
OGC® DOCUMENT: 23-000
External identifier of this OGC® document: http://www.opengis.net/doc/IS/
SensorML/3.0

OGC SENSORML
ENCODING STANDARD

STANDARD
Implementation

DRAFT

Version: 3.0.0
Submission Date: yyyy-mm-dd
Approval Date: yyyy-mm-dd
Publication Date: yyyy-mm-dd
Editor: Alexandre Robin

Notice for Drafts: This document is not an OGC Standard. This document is distributed for review and comment. This document is subject to
change without notice and may not be referred to as an OGC Standard.
Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to
provide supporting documentation.

License Agreement

Use of this document is subject to the license agreement at https://www.ogc.org/license

Suggested additions, changes and comments on this document are welcome and encouraged. Such suggestions may be submitted using the online
change request form on OGC web site: http://ogc.standardstracker.org/

Copyright notice

Copyright © 2024 Open Geospatial Consortium
To obtain additional rights of use, visithttps://www.ogc.org/legal

Note

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial
Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property
rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 23-000 ii

https://www.ogc.org/license
http://ogc.standardstracker.org/
https://www.ogc.org/legal

CONTENTS

I. ABSTRACT ..ix

II. KEYWORDS ... ix

III. PREFACE ..x

IV. SECURITY CONSIDERATIONS ... xi

V. SUBMITTING ORGANIZATIONS .. xii

VI. SUBMITTERS .. xii

1. SCOPE .. 2

2. CONFORMANCE .. 5

3. NORMATIVE REFERENCES ... 8

4. TERMS AND DEFINITIONS ...10

6. CONVENTIONS ...19
6.1. Identifiers ... 19
6.2. Abbreviated terms ... 19
6.3. UML notation ..20

7. REQUIREMENTS CLASS: CORE CONCEPTS (NORMATIVE CORE)23
7.1. Introduction ...23
7.2. Process Definitions ..24

8. UML CONCEPTUAL MODELS (NORMATIVE) ..28
8.1. Package Dependencies ...28
8.2. Requirements Class: Core Abstract Process ..35
8.3. Requirements Class: Simple Process ... 51
8.4. Requirements Class: Aggregate Process ...54
8.5. Requirements Class: Physical Component ...57
8.6. Requirements Class: Physical System ... 66
8.7. Requirements Class: Processes with Advanced Data Types ..69
8.8. Requirements Class: Configurable Processes ..70
8.9. Requirements Class: Deployment .. 76
8.10. Requirements Class: Derived Property .. 78

OPEN GEOSPATIAL CONSORTIUM 23-000 iii

9. JSON IMPLEMENTATION (NORMATIVE) ... 82
9.1. Requirements Class: Core Schema .. 82
9.2. Requirements Class: Simple Process Schema ... 91
9.3. Requirements Class: Aggregate Process Schema ...93
9.4. Requirements Class: Physical Component Schema ... 95
9.5. Requirements Class: Physical System Schema ..97
9.6. Requirements Class: Deployment Schema ...99
9.7. Requirements Class: Derived Property Schema ...101

ANNEX A (NORMATIVE) CONFORMANCE CLASS ABSTRACT TEST SUITE 104
A.1. Core Concepts ... 104
A.2. UML Models ...106
A.3. JSON Implementation ..122

ANNEX B (INFORMATIVE) REVISION HISTORY ...128

BIBLIOGRAPHY .. 130

LIST OF TABLES

Table 1 — Requirements Classes .. 5
Table 2 — Deployment Class Properties .. 77
Table 3 — DeployedSystem Class Properties .. 78
Table 4 — DerivedProperty Class Properties ...79
Table B.1 — Revision History ..128

LIST OF FIGURES

Figure 1 — UML Notation ... 21
Figure 2 — Internal Package Dependencies .. 28
Figure 3 — External Package Dependencies – GML ... 29
Figure 4 — Models for dependent GML Feature classes ... 30
Figure 5 — External Package Dependencies – ISO TC 211 ...31
Figure 6 — ISO 19115 Models for dependent classes. .. 32
Figure 7 — External Package Dependencies - SWE Common Data .. 33
Figure 8 — Models for dependent SWE Common AbstractDataComponent class. 34
Figure 9 — DescribedObject with Metadata Properties ...39
Figure 10 — Models for Metadata Elements .. 40
Figure 11 — Model for history events ..43

OPEN GEOSPATIAL CONSORTIUM 23-000 iv

Figure 12 — UML models for DescribedObject and AbstractProcess ...45
Figure 13 — UML models for process inputs, outputs, and parameters ...46
Figure 14 — Model for Simple Process .. 53
Figure 15 — Model for ProcessMethod ... 54
Figure 16 — Model for Aggregate Process ..57
Figure 17 — Model for Physical Process Component ... 60
Figure 18 — Models for SpatialFrame and PositionUnion ..62
Figure 19 — Pose Data Types ...65
Figure 20 — Model for Physical Processing System ..68
Figure 21 — Model for Modes ... 73
Figure 22 — Model for Configured Process Settings .. 74
Figure 23 — Model for Settings Elements ... 75
Figure 24 — Deployment Class .. 77
Figure 25 — DerivedProperty Class .. 79

LIST OF RECOMMENDATIONS

REQUIREMENTS CLASS 1: CORE CONCEPTS ... 23

REQUIREMENTS CLASS 2: CORE ABSTRACT PROCESS ...35

REQUIREMENTS CLASS 3: SIMPLE PROCESS ..51

REQUIREMENTS CLASS 4: AGGREGATE PROCESS ... 54

REQUIREMENTS CLASS 5: PHYSICAL COMPONENT ..57

REQUIREMENTS CLASS 6: PHYSICAL SYSTEM ... 66

REQUIREMENTS CLASS 7: PROCESSES WITH ADVANCED DATA TYPES69

REQUIREMENTS CLASS 8: CONFIGURABLE PROCESSES ..70

REQUIREMENTS CLASS 9 .. 76

REQUIREMENTS CLASS 10 ..78

REQUIREMENTS CLASS 11 ..82

REQUIREMENTS CLASS 12 ..91

REQUIREMENTS CLASS 13 ..93

REQUIREMENTS CLASS 14 ..95

REQUIREMENTS CLASS 15 ..97

REQUIREMENTS CLASS 16 ..99

REQUIREMENTS CLASS 17 ... 101

REQUIREMENT 1 .. 24

OPEN GEOSPATIAL CONSORTIUM 23-000 v

REQUIREMENT 2 .. 25

REQUIREMENT 3 .. 25

REQUIREMENT 4 .. 25

REQUIREMENT 5 .. 25

REQUIREMENT 6 .. 36

REQUIREMENT 7 .. 36

REQUIREMENT 8 .. 37

REQUIREMENT 9 .. 37

REQUIREMENT 10 ..38

REQUIREMENT 11 ..38

REQUIREMENT 12 ..46

REQUIREMENT 13 ..47

REQUIREMENT 14 ..48

REQUIREMENT 15 ..49

REQUIREMENT 16 ..50

REQUIREMENT 17 ..50

REQUIREMENT 18 ..51

REQUIREMENT 19 ..51

REQUIREMENT 20 ..52

REQUIREMENT 21 ..52

REQUIREMENT 22 ..55

REQUIREMENT 23 ..55

REQUIREMENT 24 ..56

REQUIREMENT 25 ..56

REQUIREMENT 26 ..58

REQUIREMENT 27 ..59

REQUIREMENT 28 ..63

REQUIREMENT 29 ..63

REQUIREMENT 30 ..63

REQUIREMENT 31 ..63

REQUIREMENT 32 ..66

REQUIREMENT 33 ..67

REQUIREMENT 34 ..67

OPEN GEOSPATIAL CONSORTIUM 23-000 vi

REQUIREMENT 35 ..69

REQUIREMENT 36 ..69

REQUIREMENT 37 ..70

REQUIREMENT 38 ..71

REQUIREMENT 39 ..71

REQUIREMENT 40 ..72

REQUIREMENT 41 ..73

REQUIREMENT 42 ..74

REQUIREMENT 43 ..74

REQUIREMENT 44 ..75

REQUIREMENT 45 ..76

REQUIREMENT 46 ..79

REQUIREMENT 47 ..83

REQUIREMENT 48 ..92

REQUIREMENT 49 ..93

REQUIREMENT 50 ..96

REQUIREMENT 51 ..98

REQUIREMENT 52 ... 100

REQUIREMENT 53 ... 102

CONFORMANCE CLASS A.1: CONFORMANCE TEST CLASS: CORE CONCEPTS 104

CONFORMANCE CLASS A.2: CONFORMANCE TEST CLASS: CORE ABSTRACT PROCESS
... 106

CONFORMANCE CLASS A.3: CONFORMANCE TEST CLASS: SIMPLE PROCESS110

CONFORMANCE CLASS A.4: CONFORMANCE TEST CLASS: AGGREGATE PROCESS112

CONFORMANCE CLASS A.5: CONFORMANCE TEST CLASS: PHYSICAL COMPONENT113

CONFORMANCE CLASS A.6: CONFORMANCE TEST CLASS: PHYSICAL SYSTEM 116

CONFORMANCE CLASS A.7: CONFORMANCE TEST CLASS: PROCESS WITH ADVANCED
DATA TYPES ...117

CONFORMANCE CLASS A.8: CONFORMANCE TEST CLASS: CONFIGURABLE PROCESSES
... 118

CONFORMANCE CLASS A.9: CONFORMANCE TEST CLASS: DEPLOYMENT 121

CONFORMANCE CLASS A.10: CONFORMANCE TEST CLASS: DERIVED PROPERTY 122

CONFORMANCE CLASS A.11: CONFORMANCE TEST CLASS: CORE SCHEMA 123

OPEN GEOSPATIAL CONSORTIUM 23-000 vii

CONFORMANCE CLASS A.12: CONFORMANCE TEST CLASS: SIMPLE PROCESS SCHEMA
... 123

CONFORMANCE CLASS A.13: CONFORMANCE TEST CLASS: AGGREGATE PROCESS
SCHEMA ..124

CONFORMANCE CLASS A.14: CONFORMANCE TEST CLASS: PHYSICAL COMPONENT
SCHEMA ..124

CONFORMANCE CLASS A.15: CONFORMANCE TEST CLASS: PHYSICAL SYSTEM SCHEMA
... 125

CONFORMANCE CLASS A.16: CONFORMANCE TEST CLASS: DEPLOYMENT SCHEMA126

CONFORMANCE CLASS A.17: CONFORMANCE TEST CLASS: DERIVED PROPERTY SCHEMA
... 126

OPEN GEOSPATIAL CONSORTIUM 23-000 viii

I ABSTRACT

The primary focus of the Sensor Model Language (SensorML) is to provide a robust and
semantically-tied means of defining processes and processing components associated with the
measurement and post-measurement transformation of observations. This includes sensors and
actuators as well as computational processes applied pre- and post-measurement.

The main objective is to enable interoperability, first at the syntactic level and later at the
semantic level (by using ontologies and semantic mediation), so that sensors and processes
can be better understood by machines, utilized automatically in complex workflows, and easily
shared between intelligent sensor web nodes.

This standard is one of several implementation standards produced under OGC’s Sensor Web
Enablement (SWE) activity. This standard is a revision of content that was previously integrated
in the SensorML version 1.0 standard (OGC 07-000).

I I KEYWORDS

The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, html, SWE, sensor, sensorweb, connected systems, xml, encoding,
observation, command, tasking, property

OPEN GEOSPATIAL CONSORTIUM 23-000 ix

I I I PREFACE

This Standard arises from work undertaken by the Connected Systems Working Group of the
OGC, with the aim of modernizing the Sensor Web Enablement (SWE) suite of Standards. The
working group is concerned with establishing interfaces and encodings that will enable a “Sensor
Web” through which applications and services will be able to access connected systems of all
types (e.g. sensors, actuators, robots), the observations generated by them, as well as provide
command and control functionalities.

This Standard specifies models and a JSON implementation for the SensorML.

This document deprecates and replaces OGC® Sensor Model Language (SensorML)
Specification version 2.1 (OGC 12-000r2).

The main changes of SensorML 3.0 from SensorML version 2.0 are:

• Addition of the JSON encodings and schemas

• Addition of the Deployment class

• Addition of the Derived Property class

• Deprecation of the XML encodings

This release is fully backward compatible with version 2.0.

SensorML is well-suited for describing sensor model imaging geometries – the SensorML
2.0 RFC contains examples of a frame camera sensor model based on the Community
Standard Model from NGA (NGA.SIG.0002_2.1). Additional (and more complete) sensor
model descriptions are being compiled into a sensor model repository by the OGC Naming
Authority, based on work by Gobe Hobona [OGC 18-042r3 (unpublished)]. In addition, work
to connect OGC grid coverages to SensorML 2 that began in 2013 is now completed, which
involved extending CIS 1.0 [OGC 09-146r2] via the ReferenceableGridCoverage Extension [OGC
16-083r3] to support SensorML 2 descriptions. Version 2.1 of the GMLJP2 imagery standard
[OGC 08-083r8] takes advantage of this coverage extension standard to support embedded and
externally located SensorML 2 descriptions, thereby giving GMLJP2 the ability to support “raw”
sensor model imagery.

OPEN GEOSPATIAL CONSORTIUM 23-000 x

IV SECURITY CONSIDERATIONS

No security considerations have been made for this standard.

OPEN GEOSPATIAL CONSORTIUM 23-000 xi

V SUBMITTING ORGANIZATIONS

The following organizations submitted this Document to the Open Geospatial Consortium
(OGC):

• Botts Innovative Research, Inc.

• GeoRobotix, Inc.

• 52° North Initiative for Geospatial Open Source Software GmbH

• National Geospatial-Intelligence Agency (NGA)

• Cesium GS, Inc.

• Pelagis Data Solutions

VI SUBMITTERS

All questions regarding this submission should be directed to the editor or the submitters:

NAME AFFILIATION

Alexandre Robin GeoRobotix, Inc.

Christian Autermann 52° North Initiative

Chuck Heazel Heazeltech

Mike Botts Botts Innovative Research, Inc.

Additional contributors to this Standard include the following:

NAME AFFILIATION

Arne Broering 52° North Initiative

Eric Hirschon Eric Hirschon

Ingo Simonis iGSI

OPEN GEOSPATIAL CONSORTIUM 23-000 xii

NAME AFFILIATION

Johannes Echterhoff iGSI

Luis Bermudez SURA

OPEN GEOSPATIAL CONSORTIUM 23-000 xiii

1

SCOPE

OPEN GEOSPATIAL CONSORTIUM 23-000 1

1 SCOPE

This Standard defines conceptual models and JSON encodings for SensorML. The primary focus
of SensorML is to provide a framework for defining processes and processing components
associated with the measurement and post-measurement transformation of observations. Thus,
SensorML has more of a focus on the process of measurement and observation, rather than on
sensor hardware, yet still provides a robust means of defining the physical characteristics and
functional capabilities of physical processes such as sensors and actuators.

The aims of SensorML are to:

• Provide descriptions of sensors and sensor systems for inventory management;

• Provide sensor and process information in support of asset and observation discovery;

• Support the processing and analysis of the sensor observations;

• Support the geolocation of observed values (measured data);

• Provide performance and quality of measurement characteristics (e.g., accuracy, threshold,
etc.);

• Provide general descriptions of components (e.g., a particular model or type of a sensor) as
well as the specific configuration of that component when its deployed;

• Provide a machine interpretable description of the interfaces and data streams flowing in
and out of a component;

• Provide an explicit description of the process by which an observation was obtained (i.e.,
its lineage);

• Provide an executable aggregate process for deriving new data products on demand (i.e.,
derivable products); and

• Archive fundamental properties and assumptions regarding sensor systems and
computational processes

SensorML provides a common framework for any process, but is particularly well-suited for the
description of sensor and systems and the processes surrounding sensor observations. Within
SensorML, sensor and transducer components (detectors, transmitters, actuators, and filters) are
all modeled as physical processes that can be connected and participate equally within a process
network or system, and which utilize the same model framework as any other process.

Processes are entities that take one or more inputs and through the application of well-defined
methods and configurable parameters and produce one or more outputs. The process model
defined in SensorML can be used to describe a wide variety of processes, including not only
sensors, but also actuators, spatial transforms, and data processes, to name a few. SensorML
also supports explicit linking between processes and thus supports the concept of process

OPEN GEOSPATIAL CONSORTIUM 23-000 2

chains, networks, or workflows, which are themselves defined as processes using a composite
pattern.

SensorML provides a framework within which the geometric, dynamic, and observational
characteristics of sensors and sensor systems can be defined. There are a great variety of
sensor types, from simple thermometers to complex electron microscopes and earth observing
satellites. These can all be supported through the definition of simple and aggregate processes.

The models and schema within the core SensorML specification provide a “skeletal” framework
for describing processes, aggregate processes, and sensor systems. Interoperability within and
between various sensor communities, is greatly improved through the definition of shared
community-specific semantics (within online dictionaries or ontologies) that can be utilized
within the framework. In addition, the profiling of small, general-use, atomic processes that can
serve as components within aggregate processes and systems is envisioned.

OPEN GEOSPATIAL CONSORTIUM 23-000 3

2

CONFORMANCE

OPEN GEOSPATIAL CONSORTIUM 23-000 4

2 CONFORMANCE

This Standard was written to be compliant with the OGC Specification Model – A Standard
for Modular Specification (OGC 08-131r3). Extensions of this Standard shall themselves be
conformant to the OGC Specification Model.

This Standard defines conceptual models and a JSON implementation of these models for
describing non-physical and physical processes surrounding the act of measurement and
subsequent processing of observations. The conceptual models are described using UML while
the implementation is described using the JSON Schema language.

This Standard defines the following requirements classes and standardization targets:

Table 1 — Requirements Classes

REQUIREMENTS CLASS STANDARDIZATION TARGET

Core

Clause 7, Requirements Class: Core Concepts (normative core)

Derived Models and Software
Implementations

UML Models

Clause 8.2, Requirements Class: Core Abstract Process

Clause 8.3, Requirements Class: Simple Process

Clause 8.4, Requirements Class: Aggregate Process

Clause 8.5, Requirements Class: Physical Component

Clause 8.6, Requirements Class: Physical System

Clause 8.7, Requirements Class: Processes with Advanced Data Types

Clause 8.8, Requirements Class: Configurable Processes

Clause 8.9, Requirements Class: Deployment

Clause 8.10, Requirements Class: Derived Property

Software Implementation or
Encoding of the Conceptual Models

JSON Encodings

Clause 9.1, Requirements Class: Core Schema
JSON Document

OPEN GEOSPATIAL CONSORTIUM 23-000 5

REQUIREMENTS CLASS STANDARDIZATION TARGET

Clause 9.2, Requirements Class: Simple Process Schema

Clause 9.3, Requirements Class: Aggregate Process Schema

Clause 9.4, Requirements Class: Physical Component Schema

Clause 9.5, Requirements Class: Physical System Schema

Clause 9.6, Requirements Class: Deployment Schema

Clause 9.7, Requirements Class: Derived Property Schema

Different types of implementations can seek conformance with this OGC® Standard:

• An implementation that defines a new data model shall at least conform with the core
requirements class.

• An encoding of the conceptual models (e.g. a protobuf encoding) shall implement at least
one of the requirements classes listed in the “UML Models” section of the table.

• An implementation that produces or consumes SensorML descriptions encoded in JSON
shall implement at least one of the requirements classes listed in the “JSON Encodings”
section of the table.

The conformance classes corresponding to these requirements classes are presented in
Annex A (normative). Conformance with this Standard shall be checked using all the relevant
tests specified in Annex A. The framework, concepts, and methodology for testing, and the
criteria to be achieved to claim conformance are specified in the OGC Compliance Testing
Policies and Procedures and the OGC Compliance Testing web site.

OPEN GEOSPATIAL CONSORTIUM 23-000 6

3

NORMATIVE REFERENCES

OPEN GEOSPATIAL CONSORTIUM 23-000 7

3 NORMATIVE REFERENCES

The following documents are referred to in the text in such a way that some or all of their
content constitutes requirements of this document. For dated references, only the edition cited
applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

Policy SWG: OGC 08-131r3, The Specification Model — Standard for Modular specifications. Open
Geospatial Consortium (2009).

SWE Common Data Model Encoding Standard, version 3.0, 2024

Carl Stephen Smyth: OGC 21-056r11, OGC GeoPose 1.0 Data Exchange Standard. Open
Geospatial Consortium (2023). http://www.opengis.net/doc/IS/geopose/1.0.0.

ISO: ISO 8601:2019, Date and time — Representations for information interchange — Part 1: Basic
rules. International Organization for Standardization, Geneva (2019). .. ISO (2019).

ISO: ISO 8601:2019, Date and time — Representations for information interchange — Part 2:
Extensions. International Organization for Standardization, Geneva (2019). .. ISO
(2019).

ISO: ISO 19103:2005, Conceptual Schema Language. ISO (2005).

ISO: ISO 19107:2003, Geographic information — Spatial schema. International Organization for
Standardization, Geneva (2003). https://www.iso.org/standard/26012.html.

ISO: ISO 19108:2002, Geographic information — Temporal schema. International Organization for
Standardization, Geneva (2002). https://www.iso.org/standard/26013.html.

ISO: ISO 19111:2007, Geographic information — Spatial referencing by coordinates. International
Organization for Standardization, Geneva (2007). https://www.iso.org/
standard/41126.html.

Unified Code for Units of Measure (UCUM), Version 2.1, November 2017, https://ucum.org/
ucum

T. Bray (ed.): IETF RFC 8259, The JavaScript Object Notation (JSON) Data Interchange Format. RFC
Publisher (2017). https://www.rfc-editor.org/info/rfc8259.

M. Nottingham: IETF RFC 8288, Web Linking. RFC Publisher (2017). https://www.rfc-editor.org/
info/rfc8288.

JSON Schema Validation: A Vocabulary for Structural Validation of JSON, Version 2020-12,
https://json-schema.org/draft/2020-12/json-schema-validation.html

OPEN GEOSPATIAL CONSORTIUM 23-000 8

http://www.opengis.net/doc/IS/geopose/1.0.0
https://www.iso.org/standard/26012.html
https://www.iso.org/standard/26013.html
https://www.iso.org/standard/41126.html
https://www.iso.org/standard/41126.html
https://ucum.org/ucum
https://ucum.org/ucum
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8288
https://json-schema.org/draft/2020-12/json-schema-validation.html

4

TERMS AND DEFINITIONS

OPEN GEOSPATIAL CONSORTIUM 23-000 9

4 TERMS AND DEFINITIONS

This document uses the terms defined in OGC Policy Directive 49, which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this document and OGC documents do not use the equivalent
phrases in the ISO/IEC Directives, Part 2.

This document also uses terms defined in the OGC Standard for Modular specifications
(OGC 08-131r3), also known as the ‘ModSpec’. The definitions of terms such as standard,
specification, requirement, and conformance test are provided in the ModSpec.

For the purposes of this document, the following additional terms and definitions apply.

4.1. Actuator

A type of transducer that converts a signal to some real-world action or phenomenon.

4.2. Aggregate Process

Composite process consisting of interconnected sub-processes, which can in turn be Simple
Processes or themselves Aggregate Processes. An aggregate process can include possible data
sources. A description of an aggregate process should explicitly define connections that link
input and output signals of sub-processes together. Since it is a process itself, an aggregate
process also has its own inputs, outputs and parameters.

4.3. Coordinate Reference System (CRS)

A spatial or temporal framework within which a position and/or time can be defined. According
to ISO 19111, a coordinate system that is related to the real world by a datum.

OPEN GEOSPATIAL CONSORTIUM 23-000 10

https://portal.ogc.org/public_ogc/directives/directives.php
https://portal.opengeospatial.org/files/?artifact_id=34762

4.4. Coordinate System (CS)

According to ISO19111, a set of (mathematical) rules for specifying how coordinates are
assigned to points. In this document, a Coordinate System is extended to be defined as a set of
axes with which location and orientation can be defined.

4.5. Data Component

Element of sensor data definition corresponding to an atomic or aggregate data type.

Note 1 to entry: A data component is a part of the overall dataset definition. The dataset
structure can then be seen as a hierarchical tree of data components.

4.6. Datum

Undefined in ISO 19111. Defined here as a means of relating a coordinate system to the real
world by specifying the physical location of the coordinate system and the orientation of the
axes relative to the physical object. For a geodetic datum, the definition also includes a reference
ellipsoid that approximates the physical or gravitational surface of the planetary body.

4.7. Detector

Atomic part of a composite Measurement System defining sampling and response characteristic
of a simple detection device. A detector has only one input and one output, both being scalar
quantities. More complex Sensors, such as a frame camera, which are composed of multiple
detectors, can be described as a detector group or array using a System or Sensor model.

4.8. Determinand

A Parameter or a characteristic of a phenomenon subject to observation. Synonym for
observable.[O&M]

OPEN GEOSPATIAL CONSORTIUM 23-000 11

4.9. Feature

Abstraction of real-world phenomena [ISO 19101:2002, definition 4.11].

Note 1 to entry: A feature may occur as a type or an instance. Feature type or feature instance
should be used when only one is meant.

4.10. Location

A point or extent in space relative to a coordinate system. For point-based systems, this is
typically expressed as a set of n-dimensional coordinates within the coordinate system. For
bodies, this is typically expressed by relating the translation of the origin of an object’s local
coordinate system with respect to the origin of an external reference coordinate system.

4.11. Location Model

A model that allows one to locate objects in one local reference frame relative to another
reference frame.

4.12. Measurand

Physical parameter or a characteristic of a phenomenon subject to a measurement,whose value
is described using a Measure (ISO 19103). Subset of determinand or observable. [O&M]

4.13. Measure (noun)

Value described using a numeric amount with a scale or using a scalar reference system [ISO/TS
19103]. When used as a noun, measure is a synonym for physical quantity

OPEN GEOSPATIAL CONSORTIUM 23-000 12

4.14. Measurement (noun)

An observation whose result is a measure [O&M]

4.15. Measurement (verb)

An instance of a procedure to estimate the value of a natural phenomenon, typically involving
an instrument or sensor. This is implemented as a dynamic feature type, which has a property
containing the result of the measurement. The measurement feature also has a location, time,
and reference to the method used to determine the value. A measurement feature effectively
binds a value to a location and to a method or instrument.

4.16. Muliplexed Data Stream

A data stream that consists of disparate but well-defined data packets within the same stream.

4.17. Observable, Observable Property (noun)

A parameter or a characteristic of a phenomenon subject to observation. Synonym for
determinand.[O&M] A physical property of a phenomenon that can be observed and measured
(e.g., temperature, gravitational force, position, chemical concentration, orientation, number-
of-individuals, physical switch status, etc.), or a characteristic of one or more feature types, the
value for which must be estimated by application of some procedure in an observation. It is thus
a physical stimulus that can be sensed by a detector or created by an actuator.

4.18. Observation

Act of observing a property or phenomenon [ISO 19156, definition 4.10].

Note 1 to entry: The goal of an observation may be to measure, estimate or otherwise
determine the value of a property.

OPEN GEOSPATIAL CONSORTIUM 23-000 13

4.19. Observation Procedure

Method, algorithm or instrument, or system of these which may be used in making an
observation [ISO 19156, definition 4.11].

Note 1 to entry: In the context of the sensor web, an observation procedure is often composed
of one or more sensors that transform a real world phenomenon into digital information, plus
additional processing steps.

4.20. Observed Value

A value describing a natural phenomenon, which may use one of a variety of scales including
nominal, ordinal, ratio and interval. The term is used regardless of whether the value is due to
an instrumental observation, a subjective assignment or some other method of estimation or
assignment. [O&M]

4.21. Orientation

The rotational relationship of an object relative to an external coordinate system. Typically
expressed by relating the rotation of an object’s local coordinate axes relative to those axes of an
external reference coordinate system.

4.22. Phenomenon

A physical state that can be observed and its properties measured.

4.23. Physical System

An aggregate model of a group or array of process components, which can include detectors,
actuators, or sub-systems. A Physical System relates an Aggregate Process to the real world
and therefore provides additional definitions regarding relative positions of its components and
communication interfaces.

OPEN GEOSPATIAL CONSORTIUM 23-000 14

4.24. Position

The location and orientation of an object relative to an external coordinate system. For body-
based systems (in lieu of point-based systems) is typically expressed by relating the object’s local
coordinate system to an external reference coordinate system. This definition is in contrast to
some definitions (e.g., ISO 19107) which equate position to location.

4.25. Process

An operation that takes one or more inputs, and based on a set of parameters, and a
methodology generates one or more outputs.

4.26. Process Method

Definition of the algorithm, behaviour, and interface of a Process.

4.27. Property

Facet or attribute of an object referenced by a name. [ISO 19143:2010]

EXAMPLE: Abby’s car has the color red, where “color” is a property of the car instance, and “red”
is the value of that property.

4.28. Reference Frame

A coordinate system by which the position (location and orientation) of an object can be
referenced.

OPEN GEOSPATIAL CONSORTIUM 23-000 15

4.29. Result

An estimate of the value of some property generated by a known procedure [O&M]

4.30. Sample

A representative subset of the physical entity on which an observation is made.

4.31. Sensor

An entity capable of observing a phenomenon and returning an observed value. Type of
observation procedure that provides the estimated value of an observed property at its output.

Note 1 to entry: A sensor uses a combination of physical, chemical or biological means in order
to estimate the underlying observed property. At the end of the measuring chain electronic
devices often produce signals to be processed.

4.32. Sensor Model

In line with traditional definitions of the remote sensing community, a sensor model is a type
of Location Model that allows one to georegister or co-register observations from a sensor
(particularly remote sensors).

4.33. Sensor Data

List of digital values produced by a sensor that represents estimated values of one or more
observed properties of one or more features.

Note 1 to entry: Sensor data is usually available in the form of data streams or computer files.

OPEN GEOSPATIAL CONSORTIUM 23-000 16

4.34. Sensor-Related Data

List of digital values produced by a sensor that contains ancillary information that is not directly
related to the value of observed properties

EXAMPLE: sensor status, quality of measure, quality of service, battery life, etc. Such data
can be sent in the same data stream with measured values and when measured is sometimes
indistinguishable from sensor data.

4.35. (Sensor) Platform

An entity to which can be attached sensors or other platforms. A platform has an associated
local coordinate reference frame that can be referenced relative to an external coordinate
reference frame and to which the reference frames of attached sensors

4.36. Transducer

An entity that receives a signal as input and generates a modified signal as output. Includes
detectors, actuators, and filters.

4.37. Value

A member of the value-space of a datatype. A value may use one of a variety of scales including
nominal, ordinal, ratio and interval, spatial and temporal. Primitive datatypes may be combined
to form aggregate datatypes with aggregate values, including vectors, tensors and images
[ISO11404].

OPEN GEOSPATIAL CONSORTIUM 23-000 17

6

CONVENTIONS

OPEN GEOSPATIAL CONSORTIUM 23-000 18

6 CONVENTIONS

This sections provides details and examples for any conventions used in the document.
Examples of conventions are symbols, abbreviations, use of XML schema, or special notes
regarding how to read the document.

6.1. Identifiers

The normative provisions in this standard are denoted by the URI

http://www.opengis.net/spec/sensorML/3.0

All requirements and conformance tests that appear in this document are denoted by partial
URIs which are relative to this base.

6.2. Abbreviated terms

In this document the following abbreviations and acronyms are used or introduced:

• CRS: Coordinate Reference System

• DN: Digital Number

• ECEF: Earth-Centered Earth-Fixed

• ECI: Earth Centered Inertial

• GPS: Global Positioning System

• ISO: International Organization for Standardization

• MISB: Motion Imagery Standards Board

• OGC: Open Geospatial Consortium

• SAS: Sensor Alert Service

• SensorML: Sensor Model Language

• SI: Système International (International System of Units)

• SOS: Sensor Observation Service

• SPS: Sensor Planning Service

OPEN GEOSPATIAL CONSORTIUM 23-000 19

http://www.opengis.net/spec/sensorML/3.0

• SWE: Sensor Web Enablement

• TAI: Temps Atomique International (International Atomic Time)

• uom: Unit(s) of measure

• UCUM: Unified Code for Units of Measure

• UML: Unified Modeling Language

• UTC: Coordinated Universal Time

• XML: eXtended Markup Language

• 1D: One Dimensional

• 2D: Two Dimensional

• 3D: Three Dimensional

6.3. UML notation

The diagrams that appear in this standard are presented using the Unified Modeling Language
(UML) static structure diagram. The UML notations used in this standard are described in the
diagram below.

OPEN GEOSPATIAL CONSORTIUM 23-000 20

Figure 1 — UML Notation

OPEN GEOSPATIAL CONSORTIUM 23-000 21

7

REQUIREMENTS CLASS:
CORE CONCEPTS
(NORMATIVE CORE)

OPEN GEOSPATIAL CONSORTIUM 23-000 22

7 REQUIREMENTS CLASS: CORE CONCEPTS
(NORMATIVE CORE)

REQUIREMENTS CLASS 1: CORE CONCEPTS

IDENTIFIER /req/core

TARGET TYPE Derived Model, Encoding, and Software Implementation

CONFORMANCE CLASS Conformance class A.1: /conf/core

NORMATIVE STATEMENTS

Requirement 1: /req/core/concepts-used
Requirement 2: /req/core/processes
Requirement 3: /req/core/uniqueID
Requirement 4: /req/core/metadata
Requirement 5: /req/core/execution

7.1. Introduction

In SensorML, all components are modeled as processes. This includes components normally
viewed as hardware, such as detectors, actuators, and physical processors (which are viewed
as physical components) and sensors and platforms (which are viewed as physical systems).
All components are modeled as processes that receive input and through the application of an
algorithm defined by a method and set parameter values, generate output. All such components
can therefore participate in process networks (or aggregate processes). Aggregate processes are
themselves processes with their own inputs, outputs, and parameters.

Hence, SensorML can be viewed as a specialized process description language with an emphasis
on application to sensor data. Process descriptions in SensorML are agnostic of the environment
in which they might be executed, or the protocol by which data is exchanged between process
execution modules.

In order to support the use of SensorML within specialized applications (e.g., processing centers
or image processing software), the SensorML models and encodings have been divided into
several conformance classes. Thus, if one wishes to use SensorML for computation processes
only, the software only needs to conform to the requirements for non-physical processes.
Similarly, by only adhering to the Simple Process conformance class, a piece of software can
describe internal processes using SensorML while supporting chaining of these processes in a
proprietary way.

OPEN GEOSPATIAL CONSORTIUM 23-000 23

However, all derived model and encodings based on SensorML must implement the core
concepts of SensorML, regardless of whether they deal strictly with non-physical computational
processes or sensor systems.

REQUIREMENT 1

IDENTIFIER /req/core/concepts-used

INCLUDED
IN

Requirements class 1: /req/core

STATEMENT
Any derived model or encoding shall correctly implement the modeling concepts defined in the core
of this specification.

7.2. Process Definitions

In SensorML, all relevant components are modeled as processes, including both computation
and physical processes (e.g., detectors, actuators, and sensor systems). Processes in SensorML
are conceptually divided into two types: (1) those that are physical processes, such as detectors,
actuators, and sensor systems, where information regarding their positions may be relevant, and
(2) non-physical or “pure” processes which can be treated as merely mathematical operations or
functions.

Examples
For a process representing the standard linear equation, x would be the input, m and b the
parameters, y the output, and the equation y = mx + b would define the methodology.

For a detector, the input would typically be a physical stimulus (or observable property), the
parameters might include a calibration curve and other factors that affect the measurement,
and the output would be a digital number representing some quantity representation of that
observed property.

Fundamentally, a process is a physical or computational operation that may receive input and
based on configurable parameters and a methodology, generate output.

Inputs and outputs may be digital numbers or physical stimuli (i.e., observable properties of the
environment). Parameters can be variable or constant, but they don’t typically vary at the same
frequency as the input values. In essence, however, parameters can be viewed as just another
input into the process that is either fixed or changes less frequently than inputs

A process can consist of a single atomic operation, or an explicitly defined network of operations
(e.g., an aggregate process or system).

Any process must have a definable method of operation. In the case of an aggregate process
or physical system, the explicit description of the process components and the flow of data
between them will itself serve as the process methodology.

OPEN GEOSPATIAL CONSORTIUM 23-000 24

REQUIREMENT 2

IDENTIFIER /req/core/processes

INCLUDED
IN

Requirements class 1: /req/core

STATEMENT
The core model for a process shall define inputs, outputs, parameters, and methodology of that
process.

Any process description must provide a unique ID that can be used for discovery of that process
and for retrieving the definition of that process.

REQUIREMENT 3

IDENTIFIER /req/core/uniqueID

INCLUDED
IN

Requirements class 1: /req/core

STATEMENT
The core model for a process shall include a unique ID for distinguishing that process from all
others

To be useful, the core process model shall include metadata about the process that aid in
identification, discovery, and qualification of the process but do not themselves affect the
execution of the process.

REQUIREMENT 4

IDENTIFIER /req/core/metadata

INCLUDED
IN

Requirements class 1: /req/core

STATEMENT
The core model for a process shall include metadata that support identification, discovery, and
qualification of the process.

REQUIREMENT 5

IDENTIFIER /req/core/execution

INCLUDED
IN

Requirements class 1: /req/core

OPEN GEOSPATIAL CONSORTIUM 23-000 25

REQUIREMENT 5

STATEMENT
The metadata descriptions for a process shall not be required for successful execution of that
process. All information required for execution of a simple process shall be contained within the
inputs, outputs, parameters, and methodology descriptions of the process.

Process definitions can support general representations of a process or a specific instance of a
process.

Examples
A general process for the linear equation would define the allowable inputs, outputs, and
parameters. A specific instance of the process might define constant values for the parameters.

An example of a general physical process would be the manufacturer’s description of the
characteristics and configurable options for a particular model of a sensor (i.e., one that
describes the common characteristics of all instances of that model of sensor). The description
of a specific instance of that model of sensor would include information that is relevant to that
particular instance of the sensor (e.g., serial number, owner’s name, location, etc.).

OPEN GEOSPATIAL CONSORTIUM 23-000 26

8

UML CONCEPTUAL
MODELS (NORMATIVE)

OPEN GEOSPATIAL CONSORTIUM 23-000 27

8 UML CONCEPTUAL MODELS (NORMATIVE)

This standard defines normative UML models with which derived encoding models as well as all
future separate extensions should be compliant. The standardization target type for the UML
requirements classes defined in this clause is thus a software implementation or an encoding
model that directly implements the conceptual models defined in this standard.

8.1. Package Dependencies

The packages defined by the SensorML Model and their dependencies are shown in the figure
below:

Figure 2 — Internal Package Dependencies

SensorML also has dependencies on several external packages defined within other standards,
namely GML 3.2, ISO 19103, ISO 19108, ISO 19111, and ISO 19115, as described below.

8.1.1. Dependency on GML Feature Model and ISO TC 211 Models

A process represents a feature type as defined by the ISO General Feature Model and is thus
modeled as an instance of the metaclass GF_FeatureType (ISO 19109:2006). This association of

OPEN GEOSPATIAL CONSORTIUM 23-000 28

SensorML process with GF_FeatureType primarily brings recognition of SensorML processes as
features and provides important identity properties.

Figure 3 — External Package Dependencies – GML

The base feature classes in GML from which all processes in SensorML derive include
AbstractGML and AbstractFeature, as shown in the figure below:

OPEN GEOSPATIAL CONSORTIUM 23-000 29

Figure 4 — Models for dependent GML Feature classes

SensorML is dependent on ISO 19108:206 for Temporal Schema. In particular, the temporal
elements, TM_Instant and TM_Period are used within the core SensorML model for Abstract
Process. Additionally, SensorML depends on ISO 19115 for general metadata elements.

OPEN GEOSPATIAL CONSORTIUM 23-000 30

Figure 5 — External Package Dependencies – ISO TC 211

The SensorML standard utilizes the ISO 19115 models for common metadata properties such
as citations, online resources, responsible party, and constraints. While Version 1.0 of SensorML
defined encoding based on the ISO 19115 models, this version utilizes these models directly.

OPEN GEOSPATIAL CONSORTIUM 23-000 31

Figure 6 — ISO 19115 Models for dependent classes.

8.1.2. Dependency on SWE Common Data Models

In particular, SensorML is heavily dependent on the SWE Common Data Model standard for
defining inputs, outputs, and parameters, as well as for specifying characteristics, capabilities,
interfaces, and event properties. The SWE Common Data Models, which were originally
defined within the version 1.0 SensorML specification, are in version 2.1 defined as a separate
specification and are utilized throughout the SWE family of encoding and web service
specifications.

OPEN GEOSPATIAL CONSORTIUM 23-000 32

Figure 7 — External Package Dependencies - SWE Common Data

The SWE Common specification provides a flexible yet robust means of defining data types
and data values, including support for simple data types such as Quantity, Boolean, Category,
Count, Text, and Time, as well as aggregate data such as DataRecord, DataArray, Vector, and
Matrix. Additionally, SWE Common supports the concept of DataChoice, which will be utilized
by SensorML for providing multiplexed messages in data streams and configurable options for
processes and physical systems.

The data models in SWE Common provide additional properties than are provided by basic data
types, including for example, units of measure (uom), quality indications, allowable constraints,
significant digit counts, and in particular, the meaning and semantics of a data component. Both
simple and aggregate data components in SWE Common allow for unambiguous definition of
that data component through a resolvable link to an online dictionary or ontology. The definition
of the SWE Common Data Models can be found in OGC 08-094r1.

The main objective of SWE Common Data Models is to achieve interoperability, first at the
syntactic level, and later at the semantic level (by using ontologies and semantic mediation) so

OPEN GEOSPATIAL CONSORTIUM 23-000 33

that sensor data can be better understood by machines, processed automatically in complex
workflows, and easily shared between intelligent sensor web nodes.

SensorML depends heavily on the AbstractDataComponent element defined in SWE Common.
This element serves as the base component from which all relevant data types in SWE Common
are derived, including Quantity, Count, Category, Boolean, Text, DataRecord, DataArray, Vector,
Matrix, and DataChoice. AbstractDataComponent thus serves as a substitution group that
any of these data types can satisfy. AbstractSWEIdentifiable will serve as the basis for the
ObservableProperty element defined in this specification (Section 7.2.1).

The model for the SWE Common AbstractDataComponent is given in the figure below:

Figure 8 — Models for dependent SWE Common AbstractDataComponent class.

OPEN GEOSPATIAL CONSORTIUM 23-000 34

8.1.3. Relationship to Observations and Measurements (O&M)

Conceptual models for Observations and Measurements are provided by ISO 19156, which
also provides models for sampling feature types. XML Schema encodings of these models
are provided by the OGC Observations and Measurements XML Implementation Document
(OGC 10-025). The model for Observation defines a procedure of type AbstractFeature which
references or describes the origin of the observation (i.e., how the observation came to be).

SensorML has an association to the O&M models but no direct dependencies on them. The
result of a SensorML process is typically considered to be an observation result if it is measuring
or deriving some value of a physical property or phenomenon. Thus, the output values described
in SensorML and resulting from a sensor or process may be packaged in an O&M Observation
object or provided as a SWE Common DataStream. Inversely, the procedure property within an
Observation instance may reference a SensorML description of the measurement process.

8.2. Requirements Class: Core Abstract Process

REQUIREMENTS CLASS 2: CORE ABSTRACT PROCESS

IDENTIFIER /req/model/coreProcess

TARGET TYPE Derived Encoding or Software Implementation

CONFORMANCE CLASS Conformance class A.2: /conf/model/coreProcess

PREREQUISITES

Requirements class 1: /req/core
http://www.opengis.net/spec/SWE/3.0/req/uml-record-components
ISO 19115:2006 (All Metadata)
ISO 19136 (GML)

NORMATIVE
STATEMENTS

Requirement 6: /req/model/coreProcess/dependency-core
Requirement 7: /req/model/coreProcess/package-fully-implemented
Requirement 8: /req/model/coreProcess/gmlDependency
Requirement 9: /req/model/coreProcess/uniqueID
Requirement 10: /req/model/coreProcess/extensionIndependence
Requirement 11: /req/model/coreProcess/extensionRestrictions
Requirement 12: /req/model/coreProcess/SWE-Common-dependency1
Requirement 13: /req/model/coreProcess/aggregateData
Requirement 14: /req/model/coreProcess/typeOf
Requirement 15: /req/model/coreProcess/simpleInheritance
Requirement 16: /req/model/coreProcess/configuration
Requirement 17: /req/model/coreProcess/SWE-Common-dependency2

OPEN GEOSPATIAL CONSORTIUM 23-000 35

All major classes in SensorML are based on a process model, as presented in the core concepts.
Processes are features as defined in ISO 19109:2006 and modeled in GML 3.2. SensorML also
supports interoperable discovery, identification, and qualification of these processes through the
definition of a standard collection of metadata.

REQUIREMENT 6

IDENTIFIER /req/model/coreProcess/dependency-core

INCLUDED
IN

Requirements class 2: /req/model/coreProcess

STATEMENT
An encoding or software passing the “Core Abstract Process” model conformance class shall first
pass the “Core Concepts” conformance test class.

REQUIREMENT 7

IDENTIFIER /req/model/coreProcess/package-fully-implemented

INCLUDED
IN

Requirements class 2: /req/model/coreProcess

STATEMENT
An encoding or software shall correctly implement all UML classes defined in the “Core” package and
described in this section

8.2.1. ObservableProperty

An ObservableProperty is a physical property of a phenomenon that can be observed and
measured (e.g., temperature, gravitational force, position, chemical concentration, orientation,
number-of-individuals, physical switch status, etc.), or a characteristic of one or more
feature types, the value for which must be estimated by application of some procedure in an
observation. It is thus a physical stimulus that can be sensed by a detector or created by an
actuator.

Examples
The ObservableProperty element allows one to reference a measurable property of a
phenomenon or feature for detector inputs or actuator outputs. For example, the temperature
of the atmosphere is an ObservableProperty. Before measurement, it is simply a property of
the atmosphere that can be defined and measured. After measurement by a detector, the
temperature may be represented as a Quantity with units of measure, a value, and an indication
of our degree of confidence in the measurement.

ObservableProperty is derived as a concrete instance of the SWE Common
AbstractSWEIdentifiable and adds the definition property to this model. It will be used as a
potential input (e.g., for detectors), output (e.g., for actuators), and for parameters (e.g., for a
sensor whose measurement varies with fluctuations of atmospheric pressure on a diaphragm).

OPEN GEOSPATIAL CONSORTIUM 23-000 36

In ObservableProperty the phenomenon property will be defined by reference using the
definition attribute. The definition attribute value will reference a property defined within a
dictionary or ontology. An ObservableProperty may also include a name and a description.
However, unlike the simple data types in SWE Common, an ObservableProperty does NOT
include the properties uom, quality, or constraints, since these are typically characteristics of the
measuring procedure and not properties of the observable phenomenon itself.

8.2.2. DescribedObject

As shown in the UML model below, the DescribedObject class provides a specific set of
metadata for all process classes in SensorML. Since DescribedObject is itself derived from GML
AbstractFeature, all processes in SensorML are themselves features, which conforms to the
conceptual models for processes as stated in Section 6.

REQUIREMENT 8

IDENTIFIER /req/model/coreProcess/gmlDependency

INCLUDED
IN

Requirements class 2: /req/model/coreProcess

STATEMENT
DescribedObject shall derive from the GML base class, AbstractFeature, and is thus modeled as
a feature with well-defined metadata properties. Any model or encoding derived from Described
Object shall thus be of type featureType.

The GML AbstractFeature inheritance provides a unique ID, and support for multiple names and
a description. The unique ID in SensorML will be supported by a single gml:identifier property
inherited from GML AbstractFeature.

REQUIREMENT 9

IDENTIFIER /req/model/coreProcess/uniqueID

INCLUDED
IN

Requirements class 2: /req/model/coreProcess

STATEMENT
A single, required gml:identifier property inherited from GML AbstractFeature shall be used to
provide a unique ID for the DescribedObject.

Metadata about each process is essential to supporting identification, discovery, and
qualification of the process. Metadata is provided by the base class, DescribedObject, from
which AbstractProcess is derived. While these metadata may provide relevant information
to understand quality of output from the process, the values of properties within the
DescribedObject should not be required for execution of the process. The model for the
DescribedObject is shown in Figure 9, while the models for the individual property values are
provided in either Figure 10 or in the ISO 19115 models in Figure 11.

OPEN GEOSPATIAL CONSORTIUM 23-000 37

The DescribedObject includes several descriptive properties that support rapid discovery
(keywords, identification, and classification), constraints (validTime, securityConstraints,
legalConstraints), qualification (characteristics and capabilities), references (contacts and
documentation), and history. These are each grouped in lists, which provide for easy seaparation
and parsing of these properties.

8.2.2.1. Extension Property

The extension property allows one to add domain or community-specific content to a
DescribedObject instance. This might include, for example, security taggings, vendor or
community-specific metadata, or information encoded in other models or schema. Extension
properties must exist in a separate namespace and SensorML-compliant software is not required
to understand or utilize the information contained within the extension property.

The constraints on the extension property include: (a) the extension model must be defined in
a separate namespace, (b) the information added by the extension model must not be required
for execution of the process, and © SensorML-compliant parsers may parse and utilize the
information within these extensions but they are not required to do so in order to be compliant
to the SensorML standard.

REQUIREMENT 10

IDENTIFIER /req/model/coreProcess/extensionIndependence

INCLUDED IN Requirements class 2: /req/model/coreProcess

STATEMENT Models inside of the extension property must exist within a namespace other than SensorML.

REQUIREMENT 11

IDENTIFIER /req/model/coreProcess/extensionRestrictions

INCLUDED
IN

Requirements class 2: /req/model/coreProcess

STATEMENT
Information provided inside of the extension property must not be required for execution of the
process and shall not alter the execution of the process.

OPEN GEOSPATIAL CONSORTIUM 23-000 38

Figure 9 — DescribedObject with Metadata Properties

OPEN GEOSPATIAL CONSORTIUM 23-000 39

Figure 10 — Models for Metadata Elements

8.2.2.2. Keywords

Keywords provide a simple means of discovery using short tokens that may be recognized by
the general audience or specific communities. Keywords are unqualified terms in that they are
not necessarily required to be related to a specific codespace or ontology, as are classifiers and
identifiers.

8.2.2.3. Identifiers

The identifier property takes a Term as its value. The Term has a definition attribute that
specifies in this case the type of identifier, while the codeSpace attribute specifies that the value
of the identifier is according to the rules or enumerations of a particular authority.

Examples

OPEN GEOSPATIAL CONSORTIUM 23-000 40

An identifier with a definition of “http://sensors.ws/def/tailNumber” might take “N291PV” as its
value based on the codespace of a US Air Force rules dictionary. Other possible definitions for
identifiers might include, for example, shortName, longName, acronym, missionID, processorID,
serialNumber, manufacturerID, or partNumber.

The identification properties should be considered as information suitable for the discovery
applications.

8.2.2.4. Classifiers

The classifier property provides a list of possible classifiers that might aid in the rapid discovery
or organization of processes, sensors, or sensor systems. The classifier properties should be
considered as information suitable for the discovery and categorization applications.

Examples
Definitions for a classifier Term might include, for instance, sensorType, observableType,
processType, intendedApplication, or missionType.

8.2.2.5. Security Constraints

The model for specification of security constraints shall be based on external security models,
such as the Security Banner Marking model of the Intelligence Community Information Security
Marking (IC ISM) Standard. The securityConstraints property takes a value of xs:Any which
allows various communities and countries to utilize their standard XML encoding for security
tags. This security constraint is for the overall document. As will be discussed in the XML
encoding, extension points provided with SWE Common Data elements will allow security
tagging for individual properties or property aggregates.

Examples
One can specify the overall security classification of the entire document using the Intelligence
Community Information Security Banner Marking (IC ISM) standard or using ISO 19115
MD_Constraints. For tagging individual sections in the document, the SensorML standard allows
for security tagging of properties using an extension property, as describe in later sections of the
standard.

8.2.2.6. Valid Time Constraint

The validTime property indicates the time instance or time range over which this process
description is valid. Time constraints are important for processes in which parameter values or
operation modes may change with time, or instrument deployment times change.

Examples
Several SensorML documents can exist for the same sensor or system description but with
different validity periods. This allows for capturing the configuration of a sensor at different
times and, along with the history section, is the basis for maintaining history of the sensor’s

OPEN GEOSPATIAL CONSORTIUM 23-000 41

description. Alternately, parameter values can be provided as a time-tagged series of values
accounting for changes.

8.2.3. Legal Constraint

The legalConstraints property is based on ISO 19115 and specifies whether such legal and
ethical considerations as privacy acts, intellectual property rights, copyrights, or scientific
publication ethics apply to the content of the process description and its use.

8.2.4. Capabilities

The capabilities property is intended for the definition of properties that further qualify the
input or output of the process, component, or system for the purpose of discovery. These
properties are defined using one or more SWE Common DataRecord elements.

Once a user has identified candidate sensors or processes based on the classifiers described
above, the capabilities parameters might prove useful for further filtering of processes or sensor
system during this discovery stage. Thus, the capabilities properties should be considered as
information suitable for the discovery process.

Examples
A particular remote sensor on a satellite might measure radiation between a certain spectral
range (e.g., 700 to 900 nanometers) at a particular ground resolution (e.g., 5 meter), and with a
typical spatial repeat period (e.g., 3.25 – 4.3 days). Alternatively, a particular process might have
certain quality constraints. Any process may have certain limits (e.g., operational and survivable
limits), based on physical or mathematical conditions. These properties do affect the output of
the process and should be considered as capabilities.

8.2.5. Characteristics

A physical or non-physical process may have characteristics that may not directly qualify the
output. These properties are defined using one or more SWE Common DataRecord elements.

Examples
A component may have certain physical measurements such as dimensions and weight and
be constructed of a particular material. A component may have particular power demands, or
anticipated lifetime. These are characteristics of the component that may not directly affect the
output of the component or system.

The characteristics properties may or may not be considered as information suitable for the
discovery process.

8.2.6. Contacts

Contact information can provide access to manufacturers, system experts, equipment owners, or
any other persons responsible in some way for design, deployment, maintenance, or additional

OPEN GEOSPATIAL CONSORTIUM 23-000 42

information regarding the DescribedObject. The contact property within the ContactList takes
the ISO 19115 classes CI_ResponsibleParty as its values.

8.2.7. Documentation

Documentation can be provided which provides further clarification about the DescribedObject.
This might include technical manuals, manufacturer brochures, journal references, or
theoretical-basis documents. The DocumentList document property takes the ISO 19115
CI_OnlineResource as its value.

8.2.8. History

Within SensorML, the history of a process can be provided through a collection of Event
objects. These are provided within an EventList that serves as the value of the history property.
Events might for instance, specify calibration or maintenance history of a sensor, changes to an
algorithm or parameter within a computational process, or deployment and maintenance events.

Figure 11 — Model for history events

OPEN GEOSPATIAL CONSORTIUM 23-000 43

8.2.9. AbstractProcess

As discussed in the Core Concepts, the major elements of SensorML are modeled as
physical and non-physical processes. All SensorML process elements shall derive from
AbstractProcess,shown in Figure 12. The class AbstractProcess itself derives from the
DescribedObject class and thus inherits a wide range of optional metadata supporting discovery,
identification, and qualification and an option for domain and community-specific extensions.
In addition to the metadata provided by DescribedObject, the AbstractProcess includes the
properties of inputs, outputs, and parameters, as required by the process model defined in the
Core Concepts, as well as the properties typeOf, featureOfInterest, configuration, and modes
which will be discussed below.

OPEN GEOSPATIAL CONSORTIUM 23-000 44

Figure 12 — UML models for DescribedObject and AbstractProcess

8.2.9.1. Inputs, Outputs, and Parameters

As discussed in the Core Concepts, any process can have inputs, outputs, and parameters.
Processes typically receive input and based on the parameter settings and methodology,
generate output. Some processes, such as detectors, receive physical stimulus as input and
generate digital numbers as output. In such cases, the input would be represented as an
ObservableProperty, and the output as a DataComponent (e.g., a Quantity). If this output is
encoded and accessible directly, then the output can be represented as a DataInterface.

Examples

OPEN GEOSPATIAL CONSORTIUM 23-000 45

A digital thermometer is stimulated by an observable property of the environment (temperature),
which is modelled as its input (ObservableProperty), and outputs a digital number (Quantity) that
represents a measure of that property.

Thus, an AbstractProcess model supports the inputs, outputs, and parameters properties in
conformance with the Core Concepts. These properties can accept ObservableProperty or SWE
Common elements AbstractDataComponent or DataStream as their values. Classes derived from
AbstractDataComponent include Quantity, Count, Category, Boolean, Text, and Time, as well as
ranges and aggregates of these simple data types.

Figure 13 — UML models for process inputs, outputs, and parameters

The core process model will utilize the SWE Common Data Models for defining inputs, outputs,
and parameters, as well as for other metadata properties. SensorML models are required to
support the SWE Common Data Model up to the Block Components Requirements Class, but
many instances of SensorML will find ALL conformance levels of SWE Common Data to be
useful, including binary encodings.

REQUIREMENT 12

IDENTIFIER /req/model/coreProcess/SWE-Common-dependency1

OPEN GEOSPATIAL CONSORTIUM 23-000 46

REQUIREMENT 12

INCLUDED
IN

Requirements class 2: /req/model/coreProcess

STATEMENT

Any derived model or encoding for process shall utilize ObservableProperty or SWE Common Data
Components as values for inputs, outputs, and parameters, and shall at a minimum conform to the
SWE Common Data “Block Components Package” class (http://www.opengis.net/spec/SWE/2.0/req/
uml-block-components).

The input, output, or parameters of many processes include multiple values, possibly of different
data types, that are tightly related to one another. Sometimes referred to as tuples or records,
these data aggregates can consist of values that are perhaps meaningless without the other
associated values (e.g., the coordinates within a spatial reference system), or provide a more
complete understanding because of their association with one another (e.g., a set of measured
values taken by a sensor at a given time). Such data shall be modelled using the aggregate data
types defined by the SWE Common Data standard.

Examples
The location of a dynamic object can be specified through the aggregate values of time, latitude,
longitude, and altitude. In such cases, the expression of one of the values separate from the
others is meaningless or less complete than the expression of these values as a set or aggregate.
These four values should be encapsulated in a Vector data type that also identifies the reference
frame in which the latitude, longitude and altitude coordinates are expressed

Weather stations often express a set of measurements of the atmosphere as a single record
that might include for instance temperature, pressure, relative humidity, cloudiness, wind speed,
and wind direction. These would be considered a tuple of values that provides a more complete
picture of the environment at a particular time. This tuple should be modeled as a DataRecord
with 7 fields (one for each measured parameters listed above + one time stamp) to indicate that
the sampling time applies to all observable values included in the record.

REQUIREMENT 13

IDENTIFIER /req/model/coreProcess/aggregateData

INCLUDED
IN

Requirements class 2: /req/model/coreProcess

STATEMENT
Multiple input, output, and parameter values that are tightly related with one another shall be
modelled as a SWE Common Data aggregate data type.

8.2.9.2. Feature of Interest

Most sensors and many non-physical processes have been deployed or implemented with a
focus on one or more features of interest. Within SensorML, the primary purpose of including

OPEN GEOSPATIAL CONSORTIUM 23-000 47

http://www.opengis.net/spec/SWE/2.0/req/uml-block-components
http://www.opengis.net/spec/SWE/2.0/req/uml-block-components

a FeatureOfInterest property for AbstractProcess is to support discovery as well as to further
clarify the intended purpose of the physical or non-physical process.

Examples
The features of interest of an installed web camera might include a particular building, a
particular street, or a general area of observation surrounding the camera. Features of interest
for other sensors might include the Gulf of Mexico, a particular drilling well, the atmosphere
surrounding a particular weather station, a particular patient, or a particular automobile.
Features of interest for a model or other process might include a particular river basin, a
particular toxic plume release, or a particular metropolitan area.

8.2.9.3. Inheritance, Extension, and Configuration

SensorML supports the concepts of inheritance, extension, and configuration. In other words,
generalized base processes can be described in SensorML and then that description can
be augmented or further constrained by one or more separate descriptions. Thus, a single,
generalized description of a physical or non-physical process can serve as a basis for one or
many more specific process descriptions. This provides support for more simple and concise
process descriptions while also providing the ability for the user or application to “drill down” to
greater and greater detail as desired.

The inheritance model will support two cases:

• Simple inheritance – the specific process description provides only additional information
to the description of the general process, without modifying or restricting any property
values of the general process.

• Configuration – the specific process description is able to set or restrict property values
within the allowable range provided by the general process description, as well as provide
additional information.

The key to inheritance, extension, and configuration of a process lies in the typeOf property, by
which a specific process can reference its more general base process. The typeOf property takes
as its value any process model derived from AbstractProcess. This will be “by-reference-only”
meaning that the value must be in the form of a resolvable link to another process instance.

REQUIREMENT 14

IDENTIFIER /req/model/coreProcess/typeOf

INCLUDED
IN

Requirements class 2: /req/model/coreProcess

STATEMENT
A process that is a specific instance of another process shall reference the more general process
through its typeOf property. The value of the typeOf property shall be a resolvable link to an instance
of a process derived from AbstractProcess.

OPEN GEOSPATIAL CONSORTIUM 23-000 48

8.2.9.3.1. Simple Inheritance

In the simple inheritance model, a process (referred to as the “specific process”) inherits and
augments information from another process (referred to as the “general process”).

Examples
An Original Equipment Manufacturer (OEM) provides a description of a particular model of
their sensor that would define inputs, outputs, and parameters, as well as perhaps capabilities,
characteristics, manufacturer contact information and documentation relevant to that model.
Thousands of sensors of this model type may of course be manufactured and sold by the OEM.
When one purchases and deploys an instance of that model of sensor, the owner can then
reference the OEM’s description of the model and provide additional information that’s specific
to his specific instance of the sensor. Additional information might include, for example, serial
number, owner’s contact information, the sensor’s location, calibration data, and the interface
description for accessing the data.

The simple inheritance model is fully supported in the Core Process conformance class and
will be supported solely through the use of the typeOf property within the specific process.
The typeOf property within the specific process will reference the general process through a
resolvable reference.

REQUIREMENT 15

IDENTIFIER /req/model/coreProcess/simpleInheritance

INCLUDED
IN

Requirements class 2: /req/model/coreProcess

STATEMENT

A process instance that references another process through the typeOf property, but does not
include the configuration property, shall inherit properties of the referenced process through simple
inheritance. The complete description of that process is thus the addition of information from both
process descriptions.

8.2.9.3.2. Support for Configurable Processes

A configurable process is one that includes options or choices that can be selected, restricted, or
enabled during deployment, operation, or execution of that process.

Examples
An Original Equipment Manufacturer (OEM) can provide a description of a particular model of
their sensor that would define inputs, outputs, and parameters, as well as perhaps capabilities,
characteristics, manufacturer contact information and documentation relevant to that model. In
addition, the OEM enables an individual instance of that model of sensor to be configured by
providing options for setting parameter values, setting modes, or choosing a particular interface.
Thousands of sensors of this model type may of course be manufactured and sold by the OEM.

OPEN GEOSPATIAL CONSORTIUM 23-000 49

When one purchases and deploys an instance of that model of sensor, the owner can then
reference the OEM’s description of the model and provide additional information that’s specific
to that particular instance of the sensor. In addition, the owner can configure the sensor by
setting values, selecting modes, and enabling particular interfaces. These settings would be
provided in the instance description.

The configuration model will utilize both the typeOf and configuration properties. The typeOf
property references the more general process as with simple inheritance, while the configuration
property provides a means to further restrict the options and allowed values for the specific
process. The configuration property in the AbstractProcess takes an AbstractSettings class as its
value.

REQUIREMENT 16

IDENTIFIER /req/model/coreProcess/configuration

INCLUDED
IN

Requirements class 2: /req/model/coreProcess

STATEMENT
A process instance that references another process through the typeOf property, and further restricts
options or allowed values provided in the referenced process, shall specify those restrictions through
the configuration property.

A concrete implementation of a Settings class will be provided in a later Conformance Clause.

8.2.10. SWE Common Data Types

Many properties in the DescribedObject and AbstractProcess classes described above are of
type AbstractDataComponent as defined in the SWE Common Data Model standard. This
data type is used for defining inputs, outputs and parameters, as well as for other metadata
properties.

This requirements class only mandates the support of the “Simple Components” and “Record
Components” as defined in the SWE Common Data Model standard. These includes the scalar
data types Boolean, Text, Count, Quantity, Category, Time and their range equivalents, as well as
DataRecord and Vector.

REQUIREMENT 17

IDENTIFIER /req/model/coreProcess/SWE-Common-dependency2

INCLUDED
IN

Requirements class 2: /req/model/coreProcess

STATEMENT
Contents of all properties of type AbstractDataComponents shall pass the SWE Common Data
Model “Records Components Package” conformance test class.

OPEN GEOSPATIAL CONSORTIUM 23-000 50

However, many implementations of SensorML will find ALL conformance levels of the SWE
Common Data Model to be useful, including arrays, choices and encodings. An implementation
claiming support for more than the record components can pass the “Processes with Advanced
Data Types” conformance test class of this standard.

8.3. Requirements Class: Simple Process

REQUIREMENTS CLASS 3: SIMPLE PROCESS

IDENTIFIER /req/model/simpleProcess

TARGET TYPE Derived Encoding or Software Implementation

CONFORMANCE CLASS Conformance class A.3: /conf/model/simpleProcess

PREREQUISITES
Requirements class 2: /req/model/coreProcess
ISO 19115:2006 (All Metadata)
ISO 19136 (GML)

NORMATIVE
STATEMENTS

Requirement 18: /req/model/simpleProcess/dependency-core
Requirement 19: /req/model/simpleProcess/package-fully-implemented
Requirement 20: /req/model/simpleProcess/definition
Requirement 21: /req/model/simpleProcess/method

A simple process is derived from abstract process model, as presented in Clause 7.2.

REQUIREMENT 18

IDENTIFIER /req/model/simpleProcess/dependency-core

INCLUDED
IN

Requirements class 3: /req/model/simpleProcess

STATEMENT
An encoding or software passing the “Simple Process” model conformance class shall first pass the
“Abstract Process” requirements test class.

REQUIREMENT 19

IDENTIFIER /req/model/simpleProcess/package-fully-implemented

INCLUDED
IN

Requirements class 3: /req/model/simpleProcess

OPEN GEOSPATIAL CONSORTIUM 23-000 51

REQUIREMENT 19

STATEMENT
The encoding or software shall correctly implement all UML classes defined in the “SimpleProcess”
package described in this section.

8.3.1. Simple Process Definition

A simple process is a process that, for whatever reason, is considered indivisible. That is, there is
no intent to further divide the process description into an aggregation of sub-processes. While
the process method may describe several steps within the algorithm, the actual execution of this
process is expected to occur as a single modular unit.

Often simple processes are computational processes that can be executed with an associated
piece of software. Simple processes are often one component of a physical or non-physical
aggregate process.

REQUIREMENT 20

IDENTIFIER /req/model/simpleProcess/definition

INCLUDED
IN

Requirements class 3: /req/model/simpleProcess

STATEMENT
A process shall be modeled a “Simple Process” if it provides a processing function with well-defined
inputs and outputs, if there is no intent to further divide the process description into sub-process
components, and if knowledge of its physical location is of no importance.

The SimpleProcess model, as shown in Figure 14, is a concrete instantiation of the
AbstractProcess model. The SimpleProcess requires a method description.

REQUIREMENT 21

IDENTIFIER /req/model/simpleProcess/method

INCLUDED
IN

Requirements class 3: /req/model/simpleProcess

STATEMENT
An encoding or software implementation of the SimpleProcess class shall support the definition of
the method.

OPEN GEOSPATIAL CONSORTIUM 23-000 52

Figure 14 — Model for Simple Process

Examples
A process computing a simple mathematical function such as sine, cosine or square root is
usually modeled as a SimpleProcess instance. However, even more complex processes can be
modeled this way if there is no intent to break down the implementation of the process into
sub-processes.

8.3.2. Process Method Definition

The ProcessMethod provides a description of the methodology used by the process to
execute and generate output based on the input and parameter values. This includes a textual
description, as well as an optional description of the algorithm in an appropriate format (e.g.,
mathML) and optional references to particular executable implementations.

The ProcessMethod definition should be sufficient to allow one to understand how input values
are converted to output values, given a particular set of parameter values, and be able to write
software that is capable of executing this process.

A ProcessMethod description may be protected by security or legal constraints, which would
purposely prevent access to the method description as well as restrict knowledge of the

OPEN GEOSPATIAL CONSORTIUM 23-000 53

methodology to authorized personnel only. However, regardless of access restrictions, a
ProcessMethod should always be able to be referenced and identified by a unique identifier.

Figure 15 — Model for ProcessMethod

8.4. Requirements Class: Aggregate Process

REQUIREMENTS CLASS 4: AGGREGATE PROCESS

IDENTIFIER /req/model/aggregateProcess

OPEN GEOSPATIAL CONSORTIUM 23-000 54

REQUIREMENTS CLASS 4: AGGREGATE PROCESS

TARGET TYPE Derived Encoding or Software Implementation

CONFORMANCE CLASS Conformance class A.4: /conf/model/aggregateProcess

PREREQUISITE Requirements class 3: /req/model/simpleProcess

NORMATIVE
STATEMENTS

Requirement 22: /req/model/aggregateProcess/dependency-core
Requirement 23: /req/model/aggregateProcess/package-fully-
implemented
Requirement 24: /req/model/aggregateProcess/definition
Requirement 25: /req/model/aggregateProcess/components

An aggregate process is derived from abstract process model, as presented in Clause 7.2.

REQUIREMENT 22

IDENTIFIER /req/model/aggregateProcess/dependency-core

INCLUDED
IN

Requirements class 4: /req/model/aggregateProcess

STATEMENT
An encoding or software passing the “Aggregate Process” conformance test class shall first pass the
“Simple Process” conformance test class.

REQUIREMENT 23

IDENTIFIER /req/model/aggregateProcess/package-fully-implemented

INCLUDED
IN

Requirements class 4: /req/model/aggregateProcess

STATEMENT
The encoding or software shall correctly implement all UML classes defined in the “Aggregate
Process” package described in this section.

8.4.1. Aggregate Process Definition

An aggregate process is a collection of autonomous component processes with an explicit
mapping of the data flow between these processes. Components of an aggregate process can
be simple processes (i.e., atomic) or be aggregate process themselves. Aggregate processes can
include both physical and non-physical (i.e., logical) components.

OPEN GEOSPATIAL CONSORTIUM 23-000 55

REQUIREMENT 24

IDENTIFIER /req/model/aggregateProcess/definition

INCLUDED
IN

Requirements class 4: /req/model/aggregateProcess

STATEMENT
A process shall be modeled as an “aggregate process” if it provides a processing function with well-
defined inputs and outputs, if there is intent to further divide the process description into sub-
processes, and if knowledge of its physical location is of no importance.

REQUIREMENT 25

IDENTIFIER /req/model/aggregateProcess/components

INCLUDED
IN

Requirements class 4: /req/model/aggregateProcess

STATEMENT
An encoding or software implementation of the AggregateProcess class shall support the inclusion
of one or more component processes and a means for explicitly specifying data flow between these
components.

In SensorML, an aggregate process is agnostic to the execution engine that may perform the
actual execution of individual sub-processes and manage the execution sequencing and the flow
of data between the components. Also, while it is possible in SensorML to more explicitly define
the data encoding if desired by using the encoding specifications defined in the SWE Common
Data Specification, SensorML is typically agnostic to the protocol and format of data flowing
between logical processes.

This provides significant flexibility as to where and how a SensorML-defined aggregate process
is executed. While the ProcessMethod explicitly defines the algorithm for executing an atomic
process, the actual execution of that algorithm and the management of data flow between
processes can be handled by any software system able to parse a SensorML-defined aggregate
process and sequence the execution of the processes.

A SensorML-defined process component or aggregate process can be executed through web
services, within the CPU of a laptop, mobile device, or supercomputer, or a mix of these.
Furthermore, a SensorML-defined aggregate process can be executed wherever desired, be it
at a large data or computation center, within a visualization and analysis client on a laptop, or
on-board a sensor or actuator system. Thus, SensorML provides the choice to either bring the
process to the data or bring the data to the process.

The model for AggregateProcess is shown in the figure below. AggregateProcess extends the
AbstractProcess model and adds one or more process components and explicit linking of data
flow between these components. The component property takes any component derived from
AbstractProcess as its value. Component process descriptions can be provided inline or by
reference.

OPEN GEOSPATIAL CONSORTIUM 23-000 56

The derivation from AbstractProcess means that an AggregateProcess instance itself has its own
inputs, outputs, and parameters, as well as identification and possible metadata.

Figure 16 — Model for Aggregate Process

8.5. Requirements Class: Physical Component

REQUIREMENTS CLASS 5: PHYSICAL COMPONENT

IDENTIFIER /req/model/physicalComponent

TARGET TYPE Derived Encoding or Software Implementation

CONFORMANCE CLASS Conformance class A.5: /conf/model/physicalComponent

PREREQUISITES
Requirements class 2: /req/model/coreProcess
http://www.opengis.net/spec/GeoPose/1.0/req/basic-ypr
http://www.opengis.net/spec/GeoPose/1.0/req/basic-quaternion

OPEN GEOSPATIAL CONSORTIUM 23-000 57

REQUIREMENTS CLASS 5: PHYSICAL COMPONENT

NORMATIVE
STATEMENTS

Requirement 26: /req/model/physicalComponent/package-fully-
implemented
Requirement 27: /req/model/physicalComponent/dependency-core
Requirement 28: /req/model/physicalComponent/byPointOrLocation
Requirement 29: /req/model/physicalComponent/byPosition
Requirement 30: /req/model/physicalComponent/byTrajectory
Requirement 31: /req/model/physicalComponent/byProcess
Requirement 32: /req/model/physicalComponent/definition

In the context of SensorML, physical processes represent real processing devices whose spatio-
temporal position is important. Physical processes include detectors, actuators, sensor systems,
and actuator systems. Such processes typically, but not always, involve interactions beween a
real-world domain (or environment) and a digital domain.

Examples
A detector or sensor system typically senses an environmental stimulus and provides a digital
number representing the measure of a property of that environment (e.g., temperature).
Likewise, an actuator receives a digital number and based on its values causes an action in the
real-world environment.Both devices interact with the real world and their position is usually of
importance to the end-user. These should usually be modelled as physical components.

Because physical processes typically interact with the real-world environment, the position
(location and orientation), as well as perhaps the dynamic state (velocity and acceleration),
are usually of importance. We wish to either measure an observable property at a particular
location in the environment or we wish to affect a physical action at a particular place in
the environment. Thus, the position where the physical process measures or acts becomes
important.

REQUIREMENT 26

IDENTIFIER /req/model/physicalComponent/package-fully-implemented

INCLUDED
IN

Requirements class 5: /req/model/physicalComponent

STATEMENT
The encoding or software shall correctly implement all UML classes defined in the “Physical
Component” package described in this section

8.5.1. Abstract Physical Process Defined

The AbstractPhysicalProcess model is derived from AbstractProcess and thus includes the
metadata and properties of a core process. Additionally, AbstractPhysicalProcess supports
additional properties that allow one to define spatial and temporal coordinates for the physical
process device.

OPEN GEOSPATIAL CONSORTIUM 23-000 58

REQUIREMENT 27

IDENTIFIER /req/model/physicalComponent/dependency-core

INCLUDED
IN

Requirements class 5: /req/model/physicalComponent

STATEMENT
An encoding or software passing the “Physical Component” conformance class shall first pass the
“Core Abstract Process” conformance test class.

The model for AbstractPhysicalProcess is shown in Figure 17 below. The additional properties of
the AbstractPhysicalProcess will be discussed in subsequent clauses.

OPEN GEOSPATIAL CONSORTIUM 23-000 59

Figure 17 — Model for Physical Process Component

8.5.1.1. attachedTo Property

A physical process (“child process”) may be attached to another physical process (“parent
process”) such that the movement of the parent process affects the position of the child process.
The attachedTo property provides a reference from the attached process to the process to which
it is attached.

Examples

OPEN GEOSPATIAL CONSORTIUM 23-000 60

A video camera is attached to a gimbal that allows rotation of the camera to view a 360° area
surrounding the camera. In such a case, the camera is said to be attached to the gimbal. Both are
physical processes (the camera, a sensor; the gimbal, an actuator). The video camera description
should thus use the attachedTo property to reference the gimbal description.

8.5.1.2. Position and Spatial Reference Frames

In this standard, the position or dynamic state of a physical object is defined as a relationship of
the reference frame of the object to some external reference frame. SensorML allows for the
definition of direct orthogonal (i.e., Cartesian) reference frames that are assumed to be attached
to the physical component where they are described.

A reference frame is defined by its origin and its axes, which are described relative to the
physical object itself using natural language and are not relative to any relationship of the
object to some external frame. The relationship of this object’s reference frame to an external
reference frame is defined by the position or dynamic state of the object. The models for
reference frames and spatial position are provided in Figure 18. de style=”display: block;
background: #f1efee; color: #000000; padding: 0.5em; white-space: pre-wrap;white-space:
-moz-pre-wrap; white-space: -pre-wrap;white-space: -o-pre-wrap;word-wrap: break-word;”
> Example The origin of an airplane’s spatial reference frame can be defined as the being at
the center of the Inertial Navigation Unit main gyro. The axes can be defined by the following
statements: “X is along the symmetric axis of the airplane’s fuselage from the gyro to the nose
of the airplane (along the platform roll axis of the airplane), Z is perpendicular to X and toward
the belly of the airplane (along the yaw axis of the aircraft), and Y is Z cross X (in the direction
of of the right wing and along the pitch axis of the airplane)”. The location of this aircraft can
then be given as the spatial relationship of the origin of this reference frame to some external
reference frame (e.g., Earth-Centered-Earth-Fixed XYZ or latitude-longitude-altitude). Likewise,
the orientation of the aircraft can be specified as the angular relationship of the axes of its
reference frame to the axes of some external reference frame (e.g., ECEF or North-East-Down).

OPEN GEOSPATIAL CONSORTIUM 23-000 61

Figure 18 — Models for SpatialFrame and PositionUnion

In this standard, position is defined as the combination of location and orientation. Location is
the llinear displacement (translation) of the origin of the object’s spatial reference frame relative
to the origin of some external reference frame (which must be designated). The orientation of
an object is the angular relationship between the axes of the object’s reference axes to those
of some external reference frame. The dynamic state of an object can include its time-tagged
location, orientation, linear velocity, angular velocity, and higher-order derivatives when required
(e.g., linear and angular acceleration, jerk, etc.).

An external reference frame can be another object’s reference frame (e.g., the reference frame of
a ship) or a geographic reference frame (e.g., WGS84 latitude-longitude-altitude).

OPEN GEOSPATIAL CONSORTIUM 23-000 62

The PositionUnion class provides various means of specifying the location, position, or dynamic
state of an object. These will be described in more detail in the appropriate JSON encoding
section, but the following rules apply to the SensorML models.

REQUIREMENT 28

IDENTIFIER /req/model/physicalComponent/byPointOrLocation

INCLUDED
IN

Requirements class 5: /req/model/physicalComponent

STATEMENT
Specification of position “byPoint” or “byLocation” shall specify the location of the origin of the
object’s reference frame relative to the origin of a well-defined and specified external reference
frame.

REQUIREMENT 29

IDENTIFIER /req/model/physicalComponent/byPosition

INCLUDED
IN

Requirements class 5: /req/model/physicalComponent

STATEMENT
Specification of position “byPosition” shall specify, using a GeoPose or Relative Pose object, the
location and orientation of the object’s reference frame relative to a well-defined and specified
external reference frame.

REQUIREMENT 30

IDENTIFIER /req/model/physicalComponent/byTrajectory

INCLUDED
IN

Requirements class 5: /req/model/physicalComponent

STATEMENT
Specification of position “byTrajectory” shall specify, at a minimum, the time-tagged location of the
object’s reference frame relative to a well-defined and specified external reference frame, but may
also include its orientation and any number of derivatives of the location and orientation.

REQUIREMENT 31

IDENTIFIER /req/model/physicalComponent/byProcess

INCLUDED
IN

Requirements class 5: /req/model/physicalComponent

OPEN GEOSPATIAL CONSORTIUM 23-000 63

REQUIREMENT 31

STATEMENT

Specification of position “byProcess” shall specify SensorML-modeled process whose output
provides, at a minimum, the time-tagged location of the object’s reference frame relative to a well-
defined and specified external reference frame, but may also include its orientation and any number
of derivatives of the location and orientation.

8.5.1.3. Temporal Reference Frames

Just as spatial position must be related to a spatial reference frame, time must also be related
to a temporal reference frame. Temporal reference frames can include a particular calendar, a
particular time of day reference frame, or a frame attached to an event of interest.

Examples
A temporal frame can be attached to an event of interest, such as the start of the mission. When
such a reference frame is defined, time measurements can be expressed in seconds past the
mission start time (which is usually itself referenced to a global time frame such as UTC or TAI).

A temporal reference frame can be defined within a physical process and is particularly useful if
the component is a process that outputs its own measure of time (such as an on-board clock or
high-resolution counter).

8.5.1.4. 3D Pose

This sections introduces data types for expressing 3D pose information within SensorML
documents. It builds on the GeoPose Standard.

When a 3D Pose object is used as the value of the position property within a SensorML
PhysicalComponent or PhysicalSystem instance, it defines the pose of the local reference
frame attached to the component (intrinsic reference frame), relative to an external reference
frame (extrinsic reference frame).

OPEN GEOSPATIAL CONSORTIUM 23-000 64

Figure 19 — Pose Data Types

8.5.1.4.1. GeoPose

The GeoPose Basic classes are used to define a pose relative to a tangent reference frame
associated to the WGS84 ellipsoid. The location of the local tangent plane (LTP) is provided
using EPSG:4979 coordinates and orientation is provided as yaw/pitch/roll angles or quaternion
in the local tangent frame.

SensorML uses the Basic-YPR and Basic-Quaternion classes defined in the GeoPose Standard.

These classes are used to define the pose of an object relatively to the earth ellipsoid.

8.5.1.4.2. Relative Pose

The Relative Pose classes Relative_YPR and Relative_Quaternion are modeled on their
GeoPose counterparts, but in this case, both position and orientation are provided relative to a
cartesian reference frame.

These classes are used to define the pose of an object relatively to another object (e.g. a sensor
relative to its platform).

OPEN GEOSPATIAL CONSORTIUM 23-000 65

https://docs.ogc.org/is/21-056r11/21-056r11.html#_requirements_for_standardization_target_1_basic_ypr
https://docs.ogc.org/is/21-056r11/21-056r11.html#_requirements_for_standardization_target_2_basic_quaternion

8.5.2. Physical Component Defined

Any processing device can be considered a physical component, if it provides a processing
function with well-defined inputs and outputs, if there is no intent to further divide the device
description into component sub-processes, and if knowledge of its physical location is useful.
Such devices could include, but not be limited to, detectors, actuators, reflectors, electrical
components (e.g transformers, capacitors, resistors), or perhaps even computational units (when
knowing their location in a computational facility is helpful).

REQUIREMENT 32

IDENTIFIER /req/model/physicalComponent/definition

INCLUDED
IN

Requirements class 5: /req/model/physicalComponent

STATEMENT
A process shall be modeled as a “Physical Component” if it provides a processing function with well-
defined inputs and outputs, if there is no intent to further divide the device description into sub-
process components, and if knowledge of its physical location is of importance.

As shown in the models of Figure 17, the PhysicalComponent class is a concrete instantiation of
an AbstractPhysicalProcess that adds the method property, which takes a ProcessMethod as its
value. ProcessMethod was defined earlier in clause 7.3.2.

8.6. Requirements Class: Physical System

REQUIREMENTS CLASS 6: PHYSICAL SYSTEM

IDENTIFIER /req/model/physicalSystem

TARGET TYPE Derived Encoding or Software Implementations

CONFORMANCE CLASS Conformance class A.6: /conf/model/physicalSystem

PREREQUISITE Requirements class 5: /req/model/physicalComponent

NORMATIVE
STATEMENTS

Requirement 33: /req/model/physicalSystem/package-fully-implemented
Requirement 34: /req/model/physicalSystem/definition
Requirement 35: /req/model/physicalSystem/dependency-core

OPEN GEOSPATIAL CONSORTIUM 23-000 66

A physical system is used to model a hardware device as an aggregate process made of one or
more components and whose location in the real world is known and of importance.

REQUIREMENT 33

IDENTIFIER /req/model/physicalSystem/package-fully-implemented

INCLUDED
IN

Requirements class 6: /req/model/physicalSystem

STATEMENT
The encoding or software shall correctly implement all UML classes defined in the “PhysicalSystem”
package described in this section.

Sensor and actuator systems (e.g., machines and robots) are typically physical systems that
perform a particular feat through the coordinated actions of both physical and non-physical
sub-processes. Even though a sensor system’s overall application is to sense something in the
environment, the system itself can consist of sensing components (e.g., detectors and sensing
subsystems), action (e.g., actuators and robotic subsystems), and computational components.

Examples
A weather station is an example of physical system that is composed of several sensors
(thermometer, barometer, wind sensor, etc.) and other computational process such as an
algorithm to compute wind chill. All these components can be described in SensorML and
grouped in a PhysicalComponent description representing the station as a whole.

A hand-held digital camera can also be modeled as a physical system with an overall task of
sensing radiance in a scene and generating an image. However, the camera is an aggregate
of various sub-processes, each of which can be physical or non-physical, and can be sensing,
acting, or computational. For example, a light detector outputs a measure of brightness, which
serves as the input of a computational process which outputs a signal that provides input into an
actuator that controls the opening or closing of the iris. The final iris size is sensed by another
detector which inputs that value into a process that encodes that value into an EXIF format that
accompanies the image, which is generated by a entirely different subsystem of the camera.

REQUIREMENT 34

IDENTIFIER /req/model/physicalSystem/definition

INCLUDED
IN

Requirements class 6: /req/model/physicalSystem

STATEMENT
A process shall be modeled as a “Physical System” if it provides a processing function with well-
defined inputs and outputs, if the device description is further divided into subprocess components,
and if knowledge of its physical location is of importance.

OPEN GEOSPATIAL CONSORTIUM 23-000 67

The model for PhysicalSystem, as shown in Figure 20, is derived from AbstractPhysicalProcess,
and adds the components and connections properties that have been described in the non-
physical counterpart, Clause 8.4.

Figure 20 — Model for Physical Processing System

OPEN GEOSPATIAL CONSORTIUM 23-000 68

REQUIREMENT 35

IDENTIFIER /req/model/physicalSystem/dependency-core

INCLUDED
IN

Requirements class 6: /req/model/physicalSystem

STATEMENT
An encoding or software passing the “Physical System” model conformance test class shall first pass
the “Physical Component” conformance test class.

8.7. Requirements Class: Processes with Advanced Data
Types

REQUIREMENTS CLASS 7: PROCESSES WITH ADVANCED DATA TYPES

IDENTIFIER /req/model/advancedProcess

TARGET TYPE Derived Encoding or Software Implementation

CONFORMANCE CLASS Conformance class A.7: /conf/model/advancedProcess

PREREQUISITES
Requirements class 3: /req/model/simpleProcess
http://www.opengis.net/spec/SWE/3.0/req/uml-block-components
http://www.opengis.net/spec/SWE/3.0/req/uml-choice-components

NORMATIVE STATEMENTS
Requirement 36: /req/model/advancedProcess/dependency-core
Requirement 37: /req/model/advancedProcess/package-fully-
implemented

The “Core Abstract Process” requirements class only requires the support of the record and
scalar data types wherever a data type from the SWE Common standard is used.

This class also requires support for more advanced data types defined in the SWE Common
standard: DataArray, Matrix, DataStream and Choice.

REQUIREMENT 36

IDENTIFIER /req/model/advancedProcess/dependency-core

INCLUDED
IN

Requirements class 7: /req/model/advancedProcess

OPEN GEOSPATIAL CONSORTIUM 23-000 69

REQUIREMENT 36

STATEMENT
An encoding or software passing the “Advanced Data Types” model conformance class shall first pass
the “Abstract Core Process” conformance test class.

REQUIREMENT 37

IDENTIFIER /req/model/advancedProcess/package-fully-implemented

INCLUDED
IN

Requirements class 7: /req/model/advancedProcess

STATEMENT
The encoding or software shall correctly implement all UML classes defined in the “Core” package
and described in this section.

8.8. Requirements Class: Configurable Processes

REQUIREMENTS CLASS 8: CONFIGURABLE PROCESSES

IDENTIFIER /req/model/configurableProcess

TARGET TYPE Derived Encoding or Software Implementations

CONFORMANCE CLASS Conformance class A.8: /conf/model/configurableProcess

PREREQUISITE /req/coreProcess

NORMATIVE
STATEMENTS

Requirement 38: /req/model/configurableProcess/dependency-core
Requirement 39: /req/model/configurableProcess/package-fully-
implemented
Requirement 40: /req/model/configurableProcess/twoModesRequired
Requirement 41: /req/model/configurableProcess/settingsProperty
Requirement 42: /req/model/configurableProcess/setValueRestriction
Requirement 43: /req/model/configurableProcess/
setArrayValueRestriction
Requirement 44: /req/model/configurableProcess/
setConstraintRestriction

Many processes, both physical and non-physical, are configurable in that they provide one with
the ability to set parameters values, enable options, or select modes before or during execution/

OPEN GEOSPATIAL CONSORTIUM 23-000 70

operation. Thus a general configurable process can be defined and published specifying allowed
values for parameters, modes that can be selected, and options that can be enabled or disabled.

A specific process that inherits from this general process can then refine the process in several
ways by: (1) specifying values for parameters, (2) further constraining the allowable values of
parameters, (3) selecting an operational mode (which then sets a group of parameter values), or
(4) enabling or disabling particular options such as particular outputs or components.

In this document, we will refer to the more general process as the “configurable process”, and
the more specific process that inherits from it, as the “configured process”.

REQUIREMENT 38

IDENTIFIER /req/model/configurableProcess/dependency-core

INCLUDED
IN

Requirements class 8: /req/model/configurableProcess

STATEMENT
An encoding or software passing the “Configurable Process” conformance test class shall first pass
the “Core Abstract Process” conformance test class.

REQUIREMENT 39

IDENTIFIER /req/model/configurableProcess/package-fully-implemented

INCLUDED
IN

Requirements class 8: /req/model/configurableProcess

STATEMENT
The encoding or software shall correctly implement all UML classes defined in the “Configuration”
package described in this section.

A process shall be considered “configurable” if it provides options, variable parameters, or modes
that can be selected or set before or during deployment or execution.

Examples
A configurable process based on the linear equation (y=mx+b) defines two parameters for
“slope” and “y-intercept” but does not provide values for these parameters. A configured process
can inherit from this configurable process and set the values of those parameters (e.g., y=2x+4).

A process becomes “configurable” by one or more of the following characteristics:

• it defines parameters, but not defining their values

• it defines a range or selection of possible values for parameters using the
swe:AllowedValues property

• it defines modes which in turn set a collection of parameter values when enabled

• it allows inputs, outputs, or components to be enabled or disabled

OPEN GEOSPATIAL CONSORTIUM 23-000 71

A process becomes “configured” by having both of the following two characteristics:

• it inherits from a configurable process using the typeOf property

• it specifies one or more settings within the configuration property

8.8.1. Modes

Examples
A Doppler radar for monitoring storms may have several modes from which one can select
depending on the prevailing conditions at the time. For instance, there can be “clear-sky”,
“storm”, and “severe-storm” modes in which the scanning properties, radar intensity, and gain
settings can all change by simply changing the mode setting

A configurable process can but is not required to contain one or more modes properties. The
modes property takes an AbstractModes as its value. As shown in Figure 21, the concrete
ModeChoice class defined in this conformance clause is derived from AbstractModes and serves
as the concrete instantiation for defining modes in this specification.

ModeChoice shall include two or more mode properties that take Mode as their value.
In addition to metadata provided by the base DescribedObject class, Mode includes a
configuration property that allows one to define a collection of settings for that mode.

REQUIREMENT 40

IDENTIFIER /req/model/configurableProcess/twoModesRequired

INCLUDED IN Requirements class 8: /req/model/configurableProcess

STATEMENT A ModeChoice instantiation must include two or more mode properties.

OPEN GEOSPATIAL CONSORTIUM 23-000 72

Figure 21 — Model for Modes

The configuration property takes a Settings object, which will be described in more detail below.
==== Settings

The configuration property and it Settings value can be utilized in two cases:

• within the Mode definition of a configurable process for defining a collection of settings
for that particular mode

• as a required property within a configured process for setting one or more configurable
properties

REQUIREMENT 41

IDENTIFIER /req/model/configurableProcess/settingsProperty

INCLUDED IN Requirements class 8: /req/model/configurableProcess

OPEN GEOSPATIAL CONSORTIUM 23-000 73

REQUIREMENT 41

STATEMENT A configured process must include a configuration property that takes a Settings class as its value.

The Settings class is shown in Figure 21 with its possible property values shown in Figure 22.
For all settings, the property in the configurable process is specified by the DataComponentPath
reference.

Within the Settings class, one may (a) set particular values for parameters, (b) set an array of
values for a parameter (and only a parameter that takes a DataArray as its value, © further
constrain allowed values for parameters, (d) set the operational mode, and (e) enable or disable
an input or output.

Figure 22 — Model for Configured Process Settings

REQUIREMENT 42

IDENTIFIER /req/model/configurableProcess/setValueRestriction

INCLUDED
IN

Requirements class 8: /req/model/configurableProcess

STATEMENT
The setValue property shall only reference and set values for a parameter defined in a configurable
process.

REQUIREMENT 43

IDENTIFIER /req/model/configurableProcess/setArrayValueRestriction

INCLUDED
IN

Requirements class 8: /req/model/configurableProcess

OPEN GEOSPATIAL CONSORTIUM 23-000 74

REQUIREMENT 43

STATEMENT
The setConstraint property shall only reference and set constraints for a parameter defined in a
configurable process.

REQUIREMENT 44

IDENTIFIER /req/model/configurableProcess/setConstraintRestriction

INCLUDED
IN

Requirements class 8: /req/model/configurableProcess

STATEMENT
The setArrayValues and setEncodedValues properties shall only reference and set array values for a
parameter defined in a configurable process.

Figure 23 — Model for Settings Elements

OPEN GEOSPATIAL CONSORTIUM 23-000 75

8.9. Requirements Class: Deployment

8.9.1. Overview

REQUIREMENTS CLASS 9

IDENTIFIER /req/model/deployment

TARGET TYPE Derived Encoding or Software Implementation

CONFORMANCE CLASS Conformance class A.9: /conf/model/deployment

PREREQUISITE Requirements class 2: /req/model/coreProcess

NORMATIVE
STATEMENT

Requirement 45: /req/model/deployment/package-fully-implemented

REQUIREMENT 45

IDENTIFIER /req/model/deployment/package-fully-implemented

INCLUDED
IN

Requirements class 9: /req/model/deployment

STATEMENT
The encoding or software shall correctly implement all UML classes defined in the “Deployment”
package described in this section.

8.9.2. Deployment Class

The Deployment class is used to describe when, where, why and how physical or non-physical
systems are being deployed. The class Deployment itself derives from the DescribedObject
class and thus inherits a wide range of optional metadata supporting discovery, identification,
and qualification and an option for domain and community-specific extensions.

In particular, the deployment metadata allows for the provision of:

• Contact information (e.g. the organization operating/maintaining the deployed systems,
the pilot of an unmanned vehicle, etc.)

• Domain specific identifiers and classifiers for the deployment (e.g. mission number, mission
type, etc.)

OPEN GEOSPATIAL CONSORTIUM 23-000 76

• Characteristics of the deployment (e.g. sensor is mounted under shelter at 2m above
ground)

The UML diagram of the Deployment class is shown on Figure 24 and Table 2 provides the
description of the class properties:

Figure 24 — Deployment Class

Table 2 — Deployment Class Properties

NAME DEFINITION

location The geographic location or area where the systems are deployed.

platform Reference to the platform on which the systems are deployed.

deployedSystem Description of a deployed system (as a DeployedSystem object, see below).

OPEN GEOSPATIAL CONSORTIUM 23-000 77

8.9.3. DeployedSystem Class

The DeployedSystem class is used to describe each system deployed as part of a deployment. It
includes the following properties:

Table 3 — DeployedSystem Class Properties

NAME DEFINITION

name A code name for the system within the deployment (e.g. UAV1).

description A description of the deployed system that is specific to the deployment.

system Reference to the system, component, or process being deployed.

configuration The configuration of the system used during this deployment.

8.10. Requirements Class: Derived Property

8.10.1. Overview

REQUIREMENTS CLASS 10

IDENTIFIER /req/model/derived-property

TARGET TYPE Derived Encoding or Software Implementation

CONFORMANCE CLASS Conformance class A.10: /conf/model/derived-property

PREREQUISITE http://www.opengis.net/spec/SWE/3.0/req/uml-simple-components

NORMATIVE
STATEMENT

Requirement 46: /req/model/derived-property/package-fully-implemented

OPEN GEOSPATIAL CONSORTIUM 23-000 78

http://www.opengis.net/spec/SWE/3.0/req/uml-simple-components

REQUIREMENT 46

IDENTIFIER /req/model/derived-property/package-fully-implemented

INCLUDED
IN

Requirements class 10: /req/model/derived-property

STATEMENT
The encoding or software shall correctly implement all UML classes defined in the “Derived
Property” package described in this section.

8.10.2. DerivedProperty Class

The DerivedProperty class is used to define domain specific properties that are derived from
general properties such as the ones provided by the QUDT Quantity Kinds ontology.

The UML diagram of the DerivedProperty class is shown on Figure 25 and Table 4 provides the
description of the class properties:

Figure 25 — DerivedProperty Class

Table 4 — DerivedProperty Class Properties

NAME DEFINITION

identifier Unique identifier of the property.

OPEN GEOSPATIAL CONSORTIUM 23-000 79

NAME DEFINITION

label Human readable label for the property.

description Longer human-readable description for the property.

baseProperty
Reference to the definition of the base property that this property is derived
from (which can be itself a derived property).

objectType
Reference to the definition of a type of object/entity that the base property
applies to.

statistic
Reference to the definition of the statistical operator that is applied to the
base property (e.g. hourly mean, daily maximum, standard deviation, etc.).

qualifier
Additional qualifier for the property (e.g. frequency range, measurement
height, medium, etc.).

OPEN GEOSPATIAL CONSORTIUM 23-000 80

9

JSON IMPLEMENTATION
(NORMATIVE)

OPEN GEOSPATIAL CONSORTIUM 23-000 81

9 JSON IMPLEMENTATION (NORMATIVE)

This standard defines a normative JSON implementation of the conceptual models presented in
SensorML 2.1 and in the following clauses of this document:

• [clause_model_deployment], [clause_model_deployment]

• [clause_model_derived_property], [clause_model_derived_property]

• [clause_model_3dpose], [clause_model_3dpose]

The standardization target type for all requirements classes in this clause is a JSON instance
document that seeks compliance with this JSON encoding model.

JSON schemas defined in this section are a direct implementation of the UML conceptual
models. They have been generated from these models by strictly following well-defined
encoding rules. All attributes and composition/aggregation associations contained in the UML
models are encoded as JSON object members.

All JSON examples given in this section are informative and are used solely for illustrating
features of the normative model. Many of these examples reference semantic information by
using URLs that resolve to the following online ontologies:

• The OGC online registry at http://www.opengis.net/def/.

• The QUDT quantity kinds ontology at http://qudt.org/2.1/vocab/quantitykind.

• The MMI ontology registry and repository at http://mmisw.org/ont/.

9.1. Requirements Class: Core Schema

9.1.1. Overview

REQUIREMENTS CLASS 11

IDENTIFIER /req/json-core

TARGET TYPE JSON Document

CONFORMANCE CLASS Conformance class A.11: /conf/json-core

OPEN GEOSPATIAL CONSORTIUM 23-000 82

http://www.opengis.net/def/
http://qudt.org/2.1/vocab/quantitykind
http://mmisw.org/ont/

REQUIREMENTS CLASS 11

PREREQUISITE http://www.opengis.net/spec/SWE/3.0/req/json-block-components

INDIRECT PREREQUISITE Requirements class 2: /req/model/coreProcess

NORMATIVE STATEMENT Requirement 47: /req/json-core/media-type

9.1.2. Media Types

REQUIREMENT 47

IDENTIFIER /req/json-core/media-type

INCLUDED IN Requirements class 11: /req/json-core

STATEMENT A SensorML JSON document shall be advertised using the media type specified below.

9.1.2.1. application/sml+json

NOTE: Implementations should use application/vnd.ogc.sml+json as a preliminary media
type until this Standard is stable to avoid confusing future implementations accessing JSON
documents from draft versions of this Standard. The media type application/sml+json will be
registered for SensorML JSON encoding, if and once this Standard is approved by the OGC
Members. This note will be removed before publishing this Standard.

The draft media type submission to IANA is provided below:

Type name: application

Subtype name: sml+json

Required parameters: n/a

Optional parameters: n/a

Encoding considerations: binary

Security considerations: n/a

Interoperability considerations: n/a

Published specification: this document

Applications that use this media type: No known applications currently use
this media type.

OPEN GEOSPATIAL CONSORTIUM 23-000 83

http://www.opengis.net/spec/SWE/3.0/req/json-block-components

 This media type is intended for applications currently using the
"application/vnd.ogc.sml+json"
 media type, which include APIs for managing, publishing or processing
sensor and system metadata.

Additional information:

 Magic number(s): n/a

 File extension(s): .json

 Macintosh file type code: TEXT

Person to contact for further information:

 1. Name: Scott Simmons
 2. Email: ssimmons@ogc.org

Intended usage: COMMON

 SensorML is an OGC Standard (OGC 23-000) that provides conceptual models and
encodings for
 describing sensor systems including sensors, actuators and platforms. This
media type applies to
 the JSON encoding of SensorML.

Restrictions on usage: n/a

Change controller: Open Geospatial Consortium (OGC)

Listing 1

9.1.3. General Encoding Principles

9.1.3.1. References

References are implemented in the JSON encodings using the JSON implementation of web
linking.

9.1.4. DescribedObject

The JSON schema DescribedObject.json is an implementation of the DescribedObject UML
class defined in Clause 8.2.2. It is the base schema for the following JSON objects specified in
this document:

• SimpleProcess

• AggregateProcess

• PhysicalComponent

• PhysicalSystem

OPEN GEOSPATIAL CONSORTIUM 23-000 84

https://raw.githubusercontent.com/opengeospatial/ogcapi-connected-systems/master/sensorml/schemas/json/DescribedObject.json

• Mode

• Deployment

It provides a set of metadata properties that are common to all these objects. Rather than
repeating this type of metadata in all examples, the following snippets show examples of the
various metadata options provided by the DescribedObject schema.

9.1.4.1. Unique Identifier

The unique identifier of the object is encoded as a URI that must be globally unique. The
following snippets show some example URNs that can be used for this purpose:

Universally Unique Identifiers (UUID)

Randomly Generated UUID (version 4):
"uniqueId": "urn:uuid:e3c2ea01-ed37-4bb4-bf45-aff0ad84a331"

GS1 Electronic Product Codes (EPC), used in barcodes and RFID tags

Global Individual Asset Identifier (GIAI):
"uniqueId": "urn:epc:id:giai:0614141.12345400"

Component/Part Identifier (CPI):
"uniqueId": "urn:epc:id:cpi:0614141.123ABC.123456789"

Serialised Global Trade Item Number (SGTIN):
"uniqueId": "urn:epc:id:sgtin:123456789012.0.4711"

Global Document Type Identifier (GDTI):
"uniqueId": "urn:epc:id:gdti:0614141.12345.006847"

Other registered URN namespaces

Ship identifier in Maritime Resource Name (MRN) namespace
"uniqueId": "urn:mrn:itu:mmsi:538070999"

Navigation aid identifier in Maritime Resource Name (MRN) namespace
"uniqueId": "urn:mrn:iala:aton:us:1234.5"

9.1.4.2. Keywords

Keywords are provided as an array of string, as shown on the following snippet:

"keywords": [
 "thermometer",
 "sensor",
 "outdoor"
]

OPEN GEOSPATIAL CONSORTIUM 23-000 85

9.1.4.3. Identifiers

The following snippet shows how different kinds of commonly used identifiers are encoded in
JSON:

"identifiers": [
 {
 "definition": "http://sensorml.com/ont/swe/property/ShortName",
 "label": "Short Name",
 "value": "Davis Vantage Pro2"
 },
 {
 "definition": "http://sensorml.com/ont/swe/property/Manufacturer",
 "label": "Manufacturer Name",
 "value": "Davis Instruments"
 },
 {
 "definition": "http://sensorml.com/ont/swe/property/ModelNumber",
 "label": "Model Number",
 "value": "Vantage Pro2"
 }
]

9.1.4.4. Classifiers

The following snippet shows how different kinds of commonly used classifiers are encoded in
JSON (with or without a code space):

"classifiers": [
 {
 "definition": "http://sensorml.com/ont/swe/property/SensorType",
 "label": "Sensor Type",
 "value": "Motion Detector"
 },
 {
 "definition": "http://sensorml.com/ont/swe/property/PlatformType",
 "label": "Platform Type",
 "value": "Unmanned Aerial Vehicle"
 },
 {
 "definition": "http://sensorml.com/ont/swe/property/PlatformType",
 "codeSpace": "https://mmisw.org/ont/ioos/platform",
 "label": "Platform Type",
 "value": "subsurface_float"
 }
]

9.1.4.5. Security Constraints

The following snippet shows how to tag a SensorML object with security constraints encoded
using the ISM standard:

"securityConstraints": [
 {

OPEN GEOSPATIAL CONSORTIUM 23-000 86

 "type": "urn:us:gov:ic:ism:v2",
 "classification": "TS",
 "classifiedBy": "USCG",
 "ownerProducer": "USA"
 }
]

9.1.4.6. Valid Time

The temporal validity period is encoded as an array of 2 items for begin and end times. Each
date/time is either a ISO8601 date/time string or the value now.

"validTime": [
 "2023-05-07T12:30:00Z",
 "2023-05-10T00:00:00Z"
]

"validTime": [
 "2023-05-07T12:30:00Z",
 "now"
]

9.1.4.7. Legal Constraints

The following snippet shows how to include legal constraints within a SensorML object:

"legalConstraints": [
 {
 "useLimitations": [
 "Disclaimer - While every effort has been made to ensure that the data
from this sensor is accurate and reliable within the limits of the current
state of the art, we cannot assume liability for any damages caused by any
errors or omissions in the data, nor as a result of the failure of the data
to function on a particular system. We make no warranty, expressed or implied,
nor does the fact of distribution constitute such a warranty."
],
 "useConstraints": [
 {
 "codeSpace": "http://standards.iso.org/iso/19115/resources/Codelist/
cat/codelists.xml#MD_RestrictionCode",
 "value": "licenceDistributor"
 }
]
 }
]

9.1.4.8. Capabilities

The following snippet shows examples of system capabilities that could be provided as part of a
UAV datasheet description:

"capabilities": [
 {
 "definition": "http://www.w3.org/ns/ssn/systems/SystemCapability",
 "label": "System Capabilities (No Wind)",

OPEN GEOSPATIAL CONSORTIUM 23-000 87

 "conditions": [
 {
 "type": "Quantity",
 "name": "wind_speed",
 "definition": "http://mmisw.org/ont/cf/parameter/wind_speed",
 "label": "Wind Speed",
 "uom": { "code": "m/s" },
 "value": 0
 }
],
 "capabilities": [
 {
 "type": "Quantity",
 "name": "flight_range",
 "definition": "http://qudt.org/vocab/quantitykind/Distance",
 "label": "Max Travel Distance",
 "uom": { "code": "km" },
 "value": 13
 },
 {
 "type": "Quantity",
 "name": "max_speed",
 "definition": "http://qudt.org/vocab/quantitykind/Speed",
 "label": "Max Speed",
 "uom": { "code": "km/h" },
 "value": 65
 },
 {
 "type": "Quantity",
 "name": "flight_time",
 "definition": "http://www.w3.org/ns/ssn/systems/BatteryLifetime",
 "label": "Battery Lifetime",
 "description": "Maximum flight time in stationary flight",
 "uom": { "code": "min" },
 "value": 24
 }
]
 }
]

9.1.4.9. Characteristics

Similarly, the following snippet shows example metadata for detailing battery characteristics in a
UAV datasheet description:

"characteristics": [
 {
 "label": "Battery Characteristics",
 "characteristics": [
 {
 "type": "Quantity",
 "name": "bat_cap",
 "definition": "http://sensorml.com/ont/swe/property/BatteryCapacity",
 "label": "Battery Capacity",
 "uom": {
 "code": "W.h"
 },
 "value": 43.6
 },
 {

OPEN GEOSPATIAL CONSORTIUM 23-000 88

 "type": "Quantity",
 "name": "bat_volt",
 "definition": "http://qudt.org/vocab/quantitykind/Voltage",
 "label": "Operating Voltage",
 "uom": {
 "code": "V"
 },
 "value": 11.4
 },
 {
 "type": "Category",
 "name": "type",
 "definition": "http://dbpedia.org/resource/Battery_types",
 "label": "Battery Type",
 "value": "LiPo 3S"
 }
]
 }
]

9.1.4.10. Contacts

The following snippet shows how to encode contact information associated to the surrounding
object:

"contacts": [
 {
 "role": "http://sensorml.com/ont/swe/property/Manufacturer",
 "organisationName": "Davis Instruments Corp.",
 "contactInfo": {
 "website": "https://www.davisinstruments.com",
 "phone": {
 "voice": "+1 (510) 732-7814"
 },
 "address": {
 "deliveryPoint": "3465 Diablo Avenue",
 "city": "Hayward",
 "postalCode": "94545",
 "administrativeArea": "CA",
 "country": "USA",
 "electronicMailAddress": "support@davisinstruments.com"
 }
 }
 }
]

9.1.4.11. Documents

The following snippet shows how to reference external documents related to the surrounding
object:

"documents": [
 {
 "role": "http://dbpedia.org/resource/Web_page",
 "name": "Product Web Site",
 "description": "Webpage with specs an other resources",
 "link": {
 "href": "https://www.davisinstruments.com/pages/vantage-pro2",

OPEN GEOSPATIAL CONSORTIUM 23-000 89

 "type": "text/html"
 }
 },
 {
 "role": "http://dbpedia.org/resource/Datasheet",
 "name": "Spec Sheet",
 "link": {
 "href": "https://cdn.shopify.com/s/files/1/0515/5992/3873/files/6152c_
6162c_ss.pdf",
 "type": "application/pdf"
 }
 },
 {
 "role": "http://dbpedia.org/resource/Photograph",
 "name": "Photo",
 "link": {
 "href": "https://m.media-amazon.com/images/I/71rycLk7sFL.jpg",
 "type": "image/jpg"
 }
 }
]

9.1.4.12. History

The following snippet shows how to record maintenance events as part of a system description:

"history": [
 {
 "label": "Scheduled Maintenance",
 "description": "Monthly maintenance of station hardware.\n-Checked
electronics\n-Checked casing\nChecked power supply.\nEverything OK.",
 "time": ["2002-03-01T10:00:00Z", "2002-03-01T11:00:00Z"]
 },
 {
 "label": "Calibration",
 "description": "Recalibration of acquisition electronics using temperature
reference",
 "time": "2002-03-01T18:00:00Z"
 }
]

9.1.5. AbstractProcess

The AbstractProcess.json schema is the JSON schema implementation of the
AbstractProcess UML class defined in Clause 8.2.9.

The AbstractProcess schema extends the DescribedObject schema and serves as the base
class for all processes modelled and encoded in this specification. Thus, all process and system
descriptions include the metadata described above plus the elements defined in this section.

9.1.5.1. Type Of

The value of the typeOf property is always a weblink as described in Clause 9.1.3.1.

"typeOf": {

OPEN GEOSPATIAL CONSORTIUM 23-000 90

 "href": "http://data.example.org/api/procedures/123",
 "uid": "urn:x-davis:station:vantagepro2",
 "title": "Davis Vantage Pro 2",
 "type": "application/sml+json"
}

9.1.5.2. Configuration

The following snippet shows an example configuration:

"configuration": {
 "setValues": [{
 "ref": "parameters/gain",
 "value": 1.25
 }],
 "setModes": [{
 "ref": "modes/THREAT_LEVEL_MODE",
 "value": "lowThreat"
 }]
}

9.2. Requirements Class: Simple Process Schema

9.2.1. Overview

REQUIREMENTS CLASS 12

IDENTIFIER /req/json-simple-process

TARGET TYPE JSON Document

CONFORMANCE CLASS Conformance class A.12: /conf/json-simple-process

PREREQUISITE Requirements class 11: /req/json-core

INDIRECT PREREQUISITE Requirements class 3: /req/model/simpleProcess

NORMATIVE STATEMENT Requirement 48: /req/json-simple-process/schema-valid

OPEN GEOSPATIAL CONSORTIUM 23-000 91

9.2.2. SimpleProcess

The SimpleProcess.json schema is the JSON schema implementation of the SimpleProcess
UML class defined in Clause 8.3.

REQUIREMENT 48

IDENTIFIER /req/json-simple-process/schema-valid

INCLUDED IN Requirements class 12: /req/json-simple-process

STATEMENT The JSON document instance shall be valid with respect to the JSON schema “SimpleProcess.json”.

The SimpleProcess schema extends the AbstractProcess schema. Thus, it includes all
elements described in Clause 9.1.5, AbstractProcess, plus the elements defined in this section.

The following snippet shows an example windchill computation process encoded in JSON:

{
 "type": "SimpleProcess",
 "uniqueId": "urn:x-org:process:windchill:001",
 "label": "Wind Chill Process",
 "description": "A simple process for taking temperature and wind speed and
determining wind chill.",
 "inputs": [
 {
 "name": "temp",
 "type": "Quantity",
 "definition": "http://mmisw.org/ont/cf/parameter/air_temperature",
 "label": "Air Temperature",
 "uom": { "code": "Cel", "symbol": "°C" }
 },
 {
 "name": "wind",
 "type": "Quantity",
 "definition": "http://mmisw.org/ont/cf/parameter/wind_speed",
 "label": "Wind Speed",
 "uom": { "code": "km/h" }
 }
],
 "outputs": [
 {
 "name": "wind_chill",
 "type": "Quantity",
 "definition": "http://mmisw.org/ont/cf/parameter/wind_chill_of_air_
temperature",
 "label": "Wind Chill Factor",
 "uom": { "code": "Cel", "symbol": "°C" }
 }
],
 "method": {
 "description": "The formula used to compute windchill is:\nTwc = 13.12
+ 0.6215*Ta - 11.37*v^0.16 + 0.3965*Ta*v^0.16, where\nTwc is the wind chill

OPEN GEOSPATIAL CONSORTIUM 23-000 92

https://raw.githubusercontent.com/opengeospatial/ogcapi-connected-systems/master/sensorml/schemas/json/SimpleProcess.json

index on the Celsius temperature scale;\nTa is the air temperature in degrees
Celsius;\nv is the wind speed at 10 m AGL, in km/h"
 }
}

9.2.3. Process Method

The process method provides a textual or algorithmic description of the method implemented by
the process.

9.3. Requirements Class: Aggregate Process Schema

9.3.1. Overview

REQUIREMENTS CLASS 13

IDENTIFIER /req/json-aggregate-process

TARGET TYPE JSON Document

CONFORMANCE CLASS Conformance class A.13: /conf/json-aggregate-process

PREREQUISITE Requirements class 12: /req/json-simple-process

INDIRECT PREREQUISITE Requirements class 4: /req/model/aggregateProcess

NORMATIVE STATEMENT Requirement 49: /req/json-aggregate-process/schema-valid

9.3.2. AggregateProcess

The AggregateProcess.json schema is the JSON schema implementation of the
AggregateProcess UML class defined in Clause 8.4.

REQUIREMENT 49

IDENTIFIER /req/json-aggregate-process/schema-valid

INCLUDED
IN

Requirements class 13: /req/json-aggregate-process

OPEN GEOSPATIAL CONSORTIUM 23-000 93

REQUIREMENT 49

STATEMENT
The JSON document instance shall be valid with respect to the JSON schema “AggregateProcess.
json”.

The snippet below shows a simple process chain example with 2 child processes and their
connections.

{
 "type": "AggregateProcess",
 "uniqueId": "urn:x-ogc:process-chain:001",
 "label": "Simple Process Chain",
 "description": "A simple process chain that applies a linear transformation
and clips the value to a threshold.",
 "inputs": [
 {
 "name": "valueIn",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/DN",
 "label": "Input Value",
 "uom": { "href": "http://www.opengis.net/def/nil/OGC/0/unknown" }
 }
],
 "outputs": [
 {
 "name": "valueOut",
 "type": "Quantity",
 "definition": "http://sensorml.com/ont/swe/property/DN",
 "label": "Output Value",
 "uom": { "href": "http://www.opengis.net/def/nil/OGC/0/unknown" }
 }
],
 "components": [
 {
 "name": "scale",
 "type": "SimpleProcess",
 "label": "Linear Transform 01",
 "typeOf": {
 "href": "http://example.org/processlib/linearTransform.json",
 "uid": "urn:x-org:process:LinearTransform:v1.0",
 "title": "Linear Transform"
 },
 "configuration": {
 "setValues": [
 { "ref": "parameters/slope", "value": 2.3 },
 { "ref": "parameters/intercept", "value": 1.76 }
]
 }
 },
 {
 "name": "clip",
 "type": "SimpleProcess",
 "label": "Threshold Clipper 01",
 "typeOf": {
 "href": "http://example.org/processlib/thresholdClipper.json",
 "uid": "urn:x-org:process:ThresholdClipper:v1.0",
 "title": "Threshold Clip"
 },
 "configuration": {
 "setValues": [
 { "ref": "parameters/threshold", "value": 15.0 }

OPEN GEOSPATIAL CONSORTIUM 23-000 94

https://raw.githubusercontent.com/opengeospatial/ogcapi-connected-systems/master/sensorml/schemas/json/AggregateProcess.json
https://raw.githubusercontent.com/opengeospatial/ogcapi-connected-systems/master/sensorml/schemas/json/AggregateProcess.json

]
 }
 }
],
 "connections": [
 { "source": "inputs/valueIn", "destination": "components/scale/inputs/x" },
 { "source": "components/scale/outputs/y", "destination": "components/clip/
inputs/valueIn" },
 { "source": "components/clip/outputs/passValue", "destination": "outputs/
valueOut" }
]
}

9.3.3. Components

The components property takes a ComponentList as its value, that is a list of nested
AbstractProcess instances.

9.3.4. Connections

The connections property takes a ConnectionList as its value, that is a list of nested Link
instances that specify the source and destination of each connection.

9.4. Requirements Class: Physical Component Schema

9.4.1. Overview

REQUIREMENTS CLASS 14

IDENTIFIER /req/json-physical-component

TARGET TYPE JSON Document

CONFORMANCE CLASS Conformance class A.14: /conf/json-physical-component

PREREQUISITE Requirements class 12: /req/json-simple-process

INDIRECT PREREQUISITE Requirements class 5: /req/model/physicalComponent

NORMATIVE STATEMENT Requirement 50: /req/json-physical-component/schema-valid

OPEN GEOSPATIAL CONSORTIUM 23-000 95

9.4.2. AbstractPhysicalProcess

The schema for this abstract class is provided in AbstractPhysicalProcess.json.

It is imported by the schemas of derived classes and thus does not need to be used directly for
validation.

9.4.3. PhysicalComponent

The PhysicalComponent.json schema is the JSON schema implementation of the
PhysicalComponent UML class defined in Clause 8.5.

REQUIREMENT 50

IDENTIFIER /req/json-physical-component/schema-valid

INCLUDED
IN

Requirements class 14: /req/json-physical-component

STATEMENT
The JSON document instance shall be valid with respect to the JSON schema “PhysicalComponent.
json”.

The following snippet illustrates how a simple sensor instance can be described as a physical
component with a fixed geographic location:

{
 "type": "PhysicalComponent",
 "definition": "http://www.w3.org/ns/sosa/Sensor",
 "uniqueId": "urn:x-org:systems:001",
 "label": "Outdoor Thermometer 001",
 "description": "Digital thermometer located on first floor window 1",
 "typeOf": {
 "href": "https://data.example.org/api/procedures/TP60S?f=sml",
 "title": "ThermoPro TP60S",
 "type" : "application/sml+json"
 },
 "position": {
 "type": "Point",
 "coordinates": [41.8781, -87.6298]
 }
}

9.4.4. 3D Pose

The position of a physical component can also be specified by a 3D pose object as specified by
the JSON schema Pose.json.

{
 "type": "PhysicalComponent",

OPEN GEOSPATIAL CONSORTIUM 23-000 96

https://raw.githubusercontent.com/opengeospatial/ogcapi-connected-systems/master/sensorml/schemas/json/AbstractPhysicalProcess.json
https://raw.githubusercontent.com/opengeospatial/ogcapi-connected-systems/master/sensorml/schemas/json/PhysicalComponent.json
https://raw.githubusercontent.com/opengeospatial/ogcapi-connected-systems/master/sensorml/schemas/json/PhysicalComponent.json
https://raw.githubusercontent.com/opengeospatial/ogcapi-connected-systems/master/sensorml/schemas/json/Pose.json

 "definition": "http://www.w3.org/ns/sosa/Sensor",
 "uniqueId": "urn:x-org:sensors:001",
 "label": "Sensor with GeoPose",
 "position": {
 "type": "GeoPose",
 "ltpReferenceFrame": "http://www.opengis.net/def/cs/OGC/0/NED",
 "position": {
 "lat": 47.7,
 "lon": -122.3,
 "h": 11.5
 },
 "angles": {
 "yaw": 5.946590591427664,
 "pitch": -0.4683537318018044,
 "roll": 0.0
 }
 }
}

9.5. Requirements Class: Physical System Schema

9.5.1. Overview

REQUIREMENTS CLASS 15

IDENTIFIER /req/json-physical-system

TARGET TYPE JSON Document

CONFORMANCE CLASS Conformance class A.15: /conf/json-physical-system

PREREQUISITES
Requirements class 13: /req/json-aggregate-process
Requirements class 14: /req/json-physical-component

INDIRECT PREREQUISITE Requirements class 6: /req/model/physicalSystem

NORMATIVE STATEMENT Requirement 51: /req/json-physical-system/schema-valid

9.5.2. PhysicalSystem

The PhysicalSystem.json schema is the JSON schema implementation of the
PhysicalSystem UML class defined in [uml_physical_systems].

OPEN GEOSPATIAL CONSORTIUM 23-000 97

REQUIREMENT 51

IDENTIFIER /req/json-physical-system/schema-valid

INCLUDED
IN

Requirements class 15: /req/json-physical-system

STATEMENT The JSON document instance shall be valid with respect to the JSON schema “PhysicalSystem.json”.

The following snippet illustrates how the specifications (datasheet) of a complete weather
station can be described as a physical system. In this example, each component of the system
represents one of the sensors connected to the base station:

{
 "type": "PhysicalSystem",
 "definition": "http://www.w3.org/ns/sosa/Sensor",
 "uniqueId": "urn:x-davis:station:vantagepro2",
 "label": "Davis Vantage Pro2 Weather Station",
 "description": "An industrial-grade weather station engineered to handle the
harshest environments...",
 "identifiers": [...],
 "classifiers": [...],
 "characteristics": [...],
 "capabilities": [...],
 "contacts": [...],
 "documents": [...],
 "components": [
 {
 "type": "PhysicalComponent",
 "name": "temp_sensor",
 "definition": "http://www.w3.org/ns/sosa/Sensor",
 "label": "Temperature Sensor",
 ...
 },
 {
 "type": "PhysicalComponent",
 "name": "press_sensor",
 "definition": "http://www.w3.org/ns/sosa/Sensor",
 "label": "Pressure Sensor",
 ...
 },
 {
 "type": "PhysicalComponent",
 "name": "hum_sensor",
 "definition": "http://www.w3.org/ns/sosa/Sensor",
 "label": "Humidity Sensor",
 ...
 },
 {
 "type": "PhysicalComponent",
 "name": "wind_sensor",
 "definition": "http://www.w3.org/ns/sosa/Sensor",
 "label": "Wind Sensor",
 ...
 }
 }

OPEN GEOSPATIAL CONSORTIUM 23-000 98

https://raw.githubusercontent.com/opengeospatial/ogcapi-connected-systems/master/sensorml/schemas/json/PhysicalSystem.json

NOTE: This inline example was abridged for clarity. You can see the full example here.

Below is another example describing a specific instance of the weather station, with
specifications provided above. The instance refers to the datasheet using the typeOf property,
and also provides contact information for the operator, as well as a fixed location:

{
 "type": "PhysicalSystem",
 "definition": "http://www.w3.org/ns/sosa/Sensor",
 "uniqueId": "urn:x-meteofrance:stations:davis:WS00010",
 "label": "Meteo France Weather Station WS00010",
 "typeOf": {
 "href": "http://example.org/api/procedures/2ev1rrr8dkeuu",
 "uid": "urn:x-davis:station:vantagepro2",
 "type": "application/sml+json"
 },
 "contacts": [
 {
 "role": "http://sensorml.com/ont/swe/property/Operator",
 "organisationName": "Meteo France",
 "contactInfo": {
 "website": "https://www.meteo.fr",
 "phone": {
 "voice": "+33 5 61 07 80 80"
 },
 "address": {
 "deliveryPoint": "42 avenue Gaspard-Coriolis",
 "city": "TOULOUSE",
 "postalCode": "31057 Cedex 1",
 "country": "France"
 }
 }
 }
],
 "position": {
 "type": "Point",
 "coordinates": [
 1.35997,
 43.637788
]
 }
}

9.6. Requirements Class: Deployment Schema

9.6.1. Overview

REQUIREMENTS CLASS 16

IDENTIFIER /req/json-deployment

OPEN GEOSPATIAL CONSORTIUM 23-000 99

https://raw.githubusercontent.com/opengeospatial/ogcapi-connected-systems/master/sensorml/schemas/json/examples/weather_station_system.json

REQUIREMENTS CLASS 16

TARGET TYPE JSON Document

CONFORMANCE CLASS Conformance class A.16: /conf/json-deployment

PREREQUISITE Requirements class 11: /req/json-core

INDIRECT PREREQUISITE /req/model-deployment

NORMATIVE STATEMENT Requirement 52: /req/json-deployment/schema-valid

9.6.2. Deployment

The Deployment.json schema is the JSON schema implementation of the Deployment UML
class defined in Clause 8.9.

REQUIREMENT 52

IDENTIFIER /req/json-deployment/schema-valid

INCLUDED IN Requirements class 16: /req/json-deployment

STATEMENT The JSON document instance shall be valid with respect to the JSON schema “Deployment.json”.

The following snippet provides an example of a Saildrone mission:

{
 "type": "Deployment",
 "definition": "http://www.w3.org/ns/ssn/Deployment",
 "uniqueId": "urn:x-saildrone:mission:2025",
 "label": "Saildrone - 2017 Arctic Mission",
 "description": "In July 2017, three saildrones were launched from Dutch
Harbor, Alaska, in partnership with NOAA Research...",
 "contacts": [...],
 "validTime": [
 "2017-07-17T00:00:00Z",
 "2017-09-29T00:00:00Z"
],
 "location": {
 "type": "Polygon",
 "coordinates": [[
 [-173.70, 53.76],
 [-173.70, 75.03],
 [-155.07, 75.03],
 [-155.07, 53.76],
 [-173.70, 53.76]
]]
 },

OPEN GEOSPATIAL CONSORTIUM 23-000 100

https://raw.githubusercontent.com/opengeospatial/ogcapi-connected-systems/master/sensorml/schemas/json/Deployment.json

 "deployedSystems": [
 {
 "name": "SD1001",
 "system": {
 "href": "https://data.example.org/api/systems/27559?f=sml",
 "uid": "urn:x-saildrone:platforms:SD-1001",
 "title": "Saildrone SD-1001"
 }
 },
 {
 "name": "SD1002",
 "system": {
 "href": "https://data.example.org/api/systems/27560?f=sml",
 "uid": "urn:x-saildrone:platforms:SD-1002",
 "title": "Saildrone SD-1002"
 }
 },
 {
 "name": "SD1003",
 "system": {
 "href": "https://data.example.org/api/systems/27561?f=sml",
 "uid": "urn:x-saildrone:platforms:SD-1003",
 "title": "Saildrone SD-1003"
 }
 }
]
}

9.6.3. DeployedSystem

The DeployedSystem schema is the JSON schema implementation of the DeployedSystem UML
class defined in Clause 8.9, Requirements Class: Deployment.

The schema allows associating a configuration to a given deployed system or platform.

9.7. Requirements Class: Derived Property Schema

9.7.1. Overview

REQUIREMENTS CLASS 17

IDENTIFIER /req/json-derived-property

TARGET TYPE JSON Document

CONFORMANCE CLASS Conformance class A.17: /conf/json-derived-property

OPEN GEOSPATIAL CONSORTIUM 23-000 101

REQUIREMENTS CLASS 17

PREREQUISITE Requirements class 11: /req/json-core

INDIRECT PREREQUISITE /req/uml-derived-property

NORMATIVE STATEMENT Requirement 53: /req/json-derived-property/schema-valid

9.7.2. DerivedProperty

The DerivedProperty.json schema is the JSON schema implementation of the
DerivedProperty UML class defined in Clause 8.10.

REQUIREMENT 53

IDENTIFIER /req/json-derived-property/schema-valid

INCLUDED
IN

Requirements class 17: /req/json-derived-property

STATEMENT
The JSON document instance shall be valid with respect to the JSON schema “DerivedProperty.
json”.

The following snippets provide examples of domain specific derived properties:

{
 "description": "Mechanical power produced by the engine",
 "baseProperty": "http://qudt.org/vocab/quantitykind/Power",
 "objectType": "http://dbpedia.org/resource/Engine"
}

{
 "description": "Hourly average of the CPU temperature",
 "baseProperty": "http://qudt.org/vocab/quantitykind/Temperature",
 "objectType": "http://dbpedia.org/resource/Central_processing_unit",
 "statistic": "http://sensorml.com/ont/x-stats/HourlyMean"
}

OPEN GEOSPATIAL CONSORTIUM 23-000 102

https://raw.githubusercontent.com/opengeospatial/ogcapi-connected-systems/master/sensorml/schemas/json/DerivedProperty.json
https://raw.githubusercontent.com/opengeospatial/ogcapi-connected-systems/master/sensorml/schemas/json/DerivedProperty.json

A

ANNEX A (NORMATIVE)
CONFORMANCE CLASS
ABSTRACT TEST SUITE

OPEN GEOSPATIAL CONSORTIUM 23-000 103

A ANNEX A
(NORMATIVE)
CONFORMANCE CLASS ABSTRACT TEST
SUITE

A.1. Core Concepts

Tests described in this section shall be used to test conformance of software and encoding
models implementing the Requirements Class: Core Concepts (normative core).

CONFORMANCE CLASS A.1: CONFORMANCE TEST CLASS: CORE CONCEPTS

IDENTIFIER /conf/core

REQUIREMENTS CLASS Requirements class 1: /req/core

TARGET TYPE Derived Models and Software Implementations

CONFORMANCE TESTS

Abstract test A.1: /conf/core/concepts-used
Abstract test A.2: /conf/core/processes
Abstract test A.3: /conf/core/uniqueID
Abstract test A.4: /conf/core/metadata
Abstract test A.5: /conf/core/execution

ABSTRACT TEST A.1: CORE CONCEPTS ARE THE BASE OF ALL DERIVED MODELS

IDENTIFIER /conf/core/concepts-used

REQUIREMENT Requirement 1: /req/core/concepts-used

TEST PURPOSE
Verify that the target implementation correctly implements the core
concepts.

TEST METHOD Inspect the model or software implementation to verify the above.

OPEN GEOSPATIAL CONSORTIUM 23-000 104

ABSTRACT TEST A.2: A PROCESS MODEL HAS INPUTS, OUTPUTS, PARAMETERS, AND
METHOD

IDENTIFIER /conf/core/processes

REQUIREMENT Requirement 2: /req/core/processes

TEST PURPOSE
Verify that the target implementation correctly implements a process
model.

TEST METHOD Inspect the model or software implementation to verify the above.

ABSTRACT TEST A.3: A PROCESS MODEL HAS A UNIQUE ID

IDENTIFIER /conf/core/uniqueID

REQUIREMENT Requirement 3: /req/core/uniqueID

TEST PURPOSE Verify that the target implementation has a unique ID

TEST METHOD Inspect the model or software implementation to verify the above.

ABSTRACT TEST A.4: A PROCESS MODEL HAS METADATA

IDENTIFIER /conf/core/metadata

REQUIREMENT Requirement 4: /req/core/metadata

TEST PURPOSE Verify that the target implementation has metadata

TEST METHOD Inspect the model or software implementation to verify the above.

ABSTRACT TEST A.5: METADATA NOT USED IN PROCESS EXECUTION

IDENTIFIER /conf/core/execution

REQUIREMENT Requirement 5: /req/core/execution

TEST PURPOSE
Verify that the target implementation does not require metadata for successful
execution.

OPEN GEOSPATIAL CONSORTIUM 23-000 105

ABSTRACT TEST A.5: METADATA NOT USED IN PROCESS EXECUTION

TEST METHOD
Verify that the implementation of the conceptual model has a constraint that
enforces the above.

A.2. UML Models

A.2.1. Core Abstract Process

Tests described in this section shall be used to test conformance of software and encoding
models implementing the conceptual models defined in Requirements Class: Core Abstract
Process

CONFORMANCE CLASS A.2: CONFORMANCE TEST CLASS: CORE ABSTRACT PROCESS

IDENTIFIER /conf/model/coreProcess

REQUIREMENTS CLASS Requirements class 2: /req/model/coreProcess

PREREQUISITES

Conformance class A.1: /conf/core
http://www.opengis.net/spec/SWE/2.0/req/uml-block-components
ISO 19115:2006 (All Metadata)
ISO 19136 (GML)

TARGET TYPE
Derived Models
Encodings
and Software Implementations

CONFORMANCE TESTS

Abstract test A.6: /conf/model/coreProcess/dependency-core
Abstract test A.7: /conf/model/coreProcess/package-fully-
implemented
Abstract test A.8: /conf/model/coreProcess/gmlDependency
Abstract test A.9: /conf/model/coreProcess/uniqueID
Abstract test A.10: /conf/model/coreProcess/
extensionIndependence
Abstract test A.11: /conf/model/coreProcess/
extensionRestrictions
Abstract test A.12: /conf/model/coreProcess/SWE-Common-
dependency1
Abstract test A.13: /conf/model/coreProcess/aggregateData
Abstract test A.14: /conf/model/coreProcess/typeOf
Abstract test A.15: /conf/model/coreProcess/simpleInheritance
Abstract test A.16: /conf/model/coreProcess/configuration

OPEN GEOSPATIAL CONSORTIUM 23-000 106

CONFORMANCE CLASS A.2: CONFORMANCE TEST CLASS: CORE ABSTRACT PROCESS

Abstract test A.17: /conf/model/coreProcess/SWE-Common-
dependency2

ABSTRACT TEST A.6: DEPENDENCY ON CORE

IDENTIFIER /conf/model/coreProcess/dependency-core

REQUIREMENT Requirement 6: /req/model/coreProcess/dependency-core

TEST PURPOSE Verify that the target implementation passes the “Core Concepts” conformance test class.

TEST METHOD Apply all tests described in section A.1

ABSTRACT TEST A.7: FULLY IMPLEMENT COREPROCESS

IDENTIFIER /conf/model/coreProcess/package-fully-implemented

REQUIREMENT Requirement 7: /req/model/coreProcess/package-fully-implemented

TEST PURPOSE Verify that the target implements all UML classes.

TEST METHOD Inspect the model or software implementation to verify the above.

ABSTRACT TEST A.8: DESCRIBEDOBJECT DERIVED FROM GML ABSTRACTFEATURE

IDENTIFIER /conf/model/coreProcess/gmlDependency

REQUIREMENT Requirement 8: /req/model/coreProcess/gmlDependency

TEST PURPOSE
Verify that the target implementation is derived from GML Abstract
Feature.

TEST METHOD Inspect the model or software implementation to verify the above.

ABSTRACT TEST A.9: USING GML IDENTIFIER FOR UNIQUEID IN COREPROCESS

IDENTIFIER /conf/model/coreProcess/uniqueID

OPEN GEOSPATIAL CONSORTIUM 23-000 107

ABSTRACT TEST A.9: USING GML IDENTIFIER FOR UNIQUEID IN COREPROCESS

REQUIREMENT Requirement 9: /req/model/coreProcess/uniqueID

TEST PURPOSE
Verify that the target implementation uses a single gml:identifier property to
provide a unique ID.

TEST METHOD
Verify that the implementation of the conceptual model has a constraint that
enforces the above.

ABSTRACT TEST A.10: EXTENSIONS MUST BE IN A SEPARATE NAMESPACE

IDENTIFIER /conf/model/coreProcess/extensionIndependence

REQUIREMENT Requirement 10: /req/model/coreProcess/extensionIndependence

TEST PURPOSE Verify that the target implementation uses a unique namespace.

TEST METHOD Inspect the model or software implementation to verify the above.

ABSTRACT TEST A.11: EXTENSIONS SHALL NOT BE REQUIRED FOR PROCESS
EXECUTION

IDENTIFIER /conf/model/coreProcess/extensionRestrictions

REQUIREMENT Requirement 11: /req/model/coreProcess/extensionRestrictions

TEST PURPOSE
Verify that the target implementation does not require an extension for
process execution.

TEST METHOD
Verify that the implementation of the conceptual model has a constraint that
enforces the above.

ABSTRACT TEST A.12: OBSERVABLEPROPERTY AND SWE COMMON DATA USED FOR
PROCESS INPUT, OUTPUT, AND PARAMETERS

IDENTIFIER /conf/model/coreProcess/SWE-Common-dependency1

REQUIREMENT
Requirement 12: /req/model/coreProcess/SWE-Common-
dependency1

TEST PURPOSE
Verify that the target implementation uses ObservableProperty and/or
SWE Common Data for process input, output, and parameters.

TEST METHOD Inspect the model or software implementation to verify the above.

OPEN GEOSPATIAL CONSORTIUM 23-000 108

ABSTRACT TEST A.13: USE OF SWE COMMON DATA AGGREGATE MODELS FOR
PROCESS INPUT, OUTPUT, AND PARAMETERS

IDENTIFIER /conf/model/coreProcess/aggregateData

REQUIREMENT Requirement 13: /req/model/coreProcess/aggregateData

TEST PURPOSE
Verify that the target implementation models tightly related data as
an SWE Common Data aggregate type.

TEST METHOD
Verify that the implementation of the conceptual model has a
constraint that enforces the above.

ABSTRACT TEST A.14: APPLICATION AND REQUIREMENTS OF TYPEOF PROPERTY

IDENTIFIER /conf/model/coreProcess/typeOf

REQUIREMENT Requirement 14: /req/model/coreProcess/typeOf

TEST PURPOSE Verify that the target implementation uses the proper process reference.

TEST METHOD
Verify that the implementation of the conceptual model has a constraint that
enforces the above.

ABSTRACT TEST A.15: SIMPLE INHERITANCE EXTENDS A BASE CLASS REFERENCED BY
TYPEOF

IDENTIFIER /conf/model/coreProcess/simpleInheritance

REQUIREMENT Requirement 15: /req/model/coreProcess/simpleInheritance

TEST PURPOSE Verify that the target implementation has a complete process description.

TEST METHOD
Verify that the implementation of the conceptual model has a constraint
that enforces the above.

ABSTRACT TEST A.16: SUPPORTING CONFIGURATION IN PROCESSES

IDENTIFIER /conf/model/coreProcess/configuration

REQUIREMENT Requirement 16: /req/model/coreProcess/configuration

TEST PURPOSE
Verify that the target implementation uses the configuration property to specify
non-inherited restrictions.

OPEN GEOSPATIAL CONSORTIUM 23-000 109

ABSTRACT TEST A.16: SUPPORTING CONFIGURATION IN PROCESSES

TEST METHOD
Verify that the implementation of the conceptual model has a constraint that
enforces the above.

ABSTRACT TEST A.17: DEPENDENCY ON SWE COMMON DATA SIMPLE TYPES

IDENTIFIER /conf/model/coreProcess/SWE-Common-dependency2

REQUIREMENT
Requirement 17: /req/model/coreProcess/SWE-Common-
dependency2

TEST PURPOSE Verify that the target implementation passes conformance test classes.

TEST METHOD Validate according to appropriate SWE Common Data conformance tests

A.2.2. Simple Process

Tests described in this section shall be used to test conformance of software and encoding
models implementing the conceptual models defined in Requirements Class: Simple Process.

CONFORMANCE CLASS A.3: CONFORMANCE TEST CLASS: SIMPLE PROCESS

IDENTIFIER /conf/model/simpleProcess

REQUIREMENTS CLASS Requirements class 3: /req/model/simpleProcess

PREREQUISITE Conformance class A.2: /conf/model/coreProcess

TARGET TYPE Derived Encoding and Software Implementation

CONFORMANCE TESTS

Abstract test A.18: /conf/model/simpleProcess/dependency-core
Abstract test A.19: /conf/model/simpleProcess/package-fully-
implemented
Abstract test A.20: /conf/model/simpleProcess/definition
Abstract test A.21: /conf/model/simpleProcess/method

ABSTRACT TEST A.18: DEPENDENCY ON CORE

IDENTIFIER /conf/model/simpleProcess/dependency-core

OPEN GEOSPATIAL CONSORTIUM 23-000 110

ABSTRACT TEST A.18: DEPENDENCY ON CORE

REQUIREMENT Requirement 18: /req/model/simpleProcess/dependency-core

TEST PURPOSE Verify that the target implementation passes the test class.

TEST METHOD Apply all tests described in section A.2.

ABSTRACT TEST A.19: FULLY IMPLEMENT SIMPLEPROCESS

IDENTIFIER /conf/model/simpleProcess/package-fully-implemented

REQUIREMENT Requirement 19: /req/model/simpleProcess/package-fully-implemented

TEST PURPOSE Verify that the target implements all classes in the UML package.

TEST METHOD Inspect the model or software implementation to verify the above.

ABSTRACT TEST A.20: SIMPLE PROCESS DEFINITION

IDENTIFIER /conf/model/simpleProcess/definition

REQUIREMENT Requirement 20: /req/model/simpleProcess/definition

TEST PURPOSE Verify that the target conforms to the definition of a “Simple Process”.

TEST METHOD
Verify that the implementation of the conceptual model has a constraint that enforces
the above.

ABSTRACT TEST A.21: SIMPLE PROCESS HAS METHOD

IDENTIFIER /conf/model/simpleProcess/method

REQUIREMENT Requirement 21: /req/model/simpleProcess/method

TEST PURPOSE Verify that the target supports the definition of the method.

TEST METHOD Inspect the model or software implementation to verify the above.

OPEN GEOSPATIAL CONSORTIUM 23-000 111

A.2.3. Aggregate Process

Tests described in this section shall be used to test conformance of software and encoding
models implementing the conceptual models defined in Requirements Class: Aggregate Process.

CONFORMANCE CLASS A.4: CONFORMANCE TEST CLASS: AGGREGATE PROCESS

IDENTIFIER /conf/model/aggregateProcess

REQUIREMENTS CLASS Requirements class 4: /req/model/aggregateProcess

PREREQUISITE Conformance class A.2: /conf/model/coreProcess

TARGET TYPE Derived Encoding and Software Implementation

CONFORMANCE TESTS

Abstract test A.22: /conf/model/aggregateProcess/dependency-core
Abstract test A.23: /conf/model/aggregateProcess/package-fully-
implemented
Abstract test A.24: /conf/model/aggregateProcess/definition
Abstract test A.25: /conf/model/aggregateProcess/components

ABSTRACT TEST A.22: DEPENDENCY ON CORE

IDENTIFIER /conf/model/aggregateProcess/dependency-core

REQUIREMENT Requirement 22: /req/model/aggregateProcess/dependency-core

TEST PURPOSE Verify that the target implementation passes the test class.

TEST METHOD Apply all tests described in section A.2.

ABSTRACT TEST A.23: FULLY IMPLEMENT AGGREGATE PROCESS

IDENTIFIER /conf/model/aggregateProcess/package-fully-implemented

REQUIREMENT
Requirement 23: /req/model/aggregateProcess/package-fully-
implemented

TEST PURPOSE
Verify that the target implementation correctly and fully defines “AggregateProcess”
UML classes.

OPEN GEOSPATIAL CONSORTIUM 23-000 112

ABSTRACT TEST A.23: FULLY IMPLEMENT AGGREGATE PROCESS

TEST METHOD Verify that the implementation fully implements all of the package.

ABSTRACT TEST A.24: DEFINITION OF AGGREGATE PROCESS

IDENTIFIER /conf/model/aggregateProcess/definition

REQUIREMENT Requirement 24: /req/model/aggregateProcess/definition

TEST PURPOSE
Verify that the target implementation is modelled as an “aggregate process” if it meets
the definition.

TEST METHOD
Verify that the implementation of the conceptual model has constraints that enforce
the above.

ABSTRACT TEST A.25: AGGREGATE PROCESS REQUIRES ONE OR MORE COMPONENTS

IDENTIFIER /conf/model/aggregateProcess/components

REQUIREMENT Requirement 25: /req/model/aggregateProcess/components

TEST PURPOSE
Verify that the target implementation supports one or more component
processes.

TEST METHOD
Verify that the implementation of the conceptual model has constraints that
enforce the above.

A.2.4. Physical Component

Tests described in this section shall be used to test conformance of software and encoding
models implementing the conceptual models defined in Requirements Class: Physical
Component.

CONFORMANCE CLASS A.5: CONFORMANCE TEST CLASS: PHYSICAL COMPONENT

IDENTIFIER /conf/model/physicalComponent

REQUIREMENTS CLASS Requirements class 5: /req/model/physicalComponent

PREREQUISITE Conformance class A.2: /conf/model/coreProcess

OPEN GEOSPATIAL CONSORTIUM 23-000 113

CONFORMANCE CLASS A.5: CONFORMANCE TEST CLASS: PHYSICAL COMPONENT

TARGET TYPE Derived Encoding and Software Implementation

CONFORMANCE TESTS

Abstract test A.26: /conf/model/physicalComponent/package-fully-
implemented
Abstract test A.27: /conf/model/physicalComponent/dependency-
core
Abstract test A.28: /conf/model/physicalComponent/
byPointOrLocation
Abstract test A.29: /conf/model/physicalComponent/byPosition
Abstract test A.30: /conf/model/physicalComponent/byTrajectory
Abstract test A.31: /conf/model/physicalComponent/byProcess
Abstract test A.32: /conf/model/physicalComponent/definition

ABSTRACT TEST A.26: FULLY IMPLEMENT PHYSICAL COMPONENT

IDENTIFIER /conf/model/physicalComponent/package-fully-implemented

REQUIREMENT
Requirement 26: /req/model/physicalComponent/package-fully-
implemented

TEST PURPOSE
Verify that the target implementation correctly implements all “Physical
Component” UML classes.

TEST METHOD Verify that the implementation fully implements all of the package.

ABSTRACT TEST A.27: DEPENDENCY ON CORE PROCESS

IDENTIFIER /conf/model/physicalComponent/dependency-core

REQUIREMENT Requirement 27: /req/model/physicalComponent/dependency-core

TEST PURPOSE
Verify that the target implementation correctly passes the “Core Abstract Process”
comformance test class.

TEST METHOD Apply all tests described in section A.2.

ABSTRACT TEST A.28: POSITION BY POINT

IDENTIFIER /conf/model/physicalComponent/byPointOrLocation

REQUIREMENT Requirement 28: /req/model/physicalComponent/byPointOrLocation

OPEN GEOSPATIAL CONSORTIUM 23-000 114

ABSTRACT TEST A.28: POSITION BY POINT

TEST PURPOSE Verify that the target implementation correctly specifies reference frame origin.

TEST METHOD
Verify that the implementation of the conceptual model has a constraint that enforces the
above.

ABSTRACT TEST A.29: POSITION BY LOCATION AND ORIENTATION

IDENTIFIER /conf/model/physicalComponent/byPosition

REQUIREMENT Requirement 29: /req/model/physicalComponent/byPosition

TEST PURPOSE
Verify that the target implementation correctly specifies “byPosition” reference
frame origin.

TEST METHOD
Verify that the implementation of the conceptual model has a constraint that
enforces the above.

ABSTRACT TEST A.30: POSITION BY TRAJECTORY

IDENTIFIER /conf/model/physicalComponent/byTrajectory

REQUIREMENT Requirement 30: /req/model/physicalComponent/byTrajectory

TEST PURPOSE
Verify that the target implementation correctly specifies “byTrajectory” reference frame
origin.

TEST METHOD
Verify that the implementation of the conceptual model has a constraint that enforces the
above.

ABSTRACT TEST A.31: POSITION BY PROCESS

IDENTIFIER /conf/model/physicalComponent/byProcess

REQUIREMENT Requirement 31: /req/model/physicalComponent/byProcess

TEST PURPOSE Verify that the target implementation correctly specifies “byProcess” reference frame origin.

TEST METHOD
Verify that the implementation of the conceptual model has a constraint that enforces the
above.

OPEN GEOSPATIAL CONSORTIUM 23-000 115

ABSTRACT TEST A.32: PHYSICAL COMPONENT DEFINITION

IDENTIFIER /conf/model/physicalComponent/definition

REQUIREMENT Requirement 32: /req/model/physicalComponent/definition

TEST PURPOSE
Verify that the target implementation aligns to the specification of “Physical
Component”.

TEST METHOD
Verify that the implementation of the conceptual model has a constraint that enforces
the above.

A.2.5. Physical System

Tests described in this section shall be used to test conformance of software and encoding
models implementing the conceptual models defined in Requirements Class: Physical System.

CONFORMANCE CLASS A.6: CONFORMANCE TEST CLASS: PHYSICAL SYSTEM

IDENTIFIER /conf/model/physicalSystem

REQUIREMENTS CLASS Requirements class 6: /req/model/physicalSystem

PREREQUISITE Conformance class A.5: /conf/model/physicalComponent

TARGET TYPE Derived Encoding and Software Implementation

CONFORMANCE TESTS

Abstract test A.33: /conf/model/physicalSystem/package-fully-
implemented
Abstract test A.34: /conf/model/physicalSystem/definition
Abstract test A.35: /conf/model/physicalSystem/dependency-core

ABSTRACT TEST A.33: FULLY IMPLEMENT PHYSICAL SYSTEM

IDENTIFIER /conf/model/physicalSystem/package-fully-implemented

REQUIREMENT Requirement 33: /req/model/physicalSystem/package-fully-implemented

TEST PURPOSE
Verify that the target implementation correctly implements “PhysicalSystem” UML
classes.

TEST METHOD Inspect the model or software implementation to verify the above.

OPEN GEOSPATIAL CONSORTIUM 23-000 116

ABSTRACT TEST A.34: PHYSICAL SYSTEM DEFINITION

IDENTIFIER /conf/model/physicalSystem/definition

REQUIREMENT Requirement 34: /req/model/physicalSystem/definition

TEST PURPOSE Verify that the target implementation correctly models itself as a “Physical System”.

TEST METHOD
Verify that the implementation of the conceptual model has a constraint that enforces
the above.

ABSTRACT TEST A.35: PHYSICAL SYSTEM DEPENDENCY

IDENTIFIER /conf/model/physicalSystem/dependency-core

REQUIREMENT Requirement 35: /req/model/physicalSystem/dependency-core

TEST PURPOSE
Verify that the target implementation correctly passes the “Physical Component”
conformance test class.

TEST METHOD Apply all tests described in section A.5.

A.2.6. Process with Advanced Data Types

Tests described in this section shall be used to test conformance of software and encoding
models implementing the conceptual models defined in Requirements Class: Process with
Advanced Data Types.

CONFORMANCE CLASS A.7: CONFORMANCE TEST CLASS: PROCESS WITH ADVANCED
DATA TYPES

IDENTIFIER /conf/model/advancedProcess

REQUIREMENTS CLASS Requirements class 7: /req/model/advancedProcess

PREREQUISITES
Conformance class A.2: /conf/model/coreProcess
http://www.opengis.net/spec/SWE/2.0/req/uml-block-components
http://www.opengis.net/spec/SWE/2.0/req/uml-choice-components

TARGET TYPE Derived Encoding and Software Implementation

CONFORMANCE TESTS

Abstract test A.36: /conf/model/advancedProcess/dependency-
core
Abstract test A.37: /conf/model/advancedProcess/package-
fully-implemented

OPEN GEOSPATIAL CONSORTIUM 23-000 117

ABSTRACT TEST A.36: ADVANCED PROCESS DEPENDENCE

IDENTIFIER /conf/model/advancedProcess/dependency-core

REQUIREMENT Requirement 36: /req/model/advancedProcess/dependency-core

TEST PURPOSE
Verify that the target implementation passes the “Abstract Core Process” conformance
test class.

TEST METHOD Apply all tests described in section A.2.

ABSTRACT TEST A.37: FULLY IMPLEMENT ADVANCEDPROCESS

IDENTIFIER /conf/model/advancedProcess/package-fully-implemented

REQUIREMENT
Requirement 37: /req/model/advancedProcess/package-fully-
implemented

TEST PURPOSE
Verify that the target implementation correctly implements “Core” package UML
classes.

TEST METHOD Inspect the model or software implementation to verify the above.

A.2.7. Configurable Processes

Tests described in this section shall be used to test conformance of software and encoding
models implementing the conceptual models defined in Requirements Class: Configurable
Processes.

CONFORMANCE CLASS A.8: CONFORMANCE TEST CLASS: CONFIGURABLE PROCESSES

IDENTIFIER /conf/model/configurableProcess

REQUIREMENTS CLASS Requirements class 8: /req/model/configurableProcess

PREREQUISITE /conf/req/coreProcess

TARGET TYPE Derived Encoding and Software Implementation

CONFORMANCE TESTS

Abstract test A.38: /conf/model/configurableProcess/dependency-
core
Abstract test A.39: /conf/model/configurableProcess/package-
fully-implemented

OPEN GEOSPATIAL CONSORTIUM 23-000 118

CONFORMANCE CLASS A.8: CONFORMANCE TEST CLASS: CONFIGURABLE PROCESSES

Abstract test A.40: /conf/model/configurableProcess/
twoModesRequired
Abstract test A.41: /conf/model/configurableProcess/
settingsProperty
Abstract test A.42: /conf/model/configurableProcess/
setValueRestriction
Abstract test A.43: /conf/model/configurableProcess/
setArrayValueRestriction
Abstract test A.44: /conf/model/configurableProcess/
setConstraintRestriction

ABSTRACT TEST A.38: DEPENDENCY ON CORE PROCESS

IDENTIFIER /conf/model/configurableProcess/dependency-core

REQUIREMENT Requirement 38: /req/model/configurableProcess/dependency-core

TEST PURPOSE
Verify that the target implementation passes the “Core Abstract Process” conformance
test class.

TEST METHOD Apply all tests described in section A.2.

ABSTRACT TEST A.39: FULLY IMPLEMENT CONFIGURABLE PROCESS

IDENTIFIER /conf/model/configurableProcess/package-fully-implemented

REQUIREMENT
Requirement 39: /req/model/configurableProcess/package-fully-
implemented

TEST PURPOSE
Verify that the target implementation correctly implements all “Configuration”
package UML classes.

TEST METHOD Inspect the model or software implementation to verify the above.

ABSTRACT TEST A.40: MODECHOICE REQUIRES 2 OR MORE MODES

IDENTIFIER /conf/model/configurableProcess/twoModesRequired

REQUIREMENT Requirement 40: /req/model/configurableProcess/twoModesRequired

TEST PURPOSE Verify that the target implementation implements two or more mode properties.

OPEN GEOSPATIAL CONSORTIUM 23-000 119

ABSTRACT TEST A.40: MODECHOICE REQUIRES 2 OR MORE MODES

TEST METHOD Inspect the model or software implementation to verify the above.

ABSTRACT TEST A.41: A CONFIGURED PROCESS REQUIRES A SETTINGS ELEMENT

IDENTIFIER /conf/model/configurableProcess/settingsProperty

REQUIREMENT Requirement 41: /req/model/configurableProcess/settingsProperty

TEST PURPOSE
Verify that the target implementation includes a configuration property that takes
a Settings class as its value.

TEST METHOD
Verify that the implementation of the conceptual model has a constraint that
enforces the above.

ABSTRACT TEST A.42: ONLY PARAMETER VALUES CAN BE SET BY SETVALUE

IDENTIFIER /conf/model/configurableProcess/setValueRestriction

REQUIREMENT Requirement 42: /req/model/configurableProcess/setValueRestriction

TEST PURPOSE
Verify that the target implementation only references and sets values for a
parameter defined in a configurable process.

TEST METHOD
Verify that the implementation of the conceptual model has a constraint that
enforces the above.

ABSTRACT TEST A.43: ONLY PARAMETER ARRAY VALUES CAN BE SET BY
SETARRAYVALUESANDSETENCODEDVALUES

IDENTIFIER /conf/model/configurableProcess/setArrayValueRestriction

REQUIREMENT
Requirement 43: /req/model/configurableProcess/
setArrayValueRestriction

TEST PURPOSE
Verify that the target implementation only references and sets array
values for a parameter defined in a configurable process.

TEST METHOD
Verify that the implementation of the conceptual model has a constraint
that enforces the above.

OPEN GEOSPATIAL CONSORTIUM 23-000 120

ABSTRACT TEST A.44: ONLY PARAMETER ARRAY VALUES CAN BE SET BY
SETARRAYVALUESANDSETENCODEDVALUES

IDENTIFIER /conf/model/configurableProcess/setConstraintRestriction

REQUIREMENT
Requirement 44: /req/model/configurableProcess/
setConstraintRestriction

TEST PURPOSE
Verify that the target implementation only references and sets constraints for
a parameter defined in a configurable process for the setConstraint property.

TEST METHOD
Verify that the implementation of the conceptual model has a constraint that
enforces the above.

A.2.8. Deployment

Tests described in this section shall be used to test conformance of software and encoding
models implementing the conceptual models defined in Requirements Class: Deployment.

CONFORMANCE CLASS A.9: CONFORMANCE TEST CLASS: DEPLOYMENT

IDENTIFIER /conf/model/deployment

REQUIREMENTS CLASS Requirements class 9: /req/model/deployment

PREREQUISITES

Conformance class A.1: /conf/core
http://www.opengis.net/spec/SWE/2.0/req/uml-block-components
ISO 19115:2006 (All Metadata)
ISO 19136 (GML)

TARGET TYPE
Derived Models
Encodings
and Software Implementations

CONFORMANCE TEST
Abstract test A.45: /conf/model/deployment/package-fully-
implemented

ABSTRACT TEST A.45

IDENTIFIER /conf/model/deployment/package-fully-implemented

REQUIREMENT Requirement 45: /req/model/deployment/package-fully-implemented

TEST PURPOSE Verify that the target implements all UML classes.

TEST METHOD Inspect the model or software implementation to verify the above.

OPEN GEOSPATIAL CONSORTIUM 23-000 121

A.2.9. Derived Property

Tests described in this section shall be used to test conformance of software and encoding
models implementing the conceptual models defined in Requirements Class: Derived Property.

CONFORMANCE CLASS A.10: CONFORMANCE TEST CLASS: DERIVED PROPERTY

IDENTIFIER /conf/model/derived-property

REQUIREMENTS CLASS Requirements class 10: /req/model/derived-property

PREREQUISITES

Conformance class A.1: /conf/core
http://www.opengis.net/spec/SWE/2.0/req/uml-block-components
ISO 19115:2006 (All Metadata)
ISO 19136 (GML)

TARGET TYPE
Derived Models
Encodings
and Software Implementations

CONFORMANCE TEST
Abstract test A.46: /conf/model/derived-property/package-fully-
implemented

ABSTRACT TEST A.46

IDENTIFIER /conf/model/derived-property/package-fully-implemented

REQUIREMENT Requirement 46: /req/model/derived-property/package-fully-implemented

TEST PURPOSE Verify that the target implements all UML classes.

TEST METHOD Inspect the model or software implementation to verify the above.

A.3. JSON Implementation

Tests in the following conformance test classes shall be used to check conformance of JSON
documents created according to the schemas this Standard. They shall also be used to check
conformance of software implementations that output these JSON documents.

OPEN GEOSPATIAL CONSORTIUM 23-000 122

A.3.1. Core Schema

CONFORMANCE CLASS A.11: CONFORMANCE TEST CLASS: CORE SCHEMA

IDENTIFIER /conf/json-core

REQUIREMENTS CLASS Requirements class 11: /req/json-core

TARGET TYPE JSON Document

CONFORMANCE TEST Abstract test A.47: /conf/json-core/media-type

ABSTRACT TEST A.47

IDENTIFIER /conf/json-core/media-type

REQUIREMENT Requirement 47: /req/json-core/media-type

TEST METHOD
Check that the media type used when retrieving the document is set to the application/sml
+json.

A.3.2. Simple Process Schema

CONFORMANCE CLASS A.12: CONFORMANCE TEST CLASS: SIMPLE PROCESS SCHEMA

IDENTIFIER /conf/json-simple-process

REQUIREMENTS CLASS Requirements class 12: /req/json-simple-process

TARGET TYPE JSON Document

CONFORMANCE TEST Abstract test A.48: /conf/json-simple-process/schema-valid

ABSTRACT TEST A.48

IDENTIFIER /conf/json-simple-process/schema-valid

OPEN GEOSPATIAL CONSORTIUM 23-000 123

ABSTRACT TEST A.48

REQUIREMENT Requirement 48: /req/json-simple-process/schema-valid

TEST METHOD Validate the JSON document using the JSON schema “SimpleProcess.json”.

A.3.3. Aggregate Process Schema

CONFORMANCE CLASS A.13: CONFORMANCE TEST CLASS: AGGREGATE PROCESS
SCHEMA

IDENTIFIER /conf/json-aggregate-process

REQUIREMENTS CLASS Requirements class 13: /req/json-aggregate-process

TARGET TYPE JSON Document

CONFORMANCE TEST
Abstract test A.49: /conf/json-aggregate-process/schema-
valid

ABSTRACT TEST A.49

IDENTIFIER /conf/json-aggregate-process/schema-valid

REQUIREMENT Requirement 49: /req/json-aggregate-process/schema-valid

TEST METHOD Validate the JSON document using the JSON schema “AggregateProcess.json”.

A.3.4. Physical Component Schema

CONFORMANCE CLASS A.14: CONFORMANCE TEST CLASS: PHYSICAL COMPONENT
SCHEMA

IDENTIFIER /conf/json-physical-component

REQUIREMENTS CLASS Requirements class 14: /req/json-physical-component

TARGET TYPE JSON Document

OPEN GEOSPATIAL CONSORTIUM 23-000 124

https://raw.githubusercontent.com/opengeospatial/ogcapi-connected-systems/master/sensorml/schemas/json/SimpleProcess.json
https://raw.githubusercontent.com/opengeospatial/ogcapi-connected-systems/master/sensorml/schemas/json/AggregateProcess.json

CONFORMANCE CLASS A.14: CONFORMANCE TEST CLASS: PHYSICAL COMPONENT
SCHEMA

CONFORMANCE TEST
Abstract test A.50: /conf/json-physical-component/schema-
valid

ABSTRACT TEST A.50

IDENTIFIER /conf/json-physical-component/schema-valid

REQUIREMENT Requirement 50: /req/json-physical-component/schema-valid

TEST METHOD Validate the JSON document using the JSON schema “PhysicalComponent.json”.

A.3.5. Physical System Schema

CONFORMANCE CLASS A.15: CONFORMANCE TEST CLASS: PHYSICAL SYSTEM SCHEMA

IDENTIFIER /conf/json-physical-system

REQUIREMENTS CLASS Requirements class 15: /req/json-physical-system

TARGET TYPE JSON Document

CONFORMANCE TEST Abstract test A.51: /conf/json-physical-system/schema-valid

ABSTRACT TEST A.51

IDENTIFIER /conf/json-physical-system/schema-valid

REQUIREMENT Requirement 51: /req/json-physical-system/schema-valid

TEST METHOD Validate the JSON document using the JSON schema “PhysicalSystem.json”.

A.3.6. Deployment Schema

OPEN GEOSPATIAL CONSORTIUM 23-000 125

https://raw.githubusercontent.com/opengeospatial/ogcapi-connected-systems/master/sensorml/schemas/json/PhysicalComponent.json
https://raw.githubusercontent.com/opengeospatial/ogcapi-connected-systems/master/sensorml/schemas/json/PhysicalSystem.json

CONFORMANCE CLASS A.16: CONFORMANCE TEST CLASS: DEPLOYMENT SCHEMA

IDENTIFIER /conf/json-deployment

REQUIREMENTS CLASS Requirements class 16: /req/json-deployment

TARGET TYPE JSON Document

CONFORMANCE TEST Abstract test A.52: /conf/json-deployment/schema-valid

ABSTRACT TEST A.52

IDENTIFIER /conf/json-deployment/schema-valid

REQUIREMENT Requirement 52: /req/json-deployment/schema-valid

TEST METHOD Validate the JSON document using the JSON schema “Deployment.json”.

A.3.7. Derived Property Schema

CONFORMANCE CLASS A.17: CONFORMANCE TEST CLASS: DERIVED PROPERTY
SCHEMA

IDENTIFIER /conf/json-derived-property

REQUIREMENTS CLASS Requirements class 17: /req/json-derived-property

TARGET TYPE JSON Document

CONFORMANCE TEST
Abstract test A.53: /conf/json-derived-property/schema-
valid

ABSTRACT TEST A.53

IDENTIFIER /conf/json-derived-property/schema-valid

REQUIREMENT Requirement 53: /req/json-derived-property/schema-valid

TEST METHOD Validate the JSON document using the JSON schema “DerivedProperty.json”.

OPEN GEOSPATIAL CONSORTIUM 23-000 126

https://raw.githubusercontent.com/opengeospatial/ogcapi-connected-systems/master/sensorml/schemas/json/Deployment.json
https://raw.githubusercontent.com/opengeospatial/ogcapi-connected-systems/master/sensorml/schemas/json/DerivedProperty.json

B

ANNEX B (INFORMATIVE)
REVISION HISTORY

OPEN GEOSPATIAL CONSORTIUM 23-000 127

B ANNEX B
(INFORMATIVE)
REVISION HISTORY

Table B.1 — Revision History

DATE RELEASE AUTHOR
PARAGRAPH
MODIFIED

DESCRIPTION

2012-03-16 2.0 draft Mike Botts All Initial reviewed version

2012-07-27 2.0 Mike Botts All Completed specification

2012-09-12 2.0
John
Greybeal

All Edits and corrections throughout

2012-09-12 2.0 Alex Robin All Edits and corrections throughout

2013-07-04 2.0 Mike Botts All Final draft version

2018-08-08 2.1
Eric
Hirschorn

7.9.2 (Req
43), 8.5.3,
8.1.3.15,
A.8.6

Added setEncodedValues

2019-04-21 2.1
Eric
Hirschorn

Introduction,
Normative
References

Edits requested by OAB review

2019-07-11 2.1
Eric
Hirschorn

All
Requested edits from public review, including 2.0 →
2.1

2024-04-30 3.0 Alex Robin All
Refactored to v3.0, added JSON encoding, removed
XML encoding sections

2024-09-04 3.0 Alex Robin All Updated ATS

OPEN GEOSPATIAL CONSORTIUM 23-000 128

BIBLIOGRAPHY

OPEN GEOSPATIAL CONSORTIUM 23-000 129

BIBLIOGRAPHY

[1] Katharina Schleidt, Ilkka Rinne: OGC 20-082r4, Topic 20 — Observations, measurements
and samples. Open Geospatial Consortium (2023). http://www.opengis.net/doc/as/
om/3.0.

[2] Mike Botts, Alexandre Robin, Eric Hirschorn: OGC 12-000r2, OGC SensorML: Model and
XML Encoding Standard. Open Geospatial Consortium (2020). http://www.opengis.net/
doc/IS/SensorML/2.1.0.

[3] Alexandre Robin: OGC 08-094r1, OGC® SWE Common Data Model Encoding Standard.
Open Geospatial Consortium (2011).

[4] Arne Bröring, Christoph Stasch, Johannes Echterhoff: OGC 12-006, OGC® Sensor
Observation Service Interface Standard. Open Geospatial Consortium (2012). http://
www.opengis.net/doc/IS/SOS/2.0.0.

[5] Ingo Simonis, Johannes Echterhoff: OGC 09-000, OGC® Sensor Planning Service
Implementation Standard. Open Geospatial Consortium (2011).

OPEN GEOSPATIAL CONSORTIUM 23-000 130

http://www.opengis.net/doc/as/om/3.0
http://www.opengis.net/doc/as/om/3.0
http://www.opengis.net/doc/IS/SensorML/2.1.0
http://www.opengis.net/doc/IS/SensorML/2.1.0
http://www.opengis.net/doc/IS/SOS/2.0.0
http://www.opengis.net/doc/IS/SOS/2.0.0

	I. Abstract
	II. Keywords
	III. Preface
	IV. Security considerations
	V. Submitting Organizations
	VI. Submitters
	1. Scope
	2. Conformance
	3. Normative references
	4. Terms and definitions
	6. Conventions
	6.1. Identifiers
	6.2. Abbreviated terms
	6.3. UML notation

	7. Requirements Class: Core Concepts (normative core)
	7.1. Introduction
	7.2. Process Definitions

	8. UML Conceptual Models (normative)
	8.1. Package Dependencies
	8.1.1. Dependency on GML Feature Model and ISO TC 211 Models
	8.1.2. Dependency on SWE Common Data Models
	8.1.3. Relationship to Observations and Measurements (O&M)

	8.2. Requirements Class: Core Abstract Process
	8.2.1. ObservableProperty
	8.2.2. DescribedObject
	8.2.2.1. Extension Property
	8.2.2.2. Keywords
	8.2.2.3. Identifiers
	8.2.2.4. Classifiers
	8.2.2.5. Security Constraints
	8.2.2.6. Valid Time Constraint

	8.2.3. Legal Constraint
	8.2.4. Capabilities
	8.2.5. Characteristics
	8.2.6. Contacts
	8.2.7. Documentation
	8.2.8. History
	8.2.9. AbstractProcess
	8.2.9.1. Inputs, Outputs, and Parameters
	8.2.9.2. Feature of Interest
	8.2.9.3. Inheritance, Extension, and Configuration
	8.2.9.3.1. Simple Inheritance
	8.2.9.3.2. Support for Configurable Processes

	8.2.10. SWE Common Data Types

	8.3. Requirements Class: Simple Process
	8.3.1. Simple Process Definition
	8.3.2. Process Method Definition

	8.4. Requirements Class: Aggregate Process
	8.4.1. Aggregate Process Definition

	8.5. Requirements Class: Physical Component
	8.5.1. Abstract Physical Process Defined
	8.5.1.1. attachedTo Property
	8.5.1.2. Position and Spatial Reference Frames
	8.5.1.3. Temporal Reference Frames
	8.5.1.4. 3D Pose
	8.5.1.4.1. GeoPose
	8.5.1.4.2. Relative Pose

	8.5.2. Physical Component Defined

	8.6. Requirements Class: Physical System
	8.7. Requirements Class: Processes with Advanced Data Types
	8.8. Requirements Class: Configurable Processes
	8.8.1. Modes

	8.9. Requirements Class: Deployment
	8.9.1. Overview
	8.9.2. Deployment Class
	8.9.3. DeployedSystem Class

	8.10. Requirements Class: Derived Property
	8.10.1. Overview
	8.10.2. DerivedProperty Class

	9. JSON Implementation (normative)
	9.1. Requirements Class: Core Schema
	9.1.1. Overview
	9.1.2. Media Types
	9.1.2.1. application/​sml+json

	9.1.3. General Encoding Principles
	9.1.3.1. References

	9.1.4. DescribedObject
	9.1.4.1. Unique Identifier
	9.1.4.2. Keywords
	9.1.4.3. Identifiers
	9.1.4.4. Classifiers
	9.1.4.5. Security Constraints
	9.1.4.6. Valid Time
	9.1.4.7. Legal Constraints
	9.1.4.8. Capabilities
	9.1.4.9. Characteristics
	9.1.4.10. Contacts
	9.1.4.11. Documents
	9.1.4.12. History

	9.1.5. AbstractProcess
	9.1.5.1. Type Of
	9.1.5.2. Configuration

	9.2. Requirements Class: Simple Process Schema
	9.2.1. Overview
	9.2.2. SimpleProcess
	9.2.3. Process Method

	9.3. Requirements Class: Aggregate Process Schema
	9.3.1. Overview
	9.3.2. AggregateProcess
	9.3.3. Components
	9.3.4. Connections

	9.4. Requirements Class: Physical Component Schema
	9.4.1. Overview
	9.4.2. AbstractPhysicalProcess
	9.4.3. PhysicalComponent
	9.4.4. 3D Pose

	9.5. Requirements Class: Physical System Schema
	9.5.1. Overview
	9.5.2. PhysicalSystem

	9.6. Requirements Class: Deployment Schema
	9.6.1. Overview
	9.6.2. Deployment
	9.6.3. DeployedSystem

	9.7. Requirements Class: Derived Property Schema
	9.7.1. Overview
	9.7.2. DerivedProperty

	Annex A (normative) Conformance Class Abstract Test Suite
	A.1. Core Concepts
	A.2. UML Models
	A.2.1. Core Abstract Process
	A.2.2. Simple Process
	A.2.3. Aggregate Process
	A.2.4. Physical Component
	A.2.5. Physical System
	A.2.6. Process with Advanced Data Types
	A.2.7. Configurable Processes
	A.2.8. Deployment
	A.2.9. Derived Property

	A.3. JSON Implementation
	A.3.1. Core Schema
	A.3.2. Simple Process Schema
	A.3.3. Aggregate Process Schema
	A.3.4. Physical Component Schema
	A.3.5. Physical System Schema
	A.3.6. Deployment Schema
	A.3.7. Derived Property Schema

	Annex B (informative) Revision history
	Bibliography
	—————
	List of Tables
	Table 1 — Requirements Classes
	Table 2 — Deployment Class Properties
	Table 3 — DeployedSystem Class Properties
	Table 4 — DerivedProperty Class Properties
	Table B.1 — Revision History

	List of Figures
	Figure 1 — UML Notation
	Figure 2 — Internal Package Dependencies
	Figure 3 — External Package Dependencies – GML
	Figure 4 — Models for dependent GML Feature classes
	Figure 5 — External Package Dependencies – ISO TC 211
	Figure 6 — ISO 19115 Models for dependent classes.
	Figure 7 — External Package Dependencies - SWE Common Data
	Figure 8 — Models for dependent SWE Common AbstractDataComponent class.
	Figure 9 — DescribedObject with Metadata Properties
	Figure 10 — Models for Metadata Elements
	Figure 11 — Model for history events
	Figure 12 — UML models for DescribedObject and AbstractProcess
	Figure 13 — UML models for process inputs, outputs, and parameters
	Figure 14 — Model for Simple Process
	Figure 15 — Model for ProcessMethod
	Figure 16 — Model for Aggregate Process
	Figure 17 — Model for Physical Process Component
	Figure 18 — Models for SpatialFrame and PositionUnion
	Figure 19 — Pose Data Types
	Figure 20 — Model for Physical Processing System
	Figure 21 — Model for Modes
	Figure 22 — Model for Configured Process Settings
	Figure 23 — Model for Settings Elements
	Figure 24 — Deployment Class
	Figure 25 — DerivedProperty Class

	List of Recommendations
	Requirements class 1: Core Concepts
	Requirements class 2: Core Abstract Process
	Requirements class 3: Simple Process
	Requirements class 4: Aggregate Process
	Requirements class 5: Physical Component
	Requirements class 6: Physical System
	Requirements class 7: Processes with Advanced Data Types
	Requirements class 8: Configurable Processes
	Requirements class 9
	Requirements class 10
	Requirements class 11
	Requirements class 12
	Requirements class 13
	Requirements class 14
	Requirements class 15
	Requirements class 16
	Requirements class 17
	Requirement 1
	Requirement 2
	Requirement 3
	Requirement 4
	Requirement 5
	Requirement 6
	Requirement 7
	Requirement 8
	Requirement 9
	Requirement 10
	Requirement 11
	Requirement 12
	Requirement 13
	Requirement 14
	Requirement 15
	Requirement 16
	Requirement 17
	Requirement 18
	Requirement 19
	Requirement 20
	Requirement 21
	Requirement 22
	Requirement 23
	Requirement 24
	Requirement 25
	Requirement 26
	Requirement 27
	Requirement 28
	Requirement 29
	Requirement 30
	Requirement 31
	Requirement 32
	Requirement 33
	Requirement 34
	Requirement 35
	Requirement 36
	Requirement 37
	Requirement 38
	Requirement 39
	Requirement 40
	Requirement 41
	Requirement 42
	Requirement 43
	Requirement 44
	Requirement 45
	Requirement 46
	Requirement 47
	Requirement 48
	Requirement 49
	Requirement 50
	Requirement 51
	Requirement 52
	Requirement 53
	Conformance class A.1: Conformance Test Class: Core Concepts
	Conformance class A.2: Conformance Test Class: Core Abstract Process
	Conformance class A.3: Conformance Test Class: Simple Process
	Conformance class A.4: Conformance Test Class: Aggregate Process
	Conformance class A.5: Conformance Test Class: Physical Component
	Conformance class A.6: Conformance Test Class: Physical System
	Conformance class A.7: Conformance Test Class: Process with Advanced Data Types
	Conformance class A.8: Conformance Test Class: Configurable Processes
	Conformance class A.9: Conformance Test Class: Deployment
	Conformance class A.10: Conformance Test Class: Derived Property
	Conformance class A.11: Conformance Test Class: Core Schema
	Conformance class A.12: Conformance Test Class: Simple Process Schema
	Conformance class A.13: Conformance Test Class: Aggregate Process Schema
	Conformance class A.14: Conformance Test Class: Physical Component Schema
	Conformance class A.15: Conformance Test Class: Physical System Schema
	Conformance class A.16: Conformance Test Class: Deployment Schema
	Conformance class A.17: Conformance Test Class: Derived Property Schema

