
This overview summarizes the main concepts that are supported by the 3D Tiles specification:

• How 3D Tiles implements hierarchical spatial data 
   structures that are used for efficient rendering and 
   interaction.

• The technical details of the different tile formats in 
   3D Tiles

• The general concepts of tilesets and tiles, and how they
   make it possible to organize massive datasets into 
   elements that can be streamed efficiently

1. At a Glance: An Example Tileset

2. Tilesets and Tiles

3. Bounding Volumes

4. Spatial Data Structures

5. Geometric Error

6. Refinement Strategies

7. Optimized Rendering with 3D Tiles

8. Spatial Queries in 3D Tiles

9. Tile Formats: Introduction

10. Tile Formats

12. Declarative Styling

13. Common Definitions

• The concept of a Hierarchical Level of Detail (HLOD), 
   which makes it possible to balance rendering 
   performance and visual quality at any scale.

• How the concepts behind 3D Tiles can be implemented
   for efficient rendering and interaction

• The capabilities for information visualization by styling
   the content based on metadata

• How basic elements like geospatial coordinate systems
   and geometry data compression are integrated in 3D Tiles

11. Extensions• The possibility to extend the base specification with 
   additional features

3D Tiles is an open specification for sharing, visualizing, 
fusing, interacting with, and analyzing massive 
heterogeneous 3D geospatial content across desktop, 
web, and mobile applications. 3D Tiles is built on glTF, 
an open standard for efficient streaming and rendering 
of 3D models and scenes.
3D geospatial content, including photogrammetry/massive
models, BIM/CAD, 3D buildings, instanced features, and 
point clouds, can be converted into 3D Tiles and combined 
into a single dataset for seamless performance and 
real-time analytics including measurements, visibility 
analysis, styling and filtering.

The foundation of 3D Tiles is a spatial data structure
that enables Hierarchical Level of Detail (HLOD) 
so only visible tiles are streamed and rendered, 
improving overall performance.

If you are looking for 3D Tilesets to get started, Cesium ion (https://cesium.com/ion) hosts curated 3D 
Tilesets and also allows users to upload their own data to create, host, and stream 3D Tiles.

© 2020 by Cesium GS, Inc. Made available under a 
Creative Commons Attribution 4.0 License (International): 
https://creativecommons.org/licenses/by/4.0/



The main tileset JSON contains a basic description
of the asset and general properties.
The geometric error (Section 5) is used to determine 
when the root tile should be rendered.

Each tile contains a bounding volume (Section 3) that
encloses the content of the tile and all children. It also
contains a geometric error that determines when the 
children should be rendered.

In this example, the first child tile 
refers to a 3D model with a low 
level of detail. The tile format of 
the model in the example is a 
Batched 3D Model (Section 10.2)

The child tiles contain additional 
details for the model. They are 
rendered when a higher level of
detail is requested.

Different tile formats can be combined
in one tileset: in this example, the first 
child tile referred to a Batched 3D Model. 
Another child tile of the root node refers 
to a Point Cloud (Section 10.4).

In this example, the contents of 
the child tiles will be added to
the low-level representation of
the model of the parent node. 
Alternatively, the child tiles could 
contain more detailed models that
replace the low-level model. These
are the two refinement strategies
(Section 6) that are supported
by 3D Tiles.

Each tile may refer to an external tileset. This
allows combining multiple smaller tilesets into 
larger ones.

When the tileset is rendered, the tiles are combined,
at the appropriate level of detail, to generate the final 
rendered result:

1. At a Glance: An Example Tileset

Another tile is an Instanced 3D Model
(Section 10.3) where a simple geometry 
is rendered multiple times, at different
positions.

The core element of 3D Tiles is tilesets. A tileset is a set of tiles, organized in a hierarchical structure.
The tileset is described in JSON. The following is a simple example of a tileset, introducing the most
important concepts and elements. Each concept is explained in more detail in the following sections.

 1

{
  "asset": { ... },
  "properties": { ... },
  "geometricError": 100,
  "root": {
    "geometricError": 20,
    "boundingVolume": {
      "region": [ ... ]
    },
    "refine": "ADD",
    "children": [
      {
        "geometricError": 10,
        "boundingVolume": { ... },
        "content": {
          "uri": "house.b3dm"
        },
        "children": [
          {
            "geometricError": 5,
            "boundingVolume": { ... },
            "content": {
              "uri": "detailsA.b3dm"
            },
          }, {
            "geometricError": 5,
            "boundingVolume": { ... },
            "content": {
              "uri": "detailsB.b3dm"
            },
          }
        ]
      }, {
        "geometricError": 10,
        "boundingVolume": { ... },
        "content": {
          "uri": "tree.pnts"
        },
      }, {
        "geometricError": 10,
        "boundingVolume": { ... },
        "content": {
          "uri": "fence.i3dm"
        },
      }, {
        "geometricError": 10,
        "boundingVolume": { ... },
        "content": {
          "uri": "external.json"
        },
      }
    ]
  }
}



2. Tilesets and Tiles

A tileset is a set of tiles, which are organized as 
a hierarchical data structure, called a tree. The 
tileset itself contains the root tile, and each tile 
may have child tiles.

Both tilesets and tiles are described in JSON. The tileset JSON file contains basic information about the 
tileset itself, and the description of the tiles. 

Each tile may refer to renderable content. This 
content can have different formats and may
represent, for example, textured terrain 
surfaces, 3D models, or point clouds. The 
different possible tile formats are explained 
in Section 9, "Tile Formats: Introduction."

Tileset Properties:

Tileset

children[]

content content content content content content

children[] children[]

children[]

root

Tiles
A tile can also refer to another tileset. This 
makes it possible to flexibly and hierarchically 
combine tilesets into larger ones.

Root tile: The root property of a tileset is a tile that represents the root of the tile hierarchy.

Geometric
error:

The geometricError property is used to quantify the visual error that would occur if the 
tileset was not rendered. When the visual error exceeds a certain threshold, then the 
tileset and the tiles that it contains are considered for rendering. Details of how the 
geometric error is used are given in Section 5, "Geometric Error." 

Property 
summaries:

The renderable content of tiles may have associated properties. For example, when
the tiles contain buildings, then the height of each building can be stored in the tile.
The properties object of a tileset contains the minimum and the maximum of 
select property values for all tiles in the tileset. 

Metadata: Information about the 3D Tiles version and application-specific version information can 
be stored in the asset property of a tileset. 

Tile Properties:

Content: The actual renderable content that is associated with a tile is referred to via a URI
in the content property.

Children: The hierarchical structure of tiles is modeled as a tree: each tile may have children,
which are tiles in an array named children.

Refinement
strategy:

When the visual error of a tile with a certain level of detail exceeds a threshold, then
the child tiles are considered for rendering. The way the additional detail from the
child tiles is incorporated into the rendering process is determined by the refine 
property. The different refinement strategies are explained in Section 6, "Refinement."

Bounding
Volume:

Each tile has an associated bounding volume, and different types of bounding volumes 
may be stored in the boundingVolume property. The possible types of bounding volumes
are presented in Section 3, "Bounding Volumes." Each bounding volume encloses the 
content of the tile and the content of all children, yielding a spatially coherent hierarchy 
of bounding volumes. 

Geometric
error:

The renderable content of tiles may have different levels of detail. For tiles, the
geometricError property quantifies the degree of simplification of the content in the 
tile compared to the highest level of detail. The geometric error is used as described
in Section 5, "Geometric Error," to determine when the child tiles should be considered
for rendering.

 2



3. Bounding Volumes
Each tileset is a set of tiles that are organized in a hierarchical manner, and each tile has an associated
bounding volume. This yields a hierarchical spatial data structure that can be used for optimized rendering
and efficient spatial queries. Additionally, each tile can contain actual renderable content that also has a
bounding volume. In contrast to the tile bounding volume, the content bounding volume fits tightly only 
to the content and can be used for visibility queries and view frustum culling to further increase the 
rendering performance. 

The 3D Tiles format supports different types of bounding volumes, and different strategies for their
hierarchical organization.

Types of Bounding Volumes
Different types of bounding volumes are supported in 3D Tiles, making it possible to choose the type that 
is best suited for the structure of the underlying data:

"boundingVolume": {
  "region": [
    -1.319700,
     0.698858,
    -1.319659,
     0.698889,
     0.0,
    20.0
  ]
}

"boundingVolume": {
  "box": [
    0,  0,  10,
    20, 0,  0,
    0,  30, 0,
    0,  0,  10
  ]
}

"boundingVolume": {
  "sphere": [
    10, 5, 15,
    140.0
  ]
}

A bounding sphere is a simple bounding volume that 
allows easy and efficient intersection tests. It is defined 
by its center position and the radius.

An oriented bounding box fits the bounding volume 
more tightly to the geometry, particularly for regular, 
technical structures like CAD models. It is defined by 
the center position of the box, and three 3D vectors. 
The vectors define the directions and half-lengths 
of the x, y, and z-axis.

A region is particularly well suited to geographical 
information systems, because the sides of the region 
are defined with latitude and longitude coordinates, 
for the west, south, east, and north of the region, 
and a minimum and maximum height. 
Latitudes and longitudes are in the WGS 84 datum as 
defined in EPSG 4979 and are in radians.

West
South
East 
North
Min. height
Max. height

Center
x-axis 
y-axis
z-axis

Center
Radius

The minimum and maximum height are given in 
meters above or below the WGS 84 ellipsoid.

Details about WGS84 and the EPSG 4979 can be found in Section 13, "Common Definitions."

 3



4. Spatial Data Structures
The tiles in a tileset are organized in a tree data structure. Each tile has an associated bounding volume. 
This allows modeling different spatial data structures. The following section will present different types of
spatial data structures that can all be modeled with 3D Tiles. The runtime engine can use the spatial 
information generically in order to optimize the rendering performance, independent of the actual 
characteristics of the spatial data structure.

All types of bounding volumes and spatial data 
structures in 3D Tiles have spatial coherence, 
meaning that the bounding volume of a parent 
tile always encloses the content of all its child 
tiles. 
Spatial coherence is crucial for conservative 
visibility tests and intersection tests because it
guarantees that when an object does not
intersect the bounding volume of a tile, then 
it also does not intersect the content of any 
child tile. 
In contrast, when the object does intersect a 
bounding volume, then the bounding volumes 
of the children are tested for intersections. This 
can be used to quickly prune large parts of the 
hierarchy, leaving only a few leaf tiles where 
the object must be tested for intersections 
with the actual tile content geometry. 

"boundingVolume": {
 "sphere": [ 
  49.3, 23.0, 10.0, 56.5 
 ]
}, ...
"children": [
 {
  "boundingVolume": { 
   "sphere" : [ 
    18.1, 14.2, 8.2, 24.0 
   ]
  }, ...
 }, {
  "boundingVolume": { 
   "sphere" : [ 
    83.6, 21.8, 9.2, 28.4
   ]
  }, ...
 }
]

Spatial Coherence

 4

Types of Spatial Data Structures
There are different approaches for constructing hierarchical spatial data structures with bounding 
volumes. These approaches generally result in different types of spatial data structures, depending
on the exact strategy that is used for the construction.

The generic spatial data structures in 3D Tiles allow modeling the results of all these construction 
methods. Each tile is a node of the hierarchy that may optionally refer to geometry content or store 
only a bounding volume that encloses the content of all its descendants, and different types of 
bounding volumes can be stored in a single tileset.

A simple spatial hierarchy can be constructed by recursively splitting the content of a tile along certain 
axes, until a stopping criterion is met. When the content is only split along a single axis at each level, 
then the result is a k-d tree. 3D Tiles also supports multi-way k-d trees, where each level has 
multiple splits along one axis. When the content is split along the x, y, and the z-axis at each level, 
then the result is an octree. When the content is split at the center of the content bounding volume, 
then the result is a uniform octree. When the content is split at a different point, then the result is a
non-uniform octree.

At each level of the hierarchy, the bounding volumes can be created purely spatially from the bounding 
volume of the parent node. Alternatively, the bounding volumes for each node can be computed from 
the actual content of the node. This can be particularly useful for sparse datasets because it ensures
tightly-fitting bounding volumes at each level of the hierarchy.

It is sometimes not possible to divide a tile without splitting a single feature (model) of the content. It is 
therefore possible to construct loose octrees and loose k-d trees, where the bounding volumes of 
children overlap. These trees still maintain spatial coherence, in that the parent bounding volume still 
encloses the content of all children.

In the most general case, a tileset can be divided into a non-uniform grid. Since each node in the 
spatial hierarchy in 3D Tiles may have an arbitrary number of child nodes, and non-leaf tiles are not
required to contain renderable content, the grid cells can still be organized in a hierarchical structure
in order to support hierarchical culling.



5. Geometric Error
One of the goals of 3D Tiles is to efficiently stream massive datasets to runtime engines, and still allow
the runtime to render this content efficiently. The hierarchical structure of tiles in a tileset therefore 
incorporates the concept of a Hierarchical Level of Detail (HLOD): tiles at the top of the hierarchy contain
representations of the renderable content with a low level of detail. The child tiles contain content with 
a higher level of detail. The rendering runtime can dynamically choose the level of detail that offers the 
best trade-off between performance and rendering quality.
The key for determining which level of detail should be rendered is the geometric error. Each tileset and 
each tile has a geometricError property that quantifies the error of the simplified geometry compared 
to the actual geometry. 
The runtime translates this geometric error into a screen-space error (SSE). The SSE quantifies how much
of the geometric error will be visible, in terms of pixels on the screen.

tile
geometricError: 61

content:

children[0]:
geometricError:  28

content:

geometricError:  12

content:

children[0]:

When the SSE exceeds a certain threshold, the runtime will render a higher level of detail. For a tileset, 
the geometric error is used to determine whether the root tile should be rendered. For a tile, the 
geometric error is used to determine whether the children of the tile should be rendered.

 5

The geometric error is measured in 
meters, comparing the simplified 
geometry to the real geometry:

The screen space error (SSE)
is measured in pixels:

SSE: 
about 
4 pixels

SSE: 
about 
2 pixels

SSE:
about 
1 pixel

5.1 Computing the Screen Space Error (SSE)
The runtime can use the information that is provided with the geometric error to find the best trade-off 
between performance and rendering quality: for any given tileset or tile, the runtime can determine how 
much the visual quality could improve by rendering the tile, even without actually downloading and 
rendering the tile content. 

To accomplish that, the runtime must compute the screen space error for a given geometric error. The
actual screen space error in pixels will depend on the view configuration—that is, the position and 
orientation of the viewer—and on the resolution at which the final image will be rendered. 

The computation of the SSE therefore must take these factors into account. The exact implementation 
will also depend on the type of view projection that is used. But for a standard perspective projection, 
one possible way of computing the SSE is as follows:

sse = (geometricError ⋅ screenHeight) / (tileDistance ⋅ 2 ⋅ tan(fovy / 2))

where geometricError is the geometric error that was stored in the tileset or tile, screenHeight is the height
of the rendering screen in pixels, tileDistance is the distance of the tile from the eye point, and fovy is the
opening angle of the view frustum in the y-direction.



6. Refinement Strategies
When a tileset is rendered, the runtime traverses the hierarchy of tiles, examines the geometric error of 
each tile, and computes the associated screen space error. When this screen space error exceeds a 
certain threshold, then the runtime will recursively consider the child tiles for rendering. The child tiles 
that contain renderable content have a higher level of detail and a smaller screen space error.

The content of the child tiles can be used to increase the level of detail through one of two refinement
strategies. The refinement strategy is determined by the refine property of a tile, and can either be
REPLACE or ADD:

tile

content:

children[0]:
geometricError: 1

content:

refine: "REPLACE"

geometricError: 10
Replacement: Additive:

The child tiles contain a 
complete representation 
of the content with a 
higher level of detail.

When the child tiles are
rendered, this content
will replace the content 
of the parent tile.

The child tiles contain 
additional details for
the content of the 
parent tile. 

When the child tiles are 
rendered, this content 
will be rendered on top 
of the content of the 
parent tile.

tile

content:

children[0]:
geometricError: 1

content:

refine: "ADD"

geometricError: 10

The refine property can be given for each tile individually but is only required in the root tile of a 
tileset. When it is not given, the strategy will be inherited from the parent tile.

 6

7. Optimized Rendering with 3D Tiles

children[0]

children[1]

children[2]

3D Tiles is designed for efficient rendering and streaming of massive heterogeneous datasets. The 
following is a summary of how the concepts of 3D Tiles can be used by a runtime to interactively render 
a huge tileset. It shows how the hierarchical structure of tilesets and tiles, the associated bounding 
volumes, the concept of the geometric error, and the different refinement strategies play together.

During rendering, the runtime maintains a view frustum, which is defined 
by the camera position, orientation, and the field-of-view angle. The view 
frustum can be tested for intersections with the bounding volumes of 
tilesets and tiles.

Position

Orientation

Field-of-view angle

View frustum

The tileset contains the root tile, which in 
turn contains three child tiles. Each child 
tile contains renderable content. In the 
example, the content of each tile consists 
of two buildings, stored as a Batched 3D 
Model. At this level, the content is stored 
with a low level of detail, which means 
that the tiles have a high geometric error. 
Each child additionally refers to a child 
where the same content is stored with a 
higher level of detail, and thus, with a
lower geometric error. 

The tileset in this example contains a set of buildings. The bounding volume of each element is 
shown in red.

content

content

content

root

tileset

content

content content



root

tileset

Initially, the runtime loads the main tileset JSON, and tests the 
view frustum for intersections with the bounding volume of the 
root tile. In this example, the frustum does intersect the 
bounding volume of the root tile, which means that the tile is 
considered for rendering. At this point, no renderable content 
has been loaded yet: the information from the tileset JSON is 
sufficient to determine whether anything will be rendered or not. 

children[0]

children[1] children[2]

root

tileset

The runtime can then test the bounding volumes of the child
tiles for intersections with the view frustum. 
In the example, the bounding volumes of two of the three 
child tiles do intersect the view frustum. This means that 
the content of these child tiles is considered for rendering.
Only the content of these child tiles must be loaded. 

children[0]

children[1] children[2]

content

content

root

tileset

In the example, the content is a representation of the buildings 
with a low level of detail. So even though large parts of the tileset 
are visible, the runtime can efficiently render the content due to 
its low complexity. During rendering, the runtime observes the 
effect of the geometric error that is associated with the rendered 
tiles: it is translated into a screen space error, to estimate the 
quality of the visual representation. As long as a threshold (which
may be 18.0 in the example) is not exceeded, no refinement of 
the rendered content is necessary.

children[0]

children[1] children[2]

content

content

root

tileset

The user can then interact with the rendered tileset. For example, 
the user can zoom in to a certain building. This will cause the 
screen space error to increase, and when it exceeds a certain 
threshold, then the next level of tiles is considered for rendering.
These tiles  contain a representation of the same content, with a 
higher level of detail, and therefore, with a smaller geometric 
error. The runtime only has to load the content of tiles that have 
bounding volumes that intersect the new view frustum.

Screen space error (SSE) : 12.3

children[0]

children[1] children[2]

content

content

root

tileset

The content with the higher level of detail is loaded and
rendered according to the selected refinement strategy.
Due to its lower geometric error, it causes the screen space 
error to fall below the threshold, which implies a higher
visual quality. But now that only small parts of the tileset 
are visible, the content with a high level of detail can still 
be rendered efficiently. 

This example shows how 3D Tiles balances the rendering performance and visual quality at any scale.
The runtime can detect whether the view frustum intersects the bounding volume of a tile, and only if 
this is the case will tile content be downloaded. The runtime can initially display the tile content with 
the lowest level of detail, and only download and render the content with a higher level of detail on 
demand, when the screen space error exceeds a threshold—for example, when the user zooms closely 
to one feature of the dataset.

SSE threshold                  : 18.0

Screen space error (SSE) : 45.8
SSE threshold                  : 18.0

Screen space error (SSE) : 15.9
SSE threshold                  : 18.0

 7

 1

 2

 3

 4

 5

7.1. Optimized Rendering with 3D Tiles: Example



8. Spatial Queries in 3D Tiles

function intersect(ray, tile) {
  if (ray.intersects(tile.boundingVolume)) {
    if (tile.isLeaf) {
      return tile;
    }
    for (child in tile.children) {
      intersection = intersect(ray, child);
      if (intersection) return intersection;  
    }
    return undefined;
}

The test for intersections starts at the root tile of the 
rendered tileset. When the ray intersects the bounding 
volume of this tile, it is tested for intersections with 
each of the child tiles. When an intersection with a leaf 
tile is found, the actual geometry data of the content 
of this tile can be tested for intersections with the ray, 
to determine the actual picking position.

Pseudocode for finding the tile that was
picked with a ray:

Eye point

View plane

Picking ray

Scene with
bounding 
volumes

To achieve this, a picking ray is computed from the inverse projection matrix. The ray starts at the 
current eye position and passes through the mouse position in the view plane. The closest intersection
of this ray with any element of the scene determines which part of the model has been picked. 

The hierarchical structure of tiles with bounding volumes in 3D Tiles allows for efficient spatial queries. 
An example of such a spatial query is ray casting: When a tileset is rendered by the runtime, the user 
may interact with the scene by picking individual models or features, for example, to highlight the 
model or to display metadata. 

Picked 
position

During the intersection tests, the spatial coherence
of the tree makes it possible to quickly prune parts of the 
hierarchy that are not intersected: when the bounding
volume of a tile is not intersected, then the intersection
tests for the children of this tile can be skipped. In 
the example, the bounding volumes that are shown
with dashed lines do not intersect the picking ray, 
and the traversal may stop there. 

 8

For certain types of tiles, knowing that the content of a certain tile was hit with a mouse click may not 
be sufficient: In tile formats like Batched 3D Models (Section 10.2) or batched Point Clouds (Section 10.4), 
multiple distinct models or parts of models (features) may be combined into a single geometry. In these 
cases, the vertices of the geometry are extended with a batch ID, which identifies the feature. This 
makes it possible to determine the actual feature that was hit with the mouse click.



Feature Table and Batch Table

9. Tile Formats: Introduction

    • Batched 3D Model: Heterogenous models like textured terrain or 3D buildings
    • Instanced 3D Model: Multiple instances of the same 3D model
    • Point Clouds: A massive number of points

The renderable content of a tile is referred to by a URI that is part of the tile JSON. This renderable content
can be stored in different formats for different model types:

A tileset can contain any combination of tile formats. Additional flexibility is achieved by allowing tiles 
with different formats to be combined as a Composite Tile (Section 10.5).

The Feature Table contains properties that are required for rendering the features. For example, in an 
Instanced 3D Model, the positions of the instances are stored in the Feature Table:

The renderable content of a tile contains different features. For Batched 3D Models, each part of the 
geometry may be a feature. For example, when several buildings are combined in a Batched 3D Model, 
then each building may be a feature. For Instanced 3D Models, each instance is a feature. For Point
Clouds, there are two options: a feature can either be a single point, or a group of points that represent 
an identifiable part of the model. 

Instanced 3D Model
Contains one simple model, 
instantiated multiple times.

Each instance 
is a feature.

Feature Table
Contains the position for 
each instance (feature)

instance position
0 (1.3, 0.4, 2.8)
1 (2.5, 0.7, 1.9)

... ...
2 (3.1, 0.5, 2.1)

Multiple instances of the model 
are rendered at the positions 
from the Feature Table:

...

The Batch Table can contain additional, application-specific properties for each feature. For example, in 
a Batched 3D Model, metadata that is associated with each model is stored in the Batch Table:

A common element of all tile formats (except for composite tiles) is the Feature Table and the Batch
Table. The exact contents of the Feature Table and the Batch Table depend on the tile format, but their
structure and layout are the same for all tile formats.

Batched 3D Model
Contains heterogeneous 
models. 

Each model 
is a feature.

Batch Table
Contains metadata for 
each model (feature)

Address:
  123 Main Streetmodel address

0 234 Second Street
1 123 Main Street
... ...

The information from the Batch
Table is associated with the model:

23.0
16.2

31.8

Outlook: Declarative Styling
The information that is stored in a Batch Table is not directly necessary for rendering. But the Batch Table 
usually contains metadata that can be used for declarative styling, as shown in Section 11.
For example, the Batch Table may contain information about the heights of a set of buildings that appear 
in the tile. This information can be accessed in the 3D Tiles styling language to modify the appearance 
of the model. For example, the buildings can be rendered with different colors, depending on their height:

model height
0 23.0
1 31.8
2 16.2
... ...

Models in a Batched 3D Model: Batch Table: Declarative styling applied to the rendered model, 
based on the information from the batch table:

Model 0 Model 1 Model 2

 9



Batched 3D Model 

Instanced 3D Model

Point Cloud

feature ↵
Table   ↵
Binary ↵
Byte    ↵
Length

batch   ↵
Table   ↵
Binary ↵
Byte    ↵
Length

batch  ↵
Table  ↵
JSON ↵
Byte   ↵
Length

feature ↵  
Table   ↵
JSON ↵
Byte    ↵
Length

gltfFormat

(uint32) (uint32) (uint32) (uint32)

(uint32)

10. Tile Formats

magic version byteLength
(uchar[4]) (uint32) (uint32)

The header of each tile format starts with a sequence of four magic bytes. These bytes represent a 
4-character string that determines the tile format. They are followed by the version number of the tile 
format, and the total length of the tile data, including the header, in bytes. 

The actual renderable content of a tile is stored as a binary blob. This blob consists of a header with 
structural information, and a body, which contains the actual payload:

For most tile formats, the remaining part 
of the header contains information about 
the sizes of the Feature- and Batch Table 

b3dm

i3dm

pnts

cmpt Composite tile See "Composite Tiles," Section 10.5

Tile format bodyTile format header

Tile Format Header

Tile format body
Feature Table Batch Table

Tile Format Body

The Feature Table and Batch Table each consist of 
a JSON header and a binary body. The length of 
each element is determined by the information 
in the tile format header. 

The sizes featureTableJSONByteLength, featureTableBinaryByteLength, batchTableJSONByteLength, 
and batchTableBinaryByteLength describe the size (in bytes) of the respective parts of the Feature 
Table and Batch Table and refer to the tile format body that contains the actual table data.

The tile format body contains the actual payload 
of the tile data. For all tile formats (except for 
composite tiles) this body may contain a Feature 
Table and a Batch Table, as well as other binary 
data that is specific for the tile format.

featureTableBinaryByteLength

featureTableJSONByteLength

batchTableBinaryByteLength

batchTableJSONByteLength

10

JSON header
(UTF-8)

Binary body JSON header
(UTF-8)

Binary body

The exact size, contents and structure of the header depends on the tile format and is therefore known
after the magic bytes have been read. The exact data layout for the tile formats and their headers are
shown in the following sections that explain each individual tile format.



Global properties that are stored in the JSON part of a Feature Table may, 
for example, be the number of points in a Point Cloud or the number of 
instances for an Instanced 3D Model. 

{
  "BATCH_LENGTH" : 4,
  "location" : {
    "byteOffset" : 0,
    "componentType" : "FLOAT",
    "type" : "VEC2"
  },
  "id" : { 
    "byteOffset" : 32, 
    "componentType" : "INT", 
    "type" : "SCALAR"
  }
}

Properties that are defined for each feature are given with binary 
body references. These references define a segment of the binary 
body that represents an array with the property values. The data 
that is stored in the Batch Table is application specific. Therefore, 
the references contain additional information about the type of 
elements in the array.

{
  "INSTANCES_LENGTH" : 10,
  ...
  "POSITION" : {
    "byteOffset" : 120
  },
  ...
}

120
 1.0  3.4  7.9  1.3  3.6  7.4  ...Feature Table JSON header

The section of the binary body that one property refers to is given by the byteOffset inside the body.
The type of the data depends on the property semantics. For example, the POSITION property refers 
to a section of the body that represents an array of 32-bit floating-point values, representing the 
x, y, and z coordinates of the positions. 

0
 (2.1, 3.4)  (4.2, 1.8)  ...Batch Table JSON header  325  582  ...

32

The JSON part of the Batch Table contains global properties, like the 
number of features in the tile.

10.1. Tile Formats: Feature Table and Batch Table

JSON header
(UTF-8)

Binary body

The Feature Table and the Batch Table are stored in the tile format body. Both kinds of tables have the
same structure: they consist of a header part, which is interpreted as a JSON string, and a binary body:

The JSON part may contain global properties that refer to the whole tile. Additionally, the JSON part
may contain references to the binary body. The exact set of properties that are supported depend 
on the tile format, but all properties define segments of the binary body that contain arrays of values 
for each feature that appears in the tile.

Additionally, the JSON can contain references to segments of the binary 
body that contain property values for each feature. For example, the 
positions of points in a Point Cloud or the positions of instances in an 
Instanced 3D Model.

The location of the array data in the binary body is given by the byteOffset. The type says whether the 
elements of the array are scalars or vectors. The componentType defines the type of the scalar or vector 
components. 
The following tables contain the number of bytes that each component type consists of, and the 
number of elements that each type consists of. This can be used to compute the byte size of the 
property data in the binary body:

componentType Size in bytes

“BYTE“ 1

“UNSIGNED BYTE“ 1

“SHORT“ 2

“UNSIGNED SHORT“ 2

“INT“ 4

“UNSIGNED INT“ 4

“FLOAT“ 4

“DOUBLE“ 8

type Number of components

“SCALAR“ 1

“VEC2“ 2

“VEC3“ 3

“VEC4“ 4

11



10.2. Tile Formats: Batched 3D Models (b3dm)
A Batched 3D Model tile contains the rendering data of heterogeneous models. These models may be 
terrain or 3D buildings, for example, for Building Information Management (BIM) or engineering 
applications. 
The actual rendering data in a Batched 3D Model is stored as Binary glTF - a binary form of the GL 
Transmission Format. This format allows individual models or even complete 3D scenes with textures 
and animations to be stored in a compact form that can be efficiently transferred over networks and 
directly rendered by runtime engines. Geometry data in glTF is stored in a buffer that is structured by 
dividing the buffer into parts that represent different attributes, like the vertex positions or normals. 
A summary and links to further resources about glTF are given in Section 13, "Common Definitions."
The term "batched" refers to the fact that the geometry data of multiple models, each consisting of 
vertex positions and optional normals and texture coordinates, can be combined into a single buffer, 
in order to improve the rendering performance: the data of a single buffer can be copied directly into 
GPU memory, resulting in fewer copying operations, and it can be structured in a form that minimizes 
the number of draw calls.
When multiple models are combined into a single buffer, it must still be possible to support styling and 
interaction for the individual models. This can refer to highlighting a model by rendering it with a 
different color or determining which model has been picked with a mouse click. In 3D Tiles, this is 
achieved by extending the buffer with an additional vertex attribute.

The geometry data is extended with 
the batchId attribute. It stores the 
batch ID for each vertex as an integral 
number. Vertices with the same ID are 
part of the same model.

The batch ID can then be used to identify the models for 
interaction or styling: when the user clicks on a Batched 
3D Model, the runtime can determine the batch ID of the 
part of the model that was selected. The batch ID serves 
as an index for looking up styling information or metadata 
in the Batch Table.

x y z

  0

x y z

position

normal

batchId

x y z

  0

x y z

 ...

 ...

 ...

x y z

 0

x y z

x y z

  1

x y z

x y z

  1

x y z

 ...

 ...

 ...

x y z

  1

x y z

 ...

...

 ...

featureTable   ↵
BinaryByteLength

batchTable   ↵
BinaryByteLength

batchTable   ↵
JSONByteLength

featureTable   ↵
JSONByteLength

(uint32) (uint32) (uint32) (uint32)

magic version byteLength

(uchar[4]) (uint32) (uint32)

Feature Table Batch Table Binary glTF

Header bytes [0 .. 12)

Header bytes [12 .. 28)

Body

External data

Batched 3D Models: Data Layout

12

The following diagram shows the layout and data types for the information that is contained in the header
and body of Batched 3D Models:

Batched 3D Models: Properties
The Feature Table of Batched 3D Models only contains global properties. The size of the Batch Table is 
given as the BATCH_LENGTH property, and the RTC_CENTER may store the center point in the case that 
the positions are given relative to the center. 

Property Type Description

BATCH_LENGTH uint32 The number of distinguishable models (features) in the batch. If the binary glTF
does not have a batchId attribute, this field must be 0.

RTC_CENTER float32[3] The center position when positions are defined relative-to-center



10.3. Tile Formats: Instanced 3D Models (i3dm)
In many application scenarios, complex scenes contain the same model multiple times, but with small 
variations. Examples of such models may be trees, CAD features like bolts, or elements of interior 
design like furniture.
The 3D Tiles format therefore supports Instanced 3D Models, where a single model is rendered multiple 
times. Each appearance of this model is an instance (or feature), and the instances can be rendered 
with different transformations—for example, at different positions.
The actual model is stored as a binary glTF (see Section 13, "Common Definitions"). It can be stored 
directly in the binary body. Alternatively, the body can contain a URI for the binary glTF file. Information 
about how many instances will be rendered, and the positions and orientations of these instances, are 
stored in the Feature Table. The first part of the Feature Table contains JSON data, and the second part 
contains the binary data.

  1.0  0.0   1.0   4.5   0.0  1.5   6.5   0.0  1.25

  1.0  0.0   0.0   0.97  0.0  0.24  0.97  0.0 -0.24

       2.5               1.8              2.2     

...

...

......

POSITION

starting at byte offset 72

starting at byte offset 108

The JSON part of the Feature Table of an Instanced 3D Model contains the 
global INSTANCES_LENGTH property, which determines the number of 
instances that will be rendered.
It further contains properties for each feature (instance), given as references 
into the binary body of the Feature Table. The section of the binary body that 
starts at the respective byteOffset represents an array. The array length is 
given by the number of instances. The type of the array is determined by the 
property: in the example, the properties are POSITION, NORMAL_UP, and 
NORMAL_RIGHT, each given by three floating-point values for the x, y, and z 
coordinates, and a SCALE factor for each instance, given as single 
floating-point values.

Multiple instances of the same model are then
rendered, each with the position, orientation 
(normal), and scaling factor that was read from 
the array in the binary part of the Feature 
Table for the respective instance.

{
  "INSTANCES_LENGTH" : 3,
  "POSITION" : {
    "byteOffset" : 0
  },
  "NORMAL_UP" : {
    "byteOffset" : 36
  },
  "NORMAL_RIGHT" : {
    "byteOffset" : 72
  },
  "SCALE" : {
    "byteOffset" : 108
  }
}

Feature Table JSON header Feature Table binary body

starting at byte offset 0

NORMAL_RIGHT

SCALE

The property information 
from the JSON part can be 
used to access the segments 
of the binary body that 
represent the arrays 
containing the property 
values for each instance.

featureTable   ↵
BinaryByteLength

batchTable   ↵
BinaryByteLength

batchTable   ↵
JSONByteLength

featureTable   ↵
JSONByteLength

(uint32) (uint32) (uint32) (uint32)

magic version byteLength

(uchar[4]) (uint32) (uint32)

Feature Table Batch Table URI (UTF-8) or Binary glTF

Header bytes [0 .. 12)

Header bytes [12 .. 32)

Body

External data

Instanced 3D Models: Data Layout

gltfFormat

(uint32)

Feature Table JSON header Feature Table binary body

The gltfFormat indicates how the glTF data is stored:
When it is 0, the glTF data is referred to with a URI.
When it is 1, the binary glTF data is embedded in the body.

The following diagram shows the layout and data types for the information that is contained in the header
and body of Instanced 3D Models:

13

  0.0  0.0   1.0  -0.24  0.0  0.97  0.24  0.0  0.97

...

...
starting at byte offset 36
NORMAL_UP

2.5

1

2

1 2 3 4 5

3

6 7

1.8

2.2



Each of these properties is a reference to a section of the binary body of the Feature Table. This 
section contains the data of an array with the actual property values. The data type of the array 
elements is given by the type of the property. The length of the array is determined by the 
number of instances.

Global Properties

Per-instance Properties

Position:

Orientation:

The positions of the instances, given as cartesian x, y, and z coordinates. The positions can be stored directly in a
POSITION attribute, or using a compressed, quantized representation in the POSITIONS_QUANTIZED attribute.

Instanced 3D Models: Properties
The Feature Table of an Instanced 3D Model may contain the following properties:

The orientation of each instance can be defined with two vectors: one vector defining the up-direction, and one 
vector defining the right direction. These normals can be stored in the NORMAL_UP and NORMAL_RIGHT attribute, or 
using a compressed, oct-encoded representation of the normals, where the normals are stored in the
NORMAL_UP_OCT16P and NORMAL_RIGHT_16P attribute.

Further information about the quantized position and oct-encoded normal representations, about the 
concept of relative-to-center positions, and the WGS84 ellipsoid, can be found in Section 13, "Common 
Definitions."

Number of 
instances: 

The number of instances that will be rendered, stored in the INSTANCES_LENGTH property. This determines the length 
of the arrays that store the per-instance properties. It also determines the size of the Batch Table in the case that the 
Batch Table stores metadata for each instance.

Relative-to-
center point:

The center point for relative-to-center positions, can be stored in the RTC_CENTER attribute. When it is defined, then 
the positions are given relative to this point.

Quantized
volume:

The volume that is used for quantization when the positions are given in their compressed form in the
POSITIONS_QUANTIZED property. The volume is defined by the QUANTIZED_VOLUME_OFFSET, which defines the offset 
of the volume, and the QUANTIZED_VOLUME_SCALE, which defines the scale for the quantized volume. 

The following tables summarize the properties that may be contained in the Feature Table of Instanced
3D Models.

Instanced 3D Models: Properties Summary

Scale: The scaling factors for the instances. The scaling for each instance can either be a uniform scaling, which is a single
value stored in the SCALE attribute, or scaling factors along the x, y, and z-axes, given via the SCALE_NON_UNIFORM
attribute.

Batch ID: An identifier for each instance, stored in the BATCH_ID attribute. This batch ID serves as an index that can be used 
to look up properties for each instance in the Batch Table.

Default 
orientation:

When the orientation is not given for the individual instances, then the  EAST_NORTH_UP can be used to indicate 
that each instance will default to the east/north/up reference frame's orientation on the WGS84 ellipsoid.

Property Type Description

INSTANCES_LENGTH uint32 The number of instances

QUANTIZED_VOLUME_OFFSET float32[3] The offset of the quantized volume in x, y, and z-direction

QUANTIZED_VOLUME_SCALE float32[3] The scale of the quantized volume in x, y, and z-direction

EAST_NORTH_UP boolean Whether the instance orientation should default to the east/north/up reference
frame on the WGS84 ellipsoid

RTC_CENTER float32[3] The center position when positions are defined relative-to-center

Property Type Description

POSITION
POSITION_QUANTIZED

float32[3]
uint16[3]

The x,y, and z coordinates for the position of the instance

NORMAL_UP
NORMAL_UP_OCT32P

float32[3]
uint16[2]

A unit vector defining the up-direction of the instance

NORMAL_RIGHT
NORMAL_RIGHT_OCT32P

float32[3]
uint16[2]

A unit vector defining the right-direction of the instance

SCALE float32 A scaling factor for all axes of the instance

SCALE_NON_UNIFORM float32[3] The scaling factors for the x, y, and z-axis of the instance

BATCH_ID uint8/16/32 The batch ID, to look up metadata for the instance in the batch table
14



10.4. Tile Formats: Point Clouds (pnts)
A common way of obtaining 3D data from existing structures like buildings or the environment is via 
photogrammetry or LIDAR scanning. The result of this acquisition process is a point cloud, where each 
point is defined by its position, and additional properties that define its appearance.

The Point Clouds format is a format in 3D Tiles that allows streaming massive point clouds for 3D 
visualization. 

{
  "POINTS_LENGTH" : "219",
  "POSITION" : {
    "byteOffset" : 0
  },
  "NORMAL" : {
    "byteOffset" : 2628
  },
  "RGB" : {
    "byteOffset" : 5256
  }
}

The JSON part of  the Feature Table of a point cloud contains the global 
POINTS_LENGTH property that determines the number of points.

Each section of the binary part of 
the Feature Table represents an 
array of property values. The type
of the array elements depends on 
the property. The lengths of the 
arrays are given by the number of 
points.

 7.3  1.0  6.7  7.1  1.0  6.9      ...

 1.0  0.0  0.0  0.0  0.0  1.0       ...

   0  255    0  255    0    0       ...

The information about the positions and other visual properties of the points is stored in the Feature Table,
which consists of a JSON header and a binary body.

POSITION

starting at byte offset 2628

starting at byte offset 5256

NORMAL

RGB colors

starting at byte offset 0

Further properties are given by references into the binary body: for each
property, the byteOffset determines the position in the binary body that
contains an array with the property values for each of the points. The type 
of the array depends on the property: for the POSITION and NORMAL, the 
array elements will be 3D vectors of floating-point values. For the RGB color,
the elements will consist of three unsigned 8 bit values for the red, green,
and blue component of the color. 

...

... .
.
.

.
.
.

15

Feature Table JSON header Feature Table binary body

Feature Table JSON header Feature Table binary body



Batched Point Clouds
In a Point Cloud, it is possible to define groups of points that represent distinct features. For example, 
there may be groups of points that represent a door, a window, or the roof of a house.

In 3D Tiles, these groups are defined by assigning a batch ID to the points, similar to the concept that is 
used for Batched 3D Models.

x y z

  0

r g b

POSITION

RGB

BATCH_ID

 ...

 ...

 ...

x y z

  1

 ...

 ...

 ...

{
  "POINTS_LENGTH" : "219",
  "BATCH_LENGTH" : 4,
  "POSITION" : {
    "byteOffset" : 0
  },
  ...
  "BATCH_ID" : {
    "byteOffset": 5913,
    "componentType" :
      "UNSIGNED_BYTE"
  }
}

x y zNORMAL  ... x y z  ...

r g b

x y z

  2

 ...

 ...

 ...

x y z  ...

r g b

x y z

  3

 ...

 ...

 ...

x y z  ...

r g b

For batched Point Clouds, the JSON part of the Feature Table contains a BATCH_LENGTH property that 
defines the number of groups of points, and a BATCH_ID property that refers to a section of the binary 
body that contains the array with batch IDs for the points, stored as 8, 16, or 32-bit integer values. The 
batch ID can then be used as an index to look up metadata for that group of points in the Batch Table. 

Batch ID 0: 
Wall

Batch ID 1: 
Roof

Batch ID 2: 
Window

Batch ID 3: 
Door

featureTable   ↵
BinaryByteLength

batchTable   ↵
BinaryByteLength

batchTable   ↵
JSONByteLength

featureTable   ↵
JSONByteLength

(uint32) (uint32) (uint32) (uint32)

magic version byteLength

(uchar[4]) (uint32) (uint32)

Feature Table Batch Table

Header bytes [0 .. 12)

Header bytes [12 .. 28)

Body

Point Clouds: Data Layout
The following diagram shows the layout and data types for the information that is contained in the header
and body of Point Clouds:

16

Outlook: Declarative Styling of Point Clouds
Declarative styling, which is shown in Section 11, can be applied to Point Clouds to facilitate different 
kinds of information visualization. 

{
  "color" : "color('red') * ${temperature}",
  "pointSize" : "5 + ${temperature} * 30"
}

In the example shown here, each point has an associated 
temperature value stored in the Batch Table. This domain-
specific information from the Batch Table can then be 
mapped to visual attributes of the points, using the 
3D Tiles styling language. Here, the temperature property
affects the color and the size of the rendered points:

For example, a Point Cloud may consist of a regular grid of 
points that fills a certain volume. The Batch Table can then 
contain measurements that have been taken at the 
respective positions.



Global Properties

The following tables summarize the properties that may be contained in the Feature Table of Point Clouds.

Each of these properties is a reference to a section of the binary body of the Feature Table. This 
section contains the data of an array with the actual property values. The data type of the array
elements is given by the type of the property. The length of the array is determined by the number
of points.

Position:

Color:

Normal:

Batch ID:

The positions of the points, given as cartesian x, y, and z coordinates. The positions can be stored directly in a
POSITION attribute, or in a compressed, quantized representation in the POSITIONS_QUANTIZED attribute.

The color for each point can be given as RGB or RGBA colors that are stored in the RGB or RGBA properties. 
Alternatively, a compressed representation of the colors can be stored, in the RGB565 property. 

Point Clouds: Properties

Per-point Properties

The Feature Table of a Point Cloud may contain the following properties:

Unit vectors defining the normals of the points. These can be stored in the NORMAL attribute, or using a compressed, 
oct-encoded representation of the normal, using the NORMALS_OCT16P attribute.

An identifier for the batch (group) that the point belongs to is stored in the BATCH_ID attribute. All points with 
the same batch ID belong to one batch. The batch ID serves as an index to look up properties for this group of
points in the Batch Table.

Further information about the quantized position and oct-encoded normal representations, and about
the concept of relative-to-center positions, can be found in Section 13, "Common Definitions."

Number of 
points: 

The number of points in the Point Cloud is given by the POINTS_LENGTH property. This determines the length of the 
arrays that store the per-point properties.

Number of 
batches:

The number of batches (groups of points) in the Point Cloud, stored in the BATCH_LENGTH property. It is therefore the 
number of unique values in the BATCH_ID attribute, and the number of entries in the Batch Table.

Relative-to-
center point:

The center point for relative-to-center positions can be stored in the RTC_CENTER attribute. When it is defined, then 
the positions are given relative to this point.

Constant 
color:

A color for all the points in the tile can be given in the CONSTANT_RGBA property. This color will be used when no 
colors for the individual points are defined. 

Quantized
volume:

The volume that is used for quantization when the positions are given in their compressed form in the 
POSITIONS_QUANTIZED property. The volume is defined by the QUANTIZED_VOLUME_OFFSET, which defines the offset 
of the volume, and the QUANTIZED_VOLUME_SCALE, which is the scale for the quantized volume. 

Point Clouds: Properties Summary

Property Type Description

POINTS_LENGTH uint32 The number of points

QUANTIZED_VOLUME_OFFSET float32[3] The offset of the quantized volume in x, y, and z-direction

QUANTIZED_VOLUME_SCALE float32[3] The scale of the quantized volume in x, y, and z-direction

CONSTANT_RBGA uint8[4] The RGBA color components for all points in the tile

BATCH_LENGTH uint32 The number of batches for the points

RTC_CENTER float32[3] The center position when positions are defined relative-to-center

Property Type Description

POSITION
POSITION_QUANTIZED

float32[3]
uint16[3]

The x,y, and z coordinates for the position of the point

RGBA uint8[4] The RGBA color components of the point

RGB uint8[3] The RGB color components of the point

RGB565 uint16 A compressed, 16bit representation of RGB colors, with 5 bits for red, 6 bits for
green, and 5 bits for blue

NORMAL
NORMAL_OCT16P

float32[3]
uint8[2]

A unit vector defining the normal of the point

BATCH_ID uint8/16/32 The batch ID, to look up metadata for the points the batch table
17



cmpt ... b3dm ... ... i3dm ... ...

Batched 3D Model Instanced 3D Model

The body of a Composite tile just consists of an array of inner tiles. Each inner tile is a binary blob 
representing a tile: It starts with the common header, indicating the format, version, and length of the 
inner tile data, followed by the body for the respective tile format. 

The tiles that are combined in a single Composite
tile are referred to as inner tiles. Composite tiles can 
also be nested, meaning that each inner tile can again 
be a Composite tile.

10.5. Tile Formats: Composite Tiles (cmpt)
3D Tiles supports streaming heterogenous datasets. Multiple tile formats can be combined in one tileset. 
It is also possible to combine multiple tiles of different formats in a Composite Tile for additional flexibility.

One example for the use of Composite tiles can be found 
in geospatial applications: A set of buildings could be 
stored in a Batched 3D Model, and a set of trees could 
be stored as an Instanced 3D Model. When these elements 
appear at the same geographic location, it is useful to 
combine these models in a single Composite tile: The 
renderable content for a given geolocation can then be 
obtained as a single tile, with a single request.

magic version byteLength
(uchar[4]) (uint32) (uint32)

tilesLength
(uint32)

tiles[]

Composite Tile:As for other tile formats, the header of a Composite
tile starts with the magic bytes that indicate the 
tile format (cmpt), followed by a version number, 
and the total length of the tile data, including the 
header, in bytes. 

The common part of the header is followed by an integer that indicates the number of tiles that have
been combined in the Composite tile. 

Header bytes [0 .. 16) Body

Composite Tiles: Data Layout
The following diagram shows the layout and data types for the information that is contained in the header
and body of Composite tiles:

18

11. Extensions
3D Tiles offers a mechansim to extend the base specification with new features: each JSON object in 
3D Tiles may contain an extensions dictionary. The keys of this dictionary are the names of the 
extensions, and the values may be extension specific objects. Vendors can propose extensions and 
provide a specification for the structure and semantics of the extension objects that are contained 
in the dictionary. 

{
  ...
  "extensions": {
    "VENDOR_collision_volume": {
      "sphere": [ 5.0, 3.0, 7.0, 10.0 ]
    }
  }
}

This example shows the JSON that may be added to a tile JSON 
in the context of a hypothetical vendor extension that defines 
a collision volume for the tile. The name of the extension is
VENDOR_collision_volume, and it defines a collision sphere
via its center and radius, similar to the bounding volumes 
that are already supported in 3D Tiles. 

The names of extensions that are used in a tileset or one of its descendants must be listed in the 
top-level extensionsUsed dictionary of the tileset. When a certain extension is required in order to 
properly load and render the tileset, it must also be listed in the extensionsRequired dictionary. 
Implementations can inspect these dictionaries when the tileset is loaded, and check whether they 
support the extensions that are used or required by the tileset. 



12. Declarative Styling
Depending on the tile format, the renderable content of a tile may contain different features. For Batched 
3D Models, each model that is identified with a batchId is a feature. For Instanced 3D Models, each 
instance is a feature. For Point Clouds, there are two options: when the points are batched together, 
each group of points that has the same batchId is a feature. Otherwise, each point is a feature. 

3D Tiles allows modifying the appearance of features at runtime, using declarative styling: a style is 
defined with JSON that contains a set of expressions. The values of these expressions determine the 
visibility or color of the features. The runtime engine can evaluate these expressions and apply styling 
to the features based on user interaction and the feature properties that are stored in the Batch Table.

For example, in a Batched 3D Model where each building is a feature, the color of the buildings may be 
modified at runtime, based on different criteria. The following is an example of a style JSON that 
causes buildings to be rendered with different colors, depending on their height:

Other examples of declarative styling may 
apply a color to the buildings based on 
other properties, like their latitude (left) or 
their distance to a certain landmark (right) :

23.0
16.2

31.8

"height" : {
 "byteOffset" : 0,
 "componentType" : "FLOAT",
 "type" : "SCALAR"
}

Batch table JSON: Batch table binary:

{ 
 "color" : {
  "conditions" : [
   ["(${height} < 20)", "color('#FFC0C0')"],
   ["(${height} < 30)", "color('#C0FFC0')"],
   ["(${height} < 40)", "color('#C0C0FF')"]
  ]
 }
}

Style JSON:

 23.0  31.8  16.2  ...

Styling a Batched 3D Model

In this example, a Batched 3D Model contains multiple buildings. 
Each building has its own batchId. 

The model also has a Batch Table. 
The JSON header of the Batch Table 
contains a property "height". It 
points to a segment of the binary 
body of the Batch Table. The segment
represents an array that contains 
the heights of the buildings. The 
batchId is used to look up the height
of a building in this array.

batchId 0   batchId 1  batchId 2 ... 

When the model is rendered, a style JSON is applied to the model. The style determines the color of 
each feature (building). In this example, the color depends on the value of the "height" property:

23.0
16.2

31.8

The model is rendered 
in red, green, or blue 
when the height is 
lower than 20, 30, or 
40, respectively:

19

{
  "color": {
    "conditions": [
      ["${height} >= 300", "rgba(45, 0, 75, 0.5)"],
      ["${height} >= 200", "rgb(102, 71, 151)"],
      ["${height} >= 100", "rgb(170, 162, 204)"],
      ["${height} >= 50", "rgb(224, 226, 238)"],
      ["${height} >= 25", "rgb(252, 230, 200)"],
      ["${height} >= 10", "rgb(248, 176, 87)"],
      ["${height} >= 5", "rgb(198, 106, 11)"],
      ["true", "rgb(127, 59, 8)"]
    ]
}



For Batched 3D Models and Instanced 3D Models, the style consists of 
a show property that determines the visibility of the feature, and 
a color property that determines the color.
For Point Clouds, the style may also contain a pointSize property that 
determines the size of the points when they are rendered.

Expressions
The styling language supports most of the unary and binary operators that are supported by JavaScript, 
as well as the ternary conditional operator and common built-in mathematical functions like abs, max, 
or cos. 
The types of the language include the vector types vec2, vec3, and vec4. The vec4 type is used to 
represent RGBA colors.

Several built-in functions are defined that can be applied to numbers as well as certain vector types: 
the clamp function can be used to constrain numbers or vector components to a certain range. The
mix function allows linearly interpolating between numbers or vectors. The length, distance, 
normalize, and dot functions may be used for geometric computations on vectors. The cross function
allows computing the cross product of 3D vectors.

Variables
The expressions that are used in a style may contain variables. These variables refer to properties of the
features in a tile. The actual values of these properties are stored in the Batch Table.

Expressions can be parsed into an abstract syntax tree (AST) and be evaluated. The type of an evaluated 
expression must match the type of the style property. 

Variables are written using the ECMAScript 2015 template literal syntax: the literal ${property} refers 
to a property of a feature, where property is the case-sensitive property name.

{
  "color" : "(${height} > 50) ? color('red') : color('white')"
}

The following is an example of a style that assigns a color to a feature, based on the height of the 
feature that is stored in the Batch Table: features with a height greater than 50 will be colored red, 
and all others will be white:

{
  "show" : "true",
  "color" : "color('red')",
  "pointSize" : "3.0"
}

Style JSON

Vector components of the vec2, vec3, and vec4 types can be accessed using the dot notation. For 
example, the elements of a 4D vector v can be interpreted as x, y, z, and w-coordinates and accessed
as v.x, v.y, v.z, and v.w. Equivalently, they can be interpreted as RGBA color components, and 
accessed as v.r, v.g, v.b, and v.a.
Alternatively, the components can be accessed using the array notation, where the elements of a 4D 
vector v can be accessed as v[0], v[1], v[2], and v[3]. 
Colors are represented with the vec4 type, containing the RGBA color components. There are different
convenience functions for creating colors from different arguments. These functions resemble the 
ways colors can be defined in CSS. For example:

• color('red'))
• color('blue', 0.5)
• color('#00FFFF')
• rgb(100, 255, 90)
• hsl(1.0, 0.6, 0.7)

From a keyword
From a keyword, with an opacity (alpha) of 0.5
From a hex RGB string
From red, green and blue components in [0, 255]
From hue, saturation and lightness, each in [0, 1]

(12. Declarative Styling)

20

The style description is passed to the runtime engine as JSON. It contains properties that determine the
appearance of the features in the tile:

The values for the properties of a style are written in an expression language that is a subset of 
JavaScript. The types of this language also include vector types that are useful for geometry 
computations and for representing colors. These vector types are derived from GLSL, and the
expressions that can be represented with these types can therefore be implemented easily 
and efficiently in shaders.  



Conditions

Defining Variables

The style properties may also be written using conditions. A condition consists of two expressions: an 
expression that evaluates to a boolean value, and an expression that is evaluated when the boolean 
value is true. Multiple conditions can be combined as an array.  

In addition to the variables that refer to properties in the Batch Table, a style may also define its own 
variables. These definitions are given in the defines property of a style. Each definition consists of the 
name of the new variable, which is mapped to an expression. The expression may not refer to other 
defines, but it may refer to existing variables from the Batch Table.

{
  "color" : {
    "conditions" : [
      [ "${temperature} > 100)", "color('red')" ],
      [ "${temperature} > 50)", "color('yellow')" ],
      [ "true", "color('green')" ]
    ]
  }
}

An example of the use of conditions: if the 
temperature that is associated with a feature is 
greater than 100, then red will be returned. If it is 
greater than 50, then yellow will be returned. 
Otherwise, green will be returned. The conditions 
are evaluated in order. If no condition is met, then 
the style property will be undefined.

{
  "defines" : {
    "distanceToPoint" : 
      "distance(vec2(${x}, ${y}), vec2(1, 2))"
  },
  "color" : {
    "conditions" : [
      ["${distanceToPoint} > 1.0", "color('red')"],
      ["true", "color('0x0000FF', ${distanceToPoint}"]
    ]
  }
}

Regular Expressions
Styles support regular expressions, so that it is possible to formulate conditions for rendering based on 
property values from the Feature Table that are stored as strings.  

{
  "show" : "regExp('Building\s\d').test(${name})"
}

A style that will only show features that have a ${name}
property that matches the given pattern: the string 
"Building", followed by a space and an integer.

The newly defined distanceToPoint variable 
represents the distance of a feature to the point 
(1,2), based on variables ${x} and ${y} that are 
stored in the Batch Table. 
The new variable is used to determine the color
for the style: When the distance exceeds a 
threshold, the feature is rendered in red. 
Otherwise, the distance is used to control the 
opacity of the color. 

12. Declarative Styling)

21

When the declarative styling is applied to Point Clouds, the style may also refer to semantics that are
stored in the Feature Table, like position, color, and normal. 

Styling Point Clouds

The positions of the points may be referred to as ${POSITION}. When the positions are stored in the 
quantized form, this refers to the positions after the quantization scaling is applied, but before the 
quantization offset is added. In contrast to that, ${POSITION_ABSOLUTE} refers to the positions after 
the quantization scaling and offset have been applied. The colors may be accessed using the ${COLOR} 
keyword. The normals of the points may be accessed as ${NORMAL}. If the normals are stored in the 
oct-encoded representation, then this refers to the decoded normal. 

Further information about the quantized position and oct-encoded normal representations can be found 
in Section 13, "Common Definitions."



13. Common Definitions

3D Tiles was created to make it possible to visualize huge amounts of 3D content, especially geospatial 
data, in a high-quality, interactive way. This means that it must be possible to render 3D objects with high 
accuracy, even when they have a large distance from the center of the virtual world.

13.3. Relative-To-Center Positions (RTC_CENTER)

The "region" bounding volume type is intended for geospatial applications. The extents of these bounding
volumes are given as latitudes and longitudes, measured in radians, in the WGS 84 datum as defined in 
EPSG 4979. 
https://spatialreference.org/ref/epsg/4979/

https://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf

The minimum and maximum height of the contents of a region bounding volume are given in meters 
above or below the WGS 84 ellipsoid.

13.2. World Geodetic System Ellipsoid (WGS84)

The vertex positions for Batched 3D Models are stored as one attribute in the glTF representation of the 
model. For Instanced 3D Models and Point Clouds, the Feature Table contains a position property for the 
instances and points. The coordinate values of these positions are usually stored as single precision, 
32-bit floating-point values. To support RTC rendering, the respective tile formats allow specifying an
RTC_CENTER property in their Feature Table. This property defines the center of an application-specific 
coordinate system, and if it is present, all positions are assumed to be given relative to this center.

In common graphics APIs like OpenGL, Direct3D, or Vulkan, the vertex positions of 3D objects are usually 
stored as single-precision (32-bit) floating-point values. Due to this limited precision, objects that have a 
large distance to the origin of the rendering coordinate system cannot be represented accurately: 
different vertex coordinates will have the same, internal representation as a single-precision value:

(The information presented here is based on http://help.agi.com/AGIComponents/html/BlogPrecisionsPrecisions.htm)

Theoretical value

131072.01
Actual 32-bit single-precision value

131072.0156250

131072.02 131072.0156250

131072.03 131072.0312500

Despite the different values of 
131072.01 and 131072.02, the
representations of these values
as 32-bit single-precision values
are equal.

This lack of accuracy can result in rendering artifacts—most noticeably, in visual jitter when zooming 
closely to one of the rendered objects. To alleviate this problem, 3D Tiles supports a technique for 
compensating the error that results from large coordinate values. This technique is called Relative To 
Center (RTC) rendering.

To take into account the relative positions of the vertices, the RTC_CENTER is used to modify the 
Model-View-Matrix that is used for rendering. Initially, this is a matrix MVGPU, stored in double-precision
on the CPU. The RTC_CENTER is transformed into eye coordinates using the original Model-View matrix: 

RTC_CENTEREye = MVGPU * RTC_CENTER

The Model-View-Matrix that is used for rendering then is a matrix MVGPU that is stored in single-precision,
and which is created by replacing the last column of the original Model-View matrix with the resulting
RTC_CENTEREye.

With this technique, it is possible to avoid the appearance of large values in the positions of the model,
which would cause rendering artifacts due to the limited precision of the subsequent rendering pipeline:
the positions can be given as small values, relative to the RTC_CENTER, and the modified Model-View 
matrix properly transforms them into the eye coordinate system for rendering.

13.1. glTF - The GL Transmission Format

22

Batched 3D Models and Instanced 3D Models in 3D Tiles may embed models that are stored as Binary 
glTF. This is the binary form of the GL Transmission Format, which is an open specification for the 
efficient transmission of 3D content, maintained by the Khronos Group. 
https://github.com/KhronosGroup/glTF



13.5. Quantized Positions and Oct-encoded Normals
The positions of instances in the Instanced 3D Model tile format as well 
as the positions of points in the Point Cloud tile format can be given in 
different forms: when they are given with the POSITION attribute, 
then they are stored as three 32-bit floating-point values, containing 
the x, y, and z coordinate of the instance or point. 

For massive numbers of instances or points, 3D Tiles offers a way to 
store the positions more compactly: when the positions are defined 
using the POSITION_QUANTIZED attribute, then they are represented 
with three 16-bit unsigned integer values. This is achieved by storing 
the positions relative to the quantization volume which is defined by 
the QUANTIZED_VOLUME_OFFSET and QUANTIZED_VOLUME_SCALE
attributes that are stored in the respective Feature Table.
https://github.com/CesiumGS/3d-tiles/blob/master/specification/TileFormats/Instanced3DModel/README.md#quantized-positions

23

(13. Common Definitions)

https://github.com/CesiumGS/3d-tiles/blob/master/specification/TileFormats/PointCloud/README.md#oct-encoded-normal-vectors

Similarly, the normals of points and instances can be given as vectors consisting of three floating-point 
values, in the NORMAL, NORMAL_UP, and NORMAL_RIGHT attribute. For larger numbers of points or 
instances, these normals can be stored in a compressed form, indicated by the _OCT16P suffix of these
attribute names. This compressed form consists of a bidirectional mapping: the normal vectors are 
mapped from the octants of a unit sphere to the faces of an octahedron, which are then projected to
the plane and unfold into a unit square. Using this compression, a 3D normal vector can be represented
with a single 16-bit value. 

13.4. Transforms in 3D Tiles
The renderable content in 3D Tiles may be given in different coordinate systems. For example, a tileset
for a city could contain a nested tileset for a single building, and the latter could be given in its own
coordinate system.
In order to convert between local coordinate systems, each tile has an optional transform property.
This property is a column-major 4⨉4 affine transformation matrix and transforms the coordinate 
system of the tile into the coordinate system of the parent, defaulting to the identity matrix when it
is not defined. 

If the content of a tile uses relative-to-center positions, then the RTC_CENTER must be considered as an 
additional translation for the vertices.

https://github.com/CesiumGS/3d-tiles/tree/master/specification#transforms

The transform matrix of a tile affects the positions, normals, and the bounding volumes of the tile and 
its content. The positions of features (like instances in an Instanced 3D Model, or points in a Point 
Cloud) are multiplied with the transform matrix to bring them from the local coordinate system into the 
coordinate system of the parent tile. The normals are multiplied with the top-left 3⨉3 matrix of the 
transpose of the inverse of the matrix, to properly take non-uniform scaling into account. The bounding
volumes are transformed with the matrix, except the "region" bounding volumes, which are explicitly
defined to be in EPSG:4979 coordinates.

T0

T1

T2 pnts

T3

T4

b3dm

i3dm

T0 ⋅ T1

T0 ⋅ T1 ⋅ T3

T0

T0 ⋅ T2

T0 ⋅ T1 ⋅ T4

An example of a tileset with tiles T0...T4, and different content 
types. The diagram shows the hierarchical structure of the tiles. 
The right-hand side shows the transform that is computed for 
each tile: the transform for each tile is computed as the product
of all transforms on the path from the root tile to the respective 
tile.

13.4.1 Coordinate Systems in 3D Tiles and glTF
3D Tiles defines the z-axis as up for local Cartesian coordinate systems. In contrast, glTF considers the 
y-axis as up. When glTF assets are embedded in Batched 3D Models and Instanced 3D Models, these 
different conventions must be considered by transforming the glTF asset at runtime so that the z-axis 
points upwards. Additionally, each glTF asset has its own node hierarchy with transforms. Details about 
how these different transforms play together, and the order in which they are applied to the renderable 
content, can be found in the 3D Tiles specification.


