending or reusing, and then the structure of the API design itself.

4.2.1 OGC API Strategic Guidance
OGC API strategic guidance has led OGC SWGs to reimagine their existing specifications in
accordance with OpenAPI/RESTful architectural patterns that define reusable API building
blocks with responses in JSON and HTML. The resulting OGC API standards define modular
API building blocks to spatially enable Web APIs in a consistent way. The OGC API family of
standards is organized by resource type. OGC API - Common defines the resources and access
mechanisms which are useful for a client seeking to understand the offerings and capabilities of
an API. The standard also provides a common connection between the API landing page and
resource-specific details.

The OGC API - Connected Systems Standard v1.0 intentionally embraces these
OpenAPI/RESTful patterns, particularly following OGC API guidance.

21

https://docs.ogc.org/DRAFTS/24-014.html

4.2.2 OGC API - Features
More specifically, the OGC API - Connected Systems Standard v1.0 is an extension of the OGC
API - Features standard. This decision was made because most of the concepts in the
conceptual model, discussed above, are features. The OGC API - Features standard provides
a way of encoding Features in multiple formats (including binaries) and the Feature API SWG is
working on Part 5 to provide schemas for these encodings. As mentioned above, this creates a
future opportunity to harmonize ‘SWE Common’ and ‘Feature Schemas’ that the Connected
Systems SWG is eager to pursue.

4.2.3 OGC API - Pub/Sub
Both the OGC API - Connected Systems and OGC API - Features SWG’s have agreed to align
with the Pub/Sub proposal from OGC API - EDR. This includes using AsyncAPI, and an
agreement to generate an MQTT profile. This work stream has been referred over to the
previously dormant OGC Pub/Sub SWG. The OGC API - Connected Systems Standard will
include a future Part 3 extension that will provide detailed guidance on the use of various
Pub/Sub protocols including MQTT, AMQP, DDS, Kafka, etc. (See sections 5.2.2.1.2 and
5.2.3.1.2 and section “6.2 Other Web Standards” for more discussion).

4.2.4 OGC API - Connected Systems Standard v1.0
In the end, the OGC API - Connected Systems Standard v1.0 puts all this together in a way that
maximizes re-use and interoperability in a way that allows for the connection of all Systems on
planet earth and beyond. All of the resources within the OGC API - Connected Systems
Standard v1.0 are based on SOSA/SSN concepts, and encoded in SensorML and various
encodings for Observations (e.g., JSON, Protobuf, FlatGeobuf, etc.). Due to the alignment with
OGC API - Features, the OGC API - Connected Systems SWG chose to make as many of these
resources as possible Feature Resources. Specifically, Feature Resources include Systems
(and Subsystems) of various subtypes (e.g., Sensors, Actuators, Platforms, Samplers,
Processes), Procedures, Deployments, Sampling Features. Additionally, the OGC API -
Connected Systems Standard includes non-Feature Resources - specifically Data Streams,
Observations, Control Streams, and Commands. This distinction will be discussed further
below. For ease of reading and comprehension, many Terms and Definitions (from section 3
above) will be repeated in this section.

4.2.4.1 System (and Subsystem)
We begin this discussion with the SOSA/SSN definition for System:

System is a unit of abstraction for pieces of infrastructure that implement Procedures. A
System may have components, its Subsystems, which are other Systems.
https://www.w3.org/TR/vocab-ssn/#SSNSystem

In the real world, Systems will include things that normal people consider sensors, things,
robots, drones, satellites, control systems, devices, and Platforms of all kinds, across the

22

https://www.w3.org/TR/vocab-ssn/#SSNSystem

domains of space, air, land, sea, cyber, and electro-magnetic spectrum. In truth, all of these
Systems represent various constellations of Sensors, Processes and Actuators, designed to
accomplish various goals, which can be hierarchically combined in any way to address specific
real world problems. In more abstract terms, according to SOSA/SSN, a System is “a unit of
abstraction for pieces of infrastructure that implement Procedures. A System may have
components, its Subsystems, which are other Systems.”

Thus, we end this discussion with the SOSA/SSN definition of Subsystem, which is the has
Subsystem characteristic of a System:

Relation between a System and its component parts.
https://www.w3.org/TR/vocab-ssn/#SSNhasSubsystem

Many Systems can be Sensors, Actuators and Processes at the same time. In particular, a
Sensor can often accept Commands (e.g. change sampling rate or sensitivity), and Actuators
can produce data (e.g. Actuator status). It is often cumbersome to create a separate Systems in
these cases.1

Any system subtype can have Data Streams and Control Streams. For instance, a System
Subtype (Sensor) may have Control Streams, and a System Subtype (Actuator) may have Data
Streams.

4.2.4.1.1 System Subtype

We begin this discussion by recognizing that the OGC API - Connected Systems Standard v1.0
idea of System Subtype builds on the SOSA/SSN ontology, with some specific additions in order
to address the full set of Connected Systems use cases. To foreshadow the coming discussion,
these SubType definitions include:

Sensor
Actuator
Platform
Sampler
Process

These Systems (and Subsystems) have various Subtypes (see below), though more complex
systems can engender all of these subtypes simultaneously. It is common for lay people to refer

1 Additionally, a given System might have combinations of different kinds of Subsystem subtypes
simultaneously. In this case, each Subsystem would be described as their own type. In the
end, this is rather arbitrary, and it is up to the system designer (or the system modeler) to model
the system in the way that best works for your use case. At some point, the system modeler
creates a black box and says ‘this is what this black box does”. The system designer may have
good reason to articulate all of the system capabilities in all of their details while the system
modeler may want to keep it simpler for the purposes of their use case.

23

https://www.w3.org/TR/vocab-ssn/#SSNhasSubSystem

to different kinds of systems in different ways as one subtype manifests as the dominant
characteristic. For instance, many Systems are thought of primarily as “sensors” or “sensing
systems” even though they have processes and actuators within them. Other Systems are
thought of primarily as “processes” or “processors” even though they have Sensors and
Actuators packaged within them. Other Systems are thought of primarily as “actuators,” even
though they have Sensors and onboard processing that make them work. It is often the case
that a given System is, quite simply, complex - such as an aircraft, or a satellite, or a control
system, with many different Subsystems of different Subtypes integrated for a very specific
purpose. And, the position/orientation (e.g., GeoPose) of each of these Subsystems can be
different, depending on how they are mounted and operated on the larger Platform at the heart
of the System. Due to this complexity, it is critical that these various System Subtypes be
semantically tagged.

4.2.4.1.1.1 Sensor

We begin this discussion with the SOSA/SSN definition for Sensor:

“Device, agent (including humans), or software (simulation) involved in, or implementing,
a Procedure. Sensors respond to a Stimulus, e.g., a change in the environment, or Input
data composed from the Results of prior Observations, and generate a Result. Sensors
can be hosted by Platforms.” (https://www.w3.org/TR/vocab-ssn/#SOSASensor)

Again, the term Sensor can be used to describe any sensing system or Subsystem that
observes the world and generates Data Streams filled with Observations (see below). In the
world of the OGC API - Connected Systems Standard v1.0, we recognize that all such Sensors
exist oriented on (or around) Earth at a given moment in time, and therefore should have
GeoPose information for every Observation. Of course, not all Sensors are integrated with
complementary Sensors required to provide position, navigation and timing (PNT) solutions
capable of generating complete GeoPose information. The Sensor System/Subsystem may
have a magnetic compass that provides directionality, but no source for location information,
such as GPS. Others may offer location and direction, but lack the accelerometers required to
derive orientation. At an integration level, there tend to be engineering methods that allow for
the field augmentation of a given Sensor with the requisite Sensors, so that GeoPose
information can be provided for all Observations.

Even this simple example of ensuring telemetry Sensors are properly paired with the “primary’
Sensor demonstrates some of the complexities associated with properly incorporating Sensors
into a common 4D framework via the OGC API - Connected Systems Standard.

Within the OGC API - Connected Systems Standard v1.0, Sensor Observations are shared over
Data Streams, within which Observations are sent. (See below). The control of Sensors (which
are Systems) is done with Control Streams (See below).

4.2.4.1.1.2 Actuator

We begin this discussion with the SOSA/SSN definition for Actuator:

24

https://www.w3.org/TR/vocab-ssn/#SOSASensor

“A device that is used by, or implements, an (Actuation) Procedure that changes the
state of the world.” (https://www.w3.org/TR/vocab-ssn/#SOSAActuator)

Again, it is important to understand that an Actuator can be a kind of System with other System
Subtypes as Subsystems. Within the OGC API - Connected Systems Standard v1.0, Actuators
can be as simple or as complex as needed. This could be something as simple as a door lock
Actuator which has a Sensor on it that confirms the status of the door lock (e.g., locked,
unlocked), and an onboard Process which sends an alert to the physical security System. It
could also be quite complex, involving the control of a gimbal, the tasking/control/dispatch of a
drone, the tasking of a satellite, or the launching of a countermeasure.

Within the OGC API - Connected Systems Standard v1.0, Actuators are controlled by Control
Streams, within which Commands are sent. (See below).

4.2.4.1.1.3 Platform

We begin this discussion with the SOSA/SSN definition of Platform:

“A Platform is an entity that hosts other entities, particularly Sensors, Actuators,
Samplers, and other Platforms.” (https://www.w3.org/TR/vocab-ssn/#SOSAPlatform).

The OGC API - Connected Systems Standard v1.0, and the underlying SensorML specification,
provide an additional use case not contemplated within the SOSA/SSN ontology. Specifically, a
Platform can also be a System if you combine both Platform and System class from SSN
together. In the OGC API - Connected Systems Standard v1.0, all Platforms are also Systems.

4.2.4.1.1.4 Sampler

We begin this discussion with the SOSA/SSN definition of Sampler:

“A device that is used by, or implements, a (Sampling) Procedure to create or transform
one or more samples.” (https://www.w3.org/TR/vocab-ssn/#SOSASampler)

Sometimes the distinction between the Sampler and the Sensor is not evident, as they are often
packaged as a unit. The same device may be a Sampler when it is used to take a Sample, but
a Sensor when it is deployed as a sensing System that is systematically collecting Data Streams
filled with Observations.

Also, a Sampler need not be a physical device. It could be a person collecting Samples via a
Procedure.

The concept of a Sampler is useful when the sampling methodology needs to be documented
separately from the Sensor that actually makes the measurement. This is often the case when
the measurement is made ex-situ (e.g. a blood sample collected by a nurse and later analyzed

25

https://www.w3.org/TR/vocab-ssn/#SOSAActuator
https://www.w3.org/TR/vocab-ssn/#SOSAPlatform
https://www.w3.org/TR/vocab-ssn/#SOSASampler

in the lab), or when a chain of samples is involved (e.g. a rock core sample collected in the field
is broken down into smaller segments that are then analyzed with various instruments).

4.2.4.1.1.5 Process

We begin this discussion with the OGC API - Connected Systems Standard v1.0 definition of
Process, since there is no such SOSA/SSN definition:

The Process concept is not explicitly defined in SOSA/SSN. Rather, depending on the
type of processing algorithm, a Process is just a regular System tagged using one of the
sub types defined previously.

A Process would thus be classified as:

- A Sensor if the process simulates observations or acts on input observations to generate
derived observations ;

- An Actuator if the process computes lower level actuations from a higher level command ;
- A Platform if the Process simulates a moving Platform ;
- A Sampler if the Process simulates a sampling Procedure.
- etc.

However, in the OGC API - Connected Systems Standard v1.0, a second property is available
to describe the type of asset that is involved in the implementation of the System. This property
called "assetType" can take the value "process" or "simulation".

Note that a Process instance is different from Procedure. The Procedure is what describes the
implementation and characteristics of any System, including processes but also hardware
equipment or even human behavior (see below).

4.2.4.2 Procedure
We begin this discussion with the SOSA/SSN definition of Procedure:

“A workflow, protocol, plan, algorithm, or computational method specifying how to make
an Observation, create a Sample, or make a change to the state of the world (via an
Actuator). A Procedure is re-usable, and might be involved in many Observations,
Samplings, or Actuations. It explains the steps to be carried out to arrive at reproducible
Results.”

Within SOSA/SSN, a System implements a Procedure. For a piece of equipment, Procedures
represent types of Systems, Sensors, Processes, Actuators, Platforms and Samplers and the
procedure description usually corresponds to the system's datasheet. But in the case where a
System (or Platform) involves one or more persons, (referred to in SOSA/SSN as an ‘Agent,
including Humans’), the Procedure description would describe the methodology used by these
persons.

26

Note that when a given System is capable of implementing different Procedures, the OGC API -
Connected Systems Standard v1.0 provides several ways to describe this:

- As a single System instance associated with a Procedure with multiple "modes" (see
SensorML Modes) if those are known in advance.

- As multiple System instances referring to the same "person" in the contact information.

Also note that a Procedure is different from a Process instance (see Process definition above).

4.2.4.3 Deployment
We begin this discussion with the SOSA/SSN definition of Deployment:

“Describes the Deployment of one or more Systems for a particular purpose.
Deployment may be done on a Platform.”

This is particularly important for systems such as unmanned systems (UxS) which might be
deployed in one operating environment over one particular geography at a particular moment in
time, and later deployed to another operating environment over a different geography at a
different time. The DataStreams/Observations collected on these different Deployments may
need to be tied to other mission data from a particular Deployment.

4.2.4.4 Sampling Feature
We begin this discussion with the SOSA/SSN definition of Sampling Feature. Sampling Feature
is referred to as Sample in SOSA/SSN.

"Sample - Feature which is intended to be representative of a FeatureOfInterest on
which Observations may be made."

The OGC API - Connected Systems Standard v1.0 defines several sampling feature sub-types:

- Spatial Sampling Features
- Specimens (or Material Samples)
- Statistical Samples
- Feature Parts

Sampling Feature always refers to a larger Feature of Interest that they are a sample of. In the
OGC API - Connected Systems Standard v1.0, any Feature can be a Feature of Interest,
including Systems themselves. More detailed implementation guidance on Sampling Features
will be provided in a future Part 4 extension to OGC API - Connected Systems Standard v1.0.

4.2.4.5 DataStream
We begin this discussion with the OGC API - Connected Systems Standard v1.0 definition of
Data Stream, since there is no such SOSA/SSN definition:

27

https://www.w3.org/TR/vocab-ssn/#SOSASample

Data Stream is a particular type of ObservationCollection coming from a single System.

Note: An ObservationCollection in SOSA/SSN could include Observations from multiple
different Systems. Among other things, a Data Stream provides the schema for the Result of
Observations within the Data Stream.

4.2.4.6 Observation
We begin this discussion with the SOSA/SSN definition of Observation:

“Act of carrying out an (Observation) Procedure to estimate or calculate a value of a
property of a FeatureOfInterest. Links to a Sensor to describe what made the
Observation and how; links to an ObservableProperty to describe what the result is an
estimate of, and to a FeatureOfInterest to detail what that property was associated with.”

In the OGC API - Connected Systems Standard v1.0, Observations can have many different
kinds of Result Types. And this is where we provide schemas for the Observation Result. This
lets the API describe its Observations Types by providing a schema for each Data Stream, akin
to how the OGC API - Features Standard provides schemas for each Feature Type.

4.2.4.7 ControlStream
We begin this discussion with the OGC API - Connected Systems Standard v1.0 definition of
Control Stream, since there is no such SOSA/SSN definition:

Control Stream defines the channels available for sending Commands to a given
System.

Among other things, Control Streams provides schemas for the parameters for Commands
within the Control Stream.

4.2.4.8 Command
We begin this discussion with the OGC API - Connected Systems Standard v1.0 definition of
Command, since there is no such SOSA/SSN definition:

Command carries the information required by a System to change the state of a Feature
of Interest, which may be a System itself, a Subsystem of various Subtypes (e.g, Sensor,
Process, Actuator, Platform, Sampler, etc.), or any other Feature.

In the OGC API - Connected Systems Standard v1.0, this is distinct from Actuation. The
Command is not the actuation. And, a Command can control many different System Subtypes
beyond Actuators. The Command is the information sent to control these various System
Subtypes.

28

4.2.5. OGC Building Blocks
The OGC API - Connected Systems SWG is committed to reuse of OGC Building Blocks
(https://blocks.ogc.org/) to the greatest extent possible. As this OGC Building Blocks process
matures, the OGC API - Connected Systems Standard v1.0 may later reference Building Blocks
external to the specification.

5. The OGC API - Connected Systems Standard
v1.0 Encodings
The OGC API - Connected Systems Standard v1.0 supports a series of different encodings in
order to enable particular kinds of functionality required by different communities. These
encodings are based on the implementation models outlined in section 4.1.2 (above). These
implementation models are based on the original XML encodings that have been at the core of
the OGC Sensor Web Enablement architecture for the past two decades. The new OGC API -
Connected Systems Standard v1.0 no longer requires the XML encodings of these
implementation models (e.g., there is no conformance class for XML). Instead, the OGC API -
Connected Systems Standard v1.0 relies on modern encodings such as JSON, Protobuf,
Flatbuff, and other binary encodings could also be supported in extensions.

5.1. Ideas Driving Encoding Strategy
At the core of the OGC API - Connected Systems Standard v1.0’s encoding strategy is the idea
of reusing the concept of logical schemas from OGC API - Features specification to describe not
only Feature properties but also Observation results. Under the legacy/heritage OGC SWE
architecture, this was not possible due to the lack of alignment with the OGC API - Features
Standard. This new alignment pays dividends in a number of ways. However, there is still the
need for other encodings such as SensorML (and SWE Common Data Encoding Standard), to
describe the sensing Systems themselves, and provide schemas for Observations within their
Data Streams. However, now, there are more opportunities to align even between SensorML
and the Feature model that will be explored in future versions of the OGC API - Connected
Systems Standard v1.0 and the OGC API - Features Standard.

5.2. Different Kinds of Encodings
This section will walk you through the static Feature encodings and the encodings used for
dynamic Data Streams (and Observations) and Control Streams (and Commands).

5.2.1 Static Feature Encodings
As an extension to the OGC API - Features Standard, the OGC API - Connected Systems
Standard v1.0 is able to express a variety of things as static Features. These include the

29

https://blocks.ogc.org/

Systems themselves (and all of their GeoPose information), Procedures, Deployments, and
Sampling Features.

5.2.1.1 SensorML
SensorML is used to provide detailed descriptions of Systems, Procedures and Deployments.
SensorML 3.0 provides the ability to describe detailed characteristics, capabilities, and other
metadata about these entities. Note: For Sampling Features, the specification just uses
GeoJSON or JSON FG. This could evolve in future versions of SensorML.

5.2.1.2 GeoJSON/JSON FG
While SensorML is used to provide detailed descriptions, GeoJSON and JSON FG are used to
provide summary descriptions when listing a large number of resources. JSON FG is required
when the coordinate reference system is not CRS84 or CRS84h (e.g., WGS84 in Lon/Lat
order).

5.2.1.3 Protobuf, FlatGeobuf
As mentioned above, there is ongoing work within the OGC API - Feature SWG to define
Protobuf and FlatGeobuf encodings of Features and Geometries. Flatbuf could be used directly,
but the OGC community has defined geospatial profiles of Flatbuf within FlatGeobuf. No
equivalent standard geospatial profile exists for Protobuf at the time of writing.

5.2.2. Dynamic Data Stream Protocols and Encodings
Where the OGC API - Connected Systems Standard v1.0 extends beyond the OGC API -
Features is with regard to dynamic Data Streams and Control Streams, to support real-time
interactions within Systems of all kinds. This section addresses dynamic Data Streams.

5.2.2.1 Dynamic Data Stream Protocols
Protocols for dynamic Data Streams need to be lightweight and efficient. Oftentimes, specific
technical communities have worked hard to define efficient protocols that can be used for
streaming what can be voluminous streams of Observations. Protocols for implementing
dynamic Data Streams within the OGC API - Connected Systems Standard v1.0 include:

5.2.2.1.1. WebSockets

Within the OGC API - Connected Systems Standard v1.0, WebSockets is used for Data
Streams in the following ways:

● Retrieve real-time Observations from Data Streams (each WebSocket connection allows
streaming data from a single Data Stream)

● Push real-time Observation into Data Streams (each WebSocket connection allows
streaming data to a single Data Stream)

30

5.2.2.1.2. Pub/Sub protocols

Within the OGC API - Connected Systems Standard v1.0, Pub/Sub protocols for Data Streams
are supported and advertised using AsyncAPI. They are used in the following ways:

● Subscribe to Observations from one or more Data Streams
● Publish Observations to Data Streams
● Subscribe to Data Stream resource events (creation/update/deletion events plus

enable/disable events)

A future Part 3 extension of OGC API - Connected Systems Standard v1.0 will provide
implementation details on how to use such Pub/Sub mechanisms including MQTT, AMQP, DDS,
Kafka, etc.

5.2.2.2 Dynamic Data Stream Encodings
Encodings for dynamic Data Streams need to be lightweight and efficient, and specialized for
the specific Observation type. Oftentimes, specific technical communities have worked hard to
define efficient JSON or XML encodings of their content, or efficient binary encodings for
streaming what can be voluminous streams of data. Encodings for implementing dynamic Data
Streams within the OGC API Connected Systems Standard v1.0 include:

5.2.2.2.1. JSON

Within the OGC API - Connected Systems Standard v1.0, various forms of JSON are used for
Data Streams in the following ways:

● The Data Stream description itself is provided in JSON
● Logical schemas for Observation result and parameters are provided in SWE Common

JSON
● Observation themselves can be encoded in JSON

The OGC API - Connected Systems Standard v1.0 does not model Data Streams/Observations
as Features, and therefore does not use GeoJSON or JSON FG Features schema for
Commands and Command Status - instead using JSON schemas.

5.2.2.2.2. Binary Encodings (Protobuf, Flatbuf, Apache Avro™ etc.)

For efficiency, the OGC API - Connected Systems Standard v1.0 also allows encoding
Observations using binary formats such as Protobuf, Flatbuff or Apache Avro™ for example.
When such binary encodings are used, an encoding specific schema is also provided (e.g. a
proto file if Observations are encoded using Protobuf). Some binary encodings, such as H.264
can be implemented within Protobuf or Flatbuf streams or SWE Common binary encoded
streams. A future Part 5 extension of OGC API - Connected Systems Standard v1.0 will provide
implementation details on how to use these binary formats.

31

FlatGeoBuf does have limitations as to its applicability to Observations (see 4.1.2.4 above),
particularly with regard to video and other high bandwidth data types. This is why Flatbuf is
referenced here rather than FlatGeoBuf, which is used to encode Features and Geometries
(see below).

Beyond these generic binary encodings (e.g., Protobuf, Flatbuf, Apache Avro™, etc.) extensions
can define additional binary formats for specific types of Observations like video, imagery, point
clouds, etc. Or, more likely, an implementer can choose to reference another appropriate OGC
interface that provides specialized format support such as OGC API - Coverage, OGC API -
EDR, and OGC API - WAMI Best Practice.

Some of the benefits in using binary encodings like protobuf includes the use of a schema to
define the structure of data. This schema is language-agnostic and can be used to generate
code for various programming languages. This helps in maintaining a consistent data structure
across different platforms. It is also self-describing and enforces strong typing which helps to
catch data format errors at compile time. These binary encodings also has a smaller
serialization overhead and because of its binary nature, it works well with compression
algorithms. The binary nature of protobuf can enhance security by reducing the risk of injection
attacks that are possible with text-based formats. However, it should be noted that protocol
buffers is less human-readable than text-based formats and would hence be less suitable when
human readability is essential.

5.2.3. Dynamic Control Stream Protocols and Encodings
Where the OGC API - Connected Systems Standard v1.0 extends beyond the OGC API -
Features is with regard to dynamic Data Streams and Control Streams, to support real-time
interactions within Systems of all kinds. This section addresses dynamic Control Streams.

5.2.3.1 Dynamic Control Stream Protocols
Protocols for dynamic Control Streams need to be lightweight and efficient. Often times,
specific technical communities have worked hard to define efficient protocols that can be used
for controlling Systems with voluminous streams of Commands. Protocols for implementing
dynamic Control Streams within the OGC API Connected Systems Standard v1.0 include:

5.2.3.1.1. WebSockets

Within the OGC API - Connected Systems Standard v1.0, WebSockets is for Control Streams in
the following ways:

● Push real-time Commands into Control Streams, and receive ACK (each WebSocket
connection allows streaming data to a single Control Stream)

● Retrieve real-time Commands from Control Streams (each WebSocket connection
allows streaming data from a single Control Stream)

32

5.2.3.1.2. Pub/Sub protocols

Within the OGC API - Connected Systems Standard v1.0, Pub/Sub protocols for Control
Streams are supported and advertised using AsyncAPI. They are used in the following ways:

● Publish Commands to Control Streams
● Subscribe to Command status messages (i.e. initial ACK, status report for long running

commands, etc.)
● Subscribe to Commands received from one or more Control Streams
● Subscribe to Control Stream resource events (creation/update/deletion events plus

enable/disable events)

A future Part 3 extension of OGC API - Connected Systems Standard v1.0 will provide
implementation details on how to use such Pub/Sub mechanisms including MQTT, AMQP, DDS,
Kafka, etc.

5.2.3.2. Dynamic Control Stream Encodings
Encodings for dynamic data streams need to be lightweight and efficient, and specialized for the
specific Observation type. Often times, specific technical communities have worked hard to
define efficient JSON or XML encodings of their content, or efficient binary encodings for
streaming what can be voluminous streams of data. Encodings for implementing dynamic
Control Streams within the OGC API Connected Systems Standard v1.0 include:

5.2.3.2.1 JSON (GeoJSON/JSON FG)

Within the OGC API - Connected Systems Standard v1.0, various forms of JSON are used for
Control Streams in the following ways:

● The Control Stream description itself is provided in JSON
● Logical schemas for Command parameters and results are provided in SWE Common

JSON
● Command themselves can be encoded in JSON

The OGC API - Connected Systems Standard v1.0 does not model Control Streams/Commands
as Features, and therefore does not use GeoJSON or JSON FG Features schema for
Commands and Command Status - instead using JSON schemas.

5.2.3.2.2 Binary Encodings (Protobuf, Flatbuf, Apache Avro™ etc.)

For efficiency, the OGC API - Connected Systems Standards v1.0 also allows encoding
Commands, Command Status and Command Results using binary formats such as Protobuf,
Flatbuff or Apache Avro™ for example. When such binary encodings are used, an encoding
specific schema is also provided (e.g. a proto file if Protobuf is used). A future Part 5 extension
of OGC API - Connected Systems Standard v1.0 will provide implementation details on how to
use these binary formats.

33

Note: FlatGeoBuf does have limitations as to its applicability to real-time Commands (see
4.1.2.4 above). This is why Flatbuf is referenced here rather than FlatGeoBuf, which is used to
encode Features and Geometries (see below).

6. OGC API - Connected Systems Standard v1.0 in
the Landscape of Standards
It is always the goal to have an orderly set of interoperability standards with a clear set of
relationships between each other, and no ambiguity or minimal overlap in their functionality.
However, not only are there similar looking standards built for different purposes, but they often
interact with each other in useful and surprising ways.

This discussion of how the OGC API - Connected Systems Standard v1.0 sits within the larger
landscape of standards will be provided in 3 parts. First, we will discuss how the OGC API -
Connected Systems Standard v1.0 relates to other OGC Standards. Second, we will discuss
how it relates to other Web standards. And Third, we will discuss other standards that are
related, but which the OGC API - Connected Systems Standard does not normatively reference
or link to.

6.1. OGC Universe of Standards
Within the OGC’s universe of standards, there are complementarities, touch points, and
isomorphic functions. With the OGC API - Connected Systems Standard v1.0, things are no
different. This discussion will address those OGC specifications that are normatively referenced
within the OGC API - Connected Systems Standard v1.0, and those that the OGC API -
Connected Systems Standard v1.0 links with, since all OGC API based standards are built on
the same patterns, we can combine functionality from different OGC APIs on the same
endpoint.

6.1.1 Normatively Referenced OGC Standards
The OGC specifications that are normatively referenced within the OGC API - Connected
Systems Standard v1.0 are:

6.1.1.1 OGC API - Features (Part 1, Part 3, Part 4)
As mentioned above, if a user (e.g., human or process) seeks a static Feature representation of
Systems published by a given instance of the OGC API - Connected Systems Standard v1.0,
they will access this static Feature representation from the OGC API - Features part (e.g., Part
1) of the specification. It is also possible that this static Feature representation might be served
by a linked remote OGC API - Feature instance. For more on this later point regarding linked
resources, see section 6.1.7 below. Note: Part 2 related to coordinate reference Systems can
also be used within the OGC API - Connected Systems Standard v1.0. Also Note: The draft

34

Part 5 addresses issues of how Pub/Sub mechanisms will be addressed in OGC API - Features.
See discussion in section 6.1.1.2 below.

6.1.1.2 OGC API - Pub/Sub
Given that several OGC API SWGs, including the OGC API - Connected Systems SWG,
contemporaneously expressed interest in adopting a common architecture for asynchronous
communication, and support the approach proposed by the OGC API - EDR SWG - an
approach based on the AsyncAPI (which is the asynchronous counterpart to OpenAPI). This
approach supports the asynchronous workflows of the previous OGC SWE interface while
better conforming with the OpenAPI strategic guidance provided by the OGC API - Connected
Systems Standard v1.0. This approach is also being adopted by the OGC API - Features SWG
in their draft Part 5.

6.1.1.3. SOSA/SSN/OMS
As mentioned above, SOSA/SSN/OMS is one of the core conceptual level information models
underpinning the OGC API - Connected Systems Standard v1.0. Its predecessor, the OGC
SWE specification, predated the SOSA/SSN/OMS standard, but provided support for all of the
concepts that have been formalized within the SOSA/SSN/OMS specification. See Section 3:
Terms and Definitions for more detail.

6.1.1.4. SensorML
As mentioned above, SensorML v3.0 is one of the core implementation level information models
underpinning the OGC API - Connected Systems Standard v1.0, and its predecessor, the OGC
SWE Standards. See Section 3: Terms and Definitions for more detail.

6.1.1.5. SWE Common Data Model Encoding Standard
As mentioned above, SWE Common Data Model Encoding Standard v3.0 is one of the core
implementation level information models underpinning the OGC API - Connected Systems
Standard v1.0, and its predecessor, the OGC SWE Standards. See Section 3: Terms and
Definitions for more detail.

6.1.1.6. GeoPose
As mentioned above, GeoPose is one of the core conceptual level information models
underpinning the OGC API - Connected Systems Standard v1.0. Its predecessor, the OGC
SWE Standards, predated the GeoPose standard, but provided support for all of the concepts
that have been formalized within the GeoPose specification. See Section 3: Terms and
Definitions for more detail.

6.1.2 Linking to external Observation result
As mentioned above in section 6.1.1., if the user seeks to have Observations provisioned in the
form of static Features, by an external OGC API - Features instance, they can request data from

35

Part 1 of the OGC API - Connected Systems Standard v2.0, which conforms to the OGC API -
Features specification, or from a remote OGC API - Features instance.

Beyond this, the other OGC specifications that the OGC API - Connected Systems Standard
v1.0 links with (organized according to their OGC API - Connected Systems function) include:

6.1.2.1. Link to OGC API - Maps
If the user seeks a map in response to their request for Observations, it can be provided through
a link to an OGC API - Maps interface.

6.1.2.2. Link to OGC API - Coverages
If the user seeks to request Observations in the form of a gridded coverage, or to further slide
and dice raster observations (aka gridded coverages) it can be provided through a link to an
OGC API - Coverage interface.

6.1.2.3. Link to OGC API - EDR
If the user seeks to discover or query data resources from an OGC API - EDR instance, they
can request metadata about the Environmental Data Resources (EDR) provided by the server,
or execute query operations to retrieve EDR from the underlying data store based upon simple
selection criteria, defined by this standard and selected by the client. This can include sub
setting certain Connected Systems resources available through an OGC API - EDR instance.

6.1.2.4. Link to OGC SensorThingsAPI
If the user seeks to request Observations from an OGC SensorThings API that is linked to an
instance of the OGC API - Connected Systems Standard v1.0, they can do so.

6.1.2.5. Link to OGC API - 3D Volumes/3D Tiles
If the user seeks to request 3D Features of Interest response to their request for Observations,
it can be provided through a link to an OGC API - 3D Volumes or 3DTiles interface.

6.1.2.6. Link to API OGC - Records
If the user seeks to request metadata records regarding a System, or the Observations from a
particular System, it can be provided through a link to an OGC API - Records interface.

6.1.2.7. Link to OGC API - Moving Features
If the user seeks to request OGC API - Moving Features response to their request for
Observations, they can do so.

6.1.2.8. Link to OGC WAMI Best Practice
If the user seeks to request OGC WAMI Best Practice response to their request for
Observations, they can do so.

36

Future support for linking to yet to be approved OGC specifications such as GeoDCAT
(https://www.ogc.org/press-release/ogc-forms-new-geodcat-standards-working-group/), based
on the W3C’s Data Catalog Vocabulary (https://www.w3.org/TR/vocab-dcat-3/) can also be
added.

6.2. Other Web Standards
The OGC has long held Class A liaison relationships with other international standards
organizations (ISO) that promulgate Web standards, and other domain standards. Some of
these are normatively referenced through various OGC API Standards, including

6.2.1. OpenAPI (https://www.openapis.org/)
As mentioned above, the scope for the OGC API - Connected Systems Standard v1.0 was very
much defined by the OGC’s strategic guidance to migrate all legacy/heritage specifications to
OpenAPI/RESTful patterns.

6.2.2. AsyncAPI (https://www.asyncapi.com/)
As mentioned above, AsyncAPI (which is the asynchronous counterpart to OpenAPI) provides
the asynchronous workflows of the previous OGC SWE interface while better conforming with
the OGC Architecture Board’s strategic guidance. AsynchAPI is used in OGC API - Connected
Systems Standard v1.0 to define asynchronous and Pub/Sub interfaces.

6.2.3. JSON (https://www.json.org/)
JSON, also known as ECMA-404 The JSON data interchange syntax (2nd edition, December
2017) was published by Ecma International
(https://www.ecma-international.org/publications-and-standards/standards/ecma-404/) which,
since 1961 facilitates the timely creation of a wide range of global Information and
Communications Technology (ICT) and Consumer Electronics (CE) standards. JSON is flexible
and powerful format, which can be profiled in innovative ways. It underpins GeoJSON and
JSON-FG, which, despite their common reliance on JSON, diverge on important issues such as
spatial reference system/coordinate system support. The OGC API - Connected Systems
Standard v1.0 utilizes JSON as its main resource format.

6.2.4. XML (https://www.w3.org/XML/)
Extensible Markup Language (XML) is a simple, very flexible text format derived from SGML
(ISO 8879), managed by the World Wide Web Consortium’s XML Activity (www.w3.org).
Originally designed to meet the challenges of large-scale electronic publishing, XML is also

37

https://www.ogc.org/press-release/ogc-forms-new-geodcat-standards-working-group/
https://www.w3.org/TR/vocab-dcat-3/
https://www.openapis.org/
https://www.asyncapi.com/
https://www.json.org/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.w3.org/XML/

playing an increasingly important role in the exchange of a wide variety of data on the Web and
elsewhere. The use of XML is deprecated in the OGC API - Connected Systems Standard v1.0.

6.2.5. Protobuf (https://protobuf.dev/)
Protocol Buffers are language-neutral, platform-neutral extensible mechanisms for serializing
structured data. One uses Protobufs if they want to be more efficient and the message is not
that big (1 MB or less). The binary nature of protobuf can enhance security by reducing the risk
of injection attacks that are possible with text-based formats. Protobuf is used in OGC API -
Connected Systems Standard v1.0 as an efficient resource format. A future Part 5 extension of
OGC API - Connected Systems Standard v1.0 will provide implementation details on how to use
these binary formats.

6.2.6. Flatbuf / FlatGeoBuf (https://flatbuffers.dev, http://flatgeobuf.org/,
https://www.ogc.org/tag/flatgeobuf/)
Use FlatBuffers if we want to be more efficient with larger messages. FlatBuffers is the better
choice if you're looking to create read-only query messages - this feature also saves on time
and memory. A future Part 5 extension of OGC API - Connected Systems Standard v1.0 will
provide implementation details on how to use these binary formats.

Note: FlatGeoBuf does have limitations as to its applicability to real-time Commands (see
4.1.2.4 above). This is why Flatbuf is referenced here rather than FlatGeoBuf, which is used to
encode Features and Geometries (see below).

6.2.7. Apache Avro™ (https://avro.apache.org/)
Apache Avro™ is the leading serialization format for record data, and first choice for streaming
data pipelines. It offers excellent schema evolution, and has implementations for the JVM (Java,
Kotlin, Scala, …), Python, C/C++/C#, PHP, Ruby, Rust, JavaScript, and even Perl. A future Part
5 extension of OGC API - Connected Systems Standard v1.0 will provide implementation details
on how to use these binary formats.

6.2.7. MQTT
MQTT (https://mqtt.org/) is an OASIS standard messaging protocol for the Internet of Things
(IoT). It is designed as an extremely lightweight publish and subscribe messaging transport that
is ideal for connecting remote devices with a small code footprint and minimal network
bandwidth. MQTT today is used in a wide variety of industries, such as automotive,
manufacturing, telecommunications, oil and gas, etc. The OGC API - Connected System
Standard v1.0 utilizes MQTT for Data Streams and Control Streams. MQTT is hub-and-spoke
and is optimized for centralized data collection and analysis – connecting sensors and mobile
devices to applications or a message broker. A future Part 3 extension of OGC API -
Connected Systems Standard v1.0 will provide implementation details on how to use such
Pub/Sub mechanisms.

38

https://protobuf.dev/
https://flatbuffers.dev/
http://flatgeobuf.org/
https://www.ogc.org/tag/flatgeobuf/
https://avro.apache.org/
https://mqtt.org/

6.2.8. Advanced Message Queuing Protocol (AMQP)
AMQP (https://www.amqp.org) is an open-standard protocol for message-oriented middleware
that enables communication between different software components in a distributed system.
AMQP is designed to facilitate the efficient and reliable exchange of messages between
applications or systems, making it a valuable tool for building scalable and robust messaging
solutions. It is commonly used in scenarios such as messaging systems, queueing systems, and
inter-process communication in various software applications.

● On top of the publish and subscribe messaging patterns, it allows for point-to-point and
request-reply scenarios. These patterns allow for flexibility in designing communication
between components.

● Various properties, including headers, body and routing information. These properties
are used for message filtering and routing.

● Security features such as authentication and authorization. It also supports transport
layer security (TLS/SSL) for secure communication.

● Flow control to prevent message congestion and ensure that consumers receive
messages at a manageable rate.

● Presence of routing rules allows determination of how messages are delivered to queues
and ultimately, to consumers.

● Error codes and mechanisms during message exchange helps in building robust and
reliable messaging systems.

A future Part 3 extension of OGC API - Connected Systems Standard v1.0 will provide
implementation details on how to use such Pub/Sub mechanisms.

6.2.9. Data Distribution System (DDS)
The Object Management Group (OMG) Data Distribution Service for Real-Time Systems (DDS)
standard (https://www.omg.org/omg-dds-portal/) was designed specifically to address
machine-to-machine (M2M) communication, directly connecting sensors, devices and
applications to each other without any dependence on centralized IT infrastructure. While DDS
is not called out explicitly in the OGC API - Connected Systems Standard, it can be
accommodated as an extension. A future Part 3 extension of OGC API - Connected Systems
Standard v1.0 will provide implementation details on how to use such Pub/Sub mechanisms.

6.2.10. Kafka
Kafka (https://kafka.apache.org/intro) is a distributed system consisting of servers and clients
that communicate via a high-performance TCP network protocol. It can be deployed on
bare-metal hardware, virtual machines, and containers in on-premise as well as cloud
environments. A future Part 3 extension of OGC API - Connected Systems Standard v1.0 will
provide implementation details on how to use such Pub/Sub mechanisms.

39

https://www.amqp.org
https://www.omg.org/omg-dds-portal/
https://kafka.apache.org/intro

6.2.11. Web of Things (WoT)
The Web of Things (WoT) (https://www.w3.org/WoT/) seeks to counter the fragmentation of the IoT
by using and extending existing, standardized Web technologies. By providing standardized
metadata and other re-usable technological building blocks, W3C WoT enables easy
integration across IoT platforms and application domains. OGC data models (including OMS,
SensorML and SWE Common) provide a superset of WoT capabilities. It should always be
possible to translate a WoT Thing Description (TD) to a SensorML description for example (the
reverse is true too but potentially with some loss of information). An implementation of
Connected Systems can be used to integrate with WoT.

6.3. Related Standards
There are many related standards that are not normatively referenced in the OGC API -
Connected Systems Standard v1.0.

6.3.1 Related Geospatial Format Standards
There are many related format standards that are not normatively referenced in the OGC API -
Connected Systems specification

6.3.1.1 H. 264/MISB/STANAG 4609

(https://gwg.nga.mil/gwg/focus-groups/Motion_Imagery_Standards_Board_(MISB).html)
H. 264, also called Advanced Video Coding (AVC), is the most common video compression
standard in use today. When used for overhead imagery from drones and satellites, telemetry
data can be encoded in Motion Imagery Standards Board (MISB) metadata within H.264.
STANAG 4609 describes an exchange format for motion imagery. It is the official format for motion
imagery (video data, image sequences, FMV - full motion videos) exchange within the NATO
nations. Motion imagery is defined by MISB to be video of at least 1 Hz image frequency together
with metadata. STANAG 4609 describes the encoding of the video and the metadata (geographical
data) for different usages. This includes the supported video codecs, bit rates, frame rates,
container formats, metadata content, metadata encoding and hardware to distribute the motion
imagery.

6.3.1.2 STAC Item (https://stacspec.org)
SpatioTemporal Asset Catalog (STAC) specification provides a common structure for describing
and cataloging spatiotemporal assets. A STAC Item is the core atomic unit, representing a
single spatiotemporal asset as a GeoJSON feature plus datetime and links.

6.3.1.3 COG (https://www.cogeo.org/)
A Cloud Optimized GeoTIFF (COG) is a regular GeoTIFF file, aimed at being hosted on a HTTP
file server, with an internal organization that enables more efficient workflows on the cloud. It

40

https://www.w3.org/WoT/
https://gwg.nga.mil/gwg/focus-groups/Motion_Imagery_Standards_Board_(MISB).html
https://stacspec.org/en
https://www.cogeo.org/

does this by leveraging the ability of clients issuing HTTP GET range requests to ask for just the
parts of a file they need.

6.3.1.4 LAS
(https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf)
The LAS file format is a public file format for the interchange of 3-dimensional point cloud data
data between data users. Although developed primarily for exchange of LiDAR point cloud data,
this format supports the exchange of any 3-dimensional x,y,z tuplet. LAS is a Standard of the
American Society for Photogrammetry & Remote Sensing.

6.3.1.5 Gridded Coverage/Imagery Formats
There are countless other gridded coverage and imagery formats that are commonly generated
by Sensors of all kinds. The OGC API - Connected Systems Standard provides support for any
and all of these. This includes GRIB, NetCDF, HDF, HDF-EOS, JPEG, JPEG2000, GRASS,
NITF, and Compensated Phase History Data (CPHD).

6.3.2. Related Libraries and Interface Standards
There are many related interface standards that are not normatively referenced in the OGC API
- Connected Systems Standard v1.0 and cannot be linked, but which have shared and
overlapping purpose.

6.3.2.1 ArduPilot (https://ardupilot.org/)
ArduPilot is an open source, unmanned vehicle autopilot software suite capable of controlling
autonomous multirotor drones, fixed-wing and VTOL aircraft, helicopters, ground rovers, boats,
submarines, antenna trackers. ArduPilot was originally developed by hobbyists to control model
aircraft and rovers and has evolved into a full-featured and reliable autopilot used by industry,
research organizations, and amateurs. (https://en.m.wikipedia.org/wiki/ArduPilot)

As the dominant standard for UxS remote piloting and autopiloting, ArduPilot serves as one of
the primary bridges from which any OGC API - Connected Systems based System will receive
Data Streams of Observations, and over which it would send Control Streams (e.g., feasibility
and tasking commands) to control UxS. Preliminary mappings demonstrate compatibility
between these two standards.

6.3.2.2 Distributed Common Ground System (DCGS)
The Distributed Common Ground System (DCGS) is a system of the U.S. Department of
Defense which produces military intelligence for multiple military branches, combatant
commands, and combat support agencies. Each has their own DCGS segments capable of
sharing information between each via DCGS core services.

41

https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf
https://nsgreg.nga.mil/doc/view?i=5062&month=3&day=8&year=2022
https://ardupilot.org/
https://en.m.wikipedia.org/wiki/ArduPilot

6.3.2.3 Defense Intelligence Information Enterprise (DI2E)
DI2E is the component of the U.S. Defense Intelligence Enterprise that a) transforms
information collected for intelligence needs into forms suitable for further analysis and action; b)
provides the ability to integrate, evaluate, interpret and predict the current and future
operations/physical environment; and c) provides the ability to present, distribute or make
available intelligence, information and environmental content and products that enable better
situational awareness to military and national decision making.

6.3.2.4 DJI SDK (https://www.dji.com/)
DJI, a global technology company that specializes in manufacturing drones and aerial
photography systems, is one of the leading manufacturers of drones, with a significant market
share in the industry.

DJI SDK (Software Development Kit) is a set of software development tools and resources. The
DJI SDK allows developers to create custom applications that can interact with DJI's drones and
other products.

The DJI SDK provides access to a range of features and functions, including flight control,
camera control, and data transmission. Developers can use the SDK to create custom
applications for a variety of use cases, such as aerial photography, surveying, mapping, and
inspection.

As the proprietary mechanism for interfacing with all DJI drones, this serves as one of the
primary bridges from which any OGC API - Connected Systems Standard v1.0 based System
will receive Data Streams of Observations, and over which it would send Control Streams (e.g.,
feasibility and tasking commands) to control DJI Platforms and Sensors. Preliminary mappings
demonstrate compatibility between these two specifications.

6.3.2.5 SAPIENT
(https://www.gov.uk/guidance/sapient-autonomous-sensor-system)
Sensing for Asset Protection with Integrated Electronic Networked Technology (SAPIENT) uses
autonomy to reduce the workload of people operating multi-sensor systems, in security and
defence scenarios. It is the concept of a network of advanced sensors with artificial intelligence
(AI) at the edge, combined with intelligent fusion and sensor management. The benefits of
SAPIENT include:

● significantly lower cognitive burden on operators
● lower communications bandwidth
● operational flexibility
● dual defence and security use
● lower acquisition cost

42

https://www.dji.com/
https://www.gov.uk/guidance/sapient-autonomous-sensor-system

SAPIENT has been adopted by MOD as the standard for counter-UAS(uncrewed air system)
technology. It is also being evaluated as a potential NATO standard for counter-drone systems.
Preliminary mappings demonstrate compatibility between SAPIENT and OGC API - Connected
Systems Standard v1.0.

6.3.2.6 Integrated Sensor Architecture (ISA -
https://apps.dtic.mil/sti/pdfs/AD1079785.pdf)
ISA is a U.S. Army Service-Oriented Architecture (SOA) developed by the Night Vision
Electronic Sensors Directorate (NVESD) of what now is the US Army DevCom C5ISR Center.
ISA identifies common standards and protocols, which support a net-centric system-of-systems
integration. Utilizing a common language, these systems are able to connect, publish their
needs and capabilities, and interact dynamically. ISA provides an extensible data model with
defined capabilities, and provides a scalable approach across multi-echelon deployments, which
when coupled with dynamic discovery capabilities, cybersecurity, and sensor management,
provides a system which can adjust and adapt to dynamic environment. ISA capabilities enable
Soldiers to exchange information between their own sensors and those on other Platforms in a
fully dynamic and shared environment. ISA enables Army sensors and systems to readily
integrate into an existing network and dynamically share information and capabilities to improve
situational awareness in a battlefield environment.

As the dominant standard for discovering, accessing, visualizing and tasking sensors on US
Army Platforms, ISA serves as one of the primary bridges from which any OGC API -
Connected Systems Standard v1.0 based System will receive Data Streams of Observations,
and over which it would send Control Streams (e.g., feasibility and tasking commands) to control
ISA Sensors. Preliminary mappings demonstrate compatibility between these two standards.

6.3.2.7 Joint Interface Control Document (JICD) 4.2.1
The JICD for common services lets systems become interoperable with Network-Centric
Collaborative Targeting (NCCT) and Theater Net-Centric Geolocation (TNG) sensor fusion
networks.

As a niche Department of Defense (DOD) standard for discovering, accessing, visualizing and
tasking Electronic Warfare systems, JICD 4.2.1 serves as one of the primary bridges from which
any OGC API - Connected Systems Standard v1.0 based System will receive Data Streams of
Observations, and over which it would send Control Streams (e.g., feasibility and tasking
commands) to control JICD 4.2.1 Systems. Preliminary mappings demonstrate compatibility
between these two standards.

6.3.2.8 Micro Air Vehicle Link (MavLink - https://mavlink.io)
MAVLink is a protocol for communicating with small unmanned vehicle. It is designed as a
header-only message marshaling library. MAVLink was first released early 2009 by Lorenz
Meier under the LGPL license.
(https://en.m.wikipedia.org/wiki/MAVLink)

43

https://apps.dtic.mil/sti/pdfs/AD1079785.pdf
https://c5isrcenter.devcom.army.mil/
https://mavlink.io
https://en.m.wikipedia.org/wiki/MAVLink

As the dominant standard for communicating with UxS, MAVLink serves as one of the primary
bridges from which any OGC API - Connected Systems Standard v1.0 based System will
receive Data Streams of Observations, and over which it would send Control Streams (e.g.,
feasibility and tasking commands) to control UxS. Preliminary mappings demonstrate
compatibility between these two standards.

6.3.2.9 Robot Operating System (ROS - https://ros.org/)
ROS is an open-source robotics middleware suite. Although ROS is not an operating system
(OS) but a set of software frameworks for robot software development, it provides services
designed for a heterogeneous computer cluster such as hardware abstraction, low-level device
control, implementation of commonly used functionality, message-passing between processes,
and package management. Running sets of ROS-based processes are represented in a graph
architecture where processing takes place in nodes that may receive, post, and multiplex sensor
data, control, state, planning, actuator, and other messages. Despite the importance of reactivity
and low latency in robot control, ROS is not a real-time operating system (RTOS). However, it is
possible to integrate ROS with real-time computing code.[3] The lack of support for real-time
systems has been addressed in the creation of ROS 2,[4][5][6] a major revision of the ROS API
which will take advantage of modern libraries and technologies for core ROS functions and add
support for real-time code and embedded system hardware.
(https://en.m.wikipedia.org/wiki/Robot_Operating_System)

As the dominant standard for controlling robots, ROS serves as one of the primary bridges from
which any OGC API - Connected Systems Standard v1.0 based System will receive Data
Streams of Observations, and over which it would send Control Streams (e.g., feasibility and
tasking commands) to control ROS based robotic Platforms. Preliminary mappings demonstrate
compatibility between these two standards.

6.3.2.10 Sensor Open Systems Architecture (SOSA -
http://prod.opengroup.org/sosa)
SOSA, developed by the OpenGroup, establishes guidelines for Command, Control,
Communications, Computers, Cyber, Intelligence, Surveillance and Reconnaissance (C5ISR)
systems. The objective is to allow flexibility in the selection and acquisition of sensors and
Subsystems that provide sensor data collection, processing, exploitation, communication, and
related functions over the full life cycle of the C5ISR system.

As a dominant hardware standard for connecting sensors into larger C5ISR systems, SOSA
serves as one of the primary bridges from which any OGC API - Connected Systems Standard
v1.0 based System will receive Data Streams of Observations, and over which it would send
Control Streams (e.g., feasibility and tasking commands) to control such Sensor Systems.
Preliminary mappings demonstrate compatibility between these two standards.

44

https://ros.org/
https://en.m.wikipedia.org/wiki/Robot_Operating_System
http://prod.opengroup.org/sosa

6.3.2.11 SISO High Level Architecture (HLA) and Distributed Interactive Simulation
(DIS)
(https://www.sisostds.org/StandardsActivities/DevelopmentGroups/HLAPDG-High-Level
Architecture.aspx, and
https://www.sisostds.org/StandardsActivities/SupportGroups/DISRPRFOMPSG.aspx)

In 1995, the Defense Modeling and Simulation Office (DMSO) formulated a vision for modeling
and simulation and established a modeling and simulation masterplan, which included the High
Level Architecture (HLA). The purpose of HLA is to provide one unified standard that would
meet the simulation interoperability requirements of all US DoD components, and to support
legacy modeling and simulation interoperability protocols including the Distributed Interactive
Simulation (DIS) protocol. To facilitate usage outside of the defense community, HLA was then
transitioned into an IEEE standard, maintained by Simulation Interoperability Standards
Organization (SISO). SISO-PN-016-2016 established the High Level Architecture (HLA)
Product Development Group which developed and maintains High-Level Architecture Version
3.0. The PDG operates simultaneously as the HLA Working Group under the IEEE Computer
Society Standards Activities Board Simulation Interoperability (C/SI) SISO SAC Standards
Committee.

To facilitate the migration for DIS users, a Federation Object Model corresponding to the fixed
object model of DIS was also developed as the Real-time Platform Reference FOM (RPR FOM).
The Distributed Interactive Simulation / Real-time Platform Reference Federation Object Model
(DIS / RPR FOM) Product Support Group (PSG) is a permanent support group chartered by the
Simulation Interoperability Standards Organization (SISO) Standards Activity Committee to
support multiple DIS-related products including:

● IEEE Std 1278.1™-2012, IEEE Standard for Distributed Interactive Simulation -
Application Protocols (a revision of IEEE Std 1278.1™-1995 and IEEE Std
1278.1a™-1998)

● IEEE Std 1278.2™-2015, IEEE Standard for Distributed Interactive Simulation (DIS) -
Communication Services and Profiles (a revision of IEEE Std 1278.2™-1995)

● IEEE Std 1278.4™-1997, IEEE Recommended Practice for Distributed Interactive
Simulation - Verification, Validation, and Accreditation

● SISO-STD-001-2015, Standard for Guidance, Rationale, and Interoperability Modalities
(GRIM) for the Real-time Platform Reference Federation Object Model (RPR FOM),
Version 2.0

● SISO-STD-001.1-2015, Standard for Real-time Platform Reference Federation Object
Model (RPR FOM), Version 2.0

As a dominant standard for connecting interactive simulations to larger systems, SISO HLA/DIS
offers OGC API - Connected Systems Standard v1.0 based systems an opportunity to integrate
simulated data feeds into larger systems for many purposes, including mission planning and
rehearsal, as well as the inclusion of simulations of phenomena that may not be observable in

45

https://www.sisostds.org/StandardsActivities/DevelopmentGroups/HLAPDG-High-LevelArchitecture.aspx
https://www.sisostds.org/StandardsActivities/DevelopmentGroups/HLAPDG-High-LevelArchitecture.aspx
https://www.sisostds.org/StandardsActivities/SupportGroups/DISRPRFOMPSG.aspx

real time, in order to calibrate real time operations. As such, SISA HLA/DIS serve as one of the
primary bridges from which any OGC API - Connected Systems based System will receive Data
Streams of Observations, and over which it would send Control Streams (e.g., feasibility and
tasking commands) to control such simulations. Preliminary assessments demonstrate
compatibility between these two standards.

6.3.2.12 Spatio-Temporal Asset Catalog (STAC - https://stacspec.org)
The STAC specification is a common language to describe geospatial information, so it can
more easily be worked with, indexed, and discovered. Though it began independently, the
current version of STAC is based on the OGC API - Features specification, where a “STAC item”
is a Feature.

As a dominant standard for managing remote sensing imagery archives, emerging STAC based
tasking/ordering strategies (currently called Spatio-Tempora Asset Tasking - STAT) offer OGC
API - Connected Systems specification based feasibility and tasking commands a potential
bridge to traverse in order to order data collection from remote sensing satellite constellations.
STAC is already aligned with the OGC API - Features specification, and the STAC community
has expressed its desire for its future tasking/ordering interface to continue to OGC API
standards. The OGC API - Connected Systems editors are committed to remaining engaged in
the STAT process.

6.3.2.13 Universal C2 Language (UC2 -
https://www.sei.cmu.edu/publications/annual-reviews/2021-year-in-review/year_in_revie
w_article.cfm?customel_datapageid_315013=335863)
The UC2 program comprises a set of technical working groups led by a coalition of six federally
funded research and development centers (FFRDCs) with representatives from the military.
Together, Fully Networked Command, Control, and Communications (FNC3) and the Aerospace
Corporation, the Institute for Defense Analyses Systems and Analyses Center, the MIT Lincoln
Laboratory, the MITRE National Security Engineering Center, the RAND National Defense
Research Institute, and the SEI are developing a universal C2 language and standard.

As an emerging and evolving specification, UC2 is similar to many other DoD specifications for
command and control objects, and should easily be accommodated within the OGC API -
Connected Systems Standard v1.0 framework. Unless there is a serious regression in C2
language from existing C2 capabilities, compatibility between these two standards should be
straightforward.

6.3.2.14 Universal Command and Control Interface (UCI)
UCI is a standard managed, systematized and evolved by the US Air Force’s Open Architecture
Management Standards (OAMS) and the Open Mission Systems (OMS) standard. The OAMS
enable current, legacy, and new programs to realize the benefits of Open Architecture.

46

https://stacspec.org
https://www.sei.cmu.edu/publications/annual-reviews/2021-year-in-review/year_in_review_article.cfm?customel_datapageid_315013=335863
https://www.sei.cmu.edu/publications/annual-reviews/2021-year-in-review/year_in_review_article.cfm?customel_datapageid_315013=335863

The USAF’s UCI standard is one of several “universal” C2 standards from the US DoD. As with
UCI, unless there is a serious regression in C2 language from existing C2 capabilities,
compatibility between UCI and the OGC API - Connected Systems Standard v1.0 should be
straightforward.

6.3.2.15 Web Graphics Library (WebGL)
WebGL is a web technology standard that defines a JavaScript API for rendering 2D and 3D
graphics within web browsers. WebGL would be an integral part to support the dynamic data
streaming of the OGC API on applications, and where interative and visually rich graphics and
animations with the Geospatial web applications are use cases. References to WebGL
standards could be found in Khronos Group (www.khronos.org/api/webgl) or any web browser
platforms that use WebGL.

6.3.2.16 Universal Scene Description (USD)
USD provides for interchange of 3D elemental assets or animations, and allows assembly and
organisation of elemental assets into 3D scenes in a robust manner. It is used in many 3D
content creation applications, to compose scenes across different file formats and enable live,
collaborative scene construction (https://openusd.org/release/intro.html).

6.3.2.17 WebGPU
WebGPU exposes an API for performing operations, such as rendering and computation, on a
Graphics Processing Unit. (https://www.w3.org/TR/webgpu/)

7. Use Cases
Interoperability specifications such as the OGC API - Connected Systems Standard v1.0 can
only truly be understood when seen through the lens of concrete, real world examples. This
section provides a series of technical use cases and a series of domain use cases. Together,
reviewers should be able to better understand how Systems, Platforms, Sensors, Processes,
Actuators, Features of Interest, Data Streams and their Observations, and Control Streams and
their Commands work together within the OGC API - Connected Systems Standard v1.0.

7.1. Technical use cases
This section provides concrete technical use cases of how Systems, Platforms, Sensors,
Processes, Actuators, Features of Interest, Data Streams and their Observations, and Control
Streams and their Commands work together when integrating different kinds of systems via the
OGC API - Connected Systems Standard v1.0. These include, but are not limited to:

1) IoT Thing
2) Weather Station
3) Pan Tilt Zoom (PTZ) Camera

47

http://www.khronos.org/api/webgl
https://openusd.org/release/intro.html
https://www.w3.org/TR/webgpu/

4) Aircraft Telemetry
5) Ground Vehicle
6) Surface Vessel
7) Unmanned Aerial Vehicle (Aerial UxS)
8) Unmanned Ground Vehicle (Ground UxS)
9) Unmanned Surface Vehicle (Surface Marine UxS)
10) Unmanned Underwater Vehicle (Underwater Marine UxS)
11) Spaceborne Systems
12) Cell Towers
13) GMTI SAR
14) Air Traffic Radar
15) Doppler Radar
16) Counter UAS Radar
17) Weather Forecast Model
18) Flight Optimization
19) Tipping and Cueing (Laser Range Finder to PTZ)
20) Alerts/Notification (Temperature Threshold)
21) Cyber Sensor
22) Human as Sensor
23) Human as Platform
24) Human Receiving Command
25) Dynamic Data Feed

48

7.1.1. Thing/IoT (Motion Detector)
When a sensing System has a single purpose, it is often termed a “Thing”, as part of the
Internet of Things. This Thing (IoT) example is of a Motion Detector, which is a Sensor. Other
such Things could be Actuators, such as electronic door locks. As everything becomes
connected to the Internet, creating the “Internet of Everything”, Things are becoming more and
more complex. Still this example seeks to showcase a simple System of SubType Sensor. The
diagram and discussion below help convey how IoT Things can be treated in the OGC API -
Connected Systems Standard v1.0.

System: The top level System is the Sensor in this case
Platform: None
Sensors: Motion Detector
Processes: None
Actuators: None
Features of Interest: Motion Detector Frustum, Object(s)
Data Streams/Observations: Motion Detection (Y/N)
Control Streams/Commands: None

Systems:

Name Type Description (+ link to datasheet)

Thing (Motion
Detector)

Sensor

49

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Motion
Detector
Frustum

Motion
Detector

The volume covered by the detector

Object(s) Motion
Detector

The objects whose motion is being detected.

Controlled FOI
(the thing you
want to control)

System Comments

None

Data Streams/Observations:

System Data Stream Comments

Motion
Detector

Motion (Y/N)

Control Streams/Commands:

System Control
Stream

Comments

None

7.1.2. Weather Station
While there are simpler sensors (see Thing/IoT above), a Weather Station is a good example of
a geographically fixed in situ sensing System that collects Observations at a given sampling
point. The diagram and discussion below help convey how Weather Stations can be treated in
the OGC API - Connected Systems Standard v1.0.

50

System: Weather Station (the top level System is the Platform in this case)
Platform: Weather Station (the Platform is the top level System)
Sensors: Thermometer, Barometer, Anemometer, Rain Gauge
Processes: Wind Chill
Actuators: None
Features of Interest: Sampling point at the Weather Station location
Data Streams/Observations: One Data Stream per Sensor/Process (see below)
Control Streams/Commands: Change Sensor configuration (e.g. sampling rate) (one
Control Stream per Sensor)

Systems:

Name Type Description (+ link to datasheet)

Weather
Station

System

Weather
Station

Platform the top level System is the Platform in this case

Thermometer Sensor Subsystem mounted on the Platform

Barometer Sensor Subsystem mounted on the Platform

Anemometer Sensor Subsystem mounted on the Platform

Rain Gauge Sensor Subsystem mounted on the Platform

51

Wind Chill Process Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Sampling point
at the Weather
Station
location

All Sensors All Sensors measure parameters of the same Feature
of Interest

Controlled FOI
(the thing you
want to control)

System Comments

None

Data Streams/Observations:

System Data Stream Comments

Thermometer Air temperature
and relative
humidity
measurements

Barometer Air pressure
measurements

Anemometer Wind speed
and direction
measurements

Rain Gauge Precipitation
measurements

Wind Chill
Process

Wind chill
measurements

Wind chill is calculated from temperature, wind speed,
and humidity

Control Streams/Commands:

52

System Control
Stream

Comments

Thermometer Change sensor
config (e.g.,
sampling rate)

This Control Stream is directly available on the Sensor
resource itself (no need for an additional Actuator)

Barometer Change Sensor
config (e.g.,
sampling rate)

This Control Stream is directly available on the Sensor
resource itself (no need for an additional Actuator)

Anemometer Change Sensor
config (e.g.,
sampling rate)

This Control Stream is directly available on the Sensor
resource itself (no need for an additional Actuator)

Rain Gauge Change Sensor
config (e.g.,
sampling rate)

This Control Stream is directly available on the Sensor
resource itself (no need for an additional Actuator)

Wind Chill
Process

Change
Process config
(e.g., sampling
rate)

This Control Stream is directly available on the Process
resource itself (no need for an additional Actuator)

7.1.3. Pan Tilt Zoom (PTZ) Camera
A PTZ Camera is an example of a fixed sensor that can be tasked to remotely observe its
surroundings. In this example, the position and orientation (GeoPose) is configured at the time
of installation. While it is possible to have a PTZ Camera that derives GeoPose from
GNSS/INS, that is not contemplated in this particular use case. This example is intentionally
‘stripped down’, combining the Actuator of the gimbal within the PTZ Camera description for the
purpose of simplicity, since a Control Stream can be used to Command any System, whether
primarily Sensor, Process, or Actuator. The diagram and discussion below help convey how
PTZ Cameras can be treated in the OGC API - Connected Systems Standard v1.0.

53

System: PTZ Camera
Platform: None
Sensors: PTZ Camera (the Sensor is the top level System)
Actuators: None
Processes: GeoPointing Algorithm
Features of Interest: PTZ Camera, with Frustum, Video Target(s)
Data Streams/Observations: Video, PTZ Parameters
Control Streams/Command: Raw PTZ, Point to Location, Change Video Parameters

Systems:

Name Type Description (+ link to datasheet)

PTZ Camera System

PTZ Camera Sensor Subsystem mounted on the Platform

GeoPointing
Algorithm

Process Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

54

PTZ Camera
with Frustum

PTZ Camera The PTZ Camera provides its own orientation relative
to earth, as well as imaging parameters like FOV, frame
size, frame rate, etc.

Video Target(s) PTZ Camera This is the feature the camera is looking at (e.g. a
street intersection, a building, a room inside a building,
etc.). The video camera provides imagery of the target.

Controlled FOI
(the thing you
want to control)

System Comments

PTZ Camera
with Frustum

PTZ Camera The camera system itself can receive commands to
move (rotate) itself.

Data Streams/Observations:

System Data Stream Comments

Video Camera Video Feed

Video Camera PTZ
Parameters

Control Streams/Commands:

System Control
Stream

Comments

Video Camera Video
Parameters

Change video parameters (e.g. frame rate, frame size,
exposure, etc.)

Video Camera PTZ
Parameters

GeoPointing
Algorithm

X,Y,Z,T Point the PTZ camera to a given lat/lon/elevation

7.1.4. Aircraft Telemetry / ADS-B
Telemetry data from 6 Degree of Freedom (6 DoF) airborne Platforms applies the same to fixed
wing aircraft and rotary wing aircraft as it does to missiles and projectiles. Telemetry Sensors

55

generating position, attitude, and course information are critical to deriving the GeoPose of such
Platforms, and then, by association, other Sensors on the Platform can derive their own
GeoPose information. Given the increasing prevalence of GPS-denial within conflict zones,
some military aircraft also come with Assured Position, Navigation, and Timing (A-PNT)
solutions that can derive GeoPose information for the aircraft, as a System/Platform, and by
association, for its mounted Sensor Systems. The diagram and discussion below help convey
how aircraft telemetry and associated Sensors can be treated in the OGC API - Connected
Systems Standard v1.0. For the purposes of this example, there are no Actuators, because we
assume the human pilot will control the Platform.

System: Helicopter (the top level System is the Platform in this case)
Platform: Helicopter (the Platform is the top level System)
Sensors: GNSS/INS, Engine Sensors (Subsystems mounted on the Platform)
Actuators: None
Processes: None
Features of Interest: Helicopter, Engine
Data Streams/Observations: Positioning Data, Engine State
Control Streams/Commands: None

Systems:

Name Type Description (+ link to datasheet)

Helicopter System

56

Helicopter Platform The top level System is the Platform in this case

GNSS/INS Sensor Subsystem mounted on the Platform

Engine
Sensors

Sensor Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Helicopter GNSS/INS GNSS/INS provides position and orientation of the
Helicopter Platform

Engine Engine Sensor Engine Sensors provide measurements of engine
parameters

Controlled FOI
(the thing you
want to control)

System Comments

None None This example is manned/piloted, therefore there are no
controllable parameters in this model.

Data Streams/Observations:

System Data Stream Comments

GNSS/INS Aircraft
Positioning
Data

Position, attitude, velocity, acceleration, positioning
accuracy, etc.

Engine Sensor Engine State Engine parameters (e.g. temp, power, rpm, etc.)

Control Streams/Commands:

System Control
Stream

Comments

None None

Note: This is a purposefully simple example that could be further enhanced by:

57

- Adding more Sensors providing state of the Aircraft (e.g. air speed, temp, etc.)
- Adding Control Channels to communicate mission info to the pilot
- Adding one or more payloads, each with its own Data Stream(s) and Control

Channel(s)

7.1.5. Ground Vehicle Telemetry / AVL
Ground vehicles increasingly come with sophisticated telemetry Sensors. Given the increasing
prevalence of GNSS-denial within conflict zones, some military vehicles also come with Assured
Position, Navigation, and Timing (A-PNT) solutions that can derive GeoPose information for the
ground vehicle, as a System/Platform, and by association, for its mounted Sensor Systems.
The diagram and discussion below help convey how ground vehicle telemetry and associated
Sensors can be treated in the OGC API - Connected Systems Standard v1.0. For the purposes
of this example, there are no Actuators, because we assume the human driver will control the
Platform.

System: Ground Vehicle (the top level System is the Platform in this case)
Platform: Ground Vehicle (the Platform is the top level System)
Sensors: GNSS/INS, Engine Sensors (Subsystems mounted on the Platform)
Actuators: None
Processes: None
Features of Interest: Ground Vehicle, Engine
Data Streams/Observations: Positioning Data, Engine State
Control Streams/Commands: None

58

Systems:

Name Type Description (+ link to datasheet)

Ground Vehicle System

Ground Vehicle Platform the top level System is the Platform in this case

GNSS/INS Sensor Subsystem mounted on the Platform

Engine
Sensors

Sensor Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Ground Vehicle GNSS/INS GNSS/INS provides position and orientation of the
vehicle

Engine Engine Sensor Engine Sensors provide measurements of engine
parameters

Controlled FOI
(the thing you
want to control)

System Comments

None None This example is manned/crewed therefore there are no
controllable parameters in this model.

Data Streams/Observations:

System Data Stream Comments

GNSS/INS Vehicle
Positioning
Data

Position, attitude, velocity, acceleration, positioning
accuracy, etc.

Engine Sensor Engine State Engine parameters (e.g. temp, power, rpm, etc.)

Control Streams/Commands:

System Control Stream Comments

59

None None

Note: This is a purposefully simple example that could be further enhanced by:
- Adding more Sensors providing state of the Ground Vehicle (e.g. ground speed, temp,

etc.)
- Adding Control Channels to communicate mission info to the driver
- Adding one or more payloads, each with its own Data Stream(s) and Control

Channel(s)

7.1.6. Surface Vessel / AIS
Surface vessels have long benefited from onboard GNSS/INS that provide persistent location
and heading information to the navigator. Given the increasing prevalence of GNSS-denial
within conflict zones, some military surface vessels also come with Assured Position,
Navigation, and Timing (A-PNT) solutions that can derive GeoPose information for the surface
vessel, as a System/Platform, and by association, for its mounted Sensor Systems. The
diagram and discussion below help convey how surface vessel telemetry and associated
Sensors can be treated in the OGC API - Connected Systems Standard v1.0. For the purposes
of this example, there are no Actuators, because we assume the human captain will control the
Platform.

System: Surface Vessel (the top level System is the Platform in this case)
Platform: Surface Vessel (the Platform is the top level System)

60

Sensors: GNSS/INS, Engine Sensors (Subsystems mounted on the Platform)
Actuators: None
Processes: None
Features of Interest: Surface Vessel, Engine
Data Streams/Observations: Positioning Data, Engine Performance
Control Streams/Commands: None

Systems:

Name Type Description (+ link to datasheet)

Surface Vessel System

Surface Vessel Platform the top level System is the Platform in this case

GNSS/INS Sensor Subsystem mounted on the Platform

Engine
Sensors

Sensor Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Surface Vessel GNSS/INS GNSS/INS provides position and orientation (e.g.,
‘orientation at rest’, heal, trim, heading of the Vessel
Platform

Engine Engine Sensor Engine Sensors provide measurements of Engine
parameters

Controlled FOI
(the thing you
want to control)

System Comments

None None This example is manned/crewed/captained, therefore
there are no controllable parameters in this model.

Data Streams/Observations:

System Data Stream Comments

61

GNSS/INS Vessel
Positioning
Data

Position, attitude, velocity, acceleration, positioning
accuracy, etc.

Engine Sensor Engine State Engine parameters (e.g. temp, power, rpm, etc.)

Control Streams/Commands:

System Control
Stream

Comments

None None

Note: This is a purposefully simple example that could be further enhanced by:
- Adding more sensors providing state of the Surface Vessel (e.g. vessel speed, temp,

etc.)
- Adding control channels to communicate mission info to the captain
- Adding one or more payloads, each with its own Data Stream(s) and Control

Channel(s)

7.1.7. Unmanned Aerial System (UAS - aka Aerial UxS)
Aerial UxS Platforms increasingly have onboard GNSS/INS that provide persistent 6 DoF
GeoPose to the operator or the autonomous navigation process. Given the increasing
prevalence of GNSS-denial within conflict zones, aerial UxS producers are increasingly looking
to miniaturize Assured Position, Navigation, and Timing (A-PNT) solutions that can derive
GeoPose information for the Aerial UxS, as a System/Platform, when GNSS is denied, and by
association, for its mounted Sensor Systems. The diagram and discussion below help convey
how Aerial UxS telemetry and associated Sensors can be treated in the OGC API - Connected
Systems Standard v1.0.

62

System: Unmanned Aerial System (UAS) (the top level System in this case includes the
Platform and the Ground Control Station (GCS))
Platform: Unmanned Aerial Vehicle (UAV)
Sensors: GNSS/INS, Video Camera
Actuators: Onboard Navigation Control System
Processes: GeoPointing Algorithm
Features of Interest: UAV, GCS, Camera Frustum, Video Target(s)
Data Streams/Observations: Positioning Data, Video
Control Streams/Commands: Navigation, Camera pointing, Camera config

Systems:

Name Type Description (+ link to datasheet)

UAS System

UAV Platform The Platform is the first component of the top level
System (UAS)

GNSS/INS Sensor Subsystem mounted on the Platform

Video Camera Sensor Subsystem mounted on the Platform

Onboard
Navigation
Control System

Actuator Subsystem mounted on the Platform, also includes
processes but not described here.

63

GeoPointing
Algorithm

Process Subsystem mounted on the Platform

Ground Control
Station

System The GCS is the second component of the top level
System (UAS)

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

UAV GNSS/INS GNSS/INS provides position/orientation/velocity of the
UAV Platform

Ground Control
Station

GCS GCS reports data about itself (e.g. battery, radio status,
position). Not all GCS have GNSS/INS describing their
position, but increasingly they do.

Video Camera Video Camera Video Camera Subsystem provides its own orientation
relative to the Platform, as well as imaging parameters
like FOV, frame size, frame rate, etc.

Video Target(s) Video Camera Video Camera provides imagery of the target

Controlled FOI
(the thing you
want to control)

System Comments

UAV Onboard
Navigation
Control System

Control Subsystem receives navigation commands to
task the UAV to change position or follow a flight plan.

Video Camera Video Camera Video Camera Subsystem receives commands to
change the imaging parameters

Video Frustum Video Camera Video Camera Subsystem receives commands to
change the gimbal and thus the frustum orientation

UAV, Video
Frustum

GeoPointing
Algorithm

GeoPointing process receives commands to point the
frustum to a particular 3D location. This is a higher level
task that breaks down into lower level commands for
maneuvering the UAV and rotating the gimbal.

Data Streams/Observations:

64

System Data Stream Comments

GNSS/INS UAV
Positioning
Data

Position, attitude, velocity, acceleration, positioning
accuracy, etc.

Onboard
Navigation
Control System

UAV State This can include reporting on Platform health, power,
radio, etc. details.

Video Camera Video Data
(H.264)

Control Streams/Commands:

System Control
Stream

Comments

Onboard
Navigation
Control System

Navigation - Relative motion (e.g., joystick controls)
- Navigate to geographic location
- Load and execute entire mission

Video Camera Camera
Pointing

- Raw yaw/pitch/roll command

Video Camera Camera
Configuration

- Start/stop recording
- Change frame rate / resolution / exposure, etc.

GeoPointing
Algorithm

Camera
GeoPointing

Point gimballed camera to X, Y, Z, T

7.1.8. Unmanned Ground Vehicle (UGV - aka Ground UxS)
UGVs increasingly come with sophisticated telemetry Sensors. Given the increasing prevalence
of GNSS-denial within conflict zones, some military vehicles also come with Assured Position,
Navigation, and Timing (A-PNT) solutions that can derive GeoPose information for the UGV, as
a System/Platform, and by association, for its mounted Sensor Systems. The diagram and
discussion below help convey how UGV telemetry and associated Sensors can be treated in the
OGC API - Connected Systems Standard v1.0.

65

System: Ground UxS (Unmanned Ground System) (the top level System in this case includes
the Platform and the Ground Control Station (GCS))
Platform: UGV (Unmanned Ground Vehicle)
Sensors: GNSS/INS, Video Camera
Actuators: Onboard Navigation Control System, Weapon
Processes: GeoPointing Algorithm
Features of Interest: UGV, Camera Frustum, Object(s)
Data Streams/Observations: Telemetry, Video, Gun scope
Control Streams/Commands: Navigation, Camera pointing, Change camera config (e.g.
sampling rate), Gun trigger actuator

Systems:

Name Type Description (+ link to datasheet)

Ground UxS System

UGV Platform The Platform is the first component of the top level
System (UGV)

GNSS/INS Sensor Subsystem mounted on the Platform

Video Camera Sensor Subsystem mounted on the Platform

Weapon Scope Sensor Subsystem mounted on the Platform

66

Onboard
Navigation
Control System

Actuator Subsystem mounted on the Platform, also includes
processes but not described here.

GeoPointing
Algorithm

Process Subsystem mounted on the Platform

Weapon Actuator Subsystem mounted on the Platform

Ground Control
Station

System The GCS is the second component of the top level
System (UGV)

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

UGV GNSS/INS GNSS/INS provides position/orientation/velocity of the
UGV Platform

Ground Control
Station

GCS GCS reports data about itself (e.g. battery, radio status,
position). Not all GCS have GNSS/INS describing their
position, but increasingly they do.

Video Camera Video (H.264) Video Camera Subsystem receives commands to
change the imaging parameters

Video Target(s) Video Camera Video Camera provides imagery of the target

Controlled FOI
(the thing you
want to control)

System Comments

UGV Onboard
Navigation
Control System

Control Subsystem receives navigation commands to
task the UGV to change position or follow a mission
plan.

Video Camera Video Camera Video Camera Subsystem receives commands to
change the imaging parameters

Video Frustum Video Camera Video Camera Subsystem receives commands to
change the gimbal and thus the frustum orientation

Weapon Range Weapon Weapon controller receives weapon actuation

67

commands.

UGV, Video
Frustum

GeoPointing
Algorithm

GeoPointing process receives commands to point the
frustum to a particular 3D location. This is a higher level
task that breaks down into lower level commands for
maneuvering the UAV and rotating the gimbal.

Data Streams/Observations:

System Data Stream Comments

GNSS/INS UGV
Positioning
Data

Position, attitude, velocity, acceleration, positioning
accuracy, etc.

Onboard
Navigation
Control System

UGV State This can include reporting on Platform health, power,
radio, etc. details.

Video Camera Video (H.264)

Control Streams/Commands:

System Control
Stream

Comments

Onboard
Navigation
Control System

Navigation
Commands

- Relative motion (e.g., joystick controls)
- Navigate to geographic location
- Load and execute entire mission

Video Camera Camera
pointing

- Raw yaw/pitch/roll command

Video Camera Camera config - Start/stop recording
- Change frame rate / resolution / exposure, etc.

GeoPointing
Algorithm

Camera
GeoPointing

Point gimballed camera to X, Y, Z, T

Weapon Weapon
Actuation
Commands

68

7.1.9.Unmanned Surface Vehicles (USV - aka Marine UxS)
USV have long benefited from onboard GPS and magnetic compasses that provide persistent
location and heading information to the navigator. Given the increasing prevalence of
GPS-denial within conflict zones, some military USV also come with Assured Position,
Navigation, and Timing (A-PNT) solutions that can derive GeoPose information for the USV, as
a System/Platform, and by association, for its mounted Sensor Systems. The diagram and
discussion below help convey how USV telemetry and associated Sensors can be treated in the
OGC API - Connected Systems Standard v1.0.

System: Marine UxS (Unmanned Surface Vehicle)
Platform: USV (Unmanned Surface Vehicle)
Sensors: GNSS/INS, Thermometer/Humidity Probe, Wind Sensor, CDT, Dissolved Oxygen
Sensor, Acoustic Doppler, Barometer
Actuators: Onboard Navigation Control System
Processes: None
Features of Interest: USV, Atmosphere, Hydrosphere
Data Streams/Observations: Telemetry, Weather, Acoustic Doppler (Bathymetry, etc.), SST,
Salinity, Wave Height, Dissolved O2/CO2
Control Streams/Commands: Navigation, Change sensor config (e.g. sampling rate)

Systems:

Name Type Description (+ link to datasheet)

69

Marine UxS System

USV Platform the top level System is the Platform in this case

GNSS/INS Sensor Subsystem mounted on the Platform

Weather
Sensors

Sensor Subsystem mounted on the Platform

Water Surface
Sensors

Sensor Subsystem mounted on the Platform (includes SST,
Salinity, Wave Height, Dissolved O2/CO2 sensors)

Acoustic
Doppler
(Sonar)

Sensor Subsystem mounted on the Platform

Onboard
Navigation
Control System

Actuator Subsystem mounted on the Platform, also includes
processes but not described here.

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

USV GNSS/INS GNSS/INS provides position/orientation/velocity of the
USV Platform

Atmosphere All Weather
Sensors

Hydrosphere Water Surface
Sensors

Controlled FOI
(the thing you
want to control)

System Comments

USV Controller Controller receives navigation commands to task the
USV to change position or follow a flight plan.

Data Streams/Observations:

System Data Stream Comments

70

GNSS/INS USV
Positioning
Data

Weather
Sensors

Air
Temperature
Atm Pressure
Wind Velocity
Solar
Irradiance

Water Sensors Sea Surface
Temperature

Water Sensors Salinity PPM

Water Sensors Wave Height

Water Sensors Dissolved
O2/CO2

Acoustic
Doppler

Doppler radar
of currents,
bathymetry,
etc.

Control Streams/Commands:

System Control
Stream

Comments

Onboard
Navigation
Control
System

Sensors Change sensor sample rate

Note: All weather Sensors are combined into a single System within the Control
Streams/Commands section of this presentation for the sake of brevity.

71

7.1.10. Unmanned Underwater Vehicle (UUV - aka Marine UxS)
UUVs have long benefited from onboard GPS, magnetic compasses, and inertial measurement
units (IMU) that provide persistent location and heading information to the navigation system,
albeit interpolated between GPS readings. Given the increasing prevalence of GPS-denial
within conflict zones, some military UUV also come with Assured Position, Navigation, and
Timing (A-PNT) solutions that can derive GeoPose information for the underwater vessel, as a
System/Platform, and by association, for its mounted Sensor Systems. The diagram and
discussion below help convey how UUV telemetry and associated sensors can be treated in the
OGC API - Connected Systems Standard v1.0.

System: Marine UXS (Unmanned Underwater Vehicle)
Platform: UUV (Unmanned Underwater Vehicle)
Sensors: GNSS/INS, Water Pressure/Depth, Engine, Hydrosphere Sensors, Acoustic
Doppler
Actuators: Flight Controller
Processes: A-PNT, GeoPointing Algorithm
Features of Interest: UUV, Sonar Range, Acoustic Doppler (e.g., Sonar) Target(s)
[Object(s)], Hydrosphere, Engine
Data Streams/Observations: Positioning Data, Acoustic Doppler (Bathymetry, etc.),
Hydrosphere Data
Control Streams/Commands: Navigation, Change sensor config (e.g. sampling rate)

Systems:

72

Name Type Description (+ link to datasheet)

Marine UxS System

UUV Platform the top level System is the Platform in this case

GNSS/INS Sensor Subsystem mounted on the Platform

Water
Pressure/Depth

Sensor Subsystem mounted on the Platform

Hydrosphere
Sensors

Sensor (s) Subsystem mounted on the Platform

Sonar Sensor Subsystem mounted on the Platform

Engine Sensor Subsystem mounted on the Platform

Onboard
Navigation
Control System

Actuator Subsystem mounted on the Platform, also includes
processes but not described here.

A-PNT Process Subsystem executed on the Platform
(GNSS/INS+Water Pressure/Depth)

GeoPointing
Algorithm

Process Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

UUV GNSS/INS +
Water Pressure
Depth

GNSS/INS and Water Pressure/Depth sensor provides
position/orientation/velocity of the UUV Platform

Acoustic
Doppler range

Acoustic
Doppler

Acoustic Doppler Subsystem provides its own
orientation relative to the Platform, as well as sensing
parameters like FOV, frame size, frame rate, etc.

Acoustic
Doppler
Target(s)

Acoustic
Doppler

Sonar provides signatures of the target

Engine Engine Sensor

73

Hydrosphere Hydrosphere
Sensors

Controlled FOI
(the thing you
want to control)

System Comments

UUV Controller Controller receives navigation commands to task the
UUV to change position or follow a flight plan.

Sonar Sonar Sonar Subsystem receives commands to change the
sonar parameters

UUV, Sonar
Frustum

GeoPointing
Algorithm

GeoPointing process receives commands to point the
frustum to a particular 3D location. This is a higher
level task that breaks down into lower level commands
for maneuvering the UUV and rotating the gimbal.

Data Streams/Observations:

System Data Stream Comments

GNSS/INS UUV
Positioning
Data

Sonar

Hydrosphere
Sensors

Hydrosphere
Observations

Control Streams/Commands:

System Control
Stream

Comments

Onboard
Navigation
Control System

Commands for
New Waypoints

Sonar Change
frequency or
sampling ra

74

GeoPointing
Algorithm

Change the
orientation of
the UUV

7.1.11. Spaceborne Systems
Spaceborne Systems, including satellites, have long benefited from onboard GPS, star trackers
and other technologies that provide persistent location and orientation information to the
Platform navigation system and ground mission control, and by association, for its mounted
Sensor Systems. The diagram and discussion below help convey how space borne system
telemetry and associated Sensors can be treated in the OGC API - Connected Systems
Standard v1.0.

System: Space Mission
Platform: Satellite
Sensors: Camera, Startracker, GNSS/INS
Actuators: Gimbal,
Processes: Orbit Tracking, GeoPointing Algorithm
Features of Interest: Satellite, Camera Frustum, Objects
Data Streams/Observations: Images, Video
Control Streams/Commands: Slew to Cue

75

Systems:

Name Type Description (+ link to datasheet)

Satellite
System

System

Satellite Platform the top level System is the Platform in this case

GNSS/INS Sensor Subsystem mounted on the Platform

Camera Sensor Subsystem mounted on the Platform

Nav Control
System

Actuator Subsystem mounted on the Platform, also includes
Processes but not described here.

GeoPointing
Algorithm

Process Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Satellite GNSS/INS GNSS/INS provides position/orientation/velocity of the
UAV Platform

Object(s) Imager Imager provides imagery of the target

Controlled FOI
(the thing you
want to control)

System Comments

Satellite Flight
Controller

Flight Controller receives navigation commands to task
the satellite to change position or follow a flight plan.

Camera Camera Camera Subsystem receives commands to change the
imaging parameters

Camera
Frustum

Camera
Gimbal/Bus

Camera Gimbal/Bus Subsystem receives commands to
change the Camera Frustum orientation

Satellite,
Camera
Frustum

GeoPointing
Algorithm

GeoPointing process receives commands to point the
Camera Frustum to a particular 3D location. This is a
higher level task that breaks down into lower level

76

commands for maneuvering the Satellite and rotating
the gimbal or bus.

Data Streams/Observations:

System Data Stream Comments

GNSS/INS Satellite
Positioning
Data

Camera Imagery/Video

Control Streams/Commands:

System Control
Stream

Comments

Flight Controller

Camera Commands to
change the
imaging
parameters

Imager
Gimbal/Bus

Commands to
change the
Camera
Frustum
orientation

GeoPointing
Algorithm

Commands to
the
GeoPointing
process to
determine
where to point
the Camera

7.1.12. Cell Tower
Fixed terrestrial infrastructure such as Cell Towers have long served a key role in helping
triangulate the location of mobile handsets in scenarios where the GPS information was not

77

available. The diagram and discussion below help convey how Cell Towers and associated
Sensors can be treated in the OGC API - Connected Systems Standard v1.0.

System: Cell Tower
Platform: Cell Tower
Sensors: Thermometer, Tower Status Monitor (electrical power, HW temp, receiver/emitter
power), Mobile Device Log (mac address, cell region, signal level)
Actuators: None
Processes: Cell Tower Range Calculator, Mobile Device Locator (triangulation)
Features of Interest: Cell Tower, Mobile Device, Cell Tower Range
Data Streams/Observations: One Data Stream per Sensor (see below)
Control Streams/Commands: None

Systems:

Name Type Description (+ link to datasheet)

Cell Tower System

Cell Tower Platform the top level System is the Platform in this case

Thermometer Sensor Subsystem mounted on the Platform

Tower Status
Monitor
(electrical

Sensor Subsystem mounted on the Platform

78

power, HW
temp,
receiver/emitter
power)

Mobile Device
Log (Mac
address, Cell
Region, Signal
Level)

Sensor Subsystem mounted on the Platform

Cell Tower
Range
Calculator

Process Subsystem mounted on the Platform

Mobile Device
Locator

Process Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Cell Tower Tower Status
Monitor
(Sensor)

electrical power, HW temp, receiver/emitter power

Mobile Device Mobile Device
Log (Sensor)

mac address, cell region, signal level

Cell Tower
Range

Cell Tower
Range
Calculator
(Process)

This is calculated with cell RF characteristics, RF
propagation model, and terrain model.

Controlled FOI
(the thing you
want to control)

System Comments

None

Data Streams/Observations:

System Data Stream Comments

79

Thermometer Air
Temperature

Tower Status
Monitor

Electrical
power, HW
temp,
Receiver/emitte
r power

Mobile Device
Log

MAC address,
Cell region,
Signal level

Cell Tower
Range
Calculator

Cell Tower
Range

Mobile Device
Locator

Mobile Device
Location

Control Streams/Commands:

System Control
Stream

Comments

None

7.1.13 GMTI SAR
Ground Moving Target Indicator Synthetic Aperture Radar (GMTI SAR) is an airborne remote
sensing capability that discerns Observations of fixed and moving objects on the ground. The
diagram and discussion below help convey how GMTI SAR and associated Processes can be
treated in the OGC API - Connected Systems Standard v1.0.

80

System: GMTI SAR
Platform: Aircraft
Sensors: Synthetic Aperture Radar
Actuators: None
Processes: Decluttering Algorithm Using DTED, GMTI Detection Report Generator
Features of Interest: Aircraft, Left Radar Beam, Right Radar Beam, GMTI Detection
Data Streams/Observations: Raw radar data (echo power at azimuth/elevation) (Left and
Right), Decluttered GMTI Detection Reports
Control Streams/Commands: None

Systems:

Name Type Description (+ link to datasheet)

GMTI SAR System

Aircraft Platform the top level System is mounted on the Platform

Radar Sensor Subsystem mounted on the Platform

GNSS/INS Sensor Subsystem mounted on the Platform

Decluttering
Algorithm
Using DTED

Process Subsystem mounted on the Platform

GMTI Detection Process Subsystem mounted on the Platform

81

Report
Generator

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Aircraft GNSS/INS

Radar Beams
(Left Beam,
Right Beam)

Radar

GMTI
Detections

Decluttering
Algorithm
Using DTED,
GMTI
Detection
Report
Generator

Controlled FOI
(the thing you
want to control)

System Comments

None

Data Streams/Observations:

System Data Stream Comments

Radar Radar returns

GMTI Detection
Report
Generator

GMTI
Detections

Control Streams/Commands:

System Control
Stream

Comments

82

None

7.1.14 Air Traffic Radar
Air Traffic Radar is another remote sensing capability tied to a fixed location. Rather than being
slewed as a PTZ Camera is, it can be tasked to collect in different modes. The diagram and
discussion below help convey how Air Traffic Radar can be treated in the OGC API - Connected
Systems Standard v1.0.

System: Air Traffic Radar
Platform: Radar Tower
Sensors: Radar
Actuators: None
Processes: Aircraft Tracking
Features of Interest: Radar, Radar Lobes, Targets (aircrafts / drones / birds / weather)
Data Streams/Observations: Raw radar data (echo power at azimuth/elevation), Processed
data = aircraft locations
Control Streams/Commands: Radar Mode (shift frequency/polarity, elevation/azimuth
speed/increments)

Systems:

83

Name Type Description (+ link to datasheet)

Air Traffic
Radar System

System

Radar Tower Platform the top level System is the Platform in this case

Radar Sensor Subsystem mounted on the Platform

Aircraft Feature
Detection/
Tracking

Process Subsystem not mounted on Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Radar Radar

Radar Lobes Radar

Aircraft Radar

Controlled FOI
(the thing you
want to control)

System Comments

Radar Lobes RF modulator

Radar, Radar
Frustum

GeoPointing
Algorithm

GeoPointing process receives commands to point the
frustum to a particular 3D location. This is a higher level
task that breaks down into lower level commands for
pointing the radar.

Data Streams/Observations:

System Data Stream Comments

Radar Radar returns

Aircraft Feature
Detection/
Tracking
Process

Aircraft
Features

84

Control Streams/Commands:

System Control
Stream

Comments

Radar Mode
Control

Command a
change to the
radar
modulation

7.1.15 Weather Radar
Weather Radar is another remote sensing capability tied to a fixed location. Rather than being
slewed as a PTZ camera is, it can be tasked to collect in different modes. The diagram and
discussion below help convey how Weather Radar can be treated in the OGC API - Connected
Systems Standard v1.0.

System: Weather Radar System
Platform: Radar Tower
Sensors: Radar
Actuators: None

85

Processes: Weather Feature Detection/Tracking
Features of Interest: Radar, Radar Lobes, Targets (aircrafts / drones / birds / weather)
Data Streams/Observations: Raw radar data (echo power at azimuth/elevation), Processed
data = reflectivity (etc.) coverage, additional processing to get features
Control Streams/Commands: Radar Mode (shift frequency/polarity, elevation/azimuth
speed/increments)

Systems:

Name Type Description (+ link to datasheet)

Weather Radar
System

System

Radar Tower Platform the top level System is the Platform in this case

Radar Sensor Subsystem mounted on the Platform

Weather
Feature
Detection/
Tracking

Process Subsystem not mounted on Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Radar Radar

Radar Lobes Radar

Weather
System

Radar

Controlled FOI
(the thing you
want to control)

System Comments

Radar Lobes RF modulator

Radar, Radar
Frustum

GeoPointing
Algorithm

GeoPointing process receives commands to point the
frustum to a particular 3D location. This is a higher level
task that breaks down into lower level commands for
pointing the radar.

86

Data Streams/Observations:

System Data Stream Comments

Radar Radar returns

Weather
Feature
Detection/
Tracking
Process

Weather
Features

Control Streams/Commands:

System Control
Stream

Comments

Radar Mode
Control

Command a
change to the
radar
modulation

7.1.16. Counter UAS System (C-UAS)
A C-UAS System is an example of a complex System comprising multiple Sensors, Processes,
and Actuators which observes and discriminates between Features of Interest of different kinds,
and takes action with geospatial precisions and accuracy. A C-UAS System may operate in a
fixed location, or while on the move. The diagram and discussion below help convey how
C-UAS can be treated in the OGC API - Connected Systems Standard v1.0.

87

System: C-UAS System
Platform: C-UAS System
Sensors: Radar, Optical, Acoustic,
Actuators: Countermeasures like High energy RF
Processes: UAS Tracking, UAS Identification, GeoPointing Algorithm
Features of Interest: C-UAS System, Radar, Radar Lobes, Countermeasures, Targets
(aircrafts / drones / birds / weather)
Data Streams/Observations: Raw radar data (echo power at azimuth/elevation), Processed
data = aircraft locations, optical, etc.
Control Streams/Commands: Radar Mode (shift frequency/polarity, elevation/azimuth
speed/increments), Countermeasure Command

Systems:

Name Type Description (+ link to datasheet)

C-UAS System Platform the top level System is the Platform in this case

Radar Sensor Subsystem mounted on the Platform

Optical Sensor Subsystem mounted on the Platform

Acoustic Sensor Subsystem mounted on the Platform

GNSS/INS Sensor Subsystem mounted on the Platform

88

UAS
Identification

Process

UAS Tracking Process

GeoPointing
Algorithm

Process

Countermeasur
es

Actuator Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

C-UAS System GNSS/INS GNSS/INS provides position/orientation/velocity of the
C-UAS Platform

Radar Video Camera Subsystem provides its own orientation
relative to the Platform, as well as imaging parameters
like FOV, frame size, frame rate, etc.

Radar Lobes

Countermeasur
es

Countermeasur
e Frustum

Target(s) Video Camera Video Camera provides imagery of the target

Controlled FOI
(the thing you
want to control)

System Comments

Radar Flight Controller receives navigation commands to task
the UAV to change position or follow a flight plan.

Radar Lobes Video Camera Video Camera Subsystem receives commands to
change the imaging parameters

89

Countermeasur
es

Video Camera Video Camera Subsystem receives commands to
change the gimbal and thus the frustum orientation

Countermeasur
e Frustum

C-UAS, Video
Frustum

GeoPointing
Algorithm

GeoPointing process receives commands to point the
frustum to a particular 3D location. This is a higher
level task that breaks down into lower level commands
for maneuvering the CUAS and rotating the gimbal.

Data Streams/Observations:

System Data Stream Comments

GNSS/INS C-UAS
Positioning
Data

Radar Raw Radar
Data

Optical Video

UAS Tracking
(Process)

Processed
Track Data

Control Streams/Commands:

System Control
Stream

Comments

Radar Mode
Control

Command a
change to the
radar
modulation

Countermeasur
e Control

GeoPoint
Countermeasu
re, and
Execute

90

7.1.17. Weather Forecast Model
A Weather Forecast Model is a System that is a Process which consumes a variety of weather
related Sensor feeds, and generates Data Streams of Observations about a variety of Features
of Interest comprising our forecasted understanding of global weather. The diagram and
discussion below help convey how Weather Forecast Models can be treated in the OGC API -
Connected Systems Standard v1.0.

System: Top level System is a Process
Platform: None
Sensors: None
Actuators: None
Processes: The weather forecast model.
Features of Interest: the atmosphere globally (GFS, other weather features can be extracted
with additional processing (e.g., temperature, pressure, wind speed, precipitation, etc.)
Data Streams/Observations: 3D grid of the state of the atmosphere at a given time, and
predicted at a given time (result time (the time the forecast was run), and phenomenon time
(the time you are predicting for)
Control Streams/Commands: None. It runs on its own.

Systems:

Name Type Description (+ link to datasheet)

Weather
Forecast Model

System the top level System is the Process in this case

91

Weather
Forecast Model

Process the top level System is the Process in this case

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

The
atmosphere
globally

Process

Other weather
features (e.g.,
temperature,
pressure, wind
speed,
precipitation,
etc.)

Process

Controlled FOI
(the thing you
want to control)

System Comments

None

Data Streams/Observations:

System Data Stream Comments

GFS model GFS data
output

Additional
processes

Other weather
feature

Control Streams/Commands:

System Control
Stream

Comments

None

92

7.1.18. Flight Optimization Algorithm
A Flight Optimization Algorithm is a System that is a Process which consumes a variety of
space-based, airborne and terrestrial weather, aircraft, and flight plan data, and generates Data
Streams of Observations that represent optimal flight plans for pilots to choose from. The
diagram and discussion below help convey how Flight Optimization Algorithms can be treated in
the OGC API - Connected Systems Standard v1.0.

System: Top level System is a Process.
Platform: None
Sensors: None
Actuators: None
Processes: The Process is the flight optimization algorithm
Features of Interest: The Flight. Different Feature of Interest for each flight number.
Data Streams/Observations: Output of Process is the predicted optimized flight plan (vector
of aircraft location/heading/speed vs time). Plan of what the airplane would need to do to fly
in an optimal way, given the predicted constraints.
Control Streams/Commands: Set algorithm parameters for given flight ID (e.g. optimize for
fuel and/or time); Trigger optimization on-demand (if not automatically triggered); In general,
this would run on its own. But, it could also be triggered by a pilot/navigator at any time using
an Execute Command, with some parameters beyond Flight ID.

93

Systems:

Name Type Description (+ link to datasheet)

Flight
Optimization
Algorithm

System

Flight
Optimization
Algorithm

Process the top level System is the Platform in this case

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

The Flight GNSS/INS provides position/orientation/velocity of the
flight Platform

Controlled FOI
(the thing you
want to control)

System Comments

None

Data Streams/Observations:

System Data Stream Comments

Flight
optimization
algorithm

Flight
optimization

Control Streams/Commands:

System Control
Stream

Comments

None

94

7.1.19. Tipping and Cueing (Laser Range Finder to PTZ)
A Tipping and Cueing is a System that is a Process which consumes X,Y,Z,T coordinates from
one Sensor (e.g., Laser Range Finder - LRF) and forwards them to another Sensor (e.g., PTZ
Camera) for the purposes of tasking. The diagram and discussion below help convey how
Tipping and Cueing Processes can be treated in the OGC API - Connected Systems Standard
v1.0.

System: Top level System is a Process Chain, with Sensor, Processing and Actuator
components
Platform: None
Sensors: LRF, PTZ Camera
Actuators: PTZ gimbal, Camera config
Processes: Process is a Tip and Cue of PTZ from Laser Range Finder geolocation.
Features of Interest: Target pointed by LRF in X/Y/Z/T
Data Streams/Observations: None, this is a closed loop Process that sends output data as a
Command to an actuator.
Control Streams/Commands: None, this is a closed loop Process that gets inputs directly
from Sensors.

Systems:

Name Type Description (+ link to datasheet)

Tipping and
Cueing

System

95

Process Chain

Tipping and
Cueing
Process Chain

Process the top level System is the Process in this case

LRF Sensor Subsystem not mounted on the Process

PTZ Camera Sensor Subsystem not mounted on the Process

PTZ Gimbal Actuator Subsystem not mounted on the Process

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

PTZ Video
Frustum

PTZ Video Camera Subsystem provides its own orientation
relative to the Platform, as well as imaging parameters
like FOV, frame size, frame rate, etc.

LRF Line of
Sight

LRF This assumes the LRF has GPS, magnetic compass,
and accelerometers.

Video Target(s) Video Camera Video Camera provides imagery/video of the target

Controlled FOI
(the thing you
want to control)

System Comments

Video Camera Video Camera Video Camera Subsystem receives commands to
change the imaging parameters

Video Frustum Video Camera Video Camera Subsystem receives commands to
change the gimbal and thus the frustum orientation

PTZ Camera,
Video Frustum

GeoPointing
Algorithm

GeoPointing process receives commands to point the
frustum to a particular 3D location, generated by the
LRF. This is a higher level task that breaks down into
lower level commands for maneuvering the PTZ and
rotating the gimbal.

Data Streams/Observations:

System Data Stream Comments

96

None None, this is a closed loop Process, that sends output
data as a Command to an actuator.

Control Streams/Commands:

System Control
Stream

Comments

None None, this is a closed loop Process that gets inputs
directly from Sensors.

7.1.20. Alerts/Notification (Temperature Threshold)
An Alert is a System that is a Process that (in this use case) notifies particular subscribers when
a threshold is exceeded. The diagram and discussion below help convey how
Alerts/Notification can be treated in the OGC API - Connected Systems Standard v1.0.

System: Top level System is a Process that is fed with data from a Sensor
Platform: None
Sensors: Thermometer

97

Actuators: None
Processes: Threshold Cross Alert Process
Features of Interest: Temperature sampling location
Data Streams/Observations: Alert message sent to subscriber. (In the API, alerts are just
Observations with a different meaning)
Control Streams/Commands: None.

Systems:

Name Type Description (+ link to datasheet)

Alerts/Notificati
on

System

Alerts/Notificati
on

Process the top level System is the Platform in this case

Thermometer Sensor Subsystem mounted on the Platform

Threshold
crossing
algorithm

Process Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Temperature
sampling
location

Temperature
Sensor

Controlled FOI
(the thing you
want to control)

System Comments

None

Data Streams/Observations:

System Data Stream Comments

Alert message
sent to
subscriber

(In the API, alerts are just Observations with a different
meaning)

98

Control Streams/Commands:

System Control
Stream

Comments

None

7.1.21. Cyber Sensor
A Cyber Sensor is a System that is a Process that makes Observations about the state of a
given device’s software, data and network behaviors. The diagram and discussion below help
convey how Cyber Sensors can be treated in the OGC API - Connected Systems Standard
v1.0.

System: Top level System is a Process, with Sensor and Processing components
Platform: None
Sensors: Thermometer
Actuators: None
Processes: Process is a threshold crossing algorithm.
Features of Interest: Temperature sampling location

99

Data Streams/Observations: Alert message sent to subscriber. (In the API, alerts are just
observations with a different meaning)
Control Streams/Commands: None.

Systems:

Name Type Description (+ link to datasheet)

Alerts/Notificati
on

System

Alerts/Notificati
on

Process the top level System is the Platform in this case

Thermometer Sensor Subsystem mounted on the Platform

Threshold
crossing
algorithm

Process Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Temperature
sampling
location

Temperature
Sensor

Controlled FOI
(the thing you
want to control)

System Comments

None

Data Streams/Observations:

System Data Stream Comments

Alert message
sent to
subscriber

(In the API, alerts are just observations with a different
meaning)

Control Streams/Commands:

100

System Control
Stream

Comments

None

7.1.22. Human as Sensor
A Human is a System that is a Sensor capable of observing the world with eyes, ears, nose,
skin, and tongue in order to make Observations of how a Feature of Interest looks, sounds,
smells, feels, and tastes and input them into a survey mechanism. The diagram and discussion
below help convey how Humans as Sensors can be treated in the OGC API - Connected
Systems Standard v1.0.

System: The top level System is the human Sensor
Platform: None
Sensors: The human filling up a survey based on observations from their eyes, ears, nose,
skin, tongue.
Actuators: None
Processes: None
Features of Interest: Subject of the survey

101

Data Streams/Observations: Survey responses
Control Streams/Commands: None

Systems:

Name Type Description (+ link to datasheet)

Human as
Sensor

System

Human Sensor the top level System is the Platform in this case

Eyes Sensor Subsystem is mounted on the Platform

Ears Sensor Subsystem is mounted on the Platform

Nose Sensor Subsystem is mounted on the Platform

Skin Sensor Subsystem is mounted on the Platform

Tongue Sensor Subsystem is mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Human
(Sensor)

Human (eyes,
ears, nose,
skin, tongue)

Subject of the
survey

Human (eyes,
ears, nose,
skin, tongue)

Controlled FOI
(the thing you
want to control)

System Comments

None

Data Streams/Observations:

System Data Stream Comments

102

Human (eyes) Survey
responses

Observations of how something looks

Human (ears) Survey
responses

Observations of how something sounds

Human (nose) Survey
responses

Observations of how something smells

Human (skin) Survey
responses

Observations of how something feels

Human
(tongue)

Survey
responses

Observations of how something tastes

Control Streams/Commands:

System Control
Stream

Comments

None

7.1.23. Human as Platform
A Human is a Platform for mounting/carrying (in this use case) a Sensor (mobile phone camera)
that can be tasked to Pan, Tilt and Zoom. In this use case, the top level system is the Human
Platform. The diagram and discussion below help convey how Humans as Platforms can be
treated in the OGC API - Connected Systems Standard v1.0.

103

System: Top level System is the Human Platform
Platform: Human
Sensors: Mobile Phone Camera
Actuators: None
Processes: None
Features of Interest: Camera Frustum, Object
Data Streams/Observations: Mobile Phone Positioning Data, Video/Image
Control Streams/Commands: Command the Pan, Tilt and Zoom of the Camera, Configure
Camera Video

Systems:

Name Type Description (+ link to datasheet)

Human
(Platform)

System

Human Platform the top level System is the Platform in this case

Mobile Phone
Camera

Sensor Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to

System Comments

104

observe)

Camera
Frustum

Mobile Phone
Camera

Object Mobile Phone
Camera

Camera provides video/imagery of the object

Controlled FOI
(the thing you
want to control)

System Comments

Camera
Frustum

Human hands

Data Streams/Observations:

System Data Stream Comments

GNSS/INS Mobile Phone
Positioning
Data

Video Camera Video/Image

Control Streams/Commands:

System Control Stream Comments

Human hand Command the
Pan, Tilt and
Zoom of the
Camera

Human hand Configure
Camera Video

7.1.24. Human Receiving Command
A Human is a Platform that can be tasked to go somewhere at a time and collect Observations
about a Feature of Interest with the Sensors inherent to the Human Platform/System - eyes,
ears, nose, skin, and tongue - and/or to undertake some sort of action. The diagram and

105

discussion below help convey how Humans (as Platforms) can receive Commands within the
OGC API - Connected Systems Standard v1.0.

System: Top level System is the Human Platform
Platform: Human
Sensors: Eyes, Ears, Nose, Skin, Tongue
Actuators: Human legs, being told to go somewhere and sense/do something.
Processes: None
Features of Interest: Object
Data Streams/Observations: None
Control Streams/Commands: Location to move to received by the human

Systems:

Name Type Description (+ link to datasheet)

Human
(Platform)

System

Human Platform the top level System is the Platform in this case

Human l and
hands, legs
and arms

Actuator Subsystem mounted on the Platform

Features of Interest:

106

Observed FOI
(the thing you
want to
observe)

System Comments

Object

Controlled FOI
(the thing you
want to control)

System Comments

Human Task the human to go somewhere at a moment of time
and collect data or do something.

Data Streams/Observations:

System Data Stream Comments

Eyes Visual
observations

Observations of how something looks

Ears Audible
observations

Observations of how something sounds

Nose Olfactory
observations

Observations of how something smells

Skin Temperature,
texture,
pressure, etc.
observations

Observations of how something feels

Tongue Taste
observations

Observations of how something tastes

Control Streams/Commands:

System Control
Stream

Comments

Command to
human to move
to a location
and collect
observations.

107

7.1.25. Dynamic Data Feed
A Dynamic Data Feed is a System that is an aggregation of multiple underlying Sensor Data
Streams that can be either aggregated into a single ‘Virtual’ Sensor, or recombined in different
ways into n- Virtual Sensors. The diagram and discussion below help convey how Dynamic
Data Feeds can be treated in the OGC API - Connected Systems Standard v1.0.

System: Top level System is the Dynamic Data Feed
Platform: System
Sensors: Sensors 1-5, ‘Virtual’ Sensors A-E
Actuators: None
Processes: None
Features of Interest: Object
Data Streams/Observations: None
Control Streams/Commands: None

Systems:

Name Type Description (+ link to datasheet)

Dynamic Data System

108

Feed (Platform)

Dynamic Data
Feed

Platform the top level System is the Platform in this case

Underlying
Sensors

Sensor

Virtual Sensors Sensor

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Object Virtual Sensor Each Virtual Sensor will have Observed FOI.

Controlled FOI
(the thing you
want to control)

System Comments

None

Data Streams/Observations:

System Data Stream Comments

Virtual Sensor Yes Each Virtual Sensor will have Data
Streams/Observations.

Control Streams/Commands:

System Control
Stream

Comments

Command to
human to move
to a location
and collect
observations.

109

7.2. Domain use cases
This section provides concrete domain use cases of how Systems, Platforms, Sensors,
Processes, Actuators, Features of Interest, Data Streams and their Observations, and Control
Streams and their Commands work together when integrating different kinds of systems via the
OGC API - Connected Systems Standard v1.0 within and across a particular domain. These
include:

1) Environmental Monitoring
2) Logistics
3) Energy and Utilities
4) Facility/Installation/Campus Security
5) Smart Cities
6) Industrial Monitoring and Control (IoT/SCADA)
7) Maritime Domain Awareness
8) Joint All Domain Command and Control
9) Smart Buildings
10) Aviation

7.2.1. Environmental Monitoring
Monitoring environmental change requires the integration of many sensing modalities within a
common 4D framework. An OGC standards-based interoperability architecture for
environmental monitoring enables the integration of all kinds of Systems. The OGC API -
Connected Systems Standard v1.0 offers architectural opportunities to enable the rapid
collection, fusion, and customization of integrated sensed Observations from every source
within a common 4D framework.

110

System: Each Sensor is a System
Platform: None
Sensors: Buoy Sensors, Water Monitoring Sensors, Well Sensors
Processes: None
Actuators: None
Features of Interest: Ocean, River, Aquifer
Data Streams/Observations: Air Temperature, Wave Heights, CTD Profile (Buoy Sensor),
Gauge Height, Discharge, Water Temperature (Water Monitoring Sensors), Groundwater
Level, Water Temperature, Chemicals detection (Well Sensors)
Control Streams/Commands: None

7.2.2.Logistics
Managing logistics across complex supply chains requires detailed tracking of
goods/freight/cargo at a very granular level as these items move from one origin facility to a
destination, often through many intermediate locations, on one or more Platforms, and even
within intermediate Platforms such as shipping containers. The OGC API - Connected System
Standard v1.0 offers architectural opportunities to enable the rapid collection, fusion, and
customization of integrated sensed Observations from every source within a common 4D
framework.

111

System: Each Sensor is a System
Platform: None
Sensors: GPS, RFID, LoRA
Processes: None
Actuators: None
Features of Interest: Truck, Fork Lift, Package
Data Streams/Observations: Geographic Location (Long-Range, Truck), Relative Location
(Site-Wide, Fork Lift), Proximity Detections (Approximate Location, Package)
Control Streams/Commands: None

7.2.3 Energy & Utilities
The generation, distribution and use of energy can be a geographically complex endeavor, with
different patterns for those energy utilities requiring fuel sources. The OGC API - Connected
System Standard v1.0 offers architectural opportunities to enable the rapid collection, fusion,
and customization of integrated sensed Observations from every source within a common 4D
framework.

112

System: Each Sensor is a System
Platform: None
Sensors: Boiler Sensors, Generator Sensors, Chimney Sensors, Transformer Sensors, Plant
Sensors
Processes: None
Actuators: None
Features of Interest: Boiler, Generator, Chimney, Transformer, Plant
Data Streams/Observations: Input Water Temp, Boiler Temperature, O2 Level, Steam
Pressure, Steam Temperature (Boiler); Output Voltage, Output Frequency, RPM,
Temperature, Vibration (Generator); SO2, NOx, PM10,PM2.5 Concentration (Chimney); Terminal
Voltage, Frequency, Power Factor, Temperature (Transformer); Total Power Output (Plant)
Control Streams/Commands: None

7.2.4. Facility/Installation/Campus Security
Securing facilities, installations, and campuses requires the integration and dynamic tasking of a
variety of different kinds of sensors, control systems, and response resources. The OGC API -
Connected System Standard v1.0 offers architectural opportunities to enable the rapid
collection, fusion, and customization of integrated sensed Observations from every source
within a common 4D framework.

113

System: Each Sensor is a System
Platform: None
Sensors: Shot Spotter, Vehicle Positioning Information, Security Cameras, RFID
Processes: None
Actuators: Building Access Control, Security Vehicle Dispatch, Lift, Escalator
Features of Interest: Shot Spotter, Shot Spotter Video Frustum, Object(s), Security Vehicle,
Video Camera, Camera Frustum, Object(s), Objects tagged with RFID.
Data Streams/Observations: Acoustic Locator, Video Frustum, Video, Object(s) (Shot
Spotter); Location, Heading, Speed (Vehicle Positioning Information), Location, Video
Frustum, Video-RSTP (Security Cameras), Unique RFID proximity readings (RFID),
Operational mode and status (Lift, Escalator)
Control Streams/Commands: Unique access point requests (Building Access Control),
Unique dispatch orders (Security Vehicle Dispatch), Mode change requests (Lift)

7.2.5 Smart Cities
The management of smart cities requires the integration and dynamic tasking of a variety of
different kinds of sensors, control systems, and response resources. The OGC API -
Connected System Standard v1.0 offers architectural opportunities to enable the rapid
collection, fusion, and customization of integrated sensed Observations from every source
within a common 4D framework.

114

System: Each Sensor is a System
Platform: None
Sensors: Parking Sensors, Security Cameras, Energy Consumption Sensors, HVAC
Sensors, Traffic Speed Sensor, Air Quality Sensor, Occupancy Sensors, Water Sensors
Processes: Energy Optimisation Process
Actuators: None
Features of Interest: Parking Sensors, Security Cameras, Energy Consumption Sensors,
HVAC Sensors, Traffic Speed Sensor, Air Quality Sensor, Occupancy Sensors, Water
Sensors, Security Camera
Data Streams/Observations: Occupied (Y/N), Unique Vehicle ID, Time Elapsed (Parking
Sensors); Video (Security Cameras); kWh (Energy Consumption Sensors); Temperature,
Energy Use (HVAC Sensors); Video, Speed Radar, License Plate Reader (Traffic Speed
Sensor); Pollution Markers (Air Quality Sensor), Video-RSTP (Security camera), Motion
Dertector, Processed Camera Video Feeds, People Counting (Occupancy Sensors), Water
Pump Status, Water Meter, Security Camera (Water Sensors)
Control Streams/Commands: Could have, but not assumed in this use case.

7.2.6.Industrial Monitoring and Control (IoT/SCADA)
Industrial facilities, infrastructure and processes require active monitoring and control.
Historically, this required Supervisory Control and Data Acquisition (SCADA) Systems, while
now the conversation centers more on “industrial IoT”. Both are simply constellations of
Sensors, Processes and Actuators arrayed across a complex industrial infrastructure in order to

115

observe, make sense of, and take actions that drive efficiency, error mitigation, safety,
profitability, and overall effectiveness.

Supervisory Control and Data Acquisition (SCADA) Systems are used for controlling,
monitoring, and analyzing industrial devices and processes. The system consists of both
software and hardware components and enables remote and on-site gathering of data from the
industrial equipment. The connecting links in the SCADA architecture, which connect to
equipment (also called field devices) are commonly termed the Programmable Logic Controllers
(PLCs), Intelligent Electronic Devices (IED), Remote Terminal Units (RTUs), Master Terminal
Units (MTU) which in turn connect to Human Machine Interfaces (HMIs). SCADA Systems are
using in Manufacturing, Water Management, Oil and Gas, Transportation, Renewable Energy,
Power distributions and control.

The OGC API - Connected System Standard v1.0 offers architectural opportunities to enable
rapid collection, fusion, and customization of integrated SCADA Observations from every source
within a common 4D framework.

System: System comprises a variety of Subsystems that are both Sensors, Actuators, and
Features of Interest.
Platform: None
Sensors: HMI, MTU, PLC, IED, RTU
Processes: None
Actuators: HMI, MTU, PLC, IED, RTU
Features of Interest: HMI, MTU, PLC, IED, RTU

116

Data Streams/Observations: HMI, MTU, PLC, IED, RTU
Control Streams/Commands: HMI, MTU, PLC, IED, RTU

7.2.7.Maritime Domain Awareness
Maritime domain awareness is important for commercial maritime operations, coast guard and
law enforcement operations, and national security operations. Maritime domain awareness is
achieved through the integration of space-based, airborne, mobile/marine, in situ and
terrestrial/marine remote sensors of a wide variety of phenomenologies. With the rising
prevalence of USV and UUV, as well as UAS, within the maritime domain, the tasking of such
Platforms must also be taken into account. The OGC API - Connected System Standard v1.0
offers architectural opportunities to enable the rapid collection, fusion, and customization of
integrated sensed observations from every Maritime Domain Awareness source within a
common 4D framework.

System: Each Sensor is a System
Platform: None
Sensors: Remote Sensing Satellite, Coastal Effluent Sensor, Radar, AIS, Sonar
Processes: None
Actuators: None
Features of Interest: Remote Sensing Satellite, Coastal Effluent Sensor, Radar, AIS, Sonar,
Vessel

117

Data Streams/Observations: Satellite Position Information, Camera Frustum, Image/Video,
Object(s) (Remote Sensing Satellite); Volume, Water Quality (Coastral Effluent Sensors);
Radar Range, Object(s) (Radar); AIS ID, Position, Heading, Speed (AIS); Hydrosphere
Sensors, Atmosphere Sensors (Ocean Boy); Bathymetry (Sonar); Position, Heading, Speed
(Vessel)
Control Streams/Commands: None

7.2.8.Joint All Domain Command and Control
JADC2 demands an architecture that can sense and simultaneously integrate information from
and within all domains to enable the Joint Force Commander to achieve information and
decision advantage. "Sense and integrate" is the ability to discover, collect, correlate,
aggregate, process, and exploit data from all domains and sources (friendly, adversary, and
neutral), and share the information as the basis for understanding and decision-making. OGC
standards-based interoperability architecture enables the integration of sensors, things, robots,
drones, satellites, control systems devices and Platforms across space, air, land, sea, cyber,
and electro-magnetic spectrum - observing the world across all phenomenologies (e.g., EO, IR,
MSI, HSI, LiDAR, Radar, SAR, GMTI SAR, Sonar, Acoustic, RF, CBRNE, health, cyber, etc.).
OGC API - Connected Systems Standard v1.0 offers architectural opportunities to enable the
rapid collection, fusion, and customization of integrated sensed observations from every source
within a common 4D framework.

118

System: Each Platform is a System.
Platform: Aircraft, Surface Vessel, Ground Vehicles, UAS, UGV, USV, Soldier, Radar
Sensors: Each Platform has many Sensors.
Processes: Each Platform has many Processes.
Actuators: Some Platforms have Actuators for Tasking.
Features of Interest: Aircraft, Surface Vessel, Ground Vehicles, UAS, UGV, USV, Soldier,
Radar
Data Streams/Observations: Many
Control Streams/Commands: Many

119

8. Other SDOs
Beyond the Open Geospatial Consortium, maintaining the OGC API - Connected Systems
Standard v1.0 will require actively engaging with the specifications, processes, and leadership
of other standards development organizations (SDO). This will include:

IETF HTTP, TCP/IP, UDP, RTP,
RTSP, SSL

World Wide Web Consortium XML, WebSockets

OASIS MQTT
AQMP

IEEE HLA/DIS, etc.

ISO/IEC Moving Picture
Experts Group

MPEG-4

ISO/IEC JTC 1/SC 22, ICS
35.060

JSON

ISO/IEC 19464 AMQP

MISB H.264/MISB

DGIWG STANAG 4609

120

https://en.m.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.m.wikipedia.org/wiki/International_Electrotechnical_Commission
https://en.m.wikipedia.org/wiki/Moving_Picture_Experts_Group
https://en.m.wikipedia.org/wiki/Moving_Picture_Experts_Group

SISO HLA/DIS (via IEEE)

OpenGroup SOSA

Object Management Group DDC

Khronos glTF, Collada, WebGL

ROS Note: ROS is not a traditional
ISO, but a community
developing standard libraries,
interfaces, and encodings for
robotics.

MAVLink Note: MAVLink is not a
traditional ISO, but a
community developing
standard libraries, interfaces,
and encodings for UxS.

ArduPilot Note: ArduPilot is not a
traditional ISO, but a
community developing
standard libraries, interfaces,
and encodings for autopilot.

Apache Note: Apache is not a
traditional ISO, but an open
source software foundation
which supports specifications
like Apache Avro™.

121

9. Conclusion
The OGC API - Connected Systems Standard v1.0 provides the foundation for connecting all
Systems in, on, and around our planet (and potentially other celestial bodies) within a common
4D framework for discovery, access, process, reasoning, visualization, tasking, and action. As
more and varied Systems and technical communities come into existence, this standard will
need to continue to evolve to ensure that all such Systems can interoperate within a common
4D framework with spatio-temporal precision precision and accuracy. After all, everything on
Earth, by definition, exists in space and time, and as such all our Systems need to interoperate
in this manner. Going forward all technical communities, user communities, and policy
communities are invited to join and participate in the OGC Connected Systems Specification
Working Group (SWG) that will govern the evolution of the OGC API - Connected Systems
Standard v1.0.

122

