
OGC 03-064r10

Open Geospatial Consortium Inc.

Date: 2005-05-04

Reference number of this OGC™ project document: OGC 03-064r10

Version: 1.0

Category: OpenGIS® Implementation

Editor: Greg Reynolds, SYS Inc. / OGC

GO-1 Application Objects

Copyright notice

Copyright © Open Geospatial Consortium, Inc (2005)

OGC 03-064r10

xii Copyright © Open Geospatial Consortium, Inc (2005)

OGC 03-064r10

Copyright © Open Geospatial Consortium, Inc (2005)

iii

Contents ..

i. Preface ... vii
ii. Submitting organizations .. vii
iii. Submission contact points .. vii
iv. Revision history ... viii
v. Changes to the OpenGIS Abstract Specification x

vi. Future Work ... x

Foreword .. xiii
Introduction ... xiv

1 Scope ... 15

2 Conformance .. 15
2.1 Conformance Overview .. 17
2.3 Data Provider Conformance .. 18
2.4 Display Object Conformance ... 18
2.5 OGC Service Conformance .. 19
2.6 Coordinate Transformations ... 19

3 Normative references ... 20

4 Terms and definitions .. 21

5 Conventions .. 21
5.1 Symbols (and abbreviated terms) .. 21
5.2 UML Notation ... 21

6. Application Object Definitions ... 23
6.1 Factory ... 23
6.1.1 Graphic Object Creation .. 23

6.2 Display Objects.. 24
6.2.1 Canvas .. 24
6.2.1.1 General Description .. 24

6.2.1.2 Output Device .. 25
6.2.1.3 Input Device ... 25
6.2.1.4 Coordinate Reference System .. 26
6.2.1.5 Z-Order and Rendering of Graphics .. 27
6.2.1.6 Canvas State .. 28
6.2.1.7 Specialized 2D Canvas Interfaces .. 29

6.2.2 Events ... 30
6.2.2.1 Model and Rationale ... 30

OGC 03-064r10

xii Copyright © Open Geospatial Consortium, Inc (2005)

6.2.2.2 GO-1 Event Management ... 30
6.2.2.3 EventHandler Stack .. 31
6.2.2.4 EventManager ... 31
6.2.2.5 Event Types ... 31

6.3 Graphical Data Objects .. 32
6.3.1 Graphic Overview ... 33
6.3.2 Primitives ... 34
6.3.3 Aggregates ... 37
6.3.4 Symbols .. 38

6.3.4.1 Symbology .. 39
6.3.4.2 Visibility Tag ... 39

6.3.5 Path Type ... 40
6.3.6 Graphic Attributes .. 42

6.3.6.1 Viewability ... 42
6.3.6.2 Symbology .. 42
6.3.6.3 Highlight .. 42
6.3.6.4 Editability .. 42

6.3.7 GraphicStyle .. 42
6.3.7.1 Relationship to Graphic ... 42
6.3.7.2 Relationship to OGC SLD .. 43
6.3.7.3 GraphicStyle Elements .. 43
6.3.7.4 GraphicStyle Events ... 45
6.3.7.5 Graphic Selectability .. 45

6.3.8 Graphic Events ... 46
6.4 Spatial Objects .. 46

6.4.1 Geometry ... 46
6.4.1.1 DirectPosition .. 49
6.4.1.2 CurveSegment and Conic ... 51
6.4.1.3 CompositeCurve and Ring ... 52
6.4.1.4 SurfaceBoundary .. 53
6.4.1.5 Aggregate ... 54
6.4.1.6 Envelope ... 55
6.4.1.7 Geometry Mutability .. 55

6.4.2 Coordinate Reference System Model .. 55
6.4.2.1 Coordinate System .. 56
6.4.2.2 Reference System .. 58
6.4.2.3 Datum ... 59
6.4.2.4 Coordinate Reference System .. 61
6.4.2.5 Map Projection .. 64
6.4.2.6 Coordinate Operations ... 65
6.4.2.7 Relative Coordinates ... 68

6.4.3 Reference System Factories and Authority Factories 69
6.5 Features ... 71

6.5.1 Model and Rationale .. 71
6.5.2 Feature Attributes and Geometry ... 72

OGC 03-064r10

Copyright © Open Geospatial Consortium, Inc (2005)

v

6.5.3 FeatureTypes .. 72
6.5.4 Modifying Features .. 73
6.5.5 FeatureCollections .. 73
6.5.6 Feature Events .. 74
6.5.7 Transactions .. 75
6.5.8 Transaction from the implementors perspective ... 76
6.5.9 Transaction field and method detail ... 77
6.5.10 Locking .. 78

6.6 FeatureStore ... 82
6.6.1 Model and Rationale .. 82
6.6.2 Nested Features ... 83
6.6.3 FeatureStore method detail ... 83
6.6.4 Filter ... 84
6.6.5 FeatureStore Example Usage .. 86
6.6.6 Relationship of FeatureStore to existing OGC standards 87

6.7 FeatureCanvas ... 87
6.7.1 Model and Rationale .. 87
6.7.2 FeatureStyle .. 87
6.7.3 FeatureLayers ... 89

6.8 GraphicStore, GraphicStoreFactory ... 90
6.8.1 GraphicStore ... 90
6.8.2 GraphicStoreFactory .. 90
6.8.3 Graphic Store Use Cases .. 91

6.8.3.1 Support for Custom Graphics ... 91
6.8.3.2 Support for GraphicScaledImage ... 92
6.8.3.3 Data to Feature Mapping Issues .. 93
6.8.3.4 SLD Issues ... 93

6.9 Layer and LayerSource .. 93
6.9.1 Model and Rationale ... 93
6.9.3 LayerSourceFactory ... 94
6.9.4 Layer Example .. 95

7 Behaviours .. 95
7.1 Adding a Graphic to a display ... 95
7.2 Mouse click selects graphical object. ... 97

7.2.1 Editing Graphics ... 99
7.3 Graphic object is instantiated from a Geometry and an SLD. 99
7.4 Relative Coordinate Use Cases .. 102

7.4.1 An image that does not scale with a CRS ... 102
7.4.2 An image that is in a CRS chain and scales with a ProjectedCRS .. 102
7.4.3 An EngineeringCRS scaling directly with another
EngineeringCRS. .. 103

7.5. Symbology Use Cases .. 103
7.5.1 MIL-STD 2525 Tactical Graphic .. 103
7.5.2 MIL-STD 2525 Air Track .. 104

OGC 03-064r10

xii Copyright © Open Geospatial Consortium, Inc (2005)

7.5.3 Surface Weather .. 105
7.5.4 Homeland Security .. 107

7.6 Z-order Use Case ... 108

Annex A (normative) Application Objects Programming Interface for
Java 110

Annex B (normative) Symbology Property Names 111

Annex C (normative) Open Source Information 116

Annex D (non-normative) FeatureCanvas Sequence Diagram 118

Annex E (non-normative) Package Dependencies 119

Annex G (non-normative) Implementation Notes 123

Bibliography .. 124

OGC 03-064r10

Copyright © Open Geospatial Consortium, Inc (2005)

vii

i. Preface

This document is the Open Geospatial Consortium Application Objects Implementation
Specification. This specification is a result of the OGC Geographic Objects Initiative,
which was established to develop an open set of common, lightweight, language-
independent abstractions for describing, managing, rendering, and manipulating
geometric and geographic objects within an application programming environment. This
document defines that set of vendor-neutral, object-oriented geometric and geographic
object abstractions for the application space. It provides both an abstract object
specification (in UML) and a programming-language specific profile (in Java) to that
specification. The language-specific bindings serve as an open Application Program
Interface (API).

ii. Submitting organizations

The following organisations submitted this Implementation Specification to the Open
GIS Consortium Inc. in response to the OGC Call for Participation (CFP) in the
Geographic Objects Phase One (GO-1) Initiative:

a) SYS Technologies

b) Northrop Grumman Information Technology

c) Pennsylvania State University

iii. Submission contact points

All questions regarding this submission should be directed to the editor or the submitters:

CONTACT COMPANY EMAIL

Eric Bertel SYS Technologies eric@polexis.com

Greg Reynolds SYS Technologies greynolds@polexis.com

OGC 03-064r10

xii Copyright © Open Geospatial Consortium, Inc (2005)

CONTACT COMPANY EMAIL

John Davidson Image Matters LLC/OGC johnd@imagemattersllc.co
m

Phillip C. Dibner Ecosystem
Associates/OGC

pcd@ecosystem.com

Charles Heazel OGC cheazel@opengis.org

Ava Mann Northrop Grumman IT amann@northropgrumman
.com

James MacGill Penn. State Univ. jmacgill@psu.edu

Christopher Dillard SYS Technologies cdillard@polexis.com

Jody Garnett Refractions Research jgarnett@refractions.net

iv. Revision history

Date Release Author Paragraph modified Description

19 May 03 0.1.9 P. Dibner First public draft

03 June 03 0.2.0 P. Dibner Cleanup for June 2003 TC

17 Sept 03 0.3.0 E. Bertel Second public draft

11 Mar04 0.3.5 E. Bertel Added 6.3.4.5.1,
6.3.4.5.2, 6.3.4.5.3,
6.3.4.7.
Modified vi, 6.1.1.4,
6.2.2.1, 6.2.2.2,
6.2.2.3, 6.2.2.4,
6.2.2.5, 6.3.4.2,
6.3.4.5,
Bibliography.

Additional content resulting from
GO-1 proof-of-concept
implementation.

11 Mar 04 0.4.0 G. Reynolds Added 6.1.1.6,
6.3.4.3.1, 6.5, 6.5.1,
6.5.2, 6.5.3, 6.5.4,
6.5.5, 7.2.1, Annex
B.
Modified 6.1.1.5,

Third public draft

OGC 03-064r10

Copyright © Open Geospatial Consortium, Inc (2005)

ix

Bibliography.

14 May 04 0.5.0 E. Bertel Modified i, vi, xi, 1,
2, 6.1, 6.1.1.1,
6.1.1.4, 6.1.1.6,
6.1.1.7, 6.2.1.2,
6.2.1.8, 6.2.2 (each),
6.3, 6.3.1 (each), ,
6.3.4 (each), 6.3.4.6,
Bibliography,
Figures 1 - 32.

Removed 6.3.2,
6.3.2.1, 6.3.3,
6.3.4.5.3, 6.4, 6.4.1,
6.4.2, 6.4.3.

Fourth public draft, incorporating
changes based on comments at the
April 2004 Technical Conference
GO-1 RFC presentation,
modifications to the GeoAPI
baseline, and numerous minor
editorial corrections.

15 Dec 04 0.6.0 C. Dillard,
J. Garnett

Add Figure 4, Figure
5, Figure 6, Add
Figures 27 - 32.
Figure 35. Add
6.1.1.7, 6.2.1.1,
6.2.1.2, 6.2.2.2,
6.2.2.4, Add 6.4-6.6,
7.2.1, 7.3, 7.5.1.

Added section 6.1.1.7 on Map2D.
Added sections 6.4-6.6 on
Features, FeatureStores, and
FeatureCanvas. Diagrams and
text modified to reflect renaming
of GraphicCurveSegment to
GraphicLineString and addition of
GraphicPolygon. Also rewrote
SLD section to be more clear.

16 Dec 04 0.7.0 C. Dillard Added section
6.3.1.7. Edit section
2. Add annexes E,
F, and G. Added
content to Annex C.

Added section on Geometry
mutability. Changed the
conformance types to include
Feature and Data Provider
conformance.

17 Dec 04 0.7.1 G. Reynolds Added section 2.6,
Update 6.3.2.1

Add Conformance Summary and
diagram. General document
cleanup. Change TemporalCRS to
TimeCRS.

30 Dec 04 0.7.2 C. Dillard Figure 18, 19, 21 Updated obsolete figures.

5 Jan 05 0.7.3 G. Reynolds Added 6.7
GraphicStore.
Revised Annex F.

Changed references from
DataStore to FeatureStore to
reflect GeoAPI update. Added
GraphicStore API. Updates to
Annex F.

17 Jan 05 0.7.4 D. Arctur,
G. Reynolds

Modified 1.0.
Reordered 2.0.

Updated Scope; qualified
conformance levels; sourced
Simple Features for SQL.

OGC 03-064r10

xii Copyright © Open Geospatial Consortium, Inc (2005)

25 Jan 05 0.8 C. Dillard 6.1.2.3 (removed),
6.2.1.1, 6.2.1.6
(added), 6.2.2.3,
6.2.2.6 (added).

Separated event and editability
sections. Corrected obsolete
references to ManagerSupport.
Corrected style property table.

v. Changes to the OpenGIS Abstract Specification

The OpenGIS® Abstract Specification does not require changes to accommodate this
OpenGIS® specification.

vi. Future Work

The Application Objects specification defines a set of core packages that support a small
set of Geometries, a basic set of renderable Graphics that correspond to those
Geometries, 2D device abstractions (displays, mouse, keyboard, etc.), and supporting
classes. Implementation of these APIs will support the needs of many users of geospatial
and graphic information. These APIs support the rendering of geospatial datasets,
provide fine-grained symbolization of geometries, and support dynamic, event and user
driven animation of geo-registered graphics.

We anticipate the need for extensions to this specification to support more specialized
applications. It is likely that the core packages will warrant some granular enhancements,
which would constitute revisions to the specification. Some extensions, however, will
constitute major new capability areas. Implementing these extensions as a revision to this
Application Objects specification would not be advisable, especially if the extension
introduces a capability that not all implementers would want to support. These new
capability areas should be defined in separate "extension" specifications that include the
core specification by reference. Implementations would be declared compliant with one
or more of these extensions, and consumers could choose a product that meets their
applications' need.

We recommend that future work on new Application Object-dependent specifications be
considered for the following extensions:

 3D - to support 3D Geometries and 3D Graphics for objects such as surfaces and
solids, perhaps the integration of standard 3D models such as VRML, and other 3D
concepts.

OGC 03-064r10

Copyright © Open Geospatial Consortium, Inc (2005)

xi

 Advanced 2D - to support the more advanced 2D Geometries and 2D Graphics
including those defined by Topic 1 (ISO-19107).

 Immediate Mode Rendering - to add an optional "call back" method to allow the
application programmer to render Graphics using lightweight, transient calls during
the physical rendering process (which is useful to support the rendering of extensive
amounts of graphical information, but not easily supported by some implementations,
such as distributed or client/server map engines). This allows an application
programmer to reuse Geometry and Graphics objects to render many similar items
(e.g., thousands of CurveSegments) and avoid the overhead of modelling them in
memory, prior to render time. In addition to the performance considerations, this also
allows for scale and location-dependent rendering to be done by the application, such
as rendering sparse representations of grid data, where application logic must be used
to calculate the correct placement of the graphics.

 Additional data sources - GO-1 has been architected to accommodate non-geospatial
data models. The integration of non-GIS information models (engineering, modelling
and simulation, etc.) into the GO-1 framework should be pursued.

We recommend that future work on new Application Object core specification be
considered in the following areas:

 A well-defined mechanism for allowing individual implementations to add new
graphical primitives and corresponding graphic style interfaces.

 A more extensive investigation into the differences in requirements and capabilities
of graphical vs. analytic geometry descriptions.

 The API will eventually need to be extended to give the Canvas the ability to span
multiple processes and correctly align its state between those processes (e.g. a Canvas
that is served to multiple network clients). The X protocol is a good example of an
architecture that handles this situation.

Furthermore, we recommend that the work from GO-1 be considered for inclusion in the
following OGC work areas:

 Style Layer Descriptor (SLD) - The GO-1 GraphicStyle can express certain
concepts not found in SLD (e.g. ArrowStyle, FillStyle, FillPattern,
Symbology). The SLD specification should be expanded to express these concepts.

 Coordinate Reference System (CRS) and Coordinate Transformation (CT) – The GO-
1 API introduces the Projection object family, which extends the OGC
Conversion object; the MathTransform object family as a decorator to the
OGC Operation object family; and a pattern using a default Factory in concert
with an AuthorityFactory. With the exception of Projection, all of these

OGC 03-064r10

xii Copyright © Open Geospatial Consortium, Inc (2005)

additions are implemented from the OGC 01-009 implementation specification
(Coordinate Transformation Services).

In the future, a sub-profile of existing 19107 interfaces should be defined that allows
implementations to support only Simple Features for SQL (99-049). As a related
compliance issue, the conversion process between Simple Features and 19107 Geometry
should be explored.

Web services providing for delivery of asynchronous messages between peers is
envisioned as a future need. Such a Web Notification Service should be readily
interoperable with the event notification mechanisms provided by GO-1.

OGC 03-064r10

Copyright © Open Geospatial Consortium, Inc (2005)

xiii

Foreword

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held
responsible for identifying any or all such patent rights.

This document consists of the following parts, under the main body:

 Scope

 Conformance

 Normative references

 Terms and definitions

 Conventions

 Design and Specification for Application Objects

 Behaviours

 Detailed Implementation Specifications for Application Objects in
External, Javadoc Documents

OGC 03-064r10

xii Copyright © Open Geospatial Consortium, Inc (2005)

Introduction

This document describes architectural and implementation issues concerning the
development of a suite of software objects that facilitate the development of applications
with geospatial content, as elucidated during the Geographic Objects Phase 1 Initiative
(GO-1) conducted under the auspices of the Open Geospatial Consortium Interoperability
program (OGC IP). The particular implementation focus of this initiative is interface
definition and code organization in the Java programming language.

The bases of the interface definition are the object models defined in The OpenGIS
Abstract Specification Topic 1: Feature Geometry (ISO-19107 Spatial Schema) Version 5
(OGC 01-101r5) and The OpenGIS Abstract Specification Topic 2: Spatial Referencing
By Coordinates (Open GIS Consortium Inc). These models provide the architectural
bridge between the OGC GO-1 application-domain specification and other OGC service-
domain specifications.

OpenGIS® Specification OGC 03-064r10

Copyright © Open Geospatial Consortium, Inc (2005)

15

OpenGIS® Interface — Application Objects

1 Scope

This OGC document describes the specification for Application Objects. These are the
Java and other implementations of objects and interfaces that can be used to implement
geospatial applications.

Application Objects are oriented on the application domain (e.g. user-facing, localized
processes and operations), and less so on the service domain (e.g. centralized processes
and operations that are not necessarily exposed to the user). The focus for interoperability
in recent years has been toward coarse-grained, loosely coupled web services.
Application Objects provides a complementary API-based approach that can yield
improved functionality over web services, at the expense of increased coupling. Both
approaches can be valid within various enterprise IT environments.

While this specification outlines certain service interfaces, it does not require the use of
any particular service implementation. A GO-1 application may derive its data from one
or more services as defined by any of the OGC service specifications. It may also act as
a client to transformation or other processing services when they become available. The
OGC web services defined to date are effectively standalone.

2 Conformance

This document recognises two broad categories of conformance, API conformance and
functional conformance. API conformance is the ability of an application to invoke all of
the required operations without any unexpected returned values or states. API
conformance does not require that the component actually do anything. Functional
conformance mandates not only that the required operations can be invoked, but also that
the component performs the operations in a standard and universally understood manner.

Because this API is intended to be used in a wide range of deployment environments, the
primary focus of this document is upon API conformance. API conformance can be
specified and tested in a manner that is implementation-neutral. When an operation is
invoked, it either succeeds, or fails to produce the intended result. There is no ambiguity.

Functional conformance is more difficult and far more implementation-dependent. What
is acceptable in one environment may not be adequate in another. For example, a high-
performance, low-power display might be designed to render lines in only a few colours
and styles. This would be inadequate for a more feature-rich unit used to develop
cartographic imagery. Such differences in functionality should be invisible to a generic
API. A rigid definition of functional conformance would limit component developers'

16 Copyright © Open Geospatial Consortium, Inc (2005)

ability to tailor their products to the requirements of their respective developer
communities.

Even within the domain of API conformance, there is a wide spectrum of developer
objectives and corresponding application types. Not all of these would benefit by
incorporating every interface specified below. In the remainder of this section we
describe various categories of conformance, and suggest the kinds of applications that
might benefit most from each one.

Crucial to this notion are the object classes and interfaces that form natural suites of
related functionality, or packages, that define the substance of the various conformance
classes. Certain suites, like the Spatial Objects, can be implemented as compliant
standalone object libraries. Others, like the Display Objects, are dependent upon one or
more other frameworks, and compliant implementations of these must also comply with
the specifications of the frameworks on which they depend. To utilize them implies a
conformance to the object suites upon which they depend as well.

Even within a framework, there is variation among environments as to which operations
and perhaps even which objects may be necessary or useful. Future versions of this
specification may provide additional flexibility to implementers by defining different
conformance profiles. Simpler profiles would offer less functionality, simpler
implementation, and fewer resource requirements than the more extensive profiles.

Copyright © Open Geospatial Consortium, Inc (2005)

17

2.1 Conformance Overview

In order for a GO-1 implementation to be conformant, FeatureStore and FeatureCanvas
both require a conformant implementation of Features. Topic 1 - Feature Geometry
conformance is required for GO-1 FeatureCollection and Graphics API’s. Topic 2 -
Spatial Referencing by Coordinates conformance is required for GO-1 Canvas. For an
implementation of Features to be conformant, it requires conformance to Filter Encoding
and Styled Layer Descriptor.

The figure below illustrates the aforementioned conformance relationships. Spatial
conformance is shaded green, and feature conformance is shaded blue.

Data Provider

Spatial Objects

Topic 1 (01-101)

Topic 5 (99-105)

FeatureStore

SLD (02-070)

Features

Display Objects

Graphics

Canvas FeatureCanvas

Filter (02-059)

Topic 2 (03-073)

Figure 1 - Conformance Types

18 Copyright © Open Geospatial Consortium, Inc (2005)

2.2 Spatial and Feature Conformance

Feature, Geometry, Coordinate Reference System, and related entities constitute the
spatial and feature objects defined by GO-1. These build upon the body of work that has
resulted in the OGC Abstract Specification Topic 1 (ISO-19107), OGC Abstract
Specification Topic 2, OGC Abstract Specification Topic 5, OGC Simple Features for
SQL (OGC 99-049), and other OGC Discussion and Recommendation Papers.

Direct support of spatial objects confers interoperability with local conforming data
sources and with remote services, like WFS, that provide an encoded stream of features
per the definitions in these documents. The interoperability includes both the geometric
properties of objects (Geometry) and the non-geometric properties (Feature attributes).

Feature conformance in GO-1 requires Spatial and Feature Conformance as well as
implementation of the FeatureCanvas API.

In javadocs, implementations shall use the annotation “SPATIAL” for identifying Spatial
conformance and “FEATURE” for Feature conformance.

2.3 Data Provider Conformance

FeatureStore and related entities constitute the data provider interfaces defined by GO-1.
This interface builds upon the efforts of the OpenSource community (in particular
GeoTools) to provide a standardized mechanism for data providers to provide queriable
access to data. The interfaces prevent the client from having to know anything about the
implementation of the data connection.

FeatureStore conformance in GO-1 also requires Feature conformance.

In javadocs, implementations shall use the annotation “DATA_PROVIDER” for
identifying this conformance level.

2.4 Display Object Conformance

The Display Objects described in this document include the Canvas, Graphic,
GraphicStyle and the objects of the Event model. The Canvas is the rendering surface
that the user sees and interacts with. Graphics objects are the entities that a Canvas
manipulates and renders according to the styling attributes of a GraphicStyle object.
Events provide user input to the Canvas, and both control and notification between
objects on the Canvas. Together, these constitute the display subsystem of an
application.

This specification recognizes two different levels of Display Object Conformance, basic
Display Objects and Display Objects with Events and Editing. In the first level,
comforming implementations correctly display Graphic primitives according to their
associated GraphicStyle. In the second level of conformance, an implementation
additionally correctly fires events when the user interacts with the Canvas and the
editability properties of Graphics are fully supported.

Copyright © Open Geospatial Consortium, Inc (2005)

19

Both of these levels of conformance require the implementation of the Canvas, Graphic,
and GraphicStyle interfaces. Only in the second level are implementations required to
handle the event model described here. The following sections are required for Display
Objects with Events and Editing:Events, and all sub sections.

 7.2.1 Graphic Editability

Display Object conformance confers a number of benefits upon applications that
implement it. Some of these benefits are:

1. Implementations have a variety of architectural and design decisions already made for
them. They implement patterns and benefit from best practices as identified by
participants in the GO-1 initiative.

2. Among the patterns of interest are a consistent means of ingesting data from a variety
of OGC-specified sources.

3. Users of these systems will find familiar user interaction paradigms and control
semantics as they move between applications.

4. Applications loosely coupled to their display subsystems may connect with any of a
number of local or remote displays, and may therefore provide a means to coordinate
control or share information among a variety of distributed sites.

5. Thus display system conformance confers interoperability with respect to the display
and user interface subsystem.

In API documentation the annotation “DISPLAY_OBJECT” for identifying Display
Object conformance level, and “EDITABLE_DISPLAY_OBJECT” for Editable Display
Objects with Events.

2.5 OGC Service Conformance

The GO-1 specification does not mandate or exclude any particular web services. The
OGC web services defined to date are effectively standalone. An application may
conform to any one of them independently, without necessarily conforming to others.

2.6 Coordinate Transformations

2.6.1 Coordinate Transformations

GO-1 implementations should support coordinate transformations. Below is a suggested
list of coordinate transformations that could be supported.

 Geocentric to Geocentric

 Geocentric to Geographic

 Geographic to Geocentric

20 Copyright © Open Geospatial Consortium, Inc (2005)

 Geographic to Geographic

 Geocentric or Geographic to Projected

 Projected to Geocentric or Geographic

 Engineering to Geocentric or Geographic

 Geocentric or Geographic to Engineering

2.6.2 Operation Methods

GO-1 implementations should support operation methods. The following operation
methods are suggested.

 Molodenski Transform (7 parameter).

 Abridged Molodenski Transform (7 parameter).

 Geocentric Translation (3 parameter).

 Helmert Transform (7 parameter, with identifiers for Position Vector and Coordinate
Frame Rotation variants).

 Affine Transform 2D.

 Polynomial Transform (described by NIMA TR 8350.2).Grid-Based Transform
(NADCON and NTv2).

2.6.3 Required Datum

Conformant GO-1 implementations are required to support the following Datum.

 WGS-84 World Geographic Survey, 1984.

3 Normative references

The following normative documents contain provisions that, through reference in this
text, constitute provisions of this part of OGC 03-064. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. However, parties
to agreements based on this part of OGC 03-064 are encouraged to investigate the
possibility of applying the most recent editions of the normative documents indicated
below. For undated references, the latest edition of the normative document referred to
applies.

(Normative references are included in the Bibliography.)

Copyright © Open Geospatial Consortium, Inc (2005)

21

4 Terms and definitions

For the purposes of this document, the terms and definitions given in Section 5.1 below
apply.

5 Conventions

5.1 Symbols (and abbreviated terms)

API Application Program Interface

COTS Commercial Off The Shelf

CRS Coordinate Reference System

CS Coordinate System

GO-1 Geographic Objects, Phase 1

ISO International Organisation for Standardisation

OGC Open GIS Consortium

SLD Styled Layer Descriptor

SRS Spatial Reference System

UML Unified Modelling Language

XML eXtended Markup Language

1D One Dimensional

2D Two Dimensional

3D Three Dimensional

5.2 UML Notation

The diagrams that appear in this standard are presented using the Unified Modelling
Language (UML) static structure diagram. The UML notations used in this standard are
described in the diagram below.

22 Copyright © Open Geospatial Consortium, Inc (2005)

Association between classesrole-1role-2Association NameClass #1Class #2Association CardinalityClassOnly oneCla

Figure 2 - UML notation

In this standard, the following three stereotypes of UML classes are used:

a) <<Interface>> A definition of a set of operations that is supported by objects having
this interface. An Interface class cannot contain any attributes.

b) <<DataType>> A descriptor of a set of values that lack identity (independent
existence and the possibility of side effects). A DataType is a class with no
operations whose primary purpose is to hold the information.

c) <<CodeList>> is a flexible enumeration that uses string values for expressing a list of
potential values.

In this standard, the following standard data types are used:

a) CharacterString – A sequence of characters

b) Integer – An integer number

c) Double – A double precision floating point number

d) Float – A single precision floating point number

Copyright © Open Geospatial Consortium, Inc (2005)

23

6. Application Object Definitions

6.1 Factory

Figure 3 - CommonFactory

The GO-1 CommonFactory class supports a getCapabilities() operation that
allows it to describe the supported features. An application attempting to use a given
implementation can invoke this method to determine whether an implementation is
suitable for rendering its graphic information, or whether it would have to do extra work
in order to use the implementation.

For example, the CommonFactory.getCapabilities()method returns an object
that implements the CommonCapabilities interface. This object may then be
queried about support for specific features.

The CommonFactory is the gateway into the GO-1 implementation. To access other
factories used in GO-1, they are first obtained from the CommonFactory. For
example, CommonFactory.getCRSAuthorityFactory() returns the
CRSAuthorityFactory object from the CommonFactory implementation.

6.1.1 Graphic Object Creation

Graphic objects are created by invocation of the DisplayFactory
.createGraphic() method. The Factory pattern, which is used extensively
throughout GO-1, insulates client code from all details of the created class internals.
Graphic creation methods may instantiate Graphic objects based on ISO-19107
geometries presented to them, but they may also be created using Shapefiles, or other
formats for setting the geometry and geospatial location of a Graphic.

In order to ascertain display capabilities, the DisplayFactory.
getCapabilities() method is used to obtain capabilities related to graphic
primitives and styles. Among the kinds of information an application may discover are
various types of graphical rendering that the implementation is capable of doing, e.g.,
kinds of stroke and fill patterns available, support for blinking or backlighting, colour
palette, line join styles and end caps, etc.

24 Copyright © Open Geospatial Consortium, Inc (2005)

6.2 Display Objects

Display objects mediate the dynamic interactions of geospatial, graphical, or other data
with the application. The particular role of such objects in the context of the present
specification involves interaction with end users: displaying the data on a user-viewable
device, and accepting user or programmatic input to control the application.

6.2.1 Canvas

6.2.1.1 General Description

The Canvas class defines a common abstraction for the display and user manipulation
of geospatial information. It contains and manages a collection of Graphic objects that
may be rendered as a map or represent features on a map, and maintains display context.

The DisplayFactory creates instances of this class. The Factory pattern, which is
used extensively throughout GO-1, insulates client code from all details of the created
class internals.

Copyright © Open Geospatial Consortium, Inc (2005)

25

Figure 4 - Canvas and related classes

6.2.1.2 Output Device

A Canvas is associated with an output device such as a window or a portion of a
window on a display screen, or an image buffer. The Canvas is responsible for
intelligent handling of the viewable area of the window, including panning, zooming,
growing, and shrinking, repaints of "dirty" areas in the image due to external window
changes, and visual changes in the Graphics due to editing, animation, or filtering.

6.2.1.3 Input Device

A Canvas may be associated with one or more input devices such as a mouse, keyboard,
eye tracker, or gesture reader. These devices allow the user to manipulate the Graphic
objects held by the Canvas and to interact with the Canvas in other ways. The Canvas
manages the input events from these devices. See section 6.1.2 for a description of how
events are to be handled.

26 Copyright © Open Geospatial Consortium, Inc (2005)

6.2.1.4 Coordinate Reference System

The Canvas maintains two coordinate reference systems (CRS):

1. The Canvas display CRS is associated with the geometry of the display device,
and generally uses display coordinates such as pixels.

2. The Canvas objective CRS is associated with the data modelled by the Canvas,
and is generally associated with model coordinates, such as points.

Most computer screens are a rectangular array of pixels, and would use a CRS backed by
a CartesianCS for the display CRS. A planetarium or IMAX theatre is a spherical
display, and might require a spherical coordinate reference system.

The Canvas objective CRS is typically a ProjectedCRS for a rendered map, but
could be a GeographicCRS if simple lat/lon rendering is desired, or a non-georeferenced
CoordinateReferenceSystem, such as an isometric projection of an
EngineeringCRS.

The Canvas must provide accessors for two MathTransform objects, the first which
specifies the particular transformation method from the objective CRS to the display
CRS, and the second which specifies the transformation method from the display CRS to
the objective CRS (note this latter transformation can be provided by
MathTransform.invert() method which is part of OGC 01-009

specification). This MathTransform shall be invertible, in order to get the
transformation method from the display CRS to the objective CRS. For example if the
ProjectedCRS defines objects in grid coordinates, the first transform can convert the grid
coordinates of a ProjectedCRS to screen coordinates of the display CRS.
Alternately an implementation can choose to utilize as the objective CRS a non-projected
CoordinateReferenceSystem, such as a GeospatialCRS, a
GeographicCRS, or an EngineeringCRS.

Before adding a Graphic to a Canvas the user is responsible to ensure that the
CoordinateReferenceSystem of the Graphic is supported by the
implementation, by using
CommonCapabilities.getSupportedCoordinateReferenceSystems().

If the Graphic CoordinateReferenceSystem is not supported, then the client must
transform the Graphic to an appropriate CoordinateReferenceSystem prior to
adding it.

If the Graphic CoordinateReferenceSystem is supported, but is different than the
objective CRS of the Canvas, the Canvas will transform the original Graphic object
to a new Graphic object, discard the original Graphic object, and return a reference

Copyright © Open Geospatial Consortium, Inc (2005)

27

to the new Graphic object. The client is responsible to update its internal reference to
the new Graphic object.

6.2.1.5 Z-Order and Rendering of Graphics

The Canvas controls the visual layering, or z-order, of the Graphic objects it contains.
The z-order allows Graphics to overlap and occlude each other in a controllable way.
The Canvas may optimise its display by not rendering Graphics that are fully
occluded.

Furthermore, when an input device selects a location on the display, the z-order allows
the Canvas to designate the topmost Graphic (i.e., the highest z-order value for all
Graphics at that coordinate location) as the object of interest.

In the general case of a distributed, asynchronous environment, the z-order cannot be
designated deterministically by software external to the Canvas. To maximise the
control of the situation, GraphicStyle objects have a z-order hint that the application
can set, and the Canvas can read. When a Graphic is added to a Canvas, the
Canvas gets the Graphic's z-order hint and attempts to place the Graphic at that z-
order location. The z-order is defined as a double to permit a large range of values.

28 Copyright © Open Geospatial Consortium, Inc (2005)

6.2.1.6 Canvas State

Figure 5 - Canvas state and controls

To interact with the Canvas, outside entities must be aware of certain properties that
provide context for graphical operations. Collectively, these properties comprise the
Canvas state, and are contained in instances of CanvasState or one of its subclasses.
This object describes only the viewing area or volume of the Canvas, not any state or
other information about the data contained within it. When an instance of
CanvasState is returned from Canvas methods, it contains a "snapshot" of the
current state of the canvas. Its values never change, even if the state of the Canvas
itself does.

Entities that are interested in reading Canvas state must implement the
CanvasListener interface. CanvasListener includes the canvasChanged()
method, which is called by a Canvas when its state has changed. The Canvas passes a
populated CanvasState data object to the canvasChanged() method.

If an entity needs to change the state of a Canvas, it must implement the
CanvasHandler interface. This interface provides a mechanism for multiple entities
to change Canvas properties without contention or deadlock. The Canvas enables
exactly one CanvasHandler at a time. When a CanvasHandler is enabled, the
Canvas passes it a CanvasController, through which the entity can modify

Copyright © Open Geospatial Consortium, Inc (2005)

29

Canvas state values. The CanvasController remains active until another
CanvasHandler is enabled.

This architecture assumes a Canvas that is in a single process. However, if the Canvas
spans multiple processes, then a state alignment issue occurs, where a process may not
detect a change initiated by another process. This specification does not address this latter
scenario.

6.2.1.7 Specialized 2D Canvas Interfaces

In the majority of cases, a Canvas will be a representation of the earth, either in a
projected coordinate system or in a geographic coordinate system. In these cases, the
Canvas will additionally implement the Map2DCanvas interface. Such a canvas will
return instances of Map2DState (which extends CanvasState) from its
getState() method. And if a CanvasHandler is added to a Map2D, the
CanvasController that is passed to it will be an instance of Map2DController.

Figure 6 - Map2D, Map2DState, and Map2DController

If the user knows that the Canvas will be an instance of Map2D, then these classes can be
used to control the various 2D parameters of the Canvas.

For example, in a projected geographic CRS, a class implementing Map2DState shall
provide access to the following properties:

 pixelWidth – width in pixels of the visible map window

 pixelHeight – height in pixels of the visible map window

 center – the DirectPosition center point of the map

 width – the map width in map width units

 scale – the ratio of map space to real world space

 envelope – the visible geographic map boundary

30 Copyright © Open Geospatial Consortium, Inc (2005)

6.2.2 Events

6.2.2.1 Model and Rationale

The general paradigm for control by input devices is similar to the Java Event model, and
works as follows:

For each control device (e.g. a mouse or keyboard), there is specialized Event object
type. (In Java, for example, there are the KeyEvent and MouseEvent classes. Other
language implementations of GO-1 will use different classes as appropriate.) When the
device changes state (e.g., a mouse button is pressed), the system sends an instance of
that Event to the Canvas.The actual mechanism through which the event is delivered to
the Canvas is system and language dependent. However, a conforming implementation
of the Canvas interface must handle the event as described below.

A Canvas maintains a stack of EventHandlers for each event type (keyboard, mouse,
etc). When it receives an event, the Canvas passes it to the first Handler on the
corresponding stack. Each Handler implements specialized functionality – the system’s
response to the Event - that it executes when it receives an Event. Then it can either
consume the Event, or by not consuming it, allow it to be passed to the next handler in
the stack. Thus the response of the system to a control input depends directly on the flow
of Events through the Handler stack.

The stacks of event handlers on a Canvas are represented as instances of the
EventManager interface. Methods on this interface allow the application to control
what Handlers are on a given stack, and in which order. This flexible arrangement allows
the application to establish different modal responses for different states of the system,
such as selection mode vs. editing mode.

This design is explained in greater detail in the following sections.

6.2.2.2 GO-1 Event Management

The GO-1 model for responding to user-actuated controls, programmatic state changes,
and other asynchronous events is mediated through a general-purpose framework based
on the Java Event model. In the Java model, a physical or programmatic change
constitutes an event, which is represented by an Event object that contains information
about the event and identifies the source of the event. Objects can implement an
appropriate EventListener interface and register with the event source in order to
receive events generated by that source. Some event sources, such as those that generate
mouse or keyboard events, are present by default in the underlying system. Others may
be implemented in the application or in library packages. Event sources per se are not a
part of the response system documented here, but they motivate one important aspect of
its organisation: for each source in a GO-1 implementation there is an event handling
subsystem whose structure is described by the following paragraphs.

Copyright © Open Geospatial Consortium, Inc (2005)

31

6.2.2.3 EventHandler Stack

For each event chain, there is at least one EventHandler object. The Handlers do the
actual work of mediating the system’s response to an event. For example, a
MouseHandler implements a mouseClicked() operation that may cause an object
to be selected or highlighted.

A Handler implements the EventListener interface appropriate to its source, but it
does not register as a listener. Instead, it implements the interface in order to inherit (and
perhaps override) the relevant event handling methods.

As noted above, each EventHandler object has a stack of Handlers. When it receives
an event, the EventHandler object invokes the appropriate action method against the
top Handler on the stack. The Handler performs whatever specialized function this
method implements, and then optionally consumes the event. If the event is not
consumed, the EventHandler object invokes the method against the next handler on
the stack, and so on until the event is consumed. Thus an event may trigger a series of
responses that varies according to the arrangement of EventHandlers on the stack.
This mechanism may be used to implement modal behaviours in response to input events,
such as a change from selection behaviours to editing behaviours in the application’s
response to mouse gestures.

6.2.2.4 EventManager

EventManagers are concerned primarily with maintaining the stack of Handlers. They
have methods to enable, push, pop, find, remove, and replace Handlers on the stack.

Canvas objects are loosely coupled with EventManager objects. The
EventManager pattern is extensible to accommodate input devices beyond the
traditional keyboard and mouse (such as eye tracker, gesture reader, etc.). Canvas
support of particular EventManager implementations is determined through
Canvas.findEventManager(Class eventManagerClass), where
eventManagerClass is a class that extends EventManager, and whose
implementation satisfies the various Event operations for that device.

Much of the user input will be processed by the Canvas, which manages its own event
managers. The Graphic class, described under Graphical Data Objects below, also
have event manages similar to the Canvas.

6.2.2.5 Event Types

There are several event flags in GO-1. There are four required for Display Object
conformance; GRAPHIC_CHANGED, GRAPHIC_SELECTED,
GRAPHIC_DESELECTED, and GRAPHIC_DISPOSED.

32 Copyright © Open Geospatial Consortium, Inc (2005)

6.3 Graphical Data Objects

A graphical rendering environment differs from a general geospatial processing
environment in several respects. For one thing, due to their inherently limited resolution
and other physical constraints, raster display devices can only accurately depict a limited
set of geometries. For another, each display device and corresponding software system
may have its own notion of how to style the objects that it renders.

The most significant differences are more general, and incorporate the above particulars.
Displays are often compact, high-performance, and necessarily specialized devices that
raise issues familiar from the earlier days of general-purpose computing. Very robust,
immensely flexible, and therefore large object systems intended to meet every possible
functional requirement are both irrelevant and overly expensive in terms of memory
requirements and processing overhead. Items that constitute the primary focus of
functionality in a general context, such as a map, may be nothing more than a graphical
background in a display system.

The classes described here are therefore lighter weight and less general than the ISO
Geometry classes described in Section 6.3.1 (from the OGC Topic, i.e. ISO-19107).
Nonetheless, they seek to retain the semantics and many of the behaviours of objects
already defined by published or existing OGC standards. Where appropriate, they are
defined as restrictions of the more general objects, and are typically instantiated via
factory objects that take corresponding general-purpose spatial objects as arguments.

Copyright © Open Geospatial Consortium, Inc (2005)

33

6.3.1 Graphic Overview

Figure 7 - Graphics

Graphic objects contain the information needed by a Canvas to create a visual display.
Similar in some respects to a Java 2 Shape, they contain geometric data, styling
information (See GraphicStyle, Section 6.2.2), and geospatial coordinate location.

There are two broad categories of Graphics: primitives and aggregates. Primitive types
are based on a simple rendered object (or an Icon, Text, or an Image) or are based on a
primitive 2D ISO Geometry object, and include GraphicLineString,
GraphicPolygon, GraphicScaledImage, GraphicIcon, GraphicArc, and
GraphicLabel. Aggregates are collections of primitives as represented by
AggregateGraphic.

While the layout of each primitive graphic object corresponds to ISO-19107 Geometry,
translation of Geometry objects to Graphic primitives is left to the implementation.

34 Copyright © Open Geospatial Consortium, Inc (2005)

A Canvas knows how to read the attributes and geometric data from each Graphic type,
and how to apply the styling information in the Graphic to create a visual
representation. Graphics also contain a z-order hint, which the Canvas uses to help
manage visual layering of the Graphics it displays.

Geometry objects are portable between implementations of the GO-1 specification. For
example, an external program shall be able to create Geometry objects in one
implementation but apply those Geometry objects to Graphic objects in any
implementation of Canvas or Graphic.

Graphic objects are instantiated with a Factory pattern.

6.3.2 Primitives

Figure 8 – GraphicLabel, GraphicIcon, GraphicScaledImage, GraphicLineString

The palette of primitive shapes available to a Graphic is limited to a set that is sufficient
for manipulation and rendering in graphical environments. Graphic objects themselves
are subclassed according to the kind of geometry that they implement, and include the
following:

Copyright © Open Geospatial Consortium, Inc (2005)

35

GraphicLineString defines a common abstraction for implementations of 1-D lines
made of one or more line segments. A settable PathType attribute determines the
interpolation between segment endpoints.

GraphicScaledImage provides an abstraction for implementing projected images
defined by an upper and lower corner point. This class includes methods for setting the
image transparency and intensity as well as the image data. There are also methods for
setting and getting the CoordinateReferenceSystem of the underlying
Envelope, which specifies the projection of the image.

GraphicIcon defines a common abstraction for implementations to render icons on a
drawing surface. The position of the icon in the CoordinateReferenceSystem is
idealised as a single point attribute. The alignment of the icon to this point is specified as
a pixel offset from the icon’s upper left corner. The rotation of the label is measured
positively as a clockwise angle, starting from a reference line within the
CoordinateReferenceSystem.

GraphicLabel defines a common abstraction for implementations to render text on a
drawing surface. The position of the label in the CoordinateReferenceSystem is
idealised as a single point attribute. The alignment the label to this point is specified by
the x-anchor and y-anchor. The rotation of the label is measured positively as a clockwise
angle, starting from a reference line within the CoordinateReferenceSystem.

36 Copyright © Open Geospatial Consortium, Inc (2005)

Figure 9 - GraphicArc

GraphicArc provides definitions for closed circles and ellipses, as well as circular or
elliptical arcs. Various settable attributes control its size, width, height, and orientation,
and whether the object can be rotated or resized by the user. In this context width always
refers to the major axis and height to the minor axis. Orientation start and end angles are
defined counter-clockwise from the x-axis.

Copyright © Open Geospatial Consortium, Inc (2005)

37

Figure 10 - GraphicPolygon

GraphicPolygon defines a common abstraction for a graphic representation of
polygons with holes. A GraphicPolygon consists of an exterior ring of vertices, and
a set of non-mutually overlapping interior rings of vertices. The exterior and interior rings
of a polygon are defined by a list of DirectPosition objects. Technically speaking
these rings are required to be closed such that first and last points coincide. However,
this interface allows the user to create rings that are not closed. In such cases it is left up
to the implementation to derive an additional segment between the first and last vertex.
Implementers are responsible for validating that the arrays of points represent paths that
do not cross themselves, that the interior rings are non-overlapping, and that they are
indeed interior to the exterior ring.

6.3.3 Aggregates

AggregateGraphic defines a common abstraction for implementations of aggregated
Graphic objects. This abstraction makes no assumptions about how the Graphics are
stored within the aggregate. For example, the Graphics may be stored in an array such
that the Graphic in the zero element of the array is considered the front most (highest
z-order) object and the Graphic in the largest element of the array is considered the
bottommost (lowest z-order) object. Alternatively, the Graphics may be stored in a

38 Copyright © Open Geospatial Consortium, Inc (2005)

more efficient data structure.

This abstraction makes no assumptions about thread safety. Implementations of
Graphic that are to be used in a multi-threaded environment must address thread safety
by using synchronised methods or by invoking all methods from a single thread.

Figure 11 – AggregateGraphic

6.3.4 Symbols

A symbol can be depicted on a map using one of two techniques, pictorial or abstract.
Pictorial symbols are those that are designed to replicate or look like the feature they
represent, such as a cross to identify a hospital or a ship to symbolize a port. They do not
necessarily have a direct connection to what they identify. Abstract symbols are usually
represented by a geometric shape, and bear no relationship to the form of the object they
symbolize.

Symbols can be further defined in terms of their dimension; point (no-dimension), line
(1-dimension), area (2-dimensional), and volume (3-dimensional). Other visual attributes
used to describe a symbol include a combination of size, shape, orientation, color, and
pattern. Most or all of these symbol attributes are pre-determined when a symbology
standard is applied.

Currently there exist a large number of symbology standards covering a broad range of
public and private sector applications. Some of these standards are currently under
development, while new standards are being proposed. Our approach seeks to provide
generic support for both existing and future standards, without mandating the use of any
specific standard.

Copyright © Open Geospatial Consortium, Inc (2005)

39

Figure 12 – Symbology

6.3.4.1 Symbology

GO-1 uses a canonical approach to represent standard symbology sets. Tag names and
corresponding data type values are explicitly typed in advance, and described in
Appendix B. Some tags are well known and defined by existing accepted standards.
Others must be derived from best industry practices, existing conventions, or consensus.
Additions to the symbology tags presented in this document are expected and
encouraged, and stakeholders are urged to collaborate on additions and revisions. Prior
to acceptance of this proposed standard, the content of Appendix B is subject to revision.
Tags defined post-acceptance of this specification may be subject to deprecation, but
should not be modified or deleted. An XML schema to describe tags for a supported
Symbology would look like the following.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.polexis.com/site"
 xmlns:site="http://www.polexis.com/site"
 xmlns:sld="http://www.opengis.net/sld"
elementFormDefault="qualified">
<xs:element name="tag" type=symbologyTag>
 <xs:complexType name=symbologyTag>
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="type" type="xs:string"/>
 <xs:element name="description" type="xs:string" use=”optional”/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

6.3.4.2 Visibility Tag

A “.visibility” tag modifier can be optionally appended to any tag name. The data type
for visibility is Boolean. Presence of a visibility value of Boolean.TRUE would mean
that component should be rendered, and a value of Boolean.FALSE would mean don’t

40 Copyright © Open Geospatial Consortium, Inc (2005)

display the component. The following snippet would turn off the AdditionalInformation
indicator for the MIL-STD 2525 symbol use case in Section 7.5.2.

symbology.setSymbologyProperty(symInfo, "AdditionalInformation", "RAF418");
symbology. setSymbologyProperty(symInfo, "AdditionalInformation.visibility",
Boolean.FALSE);

6.3.5 Path Type

Path types describe how lines are rendered with respect to the modelled surface of the
earth. The categories of path type are:

 Global, consisting of rhumbline and great circle types

 Unprojected, consisting of pixel straight and spline types

 Vector

PathType serves as the base class for objects that represent the various methods for
computing a path between two locations. Singleton instances of PathType will exist to
represent, for example, a path of constant bearing (rhumbline), or a great circle path.
Path type is an algorithmic sequence of interpolation and projection.

 For rhumbline, great circle, and vector, first interpolation is done on the
vertices, which gives in-between points. These in-between points are then
projected into the Canvas display CRS, which converts them to display points.

 For pixel-straight and spline, the vertices are first projected into the Canvas
display CRS as display points. These display points are interpolated, which
generates in-between display points.

For each path type, an implementation will iteratively apply the respective algorithms
until the appropriate display resolution is reached.

Path Type Interpolation Method

rhumbline constant bearing

great circle geodesic

Vector linear in world space (interpolation before projection)

pixel-straight linear in display space (interpolation after projection)

Spline cubic in display space (interpolation after projection)

Table 1 – Path Types

Copyright © Open Geospatial Consortium, Inc (2005)

41

The Global path type methods calculate a path between two locations, considering the
shape of the earth. The in-between points of the path satisfy two conditions:

1. The in-between points are the same regardless of the way the current path is displayed
(i.e., the path is independent of map projection, Canvas, or other considerations
affecting rendering or portrayal).

2. The in-between points are calculated along a surface that the points are projected
onto, such as the surface of the 3D earth.

The second condition implies that altitude is not taken into account when calculating
Global paths. Hence, paths of this type are well suited for navigation of surface ships or
vehicles.

This specification defines four path types:

 Great Circle Ellipsoidal

 Great Circle Spherical

 Rhumbline Ellipsoidal

 Rhumbline Spherical

Great circle uses the shortest line on the surface of the earth, assuming either a spherical
or an ellipsoidal earth model. Rhumbline uses a line of constant bearing along the
surface of the earth, also using either a spherical or an ellipsoidal model.

The Unprojected path type methods calculate a path between two locations, not
considering the shape of the earth, but considering the surface of the Canvas.

The methods are:

 Pixel Straight

 Continuous Spline

Pixel straight connects each sequential point with the shortest line on the Canvas.
Continuous Spline uses an interpolation method to connect more than two points.

The Vector path type considers the surface of the earth, but connects sequential point
locations with the shortest direct line, even if it travels below the curved surface of the
3D earth.

42 Copyright © Open Geospatial Consortium, Inc (2005)

6.3.6 Graphic Attributes

6.3.6.1 Viewability

A Graphic may unconditionally be set invisible using its visible attribute. It can be
made conditionally invisible based on a range specified by maxScale and/or minScale. If
maxScale is set, and the Canvas exceeds that scale, the Graphic is made invisible.
Similarly if minScale is set and the Canvas drops below that scale, the Graphic is
made invisible. The invisible state does not change the transparency values of
GraphicStyle components, but instead overrides their effect. The z-order hint is used
by the Canvas to place the Graphic in the z-order [see Graphics Section].

6.3.6.2 Symbology

Symbology when defined supersedes any of the other symbolizer objects [see Symbology
Section].

6.3.6.3 Highlight

Highlight attributes control whether a Graphic can blink, and if so, at what rate through
blinking and blinkPattern.

6.3.6.4 Editability

Editability attributes allow the Graphic to be edited or selected through user
interaction with the Canvas, usually using mouse gestures. Editability includes autoEdit,
dragSelectable, selected, and pickable. See Graphic Editability section for a more
thorough description.

6.3.7 GraphicStyle

6.3.7.1 Relationship to Graphic

The GraphicStyle class allows a Graphic to be visually decorated. Each
Graphic contains a GraphicStyle object. If a particular property on a
GraphicStyle is not set then a default value is used.

Most rendering style attributes are defined in one of the four subclasses of
GraphicStyle, each of which is tailored for the needs of specific graphic types.
LineSymbolizer maintains attributes that apply to line-stroked Graphics, such as
GraphicLineString and open GraphicArcs. PolygonSymbolizer extends
LineSymbolizer to maintain fill attributes for filled stroked objects, such as
GraphicPolygon and closed GraphicArcs. TextSymbolizer governs
rendering of labels. PointSymbolizer is used for rendering other objects that are
anchored to a single point and painted in a pixel-wise manner without regard to map
location; it is the GraphicStyle used by GraphicIcon.

Copyright © Open Geospatial Consortium, Inc (2005)

43

A number of basic rendering attributes are maintained within the Graphic itself. These
include visibility and Z order, selection state, pickability and drag selectability,
editability, and highlighting.

Outside of GraphicStyle, the Symbology interface governs rendering that will
conform to a defined symbology set. A Graphic may maintain a Symbology object,
and when it does so, this overrides any conflicting style attributes set within the
GraphicStyle object.

6.3.7.2 Relationship to OGC SLD

The GraphicStyle class and its subclasses have been developed to be as symmetric as
possible with SLD [14]. As such, SLD styles have many similar properties to a
GraphicStyle. However, SLD style properties, such as color or line thickness, can be
functions of feature properties, and thus vary from feature to feature. GraphicStyles
are fixed until explicit API calls change their values. GraphicStyle contains concepts
not found in SLD (e.g. Text BackgroundColor, ArrowStyle, DashArray,
FillStyle, FillPattern). It is recommended that the SLD specification be
expanded to express these concepts. See Future Work section.

The SLD-analogous interfaces are:

 LineSymbolizer is closely related to SLD LineSymbolizer in that it
decorates lines.

 PolygonSymbolizer is closely related to SLD PolygonSymbolizer in
that it decorates polygonal shapes.

 PointSymbolizer is closely related to the SLD PointSymbolizer in that
it decorates icons.

 TextSymbolizer is closely related to the SLD TextSymbolizer. The
TextSymbolizer .FONT component is defined as the Java implementation of
Font, as it more accurately defines and distinguishes the concepts of character
and glyph than does the SLD model.

6.3.7.3 GraphicStyle Elements

The following table details the properties of the various symbolizer interfaces, their types,
and their default values.

Interface Element Type Default
LineSymbolizer StrokeBeginArrowStyle

StrokeColor
StrokeDashArray
StrokeDashOffset
StrokeEndArrowStyle

ArrowStyle
Color
DashArray
float
ArrowStyle

ArrowStyle.NONE
Color.BLACK
DashArray.NONE
0.0
ArrowStyle.NONE

44 Copyright © Open Geospatial Consortium, Inc (2005)

StrokeFillBackgroundColor
StrokeFillColor
StrokeFillGradientPoints
StrokeFillOpacity
StrokeFillPattern
StrokeFillStyle
StrokeLineCap
StrokeLineGap
StrokeLineJoin
StrokeLineStyle
StrokeOpacity
StrokePattern
StrokeWidth

Color
Color
float[2]
float
FillPattern
FillStyle
LineCap
float
LineJoin
LineStyle
float
FillPattern
float

Color.GRAY
Color.BLACK
N/A
1.0
FillPattern.NONE
FillStyle.SOLID
LineCap.BUTT
10.0
LineJoin.BEVEL
LineStyle.SINGLE
1.0
FillPattern.NONE
1.0

PolygonSymbolizer FillBackgroundColor
FillColor
FillGradientPoints
FillOpacity
FillPattern
FillStyle
StrokeBeginArrowStyle
StrokeColor
StrokeDashArray
StrokeDashOffset
StrokeEndArrowStyle
StrokeFillBackgroundColor
StrokeFillColor
StrokeFillGradientPoints
StrokeFillOpacity
StrokeFillPattern
StrokeFillStyle
StrokeLineCap
StrokeLineGap
StrokeLineJoin
StrokeLineStyle
StrokeOpacity
StrokePattern
StrokeWidth

Color
Color
float[2]
float
FillPattern
FillStyle
ArrowStyle
Color
DashArray
Float
ArrowStyle
Color
Color
float[2]
float
FillPattern
FillStyle
LineCap
float
LineJoin
LineStyle
float
FillPattern
float

Color.GRAY
Color.BLACK
N/A
1.0
FillPattern.NONE
FillStyle.SOLID
ArrowStyle.NONE
Color.BLACK
DashArray.NONE
0.0
ArrowStyle.NONE
Color.GRAY
Color.BLACK
N/A
1.0
FillPattern.NONE
FillStyle.SOLID
LineCap.BUTT
10.0
LineJoin.BEVEL
LineStyle.SINGLE
1.0
FillPattern.NONE
1.0

PointSymbolizer FillBackgroundColor
FillColor
FillGradientPoints
FillOpacity
FillPattern
FillStyle
Mark
Opacity
Rotation
Size
StrokeBeginArrowStyle
StrokeColor
StrokeDashArray
StrokeDashOffset
StrokeEndArrowStyle
StrokeFillBackgroundColor
StrokeFillColor
StrokeFillGradientPoints
StrokeFillOpacity

Color
Color
float[2]
float
FillPattern
FillStyle
Mark
float
float
float
ArrowStyle
Color
DashArray
Float
ArrowStyle
Color
Color
float[2]
float

Color.GRAY
Color.BLACK
N/A
1.0
FillPattern.NONE
FillStyle.SOLID
Mark.CIRCLE
1.0
0.0
16.0
ArrowStyle.NONE
Color.BLACK
DashArray.NONE
0.0
ArrowStyle.NONE
Color.GRAY
Color.BLACK
N/A
1.0

Copyright © Open Geospatial Consortium, Inc (2005)

45

StrokeFillPattern
StrokeFillStyle
StrokeLineCap
StrokeLineGap
StrokeLineJoin
StrokeLineStyle
StrokeOpacity
StrokePattern
StrokeWidth

FillPattern
FillStyle
LineCap
float
LineJoin
LineStyle
float
FillPattern
float

FillPattern.NONE
FillStyle.SOLID
LineCap.BUTT
10.0
LineJoin.BEVEL
LineStyle.SINGLE
1.0
FillPattern.NONE
1.0

TextSymbolizer BackgroundColor
FillBackgroundColor
FillColor
FillGradientPoints
FillOpacity
FillPattern
FillStyle
Font
HaloRadius
Label
LabelRotation
LabelShowLabel
LabelXAnchor
LabelXDisplacement
LabelYAnchor
LabelYDisplacement

Color
Color
Color
float[2]
float
FillPattern
FillStyle
Font
Float
String
float
boolean
Xanchor
float
YAnchor
float

N/A
Color.WHITE
Color.BLACK
N/A
1.0
FillPattern.NONE
FillStyle.SOLID
N/A
1.0
N/A
0.0
false
Xanchor.LEFT
0.0
YAnchor.MIDDLE
0.0

Table 2 – GraphicStyle Elements

6.3.7.4 GraphicStyle Events

GraphicStyleListeners may be registered on any GraphicStyle object to be
notified of attribute changes. Implementations may do so for several purposes, such as
knowing to repaint a Graphic for modification of a styling attribute. This may also be
used for propagating a change in an attribute among Graphics that do not share the
same GraphicStyle object. For example, note that AggregateGraphic objects
are required to maintain a GraphicStyle object even though its attributes will not
apply to rendering any of its constituent Graphics. However, it would be allowable to
assign it an object of one of the four symbolizer types. Children that have diverse
GraphicStyles could listen for changes to a certain attribute (say, stroke color), and
update their own styles if such a GraphicStyleEvent is detected.

6.3.7.5 Graphic Selectability

Many systems for displaying geometric shapes allow the user to edit those shapes by
using the mouse to change, add, or remove vertices. For such systems, the editability
attributes of a Graphic allow the user to toggle on and off this behaviour. Here is a
description of the relevant accessor methods:

 get/setDragSelectable - Many systems allow the user to select objects on the
screen by dragging a bounding area, such as a box, with a mouse gesture. This
property, if set to true, allows the graphic to be included in selection sets created
in this way.

46 Copyright © Open Geospatial Consortium, Inc (2005)

 get/setPickable - Many systems allow the user to select individual objects by
gesturing (mouse clicking) over the object. This property, if true, allows the
graphic to be selected in this way.

 get/setSelected - For systems that allow individual graphics to be selected in the
display (usually with a mouse gesture or by choosing an item from a list), this
property sets or queries whether the given graphic is currently selected. Systems
that have no notion of selection may always have a value of false for this property
and the set method will have no effect.

6.3.8 Graphic Events

When a Graphic object changes or receives mouse or keyboard interaction it fires a
GraphicEvent. A GraphicEvent can be received by objects that implement the
GraphicListener interface. A client may receive GraphicEvents by creating an
object that implements the GraphicListener interface and registering it with a
Graphic via its addGraphicListener() method.

Graphic objects that are aggregations (i.e. AggregateGraphic) can register
AggregationListeners to listen for AggregationChangeEvent’s. These
events are notifications when elements are added, removed, or (if applicable) reordered
within the aggregation.

Whenever a Graphic is selected, a GraphicChangeEvent must be fired by the
implementation.

6.4 Spatial Objects

Spatial objects are those that contain geometric or location information. GO-1 utilizes
spatial objects to provide this information to Graphic objects.

6.4.1 Geometry

GO-1 supports a “simple geometry” profile of the robust model for geospatial geometry
developed and published by the International Standards Organisation as ISO-19107
which was adopted with modifications in OGC Topic 1: Feature Geometry [5]. The ISO
model provides an international standard for realizable geometry. This model has been
implemented, with some minor changes, in the Open GIS Consortium Geographic
Markup Language (GML) specification version 3.0 [12].

ISO-19107 is an all-inclusive model, intended to address the most demanding needs of a
geospatial application. Many applications, in particular graphics subsystems, do not need
the full capabilities of this model. The sections below identify the components of the
ISO-19107 Geometry model that are the focus of GO-1.

GO-1 has adopted a subset of ISO-19107 Geometry for handling simple 0, 1 and 2
dimensional geometric primitives. The full semantic and detailed structures of these

Copyright © Open Geospatial Consortium, Inc (2005)

47

geometries are documented in the ISO-19107 specification. Context diagrams and brief
descriptions of the geometries most relevant to GO-1 requirements are provided below.

Note: Except where noted, all descriptive text accompanying the context diagrams in this
section is taken directly from [5].

48 Copyright © Open Geospatial Consortium, Inc (2005)

Figure 13 – Geometry top-level classes

The adjacent figure depicts the top-level Java interfaces of the GO-1 geometry model.
These Java interfaces are generated directly from the ISO-19107 geometry models. These

Copyright © Open Geospatial Consortium, Inc (2005)

49

are the top-level interfaces for the key geometries that are the focus of GO-1. These
interfaces are briefly described below.

Geometry is the root class of the geometric object taxonomy and supports interfaces
common to all geographically referenced geometric objects. Geometry instances are
sets of direct positions in a particular coordinate reference system. A Geometry can be
regarded as an infinite set of points that satisfies the set operation interfaces for a set of
direct positions, TransfiniteSet<DirectPosition>.

Primitive is the abstract root class of the geometric primitives. Its main purpose is to
define the basic "boundary" operation that ties the primitives in each dimension together.
A Primitive is a geometric object that is not decomposed further into other primitives
in the system. This includes curves and surfaces, even though they are composed of curve
segments and surface patches, respectively. This composition is a strong aggregation:
curve segments and surface patches cannot exist outside the context of a primitive.

Complex is set of disjoint geometric primitives such that the boundary of each primitive
can be represented as the union of other geometric primitives within the complex.

6.4.1.1 DirectPosition

Point is the basic data type for a geometric object consisting of one and only one point.

Figure 14 – DirectPosition and Bearing

50 Copyright © Open Geospatial Consortium, Inc (2005)

DirectPosition object data types hold the coordinates for a position within some
CoordinateReferenceSystem (CoordinateReferenceSystem is described
in Section 6.3.2). DirectPositions, as a data type, are utilized by in other objects,
such as Geometry. When part of a Geometry, a DirectPosition will have the
same CoordinateReferenceSystem as that Geometry.

Bearing is a data type used to represent direction in the coordinate reference system. In
a 2D coordinate reference system, this can be accomplished using a "angle measured
from true north" or a 2D vector point in that direction. In a 3D coordinate reference
system, two angles or any 3D vector is possible. If both a set of angles and a vector are
given, then they shall be consistent with one another.

Copyright © Open Geospatial Consortium, Inc (2005)

51

6.4.1.2 CurveSegment and Conic

Curve is a descendent subtype of Primitive through OrientablePrimitive. It
is the basis for 1-dimensional geometry. A curve is a continuous image of an open
interval.

Curves are continuous, connected, and have a measurable length in terms of the
coordinate system. The orientation of the Curve is determined by this parameterization,
and is consistent with the tangent function, which approximates the derivative function of
the parameterization and shall always point in the "forward" direction.

A Curve is composed of one or more CurveSegments. Each CurveSegment within
a Curve may be defined using a different interpolation method. The CurveSegments
are connected to one another, with the end point of each segment except the last being the
start point of the next segment in the segment list.

The Conic object represents any general conic curve, with the constraint that the
eccentricity is less than or equal to unity. In two dimensions, a non-negative eccentricity
of less than one will generate a closed ellipse. An eccentricity of exactly one results in a
parabola, and a negative eccentricity yields a hyperbola.

52 Copyright © Open Geospatial Consortium, Inc (2005)

Figure 15 – CurveSegment and Conic

6.4.1.3 CompositeCurve and Ring

A CompositeCurve is a Composite with all the geometric properties of a Curve.
Essentially, a composite curve is a list of OrientableCurves agreeing in orientation
in a manner such that each curve (except the first) begins where the previous one ends.

 A Ring is used to represent a single connected component of a SurfaceBoundary.
It consists of a number of references to OrientableCurves connected in a cycle (an
object whose boundary is empty).

A Ring is structurally similar to a CompositeCurve in that the endPoint of each
OrientedCurve in the sequence is the startPoint of the next OrientableCurve in
the sequence. Since the sequence is circular, there is no exception to this rule. Each ring,
like all boundaries, is a cycle and does not intersect itself.

Even though each Ring is topologically simple, the boundary need not be simple. The
easiest case of this is where one of the interior rings of a surface is tangent to its exterior
ring. Implementations may enforce stronger restrictions on the interaction of boundary
elements.

The basic difference between a CompositeCurve and a Ring is that a
CompositeCurve may be open (the end of the last OrientableCurve does not
touch the beginning of the first OrientableCurve) or closed (the end of the last
OrientableCurve touches the beginning of the first OrientableCurve), however
a Ring is always closed.

Copyright © Open Geospatial Consortium, Inc (2005)

53

Figure 16 – CompositeCurve and Ring

6.4.1.4 SurfaceBoundary

A SurfacePatch defines a homogeneous portion of a Surface. The multiplicity of
the segmentation association specifies that each SurfacePatch shall be in at most one
Surface.

Surface is a subclass of Primitive and is the basis for 2-dimensional geometry.
Unorientable surfaces such as the Möbius band are not allowed. The orientation of a
surface chooses an "up" direction through the choice of the upward normal, which, if the
surface is not a cycle, is the side of the surface from which the exterior boundary appears
counterclockwise. Reversal of the surface orientation reverses the curve orientation of
each boundary component, and interchanges the conceptual "up" and "down" direction of
the surface. If the surface is the boundary of a solid, the "up" direction is usually outward.
For closed surfaces, which have no boundary, the up direction is that of the surface
patches, which must be consistent with one another. Its included SurfacePatches
describe the interior structure of a Surface.

A SurfaceBoundary consists of a number of Rings, corresponding to the various
components of its boundary. In the normal 2D case, one of the Rings is distinguished as

54 Copyright © Open Geospatial Consortium, Inc (2005)

being the exterior boundary. There is exactly one exterior Ring and zero or more interior
Rings. None of the Rings may touch or intersect each other.

Figure 17 - SurfaceBoundary

6.4.1.5 Aggregate

Arbitrary aggregations of geometric objects are possible. These are not assumed to have
any additional internal structure and are used to "collect" pieces of geometry of a
specified type. Operations on these aggregations shall be the accumulators that are
derived from the class operations of their elements. Applications may use aggregates for
objects that use multiple geometric objects in their representations.

Figure 18 - Aggregate

Copyright © Open Geospatial Consortium, Inc (2005)

55

The Aggregate gathers geometric objects. Since it will often use orientation
modification, the curve reference and surface references do not go directly to the Curve
and Surface, but are directed to OrientableCurve and OrientableSurface.

Most geometric objects cannot be held in collections that are strong aggregations. For this
reason, the collections described in this clause are all weak aggregations, and shall use
references to include geometric objects.

6.4.1.6 Envelope

Envelope is often referred to as a minimum bounding box or rectangle. Regardless of
dimension, a Envelope can be represented without ambiguity as two
DirectPositions. To encode a Envelope, it is sufficient to encode these two
points. The lower corner refers to the DirectPosition whose coordinates are the
minimum numeric values, and the upper corner refers to the DirectPosition whose
coordinates are the maximum numeric values. The terms lower and upper should not be
interpreted as spatially above and/or below.

Figure 19 - Envelope

6.4.1.7 Geometry Mutability

The geometric primitive interfaces defined in this specification include methods that
allow the API user to change the underlying geometry of a primitive over time. For
example, the Point interface includes a setPosition(...) method. However, the
writers of this specification recognize that not all implementations of geometry will be
changeable. For this reason, the Geometry base class also includes a method,
isMutable(), that can be called at runtime to determine whether the underlying
implementation allows changes of the geometry. A return value of true indicates that
the object can be changed by calling its set methods. A return value of false indicates
that the set methods will throw an UnsupportedOperationException and that the
values in the object will never change. If a user of a geometry requires a copy that will
never change, he can make a private copy using the clone() method, or the
toImmutable() method can be used to make a copy that is guaranteed never to
change.

6.4.2 Coordinate Reference System Model

The GO-1 Coordinate Reference System (CRS) definition is derived from and is
fundamentally consistent with the content of OGC documents 03-009 and 03-010. The
CRS interface, like those for other geometry interfaces, has been derived from UML

56 Copyright © Open Geospatial Consortium, Inc (2005)

models using automated tools. This process and the resulting interfaces are more
completely described in the document that reports upon that effort.

Also, like the other Spatial Object classes, CRS objects are instantiated by a family of
factories that hides the details of object creation from client applications or libraries.

Note: Except where noted, all descriptive text accompanying the context diagrams in this
section is taken directly from [5] and [28].

6.4.2.1 Coordinate System

A CoordinateSystem is the set of coordinate system axes that spans a given
coordinate space. A CoordinateSystem is derived from a set of (mathematical) rules
for specifying how coordinates in a given space are to be assigned to points.	 The
coordinate values in a coordinate tuple shall be recorded in the order in which the
coordinate system axes associations are recorded, whenever those coordinates use a
coordinate reference system that uses this coordinate system, and no other specification
of axis order is provided.

Copyright © Open Geospatial Consortium, Inc (2005)

57

Figure 20 - Coordinate System

CartesianCS defines a 1-, 2-, or 3-dimensional coordinate system. It gives the
position of points relative to orthogonal straight axes in the 2- and 3-dimensional cases.
In the 1-dimensional case, it contains a single straight coordinate axis. In the multi-
dimensional case, all axes shall have the same length unit of measure. A CartesianCS
shall have one, two, or three usesAxis associations.

ObliqueCartesianCS defines a 2- or 3-dimensional coordinate system with straight
axes that are not necessarily orthogonal.

58 Copyright © Open Geospatial Consortium, Inc (2005)

EllipsoidalCS defines a 2- or 3-dimensional coordinate system in which position is
specified by geodetic latitude, geodetic longitude and (in the three-dimensional case)
ellipsoidal height, associated with one or more geographic coordinate reference systems.

SphericalCS defines a 3-dimensional coordinate system with one distance, measured
from the origin, and two angular coordinates. Not to be confused with an ellipsoidal
coordinate system based on an ellipsoid ‘degenerated’ into a sphere

CylindricalCS defines a 3-dimensional coordinate system consisting of a polar
coordinate system extended by a straight coordinate axis perpendicular to the plane
spanned by the polar coordinate system.

PolarCS defines a 2-dimensional coordinate system in which position is specified by
distance to the origin and the angle between the line from origin to point and a reference
direction.

VerticalCS defines a 1-dimensional coordinate system used to record the heights (or
depths) of points dependent on the Earth’s gravity field.

LinearCS defines a 1-dimensional coordinate system that consists of the points that lie
on the single axis described. The associated ordinate is the distance from the specified
origin to the point along the axis. Example: usage of the line feature representing a road
to describe points on or along that road.

TimeCS defines a 1-dimensional coordinate system containing a single time axis and
used to describe the temporal position of a point in the specified time units from a
specified time origin.

UserDefinedCS defines a two- or three-dimensional coordinate system that consists
of any combination of coordinate axes not covered by any other Coordinate System type.
An example is a multi-linear coordinate system which contains one coordinate axis that
may have any 1-D shape which has no intersections with itself. This non-straight axis is
supplemented by one or two straight axes to complete a 2 or 3 dimensional coordinate
system. The non-straight axis is typically incrementally straight or curved.

6.4.2.2 Reference System

ReferenceSystem provides a description of a spatial and temporal reference system
used by a dataset.

Copyright © Open Geospatial Consortium, Inc (2005)

59

Figure 2 - Reference System

Identifier provides an identification of a reference system object. The first use of an
Identifier for an object, if any, is normally the primary identification code, and any
others are aliases.

6.4.2.3 Datum

Datum is commonly used to specify a relationship of a coordinate system to the earth,
thus creating a coordinate reference system. A datum uses a parameter or set of
parameters that determine the location of the origin, the orientation, and the scale of a
coordinate reference system. The anchorPoint property of Datum is a description,
possibly including coordinates, of the point or points used to anchor the datum to the
Earth.

60 Copyright © Open Geospatial Consortium, Inc (2005)

Figure 21 - Datum

Copyright © Open Geospatial Consortium, Inc (2005)

61

Ellipsoid is a geometric figure that can be used to describe the approximate shape of
the earth. In mathematical terms, it is a surface formed by the rotation of an ellipse about
its minor axis.

EngineeringDatum defines the origin and axes directions of an engineering
coordinate reference system. Normally used in a local context only.

GeodeticDatum references an Ellipsoid which models the shape of the earth.
Due to irregularities in the surface of the Earth, some ellipsoids limit the portion of the
earth’s surface that can be accurately modelled. A GeodeticDatum references a
PrimeMeridian that defines the origin from which longitude values are determined.

ImageDatum defines the origin of an image coordinate reference system. This is used in
a local context only. For an image datum, the anchor point is usually either the centre of
the image or the corner of the image.

VerticalDatum defines the surface of zero altitude. An example would be Mean Sea
Level.

TemporalDatum defines the zero time for some epoch, accessed by getOrigin(). In
Java, this would be Jan 1, 1970.

6.4.2.4 Coordinate Reference System

CoordinateReferenceSystem consists of an ordered sequence of coordinate
system axes that are related to the earth (or another physical object) through a datum. A
coordinate reference system is defined by one datum and by one coordinate system. Most
coordinate reference systems do not move, except for EngineeringCRS objects
defined with respect to moving platforms such as cars, ships, aircraft, and spacecraft.
There are several sub-classes of CoordinateReferenceSystem (see figure below).

62 Copyright © Open Geospatial Consortium, Inc (2005)

Figure 22 - Coordinate Reference System model from Topic 2

Copyright © Open Geospatial Consortium, Inc (2005)

63

Figure 3 - Coordinate Reference System implementation in GO-1

For GO-1, the common CoordinateReferenceSystem subtypes of primary
interest are:

 ProjectedCRS — A 2D coordinate reference system used to approximate the
shape of the earth on a planar surface, but in such a way that the distortion that is
inherent to the approximation is carefully controlled and known. Distortion
correction is commonly applied to calculated bearings and distances to produce
values that are a close match to actual field values.

 GeographicCRS — A coordinate reference system based on an ellipsoidal
approximation of the geoid; this provides an accurate representation of the
geometry of geographic features for a large portion of the earth's surface.

64 Copyright © Open Geospatial Consortium, Inc (2005)

 ImageCRS — An engineering coordinate reference system applied to locations
in images. Image coordinate reference systems are treated as a separate sub-type
because a separate user community exists for images with its own terms of
reference.

 EngineeringCRS — A contextually local coordinate reference system; which
can be divided into two broad categories:

1) Earth-fixed systems applied to engineering activities on or near the surface
of the earth;

2) CRSs on moving platforms such as road vehicles, vessels, aircraft, or
spacecraft.

The GO-1 specification implements Topic 2 by combining the two abstract objects
SC_CRS and SC_CoordinateReferenceSystem into a single interface
CoordinateReferenceSystem. This allows the child interface CompoundCRS
to hold instances of itself. Furthermore, an implementation can iterate over instances of
CoordinateReferenceSystem without type-checking. The inherited methods
CompoundCRS.getDatum()and CompoundCRS.getCoordinateSystem()
may return null values for ComopoundCRS.

6.4.2.5 Map Projection

A map projection mediates the transformation of coordinates between the spatial
CoordinateReferenceSystem and a corresponding flat representation. A
ProjectedCRS maintains a Projection object that defines such a transformation
process.

Figure 4 - Projection

Implementers may need to define concrete realizations of Projection for each
supported projection, but details of how each will translate spatial coordinates to either
display coordinates or intermediate grids are optional. Implementation of some
projections will be mandatory, but most will be optional.

Copyright © Open Geospatial Consortium, Inc (2005)

65

6.4.2.6 Coordinate Operations

CoordinateOperation represents a mathematical operation on coordinates that
transforms or converts coordinates to another coordinate reference system. Many but not
all coordinate operations (from CRS A to CRS B) uniquely define the inverse operation
(from CRS B to CRS A). In some cases, the operation method algorithm for the inverse
operation is the same as for the forward algorithm, but the signs of some operation
parameter values must be reversed. In other cases, different algorithms are required for
the forward and inverse operations, but the same operation parameter values are used. If
(some) entirely different parameter values are needed, a different coordinate operation
shall be defined.

Figure 24 - Coordinate Operation

Operation is a parameterised mathematical operation on coordinates that transforms
or converts coordinates to another coordinate reference system. This coordinate operation
thus uses an operation method, usually with associated parameter values.

Transformation objects define an operation on coordinates that usually includes a
change of Datum. They may also mediate conversion from a ProjectedCRS (which
has a datum) to a flat screen. The parameters of a coordinate transformation are
empirically derived from data containing the coordinates of a series of points in both
coordinate reference systems. This computational process is usually "over-determined",
allowing derivation of error (or accuracy) estimates for the transformation. Also, the
stochastic nature of the parameters may result in multiple (different) versions of the same
coordinate transformation.

66 Copyright © Open Geospatial Consortium, Inc (2005)

Conversion objects define an operation on coordinates that does not include any
change of Datum. The best-known example of a coordinate conversion is a map
projection. The parameters describing coordinate conversions are defined rather than
empirically derived. Note that some conversions have no parameters.

Figure 25 - Operation Parameter

OperationParameter is the definition of a parameter used by an operation method.
Most parameter values are numeric, but other types of parameter values are possible.

Copyright © Open Geospatial Consortium, Inc (2005)

67

OperationMethod is the definition of an algorithm used to perform a coordinate
operation. Most operation methods use a number of operation parameters, although some
coordinate conversions use none. Each coordinate operation using the method assigns
values to these parameters.

The MathTransform object does the work of applying formulae to coordinate values.
A MathTransform does not know or care how the coordinates relate to positions in
the real world. MathTransform objects are intended to be generic in nature; they may
be agnostic to the spatial-coordinate domain, and may be equally applicable to non-
spatial-coordinate domains.

A CoordinateOperation contains a source CoordinateReferenceSystem, a
target CoordinateReferenceSystem, and a MathTransform. The
MathTransform transforms from the source coordinate values to the target coordinate
values.

CoordinateOperation exposes to a user the operation, allowing a user to analyse
the operation from a spatial coordinate context. MathTransform is the backend
implementation of an operation, but has no provision for user analysis.

MathTransform objects consisting of algorithms (or chains of algorithms) that have
identical inputs and identical outputs are themselves interchangeable. Substituting a
MathTransform object with an interchangeable MathTransform object will not
affect the behaviour of the containing CoordinateOperation. An implementation is
allowed to do so if deemed desirable.

68 Copyright © Open Geospatial Consortium, Inc (2005)

Figure 26 - MathTransform

6.4.2.7 Relative Coordinates

A technique exists to support relative coordinates. This technique can only be used in
GO-1 implementations that support the restriction that all DirectPositions within a
Geometry have the same CoordinateReferenceSystem.

The technique proposed to accomplish this uses Geometry, which always has a current
CoordinateReferenceSystem. The method Geometry.transform(
CoordinateReferenceSystem, MathTransform), returns another
Geometry instance in the given CoordinateReferenceSystem transformed from
the first Geometry instance using the given MathTransform.

The original Geometry has a reference to the new Geometry, which has a reference to
the new CoordinateReferenceSystem. Thus a Geometric object can effectively
“move” to any given CoordinateReferenceSystem.

If Geometry GA in CoordinateReferenceSystem A desires to transform to a
particular target CoordinateReferenceSystem C, but only has an intermediate
CoordinateReferenceSystem B and MathTransforms A-to-B and B-to-C, the
methods MathTransformFactory.createConcatenatedTransform(

Copyright © Open Geospatial Consortium, Inc (2005)

69

MathTransform, MathTransform) and
MathTransformFactory.createPassThroughTransform(int,
MathTransform, int) can be utilised to create MathTransform A-to-C, and
thereby eliminate the need to instantiate the intermediate Geometry GB object.

6.4.3 Reference System Factories and Authority Factories

The GO-1 specification for CoordinateReferenceSystem,
CoordinateSystem, Datum, and Operation has a layered factory pattern
consisting of a Factory and one or more implementations of an AuthorityFactory.
CRSFactory, CSFactory, DatumFactory create objects using a properties
java.util.Map object for many of the required parameters. The
CRSAuthorityFactory, CSAuthorityFactory,
DatumAuthorityFactory, and
CoordinateOperationAuthorityFactory objects are intended to connect to
real-world authority databases, such as the European Petroleum Survey Group (EPSG) or
the International Hydrographic Organization (IHO). Each CRSAuthorityFactory
(for example) wraps the CRSFactory and delegates implementation-specific creation
tasks.

For information on the CoordinateReferenceSystems, CoordinateSystems,
Projections, and Datums supported by an implementation, one may query its
CommonFactory. This object also provides supported Geometry types.

All reference system objects are immutable once created. For ProjectedCRS and
other GeneralDerivedCRS objects this presents a complication, in that the
Conversion returned by getConversionFromBase must always return the same object,
and the CoordinateOperationFactory createOperation methods require that the
ProjectedCRS be passed in as a parameter. Thus, one may not pass the required
Projection object into the ProjectedCRS through its constructor, and the
ProjectedCRS may not hold a pointer to the Projection. Instead, the
CoordinateOperationFactory must create the Projection the first time a call
is made to createOperation (passing in at least the ProjectedCRS and its base
GeographicCRS). It will then store this Projection (typically within a Map) for
retrieval on subsequent calls to createOperation in which the same two
CoordinateReferenceObjects plus the relevant OperationMethod are passed in.

It follows from the creation mechanism that implementations of ProjectedCRS will need
to define get methods for internal use in order to pass parameters to the
CoordinateOperationFactory. However, in general
CoordinateReferenceSystem objects do not expose their properties directly, but
rather through Operation objects that involve them. To obtain access to parameters for
a ProjectedCRS via the GO-1 API, one obtains the Projection via
getConversionFromBase, queries it for its ParameterValues, examines the array for

70 Copyright © Open Geospatial Consortium, Inc (2005)

the ParameterValue corresponding to the attribute of interest, then queries that
ParameterValue for its actual value.

Copyright © Open Geospatial Consortium, Inc (2005)

71

6.5 Features

6.5.1 Model and Rationale

The feature model in GeoAPI is based on the OGC abstract specification for features
(Topic 5), but draws much influence from the practical lessons learned by various open-
source efforts, most notably GeoTools and Deegree.

Figure 27 - Feature, FeatureCollection, and FeatureType

Note that a FeatureCollection is itself a Feature, as in the OGC abstract specification,
which allows a FeatureCollection to have a FeatureType and attributes of its own.
But beyond the Feature methods, there are a large number of the methods in the
FeatureCollection interface that come from extending the Java Collection interface.
Extending the Java interface allows for easy interoperability with other Java collections.
In order to unambiguously define feature events and transaction semantics, instances of
Feature must belong to at most one FeatureCollection. (The containing feature
collection is returned from the getFeatureColleciton() method on Feature.)
Different instances of the Feature interface may represent the same conceptual feature,
but must belong to different FeatureCollections. Nothing in this specification
prevents the implementor from sharing attribute state between two such features. Indeed

72 Copyright © Open Geospatial Consortium, Inc (2005)

two feature objects may compare as equal using the equals() method and not have the
same parent FeatureCollection.

6.5.2 Feature Attributes and Geometry

As shown in the diagrams above, a Feature has any number of attributes whose values
can be retrieved by invoking one of the two getAttribute(...) methods. The
attributes can be retrieved by integer index or by the name of the attribute. The return
value of these methods is an Object, which means that primitive values (int, double,
etc) are wrapped in their corresponding wrapper class (Integer, Double, etc).
This model for attributes differs slightly from a literal interpretation of OGC Topic 5. In
Topic 5, features have attribute objects, and the attribute objects have values. Here, we
allow the user to get the attribute value directly from the feature.
Features have methods for retrieving two special attributes, bounds and ID. The getID
method must return a non-null String whose value uniquely identifies the feature within
the scope of the current Java virtual machine. If possible, the ID should be universally
unique, but this is not a requirement. The bounds of the feature give the extent of the
geometry of this feature (or the extent of the union of the geometries of child features, if
the feature is itself a feature collection).
Feature geometry is treated just like any other attribute. It has a name and an index and is
retrieved using the getAttribute method of Feature. A feature may have several
attributes which are geometries, but one of those geometries is used to render the feature.
In such cases, the "default" geometry attribute should be indicated by the return value of
getDefaultShapeAttribute of the feature's FeatureType. The value of geometry
attributes should be an instance of one of the subclasses of
org.opengis.spatialschema.geometry.primitive.Primitive. (However, some
producers and consumers of features may wish to exchange geometry in the form of other
Java objects, such as those from the Java Topology Suite, so this specification does not
absolutely require that geometric attributes be subclasses of Primitive.)

6.5.3 FeatureTypes

Every feature has a corresponding FeatureType that describes it. In particular, the
FeatureType lists the following:

 The attributes of the Feature, including their name and type

 The name of the FeatureType, encoded as an instance of GenericName

 A preferred namespace prefix to use when encoding the feature as GML

 An indicator as to whether features of this type are also FeatureCollections

 If the features are FeatureCollections, a list of types of features that could
potentially be children of the feature.

Copyright © Open Geospatial Consortium, Inc (2005)

73

The information about the attributes of features are stored in instances of the
FeatureAttributeDescriptor interface. This interface gives the name, the data type
(as an instnace of the DataType enumeration class), and other metadata necessary to fully
specify the type, such as attribute size.
Every FeatureType has a name. These names are provided as instances of the
GenericName interface. GenericName is a base class for two "concrete" classes:

 LocalName - This is a simple name that has one part that is just a string. This
string has no inherent scope. A typical use for a LocalName is for name of an
XML element.

 ScopedName - This is a name that has two parts, a scope, and a LocalName. The
scope is itself a GenericName and thus may either be a LocalName or a
ScopedName. In typical cases, the scope of a ScopedName will a LocalName
representing the namespace URI of an XML element and the LocalName of the
ScopedName will be the name of the XML element.

Figure 28 - GenericName

6.5.4 Modifying Features

The features in this specification can be modified using the setAttribute(...) method.
Feature instances may be backed by data in some sort of persistent backing store, so
calling setAttribute(...) should cause changes to be written to the persistent store.
Feature collections can also be modified using the methods inherited from Java's
Collection interface (such as add(...), remove(...), etc). Such changes should also
be written to the persistent store.

6.5.5 FeatureCollections

A FeatureCollection represents any grouping of Features. This may be the return
value of a query on a server, or it may be a collection created by the API user. In either

74 Copyright © Open Geospatial Consortium, Inc (2005)

case, the members of a FeatureCollection can be enumerated by invoking the
iterator() method. This returns a Java iterator over the members of the Collection.
FeatureCollections may often be backed by a persistent store of some kind. In such
cases, the methods that modify the collection, such as add(...) and remove(...), are
required to make modifications to the persistent store. Such modifications take place
within the context of the current transaction the FeatureCollection. See the section
below for more information about transactions.
Also, because FeatureCollections are often backed by a persistent store, network
connections may have to be established to provide access to the members. Because of
this, there is a close() method on FeatureCollection that can be invoked to indicate
to the implementation that the caller no longer has need of the data contained within the
FeatureCollection, and any resources, such as network connections, can be cleaned
up.
Note that the members of a FeatureCollection may themselves be instances of the
FeatureCollection interface. This gives rise to the possibility that there would be
hierarchies of Features contained within a FeatureStore.
The FeatureCollection interface extends the Java Collection interface, which is the
base class for both unordered Sets and ordered Lists. Implementors of the
FeatureCollection interface are encouraged to implement a more specific subclass
(such as Set or List) if their collection does have those semantics. This might allow, for
example, random access of the collection elements if the user knows that the collection is
a List.

6.5.6 Feature Events

The FeatureCollections in this specification provide a mechanism that allows the API
user to register for notification of certain events, namely the addition, removal, or
changing of features within that collection.

Figure 29 - Feature Listeners

FeatureCollections that support event listeners should invoke the appropriate listener
methods when the features they contain are modified, added, or removed. Note that it is
possible that two distinct FeatureCollections could contain a Feature that represents

Copyright © Open Geospatial Consortium, Inc (2005)

75

the same conceptual feature. If this feature were modified in one collection, an intelligent
implementation should notify listeners on both FeatureCollections that the feature has
changed.

6.5.7 Transactions

An instance of Transaction represents a set of operations performed on various
FeatureStores, where the entire set of operations can be rolled back or committed at
the same time. The constant Transaction.AUTO_COMMIT is used to request immediate
change, or during event notification to indicate the persistent state has changed. When a
FeatureCollection is using a Transaction its contents may still be modified, but the
changes are simply not persisted until the Transaction's commit() method is called.

Figure 30 - Transaction and Transaction.State

The following pseudo-code demonstrates how transactions might be used by a client.
FeatureStore featureStore = ...;
FeatureCollection features = featureStore.getFeatures(...);
Feature feature1 = new DefaultFeature(...);

// Set to auto-commit
features.setTransaction(Transaction.AUTO_COMMIT);
// Add feature1 to the collection. It is immediately persisted.
features.add(feature1);

// Set to a new transaction
Transaction t = new DefaultTransaction();
features.setTransacstion(t);

features.remove(feature1);
// feature1 is removed, but the change has not be persisted

features.rollback();
// the remove of feature1 has been canceled, features is
// restored to its previous state

Event notification for a FeatureCollection is largely unaffected by transactions.
However, two additional notifications are needed:

 Transaction.commit() causes the firing of an event to indicate persistent state
change for other FeatureCollections that may have common members.

76 Copyright © Open Geospatial Consortium, Inc (2005)

 Transaction.rollback() fires an event for listeners on the current
FeatureCollection indicating the state of the feature collection has changed.
Other FeatureCollections that may have common members do not receive
events if a transaction is rolled back.

Another pseudo-code example demonstrates how events are fired for collections
containing common members:

FeatureStore featureStore = ...;
FeatureCollection featuresA = featureStore.getFeatures(...);
FeatureCollection featuresB = featuresA.clone();
// we now have two FeatureCollections w/ the same contents

// Create listeners and add them to the collections
FeatureListener listenerA = new MyFeatureListener(...);
FeatureListener listenerB = new MyFeatureListener(...);
featuresA.addListener(listenerA);
featuresB.addListener(listenerB);

featuresA.setTransaction(Transaction.AUTO_COMMIT);
Transaction transaction = new DefaultTransaction();
featuresB.setTransaction(transaction);

featuresA.remove(feature1);
// feature1 is removed from both featuresA and featuresB
// listenerA and listenerB recieve event

featuresB.add(feature1);
// listenerB recieves notification
featuresB.add(feature2);
// listenerB recieves notification
featuresB.commit();
// listenerA recieves notification

6.5.8 Transaction from the implementors perspective

The writers of this specification expect that the Transaction interface will be
implemented one time in a utility library since all of the behavior of the Transaction
class can be performed independent of backing store implementation. The "interesting"
code for implementors is in the implementation of the Transaction.State interface and
the implementation of FeatureCollection.setTransaction(...). The following
Figure illustrates the sequence of events that occurs when a transaction is set on a feature
collection. Steps 3, 4, 7, and 11 are the steps that have logic specific to a given data
source. (See the class Javadocs for more detailed information about the contract of these
interfaces.)

Copyright © Open Geospatial Consortium, Inc (2005)

77

Figure 31 - Transaction sequence diagram

6.5.9 Transaction field and method detail

 AUTO_COMMIT - Constant used to request that any modifications to a feature or a
feature collection should occur immediately. This member follows the "Special
Case" design pattern.

 close() - Disposes of any resources held by the transaction. If changes are
pending on the current transaction, they are rolled back.

78 Copyright © Open Geospatial Consortium, Inc (2005)

 commit() - Makes all changes since the previous commit/rollback
permanent. This method returns a LockResult indicating the success of any
lock operations made of the course of the transaction.

 rollback() - Undoes all changes performed since the last commit or rollback.
 getAuthorizations(), useAuthorization(token) - Manage and

access a Set of authorization tokens allowing access to locked content. See the
section on locking below.

 getProperty(key), setProperty(key,value) - Allows for user
specified hints. This might allow access to features of a FeatureStore not
provided in the GeoAPI interfaces.

 getState(key), removeState(key), putState(key,value) -
Allows FeatureStores to externalize state under transaction control. Follows
the momento design pattern. When the user invokes the setTransaction method
on a FeatureCollection, the implementation is expected to call these
methods to attach or retrieve state information about the transaction. Then when
the transaction is committed, rolled back, or closed, the state objects are
enumerated and the corresponding commit or rollback method is called.

6.5.10 Locking

The writers of this specification view the FeatureStore interface as a programming
language interface parallel of the WFS web interface. Therefore our design for locking is
motivated by the locking functionality given by a WFS. Both transaction-duration locks
and WFS-style long-term locks are supported by this API.
This specification provides an attractive middle ground between full versioned Features,
and light-weight in-process or file lock based approaches. Locks are maintained for a
requested duration. A successful lock operation results in an authorization token that may
be used at a later time. A transaction may be assigned such a token allowing it to work on
previously locked features. Locks are allowed to be taken out across multiple
FeatureCollections (each returning a unique authorization token).
In general, the sequence of events for long-term locking is the following:

 The user retrieves a FeatureCollection.

 The user sets a LockRequest on the FeatureCollection.

 The user invokes lock() on the FeatureCollection to lock all of its features.

 If using a Transaction, the user commits the transaction to get the result of
locking. (If not using a Transaction, the lock() method returns the result.)
Now the features are locked in the database. The result contains an authorization
token that is stored for later use.

 At a later time, the user creates a new Transaction and adds the authorization
token to it.

Copyright © Open Geospatial Consortium, Inc (2005)

79

 The user again retrieves a FeatureCollection with some or all of the locked
features in it and sets its transaction to the one with the authorization token.

 The user makes changes to the collection and commits the Transaction.

 The lock is released.

Locking workflow is described by capabilities of the FeatureCollection.lock() methods,
LockRequest, LockResponse, and Transaction.

80 Copyright © Open Geospatial Consortium, Inc (2005)

Figure32 - Initiating a long term lock while using a Transaction

Copyright © Open Geospatial Consortium, Inc (2005)

81

Figure 33 - Initiating a long term lock without a Transaction

The LockRequest class is a wrapper for a lock duration expressed in milliseconds. A
static constant on the class, LockRequest.TRANSACTION_LOCK, can be used to request a
lock lasting until the next commit or rollback. (This follows the Special Case design
pattern.) Such locks are often used to ensure access before starting modification.
The LockResponse class indicates number of locked features and authorization tokens
for each involved FeatureStore. The static constant LockResponse.PENDING indicates
that the lock request is waiting until the next commit to provide authorization tokens and
feature counts. The static constant FeatureResponse.NONE is used as a return value by
Transaction.commit() to indicates no lock requests were made. The static constant
LockResponse.TRANSACTION_LOCK_RESPONSE indicates that aquired locks will expire at
the end of the transaction.
The following pseudo-code example demonstrates how locks could be used:

FeatureStore featureStore = ...;
GenericName roads = featureStore.getTypeNames().iterator().next();

// The "bnf" method is unfortunately fictitious
FeatureCollection kaslo = featureStore.getFeatures(roads,
 FilterFactory.bnf("CITY='kaslo'");
LockRequest lockRequest = new LockRequest(45678);
Transaction t = new DefaultTransaction();
kaslo.setTransaction(t);

// Lock the features
kaslo.setLockRequest(lockRequest);
kaslo.lock(); // returns LockResponse.PENDING
LockResponse lockResults = t.commit();
// kaslo roads are now locked

String token = lockResults.getToken();

// Now try some operations
kaslo.clear();
try {

82 Copyright © Open Geospatial Consortium, Inc (2005)

 // commit will fail since the transaction does not have
 // the authorization token
 t.commit();
} catch (IOException locked){
 // datais safe - we did not use authorization
 System.out.println("expected locking message:"+locked);
}

t.useAuthorization(token);
kaslo.clear();
lockResults = t.commit();
// The commit succeeds and lockResults is LockResults.NONE
// since no new locks were performed

At the end of the above example, the roads in Kaslo are removed and the lock is released
since the token has been used.
A couple of important points that prevent deadlock:

 Lock request does not produce an exception, success or failure can be determined
by the LockResponse.

 Trying to perform a modification, or trying to lock a previously locked Feature
will produce an exception.

6.6 FeatureStore

6.6.1 Model and Rationale

While the Feature and FeatureCollection APIs provide mechanisms for accessing
feature data, the model as described thus far does not provide a mechanism for retrieving
FeatureCollections from a persistent store of some kind. Thus we introduce
FeatureStore.
The FeatureStore interface provides an abstraction for an object that connects to a store of
features and provides them to the user. For example, an application may implement the
FeatureStore interface to connect to a relational database and provide the contents of the
tables as features. (The user of the FeatureStore should not know this implementation
detail, and it should only use methods in the FeatureStore interface.)

Copyright © Open Geospatial Consortium, Inc (2005)

83

Figure 34 - FeatureStore

Note that a FeatureStore implementation need not make any network or database
connections to supply features. It may just as easily read a local file and parse all of its
contents into memory. In such a case, some methods (such as those that are documented
to close any open connections) may do nothing.

6.6.2 Nested Features

As discussed in other sections, Features can be FeatureCollections and thus contain
child Feature objects. In such cases, there could be a large containment hierarchy of
Features. A FeatureStore that provides such hierarchies of Features can give hints to
the user about which types of Features are the "root" Features in such hierarchies by
implementing the getRootTypeNames() method, described below.

6.6.3 FeatureStore method detail

 getTypeNames() - Returns a List of GenericName objects that name the types of
features provided by this FeatureStore. Although the List interface returns
Objects from its accessors, the List returned from this method is guaranteed
only to contain instances of GenericName.

 getRootTypeNames() - This method returns a list of names of the types that are
the "root" features in nested feature hierarchies. For many FeatureStores, this

84 Copyright © Open Geospatial Consortium, Inc (2005)

method may very well return the same list as returned by getTypeNames(). But
for all FeatureStores, this list will contain a subset of the names returned by
getTypeNames().

 getFeatureType(GenericName) - This method returns a FeatureType instance
that describes the details of the type whose name is given. The FeatureType
includes information about the attributes of the features, as well as an indication
of whether the features of this type are collections.

 getFeatures(...) - Each of these methods returns a collection of features from
the FeatureStore that passes an optional Filter. Implementors of these
methods are free to retrieve all of the features immediately or to defer the retrieval
until the FeatureCollection's iterator() method is invoked.

 getDefaultStyle(GenericName) - Some data providers may also wish to
provide the user of the features with a default set of rules for styling their features.
This method allows them to do so. It is valid to return null from this method if
the data provider doesn't know a default style or doesn't care about styling.

 createType, removeType, modifyType - The implementor of a FeatureStore
may wish to allow the user to create, remove, and modify the types of features
that are available. For example, createType for a particular FeatureStore may
create a new database table. All three of these methods may throw an exception if
the FeatureStore does not support this type of operation.

 addFeatureStoreListener, removeFeatureStoreListener - For
FeatureStores that do support any of the three methods for changing the feature
types in the store, they must also implement these methods that allow the user to
receive notification when such a change has been made.

6.6.4 Filter

The various Filter classes were translated to Java from the XML schemas for Filter [16]:

Copyright © Open Geospatial Consortium, Inc (2005)

85

Figure 35 - Filter and subclasses

The meanings of the various members of these classes are identical to the meanings of
their corresponding elements in the Filter encoding schema.

The only changes from the OGC Filter specification are the spatial operators. In the
Filter specification, the spatial operators are only allowed to compare a Feature's
geometry property with a constant geometry. Here both parameters are allowed to be any
expression that evaluates to a geometry.

Filter objects cannot be changed after they are created, so they must be created with all of
their parameters set. The FilterFactory interface provides methods for creating each type
of Filter and these methods accept parameters for all of the pertinent properties.

Included in the filter package is the expression subpackage that provides classes that can
evaluate a limited set of mathematical expressions based on the properties of features.
These classes are also based on the corresponding classes from the OGC Filter
specification and have the same semantics:

86 Copyright © Open Geospatial Consortium, Inc (2005)

Figure 36 - Expression

6.6.5 FeatureStore Example Usage

The following code demonstrates how one can retrieve some features from a
FeatureStore. This simply prints out the feature ID of each feature of the first type
offered by the FeatureStore.
FeatureStore featureStore = ... ;
List featureTypes = featureStore.getTypeNames();
GenericName typeName = (GenericName) featureTypes.get(0);
System.err.println("Retrieving features of type " + typeName);
FeatureCollection features = featureStore.getFeatures(typeName);
Iterator iterator = features.iterator();
while (iterator.hasNext()) {
 Feature f = (Feature) iterator.next();
 System.err.println(f.getID());
}
System.err.println("Done.");

Another usage of FeatureStores is for creation of layers to be displayed in a
FeatureCanvas. The following code demonstrates how one might create a Layer and add
it to a canvas.

Copyright © Open Geospatial Consortium, Inc (2005)

87

FeatureStore featureStore = ... ;
FeatureCanvas canvas = ... ;
List featureTypes = featureStore.getTypeNames();
GenericName typeName = (GenericName) featureTypes.get(0);
System.err.println("Displaying features of type " + typeName);
FeatureCollection features = featureStore.getFeatures(typeName);
FeatureLayer layer = new MyFeatureLayerImplementation(features,
featureStore.getDefaultStyle(typeName));
canvas.addLayer(layer);

6.6.6 Relationship of FeatureStore to existing OGC standards

The FeatureStore interface does not have a direct counterpart in any of the existing
abstract or implementation specifications. However, the FeatureStore Java interface
(along with FeatureCollection) does very closely resemble the HTTP interface of a
web feature server. Both have operations for describing a given type of feature, for
retrieving features, for adding features, and for removing features.

6.7 FeatureCanvas

6.7.1 Model and Rationale

A FeatureCanvas represents a visual component that renders Features on a display.
The FeatureCanvas can be viewed as a mechanism for converting Features plus
FeatureStyles into Graphics on a GO-1 Canvas. Conceptually, the FeatureCanvas is
very similar to a Web Map Server. It maintains a list of Layers, and each of these layers
has a Z-order hint and a currently active style.

Figure 37 - FeatureCanvas

6.7.2 FeatureStyle

The style portions of this specification are direct Java bindings of the Styled Layer
Descriptor XML encoding specified by OGC. (The names for the various style interfaces
were taken from version 1.0.20 of the SLD schemas since they are somewhat more
compact than the version 1.0 names. However, the functionality of the interfaces is the
same as in version 1.0.)

88 Copyright © Open Geospatial Consortium, Inc (2005)

Style objects can be created from a FeatureStyleFactory instance in two ways. The
first way is to parse an OGC SLD XML file from an input stream using one of the
parse(...) methods. The second is to call the createStyleObject method, passing in a

Figure38 - FeatureStyleFactory Interface

The following diagrams illustrate the top level classes used by an instance of
FeatureStyle. As indicated in the picture, an instance of FeatureStyle contains any
number of Rules, which in turn contain any number of Symbols. Symbol is an abstract
interface; various subclasses of Symbol exist that correspond to differing types of
geometry.

Figure 39 - Style Interfaces

Copyright © Open Geospatial Consortium, Inc (2005)

89

Figure 40 - Symbol and related classes

6.7.3 FeatureLayers

A FeatureLayer is a grouping of features that will be drawn on a display. Every
FeatureLayer instance has a FeatureCollection that holds the features to be drawn, a
z-ordering value, called its "level", and a FeatureStyle object that indicates how the
features will be portrayed.

Figure 41 - FeatureLayer

Additionally, FeatureLayers support an event mechanism that allows the user to receive
notification when the style or z-order of the layer has been modified.

90 Copyright © Open Geospatial Consortium, Inc (2005)

6.8 GraphicStore, GraphicStoreFactory

In some end user applications, there will be a need for "pluggable" components that
provide Graphic objects to be drawn on a Canvas. The GraphicStore interface (similar
in concept to the FeatureStore interface) gives a standard interface for such providers to
implement.

Figure 42 - GraphicStore and GraphicStoreFactory

6.8.1 GraphicStore

There are only a few methods in the GraphicStore interface:
 getIcon() - Returns a URL to a small graphic that can be used to represent this
GraphicStore in a user interface. Implementations are encouraged to keep this
icon smaller than 32 pixels square.

 getDisplayName() - Returns a short text name that can be used to represent this
GraphicStore in a user interface. This name should be unique enough to identify
this instance, but need not be universally unique.

 getDescription() - Returns a longer, plain text description of the contents of
this GraphicStore. This can be one or two sentences (or more).

 getGraphics(...) - This method is the heart of GraphicStore. The
implementation uses the factory that is passed as a parameter to create new
graphic instances for display. Implementations must create new Graphics each
time this method is called. The caller is responsible for caching Graphics and
may need to call this method multiple times with different factories for different
displays.

6.8.2 GraphicStoreFactory

To facilitate "pluggable" architectures, the specification also defines a factory interface
capable of creating GraphicStores from a set of configuration parameters. These
configuration parameters take the form of a URI, which indicates the raw data source,
and a Map of parameters that provide other hints to the store for connecting to this raw
data source (such as passwords, cache size, etc).

Copyright © Open Geospatial Consortium, Inc (2005)

91

 createGraphicStore(...) - The heart of GraphicStoreFactory, this method
instantiates a new GraphicStore based on the parameters given.

 getIcon(), getDisplayName(), getDescription() - Returns basic metadata
that can be displayed to a user about this GraphicStoreFactory.

 getParametersInfo() - Returns a list of objects that detail which parameters can
be passed in the Map given to the createGraphicStore method.

 canProcess(...) - This can be used by application code to determine if the
given URL and map of parameters can be parsed and handled by this factory.

 isAvailable() - In certain cases, this factory may not be able to create the
necessary connections to a back end data source. This could happen, for example,
if a network connection is down, or if needed classes are not in the classpath.
This method should return true if the necessary resources and libraries appear to
be available and false otherwise.

6.8.3 Graphic Store Use Cases

There are four general categories this author can envision where application developers
may find it useful to implement GraphicStores.

6.8.3.1 Support for Custom Graphics

A GraphicStore may be written in order to take advantage of support for custom graphics
provided by a particular GO-1 implementation. An example might be an extension to an
existing Graphic or implementation of a new graphic supporting a 3D geometry.
Something like the following code snippet would be used by such a GraphicStore to
provide the extended capability, and also default behaviour for standard GO-1
implementations. Note that a well-behaved GraphicStore taking advantage of extended
capabilities should wherever possible provide a default behaviour based on standard GO-
1 Graphics.

92 Copyright © Open Geospatial Consortium, Inc (2005)

DisplayCapabilities displayCapabilities = displayFactory.getCapabilities();

Class specialPrimitiveClass = CustomGraphic.class;
boolean specialPrimitiveClassSupported = false;

// get the supported primitives
Class[] supportedPrimitives = capabilities.getSupportedPrimitives();

// iterate supported primitives, looking for the class we inquire about
for (int i = 0; i < supportedPrimitives.length &&
!specialPrimitiveClassSupported; i++) {
 if (supportedPrimitives[i] == specialPrimitiveClass) {
 specialPrimitiveClassSupported = true;
 }
}

// now either use the custom graphic or do some fallback routine
if (specialPrimitiveClassSupported) {
 CustomGraphic customGraphic = (CustomGraphic)
 displayFactory.createGraphic(CustomGraphic.class);
 // ...
} else {
 GraphicLineString fallbackGraphic = (GraphicLineString)
 displayFactory.createGraphic(GraphicLineString.class);
 // ...
}

6.8.3.2 Support for GraphicScaledImage

A GraphicStore can be written in order to support imagery that is not supported by the
native implementation of the GO-1 GraphicScaledImage. For example, support for
JPEG 2000 or MrSID could be achieved by business logic encapsulated in a
GraphicStore that produced a GraphicScaledImage for use with the Canvas.
The following code snippet illustrates how this could be done.

GraphicScaledImage scaledImage =
(GraphicScaledImage)displayFactory.createGraphic(GraphicScaledImage.class);

CRSAuthorityFactory crsAuthFactory = commonFactory.getCRSAuthorityFactory();
CoordinateReferenceSystem crs =
crsAuthFactory.createCoordinateReferenceSystem(“EPSG:4326”);
GeometryFactory geometryFactory = commonFactory.getGeometryFactory(crs);

// GraphicScaledImage corners behave as Envelope with lower/upper corners
DirectPosition lowerCorner =
 geometryFactory.createDirectPosition(new double[] { -90, -180 });
scaledImage.setLowerCorner(lowerCorner);

DirectPosition upperCorner =
 geometryFactory.createDirectPosition(new double[] { 90, 180 });
scaledImage.setUpperCorner(upperCorner);

scaledImage.setTransparency(50);

// Custom image generation code would go here
Image image = new ImageIcon(res.getString("wholeWorldImageFile")).getImage();

BufferedImage bufferedImage = new BufferedImage(
 image.getWidth(null),
 image.getHeight(null),
 BufferedImage.TYPE_INT_ARGB

Copyright © Open Geospatial Consortium, Inc (2005)

93

);
bufferedImage.getGraphics().drawImage(image, 0, 0, null);

scaledImage.setScaledImage(bufferedImage);

6.8.3.3 Data to Feature Mapping Issues

Implementing a GraphicStore may be useful in cases where an existing data source
does not map well or at all to Features. For example, attempting to support gridded
METOC displays with dynamically updating wind barbs would be a good candidate.

6.8.3.4 SLD Issues

In cases where SLD is insufficient, inefficient, or would be overly complex to implement
it may prove a better choice to implement with a GraphicStore. For example, using
SLD to support MS2525B with the full set of Tactical Graphics would require a multi-
megabyte SLD file and likely require some type of service to serve up images. Business
logic for the styling rules would also be complex.

6.9 Layer and LayerSource

6.9.1 Model and Rationale

In the development of applications using FeatureStores and GraphicStores as data
sources, the Layer from ISO_19128 7.2.4.5 came across as an obvious mechanism for
organizing data. Using a Layer, data could easily be presented in a Table of Contents or

94 Copyright © Open Geospatial Consortium, Inc (2005)

other data view. The Layer and its configuration helpers LayerSource and
LayerSourceFactory were thus created.
The Layer provides an implementation of the ISO_19128 Layer and adds the additional
GO-1 objects necessary to fulfull the connection between ISO_19128 and this
specification. The Layer itself contains FeatureLayers and Graphics, while its creating
LayerSource references the FeatureStores and GraphicStores used to create the GO-1
objects in the Layer.
6.9.2 LayerSource

With the exception of the FeatureLayer and Graphic methods, all methods in the Layer
interface directly provide access to ISO_19128 Layer properties. Only accessors are
provided as Layers are intended to be easily created or copied.
As a Layer implementing ISO_19128, a Layer may have many Styles. When getting the
FeatureLayers and Graphics from a Layer, a GO-1 application may want to get
FeatureStyles and GraphicStyles from the same Layer's Styles, or it may want to use
some other style altogether.
LayerSource methods:

 getLayers() - Returns a List of Layers provided by this LayerSource. This List
should not be a live List: modifying the returned List should not modify this
LayerSource's Layers.

 getLayer(String name) - Returns the named Layer.

6.9.3 LayerSourceFactory

LayerSourceFactory methods:
 createLayerSource(URI provider,Map<String,Object> params)

Ask for a LayerSource connecting to the indicated provider or service. The returned
LayerSource may have been previously cached. Additional hints or configuration
information may be provided according to the metadata indicated by
getParametersInfo(). This information often includes security information
such as username and password.

 createNewLayerSource(URI provider,Map<String,Object> para
ms)
Ask for a new LayerSource connecting to the indicated provider or service.
Additional hints or configuration information may be provided according to the
metadata indicated by getParametersInfo(). This information often includes
security information such as username and password.

 canProcess(URI provider)
Indicates this FeatureStoreFactory communicate with the indicated provider or
service. This method should not fail. If a connection needs to be made to parse a
GetCapabilities file or negotiate WMS versions, any IO problems indicate the
inability to process the URI. This method may be considered the same as:

Copyright © Open Geospatial Consortium, Inc (2005)

95

canProcess(provider, hints) where hints was generated by using all the
default values specified by the getParametersInfo() method

6.9.4 Layer Example

The following code demonstrates how one can retrieve GO-1 objects from a Layer for
display in a Canvas or FeatureCanvas.
Layer[] layers = getLayers();
Style[] styles = getStyles();
for (int i = 0; i < layers.length; i++) {
 // graphics
 final List<Graphic> graphics = layers[i].getGraphics();
 final List<GraphicStyle> graphicStyles =
styles[i].getGraphicStyles();
 for (int j = 0; j < graphics.size(); j++) {
 final Graphic graphic = (Graphic) graphics.get(j);
 for (int k = 0; k < graphicStyles.size(); k++) {
 final GraphicStyle graphicStyle = (GraphicStyle)
graphicStyles.get(i);
 graphic.setGraphicStyle(graphicStyle);
 canvas.add(graphic);
 }
 if (graphicStyles.size() == 0) {
 // use whatever style information graphic contains
 canvas.add(graphic);
 }
 }
 // featureLayers
 final List<FeatureLayer> featureLayers =
layers[i].getFeatureLayers();
 final List<FeatureStyle> featureStyles =
styles[i].getFeatureStyles();
 for (int j = 0; j < featureLayers.size(); j++) {
 final FeatureLayer featureLayer = (FeatureLayer)
featureLayers.get(j);
 for (int k = 0; k < featureStyles.size(); k++) {
 final FeatureStyle featureStyle = (FeatureStyle)
featureStyles.get(k);
 featureLayer.setStyle(featureStyle);
 featureCanvas.addFeatureLayer(featureLayer);
 }
 if (featureStyles.size() == 0) {
 // use whatever style information featureLayer contains
 featureCanvas.addFeatureLayer(featureLayer);
 }
 }
}

7 Behaviours

Here we illustrate a few signature behaviours of an application that uses a GO-1
implementation. We present these behaviours as use cases, some accompanied by
sequence or state diagrams.

7.1 Adding a Graphic to a display

Description: Create a graphic and add it to the display.

96 Copyright © Open Geospatial Consortium, Inc (2005)

Precondition: Begin with an application that includes a full implementation of GO-1
Application Objects. All required Factory objects and a Canvas object have been
instantiated, and a Graphic is ready to be added to the display.

Flow of events:

1. Application requests a Graphic object from the DisplayFactory.

2. Application sets the geometric attributes of the Graphic

3. Application sets the style attributes of the Graphic via getGraphicStyle()

4. Application adds the Graphic object to the Canvas object.

Postcondition: The Graphic is rendered with requested styling on the display device.

This sequence of operations is depicted below.

Copyright © Open Geospatial Consortium, Inc (2005)

97

getDefaultGeometry()

Application Feature DisplayFactoryGraphic Canvas

Message1()

createGraphic()

Message2()

setGeometry()

Message3()

add()

Message3()

Figure 43 – Add Graphic Sequence Diagram

7.2 Mouse click selects graphical object.

Description: A user selects a feature for editing in the graphical display.

Preconditions: Begin with an application that includes a full implementation of GO-1
Application Objects. The Canvas has a MouseManagerSupport object to which it
delegates mouse event operations. A SelectItemsHandler class exists that implements
MouseHandler. The MouseManagerSupport object has been registered as a
MouseListener and a MouseMotionListener, and the SelectItemsHandler has been pushed
onto the MouseManagerSupport’s (empty) MouseHandler stack. (Even though
SelectItemsHandler is a Java Listener, it is not registered with any EventSource. It is
used as an event dispatcher.)

Flow of events:

1. User clicks on the Canvas, causing a MouseEvent to be fired.

98 Copyright © Open Geospatial Consortium, Inc (2005)

2. The MouseManagerSupport receives the MouseEvent, and passes the
MouseEvent to the first and only item on its MouseHandler stack.

3. The MouseEvent is received and consumed by SelectItemsHandler

4. SelectItemsHandler acquires GraphicStyle from the selected
Graphic and calls
GraphicStyle.setEditabilitySelected(true) to set it
selected.

Postcondition: The user sees the object displayed with styling indicating it has been
selected,.

Figure 44 - Selecting a Graphic Object

 mouseClicked(Event)

System GraphicStyle SelectItemsHandler Graphic MouseManager
Support

Message1()

handleClick(Event)

GetGraphicStyle()

Message3()

setEditabilitySelected()

Message4()

Copyright © Open Geospatial Consortium, Inc (2005)

99

7.2.1 Editing Graphics

Graphic objects purposefully leave editing up to the implementation. The two existing
properties on Graphic base class, ShowingAnchorHandles and ShowingEditHandles, are
the only hooks provided in the specification pertaining to editing. Their purpose is to
offer a programmatic way of moving a Graphic to and from an editable mode determined
by the implementation. An implementation may choose to edit a Graphic as it sees fit,
but it is widely assumed that users will have the opportunity to modify a Graphic through
gestures, particularly mouse gestures.

Graphic has an autoEdit attribute to support EditabilityDisplay conformance. When this
property is true, the Canvas should provide a graphical interface that allows the user to
modify the geometry of the graphic. Usually, this will take the form of "handles" (small
circles or boxes) at the vertices or control points that the user can modify with mouse
gestures.

In order to move a Graphic into editing mode, one or both of the setShowingHandles
methods must be called. If setShowingAnchorHandles is called, then the Graphic should
display handles suitable for relocating the entire Graphic. Each Graphic should display
editing handles for its particular Geometry, so a GraphicLineString would display
handles at its vertices while a GraphicIcon would only display a handle for rotating (the
handle for relocating the GraphicIcon would be categorized as an anchor handle rather
than an editing handle).

Whenever a graphic is modified or deleted, a GraphicChangeEvent must be fired by
the implementation. When editing starts, a GraphicChangeEvent with a flag of
GraphicChangeEvent .EDITABLE_START is fired. When editing ends, a
GraphicChangeEvent with a flag of GraphicChangeEvent .EDITABLE_END is fired.

There are seven event flags in total that must be supported by a GO-1 application. Three
of these are specific to compliance with Editable Display Objects; EDITABLE_START,
EDITABLE_CHANGED, and EDITABLE_END. The other four event flags are
GRAPHIC_CHANGED, GRAPHIC_SELECTED, GRAPHIC_DESELECTED, and
GRAPHIC_DISPOSED.

7.3 Graphic object is instantiated from a Geometry and an SLD.

Preconditions: Running application has instantiated a geometry LineString and a
compatible StyledLayerDescriptor (SLD) object.

Flow of events:

1. Application creates a new Graphic object with the DisplayFactory. Graphic has
default styling.

2. Application gets the reference to the Graphic’s GraphicStyle.

100 Copyright © Open Geospatial Consortium, Inc (2005)

3. Application gets various styling attributes from the SLD.

4. Application sets the GraphicStyle’s styling attributes with those obtained from the
SLD.

5. Application sets the geometric attributes of the Graphic using the Geometry.

Postcondition: a styled Graphic has been created, and may be added to a Canvas for
display.

Copyright © Open Geospatial Consortium, Inc (2005)

101

Figure 45 - Graphic Object Creation

createGraphic
(GraphicLineString)

Application GraphicStyle StyledLayerDescrip

Graphic DisplayFactory

Message1()

getGraphicStyle()

Message2()

getStroke()

Message3()

setStrokeWidth()

Message4()

setGeometry
(CurveSegment)

Message8()

getFill()

Message6()

setFillColor()

Message7()

setStrokeColor()

Message5()

102 Copyright © Open Geospatial Consortium, Inc (2005)

7.4 Relative Coordinate Use Cases

7.4.1 An image that does not scale with a CRS

A dynamically-constructed Graphic that does not scale with the Canvas objective CRS
is to be displayed by the Canvas. The objective CRS of a Canvas happens to be a
GeographicCRS. In this example, the particular type of the display CRS of the
Canvas does not matter. Also irrelevant to this example is the MathTransform
(MTOD) that the Canvas also holds to convert Geometry objects in the Canvas
objective CRS (the GeographicCRS) into Geometry objects in the Canvas display
CRS.

The Graphic is constructed using a square Geometry that is defined by four
DirectPosition objects, which are associated with a single ImageCRS (which in
this example is not the Canvas display CRS). A MathTransform (MTI) is selected
that associates the ImageCRS with the GeographicCRS in such a way that the
Geometry does not translate, rotate, or scale.

For example, the square has pixel coordinates (-4, -4), (4, -4), (4, 4), (-4, 4). This square
is always drawn with the top left corner 4 pixels above and to the right of the reference
coordinate (e.g., a lat/long point) no matter where that point is on the display, and the
square is always 8 pixels wide and 8 pixels high, no matter what the scale of
GeographicCRS with respect to the ImageCRS (zoom factor). Note that this implies
that the Geometry.transform()for the square Geometry may be called on an as-
needed basis: whenever the scale, location, or projection of the GeographicCRS
changes with respect to either the ImageCRS, or changes with respect to the Canvas
display CRS.

7.4.2 An image that is in a CRS chain and scales with a ProjectedCRS

A registered image is to be displayed in a fixed range and bearing from a fixed location in
a Canvas objective CRS, which happens to be a ProjectedCRS.

An EngineeringCRS exists, as does a MathTransform (MTEP) that converts from
the EngineeringCRS to the ProjectedCRS. An ImageCRS exists, as does a
MathTransform (MTIE) that converts from the ImageCRS to the
EngineeringCRS.

The registered image is set with two DirectPositions in the ImageCRS. The
ImageCRS scales with the EngineeringCRS. The EngineeringCRS scales with
the ProjectedCRS.

The Canvas holds another MathTransform (MTOD) to convert the Geometry object
in the Canvas objective CRS (the ProjectedCRS) into Geometry objects in the
Canvas display CRS. The sequence of CRS objects (starting with the initial ImageCRS

Copyright © Open Geospatial Consortium, Inc (2005)

103

and ending with the Canvas display CRS) bound by the intervening MathTransform
objects, together form a “chain”.

An implementation can either create a new Geometry object at each transform()
invocation in the chain, or can call
MathTransformFactory.createConcatenatedTransform()in sequence on
each MathTransform, and ultimately generate a MathTransform that will convert
Geometry objects from the starting CRS (the initial ImageCRS) in the chain to those
in the ending CRS (the Canvas display CRS) in the chain.

7.4.3 An EngineeringCRS scaling directly with another EngineeringCRS.

A ship is to be depicted coming into port. The ship is represented by a Geometry
having an EngineeringCRS (CRSS). The origin of CRSS is a position within the
ship’s Geometry, such as at the centre of buoyancy of the ship or at the forward-most
point of the bow at main deck level. The port is depicted by a set of DirectPostions
having a different EngineeringCRS (CRSP).

A MathTransform (MTSP) exists that converts from CRSS to CRSP. MTSP has the
following qualities: (A) a direct identity scaling from CRSS to CRSP, (B) the behaviour
that the origin DirectPosition of CRSS corresponds to a particular
DirectPosition in CRSP, which denotes the ship position in CRSP, and (C) an
orientation of the CRSS to CRSP, denoting the rotation of the ship with respect to the port.

Note that a mathematically identical case would be if CRSP is a georeferenced CRS, such
as a GeograhicCRS. Similarly mathematically identical is the case where both CRSS
and CRSP are georeferenced CRS types; however, Topic 2 would prohibit time-based
changes to CRSS in a canonically correct implementation.

7.5. Symbology Use Cases

For all standard symbologies detailed in this document, tag sets are fully defined in
Appendix B, and one or more use cases are presented here. Each selected symbology use
case provides sample client side source code that could be used to construct the symbol,
and an illustration of how a corresponding symbol might appear on a map.

7.5.1 MIL-STD 2525 Tactical Graphic

MIL-STD 2525B [34] has evolved from North Atlantic Treaty Organization (NATO)
Standardization Agreement (STANAG) 2019 (APP 6), "Military Symbols for Land
Based Systems," and U.S. Army Field Manual (FM) 101-5-1/Marine Corp Reference

Publication (MCRP) 5-2A, Operational Terms and Graphics. It provides common
warfighting symbology along with details on its display and plotting to ensure the
compatibility, and to the greatest extent possible, the interoperability of DOD Command,
Control, Communications, Computer, and Intelligence (C4I) systems development,
operations, and training. The standard addresses the efficient transmission of symbology

104 Copyright © Open Geospatial Consortium, Inc (2005)

information within the infosphere through the use of a standard methodology for symbol
hierarchy, information taxonomy, and symbol identifiers. The standard applies to both
automated and hand-drawn graphic displays. These symbols are designed to enhance
DOD's joint warfighting interoperability by providing a standard set of common C4I
symbols.

Figure 46 - MIL-STD 2525 Tactical Graphic

DisplayFactory displayFactory = commonFactory.getDisplayFactory();
GraphicLineString tacgraph =
(GraphicLineString)displayFactory.createGraphic(GraphicLineString.class);

CRSAuthorityFactory crsAuthFactory = commonFactory.getCRSAuthorityFactory();
CoordinateReferenceSystem crs =
crsAuthFactory.createCoordinateReferenceSystem(“EPSG:4326”);
GeometryFactory geometryFactory = commonFactory.getGeometryFactory(crs);

//anchor 1
DirectPosition anchor = geometryFactory.createDirectPosition(new double[] { 30,
20 });
tacgraph.addAnchorPoint(anchor);

//anchor 2
anchor = geometryFactory.createDirectPosition(new double[] { 30, -20 });
tacgraph.addPoint(anchor);

//anchor 3
anchor = geometryFactory.createDirectPosition(new double[] { 0, 0 });
tacgraph.addPoint (anchor);

SymbologyInfo symInfo = new SymbologyInfo ("MIL-STD-2525“, “B”);

tacgraph.getSymbology().setSymbologyProperty(symInfo, "SymbolID", "G*TPP-----
****X");
tacgraph.getSymbology().setSymbologyProperty(symInfo, "DirectionOfMovement",
new Double(6.281));
tacgraph.getSymbology().setActiveSymbology(symInfo);
canvas.add(tacgraph);

7.5.2 MIL-STD 2525 Air Track

This example illustrates combining point and line dimensions to form this MIL-STD
2525 Air Track symbol.

Copyright © Open Geospatial Consortium, Inc (2005)

105

Figure 45 - MIL-STD 2525 Air Track

DisplayFactory displayFactory = commonFactory.getDisplayFactory();
GraphicIcon icon =
(GraphicIcon)displayFactory.createGraphic(GraphicIcon.class);

CRSAuthorityFactory crsAuthFactory = commonFactory.getCRSAuthorityFactory();
CoordinateReferenceSystem crs =
crsAuthFactory.createCoordinateReferenceSystem(“EPSG:4326”);
GeometryFactory geometryFactory = commonFactory.getGeometryFactory(crs);

//anchor point
DirectPosition anchor = geometryFactory.createDirectPosition(new double[] { 30,
20 });
icon.setPosition(anchor);

// note this GraphicIcon doesn’t require a java Icon as the image
// will determined by the MIL-STD-2525 symbology.
SymbologyInfo symInfo = new SymbologyInfo ("MIL-STD-2525“, “B”);

icon.getSymbology().setSymbologyProperty(symInfo, "SymbolID", "SFAPMF------
USA");
icon.getSymbology().setSymbologyProperty(symInfo, "AdditionalInformation",
"RAF418");
icon.getSymbology().setSymbologyProperty(symInfo, "Frame", Boolean.TRUE);
icon.getSymbology().setSymbologyProperty(symInfo, "Fill", Boolean.TRUE);
icon.getSymbology().setSymbologyProperty(symInfo, "Icon", Boolean.FALSE);
icon.getSymbology().setSymbologyProperty(symInfo, "Speed", new Double(447.2));
icon.getSymbology().setSymbologyProperty(symInfo, "DirectionOfMovement", new
Double(6.281));
icon.getSymbology().setActiveSymbology(symInfo);
canvas.add(icon);

7.5.3 Surface Weather

Surface weather depictions are commonly found in weather reporting systems. This
symbol is rather detailed, so additional annotations are provided in blue and red. This
Surface weather symbology is based upon the U.S. National Weather Service (NWS)
Meteorology standards [32]. Depiction of such symbology tends to vary slightly across
regions, so implementations may adhere to display standards applicable to their own
geographical regions. A common set of tags for this symbology appears in Appendix B,
Table “SurfaceWeather”.

106 Copyright © Open Geospatial Consortium, Inc (2005)

Figure 46 - Surface Weather (annotated)

Copyright © Open Geospatial Consortium, Inc (2005)

107

DisplayFactory displayFactory = commonFactory.getDisplayFactory();
GraphicIcon icon =
(GraphicIcon)displayFactory.createGraphic(GraphicIcon.class);

CRSAuthorityFactory crsAuthFactory = commonFactory.getCRSAuthorityFactory();
CoordinateReferenceSystem crs =
crsAuthFactory.createCoordinateReferenceSystem(“EPSG:4326”);
GeometryFactory geometryFactory = commonFactory.getGeometryFactory(crs);

//anchor point
DirectPosition anchor = geometryFactory.createDirectPosition(new double[] {
24.2, -112.5 });

icon.setPosition(anchor);

Symbology symInfo = symbol.getSymbology(“SurfaceWeather”);

icon.getSymbology().setSymbologyProperty(symInfo, "SymbolID", "SFAPMF------
USA");
icon.getSymbology().setSymbologyProperty(symInfo, “WindDirection”, new
Double(10.0));
icon.getSymbology().setSymbologyProperty(symInfo, “WindSpeed”, new
Double(5.0));
icon.getSymbology().setSymbologyProperty(symInfo, “Temperature”, new
Integer(34));
icon.getSymbology().setSymbologyProperty(symInfo, “PresentWeather”, 71);
icon.getSymbology().setSymbologyProperty(symInfo, “Visibility”, new
Integer(4));
icon.getSymbology().setSymbologyProperty(symInfo, “Dewpoint”, new Integer(32));
icon.getSymbology().setSymbologyProperty(symInfo, “SkyCover”, new Integer(6);
icon.getSymbology().setSymbologyProperty(symInfo, “StationIdentifier”, “AB1”);
icon.getSymbology().setSymbologyProperty(symInfo, “PressureChange”, new
Integer(28));
icon.getSymbology().setSymbologyProperty(symInfo, “PressureTendency”, new
Integer(1));
icon.getSymbology().setSymbologyProperty(symInfo, “PastWeather”, new
Integer(6));
icon.getSymbology().setSymbologyProperty(symInfo, “PastPrecipitation”, new
Double(0.45));
icon.getSymbology().setSymbologyProperty(symInfo, “HighCloudType”, new
Integer(2));
icon.getSymbology().setSymbologyProperty(symInfo, “MiddleCloudType”, new
Integer(4));
icon.getSymbology().setSymbologyProperty(symInfo, “LowCloudType”, new
Integer(7));

icon.getSymbology().setActiveSymbology(symInfo);

canvas.add(icon);

7.5.4 Homeland Security

The Homeland Security symbology [33] is a work in progress by the Homeland Security
Working Group. This standard has yet to be released as of this writing. Only point
symbols are currently supported. Each SymbolCode is mapped to a single keystroke
character. Those symbol codes are further subdivided into one of four categories;
Incidents, Natural Events, Operations, and Infrastructures. Tags for this symbology
appear in Appendix B, Table “FGDCHomelandSecurity”.

Figure 47 - Homeland Security Symbol

108 Copyright © Open Geospatial Consortium, Inc (2005)

DisplayFactory displayFactory = commonFactory.getDisplayFactory();
GraphicIcon icon = (GraphicIcon)displayFactory.
createGraphic(GraphicIcon.class);

CRSAuthorityFactory crsAuthFactory = commonFactory.getCRSAuthorityFactory();
CoordinateReferenceSystem crs =
crsAuthFactory.createCoordinateReferenceSystem(“EPSG:4326”);
GeometryFactory geometryFactory = commonFactory.getGeometryFactory(crs);

//anchor point
DirectPosition anchor = geometryFactory.createDirectPosition(new double[] {
24.2, -112.5 });

icon.addAnchorPoint(anchor);
symbol.addAnchorPoint(anchor);

Symbology symInfo = symbol.getSymbology(“FGDCHomelandSecurity”);

// Criminal Activity Incident (Theme)
Symbology symbology = symbol.getSymbology(“FGDCHomelandSecurity”);
icon.getSymbology().setSymbologyProperty(symInfo, “SymbolCode”, “E”);
icon.getSymbology().setSymbologyProperty(symInfo, “SymbolType”, “Incident”)
icon.getSymbology().setSymbologyProperty(symInfo, “Level”, new Integer(0));

icon.getSymbology().setActiveSymbology(symInfo);

canvas.add(icon);

7.6 Z-order Use Case

For the GO-1 reference implementation, we chose to implement z-order in such as way as
to assume that graphic elements that had not set the z-order hint were assumed to share
the z-order of 0 (zero). Any items we desired to draw below the "standard" z-order of all
graphic primitives were set at -1. Any items drawn above all objects at the default z-order
were set at 1.

A use case for this would be the algorithmic determination of z-order by altitude. The
GO-1 client application could pick any range of z for its objects. Let's assume that the
client application picked -100.0 to +100.0 to represent algorithmically determined
elevation (and depth) levels.

Assuming this to be the situation, the following would be true:

1) Items set with
graphic.getGraphicStyle().setViewabilityZOrderHint(101.0
) would appear "on top" of all items determined algorithmically.

Copyright © Open Geospatial Consortium, Inc (2005)

109

2) Items set with
graphic.getGraphicStyle().setViewabilityZOrderHint(-
101.0) would appear "below" all items determined algorithmically.

3) Items with their z-order hint not set would appear at the level determined by
inheritance.

4) Items in case #3 with no inherited z-order hint would be displayed at the GO-1
specification default z-order of 0.0.

There are a number of approaches by which z-order can be set:

1) Z-order can be set using the
getGraphicStyle().setViewabilityZOrderHint(double) method, on
each graphic.

2) A graphic can be added to an aggregate, which includes
OrderedAggregateGraphic. If the graphic's z-order hint is unset, and inheritance
is enabled, the graphic will be treated as having the z-order of the aggregate.

3) Using OrderedAggregateGraphic, which preserve rending order within
themselves, the client application can guarantee the drawing order of all of its objects
without using the z-order hint in the graphic styles at all. Since each
OrderedAggregateGraphic is guaranteed to render its children in order, from
index 0 to n, and OrderedAggregateGraphic can be added to others as children,
this hierarchy of drawing order can be created.

4) Z-order hints set in the GraphicStyle of a Graphic object always override both
the default z-ordering, and the ordering of an object within a
OrderedAggregateGraphic. Setting the hint, in essence, specifies to the Canvas
exactly at what z level the user wishes the object to be displayed.

Mixing and matching the aforementioned z-order approaches may lead to interesting and
non-deterministic results, according to the implementation. It is our suggestion that, if z-
order is used, one approach be applied consistently for all client objects in order to
decrease the likelihood of unexpected visual results.

110 Copyright © Open Geospatial Consortium, Inc (2005)

Annex A
(normative)

Application Objects Programming Interface for Java

A.1 General

The detailed specifications for the GO-1 Application Objects programming interface have
been made available in Javadoc format. These materials are available under separate
cover in 03-064_Annex_A.zip.

The Feature and Spatial Object interface specifications are being developed as a part of
the Model Driven Architecture interface and specification development experiments
described at various points throughout the text above.

Copyright © Open Geospatial Consortium, Inc (2005)

111

Annex B
(normative)

 Symbology Property Names

B.1 Surface Weather Symbology

References: How to read weather maps

Property Name Type Description
Dewpoint Double Degrees Fahrenheit

HighCloudType Integer Code from 1-9

LowCloudType Integer Code from 1-9

MiddleCloudType Integer Code from 1-9

*PastPrecipitation Double Inches in past six hours

PastWeather Integer Code from 0-9, past six hours

PresentWeather Integer Code from 0-99, present

PressureChange Double Millibars to nearest tenth

PressureTendency Integer Code from 0-8

SeaLevelPressure Double Millibars to nearest tenth

SkyCover Integer Code from 0-9, total cloud cover

*StationIdentifier String http://weather.noaa.gov/tg/site.shtml

Temperature Double Degrees Fahrenheit

Visibility Integer Miles

WindDirection Double Degrees from 0-360

WindSpeed Double Knots

Table 3 - SurfaceWeather

* Denotes a property name extension outside the specification used, but found to be in
common use.

112 Copyright © Open Geospatial Consortium, Inc (2005)

B.2 Homeland Security

Reference: Homeland Security Working Group

Property Name Type Description
SymbolCode String keystroke

SymbolType String “Incident”, “NaturalEvent”,
“Operation”, “Infrastructure”

Level Integer 0-4, 0 is no level or n/a

Table 4 - FGDCHomelandSecurity

Copyright © Open Geospatial Consortium, Inc (2005)

113

B.3 U.S. Military Symbology

Reference: http://symbology.disa.mil/symbol/mil-std.html
Property Name Type

AdditionalInformation String

AltitudeDepth String

AuxiliaryEquipment Boolean

CombatEffectiveness String

CommonIdentifier String

DateTimeGroup Date

DateTimeGroupAlt Date

DirectionOfMovement Double

EchelonIndicatorDescription String

EquipmentTeardownTime Integer

EvaluationRating String

FeintDummy Boolean

FrameShapeModifier String

Frame Boolean

Fill Boolean

Headquarters Boolean

HigherFormation String

Hostile String

Icon Boolean

IFFSIF String

Installation Boolean

Location String

Mobility String

OffsetLocation Boolean

PlatformType String

Quantity String

Reduced Boolean

Reinforced Boolean

SIGINTMobility String

SignatureEquipment String

SpecialC2Headquarters String

Speed String

StaffComments String

SymbolID String

TaskForce Boolean

Type String

UniqueDesignation String

Table 5 - MIL-STD-2525B

* Refer to MIL-STD-2525B for property name description and behaviour.

114 Copyright © Open Geospatial Consortium, Inc (2005)

B.4 Aeronautical Symbology (future)

The 6th Edition of the Aeronautical Chart User's Guide makes available in PDF format
chart symbols for Visual Flight Rules (VFR), Instrument Flight Rules (IFR), and
Instrument Approach (IAP). These are defined by the U.S. National Aeronautical
Charting Office (NACO), and are found at
http://www.naco.faa.gov/index.asp?xml=naco/online/aero_guide.

B.5 Nautical Symbology (future)

The current edition of NOAA Chart No. 1 Nautical Chart Symbols is available from the
National Geospatial-Intelligence Agency (NGA) at
http://pollux.nss.nima.mil/pubs/pubs_j_show_sections.html?vt=ON&dpath=Chart1&ptid
=3&rid=16

Copyright © Open Geospatial Consortium, Inc (2005)

115

116 Copyright © Open Geospatial Consortium, Inc (2005)

Annex C

(normative)
Open Source Information

The interfaces described in this document are available in source code form from the
GeoAPI project's SourceForge web site:

http://geoapi.sourceforge.net

From this page, download version 1.0.0 to retrieve the version of the source code
corresponding to this document.

The source can also be retrieved using anonymous CVS:

cvs -z9 -d :pserver:anonymous@cvs.sourceforge.net:/cvsroot/geoapi
 checkout -P -r Release-1_00_00 src

The GeoAPI working group maintains a mailing list where changes and issues with the
API are discussed. To access this mailing list, including archives and subscription
information, visit this page:

http://lists.sourceforge.net/lists/listinfo/geoapi-devel

Corresponding to this mailing list is an issue tracking tool allowing the developers to log
issues and track progress on those issues. Visit this page for more information:

http://jira.codehaus.org/browse/GEO

Copyright © Open Geospatial Consortium, Inc (2005)

117

118 Copyright © Open Geospatial Consortium, Inc (2005)

Annex D
(non-normative)

FeatureCanvas Sequence Diagram

The following sequence diagram illustrates how a (naïve) implementation of
FeatureCanvas might use a Layer to construct Graphics and add them to a Canvas.

Figure 50 - One possible implementation of adding a Layer to a FeatureCanvas

Copyright © Open Geospatial Consortium, Inc (2005)

119

Annex E
(non-normative)

 Package Dependencies

Package Dependencies for selected GO1 Packages

Figure 51 - Package Dependencies

OpenGIS® Specification OGC 03-064r10

Copyright © Open Geospatial Consortium, Inc (2005)

121

Annex F
(non-normative)
 Architecture Diagrams

Figure 52 -A possible architecture using GO-1 components

Figure illustrates how an application using the GO-1 Architecture obtains data from a
WFS and makes it available to the display. On the back end, the WFS use various
FeatureStores to obtain feature data (ex. the existing ArcSDE FeatureStore or
proposed TBMCS FeatureStore). The WFS FeatureStore allows features to be
obtained from the WFS, again through the standardized GO-1 FeatureStore APIs.
Application code then styles features and graphics and places them on the canvas.

This architecture is already proven to be viable by the GeoTools and GeoServer projects,
although they use interfaces that were predecessors to those present in GO-1.
On the server side, a GO-1 Web Feature Server can easily be designed to only use the
published FeatureStore interfaces for retrieving data from back-end data stores. This
would allow for plugging in arbitrary FeatureStores to provide new data. Thus when
new data is introduced to the system, the server does not change. A new FeatureStore
is simply added to the classpath and the server is configured to read its feeatures.
On the client side, the WFSFeatureStore is capable of ingesting arbitrary GML from a
WFS, so new data will not affect the application's data retrieval or display. Additionally,
the application code can easily be written to only use FeatureStore APIs so that any
other FeatureStores could be used locally as well.

OpenGIS® Specification OGC 03-064r10

Copyright © Open Geospatial Consortium, Inc (2005)

122

Figure53 - A non-network architecture using GO-1 components

Figure depicts a simpler, non-networked architecture that does not involve a Web Feature
Server. Using this configuration, application code can be written in such a way that it
only depends on GO-1 FeatureStore interfaces and does not have any dependencies on
the characteristics of any particular Data Source.

Copyright © Open Geospatial Consortium, Inc (2005)

123

Annex G
(non-normative)

 Implementation Notes

Note that it is possible to implement the FeatureCanvas interface entirely on top of the
GO-1 Canvas interfaces. In other words, you could write a FeatureCanvas
implementation one time and reuse it for various Canvases.

So suppose a new GIS rendering engine hits the market. To get FeatureCanvas support
on this new rendering engine, all you have to do is implement the Canvas interfaces and
you would get for very little effort a working FeatureCanvas.

124 Copyright © Open Geospatial Consortium, Inc (2005)

Bibliography

[1] ISO 31 (all parts), Quantities and units.

[2] IEC 60027 (all parts), Letter symbols to be used in electrical technology.

[3] ISO 1000, SI units and recommendations for the use of their multiples and of
certain other units.

[4] Guidelines for Successful OGC Interface Specifications, OGC document 00-014r1

[5] OpenGIS ® Topic 1: Feature Geometry (ISO 19107 Spatial Schema), version 5,
OGC document 01-101, v5.0. Available at:
http://www.opengeospatial.org/docs/01-101.pdf

[6] OpenGIS ® Topic 2: Spatial Referencing By Coordinates, OGC document 03-
073r4. Available at http://www.opengeospatial.org/docs/03-073r1.zip

[7] OpenGIS ® Simple Feature Specification for SQLVersion, version 1.1. Available
at: http://www.opengeospatial.org/docs/99-049.pdf

[8] OpenGIS ® Topic 5: The OpenGIS Feature, OGC document 99-105. Available at:
http://www.opengeospatial.org/docs/01-105r2.pdf

[9] OpenGIS ® Grid Coverages Implementation Specification, version 1.0. Available
at: http://portal.opengeospatial.org/files/?artifact_id=6628

[10] OpenGIS ® Catalog Service Implementation Specification, version 1.1.1.
Available at: http://www.opengeospatial.org/docs/02-087r3.pdf

[11] OpenGIS ® Geography Markup Language (GML) Implementation Specification,
version 2.1.2. Available at: http://www.opengeospatial.org/docs/02-069.pdf

[12] OpenGIS ® Geography Markup Language (GML) Implementation Specification
(version 3.0), OGC document 02-023r4. Available at:
https://portal.opengeospatial.org/files/?artifact_id=7174

[13] OpenGIS ® Web Mapping Server (WMS) Implementation Specification, version
1.1.1. Available at: http://www.opengeospatial.org/docs/01-068r3.pdf

[14] OpenGIS ® Styled Layer Descriptor (SLD) Implementation Specification, version
1.0. Available at: https://portal.opengeospatial.org/files/?artifact_id=1188

[15] OpenGIS ® Web Feature Server (WFS) Implementation Specification, version
1.0. Available at: https://portal.opengeospatial.org/files/?artifact_id=7176

Copyright © Open Geospatial Consortium, Inc (2005)

125

Filter Encoding:

[16] OpenGIS® Filter Encoding Implementation Specification, version 1.0. Available
at: http://www.opengeospatial.org/docs/02-059.pdf

[17] OpenGIS ® Coordinate Transformation Services Implementation Specification,
version 1.0, OGC document 01-009. Available at:
http://www.opengeospatial.org/docs/01-009.pdf

[18] Web Coordinate Transformation Service (WCTS), v0.0.4, OGC document 02-
061r1. Available at: http://www.opengeospatial.org/docs/02-061r1.pdf

[19] OpenGIS ® Web Coverage Server (WCS) Discussion Paper, OGC document 02-
024r1. Available at: http://www.opengeospatial.org/docs/02-024.pdf

[20] Coverage Portrayal Service Specification (CPS), OWS1.1 IPR. OGC document
02-019r1.

[21] Style Management Service IPR, Discussion Paper, OGC document 03-031.
(including proposed changes to SLD). Available at:
http://www.opengeospatial.org/specs/?page=discussion

[22] Registry Service, Discussion Paper, OGC document 03-024. Available at:
http://www.opengeospatial.org/specs/?page=discussion

[23] Integrated Client for OGC Services, Discussion Paper. OGC document 03-021.
Available at: http://www.opengeospatial.org/specs/?page=discussion

[24] OWS Service Information Model, Discussion Paper, OGC document 03-026.
Available at: http://www.opengeospatial.org/specs/?page=discussion

[25] OpenGIS ® Web Service Architecture, Discussion Paper, OGC document 03-025.
Available at: http://www.opengeospatial.org/specs/?page=discussion

[26] OGC Reference Model (ORM), OGC document 02-077. Available at:
http://www.opengeospatial.org/specs/?page=discussion

[27] Filter Encoding, OGC document 02-059, v1.0. Available at:
http://www.opengeospatial.org/docs/02-059.pdf

[28] UML for Spatial Referencing by Coordinates, OGC document 03-009R5.

[29] Recommended XML Encoding of CRS Definitions (XML for CRS), v2.1.0, OGC
document 03-010r9. Available at: http://www.opengeospatial.org/docs/03-
010r9.zip

126 Copyright © Open Geospatial Consortium, Inc (2005)

[30] CT Definition Data for Coordinate Reference (DD CRS), v1.1.0, OGC document
01-014r5. Available at: http://www.opengeospatial.org/docs/01-014r5.pdf

[31] High-Level Ground Coordinate Transformation Interface (HLG-CT), v0.0.3, OGC
document 01-013r1. Available at: http://www.opengeospatial.org/docs/01-
013r1.pdf

[32] How To Read Weather Maps, National Weather Service - JetStream. Available at
http://www.srh.weather.gov/srh/jetstream/synoptic/wxmaps.htm - ww_type or
download at
http://www.srh.weather.gov/srh/jetstream/zippedfiles/synoptic_030904.exe

[33] Homeland Security Symbology Reference, FGDC Homeland Security Working
Group. Available at http://www.fgdc.gov/HSWG/downloadSymbols.htm

[34] MIL-STD-2525B Common Warfighting Symbology, ver B, 30 Jan 1999.
Available at http://symbology.disa.mil/symbol/mil-std.html

Open Source Implementation Baselines

GO-1 and GeoAPI:

 http://sourceforge.net/projects/geoapi

Geobject 1.3 and Geobject 2.0a:

 http://geobject.org/umldoc/2.0alpha

 http://sourceforge.net/projects/geobject

Geotools and Geotools2:

 http://modules.geotools.org/core

 http://www.geotools.org

