OGC API - Processes - Part 1

Core

Open Geospatial Consortium

Submission Date: <yyyy-mm-dd>

Approval Date: <yyyy-mm-dd>

Publication Date: <yyyy-mm-dd>

External identifier of this OGC® document: http://www.opengis.net/doc/IS/ogcapi-processes-1/1.0
Internal reference number of this OGC® document: 18-062

Version: 1.0-draft.4

Category: OGC® Implementation Specification

Editor: Benjamin Pross

OGC API - Processes - Part 1: Core

Copyright notice
Copyright © 2018 Open Geospatial Consortium

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/

Warning

This document is not an OGC Standard. This document is distributed for review and comment. This
document is subject to change without notice and may not be referred to as an OGC Standard.

Recipients of this document are invited to submit, with their comments, notification of any relevant
patent rights of which they are aware and to provide supporting documentation.

Document type: OGC® Standard
Document subtype: Interface
Document stage: Draft

Document language: English

http://www.opengis.net/doc/IS/ogcapi-processes-1/1.0
http://www.opengeospatial.org/legal/

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the
terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated
documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without
limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the
Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that
all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to
the above copyright notice, a notice that the Intellectual Property includes modifications that have not been
approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE
USER’'S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL
PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED
INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE IMPLEMENTATION, USE,
COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition
of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a
third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or
liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks
or other special designations to indicate compliance with any LICENSOR standards or specifications. This Agreement
is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any
provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as
to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

Table of Contents

1. Scope
2. Conformance
3. References
4. Terms and Definitions
4.1. Process
4.2.Job
4.3.JSON
4.4. Process description
4.5. Process execution
4.6. Process input
4.7. Process offering
4.8. Process output
4.9. Process profile
4.10. REST or RESTful
4.11. Service profiles for WPS
4.12. WPS Server
5. Conventions
5.1. Identifiers
5.2. Link relations
5.3. Abbreviated Terms
5.4. Use of the Term "Process"
5.5. Use of HTTPS
5.6. HTTP URIs
6. Overview
6.1. Encodings
7. Requirements Class "Core"
7.1. Overview
7.2. Retrieve the API landing page
7.2.1. Operation
7.2.2. Response
7.2.3. Error situations
7.3. Retrieve an API definition
7.3.1. Operation
7.3.2. Response
7.3.3. Error situations
7.4. Declaration of conformance classes
7.4.1. Operation
7.4.2. Response

10
12
13
13
13
13
13
13
14
14
14
14
14
14
14
15
15
15
16
16
16
16
18
18
19
19
20
21
21
22
22
23
23
23
23
23
24

7.4.3. Error situations
7.5. Use of HTTP 1.1
7.5.1. HTTP status codes
7.6. Support for cross-origin requests
7.7. Retrieve a process list
7.7.1. Operation
7.7.2. Response
7.7.3. Error situations
7.8. Retrieve a process description
7.8.1. Operation
7.8.2. Response
7.8.3. Error situations
7.9. Create a new job
7.9.1. Operation
7.9.2. Request body
7.9.3. Response
7.9.4. Error situations
7.10. Retrieve status information about a job
7.10.1. Operation
7.10.2. Response
7.10.3. Error situations
7.11. Retrieve job results
7.11.1. Operation
7.11.2. Response

7.11.3. Error situations

8. Requirements Class "OGC Process Description”

8.1. Overview

8.2. OGC process description

9. Security Considerations

9.1. Operations using HTTP GET
9.2. Execute operation

9.3. Dismiss operation

10. Requirements classes for encodings

10.1. Overview
10.2. Requirement Class "JSON"
10.3. Requirement Class "HTML"

11. Requirements Class "OpenAPI 3.0"

11.1. Basic requirements
11.2. Complete definition
11.3. Exceptions

11.4. Security

24
24
25
26
26
26
26
27
27
27
27
28
28
28
28
31
31
31
31
32
33
33
33
33
35
37
37
37
41
42
43
43
44
44
44
44
46
46
46
47
47

12. Requirements Class "Job list"
12.1. Operation
12.2. Response
12.3. Error situations
13. Requirements Class "Callback"
14. Requirements Class "Dismiss"
14.1. Operation
14.2. Response
14.3. Error situations
15. Media Types
16. Additional API Building Blocks
Annex A: Abstract Test Suite (Normative)
A.1. Introduction
A.2. Conformance Class Core
A.2.1. Landing Page /
A.2.2. API Definition /api
A.2.3. Conformance Path /conformance
A24 HTTP1.1
A.2.5. Processes /processes
A.2.6. Jobs
A.3. Conformance Class OGC Process Description
A.4. Conformance Class JSON
A.5. Conformance Class HTML
A.6. Conformance Class OpenAPI 3.0
A.7. Conformance Class Job collection
A.8. Conformance Class Callback
A.9. Conformance Class Dismiss

Annex B: Revision History

48
48
48
50
51
52
52
52
52
54
35
58
58
58
58
39
60
61
61
63
71
72
72
73
75
76
77
79

i. Abstract

In many cases geospatial or location data, including data from sensors, must be processed before
the information can be effectively used. The OGC Web Processing Service (WPS) Interface Standard
provides a standard interface that simplifies the task of making simple or complex computational
geospatial processing services accessible via web services. Such services include well-known
processes found in GIS software as well as specialized processes for spatio-temporal modeling and
simulation. While the OGC WPS standard was designed with spatial processing in mind, the
standard could also be used to readily insert non-spatial processing tasks into a web services
environment. The WPS standard provides a robust, interoperable, and versatile protocol for
process execution on web services. WPS supports both immediate processing for computational
tasks that take little time and asynchronous processing for more complex and time-consuming
tasks. Moreover, the WPS standard defines a general process model that is designed to provide an
interoperable description of processing functions. It is intended to support process cataloguing and
discovery in a distributed environment.

The OGC API - Processes API builds on the WPS 2.0 standard and defines the processing standards
to communicate over a RESTful protocol using JSON encodings. This API is a newer and more
modern way of programming and interacting with resources over the web while allowing better
integration into existing software packages.

The resources that are provided by a server implementing the OGC API - Processes are listed in
Table 1 below and include the capabilities document of the server, the list of processes available
(Process list and Process description), jobs (running processes) and results of process executions.

Table 1. Requirements class 'Core' - Overview of resources, applicable HTTP methods and links to the
document sections

Resource Path HTTP Parame Document reference
method ter

Landing page / GET N/A 7.2 API landing page

Conformance classes /conformance GET N/A 7.4 Declaration of
conformance classes

Process list /processes GET N/A 7.7 Retrieve a process list
Process description /processes/{processID} GET processl 7.8 Retrieve a process
D (in description
path)
Job status info /processes/{processID} GET processI 7.10 Retrieve status
/jobs/{jobID} D, jobID information about a job
(in path)
Job results /processes/{processID} GET processl 7.11 Retrieve job results
/jobs/{jobID}/results D, jobID
(in path)

Resource Path HTTP Parame Document reference
method ter

Job status info or results /processes/{processID} POST processI 7.9 Create a new job
/jobs D (in
path),
Execute
request
(contain
ed in
body)

In general, the HTTP GET operation is used to provide access to the resources described above.
However, in order to create a new job, the HTTP POST method is used to create a new job by
sending an execute request to the server.

Additionally, a list of jobs for a specific process can be requested.

Table 2. Requirements class '[ob list' - Overview of resources, applicable HTTP methods and links to the
document sections

Resource Path HTTP Parame Document reference
method ter

Job list /processes/{processID} GET processI 11 Requirements Class
/3obs D@n "Job list"
path)

As a further addition to the operations accessible through HTTP GET and POST methods, in order to
cancel a job execution and/or remove traces of the job execution the DELETE method can be used.

Table 3. Requirements class 'Dismiss’ - Overview of resources, applicable HTTP methods and links to the
document sections

Resource Path HTTP Parame Document reference
method ter

Job status info /processes/{processID} DELETE processI 13 Requirements Class
/jobs/{jobID} D, jobID "Dismiss"
(in path)
ii. Keywords

The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, OGC API, Geospatial API, processes, Web Processing Service, WPS, JSON,
HTML, geoprocessing, API, OpenAPI, HTML

iii. Preface

The Processing API is a continuation of WPS 2.0, a standard for web-based processing of geospatial
data. The Processing API defines how the interfaces for WPS 2.0 operations should be constructed

and interpreted using a REST based protocol with JSON encoding. Within the current version of
WPS 2.0, bindings are defined for HTTP/POST using XML encodings and HTTP/GET using KVP
encodings. Also in the current WPS 2.0 standard, a core conceptual model is provided that may be
used to specify a WPS in different architectures such as REST or SOAP. Therefore, the Processing
API is a natural fit to what is already defined in the standard.

iv. Submitting organizations

The following organizations submitted this Document to the Open Geospatial Consortium (OGC):

52°North GmbH

* Hexagon

* CubeWerx Inc.

* Ecere Corporation
* Terradue Srl

* European Space Agency (ESA)

Spacebel

v. Submitters

All questions regarding this submission should be directed to the editor or the submitters:

Name Representing

Benjamin Pross (editor) 52°North GmbH

Stan Tillman Hexagon

Panagiotis (Peter) A. Vretanos CubeWerx Inc.

Jérome Jacovella-St-Louis Ecere Corporation

Pedro Gongalves Terradue Srl

Gérald Fenoy Gérald Fenoy (Individual Member)
Cristiano Lopes European Space Agency (ESA)
Christophe Noel Spacebel

Chapter 1. Scope

This OGC Standard specifies a Web API that enables the execution of computing processes and the
retrieval of metadata describing their purpose and functionality. Typically, these processes combine
raster, vector, coverage and/or point cloud data with well-defined algorithms to produce new
raster, vector, coverage and/or point cloud information.

Chapter 2. Conformance

This standard defines seven requirements / conformance classes.
The standardization targets of all conformance classes are "Web APIs."
The main requirements class is:
* Core.
The Core specifies requirements that all Web APIs have to implement.

Two requirements classes depend on the Core and specify representations for the resources
specified in the Core:

* JSON, and
« HTML.

The JSON encoding is mandatory.

The Core does not mandate any encoding or format for the formal definition of the API. One option
is the OpenAPI 3.0 specification and a requirements class has been specified for OpenAPI 3.0, which
depends on the Core:

» OpenAPI Specification 3.0.

An implementation of the Core requirements class may also decide to use other API definition
representations in addition or instead of an OpenAPI 3.0 definition. Examples for alternative API
definitions: OpenAPI 2.0 (Swagger), future versions of the OpenAPI specification, an OWS Common
2.0 capabilities document or WSDL.

The Core is intended to be a minimal useful API for the execution of processes from the geospatial
domain. It is designed to map the operations of a Web Processing Service 2.0.

The Core does not mandate the use of any specific process description to specify the interface of a
process. Instead this standard defines and recommends the use of the following conformance class:

* OGC Process Description

which defines an information model, encoded in JSON, that may be used to specify the interface of
a process.

Three additional conformance classes are specified that extend the basic functionality of an API:

* Job list, and
e Callback, and

¢ Dismiss.

Additional capabilities such as support for transactions, extended job monitoring, etc., may be
specified in future parts of the OGC API - Processes series or as vendor-specific extensions.

10

Conformance with this standard shall be checked using all the relevant tests specified in Annex A
(normative) of this document. The framework, concepts, and methodology for testing, and the
criteria to be achieved to claim conformance are specified in the OGC Compliance Testing Policies
and Procedures and the OGC Compliance Testing web site.

Table 4. Conformance class URIs

Conformance class URI

Core http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/
core

OGC Process Description http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/

ogc-process-description

JSON http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/
json

HTML http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/
html

OpenAPI Specification 3.0 http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/
0as30

Job list http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/
job-list

Callback http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/
callback

Dismiss http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/
dismiss

11

http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/ogc-process-description
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/ogc-process-description
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/json
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/json
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/html
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/html
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/oas30
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/oas30
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/job-list
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/job-list
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/callback
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/callback
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/dismiss
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/dismiss

Chapter 3. References

The following normative documents contain provisions that, through reference in this text,
constitute provisions of this document. For dated references, subsequent amendments to, or
revisions of, any of these publications do not apply. For undated references, the latest edition of the
normative document referred to applies.

0OGC 14-065, OGC WPS 2.0 Interface Standard, version 2.0.2

OGC 06-121r9, OGC Web Service Common Specification, version 2.0

OGC 08-131r3 - The Specification Model — A Standard for Modular Specifications

IETF RFC 2616. Hypertext Transfer Protocol - HTTP/1.1. http://tools.ietf.org/html/rfc2616

IETF RFC 2617. HTTP Authentication: Basic and Digest Access Authentication. https://tools.ietf.org/
html/rfc2617

IETF RFC 2246. Transport Layer Security. http://tools.ietf.org/html/rfc2246

IETF RFC 2818. HTTP Over TLS. http://tools.ietf.org/html/rfc2818

IETF RFC 3986: Uniform Resource Identifier (URI): Generic Syntax. https://tools.ietf.org/html/rfc3986
IETF RFC 4646: Tags for Identifying Languages. https://tools.ietf.org/html/rfc4646

IETF RFC 7231: Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. https://tools.ietf.org/
html/rfc7231

IETF RFC 8288: Web Linking https://tools.ietf.org/html/rfc8288

12

http://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2246
http://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc4646
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc8288

Chapter 4. Terms and Definitions

This document uses the terms defined in Sub-clause 5.3 of [OGC 06-121r9], which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this standard.

For the purposes of this document, the following additional terms and definitions apply.

4.1. Process

A process p is a function that for each input returns a corresponding output
p: X > Y

where X denotes the domain of arguments x and Y denotes the co-domain of values y. Within this
specification, process arguments are referred to as process inputs and result values are referred to
as process outputs. Processes that have no process inputs represent value generators that deliver
constant or random process outputs.

4.2. Job

The (processing) job is a server-side object created by a processing service for a particular process
execution. A job may be latent in the case of synchronous execution or explicit in the case of
asynchronous execution. Since the client has only oblique access to a processing job, a Job ID is
used to monitor and control a job.

4.3.JSON

JavaScript Object Notation is a lightweight data-interchange format. JSON is easy for humans to
read and write and it is easy for machines to parse and generate.

4.4. Process description

A process description is an information model that specifies the interface of a process. A process
description is used for a machine-readable description of the process itself but also provides some
basic information about the process inputs and outputs.

4.5. Process execution

The execution of a process is an action that calculates the outputs of a given process for a given set
of data inputs.

13

4.6. Process input

Process inputs are the arguments of a process and refer to data provided to a process. Each process
input is an identifiable item.

4.7. Process offering

A process offering is an identifiable process that may be executed on a particular service instance.
A process offering contains a process description as well as service-specific information about the
supported execution protocols (e.g. synchronous and asynchronous execution).

4.8. Process output

Process outputs are the results of a process and refer to data returned by a process. Each process
output is an identifiable item.

4.9. Process profile

A process profile is a description of a process on an interface level. Process profiles may have
different levels of abstraction and cover several aspects. On a generic level, a process profile may
only refer to the provided functionality of a process, i.e. by giving a verbal or formal definition how
the outputs are derived from the inputs. On a concrete level a process profile may completely
define inputs and outputs including data type definitions and formats.

4.10. REST or RESTful

Representational state transfer. REST-compliant Web services allow requesting systems to access
and manipulate textual representations of Web resources using a uniform and predefined set of
stateless operations.

4.11. Service profiles for WPS

A service profile for WPS is a conformance class that defines the general capabilities of a WPS
server, by (1) specifying the supported service operations, (2) the process model, (3) the supported
process execution modes, (4) the supported operation binding(s).

4.12. WPS Server

A WPS Server is a web server that provides access to simple or complex computational processing
services.

14

Chapter 5. Conventions

This section provides details and examples for any conventions used in the document. Examples of
conventions are symbols, abbreviations, use of XML schema, or special notes regarding how to read
the document.

5.1. Identifiers

The normative provisions in this specification are denoted by the URI
http://www.opengis.net/spec/ogcapi-processes-1/1.0

All requirements, permission, recommendations and conformance tests that appear in this
document are denoted by partial URIs which are relative to this base.

5.2. Link relations

To express relationships between resources, RFC 8288 (Web Linking) is used.
The following registered link relation types are used in this document.

* alternate: Refers to a substitute for the link’s context.
* license: Refers to a license associated with the link’s context.

» service-desc: Identifies service description for the context that is primarily intended for
consumption by machines.

o API definitions are considered service descriptions.

* service-doc: Identifies service documentation for the context that is primarily intended for
human consumption.

* self: Conveys an identifier for the link’s context.
* status: Identifies a resource that represents the context’s status.
* up: Refers to a parent document in a hierarchy of documents.

In addition the following link relation types are used for which no applicable registered link
relation type could be identified.

* conformance: Refers to a resource that identifies the specifications that the link’s context
conforms to.

» exceptions: The target URI points to exceptions of a failed process.

» execute: The target URI points to the execution endpoint of a process.

» process-desc: The target URI points to a specific process description.

» processes: The target URI points to the list of processes the API offers.

 results: The target URI points to the results of a process.

15

http://www.opengis.net/spec/ogcapi-processes-1/1.0

Each resource representation includes an array of links. Implementations are free to add additional
links for all resources provided by the API.

5.3. Abbreviated Terms

Abbreviated Term Meaning

API Application Programming Interface
CRS Coordinate Reference System

GML Geography Markup Language

HTTP Hypertext Transfer Protocol

ISO International Organization for Standardization
JSON JavaScript Object Notation

KVP Keyword Value Pair

MIME Multipurpose Internet Mail Extensions
0GC Open Geospatial Consortium

REST Representational State Transfer

URI Universal Resource Identifier

URL Uniform Resource Locator

WPS Web Processing Service

XML Extensible Markup Language

5.4. Use of the Term "Process"

The term process is one of the most used terms both in the information and geosciences domain. If
not stated otherwise, this specification uses the term process as an umbrella term for any
algorithm, calculation or model that either generates new data or transforms some input data into
output data as defined in section 4.1 of the WPS 2.0 standard.

5.5. Use of HTTPS

For simplicity, this document only refers to the HTTP protocol. This is not meant to exclude the use
of HTTPS. It is simply a shorthand notation for "HTTP or HTTPS". In fact, most servers are expected
to use HTTPS, not HTTP.

OGC Web API standards do not prohibit the use of any valid HTTP option. However, implementers
should be aware that optional capabilities which are not in common use could be an impediment to
interoperability.

5.6. HTTP URIs

This document does not restrict the lexical space of URIs used in the API beyond the requirements

16

of the HTTP and URI Syntax IETF RFCs. If URIs include reserved characters that are delimiters in the
URI subcomponent, these have to be percent-encoded. See Clause 2 of RFC 3986 (URI Syntax) for
details.

17

Chapter 6. Overview

The OGC API - Processes builds on the WPS 2.0 standard and is modularized, meaning that there is a
separation between

* Core requirements, that specify basic capabilities and can easily be mapped to existing OGC
Web Processing Services;

* More advanced functionality, that was not specified in WPS 2.0.

6.1. Encodings

This standard uses JSON as the encoding for requests and responses. The inputs and outputs of a
process can be any format. The formats of are defined at the time of job creation and are fixed for
the specific job.

Support for HTML is recommended as HTML is the core language of the World Wide Web. A server
that supports HTML will support browsing with a web browser and will enable search engines to
crawl and index the processes.

18

Chapter 7. Requirements Class "Core"

The following section describes the core requirements class.

7.1. Overview

Requirements Class
http://www.opengis.net/spec/ogcapi-processes-1/1.0/req/core
Target type Web API

Dependency API - Common Core

Dependency RFC 2616 (HTTP/1.1)

Dependency RFC 2818 (HTTP over TLS)

Dependency RFC 8288 (Web Linking)

A server that implements the OGC API - Processes provides access to processes.
Each OGC API - Processes has a single LandingPage (path /) that provides links to

 the APIDefinition (no fixed path),
* the Conformance statements (path /conformance),

* the processes metadata (path /processes).

The APIDefinition describes the capabilities of the server that can be used by clients to connect to
the server or by development tools to support the implementation of servers and clients. Accessing
the APIDefinition using HTTP GET returns a description of the APIL

Accessing Conformance using HTTP GET returns a list of URIs of requirements classes implemented
by the server.

The list of processes contains a summary of each process the OGC API - Processes offers, including
the link to a more detailed description of the process.

The process description contains information about inputs and outputs and a link to the execution-
endpoint for the process.

A HTTP POST request to the execution-endpoint creates a new job. The inputs and outputs need to
be passed in a JSON execute-request.

The URL for accessing status information is delivered in the HTTP header location.

After a process is finished (status = success/failed), the results/exceptions can be retrieved.

19

http://www.opengis.net/spec/ogcapi-processes-1/1.0/req/core
http://www.opengis.net/spec/ogcapi_common-1/1.0/req/core

cmp Core #

winterfaces sinterfacex

ainterfaces
APIDEfinition LandingPage

conformance

+conformance

+ conformanceCiaszes: URI [0..*]

“Ni

Togs
togs path = /conformance

-

path=/

HpnpLessEs 1

winterface»
ProcessCollection

togs

path = /processes

izMembercf

winterfaces
Process

togs
path = /processes/[process| D}

winterfaces winterfaces
Job Result
generates
tegs togs
path = fprocesses/{process| D)/ jobs,/ flobl 0} path = /processes f{process| D) jobs/ fob| D) results

Figure 1. Resources in the Core requirements class

The OGC API - Processes standard is build upon the OGC API-Common standard. Table 5 Identifies
the API-Common Requirements Classes which are applicable to each section of this standard.

Table 5. Mapping API - Processes Sections to API-Common Requirements Classes

API - Processes API-Common Requirements Class
Section

API Landing Page http://www.opengis.net/spec/ogcapi_common-1/1.0/req/core

API Definition http://www.opengis.net/spec/ogcapi_common-1/1.0/req/core
Declaration of http://www.opengis.net/spec/ogcapi_common-1/1.0/req/core
Conformance Classes

OpenAPI 3.0 http://www.opengis.net/spec/ogcapi_common-1/1.0/req/oas30
HTML http://www.opengis.net/spec/ogcapi_common-1/1.0/req/html

7.2. Retrieve the API landing page

The following section describes a method to retrieve an API landing page.

20

http://www.opengis.net/spec/ogcapi_common-1/1.0/req/core
http://www.opengis.net/spec/ogcapi_common-1/1.0/req/core
http://www.opengis.net/spec/ogcapi_common-1/1.0/req/core
http://www.opengis.net/spec/ogcapi_common-1/1.0/req/oas30
http://www.opengis.net/spec/ogcapi_common-1/1.0/req/html

7.2.1. Operation

Requirement 1 /req/core/landingpage-op
The server SHALL support the HTTP GET operation at the path
/.

7.2.2. Response

Requirement 2 /req/core/landingpage-success

A successful execution of the operation SHALL be reported as
aresponse with a HTTP status code 200. The content of that
response SHALL be based upon the OpenAPI 3.0 schema
landingPage.yaml and include at least links to the following
resources: * the API definition (relation type 'service-desc' or
'service-doc') * /conformance (relation type 'conformance’) *
/processes (relation type 'processes')

Schema for the landing page

type: object
required:
- links
properties:
title:
type: string
example: Example processing server
description:
type: string
example: Example server implementing the 0GC API - Processes 1.0
links:
type: array
items:
$ref: link.yaml

21

https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/landingPage.yaml
https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/landingPage.yaml

Example 1. Landing page response document

{
"links": [{
"href": "http://processing.example.org/oapi-p?f=application/json",
"rel": "self",
"type": "application/json",
"title": "This document”
A
"href": "http://processing.example.org/oapi-p?f=text/html",
"rel": "alternate",
"type": "text/html",
"title": "This document as HTML"
H
{
"href": "http://processing.example.org/oapi-p/api?f=application/json",
"rel": "service-desc",
"type": "application/json",
"title": "API definition for this endpoint as JSON"
I
{
"href": "http://processing.example.org/oapi-p/api?f=text/html",
"rel": "service-desc",
"type": "text/html",
"title": "API definition for this endpoint as HTML"
H
{
"href": "http://processing.example.org/oapi-p/conformance"”,
"rel": "conformance",
"type": "application/json",
"title": "0GC API - Processes conformance classes implemented by this
server"
H
{
"href": "http://processing.example.org/oapi-p/processes",
"rel": "processes",
"type": "application/json",
"title": "Metadata about the processes"
}H
}

7.2.3. Error situations

See HTTP status codes for general guidance.

7.3. Retrieve an API definition

The following section describes a method to retrieve an API definition.

22

7.3.1. Operation

Every OGC API - Processes provides an API definition that describes the capabilities of the server
and which can be used by developers to understand the API, by software clients to connect to the
server, or by development tools to support the implementation of servers and clients.

Requirement 3 /req/core/api-definition-op
The server SHALL support the HTTP GET operation at the path
/api.

7.3.2. Response

Requirement 4 /req/core/api-definition-success

A successful execution of the operation SHALL be reported as
aresponse with a HTTP status code 200. The server SHALL
return an API definition document.

Recommendation 1 /rec/core/api-definition-oas
If the API definition document uses the OpenAPI Specification
3.0, the document SHOULD conform to the OpenAPI
Specification 3.0 requirements class.

If multiple API definition formats are supported by a server, use content negotiation to select the
desired representation.

The API definition document describes the API. In other words, there is no need to include the /api
operation in the API definition itself.

The idea is that any OGC API - Processes can be used by developers that are familiar with the API
definition language(s) supported by the server. For example, if an OpenAPI definition is used, it
should be possible to create a working client using the OpenAPI definition. The developer may need
to learn a little bit about geospatial data types, etc., but it should not be required to read this
standard to access the processes and results via the APIL.

7.3.3. Error situations

See HTTP status codes for general guidance.

7.4. Declaration of conformance classes

7.4.1. Operation

To support "generic" clients for accessing Web Processing Services in general - and not "just" a
specific API / server, the server has to declare the requirements classes it implements and conforms
to.

23

Requirement 5 /req/core/conformance-op
The server SHALL support the HTTP GET operation at the path
/conformance.

7.4.2. Response

Requirement 6 /req/core/conformance-success
A successful execution of the operation SHALL be reported as
aresponse with a HTTP status code 200. The content of that
response SHALL be based upon the OpenAPI 3.0 schema req-
classes.yaml and list all OGC API - Processes requirements
classes that the server conforms to.

Schema for the list of requirements classes

type: object
required:
- conformsTo
properties:
conformsTo:
type: array
items:
type: string
example: "http://www.opengis.net/spec/ogcapi_processes/1.0/req/core"

Example 2. Requirements class response document

This example response in JSON is for a server that supports OpenAPI 3.0 for the API definition
and HTML and JSON as encodings.

{

"conformsTo": [
"http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/core",
"http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/json",
"http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/html",
"http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/0as30"

]

}

7.4.3. Error situations

See HTTP status codes for general guidance.

7.5. Use of HTTP 1.1

24

https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/req-classes.yaml
https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/req-classes.yaml
https://raw.githubusercontent.com/bpross-52n/wps-rest-oas/master/schemas/req-classes.yaml

Requirement 7 [req/core/http

The server SHALL conform to HTTP 1.1. If the server supports
HTTPS, the server SHALL also conform to HTTP over TLS.

7.5.1. HTTP status codes

Table 6 lists the main HTTP status codes that clients should be prepared to receive.

This includes, for example, support for specific security schemes or URI redirection.

In addition, other error situations may occur in the transport layer outside of the server.

Table 6. Typical HTTP status codes

Status code
200

201
400

401

403

404

405

406

410
429
500

Description
A successful request.
The request was successful and one or more new resources have being created.

The server cannot or will not process the request due to an apparent client error.
For example, a query parameter had an incorrect value.

The request requires user authentication. The response includes a WWW-Authenticate
header field containing a challenge applicable to the requested resource.

The server understood the request, but is refusing to fulfill it. While status code 401
indicates missing or bad authentication, status code 403 indicates that
authentication is not the issue, but the client is not authorized to perform the
requested operation on the resource.

The requested resource does not exist on the server. For example, a path parameter
had an incorrect value.

The request method is not supported. For example, a POST request was submitted,
but the resource only supports GET requests.

The Accept header submitted in the request did not support any of the media types
supported by the server for the requested resource.

The target resource is no longer available at the origin server.
The user has sent too many requests in a given amount of time ("rate limiting").

An internal error occurred in the server.

More specific guidance is provided for each resource, where applicable.

Permission 1

/per/core/additional-status-codes

Servers MAY support other capabilities of the HTTP protocol
and, therefore, MAY return other status codes than those
listed in Table 6, too.

25

7.6. Support for cross-origin requests

Access to content from a HTML page is by default prohibited for security reasons, if the content is
located on another host than the webpage ("same-origin policy"). A typical example is a web-
application accessing processes and data from multiple servers.

Recommendation 2 /rec/core/cross-origin
If the server is intended to be accessed from the browser,
cross-origin requests SHOULD be supported. Note that
support can also be added in a proxy layer on top of the
server.

Two common mechanisms to support cross-origin requests are:

* Cross-origin resource sharing (CORS)
* JSONP (JSON with padding)
Recommendation 3 /rec/core/html
To support browsing a WPS with a web browser and to enable

search engines to crawl and index a dataset, implementations
SHOULD consider to support an HTML encoding.

7.7. Retrieve a process list

The following section describes a method to retrieve the available processes offered by the server.

7.7.1. Operation

Requirement 8 /req/core/process-list
The server SHALL support the HTTP GET operation at the path
/processes.

7.7.2. Response

Requirement 9 /req/core/process-list-success

A successful execution of the operation SHALL be reported as
aresponse with a HTTP status code 200. The content of that
response SHALL be based upon the OpenAPI 3.0 schema
processList.yaml.

Schema for the process list
type: array

items:
$ref: "processSummary.yaml"

26

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://en.wikipedia.org/wiki/JSONP
https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/processList.yaml
https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/processList.yaml

Example of HTTP GET request for retrieving the list of offered processes encoded as JSON.

GET /processes HTTP/1.1
Host: processing.example.org

Example of Process list encoded as JSON.

[
{
"id": "EchoProcess",
"title": "EchoProcess",
"version": "1.0.0",
"jobControlOptions": ["async-execute", "sync-execute"],
"outputTransmission": ["value", "reference"],
"links": [
{
"href": "https://processing.example.org/processes/EchoProcess",
"type": "application/json",
"rel": "process-desc",
"title": "process description”
}
]
}
]

7.7.3. Error situations

See HTTP status codes for general guidance.

7.8. Retrieve a process description

The following section describes a method to retrieve metadata about a process.

7.8.1. Operation

Requirement 10 /req/core/process
The server SHALL support the HTTP GET operation at the path
/processes/{processID}.

7.8.2. Response
Requirement 11 /req/core/process-success
A A successful execution of the operation SHALL be reported as a

response with a HTTP status code 200.

B The content of the response SHALL be a process description.

The Core does not mandate the use of a specific process description to specify the interface of a
process. That said, the Core requirements class makes the following recommendation:

Recommendation 4 /rec/core/ogc-process-description
Implementations SHOULD consider supporting the OGC
process description.

7.8.3. Error situations

See HTTP status codes for general guidance.

Requirement 12 /req/core/process-exception/no-such-process
If the operation is executed using an invalid process
identifier, the response shall have HTTP status code 404. The
content of that response SHALL be based upon the OpenAPI
3.0 schema exception.yaml. The exception code of the
exception shall be "NoSuchProcess".

7.9. Create a new job

The following section describes a method to create a new job, i.e. execute a process.

7.9.1. Operation
Requirement 13 /req/core/job-creation-op

The server SHALL support the HTTP POST operation at the
path /processes/{processID}/jobs.

7.9.2. Request body

Requirement 14 /req/core/job-creation-request
The content of a request to create a new job SHALL be based
upon the OpenAPI 3.0 schema execute.yaml.

28

https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/exception.yaml
https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/execute.yaml

Schema for execute

type: object
required:
- outputs
- mode
- response
properties:
inputs:
type: array
items:
$ref: "input.yaml"
outputs:
type: array
items:
$ref: "output.yaml"
mode:
type: string
enum:
- sync
- async
- auto
response:
type: string
enum:
- raw
- document
subscriber:
$ref: "subscriber.yaml"

The creation of a job can be done synchronously or asynchronously.
Requirement 15 /req/core/job-creation-mode

A To create a job asynchronously, the "mode" attribute of the
execute request body SHALL be set to "async".

B To create a job synchronously, the "mode" attribute of the execute
request body SHALL be set to "sync".

C To let the server decide the execution mode, the "mode" attribute
of the execute request body SHALL be set to "auto".

29

https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/execute.yaml

Example of an execute request

{
"inputs": [{
"id": "complexInput",
"input": {
"format": {
"mimeType": "application/xml"
+
"value": {
"inlineValue": "<test/>"
}
}
}
{
"id": "literallnput",
"input": {
"dataType": {
"name": "double"
H
"value": "0.05"
}
}
{
"id": "boundingboxInput",
"input": {
"bbox": [51.9, 7, 52, 7.1],
"ers": "EPSG:4326"
}
H,
"outputs": [{
"id": "literalOutput",
"transmissionMode": "value"
}
{
"id": "boundingboxQutput",
"transmissionMode": "value"
}
{
"id": "complexOutput",
"format": {
"mimeType": "application/xml"
H
"transmissionMode": "value"
H,
"response": "document",
"mode": "async"
}

30

7.9.3. Response

In case of asynchronous execution, the requirements below apply:

Requirement 16 /req/core/job-creation-success-async
A successful execution of the operation SHALL be reported as
aresponse with a HTTP status code 201.

Requirement 17 /req/core/job-creation-success-header-async
The 201 response of the operation SHALL return a HTTP
header named 'Location' which contains a link to the newly
created job.

For synchronous execution, the following requirement applies:

Requirement 18 /req/core/job-creation-success-sync

A A successful execution of the operation SHALL be reported as a
response with a HTTP status code 200.

B If the "response" attribute of the execute request was set to
"document"”, the content of the response SHALL be based upon
the OpenAPI 3.0 schema results.yaml

C If the "response" attribute of the execute request was set to "raw",
the content of the response SHALL only include the one output
selected by the execute request body.

7.9.4. Error situations

See HTTP status codes for general guidance.

If the process with the specified identifier doesn’t exist on the server, the status code of the
response will be 404 (see [req_core_no-such-process]).

7.10. Retrieve status information about a job

The following section describes a method to retrieve information about the status of a job.

7.10.1. Operation

Requirement 19 /req/core/job
The server SHALL support the HTTP GET operation at the path
/processes/{processID}/jobs/{jobID}.

31

https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/results.yaml

7.10.2. Response

Requirement 20 /req/core/job-success
A successful execution of the operation SHALL be reported as
aresponse with a HTTP status code 200. The content of that
response SHALL be based upon the OpenAPI 3.0 schema
statusInfo.yaml.

Schema for status info

type: object

required:
- jobID
- status
properties:
jobID:
type: string
status:
type: string
enum:
- accepted
- running
- successful
- failed
- dismissed
message:
type: string
progress:
type: integer
minimum: 0
maximum: 100
links:
type: array
items:

$ref: "link.yaml"

Example of HTTP GET request for retrieving status information about a job encoded as JSON.

GET /processes/EchoProcess/jobs/81574318-1eb1-4d7c-afb61-4b3fbcf33c4f HTTP/1.1
Host: processing.example.org

32

https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/statusInfo.yaml
https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/statusInfo.yaml

Example of a job encoded as JSON.

{
"jobID" : "81574318-1eb1-4d7c-af61-4b3fbcf33c4f",

"status": "accepted",
"message": "Process started",
"progress": 0,
"links": [
{
"href": "http://processing.example.org/processes/EchoProcess/jobs/81574318-1eb1-
4d7c-af61-4b3fbcf33c4f",
"rel": "self",
"type": "application/json",
"title": "this document”

}
]
}

7.10.3. Error situations
See HTTP status codes for general guidance.

If the process with the specified identifier doesn’t exist on the server, the status code of the
response will be 404 (see [req_core_no-such-process]).

Requirement 21 /req/core/job-exception-no-such-job
If the operation is executed using an invalid job identifier, the
response shall have HTTP status code 404. The content of that
response SHALL be based upon the OpenAPI 3.0 schema
exception.yaml. The exception code of the exception shall be
"NoSuchjob".

7.11. Retrieve job results

The following section describes a method to retrieve the results of a job. In case the job execution
failed, an exception is returned.

7.11.1. Operation

Requirement 22 /req/core/job-result
The server SHALL support the HTTP GET operation at the path
/processes/{processID}/jobs/{jobID}/results.

7.11.2. Response

33

https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/exception.yaml

Requirement 23 /req/core/job-result-success
A successful execution of the operation SHALL be reported as
aresponse with a HTTP status code 200. The content of that
response SHALL be based upon the OpenAPI 3.0 schema
result.yaml.

Schema for the result of a job

type: array
items:
$ref: "outputInfo.yaml"

Schema for output info

type: object
required:
- id
- value
properties:
id:
type: string
value:
$ref: "valueType.yaml"

Example of HTTP GET request for retrieving the result a job encoded as JSON.

GET /processes/EchoProcess/jobs/81574318-1eb1-4d7c-af61-4b3fbcf33c4f/result HTTP/1.1
Host: processing.example.org

34

https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/result.yaml
https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/result.yaml
https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/outputInfo.yaml

Example of a result encoded as JSON.

[
{
"id": "literalOutput",
"value": {
"inlineValue": 0.05
}
}
{
"id": "boundingboxQutput",
"value": {
"inlineValue": {
"bbox": [51.9, 7, 52, 7.1],
"ers": "EPSG:4326"
}
}
}
{
"id": "complexOutput",
"value": {
"inlineValue": "<test/>"
}
}
]

7.11.3. Error situations

See HTTP status codes for general guidance.

If the process with the specified id doesn’t exist on the server, the status code of the response will
be 404 (see [req_core_no-such-process]).

Requirement 24 /req/core/job-result-exception/no-such-job
If the operation is executed using an invalid job identifier, the
response shall have HTTP status code 404. The content of that
response SHALL be based upon the OpenAPI 3.0 schema
exception.yaml. The exception code of the exception shall be
"NoSuchjob".

Requirement 25 /req/core/job-result-exception/result-not-ready
If the operation is executed on a running job with a valid job
identifier, the response shall have HTTP status code 404. The
content of that response SHALL be based upon the OpenAPI
3.0 schema exception.yaml. The exception code of the
exception shall be "ResultNotReady".

35

https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/exception.yaml
https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/exception.yaml

Requirement 26

36

/req/core/job-result-failed

If the operation is executed on a failed job using a valid job
identifier, the response shall have a HTTP error code that
corresponds to the reason of the failure. The content of that
response SHALL be based upon the OpenAPI 3.0 schema
exception.yaml. The exception code shall correspond to the
reason of the failure, e.g. InvalidParameterValue for invalid
input data.

https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/exception.yaml

Chapter 8. Requirements Class "OGC Process
Description”

The following section describes the 0GC Process Description requirements class.

8.1. Overview

Requirements Class
http://www.opengis.net/spec/ogcapi-processes-1/1.0/req/ogc-process-description
Target type Web API

Dependency OGC API - Processes Core

Dependency JSON

The OGC process description is an information model that may be used to specify the interface of a
process. This model is an evolution of the process description model originally defined in the OGC
WPS 2.0.2 Interface Standard and as such provides a bridge from legacy implementations into the
OGC API Framework.

The process description allows the following information to be specified:

* An identifier for the process
* Descriptive metadata about the process;
o a title
o a narrative description of the process
- keywords that can be associated with the process

o references to additional metadata

A description of each process input

A description of each process output

* A job control specification that indicates whether the process can be invoked synchronously,
asynchronously, or either.

* An output transmission specification that indicates how the results of a process are retrieved;
either by value or by reference

* A section for additional parameters that are intended for communities of use to extend the
process description as required

This clause defines a JSON-encoding of the OGC process description.

8.2. OGC process description

37

http://www.opengis.net/spec/ogcapi-processes-1/1.0/req/ogc-process-description
http://docs.opengeospatial.org/is/14-065/14-065.html
http://docs.opengeospatial.org/is/14-065/14-065.html

Requirement 27 /req/ogc-process-description/json-encoding
A JSON-encoded OGC process description shall validate
against the OpenAPI 3.0 schema: process.yaml.

Schema for a process (process.yaml)

allof:

- $ref: "processSummary.yaml"
- type: object

properties:
inputs:
type: array
items:
$ref: "inputDescription.yaml”
outputs:
type: array
items:
$ref: "outputDescription.yaml”
links:
type: array
items:

$ref: "link.yaml"

Example of HTTP GET request for retrieving the list of offered processes encoded as JSON.

https://processing.example.org/processes/EchoProcess

Example of a process encoded as JSON.

{
"jd": "EchoProcess",
"title": "EchoProcess",
"version": "1.0.0",
"jobControlOptions": ["async-execute", "sync-execute"],
"outputTransmission": ["value", "reference"],
"inputs": [{
"id": "boundingboxInput",
"title": "boundingboxInput",
"input": {
"supportedCRS": [{
"default": true,
"ers": "EPSG:4326"
}]
H
"minOccurs": 1,
"max0ccurs": 1

"id": "literallnput",

38

https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/process.yaml
https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/process.yaml

"title": "literallnput",
"input": {
"1iteralDataDomain": {
"dataType": {
"name": "double"
}
"valueDefinition": {
"anyValue": true
}
}
H
"minOccurs": 1,
"max0ccurs": 1

"id": "complexInput",
"title": "complexInput",
"input": {
"formats": [{
"default": true,
"mimeType": "application/xml"
H
{
"mimeType": "application/xml"
H
{
"mimeType": "text/xml"
}
H
"minOccurs": 1,
"max0ccurs": 1
H,
"outputs": [{
"id": "boundingboxQutput",
"title": "boundingboxOutput",
"output": {
"supportedCRS": [{
"default": true,
"ers": "EPSG:4326"
}

"id": "literalOutput",
"title": "literalOutput",
"output": {
"literalDataDomain": {
"dataType": {
"name": "double"
}

"valueDefinition": {

39

40

"anyValue": true

}
}
}
I
{
"id": "complexOutput",
"title": "complexOutput",
"output": {
"formats": [{
"default": true,
"mimeType": "application/xml"
H
{
"mimeType": "application/xml"
I
{
"mimeType": "text/xml"
}
}
H,
"links": [
{
"href": "https://processing.example.org/processes/EchoProcess/jobs",
"rel": "execute",
"title": "Execute endpoint”
}
]

Chapter 9. Security Considerations

The OGC API - Processes specifies a Web API that enables the execution of computing processes, the
retrieval of metadata describing their purpose and functionality and the retrieval of the results of
the process execution. The API makes use of different HTTP methods, namely GET, POST and
DELETE. (Note that future extensions could introduce additional HTTP methods.)

HTTP methods can be classified as

» Safe, meaning that they do not alter the state of (a resource on) the server, and

* Idempotent, meaning that can be executed an indefinite number of times and deliver the same
result.

Table 7 gives an overview of the classification of HTTP the methods used in this standard:

Table 7. Classification of HTTP methods

HTTP Method Safe Idempotent
GET yes yes

POST no no

DELETE no yes

Source RFC 7231, Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content

The following resources can be retrieved using the safe HTTP GET method and can contain sensible
information:

Requirements class "Core":

* Process list
* Process description
* Job status info

* Job result
Requirements class "Job list"
* Job list

The following API operations use unsafe HTTP methods, modify resources and therefore require
special attention:

Requirements class "Core":
« Execute, HTTP POST
Requirements class "Dismiss"

* Dismiss, HTTP DELETE

41

9.1. Operations using HTTP GET

Most of the operations defined in this standard are use the safe HTTP GET method. However, the
resources that are returned by these operations contain information that could be used to exploit
the APIL Table 8 gives an overview of the resources specified in this standard and what kind of
information they contain.

Table 8. Requirements class 'Core’ - Overview of core operations and returned sensitive information

Resource
Landing page
Conformance
classes
Process list
Process
description

Job status info

Job results

Path HTTP
method
/ GET
/conformance GET
/processes GET
/processes/{processID} GET

/processes/{processID}/jobs GET
/{jobID}

/processes/{processID}/jobs GET
/{jobID}/results

The resources and contained information in more detail:

Information delivered

General information about the service,
links to API endpoints

List of conformance classes

Process identifiers, links to process
descriptions

Information about a process, e.g.
inputs/outputs

Status info, links to results or
exceptions

Job results

The landing page contains links to the API endpoints and so leads to all other resources the API
offers.

The list of conformance classes could contain information about extensions like "dismiss" that
pose additional security issues.

The process list contains process identifiers and links to the respective process descriptions.

The process description contains all necessary information needed to execute a process. This
information can be used to send an JSON execute request to the API that will pass initial sanity
checks, for example checks for the correct input/output identifiers. If this barrier is taken by an
attacker, issues as discussed in section Execute operation can occur.

The job status info contains not only status information, but for finished processes also links to
results / exceptions. The results of a process execution are a valuable resource as well as the
exceptions that could contain hints about why the execution has failed.

Table 9. Requirements class '[ob List' - Overview of operations and returned sensitive information

Resource Path HTTP Information delivered
method
Job list /processes/{processID}/jobs GET List of job ids and status info, links to

results or exceptions

The retrieval of the job list of a process returns the job ids and links to the respective job status.

9.2. Execute operation

The execute operation uses HTTP POST to create new processing jobs (process executions). As
discussed above, the HTTP POST method is not safe and it poses the following threats if misused:

» The processing can use up considerable server resources, for example computing time, network
traffic (When accessing referenced inputs) or storage space for inputs and outputs.

» Malicious inputs can be provided. Either inline in the execute request JSON or referenced.

Table 10. Requirements class 'Core’ - Overview of the execute operation and returned sensitive information

Resource Path HTTP Information delivered
method
Job status info /processes/{processID}/jobs PpQST Job id, status info, (links to) results or
exceptions

The ids that are used for new jobs and that are returned in the status info document should be
created in a non-guessable way, for example using UUIDs. This will prevent random attempts to get
job status information, results / exceptions or even cancel jobs / delete job artifacts.

9.3. Dismiss operation

The optional dismiss extension uses the HTTP DELETE method and can be used to

 cancel a running job, and

* remove artifacts of a finished job.

Both usages pose security related issues. The cancellation of a running job (if not done on purpose)
is wasting the resources that the job has used until it was canceled. The same goes for the unwanted
removal of artifacts of a finished job. If the dismiss extension is implemented, access control for the
operation should be considered. The dismiss operation is idempotent, as it is specified by this
standard to be called using a specific job identifier. The first dismiss request to that identifier will
result in a HTTP 200 (OK) status code. Continued dismiss requests using the same identifier result in
a HTTP 410 (Gone) error code, but nothing else is changed on the server. A successful dismiss
request returns a status info document containing the job identifier and the status "dismissed". This
status info document has no further security implications.

43

Chapter 10. Requirements classes for
encodings

10.1. Overview

This clause specifies two pre-defined requirements classes for encodings to be used with the OGC
API Processes.

* JSON

* HTML

The JSON encoding is mandatory.

The Core requirements class includes recommendations to support HTML and JSON as encodings,
where practical.

10.2. Requirement Class "JSON"

This section defines the requirements class JSON.

Requirements Class
http://www.opengis.net/spec/ogcapi-processes-1/1.0/req/json
Target type Web API

Dependency OGC API - Processes Core

Dependency JSON

Requirement 28 /req/json/definition
200-responses of the server SHALL support the following
media type: * application/json

10.3. Requirement Class "HTML"

This section defines the requirements class HTML.

Requirements Class
http://www.opengis.net/spec/ogcapi-processes-1/1.0/req/html
Target type Web API

Dependency OGC API - Processes Core

Dependency API - Common HTML

Dependency HTMLS5

44

http://www.opengis.net/spec/ogcapi-processes-1/1.0/req/json
http://www.opengis.net/spec/ogcapi-processes-1/1.0/req/html
http://www.opengis.net/spec/ogcapi_common/1.0/req/html

Requirement 29

Requirement 30

/req/html/definition
Every 200-response of an operation of the server SHALL
support the media type text/html.

/req//html/content

Every 200-response of the server with the media type
"text/html" SHALL be a HTML 5 document that includes the
following information in the HTML body: * all information
identified in the schemas of the Response Object in the HTML
<body/>, and * all links in HTML <a/> elements in the HTML
<body/>.

45

https://www.w3.org/TR/html5/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#responseObject

Chapter 11. Requirements Class "OpenAPI

3.0"

11.1. Basic requirements

APIs conforming to this requirements class are documented as an OpenAPI Document.

Requirements Class

http://www.opengis.net/spec/ogcapi-processes-1/1.0/req/oas30

Target type Web service

Dependency OGC API - Processes 1.0 Core

Dependency API - Common OpenAPI 3.0

Dependency OpenAPI Specification 3.0.1

Requirement 31

A

Requirement 32

Requirement 33

/req/oas30/oas-definition-1

An OpenAPI definition in JSON wusing the media type
application/vnd.oai.openapi+json;version=3.0 and a HTML
version of the API definition using the media type text/html
SHALL be available.

/req/oas30/oas-definition-2
The JSON representation SHALL conform to the OpenAPI
Specification, version 3.0.

/req/oas30/oas-impl
The server SHALL implement all capabilities specified in the
OpenAPI definition.

11.2. Complete definition

Requirement 34

/req/oas30/completeness

The OpenAPI definition SHALL specify for each operation all
HTTP Status Codes and Response Objects that the server uses
in responses. This includes the successful execution of an
operation as well as all error situations that originate from
the server.

Note that APIs that, for example, are access-controlled (see Security), support web cache validation,
CORS or that use HTTP redirection will make use of additional HTTP status codes beyond regular
codes such as 200 for successful GET requests and 400, 404 or 500 for error situations. See HTTP

status codes.

46

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#oasDocument
http://www.opengis.net/spec/ogcapi-processes-1/1.0/req/oas30
http://www.opengis.net/spec/ogcapi_common-1/1.0/req/oas30
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#httpCodes
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#responseObject

Clients have to be prepared to receive responses not documented in the OpenAPI definition. For
example, additional errors may occur in the transport layer outside of the server.

11.3. Exceptions

Requirement 35 /req/oas30/exceptions-codes
For error situations that originate from the server, the API
definition SHALL cover all applicable HTTP Status Codes.

Example 3. An exception response object definition

description: An error occurred.
content:
application/json:
schema:
$ref:
https://raw.githubusercontent.com/opengeospatial/0API/openapi/schemas/exception.ya
ml
text/html:
schema:
type: string

11.4. Security

Requirement 36 /req/oas30/security
For cases, where the operations of the server are access-
controlled, the security scheme(s) SHALL be documented in
the OpenAPI definition.

The OpenAPI specification currently supports the following security schemes:

HTTP authentication,

an API key (either as a header or as a query parameter),

OAuth2’s common flows (implicit, password, application and access code) as defined in
RFC6749, and

OpenlID Connect Discovery.

47

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#security-scheme-object

Chapter 12. Requirements Class "Job list"
This requirement class specifies how to retrieve a job list from the API.

Requirements Class
http://www.opengis.net/spec/ogcapi-processes-1/1.0/req/job-list
Target type Web API

Dependency OGC API - Processes Core

12.1. Operation

Requirement 37 /req/job-list/job-list-op
The server SHALL support the HTTP GET operation at the path
/processes/{processID}/jabs.

12.2. Response

Requirement 38 /req/job-list/job-list-success
A successful execution of the operation SHALL be reported as
aresponse with a HTTP status code 200. The content of that
response SHALL be based upon the OpenAPI 3.0 schema
jobList.yaml.

Schema for the job list

type: array
items:
$ref: "jobInfo.yaml"

Example of HTTP GET request for retrieving the list of jobs of a process encoded as JSON.

http://processing.example.org/processes/EchoProcess/jobs

Example of a job list encoded as JSON.

[

"jobID": "8ca109b4-3b86-439c-a284-36d50f91019e",
"status": "running",
"message": "Perform step 1/2",
"progress": 50,
"links": [
{
"href":
"http://processing.example.org/processes/EchoProcess/jobs/8cal09b4-3b86-4a9c-a284-

48

http://www.opengis.net/spec/ogcapi-processes-1/1.0/req/job-list
https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/jobList.yaml
https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/jobList.yaml

a6d50f91019e",
"rel": "status",
"type": "application/json",

"hreflang": "en",
"title": "Job status"

"id": "0cf773a5-282a-4e23-96cc-f5dab18123e5",
"infos": {
"jobID": "@cf773a5-2823a-4e23-96cc-f5dab18123e5",
"status": "successful",
"message"”: "EchoProcess job finished successful”,
"progress": 100,
"Links": [
{

"href":
"http://processing.example.org/processes/EchoProcess/jobs/@cf773a5-282a-4e23-96c¢c-
f5dab18123e5",

"rel": "status",

"type": "application/json",

"hreflang": "en",

"title": "Job status"

b
{

"href":
"http://processing.example.org/processes/EchoProcess/jobs/@cf773a5-282a-4e23-96c¢c-
f5dab18123e5/results”,

"rel": "results",

"type": "application/json",

"hreflang": "en",

"title": "Job result"

"id": "63aadd9c-c0eb-4a7f-80f0-228dbb158f09",
"infos": {

"jobID": "63aadd9c-c@e5-4a7f-80f0-228dbb158f09",

"status": "failed",

"message": "EchoProcess job failed",

"progress": 100,

"Links": [

{

"href":
"http://processing.example.org/processes/EchoProcess/jobs/63aadd9c-cOe5-4a7f-800-
228dbb158f09",

"rel": "status",

"type": "application/json",

49

"hreflang": "en",
"title": "Job status"

b

{

"href":
"http://processing.example.org/processes/EchoProcess/jobs/63aadd9c-c@e5-4a7f-800-
228dbb158f09/results",

"rel": "exceptions",

"type": "application/json",

"hreflang": "en",

"title": "Job exception”

12.3. Error situations

See HTTP status codes for general guidance.

If the process with the specified identifier doesn’t exist on the server, the status code of the
response will be 404 (see [req_core_no-such-process]).

50

Chapter 13. Requirements Class "Callback"

This conformance class specifies a callback mechanism for completed jobs. In contrast to the pull-
based mechanism specified in Create a new job and Retrieve status information about a job, this
conformance class specifies a push-based mechanism, where a subscriber-URL is passed to the API
in the execute request. After the job is completed, the result response is sent to the specified URL.

Requirements Class
http://www.opengis.net/spec/ogcapi-processes-1/1.0/req/callback
Target type Web API

Dependency OGC API - Processes Core

Requirement 39 /req/callback/job-callback
The server SHALL support callback functions for jobs.

Example for a callback in the execute operation

callbacks:
jobCompleted:
"{$request.body#/subscriber/successUri}"':
post:
requestBody:
content:
application/json:
schema:
$ref: "#/components/schemas/result’
responses:
'202":
description: Results received successfully

If the server implements this conformance class, the optional subscriber element of the execute
request JSON must be used.

It is possible to add multiple callbacks for getting progress updates and notifications of a successful
job completion or of a failure.

Further guidance about how to use callbacks can be found in the OpenAPI documentation.

31

http://www.opengis.net/spec/ogcapi-processes-1/1.0/req/callback
https://swagger.io/docs/specification/callbacks/

Chapter 14. Requirements Class "Dismiss"

This requirement class specifies how to dismiss a job. Dismiss can be seen as canceling a running
job or removing artifacts of a finished job.

Requirements Class
http://www.opengis.net/spec/ogcapi-processes-1/1.0/req/dismiss
Target type Web API

Dependency OGC API - Processes Core

14.1. Operation

Requirement 40 [req/dismiss/job-dismiss-op
The server SHALL support the HTTP DELETE operation at the
path /processes/{processID}/jobs/{jobID}.

14.2. Response

Requirement 41 /req/dismiss/job-dismiss-success
A successful execution of the operation SHALL be reported as
aresponse with a HTTP status code 200. The content of that
response SHALL be based upon the OpenAPI 3.0 schema
statusInfo.yaml. The status SHALL be set to "dismissed".

Example of a dismissed job encoded as JSON.

{
"jobID" : "81574318-1eb1-4d7c-af61-4b3fbcf33c4f",
"status": "dismissed",
"message": "Job dismissed”,
"progress": 56,

"links": [
{
"href": "http://processing.example.org/processes/EchoProcess/jobs",
llre'lll: "Up",

"type": "application/json",
"title": "The job list for the current process"

14.3. Error situations

See HTTP status codes for general guidance.

32

http://www.opengis.net/spec/ogcapi-processes-1/1.0/req/dismiss
https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/statusInfo.yaml

If the process with the specified identifier doesn’t exist on the server, the status code of the
response will be 404 (see [req_core_no-such-process]).

If the job with the specified identifier doesn’t exist, the status code of the response will be 404 (see
[req_core_job-exception-no-such-job]).

33

Chapter 15. Media Types

JSON media types that would typically be used in a server that supports JSON are:
* application/json for all resources.

The typical HTML media type for all "web pages" in a server would be:
* text/html.

The media type for an OpenAPI 3.0 definition is application/vnd.oai.openapi+json;version=3.0
(JSON) or . application/vnd.oai.openapi;version=3.0 (YAML).

The OpenAPI media types have not been registered yet with IANA and can change

NOTE
in the future.

54

Chapter 16. Additional API Building Blocks

The core requirements classes of this standard are designed for the following workflow:

1. Access the list of available processes
2. Access the description of a specific process
3. Create an execute JSON request (based on the description) and send it to the server via POST

4, Process the status info and/or results

This workflow is useful for generic client that are implemented against the JSON schemas and paths
specified in this standard. Generic clients can communicate with any server implementing the OGC
API - Processes. However, here may be limitations regarding the handling of input and output
formats.

The approach describe above requires implementers of clients to have knowledge about the
standard.

An alternative that could make it easier for implementers that are not familiar with OGC (API)
standards is permitting deviations from strictly following the schemas and paths specified in this
standard.

Permission 2 /per/core/alternative-process-description
Servers MAY support alternative means of describing the
inputs and outputs of a process.

This permission allows server implementations to describe a process, such as by defining the
request and response body of a POST request to a process endpoint.

Permission 3 /per/core/alternative-process-paths
Servers MAY support alternative API paths.

This permission allows server implementations to specify alternative paths to processes and jobs.

An example of an OpenAPI document making use of the building blocks is shown in the following:

openapi: 3.0.2
info:
title: Alternative 0GC API - Processes
description: This is an alternative 0GC API - Processes
contact:
email: you@your-company.com
license:
name: Apache 2.0
url: http://www.apache.org/licenses/LICENSE-2.0.html
version: 1.0.0
paths:
/buffer:
post:

55

36

summary: execute buffer process
operationld: executeBuffer
requestBody:
description: buffer inputs
content:
application/json:
schema:
$ref: '#/components/schemas/bufferExecute’
responses:
"200":
description: buffer created
content:
application/json:
schema:
$ref: '#/components/schemas/bufferResult’
"400":
description: invalid input
components:
schemas:
bufferExecute:
required:
- data
- width
type: object
properties:
data:
maxItems: 10
minItems: 1
type: array
description: this is possible to provide the abstract in here
items:
oneOf:
- type: string
format: application/geo+json
- type: string
format: application/gml+xml
width:
maximum: 100
minimum: 1
type: integer
default: 20
bufferResult:
type: object
properties:
outputs:
type: array
items:
oneOf:
- type: string
format: application/geo+json
- type: string

format: application/gml+xml

The goals of these additional API building blocks are:

* enabling an more seamless integration of this API with other OGC API standards and

» enabling the use of tools to auto-generate clients from the API description.

57

Annex A: Abstract Test Suite (Normative)

A.1. Introduction

OGC Web APIs are not a Web Services in the traditional sense. Rather, they define the behavior and
content of a set of Resources exposed through a Web Application Programing Interface (Web API).
Therefore, an API may expose resources in addition to those defined by the standard. A test engine
must be able to traverse the API, identify and validate test points, and ignore resource paths which
are not to be tested.

A.2. Conformance Class Core

Conformance Class
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/core
Target type Web API

Requirements Requirements Class "Core"
class

A.2.1. Landing Page /

Abstract Test1 /conf/core/landingpage-op

Test Purpose Validate that a landing page can be retrieved from the expected
location.

Requirement /req/core/landingpage-op

Test Method 1. Issue an HTTP GET request to the root URL /

2. Validate the contents of the returned document using test
/conf/core/landingpage-success.

Abstract Test2 /conf/core/landingpage-success

Test Purpose Validate that the landing page complies with the require structure
and contents.

Requirement /req/core/landingpage-success

38

http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/core

Test Method 1. Validate that a document was returned with an HTTP status
code or 200.

2. Validate the landing page for all supported media types using
the resources and tests identified in Schema and Tests for
Landing Pages

3. For formats that require manual inspection, perform the
following:

a. Validate that the landing page includes a "service-desc"
and/or "service-doc" link to an API Definition.

b. Validate that the landing page includes a "conformance"
link to the conformance class declaration.

c. Validate that the landing page includes a "data" link to the
Feature contents.

The landing page may be retrieved in a number of different formats. The following table identifies
the applicable schema document for each format and the test to be used to validate the landing
page against that schema. All supported formats should be exercised.

Table 11. Schema and Tests for Landing Pages

Format Schema Document Test ID
HTML landingPage.yaml /conf/html/content
JSON landingPage.yaml /conf/geojson/content

A.2.2. API Definition /api

Abstract Test3 /conf/core/api-definition-op

Test Purpose Validate that the API Definition document can be retrieved from
the expected location.

Requirement /req/core/api-definition-op
Test Method 1. Construct a path for the API Definition document that ends
with /api.

2. Issue a HTTP GET request on that path

3. Validate the contents of the returned document using test
/conf/core/api-definition-success.

Abstract Test4 /conf/core/api-definition-success

39

http://schemas.opengis.net/ogcapi/processes/part1/1.0/openapi/schemas/landingPage.yaml
http://schemas.opengis.net/ogcapi/processes/part1/1.0/openapi/schemas/landingPage.yaml

Test Purpose

Requirement

Test Method

Validate that the API Definition complies with the required
structure and contents.

/req/core/api-definition-success

1. Validate that a document was returned with a status code 200

2. Validate the API Definition document against an appropriate
schema document.

A.2.3. Conformance Path /conformance

Abstract Test 5

Test Purpose

Requirement

Test Method

Abstract Test 6

Test Purpose

Requirement

Test Method

60

/conf/core/conformance-op

Validate that a Conformance Declaration can be retrieved from
the expected location.

/req/core/conformance-op

1. Construct a path for each "conformance" link on the landing
page as well as for the {root}/conformance path.

2. Issue an HTTP GET request on each path

3. Validate the contents of the returned document using test
/conf/core/conformance-success.

/conf/core/conformance-success

Validate that the Conformance Declaration response complies
with the required structure and contents.

/req/core/conformance-success

1. Validate that a document was returned with an HTTP status
code of 200.

2. Validate the response document against OpenAPI 3.0 schema
link: confClasses.yaml

3. Validate that the document includes the conformance class
"http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/core"

4, Validate that the document list all OGC API conformance
classes that the API implements.

http://schemas.opengis.net/ogcapi/processes/part1/1.0/openapi/schemas/confClasses.yaml

A2.4.HTTP 1.1

Abstract Test 7

Test Purpose

Requirement

Test Method

/conf/core/http

Validate that the resource paths advertised through the API
conform with HTTP 1.1 and, where appropriate, TLS.

/req/core/http

1. All compliance tests shall be configured to use the HTTP 1.1
protocol exclusively.

2. For APIs which support HTTPS, all compliance tests shall be
configured to use HTTP over TLS (RFC 2818) with their HTTP
1.1 protocol.

A.2.5. Processes /processes

A.2.5.1. Process collection

Abstract Test 8

Test Purpose

Requirement

Test Method

Abstract Test 9

Test Purpose

Requirement

Test Method

/conf/core/process-collection

Validate that information about the processes can be retrieved
from the expected location.

/req/core/process-collection

1. Issue an HTTP GET request to the URL {root}/processes

2. Validate the contents of the returned document using test
/req/core/process-collection-success.

/conf/core/process-collection-success

Validate that the process collection content complies with the
required structure and contents.

/req/core/process-collection-success

1. Validate that a document was returned with an HTTP status
code of 200.

2. Validate the process collection content for all supported media
types using the resources and tests identified in Schema and
Tests for Collections content

61

The process collection may be retrieved in a number of different formats. The following table
identifies the applicable schema document for each format and the test to be used to validate the
against that schema. All supported formats should be exercised.

Table 12. Schema and Tests for Collections content

Format Schema Document Test ID
HTML processCollection.yaml /conf/html/content
JSON processCollection.yaml /conf/json/content

A.2.5.2. Process description /processes/{processID}

Abstract Test 10 /conf/core/process

Test Purpose Validate that a process description can be retrieved from the
expected location.

Requirement /req/core/process

Test Method For every Process described in the process collection content,

issue an HTTP GET request to the URL /processes/{processID}
where {processID} is the id property for the process. . Validate the
response using the test /req/core/process-success.

Abstract Test 11 /conf/core/process-success

Test Purpose Validate that the content complies with the required structure
and contents.

Requirement /req/core/process-success
Test Method 1. Validate that a document was returned with an HTTP status
code of 200.

2. Verify that the content of the response is valid description of
the interface of the process for all supported process
description models.

The interface of a process may be describing using a number of different models or process
description languages. The following table identifies the applicable schema document for each
process description model described in this standard.

Table 13. Schema and Tests for Process Description Models

62

http://schemas.opengis.net/ogcapi/processes/part1/1.0/openapi/schemas/processCollection.yaml
http://schemas.opengis.net/ogcapi/processes/part1/1.0/openapi/schemas/processCollection.yaml

Model Schema Document Test ID

OGC Process Description process.yaml /req/ogc-process-
JSON description/json-encoding

A.2.5.3. Process exception

Abstract Test 12 /conf/core/process-exception-no-such-process

Test Purpose Validate that an invalid process identifier is handled correctly.

Requirement /req/core/process-exception-no-such-process

Test Method 1. Issue an HTTP GET request to a URL that includes the
{processID} as a path element using a non-existent process
identifier.

2. Validate that the document was returned with a 404.

3. Validate that the document contains the exception code
"NoSuchProcess".

4. Validate the document for all supported media types using the
resources and tests identified in Schema and Tests for Non-
existent Process

An exception response caused by the use of an invalid process identifier may be retrieved in a
number of different formats. The following table identifies the applicable schema document for
each format and the test to be used to validate the response. All supported formats should be
exercised.

Table 14. Schema and Tests for Non-existent Process

Format Schema Document Test ID

HTML exception.yaml /conf/html/content
JSON exception.yaml /conf/json/content
A.2.6. Jobs

A.2.6.1. Job creation /processes/{processID}/jobs

Abstract Test 13 /conf/core/job-creation-op

Test Purpose Validate the creation of a new job.

Requirement /req/core/job-creation-op

63

http://schemas.opengis.net/ogcapi/features/part1/1.0/openapi/schemas/process.yaml
http://schemas.opengis.net/ogcapi/processes/part1/1.0/openapi/schemas/exception.yaml
http://schemas.opengis.net/ogcapi/processes/part1/1.0/openapi/schemas/exception.yaml

Test Method 1. Issue an HTTP POST request to the URL
'/processes/{processID}/jobs' for each execution mode
according to the test [ats_core_job-creation-mode].

2. Validate the contents of the POST request using the test
/req/core/job-creation-request.

3. Validate the creation of the job according to the execution
mode using test /reg/core/job-creation-mode.

Abstract Test 14 /conf/core/job-creation-request

Test Purpose Validate that the body of a job creation operation complies with
the required structure and contents.

Requirement /reqg/core/job-creation-request

Test Method Verify the contents of the request body against the OpenAPI 3.0
schema execute.yaml.

Abstract Test 15 /conf/core/job-creation-mode

Test Purpose Validate the creation of a new job according to its execution
mode.

Requirement /req/core/job-creation-mode

Test Method 1. Create a job for each execution mode according to the test

/req/core/job-creation-op.

2. Validate the creation of the job according to the execution
mode using the resource and tests identified in Schema and
Tests for Job Creation.

A job may be executed in one of the three modes; sync, async or auto. The following tables identified
the applicable test to check based on the execution mode.

Table 15. Schema and Tests for Job Creation

Mode Test ID

sync /req/core/job-creation-success-sync
async /reqg/core/job-creation-success-async
auto /reqg/core/job-creation-success-auto

64

https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/execute.yaml

Abstract Test 16

Test Purpose

Requirement

Test Method

Abstract Test 17

Test Purpose

Requirement

Test Method

Abstract Test 18

Test Purpose

Requirement

Test Method

/conf/core/job-creation-success-async

Validate the result of a job that has been created using the asyn
execution mode.

/req/core/job-creation-success-async

1. Validate that result of the job was returned with an HTTP
status code 201.

2. Validate the HTTP headers of the result using the test
/req/core/job-creation-success-header-async.

/conf/core/job-creation-success-header-async

Validate the HTTP header for an asynchronously executed job.

/req/core/job-creation-success-header-async

1. Validate that the response contains the 'Location' header.

2. Issue an HTTP GET request to the URL that is the value of the
'Location' header.

3. Validate the result of resolving the 'Location' header URL
using the test /req/core/job-result-op.

/conf/core/job-creation-success-sync

Validate the result of a job that has been created using the sync
execution mode.

/req/core/job-creation-success-sync

1. Validate that result of the job was returned with a status code
200.

2. Validate the content of the result using the resource and tests
identified in Schema and Tests for the Response of a
Synchronously Executed Job.

The type of response a job generates is determined by the value of the response attribute. The value
of the response attribute may be document or raw. The following table identified the applicable test to
check based on the value of the response attribute.

Table 16. Schema and Tests for the Response of a Synchronously Executed Job

65

Response Type
document

raw

Abstract Test 19

Test Purpose

Requirement

Test Method

Schema Test ID

results.yaml /reqg/core/job-result-success
N/A [ats_job-creation-success-
sync-raw]

/conf/core/job-result-failed
Validate the job result when the response attribute is set to raw.
/req/core/job-creation-success-sync

1. Validate that the result of the job was returned with an HTTP
status code 200.

2. Get a description of the executed process using test
/conf/core/process.

3. From the process description, note the expected media type(s)
for the output that was specified in the execute request body.

4. Verify that the response is of the expected media type.

5. If the response has an associated schema, validate the
response against that schema.

A.2.6.2. Job status /processes/{processiD}/jobs/{jobID}

Abstract Test 20

Test Purpose

Requirement

Test Method

Abstract Test 21

Test Purpose

66

/conf/core/fc-op
Validate that the status info of a job can be retrieved.
/req/core/fc-op

1. Create a job as per /req/core/job-creation-op and note the
{jobID} assigned to the job.

2. Issue an HTTP GET request to the URL
'[processes/{processID}/jobs/{jobID}".

3. Validate the contents of the returned document using the test
/reqg/core/job-success.

/conf/core/job-success

Validate that the job status info complies with the require
structure and contents.

https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/results.yaml

Requirement /req/core/job-success

Test Method 1. Validate that the document was returned with an HTTP status
code of 200.

2. Validate the job status info for all supported media types using
the resources and tests identified in Schema and Tests for the
Job Status Info

The status info page for a job may be retrieved in a number of different formats. The following
table identifies the applicable schema document for each format and the test to be used to validate
the status info against that schema. All supported formats should be exercised.

Table 17. Schema and Tests for the Job Status Info

Format Schema Document Test ID
HTML statusInfo.yaml /conf/html/content
JSON statusInfo.yaml /conf/json/content

Abstract Test 22 /conf/core/job-exception-no-such-job

Test Purpose Validate that an invalid job identifier is handled correctly.
Requirement /req/core/job-exception-no-such-job
Test Method 1. Issue an HTTP GET request to the URL that includes the

{jobID} as a path element using a non-existent job identifier.
2. Validate that the document was returned with a 404.

3. Validate that the document contains the exception code
"NoSuch]Job".

4. Validate the document for all supported media types using the
resources and tests identified in Schema and Tests for the Job
Result for Non-existent Job

An exception response caused by the use of an invalid job identifier may be retrieved in a number
of different formats. The following table identifies the applicable schema document for each format
and the test to be used to validate the response. All supported formats should be exercised.

Table 18. Schema and Tests for the Job Result for Non-existent Job

Format Schema Document Test ID
HTML exception.yaml /conf/html/content
JSON exception.yaml /conf/json/content

67

http://schemas.opengis.net/ogcapi/processes/part1/1.0/openapi/schemas/landingPage.yaml
http://schemas.opengis.net/ogcapi/processes/part1/1.0/openapi/schemas/landingPage.yaml
http://schemas.opengis.net/ogcapi/processes/part1/1.0/openapi/schemas/exception.yaml
http://schemas.opengis.net/ogcapi/processes/part1/1.0/openapi/schemas/exception.yaml

A.2.6.3. Job results /processes/{processID}/jobs/{jobID}/results

Abstract Test 23 /conf/core/job-result

Test Purpose Validate that the results of a job can be retrieved.
Requirement /req/core/job-result
Test Method 1. Create a job as per /reg/core/job-creation-op and note the

{jobID} assigned to the job.

2. Issue an HTTP GET request to the URL
'[processes/{processID}/jobs/{jobID}/results'.

3. Validate that the document was returned with a status code
200.

4. Validate the contents of the returned document using the test
/req/core/job-result-success.

Abstract Test 24 /conf/core/job-result-success

Test Purpose Validate that the job result complies with the require structure
and contents.

Requirement /req/core/job-result-success

Test Method Validate the job result for all supported media types using the
resources and tests identified in Schema and Tests for the Job
Result

The job result page for a job may be retrieved in a number of different formats. The following table
identifies the applicable schema document for each format and the test to be used to validate the
status info against that schema. All supported formats should be exercised.

Table 19. Schema and Tests for the Job Result

Format Schema Document Test ID
HTML result.yaml /conf/html/content
JSON result.yaml /conf/json/content

Abstract Test 25 /conf/core/job-result-failed

Test Purpose Validate that the job result retrieved using an invalid job
identifier complies with the require structure and contents.

68

http://schemas.opengis.net/ogcapi/processes/part1/1.0/openapi/schemas/landingPage.yaml
http://schemas.opengis.net/ogcapi/processes/part1/1.0/openapi/schemas/landingPage.yaml

Requirement /req/core/job-result-exception-no-such-job

Test Method 1. Issue an HTTP GET request to the URL
'[processes/{processID}/jobs/{jobID}/results' using an invalid
{jobID}.

2. Validate that the document was returned with a 404.

3. Validate that the document contains the exception code
"NoSuch]Job".

4. Validate the document for all supported media types using the
resources and tests identified in Schema and Tests for the Job
Result for Non-existent Job

The job result page for a job may be retrieved in a number of different formats. The following table
identifies the applicable schema document for each format and the test to be used to validate the
job result for a non-existent job against that schema. All supported formats should be exercised.

Table 20. Schema and Tests for the Job Result for Non-existent Job

Format Schema Document Test ID
s/exception.yam[exception
.yaml]

/conf/html/content JSON link:http://schemas.opengis.
net/ogcapi/processes/part1/1.
O/openapi/schema
s/exception.yaml[exception.
yaml]

Abstract Test 26 /conf/core/job-result-exception-result-not-ready

Test Purpose Validate that the job result retrieved for an incomplete job
complies with the require structure and contents.

Requirement /req/core/job-result-exception-result-not-ready

69

Test Method

=

Create a job as per /reg/core/job-creation-op and note the
{jobID} assigned to the job; ensure that the job is long-
running.

2. Issue an HTTP GET request to the URL
'[processes/{processID}/jobs/{jobID}/results’ before the job
completes execution.

3. Validate that the document was returned with a 404.

4. Validate that the document contains the exception code
"ResultNotReady".

5. Validate the document for all supported media types using the
resources and tests identified in Schema and Tests for the Job
Result for an Incomplete Job

The job result page for a job may be retrieved in a number of different formats. The following table
identifies the applicable schema document for each format and the test to be used to validate the
job results for an incomplete job against that schema. All supported formats should be exercised.

Table 21. Schema and Tests for the Job Result for an Incomplete Job

Format Schema Document Test ID
s/exception.yam[exception
.yaml]

/conf/html/content JSON link:http://schemas.opengis.
net/ogcapi/processes/part1/1.
0/openapi/schema
s/exception.yaml[exception.
yaml]

Abstract Test 27 /conf/core/job-result-failed

Test Purpose Validate that the job result for a failed job complies with the
require structure and contents.

Requirement /req/core/job-result-failed

70

Test Method

=

Create a job as per /reg/core/job-creation-op but arrange a
priori that the job will fail; note the {jobID} assigned to the
job.

2. Ensure that the failed job will not result in an HTTP error code
of 404.

3. Issue an HTTP GET request to the URL
'[processes/{processID}/jobs/{jobID}/results".

4, Validate that the document was returned with a HTTP error
code (4XX or 5XX).

5. Validate that the document contains an exception code that
corresponds to the reason the job failed (e.g.
InvalidParameterValue for invalid input data).

6. Validate the document for all supported media types using the
resources and tests identified in Schema and Tests for the Job
Result for a Failed Job

The job result page for a job may be retrieved in a number of different formats. The following table
identifies the applicable schema document for each format and the test to be used to validate the
job result for a failed job against that schema. All supported formats should be exercised.

Table 22. Schema and Tests for the Job Result for a Failed Job

Format Schema Document Test ID
HTML exception.yaml /conf/html/content
JSON exception.yaml /conf/json/content

A.3. Conformance Class OGC Process Description

Conformance Class
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/ogc-process-description
Target type Web API

Requirements Requirements Class "OGC Process Description”
class

Abstract Test 28 /conf/core/job-creation-request

Test Purpose Validate a JSON-encoded OGC process description complies with
the required structure and contents.

Requirement /req/ogc-process-description/json-encoding

71

http://schemas.opengis.net/ogcapi/processes/part1/1.0/openapi/schemas/exception.yaml
http://schemas.opengis.net/ogcapi/processes/part1/1.0/openapi/schemas/exception.yaml
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/ogc-process-description

Test Method Verify the contents of the request body against the OpenAPI 3.0
schema process.yaml.

A.4. Conformance Class JSON

Conformance Class
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/json
Target type Web API

Requirements Requirements Class "Core"
class

Abstract Test 29 /conf/json/definition

Test Purpose Verify support for JSON.

Requirement /req/json/definition
Test Method 1. A resource is requested with response media type of
application/json.

2. All 200 responses SHALL support the following media types:
application/json for all resources.

A.5. Conformance Class HTML

Conformance Class

http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/html

Target type Web API

Requirements Requirements Class "HTML"
class

Dependency Conformance Class 'Core'

Abstract Test 30 /conf/html/content

Test Purpose Verify the content of an HTML document given an input
document and schema.

Requirement /reqg/html/content

72

https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/process.yaml
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/json
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/html

Test Method

Abstract Test 31

Test Purpose

Requirement

Test Method

1. Validate that the document is an HTML 5 document

2. Manually inspect the document and verify that the HTML
body contains:

o all information in the schemas of the Response Object in
the HTML <body/>

o all links in HTML <a/> elements in the HTML <body/>.

/conf/html/definition

Verify support for HTML

/reqg/html/definition

Verify that every 200 response of every operation of the API
where HTML was requested is of media type text/html.

A.6. Conformance Class OpenAPI 3.0

Conformance Class

http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/oas30

Target type Web API
Requirements Requirements Class "OpenAPI Specification 3.0"
class
Dependency Conformance Class 'Core’
Abstract Test 32 /conf/oas30/completeness

Test Purpose

Requirement

Test Method

Abstract Test 33

Test Purpose

Verify the completeness of an OpenAPI document.

/req/oas30/completeness

Verify that for each operation, the OpenAPI document describes
all HTTP Status Codes and Response Objects that the API uses in
responses.

/conf/oas30/exceptions-codes

Verify that the OpenAPI document fully describes potential
exception codes.

73

https://www.w3.org/TR/html5/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#responseObject
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/oas30
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#httpCodes
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#responseObject

Requirement

Test Method

Abstract Test 34

Test Purpose

Requirement

Test Method

Abstract Test 35

Test Purpose

Requirement

Test Method

Abstract Test 36

Test Purpose

Requirement

Test Method

Abstract Test 37

74

/req/oas30/exceptions-codes

Verify that for each operation, the OpenAPI document describes
all HTTP Status Codes that may be generated.

/conf/oas30/oas-definition-1

Verify that JSON and HTML versions of the OpenAPI document
are available.

/req/oas30/oas-definition-1

1. Verify that an OpenAPI definition in JSON is available using
the media type application/vnd.oai.openapi+json;version=3.0
and link relation service-desc

2. Verify that an HTML version of the API definition is available
using the media type text/html and link relation service-doc.

/conf/oas30/oas-definition-2

Verify that the OpenAPI document is valid JSON.

/req/oas30/oas-definition-2

Verify that the JSON representation conforms to the OpenAPI
Specification, version 3.0.

/conf/oas30/oas-impl

Verify that all capabilities specified in the OpenAPI definition are
implemented by the API.

/req/oas30/oas-impl

1. Construct a path from each URL template including all server
URL options and all enumerated path parameters.

2. For each path defined in the OpenAPI document, validate that
the path performs in accordance with the API definition and
the API-Features standard.

/conf/oas30/security

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#httpCodes

Test Purpose Verify that any authentication protocols implemented by the API
are documented in the OpenAPI document.

Requirement /req/oas30/security

Test Method 1. Identify all authentication protocols supported by the API.

2. Validate that each authentication protocol is described in the
OpenAPI document by a Security Schema Object and its use is
specified by a Security Requirement Object.

A.7. Conformance Class Job collection

Conformance Class
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/job-list
Target type Web API

Requirements Requirements Class "Core"
class

Abstract Test 38 /conf/job-collection/job-collection-op

Test Purpose Validate that information about jobs can be retrieved from the
expected location.

Requirement /req/job-collection/job-collection-op

Test Method 1. Issue an HTTP GET request to the URL

/processes/{processID}/jobs.

2. Validate the contents of the returned document using test
/req/job-collection/job-collection-success.

Abstract Test 39 /conf/job-collection/job-collection-success

Test Purpose Validate that the job collection content complies with the required
structure and contents.

Requirement /req/job-collection/job-collection-success

75

http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/job-list

Test Method 1. Validate that a document was returned with an HTTP status
code of 200.

2. Validate the job collection content for all supported media
types using the resources and tests identified in Schema and
Tests for Job Collection Content

A job collection may be retrieved in a number of different formats. The following table identifies
the applicable schema document for each format and the test to be used to validate the against that
schema. All supported formats should be exercised.

Table 23. Schema and Tests for Job Collection Content

Format Schema Document Test ID
HTML jobCollection.yaml /conf/html/content
JSON jobCollection.yaml /conf/json/content

A.8. Conformance Class Callback

Conformance Class
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/callback
Target type Web API

Requirements Requirements Class "Core"
class

Abstract Test 40 /conf/callback/job-callback
Test Purpose Validate the passing of a subscriber-URL in an execute request.
Requirement /req/callback/job-callback

Test Method 1. Configure a URL endpoint to accept message body from the
server.

2. Create an asynchronous execute request that includes the
optional subscriber key (see execute.yaml.

3. Execute the asynchronous job wusing test [ats_core_job-
creation-op].

4. Validate the job result is received by the specified callback
URL.

76

http://schemas.opengis.net/ogcapi/processes/part1/1.0/openapi/schemas/jobCollection.yaml
http://schemas.opengis.net/ogcapi/processes/part1/1.0/openapi/schemas/jobCollection.yaml
http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/callback
https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/master/core/openapi/schemas/execute.yaml

A.9. Conformance Class Dismiss

Conformance Class

http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/dismiss

Requirements Requirements Class "Core"

Target type Web API
class
Abstract Test 41

Test Purpose

Requirement

Test Method

Abstract Test 42

Test Purpose

Requirement

Test Method

/conf/dismiss/job-dismiss-op

Validate that a running job can be dismissed.

/req/dismiss/job-dismiss-op

1. Create an asynchronous job as per test [ats_core_job-creation-
opl; not the job identifier, {jobID}, assigned to the job.

2. Issue an HTTP DELETE operation to the URL
'[processes/{processID}/jobs/{jobID}".

3. Validate the contents of the returned document using test
/req/dismiss/job-dismiss-success.

/conf/dismiss/job-dismiss-success

Validate that the content returned when dismissing a job complies
with the required structure and contents.

/req/dismiss/job-dismiss-success

1. Validate that a document was returned with an HTTP status
code of 200.

2. Validate that the status is the response is set to "dismissed".

3. Validate the process collection content for all supported media
types using the resources and tests identified in Schema and
Tests for Dismissing a Job

The response to dismissing a job can be presented in a number of different formats. The following
table identifies the applicable schema document for each format and the test to be used to validate
the against that schema. All supported formats should be exercised.

Table 24. Schema and Tests for Dismissing a Job

77

http://www.opengis.net/spec/ogcapi-processes-1/1.0/conf/dismiss

Format
HTML
JSON

78

Schema Document
statusInfo.yaml

statusInfo.yaml

Test ID
/conf/html/content

/conf/json/content

http://schemas.opengis.net/ogcapi/processes/part1/1.0/openapi/schemas/statusInfo.yaml
http://schemas.opengis.net/ogcapi/processes/part1/1.0/openapi/schemas/statusInfo.yaml

Annex B: Revision History

Date

2017-03-07
2018-05-16

2018-07-25
2018-08-15

2018-11-29

2019-02-20
2019-03-21

2019-03-27

2019-03-28
2019-03-29

2019-04-16

2019-06-05

2019-06-12

Release

0.1
0.1

1.0-draft
1.0-draft

1.0-draft

1.0-draft
1.0-draft

1.0-draft

1.0-draft
1.0-draft

1.0-draft

1.0-draft

1.0-draft

Editor

Benjamin Pross

Stan Tillman

Benjamin Pross

Benjamin Pross

Benjamin Pross
Benjamin Pross

Benjamin Pross

Tom Kralidis,
Benjamin Pross

Benjamin Pross

Benjamin Pross

Benjamin Pross

Gérald Fenoy

Benjamin Pross

Primary
clauses
modified

all
1-5

all
all

7
6,7,8,9,10

6,7,8,9,10

Description

initial version

Update section
1-5

1.0-draft

Restructuring,
added
requirements
classes

Update schemas
and examples

Fix for #3

Alignment with
OAPI Common,
adjust schemas

Fix for #7, align
bbox schema to
WES

Formatting

Adjust schemas
and examples

Adjust schemas,
fix validation
errors, add more
data types

Allow
unbounded for
maxOccurs, Fix
issue with
ValueDefinition
references

Possible solution
for #26

79

Date

2019-06-19

2019-06-20

2019-08-09

2019-08-21

2019-10-01

2019-10-10

2019-10-22

2020-01-06

2020-01-28

2020-02-03
2020-02-18

80

Release

1.0-draft

1.0-draft

1.0-draft.2

1.0-draft.2

1.0-draft.3

1.0-draft.3

1.0-draft.3

1.0-draft.3

1.0-draft.3

1.0-draft.3
1.0-draft.3

Editor

Gérald Fenoy

Brad Hards

Benjamin Pross

Benjamin Pross

Benjamin Pross

Gérald Fenoy,
Tom Kralidis

Benjamin Pross

Francis Charette

Gérald Fenoy

Benjamin Pross

Chris Durbin

Primary
clauses
modified

7

6,7

Description

Add
additionalParam
eter.yaml,
update
metadata.yaml
and,
descriptionType.
yaml, fix
intendation

Fix typo noted
during OGC API
presentation, fix
for #34

1.0-draft.2, use
plural for results
path, remove
wrapper

adjust schemas,
examples and
figures, remove
section about
web caching

1.0-draft.3,
minor edits

Add
implementation
s, Use status in
place of infos in
jobInfo
definition

Remove
mandatory path
/api, fix for #50

Add
implementation

Adjust schemas
and examples

Fix for #63
Fix for #61

Date

2020-04-01

2020-04-06

2020-04-09

2020-04-28

2020-04-29

2020-04-30

Release

1.0-draft.3

1.0-draft.3

1.0-draft.3

1.0-draft.3

1.0-draft.3

1.0-draft.3

Editor

Benjamin Pross

Benjamin Pross

Benjamin Pross

Benjamin Pross

Benjamin Pross

Benjamin Pross

Primary
clauses
modified

7

5,7

11

6,11

Description

Add optional
subscriber
property to
execute request,
avoid
duplication,
create own type
for entities with
properties name
and reference

Abbreviate
process-
description link
relation to
process-desc,
update example,
alphabetical
ordering of link
relations

Rename
root.yaml to
landingPage.ya
ml, add title and
description to
root.yaml

Move examples,
responses and
parameters
from core
asciidoc to
external files

Add
Requirements
Class 'Callback'’

Move overview
table to abstract,
allow multiple
URIs for
callbacks

81

Date

2020-05-05

2020-05-8

2020-05-11

2020-05-12

2020-05-12
2020-05-20

2020-07-21

2020-07-23

82

Release

1.0-draft.3

1.0-draft.3

1.0-draft.3

1.0-draft.3

1.0-draft.3
1.0-draft.3

1.0-draft.4

1.0-draft.4

Editor

Gérald Fenoy

Benjamin Pross

Benjamin Pross

Panagiotis
(Peter) A.
Vretanos

Stan Tillman

Panagiotis
(Peter) A.
Vretanos

Benjamin Pross

Benjamin Pross

Primary
clauses
modified

12

14

12

N/A

6,7,8,9,10
2,7

2,6,10, Annex A

7,10,11

Description

Add
Requirements
Class 'Dismiss’,
fix includes and
section headers

Add section with
info about
additional/altern
ative building
blocks

Move 'Job List'
from core to
separate
Requirements
Class

Create a home
for extensions to
the core, initial
check in of draft
transactions
extension, add
placeholders for
the quotation
and billing APIs

Review

Separate the
OGC process
description into
its own
conformance
class.

Editorial fixes,
incorporated
comments from
Carl Reed,
updated
example

Add dependency
to API Common

Date

2020-07-27

2020-07-30

2020-08-10

2020-08-13

2020-09-02

Release

1.0-draft.4

1.0-draft.4

1.0-draft.4

1.0-draft.4

1.0-draft.4

Editor

Benjamin Pross

Benjamin Pross

Panagiotis
(Peter) A.
Vretanos

Benjamin Pross

Benjamin Pross

Primary
clauses
modified

9

7,9

all

Description

Add security
considerations
section

Add section
about HTTP and
HTTPS, fix links
to RFCs, add
additional
guidance to
security
considerations
section

Add ATS, adjust
links throughout
the document

Work on
security
considerations
section

Incorporated
further
comments from
Andreas
Matheus

83

	{title}
	Table of Contents
	Chapter 1. Scope
	Chapter 2. Conformance
	Chapter 3. References
	Chapter 4. Terms and Definitions
	4.1. Process
	4.2. Job
	4.3. JSON
	4.4. Process description
	4.5. Process execution
	4.6. Process input
	4.7. Process offering
	4.8. Process output
	4.9. Process profile
	4.10. REST or RESTful
	4.11. Service profiles for WPS
	4.12. WPS Server

	Chapter 5. Conventions
	5.1. Identifiers
	5.2. Link relations
	5.3. Abbreviated Terms
	5.4. Use of the Term "Process"
	5.5. Use of HTTPS
	5.6. HTTP URIs

	Chapter 6. Overview
	6.1. Encodings

	Chapter 7. Requirements Class "Core"
	7.1. Overview
	7.2. Retrieve the API landing page
	7.2.1. Operation
	7.2.2. Response
	7.2.3. Error situations

	7.3. Retrieve an API definition
	7.3.1. Operation
	7.3.2. Response
	7.3.3. Error situations

	7.4. Declaration of conformance classes
	7.4.1. Operation
	7.4.2. Response
	7.4.3. Error situations

	7.5. Use of HTTP 1.1
	7.5.1. HTTP status codes

	7.6. Support for cross-origin requests
	7.7. Retrieve a process list
	7.7.1. Operation
	7.7.2. Response
	7.7.3. Error situations

	7.8. Retrieve a process description
	7.8.1. Operation
	7.8.2. Response
	7.8.3. Error situations

	7.9. Create a new job
	7.9.1. Operation
	7.9.2. Request body
	7.9.3. Response
	7.9.4. Error situations

	7.10. Retrieve status information about a job
	7.10.1. Operation
	7.10.2. Response
	7.10.3. Error situations

	7.11. Retrieve job results
	7.11.1. Operation
	7.11.2. Response
	7.11.3. Error situations

	Chapter 8. Requirements Class "OGC Process Description"
	8.1. Overview
	8.2. OGC process description

	Chapter 9. Security Considerations
	9.1. Operations using HTTP GET
	9.2. Execute operation
	9.3. Dismiss operation

	Chapter 10. Requirements classes for encodings
	10.1. Overview
	10.2. Requirement Class "JSON"
	10.3. Requirement Class "HTML"

	Chapter 11. Requirements Class "OpenAPI 3.0"
	11.1. Basic requirements
	11.2. Complete definition
	11.3. Exceptions
	11.4. Security

	Chapter 12. Requirements Class "Job list"
	12.1. Operation
	12.2. Response
	12.3. Error situations

	Chapter 13. Requirements Class "Callback"
	Chapter 14. Requirements Class "Dismiss"
	14.1. Operation
	14.2. Response
	14.3. Error situations

	Chapter 15. Media Types
	Chapter 16. Additional API Building Blocks
	Annex A: Abstract Test Suite (Normative)
	A.1. Introduction
	A.2. Conformance Class Core
	A.2.1. Landing Page /
	A.2.2. API Definition /api
	A.2.3. Conformance Path /conformance
	A.2.4. HTTP 1.1
	A.2.5. Processes /processes
	A.2.6. Jobs

	A.3. Conformance Class OGC Process Description
	A.4. Conformance Class JSON
	A.5. Conformance Class HTML
	A.6. Conformance Class OpenAPI 3.0
	A.7. Conformance Class Job collection
	A.8. Conformance Class Callback
	A.9. Conformance Class Dismiss

	Annex B: Revision History

