Volume 11
OGC CDB Core Standard Conceptual Model

Table of Contents

4.
5.

. Overview of the OGC CDB Conceptual Model
. CDB General Data Organization

2.1. LoD and Geocell
2.2. CDB File System
2.3. Model Type
2.3.1. 3D Moving Model
2.4. Vector Data Model

. Metadata and Controlled Vocabulary Schema

3.1. Light Names Hierarchy

3.2. Client Specific Lights Definition
3.3. Model Components Definition
3.4. Base Materials Table

3.5. Composite Material Tables

3.6. Default Values Definition Table
3.7. Version

3.8. Configuration

3.9. CDB Vector Attributes

3.10. 3D Model Metadata

3D Model Extensions

Feature Data Dictionary

Annex A: Conformance Class Abstract Test Suite (Normative)

A.1. CDB Overall Conceptual Model

Annex B: UML notations

B.1. Class Diagrams Notation

Annex C: Revision History

Annex D: Bibliography

13
15
16
19
20
21
23
23
23
24
24
25
26
27
28
30
31
36
37
39
39
40
40
42
43

Open Geospatial Consortium

Submission Date: 2020-01-21

Approval Date: 2020-XX-XX

Publication Date: 2020-xxX-XX

External identifier of this OGC® document: http://www.opengis.net/doc/IS/CDB-core-model/1.2
Additional Formats (informative):

Internal reference number of this OGC® document: 16-007r5

Version: 1.2

Category: OGC® Implementation

Editor: Sara Saeedi
Volume 11: OGC CDB Core Standard Conceptual Model

Copyright notice
Copyright © 2020 Open Geospatial Consortium

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/
Warning

This document is an OGC Member approved international standard. This
document is available on a royalty free, non-discriminatory basis. Recipients of
this document are invited to submit, with their comments, notification of any
relevant patent rights of which they are aware and to provide supporting
documentation.

Document type: OGC® Standard
Document subtype:
Document stage: Approved

Document language: English

http://www.opengis.net/doc/IS/CDB-core-model/1.2
https://portal.opengeospatial.org/files/16-007r5
http://www.opengeospatial.org/legal/

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD
PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET
YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE
ENTIRELY AT THE USER'S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY
CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE
LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR
ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY
OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE IMPLEMENTATION, USE,
COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize

you or any third party to use certification marks, trademarks or other special designations to
indicate compliance with any LICENSOR standards or specifications. This Agreement is governed by
the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded.
In the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such
provision shall be modified so as to make it valid and enforceable, and as so modified the entire
Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall
be construed to be a waiver of any rights or remedies available to it.

i. Abstract

This Open Geospatial Consortium (OGC) standard defines the conceptual model for the OGC CDB
Standard. The objective of this document is to provide an core conceptual model for a CDB data
store (repository). The model is represented using UML (unified modeling language). The
conceptual model is comprised of concepts, schema, classes and categories as well as their
relationships, which are used to understand, and/or represent an OGC CDB data store. This enables
a comparison and description of the CDB data store structure on a more detailed level. This
document was created by reverse-engineering the UML diagrams and documentation from the
original CDB submission [1: OGC Common DataBase Volume 1 Best Practice, 2015
https://portal.opengeospatial.org/files/?artifact_id=61935] as a Dbasis for supporting OGC
interoperability. One of the important roles of this conceptual model is to provide a UML model that
is consistent with the other OGC standards and to identify functional gaps between the current CDB
data store and the OGC standards baseline. This document references sections of Volume 1: OGC
CDB Core Standard: Model and Physical Database Structure [OGC 15-113r5].

The simulation community uses the term “synthetic environment data” to mean all
the digital data stored in some database or structured data store that is required for

NOTE use by simulation clients. From the geospatial community perspective, these data
are essentially the same as GIS data but with, in some cases, special attributes, such
as radar reflectivity.

ii. Keywords
The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, UML, conceptual model, raster, tiles, vector, CDB, Common Data Base,
simulation, visualization, synthetic environment.

iii. Preface

The industry-maintained CDB model and data store structure has been discussed and demonstrated
at OGC Technical Committee meetings since September 2013. This document, the first UML
conceptual model for OGC CDB standard, is one of the 15 documents that comprise the OGC CDB
modular standard. The UML conceptual model establishes a single set of consistent concepts that
could be also implemented using other encoding mechanisms.

The CDB standard is originally based on the OGC CDB Best Practice documents, which were
submitted to the OGC by CAE Inc. on behalf of the CDB implementation community and user group.
CDB is currently widely implemented in the defence and aviation simulation communities. The
intent is that this initial OGC version of the CDB standard be backwards compatible with existing
implementations but that terminology and concepts be aligned as appropriate with the OGC
technical baseline. Future work is planned to align the standard with other OGC standards and to
provide Best Practices focused on how to use CDB with the existing OGC standards baseline, such as
CityGML, Web Map Service (WMS), Web Feature Service (WFS), and Web Coverage Service (WCS). A
GeoPackage capability was defined for version 1.2 of the OGC CDB standard.

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any

https://portal.opengeospatial.org/files/?artifact_id=61935

or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

iv. Submitting organizations
The following organizations submitted this Document to the Open Geospatial Consortium (OGC):
Organization name(s)

* CAE Inc.

e Carl Reed, OGC Individual Member

e Envitia, Ltd

* Glen Johnson, OGC Individual Member

» KaDSci, LLC

* Open Site Plan

* University of Calgary

» UK Met Office
The OGC CDB standard is based on and derived from an industry developed and maintained
specification, which has been approved and published as OGC Best PracticeDocument 15-003: OGC
Common DataBase Volume 1 Main Body. An extensive listing of contributors to the legacy industry-

led CDB specification is at Chapter 11, pp 475-476 in that OGC Best Practices Document
(https://portal.opengeospatial.org/files/?artifact_id=61935).

v. Submitters

All questions regarding this submission should be directed to the editor or the submitters:

Name Affiliation

Sara Saeedi University of Calgary
Steve Liang University of Calgary
Carl Reed Carl Reed & Associates
David Graham CAE Inc.

vi. Future Work

The CDB community anticipates that additional standardization will be required to prescribe
content appropriate to targeted simulation applications. In its current form, the CDB standard does
not mandate synthetic environmental richness, quality and resolution. In Version 1.1, additional
informative clauses were incorporated that provide guidance on how to include and encode global
(data store wide) and local (data set specific) geospatial metadata.

https://portal.opengeospatial.org/files/?artifact_id=61935

The OGC CDB Standards Working Group (SWG) members understand there is a requirement for
eventual alignment of the CDB standard with the OGC/ISO standards baseline. In Version 1 of the
CDB standard, effort was invested to begin aligning terminology and concepts, specifically in the
coordinate reference system discussions and requirements.

The current version of the CDB standard is fully backwards compatible with version 1.0 of the CDB
standard as defined and implemented by the current CDB implementer and user community. The
requirements for a CDB data store are focused on the ability to store, manage, and access extremely
large volumes of geographic content. In this version of the standard, initial harmonization with the
OGC and ISO standards baseline has begun. For example, where appropriate, the CDB simulation
community terms and definitions have been replaced with OGC/ISO terms and definitions. Further,
the standards documents have been reorganized and structured to be consistent with the OGC
Modular Specification Policy. However, the CDB SWG and community recognize the need to further
harmonize and align this standard with the OGC baseline and other IT best practices. There has
already been considerable discussion in this regard.

Based on such discussions and comments received during the public comment period, the following
future work tasks are envisioned:
1. Describe explicitly how the CDB model may or may not align with the OGC DGGS standard;

2. Provide best practice details on how to use WMS, WFS, and WCS to access existing CDB data
stores. This work may require Interoperability Experiments to better understand the
implications of these decisions;

3. Extend the supported encodings and formats for a CDB data store to include the use of the OGC
GeoPackage, CityGML, and InDoorGML standards as well as other broadly used community
encoding standards, such as GeoTIFF. This work may require performing OGC Interoperability
Experiments to better understand the implications of these decisions.

4. Further align CDB terminology to be fully consistent with OGC/ISO terminology.

Making these enhancements will allow the use and implementation of a CDB structured data store
for application areas other than aviation simulators.

vii. CDB Document Guide
This document contains a number of annexes related to the OGC CDB Core standard.

For the purposes of being able to cross reference this OGC Best Practice with the previous versions
of the CDB standard, the following annex “crosswalk” is provided.

OGC CDB Best Practice and CDB 3.2 OGC CDB Standard Version 1.0

Formerly Annex A10 in Volume 2 Annex B Rationale: Sensor Simulation -
Achieving Device-Independence

Main Body: Rationale for using JPEG Annex C Reasons for Using JPEG

Formerly Annex B in Volume 2 Annex D: TIFF Implementation Requirements

Formerly Annex D in Volume 2 Annex E: ShapeFile dBASE III Guidance

Formerly Annex A.11 in Volume 2 Annex F: Annex F Rationale: Partitioning the

Earth into Tiles

Formerly Annex A.12

Formerly Annex A.17 Volume 2
Formerly Annex U, Volume 2
Formerly Annex E, Volume 2
Formerly Annex M, Volume 2
Formerly Annex O, Volume 2
Formerly Annex Q, Volume 2
Formerly Annex R, Volume 2

Formerly Annex S, Volume 2

Annex G Rationale: Importance of Level of Detail
Annex H: JPEG Informative annex

Annex I ZIP File Informative annex

Annex J: Light Hierarchy

Annex M: CDB Directory Naming and Structure
Annex O: List of Texture Component Selectors
Annex Q: Table of Dataset Codes

Annex R: Derived Datasets within the CDB

Annex S: Default Read and Write values to be
used by Simulator Client-Devices

For ease of editing and review, the standard has been separated into 16 Volumes, one being a

schema repository.

* Volume 0: OGC CDB Companion Primer for the CDB standard (Best Practice).

* Volume 1: OGC CDB Core Standard: Model and Physical Data Store Structure. The main body

(core) of the CDB standard (Normative).

* Volume 2: OGC CDB Core Model and Physical Structure Annexes (Best Practice).

e Volume 3: OGC CDB Terms and Definitions (Normative).

* Volume 4: OGC CDB Rules for Encoding CDB Vector Data using Shapefiles (Best Practice).

¢ Volume 5: OGC CDB Radar Cross Section (RCS) Models (Best Practice).

» Volume 6: OGC CDB Rules for Encoding CDB Models using OpenFlight (Best Practice).

e Volume 7: OGC CDB Data Model Guidance (Best Practice).

» Volume 8: OGC CDB Spatial Reference System Guidance (Best Practice).

Volume 9: OGC CDB Schema Package: http://schemas.opengis.net/cdb/ provides the normative
schemas for key features types required in the synthetic modelling environment. Essentially,
these schemas are designed to enable semantic interoperability within the simulation context
(Normative).

Volume 10: OGC CDB Implementation Guidance (Best Practice).
Volume 11: OGC CDB Core Standard Conceptual Model (Normative).

Volume 12: OGC CDB Navaids Attribution and Navaids Attribution Enumeration Values (Best
Practice).

Volume 13: OGC CDB Rules for Encoding CDB Vector Data using GeoPackage (Normative,
Optional Extension).

Volume 14: OGC CDB Guidance on Conversion of CDB Shapefiles into CDB GeoPackages (Best
Practice).

Volume 15: OGC CDB Optional Multi-Spectral Imagery Extension (Normative).

viii. Terms, Definitions, and Abbreviations

http://schemas.opengis.net/cdb/

Please refer to Volume 3: Terms and Definitions for terms wused in this document
(http://www.opengeospatial.org/standards/cdb). Abbreviations used in this CDB Volume are:

BMT Base Material Table

CMT Composite Material Table

DEM Digital Elevation Model

DIGEST Digital Geographic Exchange Standard

DGIWG Defence Geospatial Information Working Group

FDD Feature Data Dictionary

LOD Level of Detail

SEDRIS Synthetic Environment Data Representation and Interchange Specification

UHRB Ultra-High Resolution Building (data)

http://www.opengeospatial.org/standards/cdb

Chapter 1. Overview of the OGC CDB
Conceptual Model

A conceptual model is a representation of a system, made of the composition of concepts which are
used to help people know, understand, or simulate a subject the model represents. A documented
conceptual model represents 'concepts' (entities), the relationships between them, and a
vocabulary. This document details the conceptual model for a CDB data store.

In this document, conceptual modelling is used as a structural methodology for describing how the
components of a CDB data store may be implemented based on the requirements amd guidance
specified in the OGC CDB Core Standard. The following table defines the general CDB data store
requirement and an overview of key elements implemented in a compliant CDB data store.

Requirement Class

1

Req. ID http://opengis.net/spec/CDB/1.0/core/OveralConceptualModel
Dependency Requirements as specified in the OGC CDB core document

Req. Text A minimum compliant CDB shall contain the version metadata.

When any dataset is provided in a CDB, that dataset shall comply
with the corresponding mandatory requirements of the OGC CDB
Core Standard (Volume 1 http://www.opengeospatial.org/
standards/cdb).

This section describes the conceptual model for an OGC CDB compliant data store. This model can
used as the basis for the CDB standard in other application domains, along with its requirements,
extension, file-based structure, data formats, access, and the discovery of services.

http://opengis.net/spec/CDB/1.0/core/OveralConceptualModel
http://www.opengeospatial.org/standards/cdb
http://www.opengeospatial.org/standards/cdb

class OGC CDB Conceptual Model
Tile
+ Geooellexent COE Metadata
+ Geocell_length D + COE_Attributes
+ Refemnce_Coordinate | _ —-——— El + Confguration
|_:‘:| + Tle-sze |"_| + Defaultes
P El+FiIeStmemne
+has + Geomatics Attibutes
i [+Lights
I |j + Materials
Iy - m + Model_Components
Oat Set Layer |j + Vendor_Attributzs
+ name: String +isa |j + Versian
+ dataType: DeEFormat | — — — =
+ format
+ led: LOD LOD Hiemrchy
+ soums: String o @ o e
: [Ml e e e + LODrares-Cowemge
| é + Raged ayer
| g + VectorLayer
: DataFormats
| + 2DAD0D Model
. i + 2000
l—ﬂlmwﬁi————a}lj*' evation
[El + Festure
! .-"I__._I + Imageny P
- T % e
import import! /) import = impot
- T _
Elev ation £ Features I 20430 Model) Imagery
+DTED . EFD =] + RGB + GeoTiff
El +Shaps @ + OpenRight +NITF
+ UVMAP

Figure 1. Package diagram of OGC CDB data store conceptual model

The CDB data store structure is designed to provide efficient access to any location enabled content
accessible in the data store. The main properties of the CDB data store UML diagram are
documented below.

Name

Tile

LoD Hierarchy

Dataset

10

Definition

Geographically divides

Data type & Value
Dataset type.

the world into geodetic

tiles (bounded by
latitudes and
longitudes), each

containing at least a

dataset

Each dataset layer has

a LoD hierarchy.

Defines the basic

Hierarchy of raster,
vector and models.

Layers of data

storage unit used in a

CDB data store.

Multiplicity

One or more
(mandatory)

One (mandatory)

One (mandatory)

Models Includes 3D Model data formats Zero or more (optional)
representations of supported in CDB
cultural features and standard.
moving models such as
buildings, pylons and
posts, aircraft and
other moving
platforms. 3D models
have various model

components
Imagery There are various Image data formats Zero or more (optional)
imagery types in a CDB supported in the CDB
data store such as standard such as
representation of geo- GeoTIFF, JPEG 2000,
referenced terrain, etc.

elevation, and texture.

Vector Features This includes all the Vectors data formats Zero or more (optional)
vector feature datasets supported by the CDB
in a CDB which are such as shapefile and

defined based on the etc.
Feature Data
Dictionary.

Elevation Depicted by a grid of Grid of terrain Zero or more (optional)
elevation data elements altimetry data
at regular geographic
intervals, which
include DEM,

MinMaxElevation and
MaxCulture [2: The
values of this
component are based
on the heights of
culture features with
respect to the
corresponding LoD of
the culture, be it its
bounding sphere, its
bounding box or its

modeled

representation (if

supplied).].
Metadata/Controlled CDB XML files that XML association one or more
Vocabularies include the default (mandatory)

hierarchies, naming,
and values to be used
by client devices.

As it can be seen in Figure 2, the CDB standard relies on three important concepts to organize
geospatial data: Tiles, Layers (or datasets) and Levels of Detail (LoD) which are described here.

* Tiles: Tiles organize the data into zones defined by location with respect to a WGS84 reference

11

system [3: Please see CDB Spatial Reference System Guidance - Volume 8]. The CDB storage
structure allows efficient searching, retrieval and storage of any information contained within a
CDB data store. The storage structure portion of the standard geographically divides the world
into geodetic tiles (bound by latitudes and longitudes), each containing a specific set of features
(such as terrain altimetry, vectors) and models (such as 3D and Radar Cross Sections models),
which are in turn represented by their respective datasets. The datasets define the basic storage
unit used in a CDB data store. The geographic granularity is at the tile level while in each tile,
the information granularity is at the dataset level defined by layers.

Layers: Layers organize different types of data in a tile. The CDB standard data store model is
also logically organized as distinct layers of information. The layers are independent from each
other (i.e., changes in one layer do not impose changes in other layers).

Levels-of-Detail (LoDs): LoDs organize the data in each layer of each tile by its detail. The
availability of LoD representations is critical to real-time performance. Most simulation client-
devices can readily take advantage of an LoD structure because, in many cases, less
detail/information is necessary at increasing distances from the viewpoint of a simulation
rendering. The CDB standard requires that each geographic area be represented in an LoD

)y
Layers y
N Imagery(s)

One CDB Geocell

hierarchy in accordance with the availability of source data.
, & N

Level of
details
(LoD)

Altimetry

Materials

Features

Lights

> 3D Models

One CDB World | One Earth Slice (zone) One CDB Tile | One CDB Layer (Dataset)

Figure 2. CDB data organization structure

12

Chapter 2. CDB General Data Organization

The CDB is composed of several datasets that share a common structure. The following sections
present the general organization and structure of all CDB datasets. The CDB standard does not
define or enforce an operating system or file system. Nonetheless, the implementation of a CDB
storage sub-system must conform to absolute minimum file system requirements called for by the
standard. A CDB data store uses existing common file formats for storing data in various formats
such as TIFF/GeoTIFF (raster data), JPEG 2000 (imagery data), OpenFlight (3D models), GeoPackages
(vector data and radar cross sections), ShapeFiles (vector data and radar cross sections), SGI image
format aka RGB (textures), XML (Metadata) and ZIP (file collection). The current version of CDB
uses a consolidation of data dictionaries from DIGEST, DGIWG, SEDRIS and UHRB (See Volume 3:
CDB Terms and Definitions). In addition, it is possible to extend the CDB Feature Data Dictionary
(FDD) by using the extension capabilities and adding a new FDD XML schema file to access
additional feature data codes. The UML diagram in Figure 3 describes how the data is categorized
in tiles, layers and LoDs. This is the basis for the CDB geospatial data categorization.

13

sispoyy Bumopy + [

E

anpE] + =

ameubis + m

1=papy Bumap + W
1=papy Bumay + W

=]

[=poyy (saidh joag + B
=]

2R aypadgoag + m
=]

fEEwosg + m
sige1spagmimesy + £
=]

Giepemawhadinssg + m
siapon gz + B

12popaE
R
by
\
P puymo _‘ovugz_“xmn_yﬁmn_e - | | pot = 1 x=pup=pioy 7
o _ Enm@?mzﬂ&%a ", eEgARNIRq0ID _

200=w1

WX ey -

soydussaginy

IeuaEp

(@I hesagen= 1" Hd +

“Md*

EFET LN =18 LIME

HIOILN| A xEw

HIOILIN| X ¥EwW

DIEINNN AU
1X31 SWeU 2|98} Hd.

uonebiney

s0INas =
Buigg sweu -
ao1 -

b= FTT . TR
adijeEp -

1afeq
£ mimEagr

2

lEkgen=n " \d +

AL

L =439231N 1
0=H393LNI 133 00T -

mEw .

1%L BWEU3(9E} W
«LULIN|oO»

El

XOENOOT

B EGENA0T

uoRduosa000T

EO0E =1l XSpuUSPIo) -

HIOMGSBUI IO Y

#0ZT =11 um_u:__«“n_e 5

ZOL = Ul XSPUSPIO) -
sHY -
ssinqume -

B2 04035

wadf | simeage

!

LOZ = Jul xSpuisplo) -

én?ﬁzﬁn_u,max
_—— |

_ h_‘{.uﬁ__.e.u_,__".m.#_

uogEnI|FUIELIE]

uopEASIZAPIL

100 =1 ESPUESPID) -

T00 =1

«adf | 2imeaqs

00 = Ju! cepuSPIoy -

aunynoxen

- i
vl P BUENg -
i i #00 = W1 XSPUSPID) -
00Z = x3pulEiNch - gz =Aul xspupspioy - Heq -
A il
leuzEpaoeanl | 1 songaypeoypey _ LsA
[i

L

Wi

wasig

soepngpsiEnbusy] + W

11039 JEWIDY -

w3df | SnjEs 4>

=omngs -
L] e
msey adiEEp -

FBusi) + W
NIL + W
opEgaepng + [E]
3| BusSy + £

fusBewy

e

i Epnpbuo) -
i EprmE -
anEopul -
szg= -

gEuoz -

\BSHGENA0T

WEHSCI0USBSYEINE, -
[BASTSOUSDYUSDEDISA -
fomncoyeonEs, -
WISASS0USSISY|EIUSTIOY -
|SASTEOUSPYUCBIUSZIOY -

fommooy|BuszZIoY -

_ =EallL

l#0oagy

s _ Ejeguogena|y

a.ma_a._.m__.:mmur

511300305311 SSEID

Figure 3. UML diagram of the CDB general data organization

This diagram is the general data organization for the CDB. The main properties of the CDB general
14

data organization UML diagram are documented below.

Name Definition

Data elements are
organized into a
regular grid evenly
positioned. Raster
Datasets always have a
fixed number of
elements
corresponding to their
LoD specification.

Raster Dataset

Data type & Value

Raster data formats
supported in CDB Core
Standard for elevation,
imagery, texture and
grid data.

Multiplicity

Zero or more (optional)

Vector The point, the lineal, RMDescriptor, Zero or more (optional)
Dataset and the areal (polygon) GSFeature, GTFeature,
features of the CDB are Geqpolitical,
;)]rg?mz];ectmt? sevccelral VectorMateria,
ector Datasets an
RoadNetwork,
into LoDs. For each CDB RoiR edle\ilor K
LoD, the maximum al oa. etwork,
number of points PowerLineNetwork,
allowed per Tile-LoD ~ HydrographyNetwork,
and the resulting
average Feature vectors(Shape)
Density is defined.
Model Dataset Includes 3D GTModel, GSModelGeometry, Zero or more (optional)
GSModel, MModel & 2D GSModelTexture,
Model or culturaI. GSModelSignature,
felatlflre sucll; "’_‘lsd‘"’_ur GSModelDescriptor,
platiorms, bulldings - oy 1o qelMaterial,
and pylons and posts.
sbimodelsihayelvarious GSModelInteriorGeome
model components.
try,
GSModellnteriorTextur
e,
GSModelInteriorDescri
ptor,
GSModelInteriorMateri
al, GSModelCMT,
T2DModelGeometry,
OpenFlight models
Navigation Navigation library is NavData Zero or more (optional)

composed of a single
dataset.

2.1. LoD and Geocell

This section shows the relationship between the tile structure, layers and LoDs. As can be seen in
Figure 4, any TileGeoCell class may have any number of layers and each layer is associated with a

15

LoD matrix set.

class TileGeoCell

| TileGeoCell

+ Laye(0d."]

+ LOD

- boundingBox
- CRsS

- cellsSize

- Lat

- leng

LODDescription Summary

LODMatriz |_|

1
wozlumns
“PK table_name: TEXT

1.- * LOD level: INTEGER=0

— * matrix_width: INTEGER =1
LODMatrix Set - matix_height: INTEGER =1
= pixel_x_size: DOUBLE =1
pixel_y_size: DOUBLE = 1

LODMatrixSet = «Fta
+ PK_TileMatrixTEXT)

=Calumnz
“PH table_name TEXT
min_y: NUMERIC

max_x INTEGER
max_y. INTEGER
numVertex: INTEGER

Pk
+ PH_TileMatixSef TEXT)

Figure 4. UML diagram of the Geocell, tile and LoD concept

2.2. CDB File System

This section describes how a current version of a CDB conformant data store uses the computer’s
native file system to store data in files and directories, what the CDB versioning structure is, and
how the data is categorized. Further, this section defines the structure of a CDB conformant data
store, i.e., the name of all directories forming the CDB hierarchy, as well as the name of all files
found in the CDB hierarchy. An important feature of the CDB standard is that all CDB file names are
unique and that the filename alone is sufficient to infer the path of the file.

The CDB data store is composed of several datasets that usually reside in their own directory.
However, some datasets share a common structure. The top-level directory of the CDB data store
follows the following structures.

* \CDB\: This is the root directory and does not need to be “\CDB\” and can be any valid path name
on any disk device or volume under the target file system it is stored on.

* \CDB\Metadata\: This directory contains the specific XML metadata files which are global to the
CDB.

* \CDB\GTModel\: This is the entry directory that contains the Geotypical [4: A model is said to be
geotypical if it instanced multiple times within a CDB data store. Geotypical models correspond
to representative (in shape, size, texture, materials and attribution) models of real-world
manmade or natural 3D cultural features.] Models Datasets.

* \CDB\MModel\: This is the entry directory that contains the Moving Models Datasets.

* \CDB\Tiles\: This is the entry directory that contains all tiles within the CDB instance.

16

* \CDB\Navigation\: This is the entry directory that contains the global Navigation datasets.

Most of the CDB datasets are organized in a tiled structure and stored under \CDB\Tiles\ directory.
The tiled structure facilitates access to the information in real-time by any runtime client-devices.
However, for some datasets such as Moving Models or Geotypical Models that require minimal
storage, there is no significant advantage to their being added into such a tile structure. Such
datasets are referred to as global datasets. They consist of data elements that are global to the earth.

A CDB Version is a collection of CDB and/or user-defined datasets. A CDB Version contains data
belonging to a single version of a CDB conformant data store. One CDB Version may refer to
another one, which is the basis for the CDB File Replacement Mechanism. The concept of a CDB
Version is illustrated using the following UML diagram (Figure 4).

17

class CDB Versioning Configuration /

COBE Configuration

+ CDB Version Lists
+ Comment

4

1.=

i

CDBVersionList

+ (CDB5SpecificationVersion

+ CDBVersion
. 1.7

CDBVersion

CDB Datasets

Comment
Fath

-
+
+ CDBVersion
+
+

CDBSpecificationVersion

CDBDatasat

a.-
UserDataset

winterfaces
String::

File SystemElement

Iroot, leaf}

+ datehodified
+ name
+ permissicns

+ isContainer()

Directory

= name

File

add{FileSystemElement)
delete{FileSystemElement)
find{})

list{)

T

filename: Siring
size
type

getMame{)
open()

Figure 5. UML diagram of CDB version concept

The diagram shows that a CDB Version contains CDB Datasets. In addition, it states which CDB
Version Number has been used to build the CDB content. Finally, the CDB Version has a reference to
another CDB Version. This reference allows the creation of a chain of CDB Versions. By chaining two
CDB Versions together, the user can replace files in a previous CDB Version with new ones in a
newer CDB Version data store. The diagram shows that a CDB Extension inherits all the attributes of
a CDB Version and adds its own attributes, a name and a version number (of the extension). The
client application checks the name attribute to recognize and process known CDB Extensions and

unrecognized CDB Extensions are skipped.

18

2.3. Model Type

The term Model refers to all of the modeled representations of a cultural feature. The model type
features of a CDB can be represented using the following UML diagram. 3DModel, referred to as a
GSModel, is unique. In the case where the 3DModel is instanced, it is referred to as a GTModel. A
3DModel that is capable of movement is called a MModel. In the case where a MModel is positioned
by the modeler, it is called a statically-positioned MModel.

class ModelType

Model_Type |

+ Desoripior{Metadat] FeatureCodeTable ||

+ Feature_Attribute >

+ Geometry q

S
p + MlDdEI_LOD S
/_/ + Size . -
-
s II _\ ai mMports
i e
,“'mpm” simports zimports ~
A V Y N

e 3DGSModel | 3DGTModel | T2DModel
+ Convention + Areal_3DGeometry + Attribute + Areal_ZDGeometry
+ Damage State = + Attribute = + Material = +Line_2DGeometry
+ Desoiptormetadata) + Line_3DGeometry + Point_3DGeometry + Point_2DGeometry
=i
'+ Exterior Zone + Mateial + Shape + Texture
+ Footprint Zone + Point_3DGeometry + Bize
+ Geometry + Shape + Texture
+ Interior Zone + Size
+ Signature + Texture
+ Texture
=l
+ Zone

Figure 6. UML package diagram of the model type

The term Model-LoD refers to a specific level of detail of a Model. The main properties of the CDB
2D/3D model type UML diagram are listed below.

Name Definition Data type & Value Multiplicity
Model_Type The modeled 3D model formats Zero or more (optional)
representation of a supported by the CDB
feature primarily such as OpenFlight
consists of its geometry
and textures and
encompasses its
exterior and interior.
3DGTModel Geotypical 3D Model is 3D model formats Zero or more (optional)
a geotypical supported by the CDB

representation of a
point-feature that is
anchored to the
ground.

such as OpenFlight

19

3DGSModel Geospecific 3D Model is 3D model formats Zero or more (optional)
geospecific supported by the CDB
representation of a such as OpenFlight
point, lineal- or areal
feature that is
anchored to the

ground.

T2DModel Tiled 2D Model is 2D model formats Zero or more (optional)
geospecific or supported by the CDB
geotypical such as shapefiles

representations of
lineal and areal
(polygon) features that
are anchored to the

ground.
3DMModel 3D modeled 3D model formats Zero or more (optional)
representations of supported by the CDB

point-features that are such as OpenFlight
not anchored to the
ground.

2.3.1. 3D Moving Model

A moving model is typically characterized as if the feature can move (on its own) or be moved.
More specifically within the context of this standard, the model is not required to be attached to a
cultural point feature (geographic location).

class Moving Models
IOModal: Moded_Typs
+ dignlficaniSine Ske
+ lod 3DModel LOD
+ fmmat
+ geomely
+ miodel LODkum Ot ke =) Ol 5_Coda
+ modelLODSkgnlnentEza) —
r - i i
+ im0 e LD T fu e e i wll on) +0IE_Code # domakr ki
» ' 3 ‘ \ # cownfry:Int
masa # cakegany It
: nasz hz=a gar;
a2 : # =ubcakegon: it
& x # Tecizin
- ¥ extm:int
Geomstry
Taxturs Descripior Sgnaturs + get_ OIS Codef)
+ format - = + =t OIS Code(f vold
+ cojecitode + fommat + LnikiEpping
+ Bcehbde
+ mEdmhde
+Comention
Footprint Zons |
+ 1:-:-:1r|15-:u‘u:|l‘r5-:-x|
samEgesEE Convention Znne g
Damage_3kts + coondi@ieSygem + bEoxopilonal) ,,,“""V
+ ariglon +Zone |+ modes
+ damageFementzge; Int i + J.,? = + IONEhEme I rior Zona
+ damagediae: Sng + maz + comment
+EmaE_sme o + mewAllr + IntenarSoundingeo
+ configuration + maenalindex \\i\
+ mEme + maTempElE
 —_
Exterior Zone
+ exieioSoundingBox

Figure 7. UML diagram of the 3D moving model

20

During the course of a multi-player simulation, each client-device is typically solicited to provide a
modeled representation of each player. The activation of such players requires the client-device to
access the appropriate modeled representation of each player. There are a large number of
simulations where the player types are characterized by their Distributed Interactive Simulation [5:
IEEE 1278 series Distributed Interactive Simulation.] (DIS) code. To this end, the CDB data store
provides a moving model library whose structure provides a convenient categorization of models
by their DIS code as shown in the following diagram.

class Moving Mote] Coms

Moving Model Coms| L unn Kind C:oma in Calegony |
- +3":"“3|_:'_‘_ +Category
+ xml_verson Siing + code_hame: Code_MName + @de_Mame: Oode_Name ——"1+ oode_hame:Code_kame
1255 0258 0_256
Com_Mama
+ code: unsignedsye
+ name: Sring

Figure 8. UML diagram of moving model codes

The “xml_version” attribute of a moving model code is used to indicate the version of the XML file
containing the list of codes. It is independent from the version of the Standard and also the version
of the Schema.

2.4. Vector Data Model

Tiled vector data differs from their raster counterpart in three important ways. First of all, the tiled
vector data internal structure permits a non-uniform distribution of elements within the tile: i.e.,
the position of each element within the tile is explicit. Secondly, the tiled vector data’s internal
structure permits a variable number of elements within a tile’s boundary. Finally, the distribution
of the element types from a single list can be controlled.

Conceptually, the LoD for tiled vector data implicitly provides the average density of elements
within the tile. The run-time LoD behavior that controls the rendered number of data elements
depends on various parameters and on the off-line filtering process.

21

class Vecor /)

Tiles GeoCells::
VectorDataTable

Tile sGe oCells Attinfo

format = Shapefile
CRS = WG584

]
ectorAttibute

CoordinateReference System

- AttributeStatus = Mandabry| +hass|- Stinbut
- bounc
Tiles GeoCells:: aGeometys aGeometrys aGeometrys
VectorAttribute TilesGeoCells: TilesGeoCells: TilesGeaCells:
PointFeature LinearFeature ArealFeature

TilesGeoCells
ClassLev elAttribute

Tiles GeoCells::
Ins & ntle ve R tribute

TilesGeoCells::
ExtendedLeve A tribute

- position: Podtion[4 .

aGeometrys
Triangula ted5 urface

aGeomeys
Triangle

stopLin ineSrin
- beakines LineString
con rolPoint: Point

Figure 9. UML diagram of vector data model

22

Chapter 3. Metadata and Controlled
Vocabulary Schema

Metadata and controlled vocabulary datasets contain information, global to a CDB implementation
that defines its structure, naming hierarchies, default values, allowable values, and status. All
metadata files are formatted using XML files, and their XSD schemas can be found in the
\CDB\Metadata\Schema) folder delivered with the CDB Standard.

3.1. Light Names Hierarchy

The light name hierarchy for a CDB compliant data store is described in detail within the table
found in Volume 2 Annex] of the OGC CDB Core Standard [6: http://www.opengeospatial.org/
standards/cdb]. This Annex provides a description of the entire naming hierarchy, including the
hierarchical relationship of the levels with respect to each other and the position of each light type
within this hierarchy. To this end, the lights hierarchy definition controlled vocabulary is stored in
an XML file in the metadata CDB directory. “Lights.xml” file contains the name of each light type
and a unique code with each light type. Light codes have a one-to-one association with light types;
consequently, the light codes are unique among all light types. For run-time access of this data,
clients must be able to retrieve such information. The below diagram (figure 9) shows the UML
diagram of light data hierarchy to define and validate the content of the CDB light names hierarchy
found in /CDB/Metadata/Lights.xml.

class Lights

Light Version I
+ type: .str?ng)] + major: positivelnteger
+ desoription: string [0..1] +wesion 11|+ minor nonNegetivelnteger
+ oode: string

Figure 10. UML diagram of light names hierarchy

This attribute “Version” represents the version number of the Light.xml file.

3.2. Client Specific Lights Definition

Client-devices use the light type code as an index to lookup the client-specific properties and
characteristics of each light type using a Lights_xxx.xml. The CDB standard offers a complementary
approach to modifying the appearance of lights. This approach provides basic control over light
intensity, color, lobe width and aspect, frequency and duty cycle for potential use by simulation
implementations. This approach also permits a modeller to add new light types to the CDB light
hierarchy. The below UML diagram (figure) presents the schema for the fields of the Lights_xxx.xml
which is generated from the schema file located at \CDB\Schema\Lights_Tuning.xsd.

23

http://www.opengeospatial.org/standards/cdb
http://www.opengeospatial.org/standards/cdb

class Lights_Tuning

Light

desoription: string [0..1]
intensity: decimal [0..1)

frequencgy: decimal [0..1] | Lobe_Width
duty_Cycle: decimal [0..1]

+ horizontal: decimal

residual_|ntensity: decimal [0..1] + yertical: decimal

type: normalizedString
color: Color [0..1]
lobe_Width: lobe_Width [0..1]

+ o+ *

+light

Light_Tuning

Figure 11. UML diagram of client specific lights definition

3.3. Model Components Definition

The CDB Standard provides the means to unambiguously tag any portions of a 3D model (moving
model or cultural feature with a modeled representation) with a descriptive name. Component
model names are stored in the model components’ definition file, at
\CDB\Metadata\Model_Components.xml which is delivered with the standard distribution package.

class Mudel_Curnpunenti/

Meodel_Components |

+ component: List<Component=

| Component |

+ desoiption: String
+ name: String

Figure 12. UML diagram of the model components definition

CDB Model Components is a list of components which are made up of the component names along
with their descriptions.

3.4. Base Materials Table

A Base Material represents a basic material such as water, vegetation, concrete, glass, or steel. Each
Base Material used in a CDB data store has a unique name. The components of a Base Material are
listed in Volume 1 Section 2.5.1 of the CDB Core standard in Table 2-6: Components of a Base
Material. A Base Material Table (BMT) is provided for run-time access by client applications. More
details on the file format can be found in Volume 1 Core Standard section 5.1.3, Base Material Table.
CDB Base Materials are listed and stored in an XML file named \CDB\Metadata\Materials.xml. The
format of the file is defined by the following UML diagram generated from an XML schema that is
delivered with the CDB standard in the file named \CDB\Metadata\Schema\Base_Material Table.xsd.

24

class EI-aEE_Material_TahlE/

Base_Material |] | Version
KML_Version
+ Desoripticn: string [0..1] + major: positivelnteger
+ version: sting ‘ + mineor: nonMegativelnteger
.-
\\ 1.1 0.1
+Base_Material
+\ersion
+¥ML_Version

|~

Base_Material_Table: | |

= Source [0..1]

Figure 13. UML diagram of the base materials table

The main properties of the base materials table UML diagram are documented below.

Name Definition Data type & Value Multiplicity
Base_Material This element defines XML One or more
one CDB Base Material (mandatory)
by giving it a unique
name. It is

recommended to
provide a description.

XML_Version This element indicates string One (mandatory)
the version of the XML
file containing the list
of CDB Default Values.
It is independent from
the version of the
Standard.

Version This attribute Version One (mandatory)
represents the version
number of this file.

3.5. Composite Material Tables

Composite Material Tables provide a structured arrangement by which Composite Materials can be
defined. There are several Composite Material Tables spread across the CDB hierarchy. A CMT is a
list of one or more composite materials. Note that all Composite Material Tables follow the
following UML diagram.

25

class Composite_Material_Table /

Substrate Material

+haterial

name: String
1..°|+ weightPercentage: Weight

+ tickness: PositivelDecimal

N
+

o S

+Secondary_5Su bﬁtratﬁ\ +Primary_Substrate +5Suface_Substrate
i

Composite_Material |

+ name: string [0..1]
+ index: nonMegativelnteger
+ id:int

Version

+ major: positivelnteger
+ minor: nonMegativelnteger

1. 7 11

+Composite_Material /

‘ Composite_Material_Table [-]

Figure 14. UML diagram of composite material tables

The main properties of the composite material tables’ UML diagram are documented below.

Name Definition Data type & Value

Composit_Material Each composite XML
material has a unique
identification number,

a name, and one or
more substrates.

Material Each material is Array of strings
identified by the name
of its base material and
by its proportion in the
substrate. This class has
a weightPercentage
which is an integer in
the range [1,100].

Substrate A substrate has a positive decimal
certain thickness and is
composed of one or
more base materials.

Version This attribute Version
represents the version
number of this file.

3.6. Default Values Definition Table

Multiplicity

One or more
(mandatory)

One or more
(mandatory)

One or more
(mandatory)

One (mandatory)

Default values for all datasets can be stored in the default values’ metadata file

26

“\CDB\Metadata\Defaults.xml”. Default values, defined throughout the CDB standard, are listed in
Volume 2 Annexes for the Core CDB Standard (normative) - Annex S and the below UML diagram
indicates the schema provided in \CDB\Metadata\Schema\Defaults.xsd to define and validate the
content of Defaults.xml. There are two types of default values: read and write default values (‘R’ or
‘W’.) Generally, read default values are values to be used when optional information is not
available. Write default values are default values to be used by CDB creation tools to fill mandatory
content when information is either missing or not available. The default value name is a unique
name identifying a default value for a given dataset. Valid default value names are listed in Annex
S. Each default value has a type. Valid default value data types are “float”, “integer” and “string”.

class Defaults

HXML_Version |

+ wersion: string ‘

+version

Default_Value_Table: :: D
Default_Value

“PK dataset [0..1]
name: string
description: string
type: string
walue: string
r_W_Type: string

aPk
+ PH_Default_Valuel)

Figure 15. UML diagram of the default values definition table

The “XML_Version” attribute is used to indicate the version of the XML file containing the list of
CDB Default Values. It is independent from the version of the standard.

3.7. Version

Each CDB version has a version control file that is called Version.xml. Its contents should be defined
and validated by the following UML diagram which is generated from the content of Defaults.xsd in
the schema folder of the CDB.

The optional <PreviousIncrementalRootDirectory> element is used to refer to another CDB Version.
This is the mechanism used to chain together two CDB versions. The mandatory <Specification>
element indicates the CDB standard that is used to produce the content of the CDB Version. Note
that version numbers of the standard are limited to the version numbers from the legacy industry-
maintained CDB specification, specifically 3.2, 3.1, and 3.0. For the OGC standard, allowed versions
are 1.0, 1.1, and 1.2. All the OGC versions are backwards compatible. Other values are not
permitted. Finally, the optional <Extension> element indicates that this CDB Version is in fact a CDB
Extension. A version control file that does not have a CDB Extension indicates that the CDB Version
holds content that strictly follows the CDB standard.

A CDB Extension corresponds to user defined information, which is not described or supported by

27

the CDB standard, stored within the CDB Version. As an example, such additional information could
be client or vendor-specific information used to increase system performance. Any user defined
information shall not replace or be used in place of existing CDB information. A CDB Extension only
contains vendor or device specific information.

class Version

Version

extension: Extension [0..1]

specification: Specification [0..1]

comment: String [0..1)

Comment: String [0..1]

previcuslinocrementalRoctDirectony: PrevicusInoementalRootDirectony [0..1)

+ + * + *

Extension | | Specification | ‘ PreviousincrementalRootDirectory

+ name: Sting
+ ext_wversion: String

+ spec version: String

+ name: String |

Figure 16. UML diagram of the version

3.8. Configuration

The CDB Configuration and CDB Version mechanisms allow users to manage the CDB by offering
the following capabilities:

* The CDB can have multiple simultaneous independent CDB Configurations.

* Each CDB Configuration is defined by an ordered list of CDB Versions.

* A CDB Version is either a collection of CDB Datasets or a collection of user-defined datasets

called a CDB Extension

The Configuration metadata file provides the means of defining CDB Configurations. The complete
XML schema is provided in /CDB/Metadata/Schema/Configuration.xsd delivered with the standard
and displayed below.

28

class Configuration /)

Specification
i Folder
e + wersion: sfting
+ name: string + path: string
+ wersion: string
0.1
™ - 1.1
+Extensicn -~
*. +Spedification *Folder
Version

+ comment: string [0..1]

e

+Wersion
1

Configuration::
Configuration

[+ comment: string [0..1]

Figure 17. UML diagram of configuration metadata

A single XML file, named Configuration.xml, completely defines the configuration of a CDB. This
way, the client application does not have to traverse the linked list of CDB Versions through the
'"PreviousIncrementalRootDirectory' element found in Version.xml. The main properties of the
configuration metadata UML diagram are documented below.

Name Definition Data type & Value Multiplicity
Configuration The CDB Configuration XML One or more
is a simple list of one or (mandatory)

more CDB Versions.

Extension Indicates that the CDB Array of strings Zero or more (optional)
Version contains
extensions to the CDB
Specification. The CDB
Extension is identified
by a name and a
version number.

Folder Provides a non-empty string One (mandatory)
path to a folder. A
relative path is
preferred although an
absolute path is
supported.

29

Specification Specifies the version of string Zero or more (optional)
the CDB
Specification/Standard
used to generate the
current CDB Version. If
'Specification' is
omitted, the version
number is deemed to
be 3.0. For the OGC
version of the standard,
the Version number is
1.0, 1.1, and so forth.

Version A CDB Version points to String One (mandatory)
the folder where the
data for that version
resides. An optional
comment can be used
to describe the version.
It is possible to indicate
to which version of the
CDB
Specification/Standard
the CDB Version
complies. Finally, the
CDB Version can
indicate if it contains
extensions to the
standard.

3.9. CDB Vector Attributes

The CDB attributes are listed and described in Volume 1: CDB Core section 5.7.1.3 CDB Attributes.
The controlled vocabulary for these attributes is stored in \CDB\Metadata\CDB_Attributes.xml and
the following diagram indicates the schema file as provided in the CDB schema folder,
Vector_Attributes.xsd. In essence, the file is the transposition of CDB Attributes into a format more
appropriate for a computer program.

30

class Vector_Aftributes

Lewvel
+ instance: Level Presence
+ cdlass: Level_Presence
- extended: Level_Presency
T
+Level
1 +Walu
Attribute |

ok

code: positivelnteger
desoription: String
deprecated: boolean
name: String

T
N\

+Attribute

Value
+ |EI'!gch p:::-éiti‘v'Eh'ltEgEl' [0..1] Value::Range
+ unit: positivelnteger [0..1]
+ scaler: positivelnteger [0..1] + Min: decimal [0..1]
+ type: String + Max: decimal [0..1]
+ format: String + interval: String
+ precision: String
+ range: Ranges
'2? 1.1
=)
Unit Secaler
name: String name: String

desoription: string
code: positivelnteger
symbaol: String
multiplier: decimal

desoiption: string
code: positivelnteger
symbcl: String

o4
ok ok ok

s
+5caler

+Unit

|

Vector_Attributes

wversion: Version
unigue_Attribute_Code: String
unique_Attribute_Symbol: String
unigue_Unit_Code: String
unique_Scaler_Code: String
scaler_Ref: String

+ o+ 4

Figure 18. UML diagram of the CDB vector attributes

The UML diagram is composed of three majors sections (i.e. attributes, units and scalers), the first
one being the most important. The file has a list of attributes, followed by two lists of units and
scalers that are referenced by an individual attribute. The main properties of the vector attributes’
UML diagram are documented below.

Name

Vector_Attributes

Version

Definition Data type & Value Multiplicity

Attributes are defined Vector Attributes
through 3 lists: 1) the

attributes themselves,

2) their units, and 3)

their scalers.

One (mandatory)

This represents the String One (mandatory)
version number of the

file which has two

components: major and

minor.

3.10. 3D Model Metadata

This following UML presents an XML schema file in the CDB schema folder which defines the
metadata associated with 3D models. These metadata are in accordance with the legacy industry-
maintained versions of the CDB specification and includes name, feature data dictionary, mass,
part, texture and materials.

31

class 30_Model_Maisdais /

Liis 0ITw oD olmals

1.1 ﬂll |'"I. 1.1
= e
N I —

A o A e i
Taxdum 2Coverage

M s |_M =i dats

mmmes S2ring

e infi floa Bon

= femture_ASrioute Catalog _Codes Featre _ASribute Catalog Code

e B e

pars Lm<Pan=-[1.4]

con fiqurations Lis< Configurations [1.]
textures Lis-Texmure [1..4]

Mozida |_M ads dad s Tax burs

kcin: o s it e
riche . o b it agear
s Shom - df chm
roup LSS 0]
name: soring

L e

i izenian - M g s

coyarage: Coverags [0

Modsl _Msisdais Fad

+ FOC DOSE]wE s ey

+ name=Ting

+ numFlas postveinfager= §

M oed=i_Meisdsis: Mass

= fotal_M == decimal
= meakdecima

Modesl_M sdndads
T mdure ;B roup

+ [posklveimeger
+ mame soring
= sypec =g

M e |_M admcda s

Configuration

=Composte_Materis]_Tabie

14

-+ i SH o Slom

=S momte_Mataris)

=+ dig EncRy_Tyoe DIS_Enthy_Type

Coomnpo siis _M ais risl

rem s - sring f0u1]
nides: mon MegaTveintager

Tabls |:|H

1. primary_SubTac SubFac
sriscs_ Subtract SulbTect [0.1]

scondary_Subract Subtract [0

O §_Enisly_Typs

kind - unsigne dBy e [0.1]

dioem al s wnsign ed Syt e [0_1]

DUy unsgnedshon [0.1]

o e oy - nsign e Eyde [0.1]
suncategory: unsgnedsy e j01]
spacH o unsigned By e [0.1]

exira: unsgnedsy e f0 1]

Bem Type: Lisnonbeg ativel meger] [00_1]

L R I

Faafurs_Afirbuls _Catslog_Cods

‘ Ichen i e o :

Moded_Meiadais ;300 nikg uradl on: ;tadion
[Exquiipen sn

| + e Code

= miboode nonfegateinteger 0-1]=0

+ name =ring
+ dig dentiication: DIS_dentHation
= mctama_Farr Sceral_Sas

#dabon

=Saatlan
|

+ name=Ting

= loouton: sring
L

1-*+ mame:=ring

= equipment Equipment

M oded_Me t=data: Don figuralion::
taio n:: Equi pment External_Pair

Modsl_Maeiadais 0o niflg uradl on: ; #ation
Equipment:DI3_) den o alion

= dis_ Emiter_Name ursigned Shaor
=+ dis EncRy_Type: DIS_EntRy_Type

=+ par Mumber: positiveinteger
= configuration: Configeration [0

Figure 19. UML diagram of 3D model metadata

The main properties of the 3D model metadata UML diagram are documented below.

Name

3D Model Metadata

Identification

DIS_Entity_Type

32

Definition Data type & Value

XML

Multiplicity

The metadata
associated with a model

One (mandatory)

is made of up to seven
elements.

A 3D model is either a
moving model with a
DIS Entity Type, or a
cultural feature with a
feature code (FC).

This type has two
formats: 1) a simple list
of up to 7 integers; or 2)
a sequence of up to 7
elements providing the
name of the fields
whose values are being
provided.

DIS or FC One (mandatory)

DIS One (mandatory)

Feature_Attribute_Catal This code is composed FeatureCode

og_Code

Mass

Part

Textures

Texture group

of two elements: a code
and a subcode. The
code is a string of 2
letters and 3 digits. The
subcode is optional and
defaults to 0.

This is defined by two Mass
elements: total mass,

and its metallic portion.

By default, the metallic
portion is assumed to

be 0.

When the list of parts is Part
supplied, it contains at
least one entry. If the
list is absent, a single
part stored in a single
file is assumed. A part
has a name and is
made of a part number,
and the number of files
associated with the
part.

When the list of Texture
textures is supplied, it
contains at least one
entry. If the list is
absent, the model does
not have textures.
Optionally, groups of
textures may be
defined and listed. An
individual texture may
optionally belong to
texture groups.

It is identified by its Texture group
group number and its

group name. Later,

individual texture will

refer to group

numbers.

One (mandatory)

One (mandatory)

One (mandatory)

One (mandatory)

One or more
(mandatory)

33

Texture

Configurations

configuration

Station

Equipment

DIS identification

34

A texture is defined by Texture
a sequence of 5
mandatory elements
and 2 optional
elements. The first 4
elements (Kind, Index,
Mipmap, and Name)
are used to compose
the file name where the
texture is stored. The
Resolution can be used
to select which mipmap
to load. The optional
Coverage provides the
maximum extent of U
and V mapping. The
optional Group refers
to the Texture_Group to
which the texture
belongs.

the list of one or more configuration
configurations is
supplied,

A configuration is a configuration
named list of one or
more stations.

A Station has aname Station
and defines exactly one
equipment in one

location.

Equipment is defined = Equipment
by either a DIS key or

an external part - and

possibly both. An

external part is

identified by its part

number. Optionally the

part may have its own
configuration.

A DIS identification is integer
either a DIS entity type

or a DIS emitter name.

A DIS emitter name is a

16-bit unsigned integer.

One or more
(mandatory)

One (mandatory)

One or more
(mandatory)

One (mandatory)

One (mandatory)

One (mandatory)

Composite material
table

A composite material =~ Composite
table is a list of one or
more composite
materials. Each one has
a unique identification
number, a name, and
one or more substrates.
A substrate has a
certain thickness and is
composed of one or
more base materials.
Each material in a
substrate is identified
by the name of its base
material and by its
proportion in the
substrate. A percentage
is an integer in the
range [1,100].

One (mandatory)

35

Chapter 4. 3D Model Extensions

All of the statically positioned cultural features and the moving models are represented in the
OpenFlight format. As such, OpenFlight plays a significant role, since. To add attributes to
OpenFlight models, OpenFlight Model Extensions.xsd schema file can be used to verify the
changes. The below diagram is generated from this schema file which is located in the CDB schema
folder (/CDB/Metadata/Schema/).

class OpenFlight_Model_Extensions /

Zone

su

+ name: string

material: positivelnteger [0..1]
temperature: integer [0..1)
name: String

volume: String = "closed™

+ name: Sfring
+ damage_Level: ListOfPercentages + fov: FOV[D..1]
- bluminess: ListOfPercentages

+ o+ o+ o+

| Crpen_Flight_Model |

+ material: positivelnteger
+ articulsation: Articulation

Figure 20. UML diagram of OpenFlight model extensions

36

Chapter 5. Feature Data Dictionary

The CDB Feature Data Dictionary (FDD) is provided with the CDB standard in the form of an XML
file including the complete list of the supported feature codes. The following UML diagram is
generated using the XML stylesheet which is provided to format and display the dictionary inside a
standard Web browser. Furthermore, the schema can also be found in the schema subdirectory of
the CDB Schema Distribution Package.

class Feature_Data_Dicticnary /

Feature_Data_Dictionary +uErsion Version

+ major: postvelnteger
+ minor: nonMeg ativelnteger

+Categony
1.*

Category

+ oode: AlphaCode
+ label: Label

+suboatagony

1=
Subc ode

Feature_Type +5ubcods Concept_Definition: sing

Recommend=d_Dstaset_ Component: siring
Onigin: string

label: Label

code: DigitCode

Subeategory +Eaturs_Typs
+ oode: AlphaCode _": + labsl Labsal
+ lzbel: Labsl 05y code CigitCode

-

i
+ + + + +

Figure 21. UML diagram of feature data dictionary

The main properties of the feature data dictionary UML diagram are documented below.

Name Definition Data type & Value Multiplicity
AlphaCode The code of the string One (mandatory)
category or
subcategory.
Feature Data_Dictionar This element XML One (mandatory)
y represents the CDB

Feature Data Dictionary
root element. It has a
version number and
the list of all categories.

Feature_Type This element has a code Feature_Type Zero or more (optional)
attribute, a label and a
list of subcodes.

Label A meaningful name to string One (mandatory)
the code attribute.

Subcategory Has a code attribute, a Feature_Type One or more
label and a list of (mandatory)

feature types.

37

Subcode

Version

38

Has a code attribute,a Subcode
label, a concept
definition, a
recommended dataset
component and an
origin.

This attribute
represents the version
number of FDD.

Array of strings

Zero or more (optional)

One (mandatory)

Annex A: Conformance Class Abstract Test
Suite (Normative)

This section describes conformance test for the OGC CDB Conceptual Model Standard. A CDB
dataset shall satisfy the following criteria to be conformant with the OGC CDB Conceptual Model
Standard.

A.1. CDB Overall Conceptual Model

The following conformance class is designed to determine if any dataset claiming conformance to
the CDB Conceptual model is described based on the comprehensive set of requirements.

Conformance Class http://opengis.net/spec/CDB/1.0/conf/core/core/
OveralConceptualModel
Requirements http://opengis.net/spec/CDB/1.0/core/OveralConceptualModel
Dependency All of the requirements of the OGC CDB core document
Test Class 1 Test purpose Verify to test requirement class
1
Test method Review that the CDB dataset

complies with the
corresponding mandatory
requirements of the OGC CDB
core standard.

Test type Conformance

39

http://opengis.net/spec/CDB/1.0/conf/core/core/OveralConceptualModel
http://opengis.net/spec/CDB/1.0/conf/core/core/OveralConceptualModel
http://opengis.net/spec/CDB/1.0/core/OveralConceptualModel

Annex B: UML notations

B.1. Class Diagrams Notation

A class diagram shows a collection of declarative (static) model elements, such as classes, types, and
their contents and relationships. Classes and relationships represent real-world concepts to
describe the structure of a system. The CDB Core Standard is presented in this document in
diagrams using the Unified Modeling Language (UML) class diagrams. The UML notations used in
this standard are described here (see ISO TS 19103, Geographic information - Conceptual schema
language for the details).

A relationship is a general term covering the specific types of logical connections found on class
and objects diagrams. UML shows the following relationships:

Relationships Definition Diagram

Association It is semantic relationship
between two or more classes
that specifies links among their
instances. In association, an
attribute of the dependent class
is an instance of the
independent class.

Aggregation Form of association that
specifies a whole-part
relationship between the
aggregate (whole) and a
component part.

Composition It is an aggregation and S E—
stronger variant of the "has a"
association relationship; if the
container is destroyed,

normally every instance that it
contains is destroyed as well.

Generalization Taxonomic relationship
between a more general
element and a more specific
element. It is also known as the
inheritance or "is a"
relationship. The superclass
(base class) is also known as the
"parent”.

40

https://en.wikipedia.org/wiki/Object_composition
https://en.wikipedia.org/wiki/Inheritance_(computer_science)
https://en.wikipedia.org/wiki/Superclass_(computer_science)

Realizations It is shown on classes,

+madetsting

interfaces, components, and i
packages that connects a client Lt
element with a supplier

element and shows that the

class realizes the operations

offered by the interface.

The UML representation of an association is a line with an optional arrowhead indicating the role
of the object(s) in the relationship, and an optional notation at each end indicating the multiplicity
(the number of objects that participate in the association) of instances of that entity as listed in the
below table:

0..1 No instances, or one instance
1,1.1 Exactly one instance

0..* Zero or more instances

n Specific number

1.* One or more instances

In the document, UML diagrams typically identifies a stereotype with a bracketed comment for
each object identifying whether it is a class, interface, etc. Additionally, the UMLs are color-coded as
follow to show different stereotypes:

Elements (e.g. Class & Object) Interface Description

Table Data Type Profile

41

Annex C: Revision History

Date

2019-10-21
2018-03-20
2016-04-04

42

Release

1.2
1.1
1.0

Editor

C. Reed
S. Saeedi
S. Saeedi

Primary
clauses
modified

Various
all
all

Description

Revision
Revision

Initial version

Annex D: Bibliography

43

	{title}
	Table of Contents
	Chapter 1. Overview of the OGC CDB Conceptual Model
	Chapter 2. CDB General Data Organization
	2.1. LoD and Geocell
	2.2. CDB File System
	2.3. Model Type
	2.3.1. 3D Moving Model

	2.4. Vector Data Model

	Chapter 3. Metadata and Controlled Vocabulary Schema
	3.1. Light Names Hierarchy
	3.2. Client Specific Lights Definition
	3.3. Model Components Definition
	3.4. Base Materials Table
	3.5. Composite Material Tables
	3.6. Default Values Definition Table
	3.7. Version
	3.8. Configuration
	3.9. CDB Vector Attributes
	3.10. 3D Model Metadata

	Chapter 4. 3D Model Extensions
	Chapter 5. Feature Data Dictionary
	Annex A: Conformance Class Abstract Test Suite (Normative)
	A.1. CDB Overall Conceptual Model

	Annex B: UML notations
	B.1. Class Diagrams Notation

	Annex C: Revision History
	Annex D: Bibliography

