
Volume 4
OGC CDB Rules for Encoding CDB Vector Data using

Shapefiles (Best Practice)

Table of Contents
1. Scope . 5

2. Conformance . 6

3. References . 7

4. Terms and Definitions. 8

5. Conventions . 9

5.1. Identifiers . 9

6. General Guidance on the use of Shapefiles . 10

Annex A: Conformance Class Abstract Test Suite (Normative) . 14

A.1. Conformance Test Class: OGC CDB Shapefiles for vector data storage . 14

A.1.1. General Shapefile Implementation Feature Rule . 14

A.1.2. Shapefile Point Vertices . 14

Annex B: Revision History . 16

Annex C: Shapefile dBASE III guidance. 17

Open Geospatial Consortium

Submission Date: 2020-01-21

Approval Date: 2020-xx-xx

Publication Date: 2020-xx-xx

External identifier of this OGC® document: http://www.opengis.net/doc/BP/shapefile-guidance/1.2

Additional Formats (informative):

Internal reference number of this OGC® document: 16-070r4

Version: 1.2

Category: OGC® Best Practice

Editor: Carl Reed

Volume 4: OGC CDB Rules for Encoding CDB Vector Data using Shapefiles (Best Practice)

Copyright notice

Copyright © 2020 Open Geospatial Consortium

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/

Warning

This document defines an OGC Best Practices on a particular technology or
approach related to an OGC standard. This document is not an OGC Standard
and may not be referred to as an OGC Standard. It is subject to change without
notice. However, this document is an official position of the OGC membership
on this particular technology topic.

Document type: Draft OGC® Best Practice

Document subtype:

Document stage: Candidate

Document language: English

1

http://www.opengis.net/doc/BP/shapefile-guidance/1.2
https://portal.opengeospatial.org/files/16-070r3
http://www.opengeospatial.org/legal/

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD
PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET
YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE
ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY
CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE
LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR
ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY
OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE IMPLEMENTATION, USE,
COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize

2

you or any third party to use certification marks, trademarks or other special designations to
indicate compliance with any LICENSOR standards or specifications. This Agreement is governed by
the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded.
In the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such
provision shall be modified so as to make it valid and enforceable, and as so modified the entire
Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall
be construed to be a waiver of any rights or remedies available to it.

3

i. Abstract

This CDB volume provides the information and guidance required to store vector data and
attributes using the Esri Shapefile specification in a CDB data store. All shape types are supported to
represent point, line, and polygon features.

ii. Keywords

The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, shapefile, cdb, vector, point, line, polygon

iii. Preface

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

iv. Submitting organizations

The following organizations submitted this Document to the Open Geospatial Consortium (OGC):

Organization name(s)

• CAE Inc.

• Carl Reed, OGC Individual Member

• Envitia, Ltd

• Glen Johnson, OGC Individual Member

• KaDSci, LLC

• Laval University

• Open Site Plan

• University of Calgary

• UK Met Office

v. Submitters

All questions regarding this submission should be directed to the editor or the submitters:

Name Affiliation

Carl Reed Carl Reed & Associates

David Graham CAE Inc.

4

Chapter 1. Scope
This CDB Best Practice volume defines the requirements and provides guidance on how to use Esri
ShapeFiles in a CDB data store.

For ease of editing and review, the standard has been separated into 16 Volumes, one being a
schema repository.

• Volume 0: OGC CDB Companion Primer for the CDB standard (Best Practice).

• Volume 1: OGC CDB Core Standard: Model and Physical Data Store Structure. The main body
(core) of the CDB standard (Normative).

• Volume 2: OGC CDB Core Model and Physical Structure Annexes (Best Practice).

• Volume 3: OGC CDB Terms and Definitions (Normative).

• Volume 4: OGC CDB Rules for Encoding CDB Vector Data using Shapefiles (Best Practice).

• Volume 5: OGC CDB Radar Cross Section (RCS) Models (Best Practice).

• Volume 6: OGC CDB Rules for Encoding CDB Models using OpenFlight (Best Practice).

• Volume 7: OGC CDB Data Model Guidance (Best Practice).

• Volume 8: OGC CDB Spatial Reference System Guidance (Best Practice).

• Volume 9: OGC CDB Schema Package: http://schemas.opengis.net/cdb/ provides the normative
schemas for key features types required in the synthetic modelling environment. Essentially,
these schemas are designed to enable semantic interoperability within the simulation context
(Normative).

• Volume 10: OGC CDB Implementation Guidance (Best Practice).

• Volume 11: OGC CDB Core Standard Conceptual Model (Normative).

• Volume 12: OGC CDB Navaids Attribution and Navaids Attribution Enumeration Values (Best
Practice).

• Volume 13: OGC CDB Rules for Encoding CDB Vector Data using GeoPackage (Normative,
Optional Extension).

• Volume 14: OGC CDB Guidance on Conversion of CDB Shapefiles into CDB GeoPackages (Best
Practice).

• Volume 15: OGC CDB Optional Multi-Spectral Imagery Extension (Normative).

\\\\ For later https://github.com/opengeospatial/cdb-volume-1/blob/master/list_of_volumes.adoc \\\\

5

http://schemas.opengis.net/cdb/
https://github.com/opengeospatial/cdb-volume-1/blob/master/list_of_volumes.adoc

Chapter 2. Conformance
This standard defines conformance class for testing the use of Esri Shapefiles for storing vector
data in a CDB data store.

Conformance with this standard shall be checked using all the relevant tests specified in Annex A
(normative) of this document. The framework, concepts, and methodology for testing, and the
criteria to be achieved to claim conformance are specified in the OGC Compliance Testing Policies
and Procedures and the OGC Compliance Testing web site [1: www.opengeospatial.org/cite].

All requirements-classes and conformance-classes described in this document are owned by the
standard(s) identified.

6

http://www.opengeospatial.org/cite

Chapter 3. References
The following normative documents contain provisions that, through reference in this text,
constitute provisions of this document. For dated references, subsequent amendments to, or
revisions of, any of these publications do not apply. For undated references, the latest edition of the
normative document referred to applies.

Esri ShapeFile Technical Description (https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf)

7

https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

Chapter 4. Terms and Definitions
This document uses the terms defined in Sub-clause 5.3 of [OGC 06-121r8], which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this standard.

Please see the CDB Volume 3: Terms and Definitions document. http://www.opengeospatial.org/
standards/cdb

8

http://www.opengeospatial.org/standards/cdb
http://www.opengeospatial.org/standards/cdb

Chapter 5. Conventions
This section provides details and examples for any conventions used in the document. Examples of
conventions are symbols, abbreviations, use of XML schema, or special notes regarding how to read
the document.

5.1. Identifiers
The normative provisions in this standard are denoted by the URI

http://www.opengis.net/spec/cdb/1.1/shapefile

All requirements and conformance tests that appear in this document are denoted by partial URIs
which are relative to this base.

For the sake of brevity, the use of “req” in a requirement URI denotes:

http://www.opengis.net/spec/cdb/1.1/shapefile

An example might be:

req/shapefile/storage

9

http://www.opengis.net/spec/cdb/1.1/shapefile
http://www.opengis.net/spec/core

Chapter 6. General Guidance on the use of
Shapefiles
A Shapefile is a specification for encoding and storing vector data storage format for storing the
location, shape, and attributes of geographic features. A Shapefile is stored as a set of related files
and contains one feature class. The Shapefile specification was developed by Esri.

In a CDB Shapefile, the position of all points is expressed using WGS-84 geographic coordinates
(latitude, longitude, altitude), as explained in Volume 8: CDB Spatial Reference Systems Guidance.

As per Esri Shapefile Technical Description, the set of attributes of Vector features are stored in
dBase III+ files. Refer to Annex E in Volume 2 [2: Volume 2: OGC CDB Core Model and Physical
Structure Annexes (Best Practice)] of the CDB standard: CDB Annexes for the dBase III file format
description and recommended encodings. The CDB standard provides three attribution schemas to
represent attribution data:

• Instance-level attribution schema

• Class-level attribution schema

• Extended-level attribution schema

Requirements Class Shapefiles (1-2)

/req/shapefile/general

Target type Operations

Dependency Shapefile specification

Requirement 1 /req/shapefile/vector-shp-rule

Requirement 2 /req/shapefile/shapefile-reader

To completely represent the vector data and attributes in a given tile as a Shapefile, the CDB
standard requires that a Vector dataset consists of some or all of the following files:

• *.shp – feature shape files that provides the geometric aspects of each instance of a vector
feature (point, lineal, and polygon features).

Requirement 1
Vector Shapefile
Shape Type

http://www.opengis.net/spec/cdb/1.1/shapefile/vector-shp-rule

All instances of the feature SHALL be of the same Shape type.
While the Shapefile format supports up to 13 different types (each
one stored in a different shape file), the CDB standard requires a
maximum of one Shapefile type for point features, a maximum of
one Shapefile type for lineal features and a maximum of one
Shapefile type for polygon features for each tile (for a maximum
of 3 feature Shapefiles per tile).

10

http://www.opengis.net/spec/cdb/1.1/shapefile/vector-shp-rule

• *.shx – feature index files that stores the file offsets and content lengths for each of the records
of the feature files. The only purpose of these files is to provide a simple means for clients to
step through the individual records of the feature files (i.e., it contains no CDB modeled data).

• *.dbf – feature instance-level files that provide the instance-level attribution data for each of the
records of the feature.

• *.dbf – feature class-level files that provide the class-level attribution data for each class of
features present in the feature shape files.

• *.dbf – feature extended-level files that provide optional extended-level attribution data for
entries in either the feature instance- or class-level files.

• *.shp – figure point shape files allow modelers the ability to assign specific attribution for each
point in lineal or polygon features. Without this additional Shapefile, the Shapefile format only
allows specifying a single attribution for the entire lineal or polygon feature. The CDB standard
extends the concept to allow specific attribution to each point of these features while enforcing
position correlation. For instance, in case of a PowerLine feature, it is possible to associate,
within the same dataset, a different geometric representation of a PowerLine pylon for each
point of the lineal and still maintain the relationship between the point and the lineal.

• *.shx – figure point index files that stores the file offsets and content lengths for each of the
records of the figure point shape files.

• *.dbf – figure point instance-level files that provide the instance-level attribution data for each
of the records of the figure point shape files.

• *.dbf – figure point class-level files that provide the class-level attribution data for each class of
features present in the figure point shape files

• *.dbf – figure point extended-level files that provide optional extended-level attribution data for
entries in either the figure point instance- or class-level files.

• *.dbf – 2D relationship files. These files establish the relationship of point, lineal, and polygon
features of a single or different datasets in a tile and between tiles.

In addition to *.shp, *.dbf and *.shx files, the Shapefile specification also refers to a memo file with a
*.dbt file that is used to store comment fields associated with the attribution *.dbf file.

All of the information that is needed to instance features is organized in accordance to the CDB tile
structure. All the tiled Shapefile dataset files are located in the same directory. The dataset’s second
component selector (CS2) is used to differentiate between files with the same extension or with the
same Vector features. Table 6-1: Component Selector 2 for Vector Dataset, presents the list of codes
that are allocated. Note that Vector datasets do not necessarily use all of the Dataset Component
Selector 2 reserved codes. Users of the CDB standard should refer to the appropriate section for an
enumeration of the supported File Component Selector 2 codes as well as the ones specific to the
Dataset.

The Vector dataset concept and the feature code concepts overlap somewhat; some of the Vector
datasets are generalizations or specializations of feature codes. Section 1.5 of the OGC CDB Core
Standard: Model and Physical Data Store Structure (Volume 1) provides a recommended mapping
of the feature attributes across the CDB compliant datasets. Note that the same feature should not
have two representations.

11

Table 6-1: Component Selector 2 for Vector Datasets

CS2 File Extension Dataset Component
Name

Supported Shape Type

001 *.shp
*.shx
*.dbf

Point features Point, PointZ, PointM,
MultiPoint,
MultiPointZ,
MultiPointM

002 *.dbf Point feature class-level
attributes

N/A

003 *.shp
*.shx
*.dbf

Lineal features PolyLine, PolyLineZ,
PolyLineM

004 *.dbf Lineal feature class-
level attributes

N/A

005 *.shp
*.shx
*.dbf

Polygon features Polygon, PolygonZ,
PolygonM, MultiPatch

006 *.dbf Polygon feature class-
level attributes

N/A

007 *.shp
*.shx
*.dbf

Lineal figure point
features

Point, PointZ, PointM,
MultiPoint,
MultiPointZ,
MultiPointM

008 *.dbf Lineal figure point
feature class-level
attributes

N/A

009 *.shp
*.shx
*.dbf

Polygon figure point
features

Point, PointZ, PointM,
MultiPoint,
MultiPointZ,
MultiPointM

010 *.dbf Polygon figure point
feature class-level
attributes

N/A

011 *.dbf 2D relationship tile
connections

N/A

012 Deprecated N/A

013 Deprecated N/A

014 Deprecated N/A

015 *.dbf 2D relationship dataset
connections

N/A

016 *.dbf Point feature extended-
level attributes

N/A

12

017 *.dbf Lineal feature
extended-level
attributes

N/A

018 *.dbf Polygon feature
extended-level
attributes

N/A

019 *.dbf Lineal Figure Point
extended-level
attributes

N/A

020 *.dbf Polygon Figure Point
extended-level
attributes

N/A

Deprecation Note: In CDB Version 1.2, the Shapefile MultiPatch geometry type was deprecated. For
backwards compatibility, this geometry type will remain in the CDB standard until such time as
CDB Version 2.0 is approved as an OGC standard. AT that time, all MultiPatch references will be
removed from all CDB volumes.

Notes about Shapefile Polygon Shapes

Even though the Shapefile standard is very versatile, it also enforces some guidelines with respect
to the Polygon Shapes. Those guidelines are referred to in Volume 4: OGC CDB Use of Shapefiles for
Vector Data Storage (Best Practice).

Requirement 2
Shapefile polygon
readers

http://www.opengis.net/spec/cdb/1.1/shapefile/polygon-rules-
reader

Although the above are guidelines, Shapefile readers SHALL
handle the following cases with proper error handling and
reporting for Polygon shapes:

* Has no self-intersections or co-linear segments

* Has no identical consecutive points (no zero-length segments)

* Does not degenerate into zero-area parts

* Does not have clock-wise inner rings (“Dirty Polygon”)

13

http://www.opengis.net/spec/cdb/1.1/shapefile/polygon-rules-reader
http://www.opengis.net/spec/cdb/1.1/shapefile/polygon-rules-reader

Annex A: Conformance Class Abstract Test
Suite (Normative)

A.1. Conformance Test Class: OGC CDB Shapefiles for
vector data storage
This section describes conformance test for the OGC CDB Standard Core. These abstract test cases
describe the conformance criteria for verifying the structure and content of any data store claiming
conformance to the CDB standard.

The conformance class id is “http://www.opengis.net/spec/http://opengis.net/spec/CDB/1.0/core/lod-
hierarchy[cdb-shapefile/1.0]/conf/” and all of the other conformance tests URLs are created in this
path. Another issue that the reader should pay attention to is the test method. When the test
method is assigned with “Visual”, it means that the purpose of the test should be “visually”
investigate the file contents, image, or other content.

A.1.1. General Shapefile Implementation Feature Rule

The following conformance test is designed is to determine if a CDB vector Shapefile adheres to the
feature type instance rule.

Test identifier /conf/shapefile/vector-shape-rule

Test purpose: Verify that all instances of the feature are of the same Shape type.

Test method: Visual inspection. Pass if verified.

Requirement: /req/shapefile/vector-shp-rule

Dependency: Shapefile specification

Test type: Conformance

A.1.2. Shapefile Point Vertices

Ensure that Shapefile readers handle the following cases with proper error handling and reporting
for Polygon shapes:

• Has no self-intersections or co-linear segments

• Has no identical consecutive points (no zero-length segments)

• Does not degenerate into zero-area parts

• Does not have clock-wise inner rings (“Dirty Polygon”)

Test identifier /conf/shapefile/polygon-rules-reader

Test purpose: Verify that a Shapefile reader handles polygon data correctly and that any
errors in the polygon data as per requirement 2 are properly handled and
reported.

Test method: Visual inspection. Pass if verified.

14

Requirement: /req/shapefile/polygon-rules-reader

Dependency: Shapefile specification

Test type: Conformance

15

Annex B: Revision History
Date Release Author Paragraph

modified
Description

2/6/2016 Draft C Reed Many Ready for OAB
review

3/12/2016 Draft C Reed Many Add Shapefile
normative text
from core into
this document
and redo
requirements
and ATS

3/18/2015 Draft C Reed Various Remove RCS and
put in separate
volume.

11/15/16 Final C Reed Various Final edits for
publication

12/28/17 Draft C Reed Various Draft edits for
version 1.1.

12/22/19 1.2 C Reed Scope, Cover
page

Minor updates
for version 1.2

16

Annex C: Shapefile dBASE III guidance
Was B.1.3 Annex B Volume 2 of the OGC CDB Best Practice

dBASE .DBF File Structure

by Borland Developer Support Staff

Technical Information Database

This document has been annotated to reflect the conventions established by the CDB standard.
 Collectively, these conventions are referred to as dBASE/CDB. The conventions define how dBASE
files are interpreted by a CDB-compliant dBASE reader; the stated conventions supersede or replace
related aspects of this annotated specification. Unless stated otherwise, CDB-compliant dBASE
readers will ignore any data that fails to conform to the stated conventions.

Note on directory and file names: Shape/CDB Readers: The CDB standard globally provides a set of
directory and filename conventions. The conventions do not limit filenames to the 8.3 naming
convention

TI838D.txt dBASE .DBF File Structure

Category :Database Programming

Platform :All

Product :Delphi All

Description:

Sometimes it is necessary to delve into a dBASE table outside the control of the Borland Database
Engine (BDE). For instance, if the .DBT file (that contains memo data) for a given table is
irretrievably lost, the file will not be usable because the byte in the file header indicates that there
should be a corresponding memo file. This necessitates toggling this byte to indicate no such
accompanying memo file. Or, you may just want to write your own data access routine.

Below are the file structures for dBASE table files. Represented are the file structures as used for
various versions of dBASE: dBASE III PLUS 1.1, dBASE IV 2.0, dBASE 5.0 for DOS, and dBASE 5.0 for
Windows.

• The data file header structure for dBASE III PLUS table file.*

The table file header:

Byte Contents Description

0 1 Byte Valid dBASE III PLUS table file
(03h without a memo (.DBT file;
83h with a memo).

17

Byte Contents Description

1-3 3 Bytes Date of last update; in YYMMDD
format

4-7 32 bit number Number of records in the table

8-9 16 bit number Number of bytes in the header

10-11 16 bit number Number of bytes in the record

12-14 3 Bytes Reserved Bytes

15-27 13 Bytes Reserved for dBASE III PLUS on
a LAN

28-31 4 Bytes Reserved bytes

32-n 32 Bytes each Field descriptor array (the
structure of this array is shown
below).

N+1 1 Byte 0Dh stored as the field
terminator. n above is the last
byte in the field descriptor
array. The size of the array
depends on the number of
fields in the table file.

Table Field Descriptor Bytes

Byte Contents Description

0-10 11 Bytes Field name in ASCII (zero-
filled).

11 1 Byte Field type in ASCII (C, D, L, M, or
N).

12-15 4 Bytes Field data address (address is
set in memory; not useful on
disk).

16 1 Byte Field length in binary

17 1 byte Field decimal count in binary

18-19 2 Bytes Reserved for dBASE III PLUS on
a LAN

20 1 Byte Work area ID

21-22 2 Bytes Reserved for dBASE III PLUS on
a LAN

23 1 Byte SET FIELDS flag

24 1 Byte Reserved bytes

Table Records

The records follow the header in the table file. Data records are preceded by one byte, that is, a
space (20h) if the record is not deleted, an asterisk (2Ah) if the record is deleted. Fields are packed

18

into records without field separators or record terminators. The end of the file is mark by a single
byte, with the end-of-file marker, an OEM code page character value of 26 (1Ah). You can input OEM
code page data as indicated below.

Allowable Input for dBASE Data Types

Data Type Data Input

C (Character) All OEM code page characters

D (Date) Numbers and a character to separate month,
day, and year (stored internally as 8 digits in
YYYYMMDD format)

N (Numeric) 0 1 2 3 4 5 6 7 8 9

L (Logical) ? Y y N n T t F f (? when not initialized).

M (Memo) All OEM code page characters (stored internally
as 10 digits representing a .DBT block number).

Binary, Memo, and OLE Fields And .DBT Files

Memo fields store data in .DBT files consisting of blocks numbered sequentially (0, 1, 2, and so on).
The size of these blocks are internally set to 512 bytes. The first block in the .DBT file, block 0, is the
.DBTfile header.

Memo field of each record in the .DBF file contains the number of the block (in OEM code page
values) where the field’s data actually begins. If a field contains no data, the .DBF file contains
blanks (20h) rather than a number.

When data is changed in a field, the block numbers may also change and the number in the .DBF
may be changed to reflect the new location.

This information is from the Using dBASE III PLUS manual, Appendix C.

The data file header structure for dBASE IV 2.0 table file.

File Structure:

Byte Contents Meaning

0 1 Byte Valid dBASE IV file; bits 0-2
indicate version number, bit 3
the presence of a dBASE IV
memo file, bits 4-6 the presence
of an SQL table, bit 7 the
presence of any memo file
(either dBASE III PLUS or dBASE
IV).

1-2 3 Bytes Date of last update; formatted
as YYMMDD

19

Byte Contents Meaning

4-7 32 bit number Number of records in the file

8-9 16 bit number Number of bytes in the header

10-11 16 bit number Number of bytes in the record

12-13 2 Bytes Reserved; fill with 0

14 1 Byte Flag indicating incomplete
transaction.

15 1 Byte Encryption flag.

16-27 12 Bytes Reserved for dBASE IV in a
multi-user environment.

28 1 Byte Production MDX file flag; 01H if
there is an MDX, 00H if not.

29 1 Byte Language driver ID

30-31 2 Bytes Reserved; fill with 0.

32-n* 32 Bytes each Field descriptor array (see
below).

N+1 1 Byte 0DH as the field terminator

• n is the last byte in the field descriptor array. The size of the array depends on the number of
fields in the database file.

The field descriptor array:

Byte Contents Meaning

0-10 11 Bytes Field name in ASCII (zero-
filled).

11 1 Byte Field type in ASCII (C, D, F, L, M,
or N).

12-15 4 Bytes Reserved

16 1 Byte Field length in binary

17 1 Field decimal count in binary

18-19 2 Reserved

20 1 Work area ID

21-30 10 Reserved

31 1 Production MDX field flag; 01H
if field has an index tag in the
production MDX file, 00H if not.

Database records:

The records follow the header in the database file. Data records are preceded by one byte; that is, a
space (20H) if the record is not deleted, an asterisk (2AH) if the record is deleted. Fields are packed
into records without field separators or record terminators. The end of the file is marked by a single

20

byte, with the end-of-file marker an ASCII 26 (1AH) character.

[underline]#Allowable Input for dBASE Data Types:#ß

Data Type Data Input

C Character All OEM code page characters

D Date Numbers and a character to
separate month, day, and year
(stored internally as 8 digits in
YYYYMMDD format).

F Floating . 0 1 2 3 4 5 6 7 8 9 point binary
numeric

N Binary .0 1 2 3 4 5 6 7 8 9 coded decimal
numeric

L Logical ? Y y N n T t F f (? when not
initialized).

M Memo All OEM code page characters
(stored internally as 10 digits
representing a .DBT block
number).

Memo Fields And .DBT Files

Memo fields store data in .DBT files consisting of blocks numbered sequentially (0, 1, 2, and so on).
SET BLOCKSIZE determines the size of each block. The first block in the .DBT file, block 0, is the
.DBT file header.

Each memo field of each record in the .DBF file contains the number of the block (in OEM code page
values) where the field’s data actually begins. If a field contains no data, the .DBF file contains
blanks (20h) rather than a number.

When data is changed in a field, the block numbers may also change and the number in the .DBF
may be changed to reflect the new location.

This information is from the dBASE IV Language Reference manual, Appendix D.

The data file header structure for dBASE 5.0 for DOS table file.

The table file header:

Byte Contents Description

----- -------- --

21

Byte Contents Description

0 1 Byte Valid dBASE for Windows table
file; bits 0-2 indicate version
number; bit 3 indicates
presence of a dBASE IV or
dBASE for Windows memo file;
bits 4-6 indicate the presence of
a dBASE IV SQL table; bit 7
indicates the presence of any
.DBT memo file (either a dBASE
III PLUS type or a dBASE IV or
dBASE for Windows memo file).

1-3 3 bytes Date of last update; in YYMMDD
format

4-7 32 bit number Number of records in the table

8-9 16 bit number Number of bytes in the header

10-11 16 bit number Number of bytes in the record

12-13 2 bytes Reserved; filled with zeros

14 1 byte Flag indicating incomplete
dBASE transaction

15 1 byte Encryption flag.

16-27 12 bytes Reserved for multi-user
processing

28 1 byte Production MDX flag; 01h
stored in this byte if a
production .MDX file exists for
this table; 00h if no .MDX file
exists.

29 1 byte Language driver ID.

30-31 2 bytes Reserved; filled with zeros.

32-n 32 bytes Field descriptor array (the
structure of this array is each
shown below)

N+1 1 byte 0Dh stored as the field
terminator

n above is the last byte in the field descriptor array. The size of the array depends on the number of
fields in the table file.

Table Field Descriptor Bytes

Byte Contents Description

0-10 11 bytes Field name in ASCII (zero-
filled).

22

Byte Contents Description

11 1 byte Field type in ASCII (B, C, D, F, G,
L, M, or N).

12-15 4 bytes Reserved

16 1 byte Field length in binary

17 1 byte Field decimal count in binary

18-19 2 bytes Reserved

20 1 byte Work area ID

21-30 10 bytes Reserved

31 1 bytes Production .MDX field flag; 01h
if field has an index tag in the
production .MDX file; 00h if the
field is not indexed

Table Records

The records follow the header in the table file. Data records are preceded by one byte, that is, a
space (20h) if the record is not deleted, an asterisk (2Ah) if the record is deleted. Fields are packed
into records without field separators or record terminators. The end of the file is marked by a single
byte, with the end-of-file marker, an OEM code page character value of 26 (1Ah). You can input OEM
code page data as indicated below.

Allowable Input for dBASE Data Types

Data Type Data Input

C (Character) All OEM code page characters.

D (Date) Numbers and a character to separate month,
day, and year (stored internally as 8 digits in
YYYYMMDD format)

F (Floating - . 0 1 2 3 4 5 6 7 8 9 point binary numeric)

N (Numeric) - . 0 1 2 3 4 5 6 7 8 9

L (Logical) ? Y y N n T t F f (? when not initialized).

M (Memo) All OEM code page characters (stored internally
as 10 digits representing a .DBT block number).

Memo Fields And .DBT Files

Memo fields store data in .DBT files consisting of blocks numbered sequentially (0, 1, 2, and so on).
SET BLOCKSIZE determines the size of each block. The first block in the .DBT file, block 0, is the
.DBT file header.

Each memo field of each record in the .DBF file contains the number of the block (in OEM code page
values) where the field’s data actually begins. If a field contains no data, the .DBF file contains
blanks (20h) rather than a number.

23

When data is changed in a field, the block numbers may also change and the number in the .DBF
may be changed to reflect the new location.

Unlike dBASE III PLUS, if you delete text in a memo field, dBASE 5.0 for DOS may reuse the space
from the deleted text when you input new text. dBASE III PLUS always appends new text to the end
of the .DBT file. In dBASE III PLUS, the .DBT file size grows whenever new text is added, even if
other text in the file is deleted.

This information is from the dBASE for DOS Language Reference manual, Appendix C.

The data file header structure for dBASE 5.0 for Windows table file.

The table file header:

Byte i. Contents Description

0 1 Byte Valid dBASE for Windows table
file; bits 0-2 indicate version
number; bit 3 indicates
presence of a dBASE IV or
dBASE for Windows memo file;
bits 4-6 indicate the presence of
a dBASE IV SQL table; bit 7
indicates the presence of any
.DBT memo file (either a dBASE
III PLUS type or a dBASE IV or
dBASE for Windows memo file).

1-3 3 Bytes Date of last update; in YYMMDD
format.

4-7 32 bit number Number of records in the table.

8-9 16 bit number Number of bytes in the header.

10-11 16 bit number Number of bytes in the record.

12-13 2 Bytes Reserved; filled with zeros.

14 1 Byte Flag indicating incomplete
dBASE IV transaction.

15 1 Byte dBASE IV encryption flag.

16-27 12 Bytes Reserved for multi-user
processing

28 1 Byte Production MDX flag; 01h
stored in this byte if a
production .MDX file exists for
this table; 00h if no .MDX file
exists

29 1 Byte Language driver ID

30-31 2 Bytes Reserved; filled with zeros

24

Byte i. Contents Description

32-n 32 Bytes Field descriptor array (the
structure of this array is each
shown below)

N+1 1 Byte 0Dh stored as the field
terminator.

n above is the last byte in the field descriptor array. The size of the array depends on the number of
fields in the table file.

Table Field Descriptor Bytes

Byte Contents Description

0-10 11 Bytes Field name in ASCII (zero-
filled).

1 1 byte Field type in ASCII (B, C, D, F, G,
L, M, or N).

12-15 4 bytes Reserved.

16 1 byte Field length in binary

17 1 byte Field decimal count in binary

18-19 2 bytes Reserved

20 1 byte Work area ID

21-30 10 bytes Reserved

31 1 byte Production .MDX field flag; 01h
if field has an index tag in the
production .MDX file; 00h if the
field is not indexed

1.

Table Records (See above)

The records follow the header in the table file. Data records are preceded by one byte, that is, a
space (20h) if the record is not deleted, an asterisk (2Ah) if the record is deleted. Fields are packed
into records without field separators or record terminators. The end of the file is marked by a single
byte, with the end-of-file marker, an OEM code page character value of 26 (1Ah). You can input OEM
code page data as indicated below.

Allowable Input for dBASE Data Types

Data Type Data Input

B (Binary) All OEM code page characters (stored internally
as 10 digits representing a .DBT block number).

C (Character) All OEM code page characters.

25

D (Date) Numbers and a character to separate month,
day, and year (stored internally as 8 digits in
YYYYMMDD format).

G (General) All OEM code page characters (stored internally
as 10 digits or OLE) representing a .DBT block
number).

N (Numeric) - . 0 1 2 3 4 5 6 7 8 9

L (Logical) ? Y y N n T t F f (? when not initialized).

M (Memo) All OEM code page characters (stored internally
as 10 digits representing a .DBT block number).

Binary, Memo, and OLE Fields And .DBT Files

Binary, memo, and OLE fields store data in .DBT files consisting of blocks numbered sequentially (0,
1, 2, and so on). SET BLOCKSIZE determines the size of each block. The first block in the .DBT file,
block 0, is the .DBT file header.

Each binary, memo, or OLE field of each record in the .DBF file contains the number of the block (in
OEM code page values) where the field’s data actually begins. If a field contains no data, the .DBF
file contains blanks (20h) rather than a number.

When data is changed in a field, the block numbers may also change and the number in the .DBF
may be changed to reflect the new location.

Unlike dBASE III PLUS, if you delete text in a memo field (or binary and OLE fields), dBASE for
Windows (unlike dBASE IV) may reuse the space from the deleted text when you input new text.
dBASE III PLUS always appends new text to the end of the .DBT file. In dBASE III PLUS, the .DBT file
size grows whenever new text is added, even if other text in the file is deleted.

This information is from the dBASE for Windows Language Reference manual, Appendix C.

26

	{title}
	Table of Contents
	Chapter 1. Scope
	Chapter 2. Conformance
	Chapter 3. References
	Chapter 4. Terms and Definitions
	Chapter 5. Conventions
	5.1. Identifiers

	Chapter 6. General Guidance on the use of Shapefiles
	Annex A: Conformance Class Abstract Test Suite (Normative)
	A.1. Conformance Test Class: OGC CDB Shapefiles for vector data storage
	A.1.1. General Shapefile Implementation Feature Rule
	A.1.2. Shapefile Point Vertices

	Annex B: Revision History
	Annex C: Shapefile dBASE III guidance

