
OGC® DOCUMENT: 23-001R0
External identifier of this OGC® document: http://www.opengis.net/doc/DIS/ogcapi-
connectedsystems-1/1.0

OGC API - CONNECTED
SYSTEMS - PART 1:
FEATURE RESOURCES

STANDARD
Implementation

DRAFT

Version: 1.0
Submission Date: yyyy-mm-dd
Approval Date: yyyy-mm-dd
Publication Date: yyyy-mm-dd
Editor: Alex Robin

Notice for Drafts: This document is not an OGC Standard. This document is distributed for review and comment. This document is subject to
change without notice and may not be referred to as an OGC Standard.
Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to
provide supporting documentation.

License Agreement

Use of this document is subject to the license agreement at https://www.ogc.org/license

Suggested additions, changes and comments on this document are welcome and encouraged. Such suggestions may be submitted using the online
change request form on OGC web site: http://ogc.standardstracker.org/

Copyright notice

Copyright © 2024 Open Geospatial Consortium
To obtain additional rights of use, visithttps://www.ogc.org/legal

Note

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial
Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property
rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 ii

https://www.ogc.org/license
http://ogc.standardstracker.org/
https://www.ogc.org/legal

CONTENTS

I. ABSTRACT ..xiii

II. KEYWORDS ...xiv

III. PREFACE ..xv

IV. SECURITY CONSIDERATIONS ... xvi

V. SUBMITTING ORGANIZATIONS .. xvii

VI. SUBMITTERS .. xvii

1. SCOPE .. 2

2. CONFORMANCE .. 4

3. NORMATIVE REFERENCES ... 7

4. TERMS AND DEFINITIONS ... 9

6. CONVENTIONS ...15
6.1. Identifiers ... 15
6.2. URL Templates ..15
6.3. Abbreviated terms ... 15

7. OVERVIEW ...19
7.1. General ... 19
7.2. Design Considerations ..19
7.3. Resource Types ...20
7.4. Resource Encodings ...22
7.5. Resource Collections ...22
7.6. API Endpoints ... 23
7.7. Paged Responses ... 25
7.8. Search & Filtering .. 25
7.9. Link Relation Types ... 26
7.10. Security Considerations ... 27

8. REQUIREMENTS CLASS “COMMON” .. 30
8.1. Overview ..30
8.2. API Landing Page ...30

OPEN GEOSPATIAL CONSORTIUM 23-001R0 iii

8.3. API Definition ... 30
8.4. Resource IDs ... 31
8.5. Unique Identifiers (UID) ... 31
8.6. Coordinate Reference Systems ...32
8.7. Date/Time Query Parameter .. 32

9. REQUIREMENTS CLASS “SYSTEM FEATURES” ...35
9.1. Overview ..35
9.2. System Resource .. 36
9.3. System Canonical URL ..40
9.4. System Resources Endpoints .. 40
9.5. System Feature Collections ... 41

10. REQUIREMENTS CLASS “SUBSYSTEMS” .. 44
10.1. Overview ... 44
10.2. Types of System/Subsystem Associations ...44
10.3. Subsystem Resource ... 45
10.4. Subsystem Canonical URL ...46
10.5. Subsystem Resources Endpoint ... 46
10.6. System Recursive Search ...47
10.7. System Associations ... 48

11. REQUIREMENTS CLASS “DEPLOYMENT FEATURES” ...50
11.1. Overview ... 50
11.2. Deployment Resource .. 51
11.3. Deployment Canonical URL ..53
11.4. Deployment Resources Endpoints ...53
11.5. Deployment Feature Collections ... 54

12. REQUIREMENTS CLASS “SUBDEPLOYMENTS” .. 57
12.1. Overview ... 57
12.2. Subdeployment Resource .. 58
12.3. Subdeployment Canonical URL ..58
12.4. Subdeployment Resources Endpoint .. 58
12.5. Deployment Recursive Search ..59
12.6. Deployment Associations .. 60

13. REQUIREMENTS CLASS “PROCEDURE FEATURES” ..63
13.1. Overview ... 63
13.2. Procedure Resource .. 64
13.3. Procedure Canonical URL ..66
13.4. Procedure Resources Endpoints .. 66
13.5. Procedure Feature Collections ... 67

14. REQUIREMENTS CLASS “SAMPLING FEATURES” ..70
14.1. Overview ... 70
14.2. Features of Interest ...71

OPEN GEOSPATIAL CONSORTIUM 23-001R0 iv

14.3. Sampling Feature Resource ...72
14.4. Sampling Feature Canonical URL .. 74
14.5. Sampling Feature Resources Endpoints ... 74
14.6. Sampling Feature Collections ... 76
14.7. Dynamic properties ...76

15. REQUIREMENTS CLASS “PROPERTY DEFINITIONS” .. 79
15.1. Overview ... 79
15.2. Property Resource ...80
15.3. Property Canonical URL .. 81
15.4. Property Resources Endpoints ... 81
15.5. Property Collections ... 82

16. REQUIREMENTS CLASS “ADVANCED FILTERING” .. 85
16.1. Overview ... 85
16.2. Definitions ...86
16.3. Common Resource Query Parameters ...87
16.4. Common Feature Query Parameters ..89
16.5. System Resources Endpoint Query Parameters ...90
16.6. Deployment Resources Endpoint Query Parameters ..93
16.7. Procedure Resources Endpoint Query Parameters ... 97
16.8. Sampling Feature Resources Endpoint Query Parameters .. 98
16.9. Property Resources Endpoint Query Parameters ..100
16.10. Combination of Filter Parameters .. 102
16.11. Indirect Associations ..102

17. REQUIREMENTS CLASS “CREATE/REPLACE/DELETE” ..105
17.1. Overview ...105
17.2. Systems ..106
17.3. Subsystems ... 107
17.4. Deployments .. 107
17.5. Subdeployments .. 108
17.6. Procedures .. 108
17.7. Sampling Features ...109
17.8. Property Definitions ...109
17.9. Custom Collections ...110

18. REQUIREMENTS CLASS “UPDATE” ..113
18.1. Overview ...113
18.2. Systems ..113
18.3. Deployments .. 114
18.4. Procedures .. 114
18.5. Sampling Features ...115
18.6. Derived Properties ..115

19. REQUIREMENTS CLASSES FOR ENCODINGS .. 117
19.1. Requirements Class “GeoJSON Format” ... 117

OPEN GEOSPATIAL CONSORTIUM 23-001R0 v

19.2. Requirements Class “SensorML Format” ...128

ANNEX A (NORMATIVE) CONFORMANCE CLASS ABSTRACT TEST SUITE 142
A.1. Supporting Tests ..142
A.2. Conformance Class “Common” ..143
A.3. Conformance Class “System Features” .. 145
A.4. Conformance Class “Subsystems” ...147
A.5. Conformance Class “Deployment Features” ...150
A.6. Conformance Class “Subdeployments” ..153
A.7. Conformance Class “Procedure Features” ...156
A.8. Conformance Class “Sampling Features” ...159
A.9. Conformance Class “Property Definitions” ...161
A.10. Conformance Class “Advanced Filtering” ... 163
A.11. Conformance Class “Create/Replace/Delete” ..177
A.12. Conformance Class “Update” ...183
A.13. Conformance Class “GeoJSON” ..185
A.14. Conformance Class “SensorML” ..191

ANNEX B (INFORMATIVE) EXAMPLES ... 199

ANNEX C (INFORMATIVE) RELATIONSHIP WITH OTHER OGC/ISO STANDARDS
(INFORMATIVE) ..201

C.1. W3C Semantic Sensor Network Ontology ... 201
C.2. OGC Sensor Modeling Language (SensorML) Standard ...202
C.3. OGC/ISO Observations, Measurements and Samples (OMS) Standard ...203
C.4. IETF GeoJSON ...204
C.5. OGC Features and Geometries JSON (JSON-FG) ...204
C.6. OGC API — Features Standard ...204
C.7. OGC API — Moving Features Standard ... 205
C.8. OGC API — Environmental Data Retrieval (EDR) Standard ...205
C.9. OGC SensorThings API Standard .. 206
C.10. Coverages ... 208
C.11. 3D Features ..208
C.12. OGC Sensor Observation Service (SOS) Standard ... 209
C.13. OGC Sensor Planning Service (SPS) Standard ... 210

ANNEX D (INFORMATIVE) REVISION HISTORY .. 212

BIBLIOGRAPHY .. 214

LIST OF TABLES

Table 1 — Overview of resource types defined by this Standard ...21
Table 2 — Query Parameters .. 26

OPEN GEOSPATIAL CONSORTIUM 23-001R0 vi

Table 3 — Link Relation Types .. 26
Table 4 — System Attributes ...37
Table 5 — System Associations ...37
Table 6 — System Types ...38
Table 7 — Asset Types ..38
Table 8 — Subsystem Associations .. 46
Table 9 — System Associations ...48
Table 10 — Deployment Attributes ... 51
Table 11 — Deployment Associations ...52
Table 12 — Subdeployment Associations ...58
Table 13 — Deployment Associations ...61
Table 14 — Procedure Attributes ...64
Table 15 — Procedure Associations ...65
Table 16 — Procedure Types ...65
Table 17 — Common Sampling Feature Attributes ..73
Table 18 — Sampling Features Associations ..73
Table 19 — Property Definition Attributes .. 80
Table 20 — GeoJSON Mappings of Common Attributes ... 119
Table 21 — GeoJSON Encoding of System Attributes ..120
Table 22 — GeoJSON Encoding of System Associations ... 120
Table 23 — GeoJSON Encoding of Deployment Attributes .. 122
Table 24 — GeoJSON Encoding of Deployment Associations ..122
Table 25 — GeoJSON Encoding of Procedure Attributes .. 124
Table 26 — GeoJSON Encoding of Procedure Associations ..124
Table 27 — GeoJSON Encoding of Sampling Feature Attributes ... 126
Table 28 — GeoJSON Encoding of Sampling Feature Associations ...126
Table 29 — SensorML Mappings of Common Attributes ...130
Table 30 — SensorML Mappings of System Attributes .. 131
Table 31 — SensorML Mappings of System Associations ..132
Table 32 — SensorML Mappings of Deployment Attributes ...134
Table 33 — SensorML Mappings of Deployment Associations .. 134
Table 34 — SensorML Mappings of Procedure Attributes ...137
Table 35 — SensorML Mappings of Procedure Associations .. 137
Table 36 — SensorML Mappings of Property Attributes ... 140

LIST OF FIGURES

Figure 1 — Class diagram of API resources ...21

OPEN GEOSPATIAL CONSORTIUM 23-001R0 vii

LIST OF RECOMMENDATIONS

REQUIREMENTS CLASS 1 .. 30

REQUIREMENTS CLASS 2 .. 35

REQUIREMENTS CLASS 3 .. 44

REQUIREMENTS CLASS 4 .. 50

REQUIREMENTS CLASS 5 .. 57

REQUIREMENTS CLASS 6 .. 63

REQUIREMENTS CLASS 7 .. 70

REQUIREMENTS CLASS 8 .. 79

REQUIREMENTS CLASS 9 .. 85

REQUIREMENTS CLASS 10 ... 105

REQUIREMENTS CLASS 11 ... 113

REQUIREMENTS CLASS 12 ... 117

REQUIREMENTS CLASS 13 ... 128

REQUIREMENT 1 .. 31

REQUIREMENT 2 .. 31

REQUIREMENT 3 .. 32

REQUIREMENT 4 .. 39

REQUIREMENT 5 .. 40

REQUIREMENT 6 .. 40

REQUIREMENT 7 .. 41

REQUIREMENT 8 .. 42

REQUIREMENT 9 .. 46

REQUIREMENT 10 ..47

REQUIREMENT 11 ..47

REQUIREMENT 12 ..48

REQUIREMENT 13 ..48

REQUIREMENT 14 ..53

REQUIREMENT 15 ..53

REQUIREMENT 16 ..54

REQUIREMENT 17 ..54

REQUIREMENT 18 ..55

OPEN GEOSPATIAL CONSORTIUM 23-001R0 viii

REQUIREMENT 19 ..58

REQUIREMENT 20 ..59

REQUIREMENT 21 ..59

REQUIREMENT 22 ..60

REQUIREMENT 23 ..60

REQUIREMENT 24 ..66

REQUIREMENT 25 ..66

REQUIREMENT 26 ..67

REQUIREMENT 27 ..67

REQUIREMENT 28 ..68

REQUIREMENT 29 ..74

REQUIREMENT 30 ..74

REQUIREMENT 31 ..75

REQUIREMENT 32 ..75

REQUIREMENT 33 ..76

REQUIREMENT 34 ..81

REQUIREMENT 35 ..81

REQUIREMENT 36 ..82

REQUIREMENT 37 ..83

REQUIREMENT 38 ..86

REQUIREMENT 39 ..87

REQUIREMENT 40 ..87

REQUIREMENT 41 ..89

REQUIREMENT 42 ..90

REQUIREMENT 43 ..91

REQUIREMENT 44 ..91

REQUIREMENT 45 ..92

REQUIREMENT 46 ..93

REQUIREMENT 47 ..94

REQUIREMENT 48 ..94

REQUIREMENT 49 ..95

REQUIREMENT 50 ..96

REQUIREMENT 51 ..96

OPEN GEOSPATIAL CONSORTIUM 23-001R0 ix

REQUIREMENT 52 ..97

REQUIREMENT 53 ..98

REQUIREMENT 54 ..99

REQUIREMENT 55 ..99

REQUIREMENT 56 ... 100

REQUIREMENT 57 ... 101

REQUIREMENT 58 ... 101

REQUIREMENT 59 ... 102

REQUIREMENT 60 ... 106

REQUIREMENT 61 ... 106

REQUIREMENT 62 ... 107

REQUIREMENT 63 ... 107

REQUIREMENT 64 ... 108

REQUIREMENT 65 ... 108

REQUIREMENT 66 ... 109

REQUIREMENT 67 ... 110

REQUIREMENT 68 ... 110

REQUIREMENT 69 ... 110

REQUIREMENT 70 ... 111

REQUIREMENT 71 ... 111

REQUIREMENT 72 ... 113

REQUIREMENT 73 ... 114

REQUIREMENT 74 ... 114

REQUIREMENT 75 ... 115

REQUIREMENT 76 ... 115

REQUIREMENT 77 ... 118

REQUIREMENT 78 ... 118

REQUIREMENT 79 ... 118

REQUIREMENT 80 ... 119

REQUIREMENT 81 ... 119

REQUIREMENT 82 ... 119

REQUIREMENT 83 ... 121

REQUIREMENT 84 ... 121

OPEN GEOSPATIAL CONSORTIUM 23-001R0 x

REQUIREMENT 85 ... 124

REQUIREMENT 86 ... 124

REQUIREMENT 87 ... 125

REQUIREMENT 88 ... 125

REQUIREMENT 89 ... 129

REQUIREMENT 90 ... 129

REQUIREMENT 91 ... 129

REQUIREMENT 92 ... 130

REQUIREMENT 93 ... 130

REQUIREMENT 94 ... 131

REQUIREMENT 95 ... 131

REQUIREMENT 96 ... 131

REQUIREMENT 97 ... 133

REQUIREMENT 98 ... 133

REQUIREMENT 99 ... 136

REQUIREMENT 100 ...137

REQUIREMENT 101 ...137

REQUIREMENT 102 ...139

REQUIREMENT 103 ...139

RECOMMENDATION 1 ... 32

RECOMMENDATION 2 ... 39

RECOMMENDATION 3 ... 88

RECOMMENDATION 4 ...102

RECOMMENDATION 5 ...102

CONFORMANCE CLASS A.1 ...143

CONFORMANCE CLASS A.2 ...145

CONFORMANCE CLASS A.3 ...147

CONFORMANCE CLASS A.4 ...150

CONFORMANCE CLASS A.5 ...153

CONFORMANCE CLASS A.6 ...156

CONFORMANCE CLASS A.7 ...159

CONFORMANCE CLASS A.8 ...161

CONFORMANCE CLASS A.9 ...163

OPEN GEOSPATIAL CONSORTIUM 23-001R0 xi

CONFORMANCE CLASS A.10 .. 177

CONFORMANCE CLASS A.11 .. 183

CONFORMANCE CLASS A.12 .. 185

CONFORMANCE CLASS A.13 .. 191

OPEN GEOSPATIAL CONSORTIUM 23-001R0 xii

I ABSTRACT

OGC API Standards define modular API building blocks to spatially enable Web APIs in a
consistent way. The OpenAPI specification is used to define the API building blocks.

The OGC API family of Standards is organized by resource type. The OGC API — Connected
Systems Standard (aka “this Standard” or “CS API”) specifies the fundamental API building
blocks for interacting with Connected Systems and associated resources. A Connected System
represents any kind of system that can either directly transmit data via communication networks
(being connected to them in a permanent or temporary fashion), or whose data is made available
in one form or another via such networks. This definition encompasses systems of all kinds,
including in-situ and remote sensors, actuators, fixed and mobile platforms, airborne and space-
borne systems, robots and drones, and even humans who collect data or execute specific tasks.

Since many of the resource types defined in this Standard, including the systems themselves, are
also features, the OGC API — Connected Systems Standard is logically written as an extension of
the OGC API — Features Standard (Parts 1 and 4).

But beyond features, this Standard is also intended to act as a bridge between static data
(geographic and other application domain features) and dynamic data (observations of these
features properties, and commands/actuations that change these features properties). To this
end, this Standard also describes protocols and formats to transmit dynamic data to/from
connected systems through the API. Some of these protocols allow efficient real-time delivery of
data while some others are more suited for transmitting data in batch.

In addition to providing its own mechanism for interacting with static and dynamic data, the
API allows linking to resources defined by other OGC Standards, such as 3D Tiles, Coverages,
EDR, SensorThings, Processes, and other instances of OGC API — Features. Among other things,
this linking capability enables retrieving more advanced representations of features of interest
(3D buildings, etc.) and gridded data (coverages) than the one that would typically be provided
through this API.

The CS API is comprised of multiple parts, each of them being a separate standard.

“Part 1 — Feature Resources” (this Part) defines resource types and encodings for providing
metadata about systems and their deployments, as well as the procedures and sampling
strategies used by these systems. Resource types defined in Part 1 are modeled on concepts
from the Semantic Sensor Network Ontology (SOSA/SSN). They are all feature types except for
the Property resource that is used to describe feature properties. Part 1 also defines additional
filtering capabilities and requirements for the Create/Replace/Delete/Update operations.

“Part 2 — Dynamic Data” defines additional resource types and encodings that implement
the SSN concepts needed for exchanging dynamic data related to the features defined in Part
1. It defines efficient ways of encoding this dynamic (time-varying) information (including
observations, commands and system events), and mechanisms allowing bi-directional streaming
of real-time data as well as access to historical data. Part 2 also defines a snapshot mechanism
for dynamic feature properties.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 xiii

https://ogcapi.ogc.org/#standards
https://www.openapis.org
https://www.ogc.org/standard/3dtiles/
https://ogcapi.ogc.org/coverages
https://ogcapi.ogc.org/edr
https://ogcapi.ogc.org/sensorthings
https://ogcapi.ogc.org/processes

Other parts will be developed to define additional functionality such as pub/sub protocols,
binary encodings, and concrete sampling feature types.

I I KEYWORDS

The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, OpenAPI, REST, feature, API, system, smart system, connected system,
IoT, sensorweb, ssn, sensor, actuator, transducer, sampling, platform, robot, drone, unmanned,
autonomous, observation, measurement, datastream, command, control, trajectory, dynamic

OPEN GEOSPATIAL CONSORTIUM 23-001R0 xiv

I I I PREFACE

The OGC API — Connected Systems Standard is part of the suite of OGC API Standards.

To increase the brevity and readability of this Standard, many OGC document titles are
shortened and/or abbreviated. Therefore, in the context of this document, the following phrases
are defined:

• “this Standard” shall be interpreted as equivalent to “OGC API — Connected Systems —
Part 1: Feature Resources Standard”.

• “CS API” or “CS API Standard” shall be interpreted as equivalent to “OGC API —
Connected Systems Standard” (including all its parts).

• “OGC API — Features” shall be interpreted as equivalent to “OGC API — Features — Part 1:
Core corrigendum”.

• “OGC API — Common” shall be interpreted as equivalent to “OGC API — Common — Part
1: Core”.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 xv

IV SECURITY CONSIDERATIONS

Security considerations are detailed in Clause 7.10.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 xvi

V SUBMITTING ORGANIZATIONS

The following organizations submitted this Document to the Open Geospatial Consortium
(OGC):

• GeoRobotix, Inc.

• Botts Innovative Research, Inc.

• Cesium GS, Inc.

• 52° North Initiative for Geospatial Open Source Software GmbH

• Riverside Research

• Pelagis Data Solutions

• National Geospatial-Intelligence Agency (NGA)

VI SUBMITTERS

All questions regarding this submission should be directed to the editor or the submitters:

NAME AFFILIATION

Alex Robin (Editor) GeoRobotix, Inc.

Christian Autermann 52° North Initiative

Chuck Heazel Heazeltech (for NGA)

Glenn Laughlin Pelagis Data Solutions

Mike Botts Botts Innovative Research, Inc.

Patrick Cozzi Cesium GS, Inc.

Sam Bolling Riverside Research

Additional contributors to this Standard include the following:

OPEN GEOSPATIAL CONSORTIUM 23-001R0 xvii

NAME AFFILIATION

Chris Tucker GeoRobotix, Inc.

Ian Patterson Botts Innovative Research, Inc.

Qihua Li GovTech Singapore

Rob Atkinson Open Geospatial Consortium, Inc.

Simon Cox Open Geospatial Consortium, Inc.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 xviii

1

SCOPE

OPEN GEOSPATIAL CONSORTIUM 23-001R0 1

1 SCOPE

The CS API Standard defines extensions to the OGC API — Features Standard for exposing
metadata regarding all kinds of observing systems and associated resources. The CS API
provides an actionable implementation of concepts defined in the Semantic Sensor Network
Ontology (SOSA/SSN) and also complies with OGC API — Common.

More specifically, Part 1 of the CS API Standard provides an implementation of some of the
SOSA/SSN concepts (namely Systems, Platforms, Sensors, Actuators, Samplers, Procedures,
Deployments and Samples) as regular features, thus making them serializable to GeoJSON
format, and easily accessible by any feature API client. Advanced SensorML encodings are also
defined by this standard, allowing the provision of more advanced metadata (such as complete
system datasheets).

The following types of resources are defined by Part 1 of the CS API Standard:

• Systems are features that represent instances of observing systems, platforms, sensors,
actuators and samplers.

• Deployments are features that provide information about the deployment of one or more
Systems. They typically have a temporal and spatial extent.

• Procedures are non-spatial features describing the procedure implemented by one or
more System instances (e.g. specs/datasheets and methodologies).

• Sampling Features are features used to describe the sampling geometry and/or
methodology of a given observing System.

• Property Definitions provide semantic information about feature properties, which can be
observable properties, controllable properties or simply asserted properties (e.g. certain
system characteristics and capabilities).

OPEN GEOSPATIAL CONSORTIUM 23-001R0 2

2

CONFORMANCE

OPEN GEOSPATIAL CONSORTIUM 23-001R0 3

2 CONFORMANCE

This Standard was written to be compliant with the OGC Specification Model – A Standard
for Modular Specification (OGC 08-131r3). Extensions of this Standard shall themselves be
conformant to the OGC Specification Model.

This Standard defines the following requirements classes:

• Clause 8, Requirements Class “Common” defines requirements that are shared by several
other requirements classes.

• Clause 9, Requirements Class “System Features” defines requirements for System
resources.

• Clause 10, Requirements Class “Subsystems” defines requirements for Subsystem
resources.

• Clause 11, Requirements Class “Deployment Features” defines requirements for
Deployment resources.

• Clause 12, Requirements Class “Subdeployments” defines requirements for
Subdeployment resources.

• Clause 13, Requirements Class “Procedure Features” defines requirements for Procedure
resources.

• Clause 14, Requirements Class “Sampling Features” defines requirements for Sampling
Feature resources.

• Clause 15, Requirements Class “Property Definitions” defines requirements for Property
resources.

• Clause 16, Requirements Class “Advanced Filtering” defines requirements for additional
filters that can be used to query CS resources*.

• Clause 17, Requirements Class “Create/Replace/Delete” defines requirements for creating,
replacing, and deleting CS resources*.

• Clause 18, Requirements Class “Update” defines requirements for updating CS resources*.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 4

• Clause 19.1, Requirements Class “GeoJSON Format” defines requirements for encoding CS
resources* as GeoJSON.

• Clause 19.2, Requirements Class “SensorML Format” defines requirements for encoding CS
resources* as SensorML-JSON.

The standardization target for these requirements classes is an implementation of the Web API.

There is no Core requirements class but an implementation target is expected to implement at
least one of the CS resource* types and one encoding.

The conformance classes corresponding to these requirements classes are presented in
Annex A (normative). Conformance with this Standard shall be checked using all the relevant
tests specified in Annex A. The framework, concepts, and methodology for testing, and the
criteria to be achieved to claim conformance are specified in the OGC Compliance Testing
Policies and Procedures and the OGC Compliance Testing web site.

[*] “CS resources” means “Connected Systems resources” and refers to the resource types defined in
Clauses 9, 13, 11, 14, and 15.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 5

3

NORMATIVE REFERENCES

OPEN GEOSPATIAL CONSORTIUM 23-001R0 6

3 NORMATIVE REFERENCES

The following documents are referred to in the text in such a way that some or all of their
content constitutes requirements of this document. For dated references, only the edition cited
applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

Policy SWG: OGC 08-131r3, The Specification Model — Standard for Modular specifications. Open
Geospatial Consortium (2009).

Clemens Portele, Panagiotis (Peter) A. Vretanos, Charles Heazel: OGC 17-069r4, OGC API —
Features — Part 1: Core corrigendum. Open Geospatial Consortium (2022). http://
www.opengis.net/doc/IS/ogcapi-features-1/1.0.1.

Clements Portele, Panagiotis (Peter) A. Vretanos: OGC 18-058, OGC API — Features — Part 2:
Coordinate Reference Systems by Reference. Open Geospatial Consortium (2020).
http://www.opengis.net/doc/IS/ogcapi-features-2/1.0.0.

OGC API — Features — Part 4: Create, Replace, Update and Delete, version 1.0.0-DRAFT.
https://docs.ogc.org/DRAFTS/20-002.html

Charles Heazel: OGC 19-072, OGC API — Common — Part 1: Core. Open Geospatial Consortium
(2023). http://www.opengis.net/doc/is/ogcapi-common-1/1.0.0.

Semantic Sensor Network Ontology, (October 19 2017), https://www.w3.org/TR/vocab-ssn

OGC SensorML Encoding Standard, version 3.0, https://docs.ogc.org/DRAFTS/23-000.html

John Herring: OGC 06-103r4, OpenGIS Implementation Specification for Geographic information —
Simple feature access — Part 1: Common architecture. Open Geospatial Consortium
(2011). http://www.opengis.net/doc/is/sfa/1.2.1.

ISO: ISO 8601:2019, Date and time — Representations for information interchange — Part 1: Basic
rules. International Organization for Standardization, Geneva (2019). .. ISO (2019).

ISO: ISO 8601:2019, Date and time — Representations for information interchange — Part 2:
Extensions. International Organization for Standardization, Geneva (2019). .. ISO
(2019).

T. Bray (ed.): IETF RFC 8259, The JavaScript Object Notation (JSON) Data Interchange Format. RFC
Publisher (2017). https://www.rfc-editor.org/info/rfc8259.

H. Butler, M. Daly, A. Doyle, S. Gillies, S. Hagen, T. Schaub: IETF RFC 7946, The GeoJSON Format.
RFC Publisher (2016). https://www.rfc-editor.org/info/rfc7946.

M. Nottingham: IETF RFC 8288, Web Linking. RFC Publisher (2017). https://www.rfc-editor.org/
info/rfc8288.

JSON Schema Validation: A Vocabulary for Structural Validation of JSON, Version 2020-12,
https://json-schema.org/draft/2020-12/json-schema-validation.html

OPEN GEOSPATIAL CONSORTIUM 23-001R0 7

http://www.opengis.net/doc/IS/ogcapi-features-1/1.0.1
http://www.opengis.net/doc/IS/ogcapi-features-1/1.0.1
http://www.opengis.net/doc/IS/ogcapi-features-2/1.0.0
https://docs.ogc.org/DRAFTS/20-002.html
http://www.opengis.net/doc/is/ogcapi-common-1/1.0.0
https://www.w3.org/TR/vocab-ssn
https://docs.ogc.org/DRAFTS/23-000.html
http://www.opengis.net/doc/is/sfa/1.2.1
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc7946
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8288
https://json-schema.org/draft/2020-12/json-schema-validation.html

4

TERMS AND DEFINITIONS

OPEN GEOSPATIAL CONSORTIUM 23-001R0 8

4 TERMS AND DEFINITIONS

This document uses the terms defined in OGC Policy Directive 49, which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this document and OGC documents do not use the equivalent
phrases in the ISO/IEC Directives, Part 2.

This document also uses terms defined in the OGC Standard for Modular specifications
(OGC 08-131r3), also known as the ‘ModSpec’. The definitions of terms such as standard,
specification, requirement, and conformance test are provided in the ModSpec.

For the purposes of this document, the following additional terms and definitions apply.

All terms defined in OGC API — Common — Part 1: Core, OGC API — Features — Part 1: Core
and OGC API — Features — Part 4: Create, Replace, Update and Delete also apply.

4.1. Application Programming Interface (API)

A formally defined set of types and methods which establish a contract between client code
which uses the API and implementation code which provides the API.

4.2. Actuator

A device that is used by, or implements, an (Actuation) Procedure that changes the state of the
world.

[SOURCE: SOSA-SSN, Actuator Class]

4.3. Connected Systems

Collections of interrelated systems consisting of information technology (IT) devices, sensors,
actuators, platforms, and processes that can seamlessly interact.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 9

https://portal.ogc.org/public_ogc/directives/directives.php
https://portal.opengeospatial.org/files/?artifact_id=34762
http://www.w3.org/ns/sosa/Actuator

4.4. Deployment

Describes the Deployment of one or more Systems for a particular purpose. Deployment may be
done on a Platform.

[SOURCE: SOSA/SSN, Deployment Class]

4.5. Feature

Abstraction of real-world phenomena.

Note 1 to entry: More details about the term ‘feature’ may be found in the W3C/OGC Spatial
Data on the Web Best Practice in the section ‘Spatial Things, Features and Geometry’.

[SOURCE: ISO-19101, definition 4.11]

4.6. Feature Collection

A set of features from a dataset.

[SOURCE: OGC API — Features, definition 4.1.4]

4.7. Feature of Interest

The thing whose property is being estimated or calculated in the course of an Observation to
arrive at a Result, or whose property is being manipulated by an Actuator, or which is being
sampled or transformed in an act of Sampling.

[SOURCE: SOSA/SSN, FeatureOfInterest Class]

OPEN GEOSPATIAL CONSORTIUM 23-001R0 10

http://www.w3.org/ns/ssn/Deployment
http://www.w3.org/ns/sosa/FeatureOfInterest

4.8. Observation

Act of observing a property

[SOURCE: ISO-19156, definition 4.10]

4.9. Platform

A Platform is an entity that hosts other entities, particularly Sensors, Actuators, Samplers, and
other Platforms.

[SOURCE: SOSA/SSN, Platform Class]

4.10. Procedure

A workflow, protocol, plan, algorithm, or computational method specifying how to make an
Observation, create a Sample, or make a change to the state of the world (via an Actuator). A
Procedure is re-usable, and might be involved in many Observations, Samplings, or Actuations. It
explains the steps to be carried out to arrive at reproducible Results.

[SOURCE: SOSA/SSN, Procedure Class]

4.11. Property

Facet or attribute of an object referenced by a name.

Example : Abby’s car has the color red, where “color red” is a property of the car instance

[SOURCE: ISO-19143]

OPEN GEOSPATIAL CONSORTIUM 23-001R0 11

http://www.w3.org/ns/sosa/Platform
http://www.w3.org/ns/sosa/Procedure

4.12. Sample

Feature which is intended to be representative of a FeatureOfInterest on which Observations
may be made.

[SOURCE: SOSA/SSN, Sample Class]

4.13. Sampler

A device that is used by, or implements, a (Sampling) Procedure to create or transform one or
more samples.

[SOURCE: SOSA/SSN, Sampler Class]

4.14. Sampling Feature

Feature representing a subset of a FeatureOfInterest on which properties are observed or
controlled. For Observations, Sampling Feature is a synonym of Sample.

4.15. Sensor

Device, agent (including humans), or software (simulation) involved in, or implementing, a
Procedure. Sensors respond to a Stimulus, e.g., a change in the environment, or Input data
composed from the Results of prior Observations, and generate a Result. Sensors can be hosted
by Platforms.

[SOURCE: SOSA/SSN, Sensor Class]

4.16. Sensor Network

A collection of sensors and processing nodes, in which information on properties observed by
the sensors may be transferred and processed.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 12

http://www.w3.org/ns/sosa/Sample
http://www.w3.org/ns/sosa/Sampler
http://www.w3.org/ns/sosa/Sensor

Note: A particular type of a sensor network is an ad-hoc sensor network.

4.17. System

System is a unit of abstraction for pieces of infrastructure that implement Procedures. A System
may have components, its subsystems, which are other Systems.

[SOURCE: SOSA/SSN, System Class]

OPEN GEOSPATIAL CONSORTIUM 23-001R0 13

http://www.w3.org/ns/ssn/System

6

CONVENTIONS

OPEN GEOSPATIAL CONSORTIUM 23-001R0 14

6 CONVENTIONS

6.1. Identifiers

The normative provisions in this standard are denoted by the URI

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0

All requirements and conformance tests that appear in this document are denoted by partial
URIs which are relative to this base.

6.2. URL Templates

URL template notation is used in various places in this document.

Fixed parts of the URL are written as plain string while the variable parts of the URL (i.e. the
parameters) are surrounded by curly brackets { }.

In particular, the following parameters are used in various places:

• {api_root} denotes the base URL of the API, which corresponds to the landing page

• {id} denotes the local ID of a resource

6.3. Abbreviated terms

In this document the following abbreviations and acronyms are used or introduced:

• API: Application Programming Interface

• CPU: Central Processing Unit

• CRS: Coordinate Reference System

• CSML: Climate Science Modeling Language

• ENU: East North Up

• GPS: Global Positioning System

OPEN GEOSPATIAL CONSORTIUM 23-001R0 15

http://www.opengis.net/spec/ogcapi-connectedsystems-1/1.0

• HTTP: Hypertext Transfer Protocol

• ISO: International Organization for Standardization

• LTP: Local Tangent Plane

• M2M: Machine to Machine

• MISB: Motion Imagery Standards Board

• NED: North East Down

• OGC: Open Geospatial Consortium

• O&M: Observations and Measurements

• OMS: Observations, Measurements and Samples

• RBAC: Role Based Access Control

• SAS: Sensor Alert Service

• SensorML: Sensor Model Language

• SI: Système International (International System of Units)

• SOS: Sensor Observation Service

• SPS: Sensor Planning Service

• SWE: Sensor Web Enablement

• TAI: Temps Atomique International (International Atomic Time)

• UAS: Unmanned Aerial System

• UAV: Unmanned Aerial Vehicle

• UGV: Unmanned Ground Vehicle

• UID: Unique Identifier

• USV: Unmanned Surface Vehicle

• UUV: Unmanned Underwater Vehicle

• UML: Unified Modeling Language

• URL: Uniform Resource Locator

• URI: Uniform Resource Identifier

• UTC: Coordinated Universal Time

• WKT: Well-Known Text

OPEN GEOSPATIAL CONSORTIUM 23-001R0 16

• XML: eXtended Markup Language

• 1D: One Dimensional

• 2D: Two Dimensional

• 3D: Three Dimensional

OPEN GEOSPATIAL CONSORTIUM 23-001R0 17

7

OVERVIEW

OPEN GEOSPATIAL CONSORTIUM 23-001R0 18

7 OVERVIEW

7.1. General

OGC Web API Standards enable access to resources using the HTTP protocol and its associated
operations (GET, PUT, POST, DELETE, etc.).

OGC API — Connected Systems Standard — Part 1 (aka “this Standard” or “CS API”) defines
resource types that allow the provision of metadata about all kinds of devices, hardware
components or processes that can transmit and/or receive data via communication networks
(a.k.a. connected systems), including sensors, platforms, robots, human observers, forecast
models, computer simulations, etc.

This Standard is an extension of the OGC API — Features Standard and defines specific feature
collections, feature types and filtering mechanisms that are also dependent on building blocks
from the OGC API — Common Standard. Therefore, an implementation of this Standard shall
first satisfy the appropriate Requirements Classes from these two Standards. In addition, this
Standard has dependencies on some OGC and non-OGC encoding standards. All dependencies
are clearly identified in each Requirements Class.

7.2. Design Considerations

While this is the first version of the OGC API — Connected Systems series, the fine-grained
access to sensor related data, including sensor metadata, observations and tasking over the
Web has been supported by the OGC Sensor Observation Service (SOS), OGC Sensor Planning
Service (SPS) and SensorThings API Standards and their various implementations for many years.

SOS and SPS were designed in the early 2000s and use a Remote-Procedure-Call-over-HTTP
architectural style and XML for any payloads, while the SensorThings API Standard is a newer
OGC Standard that was the first to adopt the REST architecture style with JSON payloads.

Requirements in the OGC API — Connected Systems Standard (CS API) support all capabilities
from these previous Standards, but using a modernized approach that follows the current Web
architecture and in particular the W3C/OGC best practices for sharing Spatial Data on the Web
as well as the latest OGC API guidelines.

The CS API is designed as an extension of the OGC API — Features Standard which makes it
entirely compatible with Features API clients, while still allowing more advanced functionality to
access dynamic data associated to features. A clear goal of this approach is to better integrate
the GIS and sensor/IoT communities.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 19

Another key design decision was to allow linking to implementations of other OGC API
Standards whenever possible, thus allowing a much better integration with the rest of the OGC
API ecosystem.

Models from the Semantic Sensor Network Ontology (SOSA/SSN) are the basis for the design
of the CS API, and the SensorML language is used as an implementation model to provide
concrete implementations of the SOSA/SSN concepts. An alternative GeoJSON encoding of
these concepts is also defined.

The CS API defines several resource/feature types in separate requirements classes, any
combination of which can be implemented by the server. This allows resources to be distributed
across several servers (potentially different implementations of the CS API) and connected
via hyperlinks. For example, a given implementation can choose to implement only System
and Deployment features and rely on other servers to host complementary metadata such
as Procedures, Property Definitions and Features of Interest (i.e. domain features).
This is a common use cases since procedure descriptions (i.e. system datasheets) and domain
features (e.g. geographical or hydrological features) can typically be shared by many different
organizations.

7.3. Resource Types

Figure 1 shows a UML class diagram of the Connected Systems API resources (Part 2 resources
are shown with a dashed outline).

OPEN GEOSPATIAL CONSORTIUM 23-001R0 20

Figure 1 — Class diagram of API resources

All resources defined in Part 1 of this Standard are feature types, except for the Property
Definition resource. Each resource type is defined in its own requirements class. The table
below provides an overview of these resource types:

Table 1 — Overview of resource types defined by this Standard

RESOURCE
TYPE

REQUIREMENTS
CLASS

DESCRIPTION POSSIBLE ENCODINGS

System (Feature) Clause 9
Description of system instances such as sensors,
platforms, human observers, etc.

GeoJSON, SML-JSON

Deployment
(Feature)

Clause 11
Description of deployments involving one or more
systems for a particular purpose.

GeoJSON, SML-JSON

OPEN GEOSPATIAL CONSORTIUM 23-001R0 21

RESOURCE
TYPE

REQUIREMENTS
CLASS

DESCRIPTION POSSIBLE ENCODINGS

Procedure
(Feature)

Clause 13
Description of procedures implemented by systems
such as datasheets or methods (e.g. system types).

GeoJSON, SML-JSON

Sampling
Feature

Clause 14
Description of sampling strategies associated with
specific systems (e.g. sampling geometry or method).

GeoJSON

Property
Definition

Clause 15
Description of feature properties (observable
properties, controllable properties, system
properties).

SML-JSON

NOTE: The listed encodings are the ones defined in this Standard, but extensions can define additional
encodings.

7.4. Resource Encodings

This Standard also defines encodings that can be used to encode the resource types listed
above. Support for these encodings is not required as each encoding is specified in its own
requirements class.

Encodings are specified in Clause 19 of this Standard. Each encoding requirements class
provides schemas and examples for the supported resource types.

7.5. Resource Collections

The CS API Standard defines several resource types that are intended to be offered by the
server via separate collections. These resource collections are governed by requirements from
ogcapi-features-1. Such collections will be referred to as OGC API Collections in the rest of this
document.

The CS API makes use of this collection mechanism to allow a server to provide a more
organized view of its content, by grouping them into logical collections according to any criteria.

Note that a given resource can be made available through more than one collection endpoints
(i.e. collections can overlap). This provides great flexibility for a server to organize resources
according to multiple criteria and thus provide different view points to the client simultaneously.
See the requirements classes of the different resource types for examples.

When exposing resources via a collection endpoint, the server must indicate the type of the
items contained in the collection. This is done using the itemType attribute of the collection.
For feature collections, the itemType is always set to feature, so this Standard defines the
featureType attribute to further specify the type of features contained in the collection.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 22

Heterogeneous feature collections (i.e. collections containing a mix of feature types) are allowed
but this Standard does not define the behavior of such collections.

7.6. API Endpoints

As described in the previous clause, all resources defined in the CS API Standard are available
through collection endpoints.

However, the CS API also defines different types of endpoints that are useful for the following
use cases:

• Providing a canonical URL for a resource, independently of the collections it is part of,

• Providing a canonical endpoint to add resources of a given type, independently of the
collections it will be added to,

• Searching for resources across all collections of a given resource type,

• Access resources as sub-resources of a parent resource (allows to provide a pre-filtered
view of the resources)

7.6.1. Endpoint Types

The CS API Standard defines the behavior of “resources endpoints” and “resource endpoints”
associated to each resource type defined in the Standard. These endpoints are defined in a way
that is independent of the actual endpoint URL so that the same behavior can be reused at
different API paths.

The terms “resources endpoint” and “resource endpoint” are used as defined by OGC API —
Features — Part 4: Create, Replace, Update and Delete, that is:

• A “resource endpoint” is an API endpoint exposing a single resource.

• A “resources endpoint” is an API endpoint exposing a set of resources.

Several types of API endpoints are defined by the CS API Standard:

• Canonical resources endpoints (e.g. {api_root}/systems)

• Canonical resource endpoints (e.g. {api_root}/systems/{id})

• Nested resources endpoints (e.g. {api_root}/systems/{id}/subsystems)

• Collection items resources endpoints (e.g. {api_root}/collections/{id}/items)

OPEN GEOSPATIAL CONSORTIUM 23-001R0 23

7.6.2. Canonical Resources Endpoints

A canonical resources endpoint exposes all resources of a given type hosted by the server. It
provides a default endpoint for creating new resources (using HTTP POST), and retrieving/
searching resources (using HTTP GET) of this type. Canonical resources endpoint have simple
URLs located directly at the API root.

The canonical resources endpoints for resource types defined in Part 1 of the CS API Standard
are:

• {api_root}/systems

• {api_root}/deployments

• {api_root}/procedures

• {api_root}/samplingFeatures

• {api_root}/properties

7.6.3. Canonical Resource Endpoints

A canonical resource endpoint exposes a single resource. It provides a default endpoint
for retrieving, replacing, updating or deleting (using HTTP GET, PUT, PATCH and DELETE,
respectively) a given resource. Any change to the resource made at its canonical endpoint will be
reflected in all collections that the resource is part of.

The canonical URL for a single resource is based on the URL of the canonical resources endpoint
of the corresponding resource type. This leads to the following canonical URL templates for
resource types defined in Part 1 of the CS API Standard:

• {api_root}/systems/{id}

• {api_root}/deployments/{id}

• {api_root}/procedures/{id}

• {api_root}/samplingFeatures/{id}

• {api_root}/properties/{id}

When a resource is retrieved from a URL that is NOT its canonical URL (e.g. through a
collection), its canonical URL must be provided in the response.

An example of canonical link is provided in the following JSON snippet:

{
 "type": "Feature",
 "id": "123",
 ...

OPEN GEOSPATIAL CONSORTIUM 23-001R0 24

 "links": [
 {
 "rel" : "self",
 "title" : "this document",
 "href" : "https://data.example.org/api/collections/uav_systems/123?f=
json",
 "type" : "application/geo+json"
 }, {
 "rel" : "canonical",
 "title" : "this resource canonical URL",
 "href" : "https://data.example.org/api/systems/123?f=json",
 "type" : "application/geo+json"
 }
]
}

NOTE: If the response format is not JSON based, the canonical link can still be provided in the
HTTP response headers.

7.7. Paged Responses

All resource collections support paging via the limit query parameter and the next link, as
specified by the OGC API — Features — Part 1: Core Standard.

7.8. Search & Filtering

The core search capability is based on the OGC API — Features — Part 1: Core Standard and
thus supports:

• Bounding box searches using the bbox parameter,

• Time instant or time period searches using the datetime parameter,

• Equality predicates on feature properties (i.e. property=value).

The CS API Standard extends these core search capabilities to include:

• Search by resource local ID or UID using the id parameter.

• Geospatial searches using the geom parameter encoded as a WKT geometry,

• Full-text searches using the q parameter (prefix search only).

Additional filters are defined on a per resource type basis, as shown in the following table:

OPEN GEOSPATIAL CONSORTIUM 23-001R0 25

Table 2 — Query Parameters

REQUIREMENTS CLASS QUERY PARAMETERS

System Features parent, procedure, foi, observedProperty, controlledProperty

Deployment Features parent, system, foi, observedProperty, controlledProperty

Procedure Features observedProperty, controlledProperty

Sampling Features foi, observedProperty, controlledProperty

Property Definitions baseProperty, objectType

See Clause 16, Requirements Class “Advanced Filtering” for more details.

7.9. Link Relation Types

The following link relation types are defined and used in this Standard:

Table 3 — Link Relation Types

RELATION TYPE USED IN RESOURCE DESCRIPTION

ogc-rel:
parentSystem

System (Subsystem),
Sampling Feature

Link to the parent system of the entity.

ogc-rel:
subsystems

System Link to the subsystems of a parent system.

ogc-rel:
samplingFeatures

System, Deployment Link to the sampling features associated to the entity.

ogc-rel:
deployments

System Link to the deployments associated to the entity.

ogc-rel:
procedures

System Link to the procedures that can be implemented by a system.

ogc-rel:
parentDeployment

Deployment
(Subdeployment)

Link to the parent deployment of a subdeployment.

ogc-rel:
subdeployments

Deployment Link to the subdeployments of a parent deployment.

ogc-rel:
featuresOfInterest

System, Deployment Link to the ultimate features of interest associated to the entity.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 26

RELATION TYPE USED IN RESOURCE DESCRIPTION

ogc-rel:
implementingSystems

Procedure Link to the systems that implement the procedure.

ogc-rel:
sampledFeature

Sampling Feature
Link to the the ultimate feature of interest sampled by the
sampling feature.

ogc-rel:
sampleOf

Sampling Feature
Link to other sampling features that the sampling feature is a
sample of.

ogc-rel:
datastreams

System, Deployment,
Sampling Feature

Link to the datastreams that are associated to the entity,

ogc-rel:
controlStreams

System, Deployment,
Sampling Feature

Link to the controlstreams that are associated to the entity,

7.10. Security Considerations

7.10.1. Authentication

The expectation is that certain functionality of the CS API will be protected by an access control
mechanism (e.g. RBAC), which requires each user to authenticate.

This Standard does not mandate a particular authentication method, but the following methods
are commonly used and supported by OpenAPI:

• HTTP authentication (basic, bearer),

• API key (either as a header or as a query parameter),

• OAuth2 Common Flows (implicit, password, application and access code) as defined in
RFC6749, and

• OpenID Connect Discovery.

NOTE: Some of these authentication methods are only recommended over HTTPS.

7.10.2. Encryption

A CS API implementation will often be used to transmit confidential or sensitive data.
Encryption in-transit using HTTPS (i.e. HTTP over TLS/SSL) is thus highly recommended and is
now very common practice on the web.

In addition, implementations of this Standard may also store confidential or sensitive data (e.g.
in a database) for extended periods of time. In this case, encryption at rest is also recommended,
especially if data is hosted on a shared infrastructure (e.g. public clouds).

OPEN GEOSPATIAL CONSORTIUM 23-001R0 27

7.10.3. M2M Communications

It is expected that clients implementing the CS API Standard will sometime be machines that
connect to the API automatically without human intervention.

To mitigate data spoofing, it is highly recommended that this type of clients use a strong
authentication method and digital signatures relying on asymmetric cryptography, and whose
access can be easily revoked (e.g. PKI certificates).

7.10.4. Common Weaknesses

Please see Clause 11 of OGC API — Features — Part 1: Core for guidance regarding the
mitigation of typical web APIs weaknesses.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 28

https://docs.ogc.org/is/17-069r4/17-069r4.html#_security_considerations

8

REQUIREMENTS CLASS
“COMMON”

OPEN GEOSPATIAL CONSORTIUM 23-001R0 29

8 REQUIREMENTS CLASS “COMMON”

8.1. Overview

REQUIREMENTS CLASS 1

IDENTIFIER /req/api-common

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.1: /conf/api-common

PREREQUISITES

http://www.opengis.net/spec/ogcapi-features-1/1.0/req/core
http://www.opengis.net/spec/ogcapi-common-1/1.0/req/core
http://www.opengis.net/spec/ogcapi-common-1/1.0/req/landing-page
http://www.opengis.net/spec/ogcapi-common-1/1.0/req/json

NORMATIVE STATEMENTS

Requirement 1: /req/api-common/resource-ids
Requirement 2: /req/api-common/resource-uids
Recommendation 1: /rec/api-common/resource-uids-types
Requirement 3: /req/api-common/datetime

This requirements class regroups core dependencies that all other requirements class inherit. It
also provides clarifications on the use of the OGC API — Common Standard constructs.

8.2. API Landing Page

The landing page provides links to start exploration of the resources offered by an OGC API
implementation instance. The OGC API — Common Standard already requires some common
links, sufficient for this Standard.

8.3. API Definition

Every OGC API implementation instance is required to provide a definition document
that describes the capabilities of that instance. This definition document can be used by

OPEN GEOSPATIAL CONSORTIUM 23-001R0 30

developers to understand the API capabilities, by software clients to connect to the server, or by
development tools to support the implementation of servers and clients.

Implementation must comply with requirements defined in the OGC API — Common Standard
when generating the API definition document.

8.4. Resource IDs

Resource IDs are typically generated by the server and are not guaranteed to be globally unique.
However, the server must ensure that IDs are unique within a given resource type and/or
feature type.

REQUIREMENT 1

IDENTIFIER /req/api-common/resource-ids

INCLUDED
IN

Requirements class 1: /req/api-common

STATEMENT
The server SHALL ensure that resource IDs are unique across all resources of a given type (i.e. across
all collections containing resources of that type).

8.5. Unique Identifiers (UID)

This Standard mandates that some resource types (e.g. feature resources) have a globally unique
identifier that is independent of the resource URL. This is needed to carry the identity of the
real-world object that a resource represents across services, as multiple servers may host
different representations/descriptions of the same object.

Example
A Connected Systems API server implementation may hold the summary representation of
a building, while the feature API server of the land register contains its 2D footprint, and the
emergency response server contains its detailed 3D structure. All 3 representations should refer
to the same identifier so they can be related to each other.

REQUIREMENT 2

IDENTIFIER /req/api-common/resource-uids

INCLUDED IN Requirements class 1: /req/api-common

OPEN GEOSPATIAL CONSORTIUM 23-001R0 31

REQUIREMENT 2

A The server SHALL ensure that resource UIDs (Unique IDs) are unique across all its collections.

B The server SHALL ensure that all resource UIDs are valid URIs.

RECOMMENDATION 1

IDENTIFIER /rec/api-common/resource-uids-types

INCLUDED
IN

Requirements class 1: /req/api-common

A

The server SHOULD ensure that resource UIDs are globally unique. The recommended URI types
are:

• URNs for 128-bits Universally Unique Identifiers (UUID) (prefixed by urn:uuid:, see
RFC4122)

• URNs using a namespace registered with IANA

8.6. Coordinate Reference Systems

As the CS API Standard extends OGC API — Features — Part 1: Core, the server is only required
to implement support for CRS:84 (longitude, latitude) and CRS:84h (longitude, latitude, height).
However, if support for a CRS other than CRS:84 or CRS:84h is needed, the server can also
implement requirements from the OGC API — Features — Part 2: Coordinate Reference Systems
by Reference Standard.

8.7. Date/Time Query Parameter

REQUIREMENT 3

IDENTIFIER /req/api-common/datetime

INCLUDED
IN

Requirements class 1: /req/api-common

A
When the datetime query parameter is used to filter a collection of feature types defined in this
Standard, the server SHALL use the validTime attribute of the features to determine their temporal
extent.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 32

REQUIREMENT 3

B
Only features with a validTime period that intersects the value of the datetime query parameter,
or features that don’t report any temporal validity (i.e. validTime attribute is null or not set),
SHALL be included in the result set.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 33

9

REQUIREMENTS CLASS
“SYSTEM FEATURES”

OPEN GEOSPATIAL CONSORTIUM 23-001R0 34

9 REQUIREMENTS CLASS “SYSTEM FEATURES”

9.1. Overview

REQUIREMENTS CLASS 2

IDENTIFIER /req/system

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.2: /conf/system

PREREQUISITE Requirements class 1: /req/api-common

NORMATIVE STATEMENTS

Requirement 4: /req/system/location-time
Requirement 5: /req/system/canonical-url
Requirement 6: /req/system/resources-endpoint
Requirement 7: /req/system/canonical-endpoint
Requirement 8: /req/system/collections

The “System Features” requirements class specifies how system descriptions are provided using
the CS API.

The System resource implements the System concept defined in the Semantic Sensor Network
Ontology (SOSA/SSN). System resources are used to expose metadata about several kinds of
systems and their components, including sensors, actuators, samplers, processes, platforms, etc.

NOTE 1: System resources describe system instances (e.g. a sensor device, a UAV platform)
while Procedure resources are used to describe system types (e.g. a particular model of sensor
or vehicle, specified using the manufacturer datasheet). Several System instances can implement
the same Procedure (i.e. be of the same model).

NOTE 2: System resources are used to model instances of sosa:System (including its subclasses:
sosa:Sensor, sosa:Actuator and sosa:Sampler), as well as sosa:Platform. Semantic tagging is used to
provide the exact type.

NOTE 3: The Semantic Sensor Network Ontology (SOSA/SSN) does not define sosa:Platform
as a subclass of sosa:System. However, the ontology allows an individual to be both a sosa:
System and a sosa:Platform. This is the specific case that is modeled in this Standard as a System
resource tagged with systemType=sosa:Platform. However, not all types of platforms need be
modeled as systems (i.e. trees, buildings, etc. can also serve as platforms). Thus, this Standard
does not put any restriction as to what type of Features can be used as platforms. This enables

OPEN GEOSPATIAL CONSORTIUM 23-001R0 35

http://www.w3.org/ns/ssn/System
http://www.w3.org/ns/ssn/System
http://www.w3.org/ns/sosa/Sensor
http://www.w3.org/ns/sosa/Actuator
http://www.w3.org/ns/sosa/Sampler
http://www.w3.org/ns/sosa/Platform

a Deployment to refer to any Feature as the platform, which includes linking to external feature
stores (e.g. building databases, etc.).

System Examples
• A digital temperature probe (type: Sensor, assetType: Equipment)

• A GPS receiver (type: Sensor, assetType: Equipment)

• A video camera (type: Sensor, assetType: Equipment)

• A weather forecasting system (type: Sensor, assetType: Simulation)

• A human bird watcher (type: Sensor, assetType: Human)

• An electric motor (type: Actuator, assetType: Equipment)

• A motorized window blind (type: Actuator, assetType: Equipment)

• A field technician collecting water samples (type: Sampler, assetType: Human)

• An unmanned vehicle (type: Platform, assetType: Equipment)

• An aircraft (type: Platform, assetType: Equipment)

• A bulldozer (type: Platform, assetType: Equipment)

• The Nexrad radar network (type: System, assetType: Group)

9.2. System Resource

9.2.1. Introduction

In the CS API Standard, System resources are a special kind of feature resource that implements
the ssn:System concept.

This section defines the attributes and associations composing a System resource, but the exact
way they are encoded in the payload is defined by each encoding. For encodings defined in this
document, please see:

• System resource as GeoJSON

• System resource as SensorML

OPEN GEOSPATIAL CONSORTIUM 23-001R0 36

http://www.w3.org/ns/ssn/System

9.2.2. Properties

The following tables describe the attributes and associations of a System resource and their
mapping to SOSA/SSN.

All System resource representations provided by encoding requirements classes map to these
properties.

Table 4 — System Attributes

NAME
SOSA/SSN
PROPERTY

DEFINITION
DATA
TYPE

USAGE

uniqueIdentifier
RDF concept
URI

The unique identifier of the system in the form of a URI
(preferably a URN). This identifier should be persistent and
independent of the actual resource URL.

URI Required

name rdfs:label The human readable name of the system. String Required

description rdfs:comment A human readable description for the system. String Optional

systemType rdfs:type The type of system (see Table 6).
URI or
CURIE

Required

assetType - The type of asset involved in the system (see Table 7). Enum Optional

validTime - The validity period of the system’s description.
Date
Time

Optional

location
geo:lat/geo:
lon

The current location of the system. Point Optional

Table 5 — System Associations

NAME
SOSA/SSN
PROPERTY

DEFINITION TARGET CONTENT USAGE

systemKind
ssn:
hasSystemKind

The description of the kind of
System (e.g. datasheet).

A single Procedure resource
(inline or by-reference).

Optional

subsystems
sosa:
hasSubSystem

The list of subsystems (i.e.
components) attached to the
System, if any.

A list of System resources (inline
or by-reference).

Required

samplingFeatures-
The Sampling Features
associated to the System, if any.

A list of SamplingFeature
resources (inline or by-reference).

Required

deployments
sosa:
hasDeployment

The Deployments that the
System is part of, if any.

A list of Deployment resources
(inline or by-reference).

Optional

OPEN GEOSPATIAL CONSORTIUM 23-001R0 37

NAME
SOSA/SSN
PROPERTY

DEFINITION TARGET CONTENT USAGE

procedures
sosa:
implements

The Procedures that can be
implemented by the System, if
any.

A list of Procedure resources
(inline or by-reference).

Optional

datastreams -
The DataStreams generated by
the System, if any.

A list of DataStream resources
(inline or by-reference).

Required

controlstreams-
The ControlStreams receiving
commands for the System, if any.

A list of ControlStream
resources (inline or by-reference).

Required

Table 6 — System Types

SYSTEM TYPE URI CURIE USAGE

Sensor
http://www.w3.org/ns/sosa/
Sensor

sosa:Sensor
When the system’s primary activity is ‘sensing’ or
‘observing’.

Actuator
http://www.w3.org/ns/sosa/
Actuator

sosa:Actuator When the system’s primary activity is ‘actuating’.

Sampler
http://www.w3.org/ns/sosa/
Sampler

sosa:Sampler When the system’s primary activity is ‘sampling’.

Platform
http://www.w3.org/ns/sosa/
Platform

sosa:Platform
When the system’s primary activity is ‘carrying’
other systems.

System
http://www.w3.org/ns/sosa/
System

sosa:System For all other system types.

NOTE: Tagging a System resource with a particular type only carries semantic meaning and does not
imply any API functionality. All types of systems can receive commands and generate datastreams.

Table 7 — Asset Types

ASSET TYPE VALUE USAGE

Equipment
The system is composed of one or more hardware devices or pieces of equipment, that
interact directly with the real-world and can be either automated or manually operated
(e.g. sensor or actuator device, vehicle, robot, etc.).

Human
The system consists of one or more human beings that follow well defined procedures (e.
g. conducting polls or surveys, collecting samples, carrying sensors, etc.).

LivingThing
The system consists of one or more animals or other living organisms (most often used
with systemType=Platform when it carries sensors).

Simulation
The system is a software algorithm that simulates or predicts the state of the real-world
(e.g. weather forecasts, mathematical models, training simulations, etc.).

OPEN GEOSPATIAL CONSORTIUM 23-001R0 38

http://www.w3.org/ns/sosa/Sensor
http://www.w3.org/ns/sosa/Sensor
http://www.w3.org/ns/sosa/Actuator
http://www.w3.org/ns/sosa/Actuator
http://www.w3.org/ns/sosa/Sampler
http://www.w3.org/ns/sosa/Sampler
http://www.w3.org/ns/sosa/Platform
http://www.w3.org/ns/sosa/Platform
http://www.w3.org/ns/sosa/System
http://www.w3.org/ns/sosa/System

ASSET TYPE VALUE USAGE

Process
The system is a process or process chain that transforms data coming from or going to
other systems.

Group
The system represents a group of similar systems (e.g. sensor network, vehicle fleet,
etc.). Such system usually has subsystems that provide detailed information about each
member in the group.

Other
Any other type of asset not accounted for in this list. In this case, an application specific
property can be used to provide the type.

NOTE: Deployments can also be used to document how different types of systems are used together.
For instance, a deployment may describe how a “human” (e.g. system of type platform) uses a piece of
“equipment” (e.g. system of type sensor) according to a well defined procedure.

9.2.3. Location

It is recommended that the System resource representation includes the location of the system.
If the implementation decides to report the location, it must be its latest known location.

RECOMMENDATION 2

IDENTIFIER /rec/system/location

STATEMENT A System feature resource SHOULD include the system location.

REQUIREMENT 4

IDENTIFIER /req/system/location-time

INCLUDED
IN

Requirements class 2: /req/system

A
If the implementation chooses to report the location of a system, it SHALL be the latest known
location of the system, unless a specific snapshot date/time is requested (see Part 2).

NOTE: If the system is a virtual asset, such as a simulation or process, reporting its location
is not always desired or possible. If an implementation wishes to report such location, the
recommendation is the following:

• If the location of the computing hardware that executes the process is known, it
should be used as the feature location (e.g. the location of the datacenter).

OPEN GEOSPATIAL CONSORTIUM 23-001R0 39

• If the process can be run in multiple locations (e.g. distributed or redundant process),
a multi-point geometry or an entire geographic area should be used as the feature
location.

• If the location is unknown, the location is not set.

9.3. System Canonical URL

The CS API Standard requires that every System resource has a canonical URL.

REQUIREMENT 5

IDENTIFIER /req/system/canonical-url

INCLUDED
IN

Requirements class 2: /req/system

A
Every System resource exposed by the server SHALL be accessible through its canonical URL of the
form {api_root}/systems/{id} where id is the local identifier of the System resource.

B
If a System resource is retrieved through any other URL than its canonical URL, the server response
SHALL include a link to its canonical URL with relation type canonical.

9.4. System Resources Endpoints

9.4.1. Definition

A System resources endpoint is an endpoint exposing a set of System resources that can be
further filtered using query parameters.

REQUIREMENT 6

IDENTIFIER /req/system/resources-endpoint

INCLUDED
IN

Requirements class 2: /req/system

A
The server SHALL support the HTTP GET operation at the path associated to the System resources
endpoint.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 40

REQUIREMENT 6

B
The operation SHALL fulfill all requirements defined in Clause 7.15.2 to 7.15.8 of OGC API —
Features — Part 1: Core.

C All features in the result set SHALL be System resources.

Clause 16.5 defines additional query parameters applicable to System resources endpoint.

9.4.2. Canonical System Resources Endpoint

The CS API Standard requires that a canonical System resources endpoint, exposing all System
resources, be made available by the server.

REQUIREMENT 7

IDENTIFIER /req/system/canonical-endpoint

INCLUDED IN Requirements class 2: /req/system

A The server SHALL expose a System resources endpoint at the path {api_root}/systems.

B The endpoint SHALL expose all System resources available on the server.

9.5. System Feature Collections

Any number of feature collections containing System features can be available at a CS API
endpoint, but the server must at least expose one. Members of System feature collections are
identified with the feature type sosa:System.

System resources can be grouped into collections according to any arbitrary criteria, as shown in
the following examples.

Examples of System Collections
• All unmanned systems at URL {api_root}/collections/uxs_systems

• All UAV systems at URL {api_root}/collections/uav_systems

• All systems operated by organization X at URL {api_root}/collections/orgx_systems

• All currently deployed systems at URL {api_root}/collections/deployed_systems

OPEN GEOSPATIAL CONSORTIUM 23-001R0 41

https://docs.ogc.org/is/17-069r4/17-069r4.html#_items_

Note that a given system can be part of all 4 collections at the same time.

REQUIREMENT 8

IDENTIFIER /req/system/collections

INCLUDED
IN

Requirements class 2: /req/system

A The server SHALL expose at least one Feature collection containing System resources.

B
The server SHALL identify all Feature collections containing System resources by setting the
itemType attribute to feature and the featureType attribute to sosa:System in the Collection
metadata.

C
For any feature collection with featureType set to sosa:System, the HTTP GET operation at the
path /collections/{collectionId}/items SHALL support the query parameters and response
of a System resources endpoint.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 42

10

REQUIREMENTS CLASS
“SUBSYSTEMS”

OPEN GEOSPATIAL CONSORTIUM 23-001R0 43

10 REQUIREMENTS CLASS “SUBSYSTEMS”

10.1. Overview

REQUIREMENTS CLASS 3

IDENTIFIER /req/subsystem

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.3: /conf/subsystem

PREREQUISITE Requirements class 2: /req/system

NORMATIVE STATEMENTS

Requirement 9: /req/subsystem/collection
Requirement 10: /req/subsystem/recursive-param
Requirement 11: /req/subsystem/recursive-search-systems
Requirement 12: /req/subsystem/recursive-search-subsystems
Requirement 13: /req/subsystem/recursive-assoc

Describing complex systems in terms of a hierarchy of components (or subsystems) is often
useful. The “Subsystems” requirements class specifies how such hierarchical systems are
described and made discoverable in an implementation of the CS API Standard.

Subsystems (i.e. system components) are regular System features that are made available
through a sub-collection of a parent System resource. Subsystems can be any kind of System
and can be indefinitely nested.

10.2. Types of System/Subsystem Associations

Subsystems can be associated to their parent system either by Composition or Aggregation.

Composition means that a subsystem is an integral part of a parent system (i.e. the subsystem
cannot or is not usually taken apart from its parent system during its lifetime, except for
maintenance). Composition is implemented in the API by creating subsystems as nested
resources under their parent system.

Aggregation means that a subsystem is not permanently attached to its parent system (i.e. it can
be taken apart and can be attached to different parent systems at different times). Aggregation

OPEN GEOSPATIAL CONSORTIUM 23-001R0 44

is implemented in the API using Deployment resources that describe what subsystems are
mounted on a parent system at any given time.

NOTE: This definition is slightly looser that the UML definition for Composition associations. In
UML, composition is used if a child cannot exist independently from the parent. In the context
of the CS API Standard, composition can be used by choice if it is known that the component
is rarely taken apart from its parent, even though, in principle the component could exist
independently.

Examples of systems modeled by composition
• A UAV with built-in IMU, GPS and camera that cannot be changed

• A weather station with built-in sensors

Examples of systems modeled by aggregation

• A weather station with interchangeable sensors

• A human operator using different sensors according to the mission

Examples of systems modeled by combining both composition and aggregation

• A UAV with IMU, GPS, flight controller (composition since they are built-in) and
interchangeable payloads such as RGB camera, thermal camera, LiDAR, etc. (aggregation
since they can be changed for each mission).

• A mobile phone with integrated sensors (composition since they are built-in) and
additional sensors connected via Bluetooth (aggregation).

10.3. Subsystem Resource

10.3.1. Introduction

Resources representing subsystems are regular System resources that are nested under their
parent System.

See Clause 9.2 for the requirements applying to System resources.

10.3.2. Properties

A System resource that is a subsystem of a parent system also includes the following
associations:

OPEN GEOSPATIAL CONSORTIUM 23-001R0 45

Table 8 — Subsystem Associations

NAME
SOSA/SSN
PROPERTY

DEFINITION TARGET CONTENT USAGE

parentSystem
inverse
Of sosa:
hasSubSystem

The parent System that this
subsystem is part of.

A single System resource. Required

10.4. Subsystem Canonical URL

Since subsystems are also System resources, they are required to have a canonical URL as
specified by Requirement 5: /req/system/canonical-url.

10.5. Subsystem Resources Endpoint

Subsystems are accessible as sub-resources of their parent System.

REQUIREMENT 9

IDENTIFIER /req/subsystem/collection

INCLUDED
IN

Requirements class 3: /req/subsystem

A
The server SHALL expose a System resources endpoint at path {api_root}/systems/
{parentId}/subsystems.

B
The endpoint SHALL only expose the System resources that are subsystems of the parent System
with ID parentId.

C
The endpoint SHALL expose all subsystems that are permanently attached to the parent system, and
CAN also expose the subsystems that are currently deployed on the parent.

Some systems have interchangeable components that are often called “payloads” (e.g. UAV
platform carrying different sensors at different times). Although such payloads can be listed
as subsystems by the server, the best way to describe this is by creating a new Deployment
resource every time the payloads are changed (the deployment description allows one to
explicitly list which payloads are mounted on a platform during a given time period).

OPEN GEOSPATIAL CONSORTIUM 23-001R0 46

10.6. System Recursive Search

By default, the canonical System resources endpoint only exposes top-level systems (i.e.
subsystems are not visible).

Likewise, Subsystem resources endpointw only expose the direct subsystems, but not
subsystems nested at deeper levels (i.e. the subsystems of the subsystems and so on).

The recursive query parameter changes the default behavior by instructing the server to
process all subsystems recursively (at all levels below the current level).

REQUIREMENT 10

IDENTIFIER /req/subsystem/recursive-param

INCLUDED
IN

Requirements class 3: /req/subsystem

STATEMENT

The server SHALL support a query parameter recursive with the following characteristics (using
an OpenAPI Specification 3.0 fragment):
name: recursive
in: query
required: false
schema:
 type: boolean

REQUIREMENT 11

IDENTIFIER /req/subsystem/recursive-search-systems

INCLUDED
IN

Requirements class 3: /req/subsystem

A
HTTP GET operations at the canonical System resources endpoint {api_root}/systems SHALL
support the parameter recursive.

B
If the recursive parameter is omitted or set to false, the response SHALL only include the top-
level systems, and not their subsystems.

C
If the recursive parameter is set to true, the response SHALL include top-level systems as well as
their subsystems, recursively.

D
Other query string parameters SHALL be applied to all processed System resources, regardless of
whether they are top-level systems or subsystems.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 47

REQUIREMENT 12

IDENTIFIER /req/subsystem/recursive-search-subsystems

INCLUDED
IN

Requirements class 3: /req/subsystem

A
HTTP GET operations at subsystems resources endpoints {api_root}/systems/{id}/
subsystems SHALL support the parameter recursive.

B
If the recursive parameter is omitted or set to false, the response SHALL only include the
system’s direct subsystems.

C
If the recursive parameter is set to true, the response SHALL include all nested subsystems,
recursively.

D
Other query string parameters SHALL be applied to all processed System resources, regardless of
whether they are direct subsystems, or transitive subsystems.

10.7. System Associations

If a System has subsystems, the associations listed below must reference a resource set that
includes resources associated to the main system, as well as all its subsystems.

REQUIREMENT 13

IDENTIFIER /req/subsystem/recursive-assoc

INCLUDED
IN

Requirements class 3: /req/subsystem

A
Whenever a System resource has subsystems, the target content of its associations SHALL be
adjusted as indicated in Table 9.

Table 9 — System Associations

ASSOCIATION NAME TARGET CONTENT

samplingFeatures The Sampling Features associated to the System and all its subsystems, recursively.

datastreams The DataStreams generated by the System and all its subsystems, recursively.

controlstreams
The ControlStreams receiving commands for the System and all its subsystems,
recursively.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 48

11

REQUIREMENTS CLASS
“DEPLOYMENT FEATURES”

OPEN GEOSPATIAL CONSORTIUM 23-001R0 49

11 REQUIREMENTS CLASS “DEPLOYMENT
FEATURES”

11.1. Overview

REQUIREMENTS CLASS 4

IDENTIFIER /req/deployment

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.4: /conf/deployment

PREREQUISITE Requirements class 1: /req/api-common

NORMATIVE STATEMENTS

Requirement 14: /req/deployment/canonical-url
Requirement 15: /req/deployment/resources-endpoint
Requirement 16: /req/deployment/canonical-endpoint
Requirement 17: /req/deployment/ref-from-system
Requirement 18: /req/deployment/collections

The “Deployment Features” requirements class specifies how Deployment descriptions are
provided using the CS API.

The Deployment resource implements the Deployment concept defined in the Semantic Sensor
Network Ontology (SOSA/SSN) and is used to provide information about the deployment of one
or more Systems (with or without payloads) for a specific purpose (often at a specific location
and time).

Deployment Examples
• An in-situ sensor deployed at a given location

• A network of in-situ sensors deployed along a river

• A network of security cameras deployed in a city

• A mission involving one or more unmanned systems (platforms) with payloads

• A team deployed to collect survey responses

• A sample collection campaign involving field personnel

OPEN GEOSPATIAL CONSORTIUM 23-001R0 50

http://www.w3.org/ns/ssn/Deployment

• A forecast model run

11.2. Deployment Resource

11.2.1. Introduction

In the CS API Standard, Deployment resources are a special kind of feature resource that
implements the sosa:Deployment concept.

This section defines the attributes and associations composing the Deployment resource,
but the exact way attributes and associations are encoded in the payload is defined by each
encoding. For encodings defined in this document, please see:

• Deployment resource as GeoJSON

• Deployment resource as SensorML

11.2.2. Properties

The following tables describe the attributes and associations of a Deployment resource and their
mapping to SOSA/SSN.

All Deployment resource representations provided by encoding requirements classes map to
these properties.

Table 10 — Deployment Attributes

NAME
SOSA/SSN
PROPERTY

DEFINITION
DATA
TYPE

USAGE

uniqueIdentifier
RDF concept
URI

The unique identifier of the deployment in the form of a
URI (preferably a URN). This identifier should be persistent
and independent of the actual resource URL.

URI Required

name rdfs:label The human readable name of the deployment. String Required

description rdfs:comment A human readable description for the deployment. String Optional

deploymentTyperdfs:type The type of deployment. URI Optional

validTime - The time period during which the systems are deployed.
Date
Time

Required

OPEN GEOSPATIAL CONSORTIUM 23-001R0 51

http://www.w3.org/ns/ssn/Deployment

NAME
SOSA/SSN
PROPERTY

DEFINITION
DATA
TYPE

USAGE

location
geo:lat/geo:
lon

The location or area where the systems are deployed. Geometry Optional

NOTE 1: The deployment location is not to be confused with the features of interest or sampling
features location/geometry. For in-situ and short-range remote sensors, the deployment location may
include the sampling features, but it is usually not true for long range remote sensing such as space
based earth observation. If the deployed systems are mobile, the deployment location should be the
entire area where the systems can be moved to.

NOTE 2: For deployments of models or processes, the location would usually not be provided, and the
user should query the area covered by the sampling feature(s) instead (i.e. the geographic area covered
by the model). If a deployment location is provided, it should be the location where the hardware
executing the process is located, not the location of the sampling features.

Table 11 — Deployment Associations

NAME
SOSA/SSN
PROPERTY

DEFINITION TARGET CONTENT USAGE

platform
sosa:
deployedOnPlatform

The platform on which the
systems are deployed.

A single Feature resource (inline
or by-reference).

Optional

deployedSystems
sosa:
deployedSystem

The list of Systems deployed
during the Deployment, if any.

A list of System resources (inline
or by-reference).

Required

subdeployments-
The list of subdeployments that
are part of the Deployment, if
any.

A list of Deployment resources
(inline or by-reference).

Required

featuresOfInterest-

The ultimate features of
interest that are observed
and/or controlled during the
Deployment.

A list of Feature resources
(inline or by-reference).

Optional

samplingFeatures-
The Sampling Features
associated to Systems deployed
during the Deployment.

A list of Sampling Feature
resources (inline or by-reference).

Optional

datastreams -
The Data Streams containing
observations collected during the
Deployment.

A list of DataStream resources
(inline or by-reference).

Optional

controlstreams-
The Control Streams that
received commands issued during
the Deployment.

A list of ControlStream
resources (inline or by-reference).

Optional

NOTE: The platform can be another System (e.g. a UAV or a station), but can also be any feature (e.g. a
building or a tree).

OPEN GEOSPATIAL CONSORTIUM 23-001R0 52

11.3. Deployment Canonical URL

The CS API Standard requires that every Deployment resource has a canonical URL.

REQUIREMENT 14

IDENTIFIER /req/deployment/canonical-url

INCLUDED
IN

Requirements class 4: /req/deployment

A
Every Deployment resource exposed by the server SHALL be accessible through its canonical URL
of the form {api_root}/deployments/{id} where id is the local identifier of the Deployment
resource.

B
If a Deployment resource is retrieved through any other URL than its canonical URL, the server
response SHALL include a link to its canonical URL with relation type canonical.

11.4. Deployment Resources Endpoints

11.4.1. Definition

A Deployment resources endpoint is an endpoint exposing a set of Deployment resources that
can be further filtered using query parameters.

REQUIREMENT 15

IDENTIFIER /req/deployment/resources-endpoint

INCLUDED
IN

Requirements class 4: /req/deployment

A
The server SHALL support the HTTP GET operation at the path associated to the Deployment
resources endpoint.

B
The operation SHALL fulfill all requirements defined in Clause 7.15.2 to 7.15.8 of OGC API —
Features — Part 1: Core.

C All features in the result set SHALL be Deployment resources.

Clause 16.6 defines additional query parameters applicable to Deployment resources endpoint.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 53

https://docs.ogc.org/is/17-069r4/17-069r4.html#_items_

11.4.2. Canonical Deployment Resources Endpoint

The CS API Standard requires that a canonical Deployment resources endpoint, exposing all
Deployment resources, be made available by the server.

REQUIREMENT 16

IDENTIFIER /req/deployment/canonical-endpoint

INCLUDED
IN

Requirements class 4: /req/deployment

A
The server SHALL expose a Deployment resources endpoint at the path {api_root}/
deployments.

B The endpoint SHALL expose all Deployment resources available on the server.

11.4.3. Nested Deployment Resources Endpoint

REQUIREMENT 17

IDENTIFIER /req/deployment/ref-from-system

INCLUDED
IN

Requirements class 4: /req/deployment

CONDITIONS
• The server implements the requirements class Requirements Class “System Features”

• The server provides the deployments association as part of System resource
representations

A
The deployments association in a System resource representation SHALL be implemented as a link
to a Deployment resources endpoint at path {api_root}/systems/{sysId}/deployments.

B
The endpoint SHALL only expose the Deployment resources where the System with ID sysId was
deployed.

11.5. Deployment Feature Collections

Any number of feature collections containing Deployment features can be available at a CS API
endpoint, but the server must at least expose one. Members of Deployment feature collections
are identified with the feature type sosa:Deployment.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 54

Deployment resources can be grouped into collections according to any arbitrary criteria, as
shown in the following examples.

Examples of Deployment Collections
• All saildrone deployments at URL {api_root}/collections/saildrone_missions

• All special forces deployments at URL {api_root}/collections/sof_missions

Note that a given deployment can be part of multiple collections at the same time.

REQUIREMENT 18

IDENTIFIER /req/deployment/collections

INCLUDED
IN

Requirements class 4: /req/deployment

A The server SHALL expose at least one Feature collection containing Deployment resources.

B
The server SHALL identify all Feature collections containing Deployment resources by setting the
itemType attribute to feature and the featureType attribute to sosa:Deployment in the
Collection metadata.

C
For any feature collection with featureType set to sosa:Deployment, the HTTP GET operation
at the path /collections/{collectionId}/items SHALL support the query parameters and
response of a Deployment resources endpoint.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 55

12

REQUIREMENTS CLASS
“SUBDEPLOYMENTS”

OPEN GEOSPATIAL CONSORTIUM 23-001R0 56

12 REQUIREMENTS CLASS “SUBDEPLOYMENTS”

12.1. Overview

REQUIREMENTS CLASS 5

IDENTIFIER /req/subdeployment

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.5: /conf/subdeployment

PREREQUISITE Requirements class 4: /req/deployment

NORMATIVE
STATEMENTS

Requirement 19: /req/subdeployment/collection
Requirement 20: /req/subdeployment/recursive-param
Requirement 21: /req/subdeployment/recursive-search-deployments
Requirement 22: /req/subdeployment/recursive-search-subdeployments
Requirement 23: /req/subdeployment/recursive-assoc

Describing complex deployments in terms of a hierarchy of deployments is often useful. This
requirements class specifies how such hierarchical deployments are described and made
discoverable using the CS API Standard.

Subdeployments are regular Deployment features that are made available through a sub-
collection of a parent Deployment resource.

Examples of deployments with subdeployments
• A deployment of many monitoring sensors along a river, where each monitoring site is

described as a subdeployment.

• A deployment of multiple unmanned systems to cover a large area divided into smaller
regions, with subdeployments describing which platforms/payloads are deployed in each
region.

• A tactical military operation, where each unit is described as a subdeployment.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 57

12.2. Subdeployment Resource

12.2.1. Introduction

Resources representing subdeployments are regular Deployment resources that are nested
under their parent deployment.

See Clause 11.2 for the requirements applying to Deployment resources.

12.2.2. Properties

A Deployment resource that is a subdeployment of a parent deployment also includes the
following associations:

Table 12 — Subdeployment Associations

NAME
SOSA/SSN
PROPERTY

DEFINITION TARGET CONTENT USAGE

parentDeployment-
The parent Deployment that this
subdeployment is part of.

A single Deployment resource. Required

12.3. Subdeployment Canonical URL

Since subdeployments are also Deployment resources, they are required to have a canonical URL
as specified by Requirement 14: /req/deployment/canonical-url.

12.4. Subdeployment Resources Endpoint

Subdeployments are accessible as sub-resources of their parent Deployment.

REQUIREMENT 19

IDENTIFIER /req/subdeployment/collection

INCLUDED
IN

Requirements class 5: /req/subdeployment

OPEN GEOSPATIAL CONSORTIUM 23-001R0 58

REQUIREMENT 19

A
The server SHALL expose subdeployments as a collection of Deployment resources at path {api_
root}/deployments/{parentId}/subdeployments.

B
The content of the collection SHALL be the list of Deployment resources that are part of the parent
Deployment with ID parentId.

C
The collection SHALL support the same query parameters as the ones supported by the catch-all
collection {api_root}/deployments.

12.5. Deployment Recursive Search

By default, the canonical Deployment resources endpoint only exposes top-level deployments
(i.e. subdeployments are not visible).

Likewise, Subdeployment resources endpoints only expose the direct subdeployments, but not
subdeployments nested at deeper levels.

The recursive query parameter changes the default behavior by instructing the server to
process all subdeployments recursively (at all levels below the current level).

REQUIREMENT 20

IDENTIFIER /req/subdeployment/recursive-param

INCLUDED
IN

Requirements class 5: /req/subdeployment

STATEMENT

The server SHALL support a query parameter recursive with the following characteristics (using
an OpenAPI Specification 3.0 fragment):
name: recursive
in: query
required: false
schema:
 type: boolean

REQUIREMENT 21

IDENTIFIER /req/subdeployment/recursive-search-deployments

INCLUDED
IN

Requirements class 5: /req/subdeployment

A
HTTP GET operations at the canonical Deployment resources endpoint {api_root}/
deployments SHALL support the parameter recursive.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 59

REQUIREMENT 21

B
If the recursive parameter is omitted or set to false, the response SHALL only include the top-
level deployments, and not their subdeployments.

C
If the recursive parameter is set to true, the response SHALL include top-level deployments as
well as their subdeployments, recursively.

D
Other query string parameters SHALL be applied to all processed Deployment resources, regardless
of whether they are root deployments or subdeployments.

REQUIREMENT 22

IDENTIFIER /req/subdeployment/recursive-search-subdeployments

INCLUDED
IN

Requirements class 5: /req/subdeployment

A
HTTP GET operations at subdeployments resources endpoints {api_root}/deployments/{id}/
subdeployments SHALL support the parameter recursive.

B
If the recursive parameter is omitted or set to false, the response SHALL only include the
deployment’s direct subdeployments.

C
If the recursive parameter is set to true, the response SHALL include all nested subdeployments,
recursively.

D
Other query string parameters SHALL be applied to all processed Deployment resources, regardless
of whether they are direct subdeployments, or transitive subdeployments.

12.6. Deployment Associations

If a Deployment has subdeployments, the associations listed below must reference a resource
set that includes resources associated to the main deployment, as well as all its subdeployments.

REQUIREMENT 23

IDENTIFIER /req/subdeployment/recursive-assoc

INCLUDED
IN

Requirements class 5: /req/subdeployment

A
Whenever a Deployment resource has subdeployments, the target content of its associations SHALL
be adjusted as indicated in Table 13.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 60

Table 13 — Deployment Associations

ASSOCIATION NAME TARGET CONTENT

deployedSystems The Systems deployed during the Deployment and all its subdeployments, recursively.

samplingFeatures
The Sampling Features associated to Systems deployed during the Deployment
and all its subdeployments, recursively.

featuresOfInterest
The ultimate features of interest that are observed and/or controlled during the
Deployment or any of its subdeployments, recursively.

datastreams
The DataStreams generated by systems deployed in the Deployment and all its
subdeployments, recursively.

controlstreams
The ControlStreams receiving commands for systems deployed in the Deployment
and all its subdeployments, recursively.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 61

13

REQUIREMENTS CLASS
“PROCEDURE FEATURES”

OPEN GEOSPATIAL CONSORTIUM 23-001R0 62

13 REQUIREMENTS CLASS “PROCEDURE
FEATURES”

13.1. Overview

REQUIREMENTS CLASS 6

IDENTIFIER /req/procedure

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.6: /conf/procedure

PREREQUISITE Requirements class 1: /req/api-common

NORMATIVE STATEMENTS

Requirement 24: /req/procedure/location
Requirement 25: /req/procedure/canonical-url
Requirement 26: /req/procedure/resources-endpoint
Requirement 27: /req/procedure/canonical-endpoint
Requirement 28: /req/procedure/collections

The “Procedure Features” requirements class specifies how Procedure descriptions are provided
using the CS API.

A Procedure resource implements the Procedure concept defined in the Semantic Sensor
Network Ontology (SOSA/SSN). Procedure resources are used to provide the specifications or
methodology implemented by a System to accomplish its task(s).

NOTE: Procedure resources describe types of systems (e.g. a particular model of sensor) or
procedures implemented by systems (e.g. followed by a human operator or programmed into a
piece of equipment), while System resources describe system instances (e.g. a sensor device, a
human observer). Several System instances can be associated to the same Procedure.

Procedure Examples
For hardware equipment operating automatically, a procedure is used to describe the
equipment’s specifications (i.e. datasheet).

For human sensing or sampling tasks, the procedure describes the steps or methodology that
must be followed by the operator.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 63

http://www.w3.org/ns/sosa/Procedure

For cases involving both an instrument and a human operator, the procedure describes
what instrument(s) is/are used by the operator and how. In some cases, the human acts
as the Platform that carries one or more sensors (e.g. a mobile phone, a portable infrared
thermometer).

13.2. Procedure Resource

13.2.1. Introduction

In the CS API Standard, Procedure resources are a special kind of feature resource that
implements the sosa:Procedure concept.

This section defines the attributes and associations composing the Procedure resource, but the
exact way attributes and associations are encoded in the payload is defined by each encoding.
For encodings defined in this document, please see:

• Procedure resource as GeoJSON

• Procedure resource as SensorML

13.2.2. Properties

The following tables describe the attributes and associations of a Procedure resource and their
mapping to SOSA/SSN.

All Procedure resource representations provided by encoding requirements classes map to
these properties.

Table 14 — Procedure Attributes

NAME
SOSA/SSN
PROPERTY

DEFINITION
DATA
TYPE

USAGE

uniqueIdentifier
RDF concept
URI

The unique identifier of the procedure in the form of a URI
(preferably a URN). This identifier should be persistent and
independent of the actual resource URL

URI Required

name rdfs:label The human readable name of the procedure String Required

description rdfs:comment A human readable description for the procedure String Optional

procedureType rdfs:type The type of procedure (see Table 16) URI Required

OPEN GEOSPATIAL CONSORTIUM 23-001R0 64

http://www.w3.org/ns/sosa/Procedure

NAME
SOSA/SSN
PROPERTY

DEFINITION
DATA
TYPE

USAGE

validTime - The validity period of the procedure description.
Date
Time

Optional

NOTE: The validity time period of a Procedure description starts on the date that the model of the
equipment was released. No System can implement the Procedure before this date. The end date should
be set to a date after which no instance of the equipment is in use, or unbounded.

Table 15 — Procedure Associations

NAME
SOSA/SSN
PROPERTY

DEFINITION TARGET CONTENT USAGE

implementingSystemsimplementedBy
The Systems that implement the
Procedure.

A list of System resources (inline
or by-reference).

Optional

Table 16 — Procedure Types

PROCEDURE
TYPE

URI CURIE
IMPLEMENTED
BY

USAGE

Observing
http://www.w3.org/ns/sosa/
ObservingProcedure

sosa:Observing
Procedure

Sensor An observation method.

Actuating
http://www.w3.org/ns/sosa/
ActuatingProcedure

sosa:Actuating
Procedure

Actuator An actuation method.

Sampling
http://www.w3.org/ns/sosa/
SamplingProcedure

sosa:Sampling
Procedure

Sampler A sampling method.

Other
Procedure

http://www.w3.org/ns/sosa/
Procedure

sosa:Procedure Any System
Any other type of procedure or
methodology.

Sensor Kind
http://www.w3.org/ns/ssn-
system/SensorKind

ssn:SensorKind Sensor A sensor datasheet.

Actuator Kind
http://www.w3.org/ns/ssn-
system/ActuatorKind

ssn:Actuator
Kind

Actuator An actuator datasheet.

Sampler Kind
http://www.w3.org/ns/ssn-
system/SamplerKind

ssn:Sampler
Kind

Sampler A sampler datasheet.

Platform Kind
http://www.w3.org/ns/ssn-
system/PlatformKind

ssn:Platform
Kind

Platform A platform datasheet.

Other System
Kind

http://www.w3.org/ns/ssn-
system/SystemKind

ssn:System
Kind

Any System Any other system datasheet.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 65

http://www.w3.org/ns/sosa/ObservingProcedure
http://www.w3.org/ns/sosa/ObservingProcedure
http://www.w3.org/ns/sosa/ActuatingProcedure
http://www.w3.org/ns/sosa/ActuatingProcedure
http://www.w3.org/ns/sosa/SamplingProcedure
http://www.w3.org/ns/sosa/SamplingProcedure
http://www.w3.org/ns/sosa/Procedure
http://www.w3.org/ns/sosa/Procedure
http://www.w3.org/ns/ssn-system/SensorKind
http://www.w3.org/ns/ssn-system/SensorKind
http://www.w3.org/ns/ssn-system/ActuatorKind
http://www.w3.org/ns/ssn-system/ActuatorKind
http://www.w3.org/ns/ssn-system/SamplerKind
http://www.w3.org/ns/ssn-system/SamplerKind
http://www.w3.org/ns/ssn-system/PlatformKind
http://www.w3.org/ns/ssn-system/PlatformKind
http://www.w3.org/ns/ssn-system/SystemKind
http://www.w3.org/ns/ssn-system/SystemKind

13.2.3. Location

A Procedure feature represents a datasheet or a methodology. It is thus a non-spatial entity.

REQUIREMENT 24

IDENTIFIER /req/procedure/location

INCLUDED IN Requirements class 6: /req/procedure

STATEMENT A Procedure feature resource SHALL not include a location or geometry.

13.3. Procedure Canonical URL

The CS API Standard requires that every Procedure resource has a canonical URL.

REQUIREMENT 25

IDENTIFIER /req/procedure/canonical-url

INCLUDED
IN

Requirements class 6: /req/procedure

A
Every Procedure resource exposed by the server SHALL be accessible through its canonical URL
of the form {api_root}/procedures/{id} where id is the local identifier of the Procedure
resource.

B
If a Procedure resource is retrieved through any other URL than its canonical URL, the server
response SHALL include a link to its canonical URL with relation type canonical.

13.4. Procedure Resources Endpoints

13.4.1. Definition

A Procedure resources endpoint is an endpoint exposing a set of Procedure resources that can
be further filtered using query parameters.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 66

REQUIREMENT 26

IDENTIFIER /req/procedure/resources-endpoint

INCLUDED
IN

Requirements class 6: /req/procedure

A
The server SHALL support the HTTP GET operation at the path associated to the Procedure
resources endpoint.

B
The operation SHALL fulfill all requirements defined in Clause 7.15.2 to 7.15.8 of OGC API —
Features — Part 1: Core.

C All features in the result set SHALL be Procedure resources.

Clause 16.7 defines additional query parameters applicable to Procedure resources endpoint.

13.4.2. Canonical Procedure Resources Endpoint

The CS API Standard requires that a canonical Procedure resources endpoint, exposing all
Procedure resources, be made available by the server.

REQUIREMENT 27

IDENTIFIER /req/procedure/canonical-endpoint

INCLUDED
IN

Requirements class 6: /req/procedure

A The server SHALL expose a Procedure resources endpoint at the path {api_root}/procedures.

B The endpoint SHALL expose all Procedure resources available on the server.

13.5. Procedure Feature Collections

Any number of feature collections containing Procedure features can be available at a CS API
endpoint, but the server must at least expose one. Members of Procedure feature collections
are identified with the feature type sosa:Procedure.

Procedure resources can be grouped into collections according to any arbitrary criteria, as
shown in the following examples.

Examples of Procedure Collections

OPEN GEOSPATIAL CONSORTIUM 23-001R0 67

https://docs.ogc.org/is/17-069r4/17-069r4.html#_items_

• All weather station datasheets at URL {api_root}/collections/wx_stations_datasheets

• All bird watching procedure at URL {api_root}/collections/bird_watching_procedures

Note that a given procedure can be part of multiple collections at the same time.

REQUIREMENT 28

IDENTIFIER /req/procedure/collections

INCLUDED
IN

Requirements class 6: /req/procedure

A The server SHALL expose at least one Feature collection containing Procedure resources.

B
The server SHALL identify all Feature collections containing Procedure resources by setting the
itemType attribute to feature and the featureType attribute to sosa:Procedure in the
Collection metadata.

C
For any feature collection with featureType set to sosa:Procedure, the HTTP GET operation
at the path /collections/{collectionId}/items SHALL support the query parameters and
response of a Procedure resources endpoint.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 68

14

REQUIREMENTS CLASS
“SAMPLING FEATURES”

OPEN GEOSPATIAL CONSORTIUM 23-001R0 69

14 REQUIREMENTS CLASS “SAMPLING
FEATURES”

14.1. Overview

REQUIREMENTS CLASS 7

IDENTIFIER /req/sf

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.7: /conf/sf

PREREQUISITES
Requirements class 1: /req/api-common
Requirements class 2: /req/system

NORMATIVE STATEMENTS

Requirement 29: /req/sf/canonical-url
Requirement 30: /req/sf/resources-endpoint
Requirement 31: /req/sf/canonical-endpoint
Requirement 32: /req/sf/ref-from-system
Requirement 33: /req/sf/collections

The “Sampling Features” requirements class specifies how Sampling Feature descriptions are
provided using the CS API.

A Sampling Feature resource implements the Sample concept defined in the SSN Ontology.
Sampling Features provide information about the sampling strategy used when observing the
property of a larger feature (the Feature of Interest).

By analogy, this Standard also uses the concept of Sampling Feature to more precisely identify
the part of a Feature of Interest that is being affected by an actuator or process in response
to a command.

While Features of Interest exist independently from any system observing or controlling
them, Sampling Features are always associated to a specific System resource (which can
be either a Sensor, an Actuator or a Sampler) because they define this particular system’s
sampling strategy.

Sampling Feature Examples
• A sampling point along a river

• A trajectory at the ocean surface

OPEN GEOSPATIAL CONSORTIUM 23-001R0 70

http://www.w3.org/ns/sosa/Sample

• A satellite image footprint

• A profile of the atmosphere

• The viewing frustum of a video camera

• The area covered by a weather radar

• A part in a complex machine

14.2. Features of Interest

In the CS API Standard, the term Feature of Interest is used to specifically mean the Ultimate
Feature of Interest whose properties are observed by a sensing system or changed by a
controlling system. Features of interest are real-world features from an application domain and
they exist independently from any sampling strategy.

While many features of interest represent physical entities or are geospatial in nature, they can
also be used to model more abstract concepts.

Features of Interest Examples
• Man-built entities (e.g. a building, a room, a window, a road, a bridge)

• Natural bodies (e.g. the earth atmosphere, a river, a water body, an aquifer, a geological
layer, a forest)

• Living organisms (e.g. a person, an animal, a tree, a cell)

• Technological systems (e.g. a vehicle, a robot, a computer, a tool, a machine)

• Conceptual things (e.g. an administrative area, a legal entity)

NOTE 1: A System feature made available through the CS API can also take the role of the
Feature of Interest of some observations. For example, an aircraft platform modeled as a
System using the CS API may carry a GPS sensor to measure its location. In this case, the feature
of interest of the GPS observations is the platform itself because the GPS observes the location
of the platform. The Sampling Feature would typically be a sampling point where the GPS
antenna is located.

NOTE 2: Application domain features of interest can be hosted at the same API endpoint as
the other feature types defined in this Standard since they are just another type of feature; but
in many cases they will be hosted by third party servers. This API is designed to allow linking
to such external entities (although implementations are encouraged to cache some of this data
locally to allow for faster join queries).

The sampling feature model used in the CS API also supports “sampling chains”, where several
samples are linked via sub-sampling relationships. This is often done when analyzing specimens

OPEN GEOSPATIAL CONSORTIUM 23-001R0 71

(or material samples) in a lab, but can also be applied to other types of sampling features. A few
examples are provided below:

Sampling Chains Examples
• Geology: When performing rock analysis, the ultimate feature of interest may be an entire

rock formation. A large core sample (13cm in diameter) is collected in the field, then
smaller core plug samples (2cm diameter) are extracted from the core. In this case, the
sampling chain is specimen (core plug) → specimen (entire core) → rock formation.

• Video Surveillance: A video camera has for ultimate feature of interest a road intersection.
A viewing sector (portion of a sphere) is used to model the entire area viewable by the
camera. The subset of this entire volume being viewed at any given instant is modeled by a
frustum. In this case, the sampling chain is frustum → viewing sector → crossroad.

• Oceanic Observations: A vessel measures water parameters along its trajectory. The
ultimate feature of interest is the Atlantic Ocean. The path corresponding to the trajectory
of the vessel is a sampling curve, and each observation point along the way is a sub-
sample of the path. In this case, the sampling chain is sampling point → sampling curve
(path) → ocean

In this API, observations and commands are always associated to a Sampling Feature, never
directly to the ultimate Feature of Interest. Each Sampling Feature resource has an
association to the sampled feature (i.e. the feature being sampled) which can be the ultimate
Feature of Interest or another (larger) Sampling Feature in the case of a sampling chain.

14.3. Sampling Feature Resource

In the CS API Standard, Sampling Feature resources are a special kind of feature resource that
implements the sosa:Sample concept.

This section defines the attributes and associations that are common to all Sampling Feature
resources, but the exact way attributes and associations are encoded in the payload is defined
by each encoding. For encodings defined in this document, please see:

• SamplingFeature resource as GeoJSON

Future parts of this Standard will define concrete types of Sampling Features that can be used
to document different sampling strategies.

14.3.1. Common Properties

The following tables describe the attributes and associations that are common to all Sampling
Feature resource and their mapping to SOSA/SSN.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 72

http://www.w3.org/ns/sosa/Sample

All Sampling Feature resource representations provided by encoding requirements classes map
to these properties.

Table 17 — Common Sampling Feature Attributes

NAME
SOSA/SSN
PROPERTY

DEFINITION
DATA
TYPE

USAGE

uniqueIdentifier
RDF concept
URI

The unique identifier of the sampling feature in the form of
a URI (preferably a URN). This identifier must be persistent
and independent of the actual resource URL.

URI Required

name rdfs:label The human readable name of the sampling feature. String Required

description rdfs:comment A human readable description for the sampling feature. String Optional

featureType rdfs:type The type of sampling feature. URI Required

validTime - The validity period of the sampling feature.
Date
Time

Optional

NOTE: Valid time is used when the sampling feature is not meaningful or usable outside of a given time
period, for example:

• Biological samples are usually analyzed during a short time window after being extracted from
the patient.

• Image footprints are synthetic features that are only valid at the time the image was collected.

Table 18 — Sampling Features Associations

RELATION
NAME

SOSA/SSN
PROPERTY

DEFINITION TARGET CONTENT USAGE

parentSystem -
The System that created or uses
this Sampling Feature.

A single System resource. Required

sampledFeature
sosa:
hasSampledFeature

The ultimate feature of interest
that is being sampled or
controlled.

A single Feature resource. Required

sampleOf
sosa:
isSampleOf

Other Sampling Features
related to this Sampling
Feature via sub-sampling.

A list of Sampling Feature
resources (inline or by-reference).

Optional

datastreams -
The Data Streams that contain
observations of this Sampling
Feature.

A list of DataStream resources
(inline or by-reference).

Optional

controlstreams-
The Control Streams that
received commands impacting
this Sampling Feature.

A list of ControlStream
resources (inline or by-reference).

Optional

OPEN GEOSPATIAL CONSORTIUM 23-001R0 73

14.4. Sampling Feature Canonical URL

The CS API Standard requires that every Sampling Feature resource has a canonical URL.

REQUIREMENT 29

IDENTIFIER /req/sf/canonical-url

INCLUDED
IN

Requirements class 7: /req/sf

A
Every Sampling Feature resource exposed by the server SHALL be accessible through its canonical
URL of the form {api_root}/samplingFeatures/{id} where id is the local identifier of the
Sampling Feature resource.

B
If a Sampling Feature resource is retrieved through any other URL than its canonical URL, the
server response SHALL include a link to its canonical URL with relation type canonical.

14.5. Sampling Feature Resources Endpoints

14.5.1. Definition

A Sampling Feature resources endpoint is an endpoint exposing a set of Sampling Feature
resources that can be further filtered using query parameters.

REQUIREMENT 30

IDENTIFIER /req/sf/resources-endpoint

INCLUDED
IN

Requirements class 7: /req/sf

A
The server SHALL support the HTTP GET operation at the path associated to the Sampling Feature
resources endpoint.

B
The operation SHALL fulfill all requirements defined in Clause 7.15.2 to 7.15.8 of OGC API —
Features — Part 1: Core.

C All features in the result set SHALL be Sampling Feature resources.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 74

https://docs.ogc.org/is/17-069r4/17-069r4.html#_items_

Clause 16.8 defines additional query parameters applicable to Sampling Feature resources
endpoint.

14.5.2. Canonical Sampling Feature Resources Endpoint

The CS API Standard requires that a canonical Sampling Feature resources endpoint, exposing
all Sampling Feature resources, be made available by the server.

REQUIREMENT 31

IDENTIFIER /req/sf/canonical-endpoint

INCLUDED
IN

Requirements class 7: /req/sf

A
The server SHALL expose a Sampling Feature resources endpoint at the path {api_root}/
samplingFeatures.

B The endpoint SHALL expose all Sampling Feature resources available on the server.

14.5.3. Nested Sampling Feature Resources Endpoint

REQUIREMENT 32

IDENTIFIER /req/sf/ref-from-system

INCLUDED
IN

Requirements class 7: /req/sf

A
For each System resource, the server SHALL expose a Sampling Feature resources endpoint at the
path {api_root}/systems/{sysId}/samplingFeatures.

B
This Sampling Feature resources endpoint SHALL only list Sampling Feature resources that are
associated to the parent System resource with local ID sysId.

C
The samplingFeatures association in the parent System resource representation SHALL be
implemented as a link to this Sampling Feature resources endpoint.

D The parameter sysId SHALL be the local identifier of the parent System resource.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 75

14.6. Sampling Feature Collections

Any number of feature collections containing Sampling Features can be available at a CS API
endpoint, but the server must at least expose one. Members of Sampling Feature collections
are identified with the feature type sosa:Sample.

Sampling Feature resources can be grouped into collections according to any arbitrary criteria,
as shown in the following examples.

Examples of Sampling Feature Collections
• All river sampling stations at URL {api_root}/collections/hydro_sampling_points

• All satellite image footprints at URL {api_root}/collections/img_footprints

Note that a given sampling feature can be part of multiple collections at the same time.

REQUIREMENT 33

IDENTIFIER /req/sf/collections

INCLUDED
IN

Requirements class 7: /req/sf

A The server SHALL expose at least one Feature collection containing Sampling Feature resources.

B
The server SHALL identify all Feature collections containing Sampling Feature resources by
setting the itemType attribute to feature and the featureType attribute to sosa:Sample in the
Collection metadata.

C
For any feature collection with featureType set to sosa:Sample, the HTTP GET operation at the
path /collections/{collectionId}/items SHALL support the query parameters and response
of a Sampling Feature resources endpoint.

14.7. Dynamic properties

When some of the sampling feature properties are dynamic, they are also modeled as
observations (just like any other property observed on the feature of interest). An association
with the datastream containing these observations can optionally be provided along with the
sampling feature resource. The way this association is provided is encoding specific.

When the datetime parameter is included in the request, it is also possible to include a
“snapshot” of these dynamic properties (i.e. the value of the property that is valid at the
requested time) in the feature resource.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 76

NOTE: Dynamic properties can also be exposed using the OGC API — Moving Features
standard.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 77

15

REQUIREMENTS CLASS
“PROPERTY DEFINITIONS”

OPEN GEOSPATIAL CONSORTIUM 23-001R0 78

15 REQUIREMENTS CLASS “PROPERTY
DEFINITIONS”

15.1. Overview

REQUIREMENTS CLASS 8

IDENTIFIER /req/property

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.8: /conf/property

PREREQUISITE Requirements class 1: /req/api-common

NORMATIVE STATEMENTS

Requirement 34: /req/property/canonical-url
Requirement 35: /req/property/resources-endpoint
Requirement 36: /req/property/canonical-endpoint
Requirement 37: /req/property/collections

The “Property Definitions” requirements class specifies how property definitions are provided
using the CS API.

The Property resource implements the Property concept defined in the SSN Ontology.
Properties in the scope of the CS API are features of interest properties, including:

• Observable properties (i.e. subject of an observation, see sosa:ObservableProperty)

• Controllable properties (i.e. subject of an actuation, see sosa:ActuatableProperty)

• System properties (i.e. system characteristics and capabilities, which are sometimes
asserted, see ssn-system:SystemCapability)

NOTE: The same property can be used in all 3 contexts simultaneously (e.g. the same “engine
temperature” property can be measured by a sensor, controlled by the cooling system, and asserted in a
min/max specification).

The definition is provided by deriving the property from a well known entity referenced in an
ontology such as QUDT Quantity Kinds.

Derived Property Examples
• Combustion Chamber Temperature (derived from qudt:Temperature)

OPEN GEOSPATIAL CONSORTIUM 23-001R0 79

http://www.w3.org/ns/ssn/Property
http://www.w3.org/ns/sosa/ObservableProperty
http://www.w3.org/ns/sosa/ActuatableProperty
http://www.w3.org/ns/ssn/systems/SystemCapability

• Hourly Average CPU Temperature (derived from qudt:Temperature)

• Engine Output Power (derived from qudt:Power)

• Received X-Band RF Power (derived from qudt:Power)

15.2. Property Resource

15.2.1. Introduction

In the CS API Standard, Property resources are a special kind of resource that implements the
sosa:Property concept.

This section defines the attributes and associations composing a Property resource, but the
exact way they are encoded in the payload is defined by each encoding. For encodings defined
in this document, please see:

• Property resource as SensorML

15.2.2. Properties

The following tables describe the attributes and associations of a Property resource and their
mapping to SOSA/SSN.

All Property resource representations provided by encoding requirements classes map to these
properties.

Table 19 — Property Definition Attributes

NAME
SOSA/SSN
PROPERTY

DEFINITION
DATA
TYPE

USAGE

uniqueIdentifier
RDF concept
URI

The unique identifier of the property in the form of a URI
(preferably a URN). This identifier should be persistent and
independent of the actual resource URL.

URI Required

name rdfs:label The human readable name of the property. String Required

description rdfs:comment A human readable description for the property. String Optional

baseProperty -
Reference to the definition of the base property this
property is derived from.

URI or
CURIE

Required

OPEN GEOSPATIAL CONSORTIUM 23-001R0 80

http://www.w3.org/ns/ssn/Property

NAME
SOSA/SSN
PROPERTY

DEFINITION
DATA
TYPE

USAGE

objectType -
Reference to the type of entity that the base property
applies to.

URI or
CURIE

Optional

statistic -
Reference to the definition of the statistic applied to the
base property values.

URI or
CURIE

Optional

15.3. Property Canonical URL

The CS API Standard requires that every Property resource has a canonical URL.

REQUIREMENT 34

IDENTIFIER /req/property/canonical-url

INCLUDED
IN

Requirements class 8: /req/property

A
Every Property resource exposed by the server SHALL be accessible through its canonical URL of
the form {api_root}/properties/{id} where id is the local identifier of the property.

B
If a Property resource is retrieved through any other URL than its canonical URL, the server
response SHALL include a link to its canonical URL with relation type canonical.

15.4. Property Resources Endpoints

15.4.1. Definition

A Property resources endpoint is an endpoint exposing a set of Property resources that can be
further filtered using query parameters.

REQUIREMENT 35

IDENTIFIER /req/property/resources-endpoint

INCLUDED
IN

Requirements class 8: /req/property

OPEN GEOSPATIAL CONSORTIUM 23-001R0 81

REQUIREMENT 35

A
The server SHALL support the HTTP GET operation at the path associated to the Property resources
endpoint.

B
The operation SHALL fulfill all requirements defined in Clause 7.15.2 to 7.15.8 of OGC API —
Features — Part 1: Core. All references to the term “features” or “feature” in these requirements
SHALL be replaced by the terms “resources” or “resource”, respectively.

C All resources in the result set SHALL be Property resources.

Clause 16.9 defines additional query parameters applicable to Property resources endpoint.

15.4.2. Canonical Property Resources Endpoint

The CS API Standard requires that a canonical Property resources endpoint, exposing all
Property resources, be made available by the server.

REQUIREMENT 36

IDENTIFIER /req/property/canonical-endpoint

INCLUDED
IN

Requirements class 8: /req/property

A The server SHALL expose a Property resources endpoint at the path {api_root}/properties.

B The endpoint SHALL expose all Property resources available on the server.

15.5. Property Collections

Any number of resource collections containing Property resources can be available at a CS API
endpoint, but the server must at least expose one. Members of Property resource collections
are identified with the item type sosa:Property.

Property resources can be grouped into collections according to any arbitrary criteria, as shown
in the following examples.

Examples of Property Collections
• All standard WMO properties at URL {api_root}/collections/wmo_properties

• All chemical properties at URL {api_root}/collections/chemical_properties

OPEN GEOSPATIAL CONSORTIUM 23-001R0 82

https://docs.ogc.org/is/17-069r4/17-069r4.html#_items_

Note that a given property can be part of multiple collections at the same time.

REQUIREMENT 37

IDENTIFIER /req/property/collections

INCLUDED
IN

Requirements class 8: /req/property

A The server SHALL expose at least one resource collection containing Property resources.

B
The server SHALL identify all resource collections containing Property resources by setting the
itemType attribute to sosa:Property in the Collection metadata.

C
For any resource collection with itemType set to sosa:Property, the HTTP GET operation at the
path /collections/{collectionId}/items SHALL support the query parameters and response
of a Property resources endpoint.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 83

16

REQUIREMENTS CLASS
“ADVANCED FILTERING”

OPEN GEOSPATIAL CONSORTIUM 23-001R0 84

16 REQUIREMENTS CLASS “ADVANCED
FILTERING”

16.1. Overview

REQUIREMENTS CLASS 9

IDENTIFIER /req/advanced-filtering

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.9: /conf/advanced-filtering

PREREQUISITE Requirements class 1: /req/api-common

INDIRECT PREREQUISITE OGC 06-103r4 — Clause 7: Well-known Text Representation for Geometry

NORMATIVE
STATEMENTS

Requirement 38: /req/advanced-filtering/id-list-schema
Requirement 39: /req/advanced-filtering/resource-by-id
Requirement 40: /req/advanced-filtering/resource-by-keyword
Requirement 41: /req/advanced-filtering/feature-by-geom
Requirement 42: /req/advanced-filtering/system-by-parent
Requirement 43: /req/advanced-filtering/system-by-procedure
Requirement 44: /req/advanced-filtering/system-by-foi
Requirement 45: /req/advanced-filtering/system-by-obsprop
Requirement 46: /req/advanced-filtering/system-by-controlprop
Requirement 52: /req/advanced-filtering/procedure-by-obsprop
Requirement 53: /req/advanced-filtering/procedure-by-controlprop
Requirement 47: /req/advanced-filtering/deployment-by-parent
Requirement 48: /req/advanced-filtering/deployment-by-system
Requirement 49: /req/advanced-filtering/deployment-by-foi
Requirement 50: /req/advanced-filtering/deployment-by-obsprop
Requirement 51: /req/advanced-filtering/deployment-by-controlprop
Requirement 54: /req/advanced-filtering/sf-by-foi
Requirement 55: /req/advanced-filtering/sf-by-obsprop
Requirement 56: /req/advanced-filtering/sf-by-controlprop
Requirement 57: /req/advanced-filtering/prop-by-baseprop
Requirement 58: /req/advanced-filtering/prop-by-object
Requirement 59: /req/advanced-filtering/combined-filters

OPEN GEOSPATIAL CONSORTIUM 23-001R0 85

The “Advanced Filtering” requirements class specifies additional filtering options that may be
used to select only a subset of the resources in a collection.

All filters defined in this section are implemented using URL query parameters and can be used
in addition to the ones required by Clause 8.

16.2. Definitions

16.2.1. ID List Schema

The following requirement defines a schema for an “identifier list” that is used by several query
parameters. Identifiers in the list can be either local resource IDs or UIDs (URI) but the two types
of identifiers cannot be mixed in the same request.

REQUIREMENT 38

IDENTIFIER /req/advanced-filtering/id-list-schema

INCLUDED IN Requirements class 9: /req/advanced-filtering

A

A query parameter of type ID_List SHALL conform to the following OpenAPI 3.0 schema:
description: List of resource local IDs or unique identifiers (URIs).
oneOf:
 - type: array
 title: Local IDs
 minItems: 1
 items:
 type: string
 minLength: 1
 - type: array
 title: Unique IDs
 minItems: 1
 items:
 type: string
 format: uri

B Items in the list SHALL be valid resource IDs or resource UIDs.

C All items in the list SHALL be of the same ID type (either all resource IDs or all resource UIDs).

OPEN GEOSPATIAL CONSORTIUM 23-001R0 86

16.3. Common Resource Query Parameters

16.3.1. Overview

The filtering options defined in this section are common to all resource types defined in this
Standard, and may also be used with other resource types that are hosted at the same CS API
endpoint.

When this requirements class is implemented, the requirements in this class are applicable to all
HTTP GET operations used to retrieve items from any collection offered by the server (i.e. it is
not allowed to implement this class only for certain collections).

16.3.2. ID Filter

The ID filter is used to select resources that match one of the requested identifiers.

REQUIREMENT 39

IDENTIFIER /req/advanced-filtering/resource-by-id

INCLUDED
IN

Requirements class 9: /req/advanced-filtering

A
The HTTP GET operation at any resources endpoint defined by this Standard SHALL support a
parameter id of type ID_List.

B Only resources that are assigned one of the specified identifiers SHALL be part of the result set.

C
If a UID specified in the query ends with a trailing * character, all resources that have a UID starting
with the specified prefix SHALL be included in the result set.

16.3.3. Keyword Filter

The keyword filter is used to select resources by doing a full-text search on textual content.

REQUIREMENT 40

IDENTIFIER /req/advanced-filtering/resource-by-keyword

INCLUDED
IN

Requirements class 9: /req/advanced-filtering

OPEN GEOSPATIAL CONSORTIUM 23-001R0 87

REQUIREMENT 40

A

The HTTP GET operation at any resources endpoint defined by this Standard SHALL support a
parameter q with the following characteristics (using an OpenAPI 3.0 fragment):
name: q
in: query
description: |-
 Comma separated list of keywords used for full-text search.
 Only resources that have textual fields that contain one of the specified
keywords are selected.
 The resource `name` and `description` properties are always searched.
 It is up to the server to decide which other textual fields are searched.
required: false
schema:
 type: array
 items:
 type: string
 minLength: 1
 maxLength: 50
explode: false

examples:
 case1:
 summary: One keyword
 value: 'temp'
 case2:
 summary: Several keywords
 value: 'gps,imu'

B
Only resources that have human readable content that contains one the specified keywords SHALL
be part of the result set.

C
At least the name and description attributes of the resource SHALL be included in the full-text
search. It is the decision of the server to choose if other resource attributes are also searched.

D
The server is allowed to run the search using the canonical form of the provided keywords rather than
their exact value (lemmatization).

16.3.4. Simple Property Filter

The property filter is used to select resources that have specific property values.

RECOMMENDATION 3

IDENTIFIER /rec/advanced-filtering/resource-by-property

A
Filtering on resource properties SHOULD be supported as specified by requirement /rec/core/fc-
filters of OGC API — Features.

Example queries by property value

Systems by ‘name’ {api_root}/systems?name=Weather%20Station

OPEN GEOSPATIAL CONSORTIUM 23-001R0 88

http://www.opengis.net/spec/ogcapi-features-1/1.0/rec/core/fc-filters
http://www.opengis.net/spec/ogcapi-features-1/1.0/rec/core/fc-filters

Sampling features by
‘featureType’

{api_root}/samplingFeatures?featureType=om:Specimen

16.4. Common Feature Query Parameters

16.4.1. Geometry Filter

The geometry filter is used to select features with a spatial geometry intersecting the query
geometry.

REQUIREMENT 41

IDENTIFIER /req/advanced-filtering/feature-by-geom

INCLUDED IN Requirements class 9: /req/advanced-filtering

PREREQUISITE OGC 06-103r4 — Clause 7: Well-known Text Representation (WKT) for Geometry

A

The HTTP GET operation at any resources endpoint defined by this Standard that expose features
with geometries SHALL support a parameter geom with the following characteristics (using an
OpenAPI 3.0 fragment):
name: geom
in: query
description: |-
 WKT geometry and operator to filter resources on their location or
geometry.
 Only features that have a geometry that intersects the value of `geom`
are selected.
required: false
schema:
 type: string
examples:
 point:
 value: 'LINESTRING((-86.53 12.45), (-86.54 12.46), (-86.55 12.47))'
 polygon:
 value: 'POLYGON((0 0,4 0,4 4,0 4,0 0))'

B
The value of the geom parameter SHALL be a valid WKT geometry (as defined by BNF syntax
provided in OGC 06-103r4).

C
Only features that have a spatial geometry that intersects the filter geometry SHALL be part of the
result set.

D
If a feature has multiple spatial geometry properties, it is the decision of the server whether only a
single spatial geometry property is used to determine the extent or all relevant geometries.

E Features with no spatial geometry SHALL be excluded from the result set.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 89

REQUIREMENT 41

F
The coordinate values SHALL be within the extent specified for the coordinate reference system
(CRS).

16.5. System Resources Endpoint Query Parameters

16.5.1. Introduction

This section specifies query parameters that must be supported by the server at all
System resources endpoints, including:

• The canonical System resources endpoint at {api_root}/systems

• The subsystems resources endpoints at {api_root}/systems/{id}/subsystems

• The items resources endpoints of System Feature collections at {api_root}/
collections/{colId}/items

16.5.2. Parent System Filter

This filter is used to select subsystems of one or more parent systems.

REQUIREMENT 42

IDENTIFIER /req/advanced-filtering/system-by-parent

INCLUDED
IN

Requirements class 9: /req/advanced-filtering

A
The HTTP GET operation at a System resources endpoint SHALL support a parameter parent of
type ID_List.

B
Only subsystems of a parent system that has one of the requested identifiers SHALL be part of the
result set.

Example queries to find Systems by parent

Subsystems by parent ID {api_root}/systems?parent=4g4ds54vv

OPEN GEOSPATIAL CONSORTIUM 23-001R0 90

Subsystems by parent
UID

{api_root}/systems?parent=urn:uuid:31f6865e-f438-430e-9b57-f965a21ee255

16.5.3. Procedure Filter

This filter is used to select systems that implement specific procedures.

REQUIREMENT 43

IDENTIFIER /req/advanced-filtering/system-by-procedure

INCLUDED
IN

Requirements class 9: /req/advanced-filtering

A
The HTTP GET operation at a System resources endpoint SHALL support a parameter procedure of
type ID_List.

B
Only systems that implement a procedure that has one of the requested identifiers SHALL be part of
the result set.

Example queries to find Systems by procedure

Systems by procedure ID {api_root}/systems?procedure=11gsd654g

Systems by procedure ID
(multiple)

{api_root}/systems?procedure=11gsd654g,fsv4dg62

Systems by procedure
UID

{api_root}/systems?procedure=urn:example:procedure:451585

16.5.4. Feature of Interest Filter

This filter is used to select systems that observe or control specific features of interest.

REQUIREMENT 44

IDENTIFIER /req/advanced-filtering/system-by-foi

INCLUDED
IN

Requirements class 9: /req/advanced-filtering

A
The HTTP GET operation at a System resources endpoint SHALL support a parameter foi of type
ID_List.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 91

REQUIREMENT 44

B
Only systems that observe or control a feature of interest that has one of the requested identifiers
SHALL be part of the result set.

C Both sampling features and domain features of interest SHALL be included in the search.

D
If a system has subsystems, it SHALL be included in the result set if any of its subsystems (evaluated
recursively) observes or controls one of the listed features of interest.

Example queries to find Systems by feature of interest

Systems by feature of
interest ID

{api_root}/systems?foi=11gsd654g

Systems by feature of
interest UID

{api_root}/systems?foi=urn:mrn:itu:mmsi:538070999

Systems by feature of
interest UID

{api_root}/systems?foi=http://dbpedia.org/resource/Seawater

In the third example, any system associated to a sampling feature with the sampledFeature
association referencing http://dbpedia.org/resource/Seawater (either directly or transitively via
other sampling features) would be included in the result set.

16.5.5. Observed Property Filter

This filter is used to select systems that can observe specific properties.

REQUIREMENT 45

IDENTIFIER /req/advanced-filtering/system-by-obsprop

INCLUDED
IN

Requirements class 9: /req/advanced-filtering

A
The HTTP GET operation at a System resources endpoint SHALL support a parameter
observedProperty of type ID_List.

B
Only systems that can observe a property that has one of the requested identifiers SHALL be part of
the result set.

C
If a system has subsystems, it SHALL be included in the result set if any of its subsystems (evaluated
recursively) observes one of the listed properties.

Example queries to find Systems by observed property

OPEN GEOSPATIAL CONSORTIUM 23-001R0 92

http://dbpedia.org/resource/Seawater

Systems by observed
property ID

{api_root}/systems?observedProperty=4578441

Systems by observed
property UID

{api_root}/systems?observedProperty=http://qudt.org/vocab/quantitykind/

Temperature

16.5.6. Controlled Property Filter

This filter is used to select systems that control specific properties.

REQUIREMENT 46

IDENTIFIER /req/advanced-filtering/system-by-controlprop

INCLUDED
IN

Requirements class 9: /req/advanced-filtering

A
The HTTP GET operation at a System resources endpoint SHALL support a parameter
controlledProperty of type ID_List.

B
Only systems that can control a property that has one of the requested identifiers SHALL be part of
the result set.

C
If a system has subsystems, it SHALL be included in the result set if any of its subsystems (evaluated
recursively) controls one of the listed properties.

Example queries to find Systems by controlled property

Systems by controlled
property ID

{api_root}/systems?controlledProperty=4578441

Systems by controlled
property UID

{api_root}/systems?controlledProperty=http://qudt.org/vocab/quantitykind/

PH

16.6. Deployment Resources Endpoint Query Parameters

16.6.1. Introduction

This section specifies query parameters that must be supported by the server at all Deployment
resources endpoints, including:

• The canonical Deployment resources endpoint at {api_root}/deployments

OPEN GEOSPATIAL CONSORTIUM 23-001R0 93

• The subdeployments resources endpoints at {api_root}/deployments/{id}/
subdeployments

• The items resources endpoints of Deployment Feature collections at {api_root}/
collections/{colId}/items

16.6.2. Parent Deployment Filter

This filter is used to select subdeployments of a specific parent deployment.

REQUIREMENT 47

IDENTIFIER /req/advanced-filtering/deployment-by-parent

INCLUDED
IN

Requirements class 9: /req/advanced-filtering

A
The HTTP GET operation at a Deployment resources endpoint SHALL support a parameter parent
of type ID_List.

B
Only deployments that are part of a parent deployment that has one of the requested identifiers
SHALL be part of the result set.

Example queries to find Deployments by parent

Subdeployments by
parent ID

{api_root}/deployments?parent=4g4ds54vv

Subdeployments by
parent UID

{api_root}/deployments?parent=urn:uuid:31f6865e-f438-430e-9b57-

f965a21ee255

16.6.3. Deployed System Filter

This filter is used to select deployments during which certain systems are deployed.

REQUIREMENT 48

IDENTIFIER /req/advanced-filtering/deployment-by-system

INCLUDED
IN

Requirements class 9: /req/advanced-filtering

A
The HTTP GET operation at a Deployment resources endpoint SHALL support a parameter system
of type ID_List.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 94

REQUIREMENT 48

B
Only deployments during which a system that has one of the requested identifiers is deployed
SHALL be part of the result set.

Example queries to find Deployments by deployed systems

Deployments by
deployed system ID

{api_root}/deployments?system=b5bxc988rf

Deployments by
deployed system UID

{api_root}/deployments?system=urn:mrn:itu:mmsi:538070999

16.6.4. Feature of Interest Filter

This filter is used to select deployments during which deployed systems observe or control
specific features of interest.

REQUIREMENT 49

IDENTIFIER /req/advanced-filtering/deployment-by-foi

INCLUDED
IN

Requirements class 9: /req/advanced-filtering

A
The HTTP GET operation at a Deployment resources endpoint SHALL support a parameter foi of
type ID_List.

B
Only deployments during which a deployed system observe or control a feature of interest that has
one of the requested identifiers SHALL be part of the result set.

C Both sampling features and domain features of interest SHALL be included in the search.

Example queries to find Deployments by feature of interest

Deployments by feature
of interest ID

{api_root}/deployments?foi=g4sd56ht41

Deployments by feature
of interest UID

{api_root}/deployments?foi=urn:example:river:41148

16.6.5. Observed Property Filter

This filter is used to select deployments during which certain properties are observed.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 95

REQUIREMENT 50

IDENTIFIER /req/advanced-filtering/deployment-by-obsprop

INCLUDED
IN

Requirements class 9: /req/advanced-filtering

A
The HTTP GET operation at a Deployment resources endpoint SHALL support a parameter
observedProperty of type ID_List.

B
Only deployments during which a deployed system observes a property that has one of the
requested identifiers SHALL be part of the result set.

Example queries to find Deployments by observed property

Deployments by
observed property ID

{api_root}/deployments?observedProperty=4578441

Deployments by
observed property UID

{api_root}/deployments?observedProperty=http://mmisw.org/ont/cf/

parameter/wind_speed

16.6.6. Controlled Property Filter

This filter is used to select deployments during which certain properties are controlled.

REQUIREMENT 51

IDENTIFIER /req/advanced-filtering/deployment-by-controlprop

INCLUDED
IN

Requirements class 9: /req/advanced-filtering

A
The HTTP GET operation at a Deployment resources endpoint SHALL support a parameter
controlledProperty of type ID_List.

B
Only deployments during which a deployed system controls a property that has one of the requested
identifiers SHALL be part of the result set.

Example queries to find Deployments by controlled property

Deployments by
controlled property ID

{api_root}/deployments?controlledProperty=146687

Deployments by
controlled property UID

{api_root}/deployments?controlledProperty=http://qudt.org/vocab/

quantitykind/Velocity

OPEN GEOSPATIAL CONSORTIUM 23-001R0 96

16.7. Procedure Resources Endpoint Query Parameters

16.7.1. Introduction

This section specifies query parameters that must be supported by the server at all
Procedure resources endpoints, including:

• The canonical Procedure resources endpoint at {api_root}/procedures

• The items resources endpoints of Procedure Feature collections at {api_root}/
collections/{colId}/items

16.7.2. Observed Property Filter

This filter is used to select procedures that are designed to observe certain properties.

REQUIREMENT 52

IDENTIFIER /req/advanced-filtering/procedure-by-obsprop

INCLUDED
IN

Requirements class 9: /req/advanced-filtering

A
The HTTP GET operation at a Procedure resources endpoint SHALL support a parameter
observedProperty of type ID_List.

B
Only procedures that can be used to observe a property that has one of the requested identifiers
SHALL be part of the result set.

Example queries to find Procedures by observed property

Procedures by observed
property ID

{api_root}/procedures?observedProperty=4578441

Procedures by observed
property UID

{api_root}/procedures?observedProperty=http://mmisw.org/ont/cf/parameter/

air_pressure

16.7.3. Controlled Property Filter

This filter is used to select procedures that are designed to control certain properties.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 97

REQUIREMENT 53

IDENTIFIER /req/advanced-filtering/procedure-by-controlprop

INCLUDED
IN

Requirements class 9: /req/advanced-filtering

A
The HTTP GET operation at a Procedure resources endpoint SHALL support a parameter
controlledProperty of type ID_List.

B
Only procedures that can be used to control a property that has one of the requested identifiers
SHALL be part of the result set.

Example queries to find Procedures by controlled property

Procedures by controlled
property ID

{api_root}/procedures?controlledProperty=146687

Procedures by controlled
property UID

{api_root}/procedures?controlledProperty=urn:example:prop:fuelmixratio

16.8. Sampling Feature Resources Endpoint Query
Parameters

16.8.1. Introduction

This section specifies query parameters that must be supported by the server at all Sampling
Feature resources endpoints, including:

• The canonical Sampling Feature resources endpoint at {api_root}/samplingFeatures

• The items resources endpoints of Sampling Feature collections at {api_root}/
collections/{colId}/items

16.8.2. Feature of Interest Filter

This filter is used to select sampling features that sample specific features of interest.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 98

REQUIREMENT 54

IDENTIFIER /req/advanced-filtering/sf-by-foi

INCLUDED
IN

Requirements class 9: /req/advanced-filtering

A
The HTTP GET operation at a Sampling Feature resources endpoint SHALL support a parameter foi
of type ID_List.

B
Only sampling features that are associated to a feature of interest that has one of the requested
identifiers SHALL be part of the result set.

Example queries to find Sampling Features by feature of interest

Sampling Features by
feature of interest ID

{api_root}/samplingFeatures?foi=g4sd56ht41

Sampling Features by
feature of interest UID

{api_root}/samplingFeatures?foi=urn:example:river:41148

16.8.3. Observed Property Filter

This filter is used to select sampling features with certain observed properties.

REQUIREMENT 55

IDENTIFIER /req/advanced-filtering/sf-by-obsprop

INCLUDED
IN

Requirements class 9: /req/advanced-filtering

A
The HTTP GET operation at a Sampling Feature resources endpoint SHALL support a parameter
observedProperty of type ID_List.

B
Only sampling features with an observed property that has one of the requested identifiers SHALL
be part of the result set.

Example queries to find Sampling Features by observed property

Sampling Features by
observed property ID

{api_root}/samplingFeatures?observedProperty=221785

Sampling Features by
observed property UID

{api_root}/samplingFeatures?observedProperty=http://qudt.org/vocab/

quantitykind/Voltage

OPEN GEOSPATIAL CONSORTIUM 23-001R0 99

16.8.4. Controlled Property Filter

This filter is used to select sampling features with certain controlled properties.

REQUIREMENT 56

IDENTIFIER /req/advanced-filtering/sf-by-controlprop

INCLUDED
IN

Requirements class 9: /req/advanced-filtering

A
The HTTP GET operation at a Sampling Feature resources endpoint SHALL support a parameter
controlledProperty of type ID_List.

B
Only sampling features with a controlled property that has one of the requested identifiers SHALL be
part of the result set.

Example queries to find Sampling Features by controlled property

Sampling Features by
controlled property ID

{api_root}/samplingFeatures?controlledProperty=146687

Sampling Features by
controlled property UID

{api_root}/samplingFeatures?controlledProperty=http://qudt.org/vocab/

quantitykind/Velocity

16.9. Property Resources Endpoint Query Parameters

16.9.1. Introduction

This section specifies query parameters that must be supported by the server at all
Property resources endpoints, including:

• The canonical Property resources endpoint at {api_root}/samplingFeatures

• The items resources endpoints of Property resource collections at {api_root}/
collections/{colId}/items

16.9.2. Base Property Filter

This filter is used to select properties that are derived from a base property.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 100

REQUIREMENT 57

IDENTIFIER /req/advanced-filtering/prop-by-baseprop

INCLUDED
IN

Requirements class 9: /req/advanced-filtering

A
The HTTP GET operation at a Property resources endpoint SHALL support a parameter
baseProperty of type ID_List.

B
Only properties that are derived, directly or indirectly, from a base property that has one of the
requested identifiers SHALL be part of the result set.

Example queries to find Property Definitions by base property

Property by base
property ID

{api_root}/properties?baseProperty=g4sd56ht41

Property by base
property UID

{api_root}/properties?baseProperty=http://qudt.org/vocab/quantitykind/

AmbientPressure

16.9.3. Object Type Filter

This filter is used to select properties that are associated to a specific kind of object.

REQUIREMENT 58

IDENTIFIER /req/advanced-filtering/prop-by-object

INCLUDED
IN

Requirements class 9: /req/advanced-filtering

A
The HTTP GET operation at a Property resources endpoint SHALL support a parameter
objectType of type ID_List.

B
Only properties with the objectType attribute set to one of the requested identifiers SHALL be
part of the result set.

Example queries to find Property Definitions by object

Property by object kind
UID

{api_root}/properties?object=https://dbpedia.org/page/Watercraft

Property by object kind
UID

{api_root}/properties?object=https://dbpedia.org/page/Engine

OPEN GEOSPATIAL CONSORTIUM 23-001R0 101

16.10. Combination of Filter Parameters

REQUIREMENT 59

IDENTIFIER /req/advanced-filtering/combined-filters

INCLUDED
IN

Requirements class 9: /req/advanced-filtering

STATEMENT When several filters are used in the same request, they SHALL be combined with the AND operator.

Example queries combining multiple filters

Systems by type and
keyword

{api_root}/systems?featureType=sosa:Sensor&q=weather

Deployments by
deployed system ID and
time

{api_root}/deployments?datetime=2021-04-01T00:00:00Z/2021-07-01T00:00:

00Z&system=gs54v1fds6

16.11. Indirect Associations

It is recommended that servers implement certain filtering capabilities in a way that does not
require a “direct association” to exist between resources.

RECOMMENDATION 4

IDENTIFIER /rec/advanced-filtering/indirect-prop

STATEMENT
When evaluating observedProperty or controlledProperty filters, the server SHOULD
also evaluate all properties that derive from the specified property, that is properties whose
baseProperty attribute point to the specified property, either directly or transitively.

RECOMMENDATION 5

IDENTIFIER /rec/advanced-filtering/indirect-foi

OPEN GEOSPATIAL CONSORTIUM 23-001R0 102

RECOMMENDATION 5

STATEMENT
When evaluating foi filters, the server SHOULD also evaluate all sampling features that are related
to the specified feature of interest through a sampledFeature association. This allows a client to
request resources by ultimate feature of interest even if it is not directly associated to the resource.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 103

17

REQUIREMENTS CLASS
“CREATE/REPLACE/DELETE”

OPEN GEOSPATIAL CONSORTIUM 23-001R0 104

17 REQUIREMENTS CLASS
“CREATE/REPLACE/DELETE”

17.1. Overview

REQUIREMENTS CLASS 10

IDENTIFIER /req/create-replace-delete

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.10: /conf/create-replace-delete

PREREQUISITES
Requirements class 1: /req/api-common
http://www.opengis.net/spec/ogcapi-features-4/1.0/req/create-replace-delete

NORMATIVE
STATEMENTS

Requirement 60: /req/create-replace-delete/system
Requirement 61: /req/create-replace-delete/system-delete-cascade
Requirement 62: /req/create-replace-delete/subsystem
Requirement 63: /req/create-replace-delete/deployment
Requirement 64: /req/create-replace-delete/subdeployment
Requirement 65: /req/create-replace-delete/procedure
Requirement 66: /req/create-replace-delete/sampling-feature
Requirement 67: /req/create-replace-delete/property
Requirement 68: /req/create-replace-delete/create-in-collection
Requirement 69: /req/create-replace-delete/replace-in-collection
Requirement 70: /req/create-replace-delete/delete-in-collection
Requirement 71: /req/create-replace-delete/add-to-collection

The “Create/Replace/Delete” requirements class specifies how instances of the resource types
defined in this Standard are created, replaced and deleted via a CS API endpoint.

All resources are created, replaced and deleted using CREATE (HTTP POST), REPLACE (HTTP
PUT) and DELETE (HTTP DELETE) operations, respectively, as defined by the OGC API —
Features — Part 4: Create, Replace, Update and Delete Standard.

OGC API — Features — Part 4: Create, Replace, Update and Delete uses the terms “resources
endpoint” and “resource endpoint” to identify the paths where these operations are supported
by the server. The following sections provide these endpoints for each resource type defined by
the CS API Standard.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 105

17.2. Systems

REQUIREMENT 60

IDENTIFIER /req/create-replace-delete/system

INCLUDED
IN

Requirements class 10: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “System Features”

A
The server SHALL support the CREATE operation at the System resources endpoints defined by the
following URI template:

• {api_root}/systems

B
The server SHALL support the REPLACE and DELETE operations at the System resources endpoints
defined by the following URI template:

• {api_root}/systems/{id}

C The id parameter SHALL be the local identifier of the System resource to replace or delete.

The following constraints must be implemented by the server.

REQUIREMENT 61

IDENTIFIER /req/create-replace-delete/system-delete-cascade

INCLUDED
IN

Requirements class 10: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “System Features”

A
By default, the server SHALL reject a DELETE request on a System resource that has nested
resources (i.e. subsystems, sampling features, datastreams, control streams) or that is associated with
a deployment.

B
If the System resource is not associated with any Deployment resource, and the request contains
the cascade parameter, the server SHALL accept the DELETE request and delete the System
resource as well as all its nested resources.

C
If the System resource is associated with a Deployment resource, the Deployment resource
SHALL be deleted first.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 106

17.3. Subsystems

Subsystems (i.e. system components) can only be created as sub-resources of a parent system,
but are updated/deleted at their canonical URL just like any other System resource.

REQUIREMENT 62

IDENTIFIER /req/create-replace-delete/subsystem

INCLUDED
IN

Requirements class 10: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “Subsystems”

A
The server SHALL support the CREATE operation at the System resources endpoints defined by the
following URI template:

• {api_root}/systems/{parentId}/subsystems

B
The operation SHALL result in the creation of a new System and its association with the System
system with id parentId.

NOTE: There is no operation to “move” a subsystem from one parent to another. To achieve
this, the client must first delete the subsystem at its canonical URI and recreate it under another
parent system.

17.4. Deployments

REQUIREMENT 63

IDENTIFIER /req/create-replace-delete/deployment

INCLUDED
IN

Requirements class 10: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “Deployment Features”

A
The server SHALL support the CREATE operation at the Deployment resources endpoints defined
by the following URI template:

• {api_root}/deployments

B
The server SHALL support the REPLACE and DELETE operations at the Deployment resources
endpoints defined by the following URI template:

• {api_root}/deployments/{id}

OPEN GEOSPATIAL CONSORTIUM 23-001R0 107

REQUIREMENT 63

C The id parameter SHALL be the local identifier of the Deployment resource to replace or delete.

17.5. Subdeployments

Subdeployments can only be created as sub-resources of a parent deployment, but are updated/
deleted at their canonical URL just like any other Deployment resource.

REQUIREMENT 64

IDENTIFIER /req/create-replace-delete/subdeployment

INCLUDED
IN

Requirements class 10: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “Subdeployments”

A
The server SHALL support the CREATE operation at the Deployment resources endpoints defined
by the following URI template:

• {api_root}/deployments/{parentId}/subdeployments

B
The operation SHALL result in the creation of a new Deployment and its association with the
parent Deployment with id parentId.

17.6. Procedures

REQUIREMENT 65

IDENTIFIER /req/create-replace-delete/procedure

INCLUDED
IN

Requirements class 10: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “Procedure Features”

A
The server SHALL support the CREATE operation at the Procedure resources endpoints defined by
the following URI template:

• {api_root}/procedures

OPEN GEOSPATIAL CONSORTIUM 23-001R0 108

REQUIREMENT 65

B
The server SHALL support the REPLACE and DELETE operations at the Procedure resources
endpoints defined by the following URI template:

• {api_root}/procedures/{id}

C The id parameter SHALL be the local identifier of the Procedure resource to replace or delete.

17.7. Sampling Features

Sampling Features are created as sub-resources of a parent system.

REQUIREMENT 66

IDENTIFIER /req/create-replace-delete/sampling-feature

INCLUDED
IN

Requirements class 10: /req/create-replace-delete

CONDITIONS The server implements Requirements Class “Sampling Features”

A
The server SHALL support the CREATE operation at the Sampling Feature resources endpoints
defined by the following URI template:

• {api_root}/systems/{sysId}/samplingFeatures

B

The server SHALL support the REPLACE and DELETE operations at the Sampling Feature
resources endpoints defined by the following URI templates:

• {api_root}/samplingFeatures/{id}

• {api_root}/systems/{sysId}/samplingFeatures/{id}

C

The sysId parameter SHALL be the local identifier of the parent System resource that the new
sampling feature is or will be attached to.
The id parameter SHALL be the local identifier of the Sampling Feature resource to replace or
delete.

17.8. Property Definitions

Property resources are created, replaced and deleted using HTTP POST, PUT and DELETE
operations, respectively.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 109

REQUIREMENT 67

IDENTIFIER /req/create-replace-delete/property

INCLUDED
IN

Requirements class 10: /req/create-replace-delete

CONDITIONS The server implements [clause-derived-properties]

A
The server SHALL support the CREATE operation at the Property resources endpoints defined by
the following URI template:

• {api_root}/properties

B
The server SHALL support the REPLACE and DELETE operations at the Property resources
endpoints defined by the following URI template:

• {api_root}/properties/{id}

C The id parameter SHALL be the local identifier of the Property resource to replace or delete.

17.9. Custom Collections

This clause defines the expected behavior of the server when Resource Collections other than
the root collections are exposed by the server (this causes the same resource to be accessible via
multiple collections simultaneously).

REQUIREMENT 68

IDENTIFIER /req/create-replace-delete/create-in-collection

INCLUDED
IN

Requirements class 10: /req/create-replace-delete

A
When a resource defined in the CS API Standard is successfully created by the server at any endpoint,
the server SHALL always make it available in the root collection corresponding to the resource type.

REQUIREMENT 69

IDENTIFIER /req/create-replace-delete/replace-in-collection

INCLUDED
IN

Requirements class 10: /req/create-replace-delete

A
If a resource is successfully replaced by the server, the server SHALL reflect this change in all other
collections that the resource is part of.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 110

REQUIREMENT 70

IDENTIFIER /req/create-replace-delete/delete-in-collection

INCLUDED
IN

Requirements class 10: /req/create-replace-delete

A
If a resource is deleted from a root collection, the server SHALL also delete it from all other
collections that the resource is part of.

B
If a resource is deleted from a collection other than the root collection, the server SHALL only delete
it from this collection.

Adding existing resources to one or more custom collections is done by posting a list of resource
URIs to the collection endpoint.

REQUIREMENT 71

IDENTIFIER /req/create-replace-delete/add-to-collection

INCLUDED
IN

Requirements class 10: /req/create-replace-delete

A The server SHALL support adding existing resources to a collection by reference.

B The Content-Type header of the request SHALL be set to text/uri-list.

C
The body of the POST request SHALL contain the list of URIs of resources that need to be added to
the collection, formatted with one URI per line (see https://www.iana.org/assignments/media-types/
text/uri-list).

D
All URIs included in the content body SHALL be canonical URLs or unique identifiers (UID) of
resources available at the same API endpoint.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 111

https://www.iana.org/assignments/media-types/text/uri-list
https://www.iana.org/assignments/media-types/text/uri-list

18

REQUIREMENTS CLASS
“UPDATE”

OPEN GEOSPATIAL CONSORTIUM 23-001R0 112

18 REQUIREMENTS CLASS “UPDATE”

18.1. Overview

REQUIREMENTS CLASS 11

IDENTIFIER /req/update

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.11: /conf/update

PREREQUISITES
Requirements class 10: /req/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/req/update

NORMATIVE STATEMENTS

Requirement 72: /req/update/system
Requirement 73: /req/update/deployment
Requirement 74: /req/update/procedure
Requirement 75: /req/update/sampling-feature
Requirement 76: /req/update/property

The “Update” requirements class specifies how instances of the feature types defined previously
are updated via a CS API endpoint.

All resources are updated using the UPDATE (HTTP PATCH) operation, as defined by the OGC
API — Features — Part 4: Create, Replace, Update and Delete Standard.

OGC API — Features — Part 4: Create, Replace, Update and Delete uses the terms “resource
endpoint” to identify the paths where the UPDATE operation is supported by the server. The
following sections provide these endpoints for each resource type defined by the CS API
Standard.

18.2. Systems

REQUIREMENT 72

IDENTIFIER /req/update/system

OPEN GEOSPATIAL CONSORTIUM 23-001R0 113

REQUIREMENT 72

INCLUDED
IN

Requirements class 11: /req/update

CONDITIONS The server implements Requirements Class “System Features”

A
The server SHALL support the UPDATE operation at the System resources endpoints defined by
the following URI template:

• {api_root}/systems/{id}

B The id parameter SHALL be the local identifier of the System resource to update.

18.3. Deployments

REQUIREMENT 73

IDENTIFIER /req/update/deployment

INCLUDED
IN

Requirements class 11: /req/update

CONDITIONS The server implements Requirements Class “Deployment Features”

A
The server SHALL support the UPDATE operation at the Deployment resources endpoints defined
by the following URI template:

• {api_root}/deployments/{id}

B The id parameter SHALL be the local identifier of the Deployment resource to update.

18.4. Procedures

REQUIREMENT 74

IDENTIFIER /req/update/procedure

INCLUDED
IN

Requirements class 11: /req/update

CONDITIONS The server implements Requirements Class “Procedure Features”

OPEN GEOSPATIAL CONSORTIUM 23-001R0 114

REQUIREMENT 74

A
The server SHALL support the UPDATE operation at the Procedure resources endpoints defined
by the following URI template:

• {api_root}/procedures/{id}

B The id parameter SHALL be the local identifier of the Procedure resource to update.

18.5. Sampling Features

REQUIREMENT 75

IDENTIFIER /req/update/sampling-feature

INCLUDED
IN

Requirements class 11: /req/update

CONDITIONS The server implements Requirements Class “Sampling Features”

A
The server SHALL support the UPDATE operation at the Sampling Feature resources endpoints
defined by the following URI template:

• {api_root}/samplingFeatures/{id}

B The id parameter SHALL be the local identifier of the Sampling Feature resource to update.

18.6. Derived Properties

REQUIREMENT 76

IDENTIFIER /req/update/property

INCLUDED
IN

Requirements class 11: /req/update

CONDITIONS The server implements [clause-derived-properties]

A
The server SHALL support the UPDATE operation at the Property resources endpoints defined by
the following URI template:

• {api_root}/properties/{id}

OPEN GEOSPATIAL CONSORTIUM 23-001R0 115

19

REQUIREMENTS CLASSES
FOR ENCODINGS

OPEN GEOSPATIAL CONSORTIUM 23-001R0 116

19 REQUIREMENTS CLASSES FOR ENCODINGS

19.1. Requirements Class “GeoJSON Format”

19.1.1. Overview

REQUIREMENTS CLASS 12

IDENTIFIER /req/geojson

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.12: /conf/geojson

PREREQUISITES
Requirements class 1: /req/api-common
http://www.opengis.net/spec/ogcapi-features-1/1.0/req/geojson

NORMATIVE STATEMENTS

Requirement 77: /req/geojson/mediatype-read
Requirement 78: /req/geojson/mediatype-write
Requirement 79: /req/geojson/relation-types
Requirement 80: /req/geojson/feature-attribute-mapping
Requirement 81: /req/geojson/system-schema
Requirement 82: /req/geojson/system-mappings
Requirement 83: /req/geojson/deployment-schema
Requirement 84: /req/geojson/deployment-mappings
Requirement 85: /req/geojson/procedure-schema
Requirement 86: /req/geojson/procedure-mappings
Requirement 87: /req/geojson/sf-schema
Requirement 88: /req/geojson/sf-mappings

The “GeoJSON Format” requirements class specifies how resources defined by the CS API
Standard are encoded using the GeoJSON format. All feature types defined by this Standard can
be encoded as GeoJSON.

The server must also implement Requirements Class “GeoJSON” as specified in the OGC API —
Features — Part 1: Core Standard.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 117

19.1.2. Media Type

The media type used for GeoJSON encoded resources is application/geo+json.

REQUIREMENT 77

IDENTIFIER /req/geojson/mediatype-read

INCLUDED
IN

Requirements class 12: /req/geojson

STATEMENT
The server SHALL support the media type application/geo+json in the HTTP Accept header
and respond with a JSON document corresponding to the requested resource type.

REQUIREMENT 78

IDENTIFIER /req/geojson/mediatype-write

INCLUDED
IN

Requirements class 12: /req/geojson

CONDITIONS The server implements Requirements Class “Create/Replace/Delete”.

STATEMENT
The server SHALL support the media type application/geo+json in the HTTP Content-Type
header and parse the JSON body according to the resource type.

19.1.3. Link Relation Types

REQUIREMENT 79

IDENTIFIER /req/geojson/relation-types

INCLUDED
IN

Requirements class 12: /req/geojson

STATEMENT
For all associations encoded in the links member of the JSON response, the link relation type must
be set to the association name.

19.1.4. Common Encoding Rules

OPEN GEOSPATIAL CONSORTIUM 23-001R0 118

REQUIREMENT 80

IDENTIFIER /req/geojson/feature-attribute-mapping

INCLUDED
IN

Requirements class 12: /req/geojson

STATEMENT
A GeoJSON document representing a Feature resource SHALL implement the mappings specified
in Table 20.

Table 20 — GeoJSON Mappings of Common Attributes

ATTRIBUTE NAME JSON MEMBER USAGE

uniqueIdentifier properties/uid Value is a JSON string that is a valid URI.

name properties/name Value is a JSON string.

description
properties/
description

Value is a JSON string.

19.1.5. System Representation

REQUIREMENT 81

IDENTIFIER /req/geojson/system-schema

INCLUDED
IN

Requirements class 12: /req/geojson

A
A GeoJSON document containing a single System feature SHALL be valid against the JSON schema
system.json.

B
A GeoJSON document containing a collection of System features SHALL be valid against the JSON
schema systemCollection.json.

REQUIREMENT 82

IDENTIFIER /req/geojson/system-mappings

INCLUDED
IN

Requirements class 12: /req/geojson

STATEMENT
A GeoJSON document representing a System resource SHALL implement the mappings specified in
Table 21 and Table 22.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 119

https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/geojson/system.json
https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/geojson/systemCollection.json

Table 21 — GeoJSON Encoding of System Attributes

ATTRIBUTE NAME
(SEE TABLE 4)

JSON MEMBER USAGE

systemType
properties/
featureType

Use the URI or CURIE from Table 6 as the value.

assetType
properties/
assetType

Use the URI or CURIE from Table 7 as the value.

validTime
properties/
validTime

Value SHALL be a JSON array with min/max bounds encoded as a
ISO8601 date/time string.

location geometry Value SHALL be a GeoJSON Point geometry.

Table 22 — GeoJSON Encoding of System Associations

ASSOCIATION
NAME (SEE TABLE
5)

JSON MEMBER USAGE

systemKind
properties/
systemKind@link

Value is a weblink resolving to a Procedure resource.

parentSystem links Value is a weblink* resolving to a System resource.

subsystems links Value is a weblink* resolving to a System resources endpoint.

samplingFeatures links Value is a weblink* resolving to a Sampling Feature resources endpoint.

deployments links Value is a weblink* resolving to a Deployment resources endpoint.

procedures links Value is a weblink* resolving to a Procedure resources endpoint.

datastreams links Value is a weblink* resolving to a DataStream resources endpoint**.

controlstreams links
Value is a weblink* resolving to a ControlStream resources
endpoint**.

* The link relation type (rel property) must be set to the association name prefixed by ogc-rel:.
** DataStream and ControlStream resources are defined in OGC API — Connected Systems — Part 2.

Example — A System Feature in GeoJSON format: This is a simple description of a fixed in-situ
sensor in GeoJSON, with a link to its alternate SensorML representation.

{
 "type": "Feature",
 "id": "123",
 "geometry": {
 "type": "Point",
 "coordinates": [41.8781, -87.6298]

OPEN GEOSPATIAL CONSORTIUM 23-001R0 120

 },
 "properties": {
 "uid": "urn:x-ogc:systems:001",
 "name": "Outdoor Thermometer 001",
 "description": "Digital thermometer located on first floor window 1",
 "featureType": "http://www.w3.org/ns/sosa/Sensor",
 "assetType": "http://www.opengis.net/def/x-OGC/TBD/Equipment",
 "systemKind@link": {
 "href": "https://data.example.org/api/procedures/TP60S?f=json",
 "uid": "urn:x-myorg:datasheets:ThermoPro:TP60S:v001",
 "title": "Thermo Pro TP60S",
 "type" : "application/geo+json"
 }
 },
 "links": [
 {
 "rel" : "self",
 "title" : "this document",
 "href" : "https://data.example.org/api/systems/123?f=json",
 "type" : "application/geo+json"
 }, {
 "rel" : "alternate",
 "title" : "this resource as SensorML",
 "href" : "https://data.example.org/api/systems/123?f=sml",
 "type" : "application/sml+json"
 }
]
}

19.1.6. Deployment Representation

REQUIREMENT 83

IDENTIFIER /req/geojson/deployment-schema

INCLUDED
IN

Requirements class 12: /req/geojson

A
A GeoJSON document containing a single Deployment feature SHALL be valid against the JSON
schema deployment.json.

B
A GeoJSON document containing a collection of Deployment features SHALL be valid against the
JSON schema deploymentCollection.json.

REQUIREMENT 84

IDENTIFIER /req/geojson/deployment-mappings

INCLUDED
IN

Requirements class 12: /req/geojson

OPEN GEOSPATIAL CONSORTIUM 23-001R0 121

https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/geojson/deployment.json
https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/geojson/deploymentCollection.json

REQUIREMENT 84

STATEMENT
A GeoJSON document representing a Deployment resource SHALL implement the mappings
specified in Table 23 and Table 24.

Table 23 — GeoJSON Encoding of Deployment Attributes

ATTRIBUTE NAME
(SEE TABLE 10)

JSON MEMBER USAGE

deploymentType
properties/
featureType

Use the URI or CURIE identifying the type of deployment as the value.

validTime
properties/
validTime

-

location geometry Value is a GeoJSON geometry.

Table 24 — GeoJSON Encoding of Deployment Associations

ASSOCIATION
NAME (SEE TABLE
11)

JSON MEMBER USAGE

platform
properties/
platform@link

Value is a weblink resolving to a System resource.

deployedSystems
properties/
deployedSystems@
link

Value is a JSON Array of links to System resources.

parentDeployment links Value is a weblink* resolving to a Deployment resource.

subdeployments links Value is a weblink* resolving to a Deployment resources endpoint.

featuresOfInterestlinks Value is a weblink* resolving to a Feature resources endpoint.

samplingFeatures links Value is a weblink* resolving to a Sampling Feature resources endpoint.

datastreams links Value is a weblink* resolving to a DataStream resources endpoint**.

controlstreams links
Value is a weblink* resolving to a ControlStream resources
endpoint**.

* The link relation type (rel property) must be set to the association name prefixed by ogc-rel:.
** DataStream and ControlStream resources are defined in OGC API — Connected Systems — Part 2.

Example — A Deployment Feature in GeoJSON format

{
 "type": "Feature",

OPEN GEOSPATIAL CONSORTIUM 23-001R0 122

 "id": "iv3f2kcq27gfi",
 "geometry": {
 "type": "Polygon",
 "coordinates": [[
 [53.76,-173.7],
 [53.76,-155.07],
 [75.03,-155.07],
 [75.03,-173.7],
 [53.76,-173.7]
]]
 },
 "properties": {
 "uid": "urn:x-ogc:deployments:D001",
 "name": "Saildrone - 2017 Arctic Mission",
 "featureType": "http://www.w3.org/ns/sosa/Deployment",
 "description": "In July 2017, three saildrones were launched from Dutch
Harbor, Alaska, in partnership with NOAA Research...",
 "validTime": ["2017-07-17T00:00:00Z", "2017-09-29T00:00:00Z"],
 "platform@link": {
 "href": "https://data.example.org/api/systems/27559?f=sml",
 "uid": "urn:x-saildrone:platforms:SD-1003",
 "title": "Saildrone SD-1003"
 },
 "deployedSystems@link": [
 {
 "href": "https://data.example.org/api/systems/41548?f=sml",
 "uid": "urn:x-saildrone:sensors:temp01",
 "title": "Air Temperature Sensor"
 },
 {
 "href": "https://data.example.org/api/systems/36584?f=sml",
 "uid": "urn:x-saildrone:sensors:temp02",
 "title": "Water Temperature Sensor"
 },
 {
 "href": "https://data.example.org/api/systems/47752?f=sml",
 "uid": "urn:x-saildrone:sensors:wind01",
 "title": "Wind Speed and Direction Sensor"
 }
]
 },
 "links": [
 {
 "rel" : "self",
 "href" : "https://data.example.org/api/deployments/iv3f2kcq27gfi?f=json",
 "type" : "application/geo+json",
 "title" : "this document"
 }, {
 "rel" : "alternate",
 "href" : "https://data.example.org/api/deployments/iv3f2kcq27gfi?f=sml",
 "type" : "application/sml+json",
 "title" : "this resource as SensorML"
 }
]
}

19.1.7. Procedure Representation

OPEN GEOSPATIAL CONSORTIUM 23-001R0 123

REQUIREMENT 85

IDENTIFIER /req/geojson/procedure-schema

INCLUDED
IN

Requirements class 12: /req/geojson

A
A GeoJSON document containing a single Procedure feature SHALL be valid against the JSON
schema procedure.json.

B
A GeoJSON document containing a collection of Procedure features SHALL be valid against the
JSON schema procedureCollection.json.

REQUIREMENT 86

IDENTIFIER /req/geojson/procedure-mappings

INCLUDED
IN

Requirements class 12: /req/geojson

STATEMENT
A GeoJSON document representing a Procedure resource SHALL implement the mappings
specified in Table 25 and Table 26.

Table 25 — GeoJSON Encoding of Procedure Attributes

ATTRIBUTE NAME
(SEE TABLE 14)

JSON MEMBER USAGE

procedureType
properties/
featureType

Use the URI or CURIE from Table 16 as the value.

validTime
properties/
validTime

Value SHALL be a JSON array with min/max bounds encoded as a
ISO8601 date/time string.

Table 26 — GeoJSON Encoding of Procedure Associations

ASSOCIATION
NAME (SEE TABLE
15)

JSON MEMBER USAGE

implementingSystemslinks Value is a weblink* resolving to a System resources endpoint.

* The link relation type (rel property) must be set to the association name prefixed by ogc-rel:.

Example — A Procedure Feature in GeoJSON format

{
 "type": "Feature",
 "id": "iv3f2kcq27gfi",
 "geometry": null,

OPEN GEOSPATIAL CONSORTIUM 23-001R0 124

https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/geojson/procedure.json
https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/geojson/procedureCollection.json

 "properties": {
 "uid": "urn:x-gill:datasheets:windmaster:v1",
 "name": "Gill WindMaster",
 "description": "Precision 3-axis ultrasonic anemometer",
 "featureType": "http://www.w3.org/ns/ssn-system/SensorKind"
 },
 "links": [
 {
 "href" : "https://data.example.org/api/procedures/iv3f2kcq27gfi?f=json",
 "rel" : "self",
 "type" : "application/geo+json",
 "title" : "this document"
 }, {
 "href" : "https://data.example.org/api/procedures/iv3f2kcq27gfi?f=sml",
 "rel" : "alternate",
 "type" : "application/sml+json",
 "title" : "this resource as SensorML"
 }
]
}

19.1.8. Sampling Feature Representation

REQUIREMENT 87

IDENTIFIER /req/geojson/sf-schema

INCLUDED
IN

Requirements class 12: /req/geojson

A
A GeoJSON document containing a single Sampling Feature SHALL be valid against the JSON
schema anySamplingFeature.json.

B
A GeoJSON document containing a collection of Sampling Features SHALL be valid against the
JSON schema samplingFeatureCollection.json.

REQUIREMENT 88

IDENTIFIER /req/geojson/sf-mappings

INCLUDED
IN

Requirements class 12: /req/geojson

STATEMENT
A GeoJSON document representing a Sampling Feature resource SHALL implement the
mappings specified in Table 27 and Table 28.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 125

https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/geojson/anySamplingFeature.json
https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/geojson/samplingFeatureCollection.json

Table 27 — GeoJSON Encoding of Sampling Feature Attributes

ATTRIBUTE NAME
(SEE TABLE 17)

JSON MEMBER USAGE

featureType
properties/
featureType

Use the URI or CURIE specific to a sampling feature type.

validTime
properties/
validTime

Value SHALL be a JSON array with min/max bounds encoded as a
ISO8601 date/time string.

Table 28 — GeoJSON Encoding of Sampling Feature Associations

ASSOCIATION
NAME (SEE TABLE
18)

JSON MEMBER USAGE

sampledFeature
properties/
sampledFeature@
link

Value is a weblink resolving to a Feature resource.

parentSystem links Value is a weblink* resolving to a System resource.

sampleOf links Value is a weblink* resolving to a Sampling Feature resources endpoint.

datastreams links Value is a weblink* resolving to a DataStream resources endpoint**.

controlstreams links
Value is a weblink* resolving to a ControlStream resources
endpoint**.

* The link relation type (rel property) must be set to the association name prefixed by ogc-rel:.
** DataStream and ControlStream resources are defined in OGC API — Connected Systems — Part 2.

Example 1 — A Sampling Point Feature in GeoJSON format

{
 "type": "Feature",
 "id": "SP001",
 "geometry": {
 "type": "Point",
 "coordinates": [12.31, -86.98, -21]
 },
 "properties": {
 "uid": "urn:x-usgs:sites:301244087575701:sf:bottom",
 "name": "Bottom of Well - USGS Site #301244087575701",
 "description": "Sampling point is 2-4 inches above the bottom of the well",
 "featureType": "http://www.opengis.net/def/samplingFeatureType/OGC-OM/2.0/
SF_SamplingPoint",
 "sampledFeature@link": {
 "href": "https://api.usgs.gov/collections/hydrological_features/items/
112TRRC?f=json",
 "type" : "application/geo+json",
 "title": "Aquifer 112TRRC"
 }
 }
}

OPEN GEOSPATIAL CONSORTIUM 23-001R0 126

Example 2 — A Specimen Feature in GeoJSON format

{
 "type": "Feature",
 "id": "f6b464cf",
 "geometry": {
 "type": "Point",
 "coordinates": [30.706, -134.196, 272]
 },
 "properties": {
 "uid": "urn:x-csiro:samples:1114457888",
 "name": "Rock Sample CSIRO:1114457888",
 "description": "Rock sample collected on traverse",
 "featureType": "http://www.opengis.net/def/samplingFeatureType/OGC-OM/2.0/
SF_Specimen",
 "samplingTime": "2007-01-24T12:14:50Z",
 "materialClass": "http://dbpedia.org/resource/Rock_(geology)",
 "sampledFeature@link": {
 "href": "https://api.usgs.gov/collections/geological_features/items/
1458955?f=json",
 "type" : "application/geo+json",
 "title": "Geological Unit 235"
 }
 },
 "links": [
 {
 "rel": "parentSystem",
 "href": "https://data.example.org/api/systems/2ad45f69?f=json",
 "type" : "application/geo+json",
 "title": "Field Technician #123 (Rock Sampler)"
 }
]
}

Example 3 — A System Part Feature in GeoJSON format

{
 "type": "Feature",
 "id": "1a0f80f9",
 "geometry": null,
 "properties": {
 "uid": "urn:x-ogc:sf:456",
 "name": "CPU 2",
 "description": "CPU 2 located in the robot chassis",
 "featureType": "http://www.opengis.net/def/samplingFeatureType/OGC-SML/2.0/
FeaturePart",
 "sampledFeature@link": {
 "href": "https://data.example.org/api/systems/8624d054?f=json",
 "type" : "application/geo+json",
 "title": "Tactical Ground Robot 457"
 }
 },
 "links": [
 {
 "rel": "parentSystem",
 "href": "https://data.example.org/api/systems/447845?f=json",
 "type" : "application/geo+json",
 "title": "Water Level Sensor"
 }
]
}

OPEN GEOSPATIAL CONSORTIUM 23-001R0 127

19.2. Requirements Class “SensorML Format”

19.2.1. Overview

REQUIREMENTS CLASS 13

IDENTIFIER /req/sensorml

TARGET TYPE Web API

CONFORMANCE CLASS Conformance class A.13: /conf/sensorml

PREREQUISITES

Requirements class 1: /req/api-common
http://www.opengis.net/spec/sensorML/3.0/req/json-simple-process
http://www.opengis.net/spec/sensorML/3.0/req/json-physical-system
http://www.opengis.net/spec/sensorML/3.0/req/json-deployment
http://www.opengis.net/spec/sensorML/3.0/req/json-derived-property

NORMATIVE STATEMENTS

Requirement 89: /req/sensorml/mediatype-read
Requirement 90: /req/sensorml/mediatype-write
Requirement 91: /req/sensorml/relation-types
Requirement 92: /req/sensorml/resource-id
Requirement 93: /req/sensorml/feature-attribute-mapping
Requirement 94: /req/sensorml/system-schema
Requirement 95: /req/sensorml/system-sml-class
Requirement 96: /req/sensorml/system-mappings
Requirement 97: /req/sensorml/deployment-schema
Requirement 98: /req/sensorml/deployment-mappings
Requirement 99: /req/sensorml/procedure-schema
Requirement 100: /req/sensorml/procedure-sml-class
Requirement 101: /req/sensorml/procedure-mappings
Requirement 102: /req/sensorml/property-schema
Requirement 103: /req/sensorml/property-mappings

The “SensorML Format” requirements class specifies how resources defined by the CS API
Standard are encoded using the SensorML JSON format defined in SensorML 3.0.

All feature types defined by this Standard, except Sampling Features, can be encoded in
SensorML. The SensorML format allows the provision of more advanced metadata such as
application specific identifiers and classifiers, security and legal constraints, characteristics and
capabilities, contact information, attached documents, reference frames, etc.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 128

19.2.2. Media Type

NOTE: Implementations should use application/vnd.ogc.sml+json as a preliminary media type
until the SensorML 3.0 Standard is stable to avoid confusing future implementations accessing
JSON documents from draft versions of the Standard. The media type application/sml+json will
be registered for SensorML-JSON, if and once this Standard is approved by the OGC Members.
This note will be removed before publishing this Standard.

The media type used for SensorML encoded resources is application/sml+json.

REQUIREMENT 89

IDENTIFIER /req/sensorml/mediatype-read

INCLUDED
IN

Requirements class 13: /req/sensorml

STATEMENT
The server SHALL support the media type application/sml+json in the HTTP Accept header
and respond with a JSON document corresponding to the requested resource type.

REQUIREMENT 90

IDENTIFIER /req/sensorml/mediatype-write

INCLUDED
IN

Requirements class 13: /req/sensorml

CONDITIONS The server implements /req/create-replace-delete.

STATEMENT
The server SHALL support the media type application/sml+json in the HTTP Content-Type
header and parse the JSON body according to the resource type.

19.2.3. Link Relation Types

REQUIREMENT 91

IDENTIFIER /req/sensorml/relation-types

INCLUDED
IN

Requirements class 13: /req/sensorml

STATEMENT
For all associations encoded in the links member of the JSON response, the link relation type must
be set to the association name.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 129

19.2.4. Common Encoding Rules

The following requirement provides the mapping between common resource properties and the
corresponding JSON members when encoded in SensorML-JSON.

REQUIREMENT 92

IDENTIFIER /req/sensorml/resource-id

INCLUDED IN Requirements class 13: /req/sensorml

A The JSON member id SHALL be used to provide the local identifier of the resource.

B The value of the id JSON member SHALL be the same as the {id} portion in the URL.

REQUIREMENT 93

IDENTIFIER /req/sensorml/feature-attribute-mapping

INCLUDED
IN

Requirements class 13: /req/sensorml

STATEMENT
A SensorML JSON document representing a Feature resource SHALL implement the mappings
specified in Table 29.

Table 29 — SensorML Mappings of Common Attributes

ATTRIBUTE NAME JSON MEMBER USAGE

uniqueIdentifier uniqueId Value is a JSON string that is a valid URI.

name label Value is a JSON string.

description description Value is a JSON string.

19.2.5. System Representation

OPEN GEOSPATIAL CONSORTIUM 23-001R0 130

REQUIREMENT 94

IDENTIFIER /req/sensorml/system-schema

INCLUDED
IN

Requirements class 13: /req/sensorml

CONDITIONS The server implements /req/system-features.

A
A request or response body with media type application/sml+json containing a single System
resource SHALL be valid against the JSON schema system.json.

B
A request or response body with media type application/sml+json containing a collection of
System resources SHALL be valid against the JSON schema systemCollection.json.

REQUIREMENT 95

IDENTIFIER /req/sensorml/system-sml-class

INCLUDED
IN

Requirements class 13: /req/sensorml

A
SensorML class PhysicalComponent or PhysicalSystem SHALL be used to describe hardware
equipment or human observers.

B
SensorML class SimpleProcess or AggregateProcess SHALL be used to describe a simulation or
process.

REQUIREMENT 96

IDENTIFIER /req/sensorml/system-mappings

INCLUDED
IN

Requirements class 13: /req/sensorml

STATEMENT
A SensorML JSON document representing a System resource SHALL implement the mappings
specified in Table 30 and Table 31.

Table 30 — SensorML Mappings of System Attributes

ATTRIBUTE NAME
(SEE TABLE 4)

JSON MEMBER USAGE

systemType definition Use the URI or CURIE from Table 6 as the value.

assetType classifiers
Use a classifier with definition cs:AssetType, and the URI or CURIE
from Table 7 as the value.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 131

https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/sensorml/system.json
https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/sensorml/systemCollection.json

ATTRIBUTE NAME
(SEE TABLE 4)

JSON MEMBER USAGE

validTime validTime -

location position
Include location either as a GeoJSON geometry, or as part of a 3D Pose
object (see OGC 23-000 for a description of the 3D Pose object).

Table 31 — SensorML Mappings of System Associations

ASSOCIATION
NAME (SEE TABLE
5)

JSON MEMBER USAGE

systemKind typeOf Value is a weblink resolving to a Procedure resource.

parentSystem attachedTo Value is a weblink resolving to a System resource.

subsystems links Value is a weblink* resolving to a System resources endpoint.

samplingFeatures links Value is a weblink* resolving to a Sampling Feature resources endpoint.

deployments links Value is a weblink* resolving to a Deployment resources endpoint.

procedures links Value is a weblink* resolving to a Procedure resources endpoint.

datastreams links Value is a weblink* resolving to a DataStream resources endpoint**.

controlstreams links
Value is a weblink* resolving to a ControlStream resources
endpoint**.

* The link relation type (rel property) must be set to the association name prefixed by ogc-rel:.
** DataStream and ControlStream resources are defined in OGC API — Connected Systems — Part 2.

Example — A System Feature in SensorML format: This is a simple description of a fixed in-situ
sensor with identification and contact information.

{
 "type": "PhysicalSystem",
 "id": "123",
 "definition": "http://www.w3.org/ns/sosa/Sensor",
 "uniqueId": "urn:x-ogc:systems:001",
 "label": "Outdoor Thermometer 001",
 "description": "Digital thermometer located on first floor window 1",
 "typeOf": {
 "href": "https://data.example.org/api/procedures/TP60S?f=sml",
 "uid": "urn:x-myorg:datasheets:ThermoPro:TP60S:v001",
 "title": "ThermoPro TP60S",
 "type" : "application/sml+json"
 },
 "identifiers": [
 {
 "definition": "http://sensorml.com/ont/swe/property/SerialNumber",

OPEN GEOSPATIAL CONSORTIUM 23-001R0 132

 "label": "Serial Number",
 "value": "0123456879"
 }
],
 "contacts": [
 {
 "role": "http://sensorml.com/ont/swe/roles/Operator",
 "organisationName": "Field Maintenance Corp."
 }
],
 "position": {
 "type": "Point",
 "coordinates": [41.8781, -87.6298]
 }
}

19.2.6. Deployment Representation

REQUIREMENT 97

IDENTIFIER /req/sensorml/deployment-schema

INCLUDED
IN

Requirements class 13: /req/sensorml

CONDITIONS The server implements /req/deployment-features.

A
A request or response body with media type application/sml+json containing a single
Deployment resource SHALL be valid against the JSON schema deployment.json.

B
A request or response body with media type application/sml+json containing a collection of
Deployment resources SHALL be valid against the JSON schema deploymentCollection.json.

REQUIREMENT 98

IDENTIFIER /req/sensorml/deployment-mappings

INCLUDED
IN

Requirements class 13: /req/sensorml

STATEMENT
A SensorML JSON document representing a Deployment resource SHALL implement the mappings
specified in Table 32 and Table 33.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 133

https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/sensorml/deployment.json
https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/sensorml/deploymentCollection.json

Table 32 — SensorML Mappings of Deployment Attributes

ATTRIBUTE NAME
(SEE TABLE 10)

JSON MEMBER USAGE

deploymentType definition Use the URI or CURIE identifying the type of deployment as the value.

validTime validTime -

location location Value is a GeoJSON geometry

Table 33 — SensorML Mappings of Deployment Associations

ASSOCIATION
NAME (SEE TABLE
11)

JSON MEMBER USAGE

platform platform Value is a weblink resolving to a System resource.

deployedSystems deployedSystems
Value is a JSON Array of DeployedSystem objects, each of which
contains a link to a System resource.

parentDeployment links Value is a weblink* resolving to a Deployment resource.

subdeployments links Value is a weblink* resolving to a Deployment resources endpoint.

featuresOfInterestlinks Value is a weblink* resolving to a Feature resources endpoint.

samplingFeatures links Value is a weblink* resolving to a Sampling Feature resources endpoint.

datastreams links Value is a weblink* resolving to a DataStream resources endpoint**.

controlstreams links
Value is a weblink* resolving to a ControlStream resources
endpoint**.

* The link relation type (rel property) must be set to the association name prefixed by ogc-rel:.
** DataStream and ControlStream resources are defined in OGC API — Connected Systems — Part 2.

Example — A Deployment Feature in SensorML format

{
 "type": "Deployment",
 "id": "iv3f2kcq27gfi",
 "definition": "http://www.w3.org/ns/sosa/Deployment",
 "uniqueId": "urn:x-saildrone:mission:2025",
 "label": "Saildrone - 2017 Arctic Mission",
 "description": "In July 2017, three saildrones were launched from Dutch
Harbor, Alaska, in partnership with NOAA Research...",
 "classifiers": [
 {
 "definition": "https://schema.org/DefinedRegion",
 "label": "Region",

OPEN GEOSPATIAL CONSORTIUM 23-001R0 134

 "value": "Arctic"
 }
],
 "contacts": [
 {
 "role": "http://sensorml.com/ont/swe/property/Operator",
 "organisationName": "Saildrone, Inc.",
 "contactInfo": {
 "website": "https://www.saildrone.com/",
 "address": {
 "deliveryPoint": "1050 W. Tower Ave.",
 "city": "Alameda",
 "postalCode": "94501",
 "administrativeArea": "CA",
 "country": "USA"
 }
 }
 },
 {
 "role": "http://sensorml.com/ont/swe/property/DataProvider",
 "organisationName": "NOAA Pacific Marine Environmental Laboratory
(PMEL)",
 "contactInfo": {
 "website": "https://www.pmel.noaa.gov"
 }
 }
],
 "validTime": [
 "2017-07-17T00:00:00Z",
 "2017-09-29T00:00:00Z"
],
 "location": {
 "type": "Polygon",
 "coordinates": [[
 [-173.70, 53.76],
 [-173.70, 75.03],
 [-155.07, 75.03],
 [-155.07, 53.76],
 [-173.70, 53.76]
]]
 },
 "platform": {
 "system": {
 "href": "https://data.example.org/api/systems/27559?f=sml",
 "uid": "urn:x-saildrone:platforms:SD-1003",
 "title": "Saildrone SD-1003"
 }
 },
 "deployedSystems": [
 {
 "name": "air_temp_sensor",
 "description": "Air temperature sensor installed in the boom",
 "system": {
 "href": "https://data.example.org/api/systems/41548?f=sml",
 "uid": "urn:x-saildrone:sensors:temp01",
 "title": "Air Temperature Sensor"
 },
 "configuration": {
 "setValues": [{
 "ref": "parameters/sampling_rate",
 "value": 0.1
 }]
 }

OPEN GEOSPATIAL CONSORTIUM 23-001R0 135

 },
 {
 "name": "water_temp_sensor",
 "description": "Water temperature sensor installed on the keel",
 "system": {
 "href": "https://data.example.org/api/systems/36584?f=sml",
 "uid": "urn:x-saildrone:sensors:temp02",
 "title": "Water Temperature Sensor"
 }
 },
 {
 "name": "wind_sensor",
 "description": "Wind sensor installed at the top of the mast",
 "system": {
 "href": "https://data.example.org/api/systems/47752?f=sml",
 "uid": "urn:x-saildrone:sensors:wind01",
 "title": "Wind Speed and Direction Sensor"
 }
 }
],
 "links": [
 {
 "rel" : "self",
 "href" : "https://data.example.org/api/deployments/iv3f2kcq27gfi?f=sml",
 "type" : "application/sml+json",
 "title" : "this document"
 }, {
 "rel" : "alternate",
 "href" : "https://data.example.org/api/deployments/iv3f2kcq27gfi?f=json",
 "type" : "application/geo+json",
 "title" : "this resource as GeoJSON"
 }
]
}

19.2.7. Procedure Representation

REQUIREMENT 99

IDENTIFIER /req/sensorml/procedure-schema

INCLUDED
IN

Requirements class 13: /req/sensorml

CONDITIONS The server implements /req/procedure-features.

A
A request or response body with media type application/sml+json containing a single
Procedure resource SHALL be valid against the JSON schema procedure.json.

B
A request or response body with media type application/sml+json containing a collection of
Procedure resources SHALL be valid against the JSON schema procedureCollection.json.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 136

https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/sensorml/procedure.json
https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/sensorml/procedureCollection.json

REQUIREMENT 100

IDENTIFIER /req/sensorml/procedure-sml-class

INCLUDED
IN

Requirements class 13: /req/sensorml

A
SensorML class PhysicalComponent or PhysicalSystem SHALL be used to describe hardware
equipment specifications (i.e. datasheet).

B
SensorML class SimpleProcess or AggregateProcess SHALL be used to describe a procedure
implemented by humans, such as a methodology or steps.

C No position information SHALL be provided as part of the procedure description.

REQUIREMENT 101

IDENTIFIER /req/sensorml/procedure-mappings

INCLUDED
IN

Requirements class 13: /req/sensorml

STATEMENT
A SensorML JSON document representing a Procedure resource SHALL implement the mappings
specified in Table 34 and Table 35.

Table 34 — SensorML Mappings of Procedure Attributes

ATTRIBUTE NAME
(SEE TABLE 14)

JSON MEMBER USAGE

procedureType definition Use the URI or CURIE from Table 16 as the value.

validTime validTime -

Table 35 — SensorML Mappings of Procedure Associations

ASSOCIATION
NAME (SEE TABLE
15)

JSON MEMBER USAGE

implementingSystemslinks Value is a weblink* resolving to a System resources endpoint.

* The link relation type (rel property) must be set to the association name prefixed by ogc-rel:.

Example — A Procedure Feature (datasheet) in SensorML format

{

OPEN GEOSPATIAL CONSORTIUM 23-001R0 137

 "type": "PhysicalComponent",
 "id": "iv3f2kcq27gfi",
 "definition": "http://www.w3.org/ns/ssn-system/SensorKind",
 "uniqueId": "urn:osh:sensors:saildrone:S0004",
 "label": "3D Ultrasonic Anemometer",
 "description": "Precision 3-axis ultrasonic anemometer",
 "identifiers": [
 {
 "definition": "http://sensorml.com/ont/swe/property/Manufacturer",
 "label": "Manufacturer Name",
 "value": "Gill"
 },
 {
 "definition": "http://sensorml.com/ont/swe/property/ModelNumber",
 "label": "Model Number",
 "value": "WindMaster"
 }
],
 "classifiers": [
 {
 "definition": "http://sensorml.com/ont/swe/property/SensorType",
 "label": "Sensor Type",
 "value": "Anemometer"
 }
],
 "capabilities": [
 {
 "definition": "http://www.w3.org/ns/ssn/systems/SystemCapability",
 "label": "Speed Measurement Capabilities",
 "capabilities": [
 {
 "name": "range",
 "type": "QuantityRange",
 "definition": "http://www.w3.org/ns/ssn/systems/MeasurementRange",
 "label": "Measurement Range",
 "uom": {
 "code": "m/s"
 },
 "value": [0.0,50.0]
 },
 {
 "name": "resolution",
 "type": "Quantity",
 "definition": "http://www.w3.org/ns/ssn/systems/Resolution",
 "label": "Resolution",
 "uom": {
 "code": "m/s"
 },
 "value": 0.01
 },
 {
 "name": "accuracy",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/
RelativeAccuracy",
 "label": "Relative Accuracy",
 "uom": {
 "code": "%"
 },
 "value": 1.5
 }
]
 }

OPEN GEOSPATIAL CONSORTIUM 23-001R0 138

],
 "links": [
 {
 "href" : "https://data.example.org/api/procedures/iv3f2kcq27gfi?f=sml",
 "rel" : "self",
 "type" : "application/sml+json",
 "title" : "this document"
 }, {
 "href" : "https://data.example.org/api/procedures/iv3f2kcq27gfi?f=json",
 "rel" : "alternate",
 "type" : "application/geo+json",
 "title" : "this resource as GeoJSON"
 }
]
}

19.2.8. Property Representation

REQUIREMENT 102

IDENTIFIER /req/sensorml/property-schema

INCLUDED
IN

Requirements class 13: /req/sensorml

CONDITIONS The server implements /req/property-definitions.

A
A request or response body with media type application/sml+json containing a single
Property resource SHALL be valid against the JSON schema property.json.

B
A request or response body with media type application/sml+json containing a collection of
Property resources SHALL be valid against the JSON schema propertyCollection.json.

REQUIREMENT 103

IDENTIFIER /req/sensorml/property-mappings

INCLUDED
IN

Requirements class 13: /req/sensorml

STATEMENT
A SensorML JSON document representing a Property resource SHALL implement the mappings
specified in Table 36.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 139

https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/sensorml/property.json
https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/sensorml/propertyCollection.json

Table 36 — SensorML Mappings of Property Attributes

ATTRIBUTE NAME
(SEE TABLE 19)

JSON MEMBER USAGE

baseProperty baseProperty Value is a JSON string that is a valid URI.

objectType objectType Value is a JSON string that is a valid URI.

statistic statistic Value is a JSON string that is a valid URI.

Example — A Property Definition in SensorML format

{
 "id": "AverageCpuTemp",
 "label": "Average CPU Temp",
 "description": "Hourly average of the CPU temperature",
 "baseProperty": "http://qudt.org/vocab/quantitykind/Temperature",
 "objectType": "http://dbpedia.org/resource/Central_processing_unit",
 "statistic": "http://sensorml.com/ont/x-stats/HourlyMean"
}

OPEN GEOSPATIAL CONSORTIUM 23-001R0 140

A

ANNEX A (NORMATIVE)
CONFORMANCE CLASS
ABSTRACT TEST SUITE

OPEN GEOSPATIAL CONSORTIUM 23-001R0 141

A ANNEX A
(NORMATIVE)
CONFORMANCE CLASS ABSTRACT TEST
SUITE

A.1. Supporting Tests

These tests are not associated to any specific requirement but are referenced by other tests.

ABSTRACT TEST A.1

IDENTIFIER /conf/api-common/canonical-resources

TEST
PURPOSE

Retrieve all items from their canonical endpoint.
This is a parameterized test that requires the resource-type parameter

TEST
METHOD

Given the resource-type parameter:
1. Issue an HTTP GET request to the URL /{resource-type} with the Accepted header set

to a media type supported by the server.

2. Validate that a document was returned with a status code 200.

3. Iterate through the list of resources in the response, following next links as appropriate.

ABSTRACT TEST A.2

IDENTIFIER /conf/api-common/collection-items

TEST
PURPOSE

Retrieve items of a collection.
This is a parameterized test that requires the collectionId parameter

TEST
METHOD

1. Retrieve the media types supported by the server for the collection items by inspecting the
links with relation type items.

2. If the server does not offer any media type supported by the testing engine, issue a warning
and skip the test.

3. Issue an HTTP GET request to the URL /collections/{collectionId}/items where
{collectionId} is the ID of the desired collection.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 142

ABSTRACT TEST A.2

4. Validate that a document was returned with a status code 200.

5. Iterate through all items in the collection, following next links as appropriate.

A.2. Conformance Class “Common”

CONFORMANCE CLASS A.1

IDENTIFIER /conf/api-common

REQUIREMENTS CLASS Requirements class 1: /req/api-common

PREREQUISITES

http://www.opengis.net/spec/ogcapi-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/landing-page
http://www.opengis.net/spec/ogcapi-common-2/1.0/conf/collections
http://www.opengis.net/spec/ogcapi-common-2/1.0/conf/simple-query

TARGET TYPE Web API

CONFORMANCE TESTS

Abstract test A.3: /conf/api-common/resource-ids
Abstract test A.4: /conf/api-common/resource-uids
Abstract test A.5: /conf/api-common/resource-uids-types
Abstract test A.6: /conf/api-common/datetime

ABSTRACT TEST A.3

IDENTIFIER /conf/api-common/resource-ids

REQUIREMENT Requirement 1: /req/api-common/resource-ids

TEST PURPOSE Validate that resource IDs assigned by the server are unique for a given resource type.

TEST METHOD

For each resource type supported by the server:
1. Retrieve all resources as described in test /conf/api-common/canonical-resources.

2. For each resource in the response, retrieve its local ID.

3. Compare the ID with all IDs read previously from resources of the same type and make sure
it is unique.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 143

ABSTRACT TEST A.4

IDENTIFIER /conf/api-common/resource-uids

REQUIREMENT Requirement 2: /req/api-common/resource-uids

TEST PURPOSE Validate that resource UIDs exposed by the server are unique across all collections.

TEST METHOD

For each resource type supported by the server:
1. Retrieve resources as described in test /conf/api-common/canonical-resources.

2. Retrieve the unique ID of each resource in the response.

3. Compare the UID with all UIDs previously read from any resource and make sure it is
unique.

ABSTRACT TEST A.5

IDENTIFIER /conf/api-common/resource-uids-types

REQUIREMENT Recommendation 1: /rec/api-common/resource-uids-types

TEST PURPOSE Validate that resource UIDs are valid URIs, with a high probability of uniqueness.

TEST METHOD

For each resource type supported by the server:
1. Retrieve resources as described in test /conf/api-common/canonical-resources.

2. Retrieve the unique ID of each resource in the response.

3. Validate that the unique ID is either a UUID or a URN with a known registered namespace.
Issue a warning if not.

ABSTRACT TEST A.6

IDENTIFIER /conf/api-common/datetime

REQUIREMENT Requirement 3: /req/api-common/datetime

TEST PURPOSE Validate that the server correctly filters features when the datetime query parameter is set.

TEST METHOD

For each collection advertised by the server:
1. Retrieve the temporal extent of the collection.

2. Execute the Date/Time parameter test of http://www.opengis.net/spec/ogcapi-features-
1/1.0/conf/core/fc-time-response, using the validTime property of the features in the
response as the temporal geometry.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 144

http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core/fc-time-response
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core/fc-time-response

A.3. Conformance Class “System Features”

CONFORMANCE CLASS A.2

IDENTIFIER /conf/system

REQUIREMENTS CLASS Requirements class 2: /req/system

PREREQUISITE Conformance class A.1: /conf/api-common

TARGET TYPE Web API

CONFORMANCE TESTS

Abstract test A.7: /conf/system/location
Abstract test A.8: /conf/system/location-time
Abstract test A.9: /conf/system/canonical-url
Abstract test A.10: /conf/system/resources-endpoint
Abstract test A.11: /conf/system/canonical-endpoint
Abstract test A.12: /conf/system/collections

ABSTRACT TEST A.7

IDENTIFIER /conf/system/location

REQUIREMENT Recommendation 2: /rec/system/location

TEST PURPOSE Validate that system features include a location.

TEST METHOD

1. Retrieve System resources by running test /conf/api-common/canonical-resources with
resource-type=systems.

2. For each System resource in the response that does not have assetType set to
Simulation or Process, check that the resource representation contains a location. Issue
a warning if not.

ABSTRACT TEST A.8

IDENTIFIER /conf/system/location-time

REQUIREMENT Requirement 4: /req/system/location-time

TEST PURPOSE Validate that the server updates the system location when it changes.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 145

ABSTRACT TEST A.8

TEST METHOD

Given the ID sysId of a mobile system that is known to change location.
1. Issue an HTTP GET request to the URL {api_root}/systems/{sysId}.

2. Wait until the system has changed location.

3. Issue an HTTP GET request to the URL {api_root}/systems/{sysId}.

4. Verify that the locations reported in the two responses are different.

ABSTRACT TEST A.9

IDENTIFIER /conf/system/canonical-url

REQUIREMENT Requirement 5: /req/system/canonical-url

TEST PURPOSE Validate that every System resource is accessible via its canonical URL.

TEST METHOD

For every collection advertised by the server with the featureType property set to sosa:
System:

1. Retrieve the collection items as described in test /conf/api-common/collection-items.

2. For each item, check that a link with relation type canonical is included.

3. Dereference this link and validate that a document is returned with a status code 200.

4. Check that the returned document has the same content as the resource originally included
in the collection items (except for the canonical link).

ABSTRACT TEST A.10

IDENTIFIER /conf/system/resources-endpoint

REQUIREMENT Requirement 6: /req/system/resources-endpoint

TEST PURPOSE
Validate that the server implements a System resources endpoint correctly.
This is a parameterized test that requires the endpoint URL as a parameter

TEST METHOD

1. Issue an HTTP GET request to the endpoint URL.

2. Validate that a document was returned with a status code 200.

3. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/geo+json, execute test /conf/geojson/
system-schema.

b) If the response content type is application/sml+json, execute test /conf/sensorml/
system-schema.

c) For other response content types not supported by the testing engine, issue a warning
and skip this test.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 146

ABSTRACT TEST A.11

IDENTIFIER /conf/system/canonical-endpoint

REQUIREMENT Requirement 7: /req/system/canonical-endpoint

TEST PURPOSE Validate that the server exposes the canonical System resources endpoint.

TEST METHOD
Validate that the server implements a System resources endpoint at path {api_root}/systems
using test /conf/system/resources-endpoint.

ABSTRACT TEST A.12

IDENTIFIER /conf/system/collections

REQUIREMENT Requirement 8: /req/system/collections

TEST PURPOSE Validate that System collections are tagged with the proper feature type.

TEST METHOD

For every collection advertised by the server with the featureType property set to sosa:
System:

1. Retrieve the collection items as described in test /conf/api-common/collection-items.

2. For each item, retrieve its type.

3. Check that the reported type is one of the URI or CURIE listed in Table 6.

4. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/geo+json, execute test /conf/geojson/
system-schema.

b) If the response content type is application/sml+json, execute test /conf/sensorml/
system-schema.

c) For other response content types not supported by the testing engine, issue a warning
and skip this test.

A.4. Conformance Class “Subsystems”

CONFORMANCE CLASS A.3

IDENTIFIER /conf/subsystem

OPEN GEOSPATIAL CONSORTIUM 23-001R0 147

CONFORMANCE CLASS A.3

REQUIREMENTS CLASS Requirements class 3: /req/subsystem

PREREQUISITE Conformance class A.2: /conf/system

TARGET TYPE Web API

CONFORMANCE TESTS

Abstract test A.13: /conf/subsystem/collection
Abstract test A.14: /conf/subsystem/recursive-param
Abstract test A.15: /conf/subsystem/recursive-search-systems
Abstract test A.16: /conf/subsystem/recursive-search-subsystems
Abstract test A.17: /conf/subsystem/recursive-assoc

ABSTRACT TEST A.13

IDENTIFIER /conf/subsystem/collection

REQUIREMENT Requirement 9: /req/subsystem/collection

TEST PURPOSE Verify that subsystems are available as a sub-collection of a parent system.

TEST METHOD

Given the ID sysId of a parent system that has subsystems:
1. Retrieve the parent system resource at {api_root}/systems/{sysId}.

2. Verify that the response contains a link with relation type subsystems.

3. Verify that the link target is the URL {api_root}/systems/{id}/subsystems.

4. Dereference this link and validate that a document is returned with a status code 200.

5. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/geo+json, execute test /conf/geojson/
system-schema.

b) If the response content type is application/sml+json, execute test /conf/sensorml/
system-schema.

c) For other response content types not supported by the testing engine, issue a warning
and skip this test.

ABSTRACT TEST A.14

IDENTIFIER /conf/subsystem/recursive-param

REQUIREMENT Requirement 10: /req/subsystem/recursive-param

OPEN GEOSPATIAL CONSORTIUM 23-001R0 148

ABSTRACT TEST A.14

TEST PURPOSE Validate that the recursive query parameter is of type boolean

TEST METHOD
1. Validate that the request contains a query parameter named recursive.

2. Validate that the parameter value is set to true or false.

ABSTRACT TEST A.15

IDENTIFIER /conf/subsystem/recursive-search-systems

REQUIREMENT Requirement 11: /req/subsystem/recursive-search-systems

TEST PURPOSE Verify that subsystems can be queried using the recursive query parameter.

TEST METHOD

1. Issue an HTTP GET request to the URL {api_root}/systems.

2. Verify that subsystems are not included in the response.

3. Issue an HTTP GET request to the URL {api_root}/systems?recursive=false.

4. Verify that subsystems are not included in the response.

5. Issue an HTTP GET request to the URL {api_root}/systems?recursive=true.

6. Verify that all subsystems (at all nesting levels) are included in the response.

ABSTRACT TEST A.16

IDENTIFIER /conf/subsystem/recursive-search-subsystems

REQUIREMENT Requirement 12: /req/subsystem/recursive-search-subsystems

TEST PURPOSE Verify that nested subsystems can be queried using the recursive query parameter.

TEST METHOD

Given the ID sysId of a parent system that has subsystems:
1. Issue an HTTP GET request to the URL {api_root}/systems/{sysId}/subsystems.

2. Verify that only direct subsystems are included in the response.

3. Issue an HTTP GET request to the URL {api_root}/systems/{sysId}/subsystems?
recursive=false.

4. Verify that only direct subsystems are included in the response.

5. Issue an HTTP GET request to the URL {api_root}/systems/{sysId}/subsystems?
recursive=true.

6. Verify that all subsystems (at all nesting levels) are included in the response.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 149

ABSTRACT TEST A.17

IDENTIFIER /conf/subsystem/recursive-assoc

REQUIREMENT Requirement 13: /req/subsystem/recursive-assoc

TEST PURPOSE Verify that a system’s nested resources endpoints include resources from its subsystems.

TEST METHOD

For each System resource with local ID sysId that has subsystems:
1. If the server implements Sampling Feature resources, verify that all nested sampling

features are returned
a) Issue an HTTP GET request to the URL {api_root}/systems/{sysId}/

samplingFeatures.

b) Validate that a document was returned with a status code 200.

c) Validate that the response includes all Sampling Feature resources associated to the
parent system or any of its subsystems (at all nesting levels).

2. If the server implements DataStream resources, verify that all nested datastreams are
returned

a) Issue an HTTP GET request to the URL {api_root}/systems/{sysId}/
datastreams.

b) Validate that a document was returned with a status code 200.

c) Validate that the response includes all DataStream resources associated to the parent
system or any of its subsystems (at all nesting levels).

3. If the server implements ControlStream resources, verify that all nested controlstreams
are returned

a) Issue an HTTP GET request to the URL {api_root}/systems/{sysId}/
controlstreams.

b) Validate that a document was returned with a status code 200.

c) Validate that the response includes all ControlStream resources associated to the
parent system or any of its subsystems (at all nesting levels).

A.5. Conformance Class “Deployment Features”

CONFORMANCE CLASS A.4

IDENTIFIER /conf/deployment

REQUIREMENTS CLASS Requirements class 4: /req/deployment

PREREQUISITE Conformance class A.1: /conf/api-common

OPEN GEOSPATIAL CONSORTIUM 23-001R0 150

CONFORMANCE CLASS A.4

TARGET TYPE Web API

CONFORMANCE TESTS

Abstract test A.18: /conf/deployment/canonical-url
Abstract test A.19: /conf/deployment/resources-endpoint
Abstract test A.20: /conf/deployment/canonical-endpoint
Abstract test A.22: /conf/deployment/ref-from-system
Abstract test A.21: /conf/deployment/collections

ABSTRACT TEST A.18

IDENTIFIER /conf/deployment/canonical-url

REQUIREMENT Requirement 14: /req/deployment/canonical-url

TEST PURPOSE Validate that every Deployment resource is accessible via its canonical URL.

TEST METHOD

For every collection advertised by the server with the featureType property set to sosa:
Deployment:

1. Retrieve the collection items as described in test /conf/api-common/collection-items.

2. For each item, check that a link with relation type canonical is included.

3. Dereference this link and validate that a document is returned with a status code 200.

4. Check that the returned document has the same content as the resource originally included
in the collection items (except for the canonical link).

ABSTRACT TEST A.19

IDENTIFIER /conf/deployment/resources-endpoint

REQUIREMENT Requirement 15: /req/deployment/resources-endpoint

TEST PURPOSE
Validate that the server implements a Deployment resources endpoint correctly.
This is a parameterized test that requires the endpoint URL as a parameter

TEST METHOD

1. Issue an HTTP GET request to the endpoint URL.

2. Validate that a document was returned with a status code 200.

3. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/geo+json, execute test /conf/geojson/
deployment-schema.

b) If the response content type is application/sml+json, execute test /conf/sensorml/
deployment-schema.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 151

ABSTRACT TEST A.19

c) For other response content types not supported by the testing engine, issue a warning
and skip this test.

ABSTRACT TEST A.20

IDENTIFIER /conf/deployment/canonical-endpoint

REQUIREMENT Requirement 16: /req/deployment/canonical-endpoint

TEST PURPOSE Validate that the server exposes the canonical Deployment resources endpoint.

TEST METHOD
Validate that the server implements a Deployment resources endpoint at path {api_root}/
deployments using test /conf/deployment/resources-endpoint.

ABSTRACT TEST A.21

IDENTIFIER /conf/deployment/collections

REQUIREMENT Requirement 18: /req/deployment/collections

TEST PURPOSE Validate that Deployment collections are tagged with the proper feature type.

TEST METHOD

For every collection advertised by the server with the featureType property set to sosa:
Deployment:

1. Retrieve the collection items as described in test /conf/api-common/collection-items.

2. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/geo+json, execute test /conf/geojson/
deployment-schema.

b) If the response content type is application/sml+json, execute test /conf/sensorml/
deployment-schema.

c) For other response content types not supported by the testing engine, issue a warning
and skip this test.

ABSTRACT TEST A.22

IDENTIFIER /conf/deployment/ref-from-system

REQUIREMENT Requirement 17: /req/deployment/ref-from-system

TEST PURPOSE Validate that Deployment resources associated to a System are available as sub-resources.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 152

ABSTRACT TEST A.22

TEST METHOD

1. Retrieve all System resources by executing test /conf/api-common/canonical-resources
with parameter resource-type=systems.

2. For each System resource in the response:
a) Issue an HTTP GET request at path {api_root}/systems/{sysId}/deployments,

where sysId is the local ID of the System resource.

b) Validate that a document was returned with a status code 200.

c) Iterate through the list of resources in the response, following next links as appropriate.

d) If the response content type is application/geo+json, execute test /conf/geojson/
deployment-schema.

e) If the response content type is {sensorml-mediatype}, execute test /conf/sensorml/
deployment-schema.

f) Check that the Deployment resource contains a link to the System with ID sysId.

A.6. Conformance Class “Subdeployments”

CONFORMANCE CLASS A.5

IDENTIFIER /conf/subdeployment

REQUIREMENTS
CLASS

Requirements class 5: /req/subdeployment

PREREQUISITE Conformance class A.4: /conf/deployment

TARGET TYPE Web API

CONFORMANCE
TESTS

Abstract test A.23: /conf/subdeployment/collection
Abstract test A.24: /conf/subdeployment/recursive-param
Abstract test A.25: /conf/subdeployment/recursive-search-deployments
Abstract test A.26: /conf/subdeployment/recursive-search-subdeployments
Abstract test A.27: /conf/subdeployment/recursive-assoc

ABSTRACT TEST A.23

IDENTIFIER /conf/subdeployment/collection

REQUIREMENT Requirement 19: /req/subdeployment/collection

OPEN GEOSPATIAL CONSORTIUM 23-001R0 153

ABSTRACT TEST A.23

TEST PURPOSE Verify that subdeployments are available as a sub-collection of a parent deployment.

TEST METHOD

Given the ID depId of a parent deployment that has subdeployments:
1. Retrieve the parent deployment resource at {api_root}/deployments/{depId}.

2. Verify that the response contains a link with relation type subdeployments.

3. Verify that the link target is the URL {api_root}/deployments/{id}/
subdeployments.

4. Dereference this link and validate that a document is returned with a status code 200.

5. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/geo+json, execute test /conf/geojson/
deployment-schema.

b) If the response content type is application/sml+json, execute test /conf/sensorml/
deployment-schema.

c) For other response content types not supported by the testing engine, issue a warning
and skip this test.

ABSTRACT TEST A.24

IDENTIFIER /conf/subdeployment/recursive-param

REQUIREMENT Requirement 20: /req/subdeployment/recursive-param

TEST PURPOSE Validate that the recursive query parameter is of type boolean

TEST METHOD
1. Validate that the request contains a query parameter named recursive.

2. Validate that the parameter value is set to true or false.

ABSTRACT TEST A.25

IDENTIFIER /conf/subdeployment/recursive-search-deployments

REQUIREMENT Requirement 21: /req/subdeployment/recursive-search-deployments

TEST PURPOSE Verify that subdeployments can be queried using the recursive query parameter.

TEST METHOD

1. Issue an HTTP GET request to the URL {api_root}/deployments.

2. Verify that subdeployments are not included in the response.

3. Issue an HTTP GET request to the URL {api_root}/deployments?recursive=false.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 154

ABSTRACT TEST A.25

4. Verify that subdeployments are not included in the response.

5. Issue an HTTP GET request to the URL {api_root}/deployments?recursive=true.

6. Verify that all subdeployments (at all nesting levels) are included in the response.

ABSTRACT TEST A.26

IDENTIFIER /conf/subdeployment/recursive-search-subdeployments

REQUIREMENT Requirement 22: /req/subdeployment/recursive-search-subdeployments

TEST PURPOSE Verify that nested subdeployments can be queried using the recursive query parameter.

TEST METHOD

Given the ID depId of a parent deployment that has subdeployments:
1. Issue an HTTP GET request to the URL {api_root}/deployments/{depId}/

subdeployments.

2. Verify that only direct subdeployments are included in the response.

3. Issue an HTTP GET request to the URL {api_root}/deployments/{depId}/
subdeployments?recursive=false.

4. Verify that only direct subdeployments are included in the response.

5. Issue an HTTP GET request to the URL {api_root}/deployments/{depId}/
subdeployments?recursive=true.

6. Verify that all subdeployments (at all nesting levels) are included in the response.

ABSTRACT TEST A.27

IDENTIFIER /conf/subdeployment/recursive-assoc

REQUIREMENT Requirement 23: /req/subdeployment/recursive-assoc

TEST PURPOSE Verify that a deployment’s nested resources endpoints include resources from its subdeployments.

TEST METHOD

For each Deployment resource with local ID depId that has subdeployments:
1. If the Deployment resource contains a link with relation type deployedSystems, verify

that all deployed systems are returned
a) Issue an HTTP GET request to the link URL.

b) Validate that a document was returned with a status code 200.

c) Validate that the response includes all System resources associated to the parent
deployment or any of its subdeployments (at all nesting levels).

2. If the Deployment resource contains a link with relation type featuresOfInterest,
verify that all related features of interest are returned

OPEN GEOSPATIAL CONSORTIUM 23-001R0 155

ABSTRACT TEST A.27

a) Issue an HTTP GET request to the link URL.

b) Validate that a document was returned with a status code 200.

c) Validate that the response includes all Feature of Interest resources associated to
the parent deployment or any of its subdeployments (at all nesting levels).

3. If the Deployment resource contains a link with relation type samplingFeatures, verify
that all related sampling features are returned

a) Issue an HTTP GET request to the link URL.

b) Validate that a document was returned with a status code 200.

c) Validate that the response includes all Sampling Feature resources associated to the
parent deployment or any of its subdeployments (at all nesting levels).

4. If the Deployment resource contains a link with relation type datastreams, verify that all
related datastreams are returned

a) Issue an HTTP GET request to the link URL.

b) Validate that a document was returned with a status code 200.

c) Validate that the response includes all DataStream resources associated to the parent
deployment or any of its subdeployments (at all nesting levels).

5. If the Deployment resource contains a link with relation type controlstreams, verify that
all related controlstreams are returned

a) Issue an HTTP GET request to the link URL.

b) Validate that a document was returned with a status code 200.

c) Validate that the response includes all ControlStream resources associated to the
parent deployment or any of its subdeployments (at all nesting levels).

A.7. Conformance Class “Procedure Features”

CONFORMANCE CLASS A.6

IDENTIFIER /conf/procedure

REQUIREMENTS CLASS Requirements class 6: /req/procedure

PREREQUISITE Conformance class A.1: /conf/api-common

TARGET TYPE Web API

CONFORMANCE TESTS
Abstract test A.28: /conf/procedure/location
Abstract test A.29: /conf/procedure/canonical-url
Abstract test A.30: /conf/procedure/resources-endpoint

OPEN GEOSPATIAL CONSORTIUM 23-001R0 156

CONFORMANCE CLASS A.6

Abstract test A.31: /conf/procedure/canonical-endpoint
Abstract test A.32: /conf/procedure/collections

ABSTRACT TEST A.28

IDENTIFIER /conf/procedure/location

REQUIREMENT Requirement 24: /req/procedure/location

TEST PURPOSE Validate that Procedure features never include a location.

TEST METHOD

1. Issue an HTTP GET request to the URL {api_root}/procedures.

2. Iterate through the items of the response, following next links as appropriate.

3. For each item, check that no location is not provided.
a) If the response content type is application/geo+json, check that the geometry

member is set to null.

b) If the response content type is application/sml+json, check that the position
member is not present.

c) For other response content types not supported by the testing engine, issue a warning
and skip this test.

ABSTRACT TEST A.29

IDENTIFIER /conf/procedure/canonical-url

REQUIREMENT Requirement 25: /req/procedure/canonical-url

TEST PURPOSE Validate that every Procedure resource is accessible via its canonical URL.

TEST METHOD

For every collection advertised by the server with the featureType property set to sosa:
Procedure:

1. Retrieve the collection items as described in test /conf/api-common/collection-items.

2. For each item, check that a link with relation type canonical is included.

3. Dereference this link and validate that a document is returned with a status code 200.

4. Check that the returned document has the same content as the resource originally included
in the collection items (except for the canonical link).

OPEN GEOSPATIAL CONSORTIUM 23-001R0 157

ABSTRACT TEST A.30

IDENTIFIER /conf/procedure/resources-endpoint

REQUIREMENT Requirement 26: /req/procedure/resources-endpoint

TEST PURPOSE
Validate that the server implements a Procedure resources endpoint correctly.
This is a parameterized test that requires the endpoint URL as a parameter

TEST METHOD

1. Issue an HTTP GET request to the endpoint URL.

2. Validate that a document was returned with a status code 200.

3. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/geo+json, execute test /conf/geojson/
procedure-schema.

b) If the response content type is application/sml+json, execute test /conf/sensorml/
procedure-schema.

c) For other response content types not supported by the testing engine, issue a warning
and skip this test.

ABSTRACT TEST A.31

IDENTIFIER /conf/procedure/canonical-endpoint

REQUIREMENT Requirement 27: /req/procedure/canonical-endpoint

TEST PURPOSE Validate that the server exposes the canonical Procedure resources endpoint.

TEST METHOD
Validate that the server implements a Procedure resources endpoint at path {api_root}/
procedures using test /conf/procedure/resources-endpoint.

ABSTRACT TEST A.32

IDENTIFIER /conf/procedure/collections

REQUIREMENT Requirement 28: /req/procedure/collections

TEST PURPOSE Validate that Procedure collections are tagged with the proper feature type.

TEST METHOD

For every collection advertised by the server with the featureType property set to sosa:
Procedure:

1. Retrieve the collection items as described in test /conf/api-common/collection-items.

2. For each item, retrieve its type.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 158

ABSTRACT TEST A.32

3. Check that the reported type is one of the URI or CURIE listed in Table 16.

4. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/geo+json, execute test /conf/geojson/
procedure-schema.

b) If the response content type is application/sml+json, execute test /conf/sensorml/
procedure-schema.

c) For other response content types not supported by the testing engine, issue a warning
and skip this test.

A.8. Conformance Class “Sampling Features”

CONFORMANCE CLASS A.7

IDENTIFIER /conf/sf

REQUIREMENTS CLASS Requirements class 7: /req/sf

PREREQUISITE Conformance class A.2: /conf/system

TARGET TYPE Web API

CONFORMANCE TESTS

Abstract test A.33: /conf/sf/canonical-url
Abstract test A.34: /conf/sf/resources-endpoint
Abstract test A.35: /conf/sf/canonical-endpoint
Abstract test A.37: /conf/sf/ref-from-system
Abstract test A.36: /conf/sf/collections

ABSTRACT TEST A.33

IDENTIFIER /conf/sf/canonical-url

REQUIREMENT Requirement 29: /req/sf/canonical-url

TEST PURPOSE Validate that every Sampling Feature resource is accessible via its canonical URL.

TEST METHOD

For every collection advertised by the server with the featureType property set to sosa:
Sample:

1. Retrieve the collection items as described in test /conf/api-common/collection-items.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 159

ABSTRACT TEST A.33

2. For each item, check that a link with relation type canonical is included.

3. Dereference this link and validate that a document is returned with a status code 200.

4. Check that the returned document has the same content as the resource originally included
in the collection items (except for the canonical link).

ABSTRACT TEST A.34

IDENTIFIER /conf/sf/resources-endpoint

REQUIREMENT Requirement 30: /req/sf/resources-endpoint

TEST PURPOSE
Validate that the server implements a Sampling Feature resources endpoint correctly.
This is a parameterized test that requires the endpoint URL as a parameter

TEST METHOD

1. Issue an HTTP GET request to the endpoint URL.

2. Validate that a document was returned with a status code 200.

3. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/geo+json, execute test /conf/geojson/sf-
schema.

b) For other response content types not supported by the testing engine, issue a warning
and skip this test.

ABSTRACT TEST A.35

IDENTIFIER /conf/sf/canonical-endpoint

REQUIREMENT Requirement 31: /req/sf/canonical-endpoint

TEST PURPOSE Validate that the server exposes the canonical Sampling Feature resources endpoint.

TEST METHOD
Validate that the server implements a Sampling Feature resources endpoint at path {api_root}/
samplingFeatures using test /conf/sf/resources-endpoint.

ABSTRACT TEST A.36

IDENTIFIER /conf/sf/collections

REQUIREMENT Requirement 33: /req/sf/collections

OPEN GEOSPATIAL CONSORTIUM 23-001R0 160

ABSTRACT TEST A.36

TEST PURPOSE Validate that Sampling Feature collections are tagged with the proper feature type.

TEST METHOD

For every collection advertised by the server with the featureType property set to sosa:
Sample:

1. Retrieve the collection items as described in test /conf/api-common/collection-items.

2. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is application/geo+json, execute test /conf/geojson/sf-
schema.

b) For other response content types not supported by the testing engine, issue a warning
and skip this test.

ABSTRACT TEST A.37

IDENTIFIER /conf/sf/ref-from-system

REQUIREMENT Requirement 32: /req/sf/ref-from-system

TEST PURPOSE Validate that Sampling Features attached to a given system are available as a sub-resources.

TEST METHOD

1. Retrieve all System resources by executing test /conf/api-common/canonical-resources
with parameter resource-type=systems.

2. For each System resource in the response:
a) Issue an HTTP GET request at path {api_root}/systems/{sysId}/

samplingFeatures, where sysId is the local ID of the System resource.

b) Validate that a document was returned with a status code 200.

c) Iterate through the list of resources in the response, following next links as appropriate.

d) If the response content type is application/geo+json, execute test /conf/geojson/sf-
schema.

A.9. Conformance Class “Property Definitions”

CONFORMANCE CLASS A.8

IDENTIFIER /conf/property

REQUIREMENTS CLASS Requirements class 8: /req/property

OPEN GEOSPATIAL CONSORTIUM 23-001R0 161

CONFORMANCE CLASS A.8

PREREQUISITE Conformance class A.1: /conf/api-common

TARGET TYPE Web API

CONFORMANCE TESTS

Abstract test A.38: /conf/property/canonical-url
Abstract test A.39: /conf/property/resources-endpoint
Abstract test A.40: /conf/property/canonical-endpoint
Abstract test A.41: /conf/property/collections

ABSTRACT TEST A.38

IDENTIFIER /conf/property/canonical-url

REQUIREMENT Requirement 34: /req/property/canonical-url

TEST PURPOSE Validate that every Property resource is accessible via its canonical URL.

TEST METHOD

For every collection advertised by the server with the itemType property set to sosa:Property:
1. Retrieve the collection items as described in test /conf/api-common/collection-items.

2. For each item, check that a link with relation type canonical is included.

3. Dereference this link and validate that a document is returned with a status code 200.

4. Check that the returned document has the same content as the resource originally included
in the collection items (except for the canonical link).

ABSTRACT TEST A.39

IDENTIFIER /conf/property/resources-endpoint

REQUIREMENT Requirement 35: /req/property/resources-endpoint

TEST PURPOSE
Validate that the server implements a Property resources endpoint correctly.
This is a parameterized test that requires the endpoint URL as a parameter

TEST METHOD

1. Issue an HTTP GET request to the endpoint URL.

2. Validate that a document was returned with a status code 200.

3. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is {sensorml-mediatype}, execute test /conf/sensorml/
property-schema.

b) For other response content types not supported by the testing engine, issue a warning
and skip this test.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 162

ABSTRACT TEST A.40

IDENTIFIER /conf/property/canonical-endpoint

REQUIREMENT Requirement 36: /req/property/canonical-endpoint

TEST PURPOSE Validate that the server exposes the canonical Property resources endpoint.

TEST METHOD
Validate that the server implements a Property resources endpoint at path {api_root}/
properties using test /conf/property/resources-endpoint.

ABSTRACT TEST A.41

IDENTIFIER /conf/property/collections

REQUIREMENT Requirement 37: /req/property/collections

TEST PURPOSE Validate that Property collections are tagged with the proper item type.

TEST METHOD

For every collection advertised by the server with the itemType property set to sosa:Property:
1. Retrieve the collection items as described in test /conf/api-common/collection-items.

2. Validate that the contents of the returned document conform to the media type reported by
the response Content-Type header.

a) If the response content type is {sensorml-mediatype}, execute test /conf/sensorml/
property-schema.

b) For other response content types not supported by the testing engine, issue a warning
and skip this test.

A.10. Conformance Class “Advanced Filtering”

CONFORMANCE CLASS A.9

IDENTIFIER /conf/advanced-filtering

REQUIREMENTS
CLASS

Requirements class 9: /req/advanced-filtering

PREREQUISITE Conformance class A.1: /conf/api-common

TARGET TYPE Web API

OPEN GEOSPATIAL CONSORTIUM 23-001R0 163

CONFORMANCE CLASS A.9

CONFORMANCE
TESTS

Abstract test A.42: /conf/advanced-filtering/id-list-schema
Abstract test A.43: /conf/advanced-filtering/resource-by-id
Abstract test A.44: /conf/advanced-filtering/resource-by-keyword
Abstract test A.45: /conf/advanced-filtering/resource-by-property
Abstract test A.46: /conf/advanced-filtering/feature-by-geom
Abstract test A.47: /conf/advanced-filtering/system-by-parent
Abstract test A.48: /conf/advanced-filtering/system-by-procedure
Abstract test A.49: /conf/advanced-filtering/system-by-foi
Abstract test A.50: /conf/advanced-filtering/system-by-obsprop
Abstract test A.51: /conf/advanced-filtering/system-by-controlprop
Abstract test A.52: /conf/advanced-filtering/deployment-by-parent
Abstract test A.53: /conf/advanced-filtering/deployment-by-system
Abstract test A.54: /conf/advanced-filtering/deployment-by-foi
Abstract test A.55: /conf/advanced-filtering/deployment-by-obsprop
Abstract test A.56: /conf/advanced-filtering/deployment-by-controlprop
Abstract test A.57: /conf/advanced-filtering/procedure-by-obsprop
Abstract test A.58: /conf/advanced-filtering/procedure-by-controlprop
Abstract test A.59: /conf/advanced-filtering/sf-by-foi
Abstract test A.60: /conf/advanced-filtering/sf-by-obsprop
Abstract test A.61: /conf/advanced-filtering/sf-by-controlprop
Abstract test A.62: /conf/advanced-filtering/prop-by-baseprop
Abstract test A.63: /conf/advanced-filtering/prop-by-object
Abstract test A.64: /conf/advanced-filtering/combined-filters
Abstract test A.65: /conf/advanced-filtering/indirect-prop
Abstract test A.66: /conf/advanced-filtering/indirect-foi

ABSTRACT TEST A.42

IDENTIFIER /conf/advanced-filtering/id-list-schema

REQUIREMENT Requirement 38: /req/advanced-filtering/id-list-schema

TEST PURPOSE Validate that query parameters of type ID List are constructed correctly.

TEST METHOD Validate that the parameter is a comma separated list of string values.

ABSTRACT TEST A.43

IDENTIFIER /conf/advanced-filtering/resource-by-id

REQUIREMENT Requirement 39: /req/advanced-filtering/resource-by-id

OPEN GEOSPATIAL CONSORTIUM 23-001R0 164

ABSTRACT TEST A.43

TEST PURPOSE Validate that the id query parameter is processed correctly.

TEST METHOD

For every canonical resources endpoint:
1. Generate an id parameter set to a list of resource IDs (see test /conf/advanced-filtering/id-

list-schema).

2. Issue an HTTP GET request at the resources endpoint URL with the previously generated id
parameter in the query string.

3. Validate that a document was returned with a status code 200.

4. Validate that the returned collection only includes the resources with the selected
identifiers.

5. Repeat the previous steps with an id parameter containing a list of UIDs.

ABSTRACT TEST A.44

IDENTIFIER /conf/advanced-filtering/resource-by-keyword

REQUIREMENT Requirement 40: /req/advanced-filtering/resource-by-keyword

TEST PURPOSE Validate that the q query parameter is processed correctly.

TEST METHOD

For every canonical resources endpoint:
1. Generate a q parameter set to a list of keywords, as specified by the provided OpenAPI 3.0

schema.

2. Issue an HTTP GET request at the resources endpoint URL with the q parameter in the
query string.

3. Validate that a document was returned with a status code 200.

4. Validate that the returned collection only includes resources with plain text content that
includes the keyword.

ABSTRACT TEST A.45

IDENTIFIER /conf/advanced-filtering/resource-by-property

REQUIREMENT Recommendation 3: /rec/advanced-filtering/resource-by-property

TEST PURPOSE Validate that custom property query parameters are processed correctly.

TEST METHOD
For every canonical resources endpoint:

1. Generate a custom parameter with the same name as a feature property, and set the value
to a possible value of the property.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 165

ABSTRACT TEST A.45

2. Issue an HTTP GET request at the resources endpoint URL with the custom parameter in
the query string.

3. Validate that a document was returned with a status code 200.

4. Validate that the returned collection only includes resources with matching property values.

ABSTRACT TEST A.46

IDENTIFIER /conf/advanced-filtering/feature-by-geom

REQUIREMENT Requirement 41: /req/advanced-filtering/feature-by-geom

TEST PURPOSE Validate that the geom query parameter is processed correctly.

TEST METHOD

For each of the systems, deployments and samplingFeatures canonical resources endpoints:
1. Generate a geom parameter set to a WKT geometry conforming to the provided OpenAPI

3.0 schema.

2. Issue an HTTP GET request at the resources endpoint URL with the geom parameter in the
query string.

3. Validate that a document was returned with a status code 200.

4. Validate that the returned collection only includes resources with a geometry intersecting
the provided geometry.

ABSTRACT TEST A.47

IDENTIFIER /conf/advanced-filtering/system-by-parent

REQUIREMENT Requirement 42: /req/advanced-filtering/system-by-parent

TEST PURPOSE Validate that the parent query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/systems?parent={idList} where
{idList} is a list of one or more local IDs of System resources.
See test /conf/advanced-filtering/id-list-schema

2. Validate the response using the steps described in test /conf/system/resources-endpoint.

3. For each System resource in the returned collection:
a) Follow the parentSystem association to retrieve the parent system description.

b) Verify that the system has one of the identifiers included in {idList}.

4. Repeat the previous steps with the parent parameter set to a list of one or more UIDs of
System resources..

OPEN GEOSPATIAL CONSORTIUM 23-001R0 166

ABSTRACT TEST A.48

IDENTIFIER /conf/advanced-filtering/system-by-procedure

REQUIREMENT Requirement 43: /req/advanced-filtering/system-by-procedure

TEST PURPOSE Validate that the procedure query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/systems?procedure={idList} where
{idList} is a list of one or more local IDs of Procedure resources.
See test /conf/advanced-filtering/id-list-schema

2. Validate the response using the steps described in test /conf/system/resources-endpoint.

3. For each System resource in the returned collection:
a) Follow the procedure association to retrieve the procedure description.

b) Verify that the procedure has one of the identifiers included in {idList}.

4. Repeat the previous steps with the procedure parameter set to a list of one or more UIDs
of Procedure resources.

ABSTRACT TEST A.49

IDENTIFIER /conf/advanced-filtering/system-by-foi

REQUIREMENT Requirement 44: /req/advanced-filtering/system-by-foi

TEST PURPOSE Validate that the foi query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/systems?foi={idList} where
{idList} is a list of one or more local IDs of Feature resources.
See test /conf/advanced-filtering/id-list-schema

2. Validate the response using the steps described in test /conf/system/resources-endpoint.

3. For each System resource in the returned collection:
a) Retrieve the system’s sampling features by issuing an HTTP GET request at

{systemCanonicalUrl}/samplingFeatures?recursive=true.

b) For each Sampling Feature resource in the returned collection:
1. Follow the sampleOf links to retrieve the target features, recursively. If a link does

not resolve or the link media type is not supported by the testing engine, use the link
target as the identifier of the feature.

c) Verify that at least one of the collected features has one of the identifiers included in
{idList}.

4. Repeat the previous steps with the foi parameter set to a list of one or more UIDs of
Feature resources.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 167

ABSTRACT TEST A.50

IDENTIFIER /conf/advanced-filtering/system-by-obsprop

REQUIREMENT Requirement 45: /req/advanced-filtering/system-by-obsprop

TEST PURPOSE Validate that the observedProperty query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/systems?observedProperty=
{idList} where {idList} is a list of one or more local IDs of Property resources.
See test /conf/advanced-filtering/id-list-schema

2. Validate the response using the steps described in test /conf/system/resources-endpoint.

3. For each System resource in the returned collection:
a) Retrieve all its nested subsystems by issuing an HTTP GET request at

{systemCanonicalUrl}/components?recursive=true.

b) Retrieve all observed properties referenced by the main system or one of its subsystems.

c) Verify that at least one of the collected properties has one of the identifiers included in
{idList}.

4. Repeat the previous steps with the observedProperty parameter set to a list of one or
more URIs of Property resources.

ABSTRACT TEST A.51

IDENTIFIER /conf/advanced-filtering/system-by-controlprop

REQUIREMENT Requirement 46: /req/advanced-filtering/system-by-controlprop

TEST PURPOSE Validate that the controlledProperty query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/systems?controlledProperty=
{idList} where {idList} is a list of one or more local IDs of Property resources.
See test /conf/advanced-filtering/id-list-schema

2. Validate the response using the steps described in test /conf/system/resources-endpoint.

3. For each System resource in the returned collection:
a) Retrieve all its nested subsystems by issuing an HTTP GET request at

{systemCanonicalUrl}/components?recursive=true.

b) Retrieve all controlled properties referenced by the main system or one of its subsystems.

c) Verify that at least one of the collected properties has one of the identifiers included in
{idList}.

4. Repeat the previous steps with the controlledProperty parameter set to a list of one or
more URIs of Property resources.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 168

ABSTRACT TEST A.52

IDENTIFIER /conf/advanced-filtering/deployment-by-parent

REQUIREMENT Requirement 47: /req/advanced-filtering/deployment-by-parent

TEST PURPOSE Validate that the parent query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/deployments?parent={idList}
where {idList} is a list of one or more local IDs of Deployment resources.
See test /conf/advanced-filtering/id-list-schema

2. Validate the response using the steps described in test /conf/deployment/resources-
endpoint.

3. For each Deployment resource in the returned collection:
a) Follow the parentSystem association to retrieve the parent deployment description.

b) Verify that the deployment has one of the identifiers included in {idList}.

4. Repeat the previous steps with the parent parameter set to a list of one or more UIDs of
Deployment resources..

ABSTRACT TEST A.53

IDENTIFIER /conf/advanced-filtering/deployment-by-system

REQUIREMENT Requirement 48: /req/advanced-filtering/deployment-by-system

TEST PURPOSE Validate that the system query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/deployments?system={idList}
where {idList} is a list of one or more local IDs of System resources.
See test /conf/advanced-filtering/id-list-schema

2. Validate the response using the steps described in test /conf/deployment/resources-
endpoint.

3. For each Deployment resource in the returned collection:
a) Retrieve all deployed systems by issuing an HTTP GET request at

{deploymentCanonicalUrl}/deployedSystems?recursive=true.

b) Verify that at least one of the systems has one of the identifiers included in {idList}.

4. Repeat the previous steps with the foi parameter set to a list of one or more UIDs of
System resources.

ABSTRACT TEST A.54

IDENTIFIER /conf/advanced-filtering/deployment-by-foi

OPEN GEOSPATIAL CONSORTIUM 23-001R0 169

ABSTRACT TEST A.54

REQUIREMENT Requirement 49: /req/advanced-filtering/deployment-by-foi

TEST PURPOSE Validate that the foi query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/deployments?foi={idList} where
{idList} is a list of one or more local IDs of Feature resources.
See test /conf/advanced-filtering/id-list-schema

2. Validate the response using the steps described in test /conf/deployment/resources-
endpoint.

3. For each Deployment resource in the returned collection:
a) Retrieve the deployment’s features of interest by issuing an HTTP GET request at

{deploymentCanonicalUrl}/featuresOfInterest

b) Verify that at least one of the features has one of the identifiers included in {idList}.

4. Repeat the previous steps with the foi parameter set to a list of one or more UIDs of
Feature resources.

ABSTRACT TEST A.55

IDENTIFIER /conf/advanced-filtering/deployment-by-obsprop

REQUIREMENT Requirement 50: /req/advanced-filtering/deployment-by-obsprop

TEST PURPOSE Validate that the observedProperty query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/deployments?observedProperty=
{idList} where {idList} is a list of one or more local IDs of Property resources.
See test /conf/advanced-filtering/id-list-schema

2. Validate the response using the steps described in test /conf/deployment/resources-
endpoint.

3. For each Deployment resource in the returned collection:
a) Retrieve all deployed systems by issuing an HTTP GET request at

{deploymentCanonicalUrl}/deployedSystems?recursive=true.

b) For each Deployed System resource in the returned collection:
1. Retrieve the system description by following the system association link.

2. Collect all observed properties referenced by the system description.

c) Verify that at least one of the collected properties has one of the identifiers included in
{idList}.

4. Repeat the previous steps with the observedProperty parameter set to a list of one or
more URIs of Property resources.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 170

ABSTRACT TEST A.56

IDENTIFIER /conf/advanced-filtering/deployment-by-controlprop

REQUIREMENT Requirement 51: /req/advanced-filtering/deployment-by-controlprop

TEST PURPOSE Validate that the controlledProperty query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/deployments?controlledProperty=
{idList} where {idList} is a list of one or more local IDs of Property resources.
See test /conf/advanced-filtering/id-list-schema

2. Validate the response using the steps described in test /conf/deployment/resources-
endpoint.

3. For each Deployment resource in the returned collection:
a) Retrieve all deployed systems by issuing an HTTP GET request at

{deploymentCanonicalUrl}/deployedSystems?recursive=true.

b) For each Deployed System resource in the returned collection:
1. Retrieve the system description by following the system association link.

2. Collect all controlled properties referenced by the system description.

c) Verify that at least one of the collected properties has one of the identifiers included in
{idList}.

4. Repeat the previous steps with the controlledProperty parameter set to a list of one or
more URIs of Property resources.

ABSTRACT TEST A.57

IDENTIFIER /conf/advanced-filtering/procedure-by-obsprop

REQUIREMENT Requirement 52: /req/advanced-filtering/procedure-by-obsprop

TEST PURPOSE Validate that the observedProperty query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/procedures?observedProperty=
{idList} where {idList} is a list of one or more local IDs of Property resources.
See test /conf/advanced-filtering/id-list-schema

2. Validate the response using the steps described in test /conf/procedure/resources-
endpoint.

3. For each Procedure resource in the returned collection:
a) Retrieve all observed properties referenced by the procedure description.

b) Verify that at least one of the collected properties has one of the identifiers included in
{idList}.

4. Repeat the previous steps with the observedProperty parameter set to a list of one or
more URIs of Property resources.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 171

ABSTRACT TEST A.58

IDENTIFIER /conf/advanced-filtering/procedure-by-controlprop

REQUIREMENT Requirement 53: /req/advanced-filtering/procedure-by-controlprop

TEST PURPOSE Validate that the controlledProperty query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/procedures?controlledProperty=
{idList} where {idList} is a list of one or more local IDs of Property resources.
See test /conf/advanced-filtering/id-list-schema

2. Validate the response using the steps described in test /conf/procedure/resources-
endpoint.

3. For each Procedure resource in the returned collection:
a) Retrieve all controlled properties referenced by the procedure description.

b) Verify that at least one of the collected properties has one of the identifiers included in
{idList}.

4. Repeat the previous steps with the controlledProperty parameter set to a list of one or
more URIs of Property resources.

ABSTRACT TEST A.59

IDENTIFIER /conf/advanced-filtering/sf-by-foi

REQUIREMENT Requirement 54: /req/advanced-filtering/sf-by-foi

TEST PURPOSE Validate that the foi query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/samplingFeatures?foi={idList}
where {idList} is a list of one or more local IDs of Feature resources.
See test /conf/advanced-filtering/id-list-schema

2. Validate the response using the steps described in test /conf/sf/resources-endpoint.

3. For each Sampling Feature resource in the returned collection:
a) Follow the sampleOf links to collect the target features, recursively. If a link does not

resolve or the link media type is not supported by the testing engine, use the link target
as the identifier of the feature.

4. Verify that at least one of the collected features has one of the identifiers included in
{idList}.

5. Repeat the previous steps with the foi parameter set to a list of one or more UIDs of
Feature resources.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 172

ABSTRACT TEST A.60

IDENTIFIER /conf/advanced-filtering/sf-by-obsprop

REQUIREMENT Requirement 55: /req/advanced-filtering/sf-by-obsprop

TEST PURPOSE Validate that the observedProperty query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/samplingFeatures?
observedProperty={idList} where {idList} is a list of one or more local IDs of
Property resources.
See test /conf/advanced-filtering/id-list-schema

2. Validate the response using the steps described in test /conf/sf/resources-endpoint.

3. For each Sampling Feature resource in the returned collection:
a) Follow the datastreams links to get the datastreams containing observations for this

sampling feature.

b) Verify that at least one of the datastreams has one or more of the observed properties
included in {idList}.

4. Repeat the previous steps with the observedProperty parameter set to a list of one or
more URIs of Property resources.

ABSTRACT TEST A.61

IDENTIFIER /conf/advanced-filtering/sf-by-controlprop

REQUIREMENT Requirement 56: /req/advanced-filtering/sf-by-controlprop

TEST PURPOSE Validate that the controlledProperty query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/samplingFeatures?
controlledProperty={idList} where {idList} is a list of one or more local IDs of
Property resources.
See test /conf/advanced-filtering/id-list-schema

2. Validate the response using the steps described in test /conf/sf/resources-endpoint.

3. For each Sampling Feature resource in the returned collection:
a) Follow the controlstreams links to get the control streams with commands targeting

this sampling feature.

b) Verify that at least one of the control streams has one or more of the controlled
properties included in {idList}.

4. Repeat the previous steps with the controlledProperty parameter set to a list of one or
more URIs of Property resources.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 173

ABSTRACT TEST A.62

IDENTIFIER /conf/advanced-filtering/prop-by-baseprop

REQUIREMENT Requirement 57: /req/advanced-filtering/prop-by-baseprop

TEST PURPOSE Validate that the baseProperty query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/properties?baseProperty=
{idList} where {idList} is a list of one or more local IDs of Property resources.
See test /conf/advanced-filtering/id-list-schema

2. Validate the response using the steps described in test /conf/property/resources-endpoint.

3. For each Property resource in the returned collection:
a) Follow the baseProperty links to collect the base property, recursively. If a link does

not resolve or the link media type is not supported by the testing engine, use the link
target as the identifier of the property.

4. Verify that at least one of the collected properties has one of the identifiers included in
{idList}.

5. Repeat the previous steps with the baseProperty parameter set to a list of one or more
UIDs of Property resources.

ABSTRACT TEST A.63

IDENTIFIER /conf/advanced-filtering/prop-by-object

REQUIREMENT Requirement 58: /req/advanced-filtering/prop-by-object

TEST PURPOSE Validate that the objectType query parameter is processed correctly.

TEST METHOD

1. Issue an HTTP GET request at URL {api_root}/properties?objectType={uriList}
where {uriList} is a list of one or more URIs of feature/object types.
See test /conf/advanced-filtering/id-list-schema

2. Validate the response using the steps described in test /conf/property/resources-endpoint.

3. Verify that each Property resource in the result set has its objectType property set to
one of the URIs included in {uriList}.

ABSTRACT TEST A.64

IDENTIFIER /conf/advanced-filtering/combined-filters

REQUIREMENT Requirement 59: /req/advanced-filtering/combined-filters

TEST PURPOSE Validate that the server correctly implements a logical AND between query filters.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 174

ABSTRACT TEST A.64

TEST METHOD

For each canonical resources endpoint:
1. Issue HTTP GET requests at the resources endpoint URL with different combinations of

query parameters that are available for this resource type.

2. Verify that each resource in the result set passes the checks described in the test
corresponding to each filter.

ABSTRACT TEST A.65

IDENTIFIER /conf/advanced-filtering/indirect-prop

REQUIREMENT Recommendation 4: /rec/advanced-filtering/indirect-prop

TEST PURPOSE Check if the server can follow baseProperty associations transitively.

TEST METHOD

For each Property resource available at the canonical resources endpoint:
1. Retrieve the value of the id attribute. Store it as propId.

2. Retrieve the value of the baseProperty attribute. Store it as basePropId.

3. Verify that the server supports querying systems using transitive base properties:
a) Issue an HTTP GET request at URL {api_root}/systems?observedProperty={propId}. Store

the response as set 1.

b) Issue an HTTP GET request at URL {api_root}/systems?observedProperty={basePropId}.
Store the response as set 2.

c) Check that set 2 contains all resources from set 1. Issue a warning if not.

4. Verify that the server supports querying deployments using transitive base properties:
a) Issue an HTTP GET request at URL {api_root}/deployments?observedProperty={propId}.

Store the response as set 1.

b) Issue an HTTP GET request at URL {api_root}/deployments?observedProperty={baseProp
Id}. Store the response as set 2.

c) Check that set 2 contains all resources from set 1. Issue a warning if not.

5. Verify that the server supports querying procedures using transitive base properties:
a) Issue an HTTP GET request at URL {api_root}/procedures?observedProperty={propId}.

Store the response as set 1.

b) Issue an HTTP GET request at URL {api_root}/procedures?observedProperty={baseProp
Id}. Store the response as set 2.

c) Check that set 2 contains all resources from set 1. Issue a warning if not.

6. Verify that the server supports querying sampling features using transitive base properties:
a) Issue an HTTP GET request at URL {api_root}/systems?observedProperty={propId}. Store

the response as set 1.

b) Issue an HTTP GET request at URL {api_root}/systems?observedProperty={basePropId}.
Store the response as set 2.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 175

ABSTRACT TEST A.65

c) Check that set 2 contains all resources from set 1. Issue a warning if not.

7. Verify that the server supports querying properties using transitive base properties:
a) Issue an HTTP GET request at URL {api_root}/properties?baseProperty={propId}. Store

the response as set 1.

b) Issue an HTTP GET request at URL {api_root}/properties?baseProperty={basePropId}.
Store the response as set 2.

c) Check that set 2 contains all resources from set 1. Issue a warning if not.

ABSTRACT TEST A.66

IDENTIFIER /conf/advanced-filtering/indirect-foi

REQUIREMENT Recommendation 5: /rec/advanced-filtering/indirect-foi

TEST PURPOSE Check if the server can follow sampledFeature and sampleOf associations transitively.

TEST METHOD

For each SamplingFeature resource available at the canonical resources endpoint:
1. Retrieve the value of the id attribute. Store it as sfId.

2. Retrieve the feature referenced by the sampledFeature property. Retrieve the value of the
feature id attribute and store it as ultimateFoiId.

3. Retrieve one of the features referenced by the sampleOf association. Retrieve the value of
the feature id attribute and store it as parentSfId.

4. Verify that the server supports querying sampling features using transitive sampleOf
associations:

a) Issue an HTTP GET request at URL {api_root}/samplingFeatures?foi={parentSfId}. Store
the response as set 1.

b) Issue an HTTP GET request at URL {api_root}/samplingFeatures?foi={ultimateFoiId}. Store
the response as set 2.

c) Check that both resource sets contain the Sampling Feature with local ID sfId.

5. Verify that the server supports querying systems using transitive sampled features:
a) Issue an HTTP GET request at URL {api_root}/systems?foi={sfId}. Store the response as

set 1.

b) Issue an HTTP GET request at URL {api_root}/systems?foi={parentSfId}. Store the
response as set 2.

c) Issue an HTTP GET request at URL {api_root}/systems?foi={ultimateFoiId}. Store the
response as set 3.

d) Check that set 3 contains all resources from set 1. Issue a warning if not.

e) Check that set 3 contains all resources from set 2. Issue a warning if not.

f) Check that set 2 contains all resources from set 1. Issue a warning if not.

6. Verify that the server supports querying deployments using transitive base properties:

OPEN GEOSPATIAL CONSORTIUM 23-001R0 176

ABSTRACT TEST A.66

a) Issue an HTTP GET request at URL {api_root}/deployments?foi={sfId}. Store the response
as set 1.

b) Issue an HTTP GET request at URL {api_root}/deployments?foi={parentSfId}. Store the
response as set 2.

c) Issue an HTTP GET request at URL {api_root}/deployments?foi={ultimateFoiId}. Store the
response as set 3.

d) Check that set 3 contains all resources from set 1. Issue a warning if not.

e) Check that set 3 contains all resources from set 2. Issue a warning if not.

f) Check that set 2 contains all resources from set 1. Issue a warning if not.

A.11. Conformance Class “Create/Replace/Delete”

CONFORMANCE CLASS A.10

IDENTIFIER /conf/create-replace-delete

REQUIREMENTS
CLASS

Requirements class 10: /req/create-replace-delete

PREREQUISITES
Conformance class A.1: /conf/api-common
http://www.opengis.net/spec/ogcapi-4/1.0/conf/create-replace-delete

TARGET TYPE Web API

CONFORMANCE
TESTS

Abstract test A.67: /conf/create-replace-delete/system
Abstract test A.68: /conf/create-replace-delete/system-delete-cascade
Abstract test A.69: /conf/create-replace-delete/subsystem
Abstract test A.70: /conf/create-replace-delete/deployment
Abstract test A.71: /conf/create-replace-delete/subdeployment
Abstract test A.72: /conf/create-replace-delete/procedure
Abstract test A.73: /conf/create-replace-delete/sampling-feature
Abstract test A.74: /conf/create-replace-delete/property
Abstract test A.75: /conf/create-replace-delete/create-in-collection
Abstract test A.76: /conf/create-replace-delete/replace-in-collection
Abstract test A.77: /conf/create-replace-delete/delete-in-collection
Abstract test A.78: /conf/create-replace-delete/add-to-collection

OPEN GEOSPATIAL CONSORTIUM 23-001R0 177

ABSTRACT TEST A.67

IDENTIFIER /conf/create-replace-delete/system

REQUIREMENT Requirement 60: /req/create-replace-delete/system

TEST PURPOSE
Validate that the server implements CREATE/REPLACE/DELETE operations correctly on System
collections.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/create-replace-delete at the following endpoints:

a) At resources endpoint {api_root}/systems (for CREATE)

b) At resource endpoint {api_root}/systems/{id} (for REPLACE and DELETE)

ABSTRACT TEST A.68

IDENTIFIER /conf/create-replace-delete/system-delete-cascade

REQUIREMENT Requirement 61: /req/create-replace-delete/system-delete-cascade

TEST PURPOSE Validate that the server implements the cascade query parameter correctly.

TEST METHOD

1. Given a System resource with ID sysId that has sub-resources:
a) Issue an HTTP DELETE request at URL {api_root}/systems/{sysId}?cascade=

false.

b) Verify that the server responds with an error code 409.

c) Issue an HTTP DELETE request at URL {api_root}/systems/{sysId}?cascade=
true.

d) Verify that the system and all its sub-resources have been deleted.

2. Given a System resource with ID sysId that is referenced by a Deployed System
resource:

a) Issue an HTTP DELETE request at URL {api_root}/systems/{sysId}?cascade=
false.

b) Verify that the server responds with an error code 409.

c) Issue an HTTP DELETE request at URL {api_root}/systems/{sysId}?cascade=
true.

d) Verify that the server responds with an error code 409.

ABSTRACT TEST A.69

IDENTIFIER /conf/create-replace-delete/subsystem

REQUIREMENT Requirement 62: /req/create-replace-delete/subsystem

OPEN GEOSPATIAL CONSORTIUM 23-001R0 178

http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete

ABSTRACT TEST A.69

TEST PURPOSE Validate that the server implements the CREATE operation correctly on subsystem collections.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/create-replace-delete at the following endpoints:

a) For each subsystem collection nested in a parent system:
• Resources endpoint {api_root}/systems/{sysId}/subsystems (for CREATE)

2. Verify that the subsystem is also available at its canonical URL:
a) Issue an HTTP GET request at the system canonical URL.

b) Validate that a document was returned with a status code 200.

c) Validate that the received document has the same content as the one provided for the
CREATE operation.

ABSTRACT TEST A.70

IDENTIFIER /conf/create-replace-delete/deployment

REQUIREMENT Requirement 63: /req/create-replace-delete/deployment

TEST PURPOSE
Validate that the server implements CREATE/REPLACE/DELETE operations correctly on
Deployment collections.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/create-replace-delete at the following endpoints:

a) At resources endpoint {api_root}/deployments (for CREATE)

b) At resource endpoint {api_root}/deployments/{id} (for REPLACE and DELETE)

ABSTRACT TEST A.71

IDENTIFIER /conf/create-replace-delete/subdeployment

REQUIREMENT Requirement 64: /req/create-replace-delete/subdeployment

TEST PURPOSE
Validate that the server implements the CREATE operation correctly on subdeployment
collections.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/create-replace-delete at the following endpoints:

a) For each subdeployment collection nested in a parent deployment:
• Resources endpoint {api_root}/deployments/{depId}/subdeployments (for

CREATE)

2. Verify that the subdeployment is also available at its canonical URL:
a) Issue an HTTP GET request at the system canonical URL.

b) Validate that a document was returned with a status code 200.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 179

http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete

ABSTRACT TEST A.71

c) Validate that the received document has the same content as the one provided for the
CREATE operation.

ABSTRACT TEST A.72

IDENTIFIER /conf/create-replace-delete/procedure

REQUIREMENT Requirement 65: /req/create-replace-delete/procedure

TEST PURPOSE
Validate that the server implements CREATE/REPLACE/DELETE operations correctly on
Procedure collections.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/create-replace-delete at the following endpoints:

a) At resources endpoint {api_root}/procedures (for CREATE)

b) At resource endpoint {api_root}/procedures/{id} (for REPLACE and DELETE)

ABSTRACT TEST A.73

IDENTIFIER /conf/create-replace-delete/sampling-feature

REQUIREMENT Requirement 66: /req/create-replace-delete/sampling-feature

TEST PURPOSE
Validate that the server implements CREATE/REPLACE/DELETE operations correctly on
Sampling Feature collections.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/create-replace-delete at the following endpoints:

a) At resources endpoint {api_root}/systems/{sysId}/samplingFeatures (for
CREATE)

b) At resource endpoint {api_root}/systems/{sysId}/samplingFeatures/{id}
(for REPLACE and DELETE)

c) At resource endpoint {api_root}/samplingFeatures/{id} (for REPLACE and
DELETE)

ABSTRACT TEST A.74

IDENTIFIER /conf/create-replace-delete/property

REQUIREMENT Requirement 67: /req/create-replace-delete/property

TEST PURPOSE
Validate that the server implements CREATE/REPLACE/DELETE operations correctly on
Property collections.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 180

http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete

ABSTRACT TEST A.74

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/create-replace-delete at the following endpoints:

a) At resources endpoint {api_root}/properties (for CREATE)

b) At resource endpoint {api_root}/properties/{id} (for REPLACE and DELETE)

ABSTRACT TEST A.75

IDENTIFIER /conf/create-replace-delete/create-in-collection

REQUIREMENT Requirement 68: /req/create-replace-delete/create-in-collection

TEST PURPOSE
Validate that the server implements the correct behavior when creating new resources in custom
collections.

TEST METHOD

For each resource type among System, Procedure, Deployment, Sampling Feature,
Property:

1. Find a resource collection for a resource of that type. Assume its ID is colId.

2. Add a new resource at the resources endpoint {api_root}/collections/{colId}/
items by following requirements for the CREATE operation (see tests http://www.opengis.
net/spec/ogcapi-features-4/1.0/create-replace-delete/conf/post*).

3. Retrieve the canonical URL of the resource that must be included in the response.

4. Verify that the new resource exists at the canonical resources endpoint:
a) Issue an HTTP GET request at the resource’s canonical URL.

b) Validate that a document was returned with a status code 200.

c) Validate that the received document has the same content as the one provided in the
POST request.

ABSTRACT TEST A.76

IDENTIFIER /conf/create-replace-delete/replace-in-collection

REQUIREMENT Requirement 69: /req/create-replace-delete/replace-in-collection

TEST PURPOSE
Validate that the server implements the correct behavior when replacing resources in custom
collections.

TEST METHOD

For each resource type among System, Procedure, Deployment, Sampling Feature,
Property:

1. Find a resource collection for a resource of that type. Assume its ID is colId.

2. Replace the resource at the resource endpoint {api_root}/collections/{colId}/
items/{id} by following requirements for the REPLACE operation (see tests http://www.
opengis.net/spec/ogcapi-features-4/1.0/create-replace-delete/conf/put*).

3. Verify that the resource has been updated at its canonical location:

OPEN GEOSPATIAL CONSORTIUM 23-001R0 181

http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/create-replace-delete/conf/post*
http://www.opengis.net/spec/ogcapi-features-4/1.0/create-replace-delete/conf/post*
http://www.opengis.net/spec/ogcapi-features-4/1.0/create-replace-delete/conf/put*
http://www.opengis.net/spec/ogcapi-features-4/1.0/create-replace-delete/conf/put*

ABSTRACT TEST A.76

a) Issue an HTTP GET request at the resource’s canonical URL.

b) Validate that a document was returned with a status code 200.

c) Validate that the received document has the same content as the one provided in the
PUT request.

ABSTRACT TEST A.77

IDENTIFIER /conf/create-replace-delete/delete-in-collection

REQUIREMENT Requirement 70: /req/create-replace-delete/delete-in-collection

TEST PURPOSE
Validate that the server implements the correct behavior when deleting resources in custom
collections.

TEST METHOD

For each resource type among System, Procedure, Deployment, Sampling Feature,
Property:

1. Find a resource collection for a resource of that type. Assume its ID is colId.

2. Delete the resource at the resource endpoint {api_root}/collections/{colId}/
items/{id} by following requirements for the DELETE operation (see tests http://www.
opengis.net/spec/ogcapi-features-4/1.0/create-replace-delete/conf/delete*).

3. Verify that the resource is still available at its canonical location:
a) Issue an HTTP GET request at the resource’s canonical URL.

b) Validate that a document was returned with a status code 200.

ABSTRACT TEST A.78

IDENTIFIER /conf/create-replace-delete/add-to-collection

REQUIREMENT Requirement 71: /req/create-replace-delete/add-to-collection

TEST PURPOSE
Validate that the server implements the correct behavior when adding existing resources to
custom collections.

TEST METHOD

For each resource type among System, Procedure, Deployment, Sampling Feature,
Property:

1. Find a resource collection for a resource of that type. Assume its ID is colId.

2. Add links to existing resources by issuing a POST request at the resources endpoint {api_
root}/collections/{colId}/items.

a) Follow requirements for the CREATE operation (see tests http://www.opengis.net/spec/
ogcapi-features-4/1.0/create-replace-delete/conf/post*).

b) Set the POST request Content-Type header to text/uri-list.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 182

http://www.opengis.net/spec/ogcapi-features-4/1.0/create-replace-delete/conf/delete*
http://www.opengis.net/spec/ogcapi-features-4/1.0/create-replace-delete/conf/delete*
http://www.opengis.net/spec/ogcapi-features-4/1.0/create-replace-delete/conf/post*
http://www.opengis.net/spec/ogcapi-features-4/1.0/create-replace-delete/conf/post*

ABSTRACT TEST A.78

c) Set the POST request body to a list of canonical URLs of existing resources on the same
server, and of a type compatible with the selected resource collection.

3. Verify that the resources have been added to the custom collection:
a) For each added resource, extract its id from the canonical URL.

1. Issue an HTTP GET request at the resource endpoint {api_root}/collections/
{colId}/items/{id}.

2. Validate that a document was returned with a status code 200.

3. Validate that the received document has the same content as the one received when
connecting at the canonical URL.

A.12. Conformance Class “Update”

CONFORMANCE CLASS A.11

IDENTIFIER /conf/update

REQUIREMENTS CLASS Requirements class 11: /req/update

PREREQUISITES
Conformance class A.1: /conf/api-common
http://www.opengis.net/spec/ogcapi-4/1.0/conf/update

TARGET TYPE Web API

CONFORMANCE TESTS

Abstract test A.79: /conf/update/system
Abstract test A.80: /conf/update/deployment
Abstract test A.81: /conf/update/procedure
Abstract test A.82: /conf/update/sampling-feature
Abstract test A.83: /conf/update/property

ABSTRACT TEST A.79

IDENTIFIER /conf/update/system

REQUIREMENT Requirement 72: /req/update/system

TEST PURPOSE Validate that the server implements the UPDATE operation correctly on System collections.

TEST METHOD
1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.

0/conf/update at the following endpoints:
a) For the System canonical resources endpoint:

OPEN GEOSPATIAL CONSORTIUM 23-001R0 183

http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update

ABSTRACT TEST A.79

• Resource endpoint {api_root}/systems/{id}

b) For each System Feature Collection advertised by the server:
• Resource endpoint {api_root}/collections/{systemCollectionId}/items/

{id}

ABSTRACT TEST A.80

IDENTIFIER /conf/update/deployment

REQUIREMENT Requirement 73: /req/update/deployment

TEST PURPOSE Validate that the server implements the UPDATE operation correctly on Deployment collections.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/update at the following endpoints:

a) For the Deployment canonical resources endpoint:
• Resource endpoint {api_root}/deployments/{id}

b) For each Deployment Feature Collection advertised by the server:
• Resource endpoint {api_root}/collections/{deploymentCollectionId}/

items/{id}

ABSTRACT TEST A.81

IDENTIFIER /conf/update/procedure

REQUIREMENT Requirement 74: /req/update/procedure

TEST PURPOSE Validate that the server implements the UPDATE operation correctly on Procedure collections.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/update at the following endpoints:

a) For the Procedure canonical resources endpoint:
• Resource endpoint {api_root}/procedures/{id}

b) For each Procedure Feature Collection advertised by the server:
• Resource endpoint {api_root}/collections/{procedureCollectionId}/

items/{id}

ABSTRACT TEST A.82

IDENTIFIER /conf/update/sampling-feature

OPEN GEOSPATIAL CONSORTIUM 23-001R0 184

http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update

ABSTRACT TEST A.82

REQUIREMENT Requirement 75: /req/update/sampling-feature

TEST PURPOSE
Validate that the server implements the UPDATE operation correctly on Sampling Feature
collections.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/update at the following endpoints:

a) For the Sampling Feature canonical resources endpoint:
• Resource endpoint {api_root}/samplingFeatures/{id}

b) For each Sampling Feature Collection advertised by the server:
• Resource endpoint {api_root}/collections/{sfCollectionId}/items/{id}

ABSTRACT TEST A.83

IDENTIFIER /conf/update/property

REQUIREMENT Requirement 76: /req/update/property

TEST PURPOSE Validate that the server implements the UPDATE operation correctly on Property collections.

TEST METHOD

1. Execute all tests from conformance class http://www.opengis.net/spec/ogcapi-features-4/1.
0/conf/update at the following endpoints:

a) For the Property canonical resources endpoint:
• Resource endpoint {api_root}/properties/{id}

b) For each Property Resource Collection advertised by the server:
• Resource endpoint {api_root}/collections/{sfCollectionId}/items/{id}

A.13. Conformance Class “GeoJSON”

CONFORMANCE CLASS A.12

IDENTIFIER /conf/geojson

REQUIREMENTS CLASS Requirements class 12: /req/geojson

PREREQUISITES
Conformance class A.1: /conf/api-common
http://www.opengis.net/spec/ogcapi-1/1.0/conf/geojson

TARGET TYPE Web API

OPEN GEOSPATIAL CONSORTIUM 23-001R0 185

http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/update

CONFORMANCE CLASS A.12

CONFORMANCE TESTS

Abstract test A.84: /conf/geojson/mediatype-read
Abstract test A.85: /conf/geojson/mediatype-write
Abstract test A.86: /conf/geojson/relation-types
Abstract test A.87: /conf/geojson/feature-attribute-mapping
Abstract test A.88: /conf/geojson/system-schema
Abstract test A.89: /conf/geojson/system-mappings
Abstract test A.90: /conf/geojson/deployment-schema
Abstract test A.91: /conf/geojson/deployment-mappings
Abstract test A.92: /conf/geojson/procedure-schema
Abstract test A.93: /conf/geojson/procedure-mappings
Abstract test A.94: /conf/geojson/sf-schema
Abstract test A.95: /conf/geojson/sf-mappings

ABSTRACT TEST A.84

IDENTIFIER /conf/geojson/mediatype-read

REQUIREMENT Requirement 77: /req/geojson/mediatype-read

TEST PURPOSE Verify that the server advertises support for the GeoJSON format on retrieval operations.

TEST METHOD

1. Execute test http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson/definition.

2. Verify that server advertises support for media type application/geo+json in the API
definition for GET operations:

a) On the canonical resources endpoints of resource types supported by the server.

b) On the custom collection endpoints advertised by the server.

ABSTRACT TEST A.85

IDENTIFIER /conf/geojson/mediatype-write

REQUIREMENT Requirement 78: /req/geojson/mediatype-write

TEST PURPOSE Verify that the server advertises support for the GeoJSON format on transactional operations.

TEST METHOD
1. Verify that server advertises support for media type application/geo+json in the

API definition for CREATE or REPLACE operations, for at least one canonical resources
endpoint.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 186

http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson/definition

ABSTRACT TEST A.86

IDENTIFIER /conf/geojson/relation-types

REQUIREMENT Requirement 79: /req/geojson/relation-types

TEST PURPOSE Verify that correct link relation types are used.

TEST-METHOD-
TYPE

Manual Inspection

TEST METHOD

Given the GeoJSON representation of a resource returned by the server:
1. Inspect the links in the links property of the response document.

2. Check that the relation types are used as described in the associations mapping table of
Clause 19.1 corresponding to the resource type.

ABSTRACT TEST A.87

IDENTIFIER /conf/geojson/feature-attribute-mapping

REQUIREMENT Requirement 80: /req/geojson/feature-attribute-mapping

TEST PURPOSE Verify that common feature properties are used correctly.

TEST-METHOD-TYPE Manual Inspection

TEST METHOD
Given the GeoJSON representation of a feature resource returned by the server:

1. Inspect the contents of the GeoJSON Feature object.

2. Check that the properties are used as described in the mapping table Table 20.

ABSTRACT TEST A.88

IDENTIFIER /conf/geojson/system-schema

REQUIREMENT Requirement 81: /req/geojson/system-schema

TEST PURPOSE Validate that the GeoJSON representation of System resources is valid.

TEST METHOD

1. Request a single System resource.
a) Issue an HTTP GET request at {api_root}/systems/{id} with the Accept header

set to application/geo+json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema system.json using a JSON Schema validator.

2. Request multiple System resources.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 187

https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/geojson/system.json

ABSTRACT TEST A.88

a) Issue an HTTP GET request at {api_root}/systems with the Accept header set to
application/geo+json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema systemCollection.json using a JSON Schema
validator.

ABSTRACT TEST A.89

IDENTIFIER /conf/geojson/system-mappings

REQUIREMENT Requirement 82: /req/geojson/system-mappings

TEST PURPOSE Verify that System properties are used correctly.

TEST-METHOD-TYPE Manual Inspection

TEST METHOD
Given the GeoJSON representation of a System resource returned by the server:

1. Inspect the contents of the GeoJSON Feature object.

2. Check that the properties are used as described in Table 21 and Table 22.

ABSTRACT TEST A.90

IDENTIFIER /conf/geojson/deployment-schema

REQUIREMENT Requirement 83: /req/geojson/deployment-schema

TEST PURPOSE Validate that the GeoJSON representation of Deployment resources is valid.

TEST METHOD

1. Request a single Deployment resource.
a) Issue an HTTP GET request at {api_root}/deployments/{id} with the Accept

header set to application/geo+json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema deployment.json using a JSON Schema
validator.

2. Request multiple Deployment resources.
a) Issue an HTTP GET request at {api_root}/deployments with the Accept header set

to application/geo+json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema deploymentCollection.json using a JSON
Schema validator.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 188

https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/geojson/systemCollection.json
https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/geojson/deployment.json
https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/geojson/deploymentCollection.json

ABSTRACT TEST A.91

IDENTIFIER /conf/geojson/deployment-mappings

REQUIREMENT Requirement 84: /req/geojson/deployment-mappings

TEST PURPOSE Verify that Deployment properties are used correctly.

TEST-METHOD-TYPE Manual Inspection

TEST METHOD
Given the GeoJSON representation of a Deployment resource returned by the server:

1. Inspect the contents of the GeoJSON Feature object.

2. Check that the properties are used as described in Table 23 and Table 24.

ABSTRACT TEST A.92

IDENTIFIER /conf/geojson/procedure-schema

REQUIREMENT Requirement 85: /req/geojson/procedure-schema

TEST PURPOSE Validate that the GeoJSON representation of Procedure resources is valid.

TEST METHOD

1. Request a single Procedure resource.
a) Issue an HTTP GET request at {api_root}/procedures/{id} with the Accept

header set to application/geo+json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema procedure.json using a JSON Schema
validator.

2. Request multiple Procedure resources.
a) Issue an HTTP GET request at {api_root}/procedures with the Accept header set

to application/geo+json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema procedureCollection.json using a JSON
Schema validator.

ABSTRACT TEST A.93

IDENTIFIER /conf/geojson/procedure-mappings

REQUIREMENT Requirement 86: /req/geojson/procedure-mappings

OPEN GEOSPATIAL CONSORTIUM 23-001R0 189

https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/geojson/procedure.json
https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/geojson/procedureCollection.json

ABSTRACT TEST A.93

TEST PURPOSE Verify that Procedure properties are used correctly.

TEST-METHOD-TYPE Manual Inspection

TEST METHOD
Given the GeoJSON representation of a Procedure resource returned by the server:

1. Inspect the contents of the GeoJSON Feature object.

2. Check that the properties are used as described in Table 25 and Table 26.

ABSTRACT TEST A.94

IDENTIFIER /conf/geojson/sf-schema

REQUIREMENT Requirement 87: /req/geojson/sf-schema

TEST PURPOSE Validate that the GeoJSON representation of Sampling Feature resources is valid.

TEST METHOD

1. Request a single Sampling Feature resource.
a) Issue an HTTP GET request at {api_root}/samplingFeatures/{id} with the

Accept header set to application/geo+json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema anySamplingFeature.json using a JSON
Schema validator.

2. Request multiple Sampling Feature resources.
a) Issue an HTTP GET request at {api_root}/samplingFeatures with the Accept

header set to application/geo+json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema samplingFeatureCollection.json using a JSON
Schema validator.

ABSTRACT TEST A.95

IDENTIFIER /conf/geojson/sf-mappings

REQUIREMENT Requirement 88: /req/geojson/sf-mappings

TEST PURPOSE Verify that Sampling Feature properties are used correctly.

TEST-METHOD-
TYPE

Manual Inspection

TEST METHOD
Given the GeoJSON representation of a Sampling Feature resource returned by the
server:

OPEN GEOSPATIAL CONSORTIUM 23-001R0 190

https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/geojson/anySamplingFeature.json
https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/geojson/samplingFeatureCollection.json

ABSTRACT TEST A.95

1. Inspect the contents of the GeoJSON Feature object.

2. Check that the properties are used as described in Table 27 and Table 28.

A.14. Conformance Class “SensorML”

CONFORMANCE CLASS A.13

IDENTIFIER /conf/sensorml

REQUIREMENTS CLASS Requirements class 13: /req/sensorml

PREREQUISITE Conformance class A.1: /conf/api-common

INDIRECT PREREQUISITE http://www.opengis.net/spec/sensorml/2.1/conf/json

TARGET TYPE Web API

CONFORMANCE TESTS

Abstract test A.96: /conf/sensorml/mediatype-read
Abstract test A.97: /conf/sensorml/mediatype-write
Abstract test A.98: /conf/sensorml/relation-types
Abstract test A.99: /conf/sensorml/resource-id
Abstract test A.100: /conf/sensorml/feature-attribute-mapping
Abstract test A.101: /conf/sensorml/system-schema
Abstract test A.102: /conf/sensorml/system-sml-class
Abstract test A.103: /conf/sensorml/system-mappings
Abstract test A.104: /conf/sensorml/deployment-schema
Abstract test A.105: /conf/sensorml/deployment-mappings
Abstract test A.106: /conf/sensorml/procedure-schema
Abstract test A.107: /conf/sensorml/procedure-sml-class
Abstract test A.108: /conf/sensorml/procedure-mappings
Abstract test A.109: /conf/sensorml/property-schema
Abstract test A.110: /conf/sensorml/property-mappings

ABSTRACT TEST A.96

IDENTIFIER /conf/sensorml/mediatype-read

REQUIREMENT Requirement 89: /req/sensorml/mediatype-read

OPEN GEOSPATIAL CONSORTIUM 23-001R0 191

http://www.opengis.net/spec/sensorml/2.1/conf/json

ABSTRACT TEST A.96

TEST PURPOSE Verify that the server advertises support for the SensorML format on retrieval operations.

TEST METHOD

1. Verify that server advertises support for media type application/sml+json in the API
definition for GET operations:

a) On the canonical resources endpoints of resource types supported by the server.

b) On the custom collection endpoints advertised by the server.

ABSTRACT TEST A.97

IDENTIFIER /conf/sensorml/mediatype-write

REQUIREMENT Requirement 90: /req/sensorml/mediatype-write

TEST PURPOSE
Verify that the server advertises support for the SensorML format on transactional operations.

1. Verify that server advertises support for media type application/sml+json in the
API definition for CREATE or REPLACE operations, for at least one canonical resources
endpoint.

ABSTRACT TEST A.98

IDENTIFIER /conf/sensorml/relation-types

REQUIREMENT Requirement 91: /req/sensorml/relation-types

TEST PURPOSE Verify that correct link relation types are used.

TEST-METHOD-
TYPE

Manual Inspection

TEST METHOD

Given the SensorML representation of a resource returned by the server:
1. Inspect the links in the links property of the response document.

2. Check that the relation types are used as described in the associations mapping table of
Clause 19.2 corresponding to the resource type.

ABSTRACT TEST A.99

IDENTIFIER /conf/sensorml/resource-id

REQUIREMENT Requirement 92: /req/sensorml/resource-id

TEST PURPOSE Verify that the resource ID is set properly in the response.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 192

ABSTRACT TEST A.99

TEST METHOD

Given the SensorML representation of a resource obtained from its canonical URL:
1. Inspect the contents of the SensorML object.

2. Verify that the id property is set to the same value as the {id} portion of the canonical
resource URL.

ABSTRACT TEST A.100

IDENTIFIER /conf/sensorml/feature-attribute-mapping

REQUIREMENT Requirement 93: /req/sensorml/feature-attribute-mapping

TEST PURPOSE Verify that common feature properties are used correctly.

TEST-METHOD-TYPE Manual Inspection

TEST METHOD
Given the SensorML representation of a resource returned by the server:

1. Inspect the contents of the SensorML object.

2. Check that the properties are used as described in the mapping table Table 29.

ABSTRACT TEST A.101

IDENTIFIER /conf/sensorml/system-schema

REQUIREMENT Requirement 94: /req/sensorml/system-schema

TEST PURPOSE Validate that the SensorML representation of System resources is valid.

TEST METHOD

1. Request a single System resource.
a) Issue an HTTP GET request at {api_root}/systems/{id} with the Accept header

set to application/sml+json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema system.json using a JSON Schema validator.

2. Request multiple System resources.
a) Issue an HTTP GET request at {api_root}/systems with the Accept header set to

application/sml+json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema systemCollection.json using a JSON Schema
validator.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 193

https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/sensorml/system.json
https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/sensorml/systemCollection.json

ABSTRACT TEST A.102

IDENTIFIER /conf/sensorml/system-sml-class

REQUIREMENT Requirement 95: /req/sensorml/system-sml-class

TEST PURPOSE Verify that System SensorML types are used correctly.

TEST-METHOD-
TYPE

Manual Inspection

TEST METHOD

Given the SensorML representation of a System resource returned by the server:
1. Inspect the contents of the SensorML object.

2. Check that the value of the type property is compatible with the system being
described (i.e. process/simulation vs. physical thing).

ABSTRACT TEST A.103

IDENTIFIER /conf/sensorml/system-mappings

REQUIREMENT Requirement 96: /req/sensorml/system-mappings

TEST PURPOSE Verify that System properties are used correctly.

TEST-METHOD-TYPE Manual Inspection

TEST METHOD
Given the SensorML representation of a System resource returned by the server:

1. Inspect the contents of the SensorML object.

2. Check that the properties are used as described in Table 30 and Table 31.

ABSTRACT TEST A.104

IDENTIFIER /conf/sensorml/deployment-schema

REQUIREMENT Requirement 97: /req/sensorml/deployment-schema

TEST PURPOSE Validate that the SensorML representation of Deployment resources is valid.

TEST METHOD

1. Request a single Deployment resource.
a) Issue an HTTP GET request at {api_root}/deployments/{id} with the Accept

header set to application/sml+json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema deployment.json using a JSON Schema
validator.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 194

https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/sensorml/deployment.json

ABSTRACT TEST A.104

2. Request multiple Deployment resources.
a) Issue an HTTP GET request at {api_root}/deployments with the Accept header set

to application/sml+json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema deploymentCollection.json using a JSON
Schema validator.

ABSTRACT TEST A.105

IDENTIFIER /conf/sensorml/deployment-mappings

REQUIREMENT Requirement 98: /req/sensorml/deployment-mappings

TEST PURPOSE Verify that Deployment properties are used correctly.

TEST-METHOD-TYPE Manual Inspection

TEST METHOD
Given the SensorML representation of a Deployment resource returned by the server:

1. Inspect the contents of the SensorML object.

2. Check that the properties are used as described in Table 32 and Table 33.

ABSTRACT TEST A.106

IDENTIFIER /conf/sensorml/procedure-schema

REQUIREMENT Requirement 99: /req/sensorml/procedure-schema

TEST PURPOSE Validate that the SensorML representation of Procedure resources is valid.

TEST METHOD

1. Request a single Procedure resource.
a) Issue an HTTP GET request at {api_root}/procedures/{id} with the Accept

header set to application/sml+json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema procedure.json using a JSON Schema
validator.

2. Request multiple Procedure resources.
a) Issue an HTTP GET request at {api_root}/procedures with the Accept header set

to application/sml+json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema procedureCollection.json using a JSON
Schema validator.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 195

https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/sensorml/deploymentCollection.json
https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/sensorml/procedure.json
https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/sensorml/procedureCollection.json

ABSTRACT TEST A.107

IDENTIFIER /conf/sensorml/procedure-sml-class

REQUIREMENT Requirement 100: /req/sensorml/procedure-sml-class

TEST PURPOSE Verify that Procedure SensorML types are used correctly.

TEST-METHOD-
TYPE

Manual Inspection

TEST METHOD

Given the SensorML representation of a Procedure resource returned by the server:
1. Inspect the contents of the SensorML object.

2. Check that the value of the type property is compatible with the procedure being
described (i.e. process/simulation/methodology vs. datasheet of hardware equipment).

ABSTRACT TEST A.108

IDENTIFIER /conf/sensorml/procedure-mappings

REQUIREMENT Requirement 101: /req/sensorml/procedure-mappings

TEST PURPOSE Verify that Procedure properties are used correctly.

TEST-METHOD-TYPE Manual Inspection

TEST METHOD
Given the SensorML representation of a Procedure resource returned by the server:

1. Inspect the contents of the SensorML object.

2. Check that the properties are used as described in Table 34 and Table 35.

ABSTRACT TEST A.109

IDENTIFIER /conf/sensorml/property-schema

REQUIREMENT Requirement 102: /req/sensorml/property-schema

TEST PURPOSE Validate that the SensorML representation of Property resources is valid.

TEST METHOD

1. Request a single Property resource.
a) Issue an HTTP GET request at {api_root}/properties/{id} with the Accept

header set to application/sml+json.

b) Validate that a document was returned with a status code 200.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 196

ABSTRACT TEST A.109

c) Validate the document against the schema property.json using a JSON Schema validator.

2. Request multiple Property resources.
a) Issue an HTTP GET request at {api_root}/properties with the Accept header set

to application/sml+json.

b) Validate that a document was returned with a status code 200.

c) Validate the document against the schema propertyCollection.json using a JSON Schema
validator.

ABSTRACT TEST A.110

IDENTIFIER /conf/sensorml/property-mappings

REQUIREMENT Requirement 103: /req/sensorml/property-mappings

TEST PURPOSE Verify that Property properties are used correctly.

TEST-METHOD-TYPE Manual Inspection

TEST METHOD
Given the SensorML representation of a Property resource returned by the server:

1. Inspect the contents of the SensorML object.

2. Check that the properties are used as described in Table 36.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 197

https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/sensorml/property.json
https://opengeospatial.github.io/ogcapi-connected-systems/api/part1/openapi/schemas/sensorml/propertyCollection.json

B

ANNEX B (INFORMATIVE)
EXAMPLES

OPEN GEOSPATIAL CONSORTIUM 23-001R0 198

B ANNEX B
(INFORMATIVE)
EXAMPLES

More JSON examples are available in the project’s GitHub repository at:

https://github.com/opengeospatial/ogcapi-connected-systems/tree/master/api/part1/openapi/
examples

OPEN GEOSPATIAL CONSORTIUM 23-001R0 199

https://github.com/opengeospatial/ogcapi-connected-systems/tree/master/api/part1/openapi/examples
https://github.com/opengeospatial/ogcapi-connected-systems/tree/master/api/part1/openapi/examples

C

ANNEX C (INFORMATIVE)
RELATIONSHIP WITH
OTHER OGC/ISO
STANDARDS
(INFORMATIVE)

OPEN GEOSPATIAL CONSORTIUM 23-001R0 200

C ANNEX C
(INFORMATIVE)
RELATIONSHIP WITH OTHER OGC/ISO
STANDARDS (INFORMATIVE)

C.1. W3C Semantic Sensor Network Ontology

The W3C Semantic Sensor Network Ontology (SOSA/SSN) Recommendation provides the
semantic model from which the resource model of the OGC API — Connected Systems Standard
(CS API) is derived.

The CS API does not use any SOSA/SSN serialization (e.g. RDF, Turtle, etc.) directly as a resource
representation format. Instead, GeoJSON, SensorML-JSON or in some cases plain JSON and
even binary representations are used, with references to SOSA/SSN concepts (by URI or CURIE)
whenever appropriate (e.g. System Types, Procedure Types, etc.).

Divergence from the SOSA/SSN Patterns

The CS API resource model diverges from currently used SOSA/SSN patterns in the following
ways:

1. In the CS API, all systems can have both datastreams and controlstreams, even
though they are tagged with only one type (i.e.sosa:Sensor, sosa:Actuator,
sosa:Sampler or sosa:Platform). Semantic tagging is only used to provide the
main role of the system or subsystem without limiting other API functionality.
This design simplifies the description of sensors that can also accept commands
(e.g. even simple sensors often have commands to change the sampling rate or
the sensitivity), or actuators that output data (e.g. most actuators provide some
kind of state information). The same effect can be achieved when using the
SOSA/SSN ontology by creating RDF resources that have several parent classes
such as:
<Motor1> a sosa:System, sosa:Sensor, sosa:Actuator ; …
<UAV1> a sosa:System, sosa:Platform ; …

2. In the CS API, an observation can be associated to more than one observed
property, and a command to more than one controlled property, while SOSA/
SSN has a cardinality of one on these associations. This also means that
observations are not limited to scalar results, and commands are not limited to
scalar parameters. Discussions in the SOSA/SSN working group have shown that

OPEN GEOSPATIAL CONSORTIUM 23-001R0 201

such vectorization of observed properties and corresponding observation results
is an accepted practice and will be clearly documented in the next revision of the
SOSA/SSN standard.

3. We use the concepts of ObservationCollection and ActuationCollection
(in the form of DataStream and ControlStream respectively) to factor out many
properties that are common to observations/actuations associated to the same
sensor/actuator. Note that such collections are not part of the current version of
SOSA/SSN at the time of writing but will be incorporated in the next revision.

These patterns are used in the CS API to reduce the number (and sometimes the size) of
resources that one needs to create and maintain in order to fully describe complex systems and
their data feeds. Where a few resources are necessary using the CS API, the SOSA/SSN model
would require many more small resources to achieve the same functionality, which leads to
complexity for API consumers.

Rather than imposing a very verbose schema, these changes give more flexibility for choosing
the appropriate level of granularity used when describing hierarchical systems, while still
allowing the API implementation to exchange all required dynamic data feeds. Granularity can
range from creating a different sensor or actuator for every single scalar property observed or
acted on, all the way to a single resource that is used to represent an entire complex system as a
“black box”.

C.2. OGC Sensor Modeling Language (SensorML)
Standard

OGC Sensor Model Language (SensorML) is one of the foundational building blocks of the OGC
API — Connected Systems Standard (CS API).

Many of the foundational ideas for the CS API Standard are inherited from SensorML, although
original models have been converted to a resource oriented approach and aligned with SOSA/
SSN in the process of creating the API.

The CS API Standard specifies how to use SensorML JSON encodings as a resource encoding
format, but the XML version of SensorML can also be used as a response format by the API
server.

Currently, SensorML is the only encoding format supporting the provision of detailed specsheets
for systems, procedures, and deployments.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 202

C.3. OGC/ISO Observations, Measurements and Samples
(OMS) Standard

The Observations, Measurements and Samples (OMS) Standard is one of the foundational
building blocks of the OGC API — Connected Systems Standard, through the use of the
Semantic Sensor Network Ontology (SOSA/SSN). Indeed, SOSA/SSN was originally based on a
previous version of OMS, Observations and Measurements (O&M), so many concepts from OMS
are naturally carried over to the CS API Standard.

The following table indicates which classes of OMS Conceptual Observation Schema and
Conceptual Sample Schema are implemented by OGC API — Connected Systems (CS API):

OMS CLASS O&M CLASS CS API RESOURCE COMMENTS

Observation
OM_
Observation

Observation

ObservableProperty
GFI_
PropertyType

Property

Procedure OM_Process
Procedure (type=sosa:
Procedure)

ObservingProcedureOM_Process
Procedure (type=sosa-oms:
ObservingProcedure)

Observer OM_Process System (type=sosa:Sensor)

Host - System (type=sosa:Platform)

Deployment - Deployment

Sample
SF_
SamplingFeature

SamplingFeature

SamplingProcedure-
Procedure (type=sosa-oms:
SamplingProcedure)

Sampler - System (type=sosa:Sampler)

OPEN GEOSPATIAL CONSORTIUM 23-001R0 203

https://docs.ogc.org/as/20-082r4/20-082r4.html#_conceptual_observation_schema
https://docs.ogc.org/as/20-082r4/20-082r4.html#_conceptual_sample_schema

C.4. IETF GeoJSON

GeoJSON is one of the main encoding formats specified in the OGC API — Connected Systems
Standard. A GeoJSON profile for each feature type is provided in Clause 19.1, with complete
JSON schemas and mappings to the abstract resource model.

Since SensorML is available for cases where detailed information about systems, procedures and
deployments is needed (e.g. contact information, detailed system datasheets, etc.), the GeoJSON
profile is intentionally kept simple and is intended to be used as a summary representation.

Although not mandated by the Standard, a typical workflow would be to retrieve collections
of feature descriptions (e.g. as the result of search) by requesting the GeoJSON representation
first, since the GeoJSON encoding leads to much smaller documents than the SensorML-JSON
encoding. Then, after reviewing the summary descriptions provided as GeoJSON, the full
SensorML description could be fetched (typically only for some of the features of the collection).

C.5. OGC Features and Geometries JSON (JSON-FG)

Similarly to GeoJSON, a profile of JSON-FG could be defined to provide an alternative
representation of feature types defined in the CS API Standard. The JSON-FG requirements
class has been left out of Part 1 but will be considered at a later stage once more
implementation experience has been collected.

C.6. OGC API — Features Standard

The OGC API — Connected Systems Standard is an extension of the OGC API — Features
Standard, and thus inherits all requirements from OGC API — Features — Part 1: Core. In
addition, requirements from OGC API — Features — Part 4: Create, Replace, Update and Delete
are inherited by Requirements Class “Create/Replace/Delete” and Requirements Class “Update”.
Requirements from OGC API — Features — Part 2: Coordinate Reference Systems by Reference
also apply if coordinate reference systems other than CRS:84 or CRS:84h are to be used.

Additionally, some resources defined by the CS API Standard are designed to link to feature
resources hosted by other servers (e.g. domain features) that act as features of interest of
observations (e.g. rivers, roads, buildings, etc.). Such domain features can typically be hosted by
separate implementation instances of OGC API — Features. This linking capability allows OGC
API — Connected Systems implementation instances to refer to existing feature repositories
such as land registers, building databases, transportation networks, hydrographic networks,
oceanic features, etc, without duplicating the data.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 204

C.7. OGC API — Moving Features Standard

The OGC API — Moving Features Standard defines an alternative way to provide dynamic
feature property data, but is more limited in scope. The key difference between OGC API —
Moving Features and OGC API — Connected Systems is that the former does not implement
the O&M or SSN models, and thus does not support the provision of metadata about the
observation process, nor does it support tasking capabilities.

If needed, both APIs can be implemented at the same endpoint (since both extend OGC API —
Features) to provide two complementary viewpoints of the same underlying dynamic data.

C.8. OGC API — Environmental Data Retrieval (EDR)
Standard

The OGC API — Environmental Data Retrieval (EDR) Standard can also be used to retrieve
observation data. EDR is especially suited for extracting data from large multi-dimensional
coverages and can be used jointly with the OGC API — Connected Systems Standard.

Weblinks can be used to associate resources exposed by OGC API — EDR and OGC API
— Connected Systems (CS API). Such links can be used to implement the following client
functionality:

• An EDR API client can retrieve more information about the observing system that
produced the data (i.e. the data in an EDR collection or instance) from the CS API.

• Conversely, a Connected Systems API client can be redirected to an EDR accessible
collection or instance in order to benefit from the advanced query operators defined in the
EDR Standard (e.g. radius, cube, trajectory, corridor, etc.), and thus extract data from large
coverage results more efficiently.

To this effect, the following weblinks can be added to OGC API — EDR resources to refer to
OGC API — Connected Systems (CS API) resources:

EDR RESOURCE
TARGET CS API
RESOURCES

COMMENTS

Collection Metadata
System
Deployment
DataStream

Instance Metadata
System
Deployment
DataStream

OPEN GEOSPATIAL CONSORTIUM 23-001R0 205

And the following weblinks can be added to OGC API — Connected Systems resources to refer
to OGC API — EDR resources:

CS API RESOURCE TARGET EDR RESOURCES COMMENTS

System
Collection
Instance

DataStream
Collection
Instance

C.9. OGC SensorThings API Standard

The SensorThings API (STA) is another OGC Standard designed to provide access to sensor
observations and tasking through a REST API.

Although the two API Standards are in some ways similar, the SensorThings API was designed to
solve IoT use cases and does not address the need of all sensor systems. OGC API — Connected
Systems takes a more generic approach to the problem by extending OGC API — Features and
using SOSA/SSN and SensorML as the main conceptual and implementation models behind the
API.

The following table compares the design choices made in OGC API — Connected Systems and
SensorThings API:

DESIGN CHOICE CONNECTED SYSTEMS SENSORTHINGS

API Platform
Extension of OGC API Common and OGC
— API Features.

OData Version 4.0

Query Language
Query string arguments, decoupled from
resource encoding.

Generic query language inherited from
OData.

Resource Model Based on SOSA/SSN/OMS and SensorML. Simplified and adapted from O&M.

Supported Observation
Types

Scalar, vector, N-D coverage, video. Scalar and simple records only.

Multiple Format Support
Yes, including non-JSON such as Protocol
Buffers or other binary formats.

OData compatible JSON only.

The next table shows a comparison of SensorThings and OGC API — Connected Systems (CS
API) resources:

OPEN GEOSPATIAL CONSORTIUM 23-001R0 206

https://protobuf.dev/
https://protobuf.dev/

STA RESOURCE CS API RESOURCE COMMENTS

Thing System type = sosa:Platform

Location Observation
Location is implemented as a specific kind of observation
whose result is a location vector.

HistoricalLocation DataStream
Historical locations are implemented as a DataStream
containing location observations (see above).

Datastream DataStream

Sensor System type = sosa:Sensor

ObservedProperty Property

Observation Observation

FeatureOfInterest SamplingFeature
The sampling feature is a proxy to any other feature
resource.

Actuator System type = sosa:Actuator

TaskingCapability CommandStream

Task Command

- Procedure

- Deployment

If needed, the following weblinks can be added to OGC API — Connected Systems resources to
refer to SensorThings API resources:

CS API RESOURCE TARGET STA RESOURCES COMMENTS

System
Thing
Sensor
Actuator

DataStream Datastream

ControlStream TaskingCapability

OPEN GEOSPATIAL CONSORTIUM 23-001R0 207

C.10. Coverages

Observation results are sometimes coverages (e.g. satellite imagery, weather forecast, etc.). In
the case of large coverages, providing access to the observation result is better handled by APIs
that allow subsetting the coverage along its various dimensions.

Instead of duplicating existing functionality, OGC API — Connected Systems supports linking
to coverage datasets hosted by other API implementations or web services when appropriate,
instead of including the coverage result data inline in the observation.

In particular, links to implementation instances of the following OGC services and APIs are
possible:

• OGC API — Coverages

• OGC API — Maps

• OGC API — EDR

• OGC Web Coverage Service

• OGC Web Map Service

The exact mechanism for linking Connected Systems resources and Coverage datasets is
implemented will be specified in a future OGC Best Practice document.

C.11. 3D Features

The following OGC Standards can be used to represent and/or transfer complex 3D content
and/or scenes:

• OGC CityGML Standard

• OGC CityJSON Community Standard

• OGC 3D Tiles Community Standard

• OGC Indexed 3d Scene Layer (I3S) Community Standard

• OGC API — 3D GeoVolumes (Draft)

Such 3D scenes contain feature objects (i.e. features of interest) that can be the target of
observations or commands (e.g. a building feature in the 3D model of a city, a mechanical part in
the 3D model of an engine, etc.).

OPEN GEOSPATIAL CONSORTIUM 23-001R0 208

These features of interest can be referenced by OGC API — Connected Systems resources,
enabling clients to associate the observations to the exact object in the 3D scene (e.g. the
user could click an object in the scene and be presented with a chart or a list of dynamic data
stream about this object). The reverse link going from the 3D model to the Connected Systems
datastream is also desirable.

The exact mechanism for linking Connected Systems resources and 3D objects is implemented
will be specified in a future OGC Best Practice document.

C.12. OGC Sensor Observation Service (SOS) Standard

The functionality provided by a conformant implementation of the OGC SOS Standard (web
service) is fully supported by Parts 1 and 2 of the OGC API — Connected Systems Standard. The
following table lists the mappings between SOS service operations and corresponding OGC API
— Connected Systems (CS API) resources:

SOS OPERATION CS API RESOURCE API VERB COMMENTS

GetCapabilities Landing Page GET

DescribeSensor System GET GET on collection using the UID filter.

InsertSensor System POST

DeleteSensor System DELETE

GetObservation Observation GET GET on collection.

GetObservationById Observation GET GET on resource ID.

InsertObservation Observation POST
+ POST on SamplingFeature to add embedded
features of interest.

GetResult Observation GET must use SWE Common format.

InsertResult Observation POST must use SWE Common format.

GetResultTemplate DataStreamSchema GET Retrieve the DataStream schema.

InsertResultTemplateDataStream POST Create a DataStream with its schema.

GetFeatureOfInterestSamplingFeature GET

OPEN GEOSPATIAL CONSORTIUM 23-001R0 209

C.13. OGC Sensor Planning Service (SPS) Standard

The functionality provided by a conformant implementation of the SPS Standard (web service)
is fully supported by Parts 1 and 2 of the OGC API — Connected Systems Standard. The
following table lists the mappings between SPS service operations and corresponding OGC API
— Connected Systems (CS API) resources:

SPS OPERATION CS API RESOURCE API VERB COMMENTS

GetCapabilities Landing Page GET

DescribeSensor System GET GET on collection using the UID filter.

DescribeTasking ControlStream GET Retrieve the ControlStream schema.

Submit Command POST

Update Command
PUT or
PATCH

Cancel Command DELETE

GetStatus CommandStatus GET

GetTask Command GET

DescribeResultAccessCommandResult GET

GetFeasibilty Command POST
Feasibility workflow implemented as a linked
CommandStream. Feasibilty result provided as
CommandResult.

Reserve Command POST
Reservation/confirmation workflow implemented
as a linked CommandStream.

Confirm Command POST
Reservation/confirmation workflow implemented
as a linked CommandStream.

OPEN GEOSPATIAL CONSORTIUM 23-001R0 210

D

ANNEX D (INFORMATIVE)
REVISION HISTORY

OPEN GEOSPATIAL CONSORTIUM 23-001R0 211

D ANNEX D
(INFORMATIVE)
REVISION HISTORY

DATE RELEASE EDITOR
PRIMARY CLAUSES
MODIFIED

DESCRIPTION

2022-12-
16

1.0 draft
Alex
Robin

All Initial draft version

2023-04-
21

1.0 draft
Alex
Robin

All Migration to Metanorma

2023-12-
07

1.0 draft
Alex
Robin

All Incorporated feedback from various SWG

2024-05-
21

1.0 draft
Alex
Robin

All
Incorporated OAB feedback (“resources
endpoint” terminology)

2024-09-
05

1.0 draft
Alex
Robin

All Updated ATS

OPEN GEOSPATIAL CONSORTIUM 23-001R0 212

BIBLIOGRAPHY

OPEN GEOSPATIAL CONSORTIUM 23-001R0 213

BIBLIOGRAPHY

[1] Simon Cox: OGC 10-004r3, Topic 20 — Observations and Measurements. Open Geospatial
Consortium (2013). http://www.opengis.net/doc/as/om/2.0.

[2] Katharina Schleidt, Ilkka Rinne: OGC 20-082r4, Topic 20 — Observations, measurements
and samples. Open Geospatial Consortium (2023). http://www.opengis.net/doc/as/
om/3.0.

[3] Mark Burgoyne, David Blodgett, Charles Heazel, Chris Little: OGC 19-086r6, OGC API
— Environmental Data Retrieval Standard. Open Geospatial Consortium (2023). http://
www.opengis.net/doc/IS/ogcapi-edr-1/1.1.0.

[4] Steve Liang, Tania Khalafbeigi, Hylke van der Schaaf: OGC 18-088, OGC SensorThings API
Part 1: Sensing Version 1.1. Open Geospatial Consortium (2021). http://www.opengis.net/
doc/is/sensorthings/1.1.0.

[5] Steve Liang, Tania Khalafbeigi: OGC 17-079r1, OGC SensorThings API Part 2 – Tasking
Core. Open Geospatial Consortium (2019). http://www.opengis.net/doc/IS/sensorthings-
part2-TaskingCore/1.0.0.

[6] Arne Bröring, Christoph Stasch, Johannes Echterhoff: OGC 12-006, OGC® Sensor
Observation Service Interface Standard. Open Geospatial Consortium (2012). http://
www.opengis.net/doc/IS/SOS/2.0.0.

[7] Ingo Simonis, Johannes Echterhoff: OGC 09-000, OGC® Sensor Planning Service
Implementation Standard. Open Geospatial Consortium (2011).

[8] OGC API — Moving Features — Part 1: Core, Version 1.0.draft. https://opengeospatial.
github.io/ogcapi-movingfeatures/standard/standard_document.html

[9] QUDT Quantity Kinds, Version 2.1. https://www.qudt.org/doc/DOC_VOCAB-
QUANTITY-KINDS.html

OPEN GEOSPATIAL CONSORTIUM 23-001R0 214

http://www.opengis.net/doc/as/om/2.0
http://www.opengis.net/doc/as/om/3.0
http://www.opengis.net/doc/as/om/3.0
http://www.opengis.net/doc/IS/ogcapi-edr-1/1.1.0
http://www.opengis.net/doc/IS/ogcapi-edr-1/1.1.0
http://www.opengis.net/doc/is/sensorthings/1.1.0
http://www.opengis.net/doc/is/sensorthings/1.1.0
http://www.opengis.net/doc/IS/sensorthings-part2-TaskingCore/1.0.0
http://www.opengis.net/doc/IS/sensorthings-part2-TaskingCore/1.0.0
http://www.opengis.net/doc/IS/SOS/2.0.0
http://www.opengis.net/doc/IS/SOS/2.0.0
https://opengeospatial.github.io/ogcapi-movingfeatures/standard/standard_document.html
https://opengeospatial.github.io/ogcapi-movingfeatures/standard/standard_document.html
https://www.qudt.org/doc/DOC_VOCAB-QUANTITY-KINDS.html
https://www.qudt.org/doc/DOC_VOCAB-QUANTITY-KINDS.html

OPEN GEOSPATIAL CONSORTIUM 23-001R0 215

	I. Abstract
	II. Keywords
	III. Preface
	IV. Security considerations
	V. Submitting Organizations
	VI. Submitters
	1. Scope
	2. Conformance
	3. Normative references
	4. Terms and definitions
	6. Conventions
	6.1. Identifiers
	6.2. URL Templates
	6.3. Abbreviated terms

	7. Overview
	7.1. General
	7.2. Design Considerations
	7.3. Resource Types
	7.4. Resource Encodings
	7.5. Resource Collections
	7.6. API Endpoints
	7.6.1. Endpoint Types
	7.6.2. Canonical Resources Endpoints
	7.6.3. Canonical Resource Endpoints

	7.7. Paged Responses
	7.8. Search & Filtering
	7.9. Link Relation Types
	7.10. Security Considerations
	7.10.1. Authentication
	7.10.2. Encryption
	7.10.3. M2M Communications
	7.10.4. Common Weaknesses

	8. Requirements Class “Common”
	8.1. Overview
	8.2. API Landing Page
	8.3. API Definition
	8.4. Resource IDs
	8.5. Unique Identifiers (UID)
	8.6. Coordinate Reference Systems
	8.7. Date/​Time Query Parameter

	9. Requirements Class “System Features”
	9.1. Overview
	9.2. System Resource
	9.2.1. Introduction
	9.2.2. Properties
	9.2.3. Location

	9.3. System Canonical URL
	9.4. System Resources Endpoints
	9.4.1. Definition
	9.4.2. Canonical System Resources Endpoint

	9.5. System Feature Collections

	10. Requirements Class “Subsystems”
	10.1. Overview
	10.2. Types of System/​Subsystem Associations
	10.3. Subsystem Resource
	10.3.1. Introduction
	10.3.2. Properties

	10.4. Subsystem Canonical URL
	10.5. Subsystem Resources Endpoint
	10.6. System Recursive Search
	10.7. System Associations

	11. Requirements Class “Deployment Features”
	11.1. Overview
	11.2. Deployment Resource
	11.2.1. Introduction
	11.2.2. Properties

	11.3. Deployment Canonical URL
	11.4. Deployment Resources Endpoints
	11.4.1. Definition
	11.4.2. Canonical Deployment Resources Endpoint
	11.4.3. Nested Deployment Resources Endpoint

	11.5. Deployment Feature Collections

	12. Requirements Class “Subdeployments”
	12.1. Overview
	12.2. Subdeployment Resource
	12.2.1. Introduction
	12.2.2. Properties

	12.3. Subdeployment Canonical URL
	12.4. Subdeployment Resources Endpoint
	12.5. Deployment Recursive Search
	12.6. Deployment Associations

	13. Requirements Class “Procedure Features”
	13.1. Overview
	13.2. Procedure Resource
	13.2.1. Introduction
	13.2.2. Properties
	13.2.3. Location

	13.3. Procedure Canonical URL
	13.4. Procedure Resources Endpoints
	13.4.1. Definition
	13.4.2. Canonical Procedure Resources Endpoint

	13.5. Procedure Feature Collections

	14. Requirements Class “Sampling Features”
	14.1. Overview
	14.2. Features of Interest
	14.3. Sampling Feature Resource
	14.3.1. Common Properties

	14.4. Sampling Feature Canonical URL
	14.5. Sampling Feature Resources Endpoints
	14.5.1. Definition
	14.5.2. Canonical Sampling Feature Resources Endpoint
	14.5.3. Nested Sampling Feature Resources Endpoint

	14.6. Sampling Feature Collections
	14.7. Dynamic properties

	15. Requirements Class “Property Definitions”
	15.1. Overview
	15.2. Property Resource
	15.2.1. Introduction
	15.2.2. Properties

	15.3. Property Canonical URL
	15.4. Property Resources Endpoints
	15.4.1. Definition
	15.4.2. Canonical Property Resources Endpoint

	15.5. Property Collections

	16. Requirements Class “Advanced Filtering”
	16.1. Overview
	16.2. Definitions
	16.2.1. ID List Schema

	16.3. Common Resource Query Parameters
	16.3.1. Overview
	16.3.2. ID Filter
	16.3.3. Keyword Filter
	16.3.4. Simple Property Filter

	16.4. Common Feature Query Parameters
	16.4.1. Geometry Filter

	16.5. System Resources Endpoint Query Parameters
	16.5.1. Introduction
	16.5.2. Parent System Filter
	16.5.3. Procedure Filter
	16.5.4. Feature of Interest Filter
	16.5.5. Observed Property Filter
	16.5.6. Controlled Property Filter

	16.6. Deployment Resources Endpoint Query Parameters
	16.6.1. Introduction
	16.6.2. Parent Deployment Filter
	16.6.3. Deployed System Filter
	16.6.4. Feature of Interest Filter
	16.6.5. Observed Property Filter
	16.6.6. Controlled Property Filter

	16.7. Procedure Resources Endpoint Query Parameters
	16.7.1. Introduction
	16.7.2. Observed Property Filter
	16.7.3. Controlled Property Filter

	16.8. Sampling Feature Resources Endpoint Query Parameters
	16.8.1. Introduction
	16.8.2. Feature of Interest Filter
	16.8.3. Observed Property Filter
	16.8.4. Controlled Property Filter

	16.9. Property Resources Endpoint Query Parameters
	16.9.1. Introduction
	16.9.2. Base Property Filter
	16.9.3. Object Type Filter

	16.10. Combination of Filter Parameters
	16.11. Indirect Associations

	17. Requirements Class “Create/​Replace/​Delete”
	17.1. Overview
	17.2. Systems
	17.3. Subsystems
	17.4. Deployments
	17.5. Subdeployments
	17.6. Procedures
	17.7. Sampling Features
	17.8. Property Definitions
	17.9. Custom Collections

	18. Requirements Class “Update”
	18.1. Overview
	18.2. Systems
	18.3. Deployments
	18.4. Procedures
	18.5. Sampling Features
	18.6. Derived Properties

	19. Requirements Classes for Encodings
	19.1. Requirements Class “GeoJSON Format”
	19.1.1. Overview
	19.1.2. Media Type
	19.1.3. Link Relation Types
	19.1.4. Common Encoding Rules
	19.1.5. System Representation
	19.1.6. Deployment Representation
	19.1.7. Procedure Representation
	19.1.8. Sampling Feature Representation

	19.2. Requirements Class “SensorML Format”
	19.2.1. Overview
	19.2.2. Media Type
	19.2.3. Link Relation Types
	19.2.4. Common Encoding Rules
	19.2.5. System Representation
	19.2.6. Deployment Representation
	19.2.7. Procedure Representation
	19.2.8. Property Representation

	Annex A (normative) Conformance Class Abstract Test Suite
	A.1. Supporting Tests
	A.2. Conformance Class “Common”
	A.3. Conformance Class “System Features”
	A.4. Conformance Class “Subsystems”
	A.5. Conformance Class “Deployment Features”
	A.6. Conformance Class “Subdeployments”
	A.7. Conformance Class “Procedure Features”
	A.8. Conformance Class “Sampling Features”
	A.9. Conformance Class “Property Definitions”
	A.10. Conformance Class “Advanced Filtering”
	A.11. Conformance Class “Create/​Replace/​Delete”
	A.12. Conformance Class “Update”
	A.13. Conformance Class “GeoJSON”
	A.14. Conformance Class “SensorML”

	Annex B (informative) Examples
	Annex C (informative) Relationship with other OGC/​ISO standards (Informative)
	C.1. W3C Semantic Sensor Network Ontology
	C.2. OGC Sensor Modeling Language (SensorML) Standard
	C.3. OGC/​ISO Observations, Measurements and Samples (OMS) Standard
	C.4. IETF GeoJSON
	C.5. OGC Features and Geometries JSON (JSON-​FG)
	C.6. OGC API ​—​ ​Features Standard
	C.7. OGC API ​—​ ​Moving Features Standard
	C.8. OGC API ​—​ ​Environmental Data Retrieval (EDR) Standard
	C.9. OGC SensorThings API Standard
	C.10. Coverages
	C.11. 3D Features
	C.12. OGC Sensor Observation Service (SOS) Standard
	C.13. OGC Sensor Planning Service (SPS) Standard

	Annex D (informative) Revision History
	Bibliography
	—————
	List of Tables
	Table 1 — Overview of resource types defined by this Standard
	Table 2 — Query Parameters
	Table 3 — Link Relation Types
	Table 4 — System Attributes
	Table 5 — System Associations
	Table 6 — System Types
	Table 7 — Asset Types
	Table 8 — Subsystem Associations
	Table 9 — System Associations
	Table 10 — Deployment Attributes
	Table 11 — Deployment Associations
	Table 12 — Subdeployment Associations
	Table 13 — Deployment Associations
	Table 14 — Procedure Attributes
	Table 15 — Procedure Associations
	Table 16 — Procedure Types
	Table 17 — Common Sampling Feature Attributes
	Table 18 — Sampling Features Associations
	Table 19 — Property Definition Attributes
	Table 20 — GeoJSON Mappings of Common Attributes
	Table 21 — GeoJSON Encoding of System Attributes
	Table 22 — GeoJSON Encoding of System Associations
	Table 23 — GeoJSON Encoding of Deployment Attributes
	Table 24 — GeoJSON Encoding of Deployment Associations
	Table 25 — GeoJSON Encoding of Procedure Attributes
	Table 26 — GeoJSON Encoding of Procedure Associations
	Table 27 — GeoJSON Encoding of Sampling Feature Attributes
	Table 28 — GeoJSON Encoding of Sampling Feature Associations
	Table 29 — SensorML Mappings of Common Attributes
	Table 30 — SensorML Mappings of System Attributes
	Table 31 — SensorML Mappings of System Associations
	Table 32 — SensorML Mappings of Deployment Attributes
	Table 33 — SensorML Mappings of Deployment Associations
	Table 34 — SensorML Mappings of Procedure Attributes
	Table 35 — SensorML Mappings of Procedure Associations
	Table 36 — SensorML Mappings of Property Attributes

	List of Figures
	Figure 1 — Class diagram of API resources

	List of Recommendations
	Requirements class 1
	Requirements class 2
	Requirements class 3
	Requirements class 4
	Requirements class 5
	Requirements class 6
	Requirements class 7
	Requirements class 8
	Requirements class 9
	Requirements class 10
	Requirements class 11
	Requirements class 12
	Requirements class 13
	Requirement 1
	Requirement 2
	Requirement 3
	Requirement 4
	Requirement 5
	Requirement 6
	Requirement 7
	Requirement 8
	Requirement 9
	Requirement 10
	Requirement 11
	Requirement 12
	Requirement 13
	Requirement 14
	Requirement 15
	Requirement 16
	Requirement 17
	Requirement 18
	Requirement 19
	Requirement 20
	Requirement 21
	Requirement 22
	Requirement 23
	Requirement 24
	Requirement 25
	Requirement 26
	Requirement 27
	Requirement 28
	Requirement 29
	Requirement 30
	Requirement 31
	Requirement 32
	Requirement 33
	Requirement 34
	Requirement 35
	Requirement 36
	Requirement 37
	Requirement 38
	Requirement 39
	Requirement 40
	Requirement 41
	Requirement 42
	Requirement 43
	Requirement 44
	Requirement 45
	Requirement 46
	Requirement 47
	Requirement 48
	Requirement 49
	Requirement 50
	Requirement 51
	Requirement 52
	Requirement 53
	Requirement 54
	Requirement 55
	Requirement 56
	Requirement 57
	Requirement 58
	Requirement 59
	Requirement 60
	Requirement 61
	Requirement 62
	Requirement 63
	Requirement 64
	Requirement 65
	Requirement 66
	Requirement 67
	Requirement 68
	Requirement 69
	Requirement 70
	Requirement 71
	Requirement 72
	Requirement 73
	Requirement 74
	Requirement 75
	Requirement 76
	Requirement 77
	Requirement 78
	Requirement 79
	Requirement 80
	Requirement 81
	Requirement 82
	Requirement 83
	Requirement 84
	Requirement 85
	Requirement 86
	Requirement 87
	Requirement 88
	Requirement 89
	Requirement 90
	Requirement 91
	Requirement 92
	Requirement 93
	Requirement 94
	Requirement 95
	Requirement 96
	Requirement 97
	Requirement 98
	Requirement 99
	Requirement 100
	Requirement 101
	Requirement 102
	Requirement 103
	Recommendation 1
	Recommendation 2
	Recommendation 3
	Recommendation 4
	Recommendation 5
	Conformance class A.1
	Conformance class A.2
	Conformance class A.3
	Conformance class A.4
	Conformance class A.5
	Conformance class A.6
	Conformance class A.7
	Conformance class A.8
	Conformance class A.9
	Conformance class A.10
	Conformance class A.11
	Conformance class A.12
	Conformance class A.13

